1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic address resolution entity
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 *
9 * Fixes:
10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
11 * Harald Welte Add neighbour cache statistics like rtstat
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/slab.h>
17 #include <linux/kmemleak.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/arp.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39 #include <linux/inetdevice.h>
40 #include <net/addrconf.h>
41
42 #include <trace/events/neigh.h>
43
44 #define NEIGH_DEBUG 1
45 #define neigh_dbg(level, fmt, ...) \
46 do { \
47 if (level <= NEIGH_DEBUG) \
48 pr_debug(fmt, ##__VA_ARGS__); \
49 } while (0)
50
51 #define PNEIGH_HASHMASK 0xF
52
53 static void neigh_timer_handler(struct timer_list *t);
54 static void __neigh_notify(struct neighbour *n, int type, int flags,
55 u32 pid);
56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
58 struct net_device *dev);
59
60 #ifdef CONFIG_PROC_FS
61 static const struct seq_operations neigh_stat_seq_ops;
62 #endif
63
64 /*
65 Neighbour hash table buckets are protected with rwlock tbl->lock.
66
67 - All the scans/updates to hash buckets MUST be made under this lock.
68 - NOTHING clever should be made under this lock: no callbacks
69 to protocol backends, no attempts to send something to network.
70 It will result in deadlocks, if backend/driver wants to use neighbour
71 cache.
72 - If the entry requires some non-trivial actions, increase
73 its reference count and release table lock.
74
75 Neighbour entries are protected:
76 - with reference count.
77 - with rwlock neigh->lock
78
79 Reference count prevents destruction.
80
81 neigh->lock mainly serializes ll address data and its validity state.
82 However, the same lock is used to protect another entry fields:
83 - timer
84 - resolution queue
85
86 Again, nothing clever shall be made under neigh->lock,
87 the most complicated procedure, which we allow is dev->hard_header.
88 It is supposed, that dev->hard_header is simplistic and does
89 not make callbacks to neighbour tables.
90 */
91
neigh_blackhole(struct neighbour * neigh,struct sk_buff * skb)92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
93 {
94 kfree_skb(skb);
95 return -ENETDOWN;
96 }
97
neigh_cleanup_and_release(struct neighbour * neigh)98 static void neigh_cleanup_and_release(struct neighbour *neigh)
99 {
100 trace_neigh_cleanup_and_release(neigh, 0);
101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
neigh_rand_reach_time(unsigned long base)112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? get_random_u32_below(base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
neigh_mark_dead(struct neighbour * n)118 static void neigh_mark_dead(struct neighbour *n)
119 {
120 n->dead = 1;
121 if (!list_empty(&n->gc_list)) {
122 list_del_init(&n->gc_list);
123 atomic_dec(&n->tbl->gc_entries);
124 }
125 if (!list_empty(&n->managed_list))
126 list_del_init(&n->managed_list);
127 }
128
neigh_update_gc_list(struct neighbour * n)129 static void neigh_update_gc_list(struct neighbour *n)
130 {
131 bool on_gc_list, exempt_from_gc;
132
133 write_lock_bh(&n->tbl->lock);
134 write_lock(&n->lock);
135 if (n->dead)
136 goto out;
137
138 /* remove from the gc list if new state is permanent or if neighbor
139 * is externally learned; otherwise entry should be on the gc list
140 */
141 exempt_from_gc = n->nud_state & NUD_PERMANENT ||
142 n->flags & NTF_EXT_LEARNED;
143 on_gc_list = !list_empty(&n->gc_list);
144
145 if (exempt_from_gc && on_gc_list) {
146 list_del_init(&n->gc_list);
147 atomic_dec(&n->tbl->gc_entries);
148 } else if (!exempt_from_gc && !on_gc_list) {
149 /* add entries to the tail; cleaning removes from the front */
150 list_add_tail(&n->gc_list, &n->tbl->gc_list);
151 atomic_inc(&n->tbl->gc_entries);
152 }
153 out:
154 write_unlock(&n->lock);
155 write_unlock_bh(&n->tbl->lock);
156 }
157
neigh_update_managed_list(struct neighbour * n)158 static void neigh_update_managed_list(struct neighbour *n)
159 {
160 bool on_managed_list, add_to_managed;
161
162 write_lock_bh(&n->tbl->lock);
163 write_lock(&n->lock);
164 if (n->dead)
165 goto out;
166
167 add_to_managed = n->flags & NTF_MANAGED;
168 on_managed_list = !list_empty(&n->managed_list);
169
170 if (!add_to_managed && on_managed_list)
171 list_del_init(&n->managed_list);
172 else if (add_to_managed && !on_managed_list)
173 list_add_tail(&n->managed_list, &n->tbl->managed_list);
174 out:
175 write_unlock(&n->lock);
176 write_unlock_bh(&n->tbl->lock);
177 }
178
neigh_update_flags(struct neighbour * neigh,u32 flags,int * notify,bool * gc_update,bool * managed_update)179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
180 bool *gc_update, bool *managed_update)
181 {
182 u32 ndm_flags, old_flags = neigh->flags;
183
184 if (!(flags & NEIGH_UPDATE_F_ADMIN))
185 return;
186
187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
189
190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
191 if (ndm_flags & NTF_EXT_LEARNED)
192 neigh->flags |= NTF_EXT_LEARNED;
193 else
194 neigh->flags &= ~NTF_EXT_LEARNED;
195 *notify = 1;
196 *gc_update = true;
197 }
198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
199 if (ndm_flags & NTF_MANAGED)
200 neigh->flags |= NTF_MANAGED;
201 else
202 neigh->flags &= ~NTF_MANAGED;
203 *notify = 1;
204 *managed_update = true;
205 }
206 }
207
neigh_del(struct neighbour * n,struct neighbour __rcu ** np,struct neigh_table * tbl)208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
209 struct neigh_table *tbl)
210 {
211 bool retval = false;
212
213 write_lock(&n->lock);
214 if (refcount_read(&n->refcnt) == 1) {
215 struct neighbour *neigh;
216
217 neigh = rcu_dereference_protected(n->next,
218 lockdep_is_held(&tbl->lock));
219 rcu_assign_pointer(*np, neigh);
220 neigh_mark_dead(n);
221 retval = true;
222 }
223 write_unlock(&n->lock);
224 if (retval)
225 neigh_cleanup_and_release(n);
226 return retval;
227 }
228
neigh_remove_one(struct neighbour * ndel,struct neigh_table * tbl)229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
230 {
231 struct neigh_hash_table *nht;
232 void *pkey = ndel->primary_key;
233 u32 hash_val;
234 struct neighbour *n;
235 struct neighbour __rcu **np;
236
237 nht = rcu_dereference_protected(tbl->nht,
238 lockdep_is_held(&tbl->lock));
239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
240 hash_val = hash_val >> (32 - nht->hash_shift);
241
242 np = &nht->hash_buckets[hash_val];
243 while ((n = rcu_dereference_protected(*np,
244 lockdep_is_held(&tbl->lock)))) {
245 if (n == ndel)
246 return neigh_del(n, np, tbl);
247 np = &n->next;
248 }
249 return false;
250 }
251
neigh_forced_gc(struct neigh_table * tbl)252 static int neigh_forced_gc(struct neigh_table *tbl)
253 {
254 int max_clean = atomic_read(&tbl->gc_entries) -
255 READ_ONCE(tbl->gc_thresh2);
256 u64 tmax = ktime_get_ns() + NSEC_PER_MSEC;
257 unsigned long tref = jiffies - 5 * HZ;
258 struct neighbour *n, *tmp;
259 int shrunk = 0;
260 int loop = 0;
261
262 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
263
264 write_lock_bh(&tbl->lock);
265
266 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
267 if (refcount_read(&n->refcnt) == 1) {
268 bool remove = false;
269
270 write_lock(&n->lock);
271 if ((n->nud_state == NUD_FAILED) ||
272 (n->nud_state == NUD_NOARP) ||
273 (tbl->is_multicast &&
274 tbl->is_multicast(n->primary_key)) ||
275 !time_in_range(n->updated, tref, jiffies))
276 remove = true;
277 write_unlock(&n->lock);
278
279 if (remove && neigh_remove_one(n, tbl))
280 shrunk++;
281 if (shrunk >= max_clean)
282 break;
283 if (++loop == 16) {
284 if (ktime_get_ns() > tmax)
285 goto unlock;
286 loop = 0;
287 }
288 }
289 }
290
291 WRITE_ONCE(tbl->last_flush, jiffies);
292 unlock:
293 write_unlock_bh(&tbl->lock);
294
295 return shrunk;
296 }
297
neigh_add_timer(struct neighbour * n,unsigned long when)298 static void neigh_add_timer(struct neighbour *n, unsigned long when)
299 {
300 /* Use safe distance from the jiffies - LONG_MAX point while timer
301 * is running in DELAY/PROBE state but still show to user space
302 * large times in the past.
303 */
304 unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
305
306 neigh_hold(n);
307 if (!time_in_range(n->confirmed, mint, jiffies))
308 n->confirmed = mint;
309 if (time_before(n->used, n->confirmed))
310 n->used = n->confirmed;
311 if (unlikely(mod_timer(&n->timer, when))) {
312 printk("NEIGH: BUG, double timer add, state is %x\n",
313 n->nud_state);
314 dump_stack();
315 }
316 }
317
neigh_del_timer(struct neighbour * n)318 static int neigh_del_timer(struct neighbour *n)
319 {
320 if ((n->nud_state & NUD_IN_TIMER) &&
321 del_timer(&n->timer)) {
322 neigh_release(n);
323 return 1;
324 }
325 return 0;
326 }
327
neigh_get_dev_parms_rcu(struct net_device * dev,int family)328 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
329 int family)
330 {
331 switch (family) {
332 case AF_INET:
333 return __in_dev_arp_parms_get_rcu(dev);
334 case AF_INET6:
335 return __in6_dev_nd_parms_get_rcu(dev);
336 }
337 return NULL;
338 }
339
neigh_parms_qlen_dec(struct net_device * dev,int family)340 static void neigh_parms_qlen_dec(struct net_device *dev, int family)
341 {
342 struct neigh_parms *p;
343
344 rcu_read_lock();
345 p = neigh_get_dev_parms_rcu(dev, family);
346 if (p)
347 p->qlen--;
348 rcu_read_unlock();
349 }
350
pneigh_queue_purge(struct sk_buff_head * list,struct net * net,int family)351 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
352 int family)
353 {
354 struct sk_buff_head tmp;
355 unsigned long flags;
356 struct sk_buff *skb;
357
358 skb_queue_head_init(&tmp);
359 spin_lock_irqsave(&list->lock, flags);
360 skb = skb_peek(list);
361 while (skb != NULL) {
362 struct sk_buff *skb_next = skb_peek_next(skb, list);
363 struct net_device *dev = skb->dev;
364
365 if (net == NULL || net_eq(dev_net(dev), net)) {
366 neigh_parms_qlen_dec(dev, family);
367 __skb_unlink(skb, list);
368 __skb_queue_tail(&tmp, skb);
369 }
370 skb = skb_next;
371 }
372 spin_unlock_irqrestore(&list->lock, flags);
373
374 while ((skb = __skb_dequeue(&tmp))) {
375 dev_put(skb->dev);
376 kfree_skb(skb);
377 }
378 }
379
neigh_flush_dev(struct neigh_table * tbl,struct net_device * dev,bool skip_perm)380 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
381 bool skip_perm)
382 {
383 int i;
384 struct neigh_hash_table *nht;
385
386 nht = rcu_dereference_protected(tbl->nht,
387 lockdep_is_held(&tbl->lock));
388
389 for (i = 0; i < (1 << nht->hash_shift); i++) {
390 struct neighbour *n;
391 struct neighbour __rcu **np = &nht->hash_buckets[i];
392
393 while ((n = rcu_dereference_protected(*np,
394 lockdep_is_held(&tbl->lock))) != NULL) {
395 if (dev && n->dev != dev) {
396 np = &n->next;
397 continue;
398 }
399 if (skip_perm && n->nud_state & NUD_PERMANENT) {
400 np = &n->next;
401 continue;
402 }
403 rcu_assign_pointer(*np,
404 rcu_dereference_protected(n->next,
405 lockdep_is_held(&tbl->lock)));
406 write_lock(&n->lock);
407 neigh_del_timer(n);
408 neigh_mark_dead(n);
409 if (refcount_read(&n->refcnt) != 1) {
410 /* The most unpleasant situation.
411 We must destroy neighbour entry,
412 but someone still uses it.
413
414 The destroy will be delayed until
415 the last user releases us, but
416 we must kill timers etc. and move
417 it to safe state.
418 */
419 __skb_queue_purge(&n->arp_queue);
420 n->arp_queue_len_bytes = 0;
421 WRITE_ONCE(n->output, neigh_blackhole);
422 if (n->nud_state & NUD_VALID)
423 n->nud_state = NUD_NOARP;
424 else
425 n->nud_state = NUD_NONE;
426 neigh_dbg(2, "neigh %p is stray\n", n);
427 }
428 write_unlock(&n->lock);
429 neigh_cleanup_and_release(n);
430 }
431 }
432 }
433
neigh_changeaddr(struct neigh_table * tbl,struct net_device * dev)434 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
435 {
436 write_lock_bh(&tbl->lock);
437 neigh_flush_dev(tbl, dev, false);
438 write_unlock_bh(&tbl->lock);
439 }
440 EXPORT_SYMBOL(neigh_changeaddr);
441
__neigh_ifdown(struct neigh_table * tbl,struct net_device * dev,bool skip_perm)442 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
443 bool skip_perm)
444 {
445 write_lock_bh(&tbl->lock);
446 neigh_flush_dev(tbl, dev, skip_perm);
447 pneigh_ifdown_and_unlock(tbl, dev);
448 pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
449 tbl->family);
450 if (skb_queue_empty_lockless(&tbl->proxy_queue))
451 del_timer_sync(&tbl->proxy_timer);
452 return 0;
453 }
454
neigh_carrier_down(struct neigh_table * tbl,struct net_device * dev)455 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
456 {
457 __neigh_ifdown(tbl, dev, true);
458 return 0;
459 }
460 EXPORT_SYMBOL(neigh_carrier_down);
461
neigh_ifdown(struct neigh_table * tbl,struct net_device * dev)462 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
463 {
464 __neigh_ifdown(tbl, dev, false);
465 return 0;
466 }
467 EXPORT_SYMBOL(neigh_ifdown);
468
neigh_alloc(struct neigh_table * tbl,struct net_device * dev,u32 flags,bool exempt_from_gc)469 static struct neighbour *neigh_alloc(struct neigh_table *tbl,
470 struct net_device *dev,
471 u32 flags, bool exempt_from_gc)
472 {
473 struct neighbour *n = NULL;
474 unsigned long now = jiffies;
475 int entries, gc_thresh3;
476
477 if (exempt_from_gc)
478 goto do_alloc;
479
480 entries = atomic_inc_return(&tbl->gc_entries) - 1;
481 gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
482 if (entries >= gc_thresh3 ||
483 (entries >= READ_ONCE(tbl->gc_thresh2) &&
484 time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
485 if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
486 net_info_ratelimited("%s: neighbor table overflow!\n",
487 tbl->id);
488 NEIGH_CACHE_STAT_INC(tbl, table_fulls);
489 goto out_entries;
490 }
491 }
492
493 do_alloc:
494 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
495 if (!n)
496 goto out_entries;
497
498 __skb_queue_head_init(&n->arp_queue);
499 rwlock_init(&n->lock);
500 seqlock_init(&n->ha_lock);
501 n->updated = n->used = now;
502 n->nud_state = NUD_NONE;
503 n->output = neigh_blackhole;
504 n->flags = flags;
505 seqlock_init(&n->hh.hh_lock);
506 n->parms = neigh_parms_clone(&tbl->parms);
507 timer_setup(&n->timer, neigh_timer_handler, 0);
508
509 NEIGH_CACHE_STAT_INC(tbl, allocs);
510 n->tbl = tbl;
511 refcount_set(&n->refcnt, 1);
512 n->dead = 1;
513 INIT_LIST_HEAD(&n->gc_list);
514 INIT_LIST_HEAD(&n->managed_list);
515
516 atomic_inc(&tbl->entries);
517 out:
518 return n;
519
520 out_entries:
521 if (!exempt_from_gc)
522 atomic_dec(&tbl->gc_entries);
523 goto out;
524 }
525
neigh_get_hash_rnd(u32 * x)526 static void neigh_get_hash_rnd(u32 *x)
527 {
528 *x = get_random_u32() | 1;
529 }
530
neigh_hash_alloc(unsigned int shift)531 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
532 {
533 size_t size = (1 << shift) * sizeof(struct neighbour *);
534 struct neigh_hash_table *ret;
535 struct neighbour __rcu **buckets;
536 int i;
537
538 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
539 if (!ret)
540 return NULL;
541 if (size <= PAGE_SIZE) {
542 buckets = kzalloc(size, GFP_ATOMIC);
543 } else {
544 buckets = (struct neighbour __rcu **)
545 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
546 get_order(size));
547 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
548 }
549 if (!buckets) {
550 kfree(ret);
551 return NULL;
552 }
553 ret->hash_buckets = buckets;
554 ret->hash_shift = shift;
555 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
556 neigh_get_hash_rnd(&ret->hash_rnd[i]);
557 return ret;
558 }
559
neigh_hash_free_rcu(struct rcu_head * head)560 static void neigh_hash_free_rcu(struct rcu_head *head)
561 {
562 struct neigh_hash_table *nht = container_of(head,
563 struct neigh_hash_table,
564 rcu);
565 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
566 struct neighbour __rcu **buckets = nht->hash_buckets;
567
568 if (size <= PAGE_SIZE) {
569 kfree(buckets);
570 } else {
571 kmemleak_free(buckets);
572 free_pages((unsigned long)buckets, get_order(size));
573 }
574 kfree(nht);
575 }
576
neigh_hash_grow(struct neigh_table * tbl,unsigned long new_shift)577 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
578 unsigned long new_shift)
579 {
580 unsigned int i, hash;
581 struct neigh_hash_table *new_nht, *old_nht;
582
583 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
584
585 old_nht = rcu_dereference_protected(tbl->nht,
586 lockdep_is_held(&tbl->lock));
587 new_nht = neigh_hash_alloc(new_shift);
588 if (!new_nht)
589 return old_nht;
590
591 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
592 struct neighbour *n, *next;
593
594 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
595 lockdep_is_held(&tbl->lock));
596 n != NULL;
597 n = next) {
598 hash = tbl->hash(n->primary_key, n->dev,
599 new_nht->hash_rnd);
600
601 hash >>= (32 - new_nht->hash_shift);
602 next = rcu_dereference_protected(n->next,
603 lockdep_is_held(&tbl->lock));
604
605 rcu_assign_pointer(n->next,
606 rcu_dereference_protected(
607 new_nht->hash_buckets[hash],
608 lockdep_is_held(&tbl->lock)));
609 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
610 }
611 }
612
613 rcu_assign_pointer(tbl->nht, new_nht);
614 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
615 return new_nht;
616 }
617
neigh_lookup(struct neigh_table * tbl,const void * pkey,struct net_device * dev)618 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
619 struct net_device *dev)
620 {
621 struct neighbour *n;
622
623 NEIGH_CACHE_STAT_INC(tbl, lookups);
624
625 rcu_read_lock();
626 n = __neigh_lookup_noref(tbl, pkey, dev);
627 if (n) {
628 if (!refcount_inc_not_zero(&n->refcnt))
629 n = NULL;
630 NEIGH_CACHE_STAT_INC(tbl, hits);
631 }
632
633 rcu_read_unlock();
634 return n;
635 }
636 EXPORT_SYMBOL(neigh_lookup);
637
638 static struct neighbour *
___neigh_create(struct neigh_table * tbl,const void * pkey,struct net_device * dev,u32 flags,bool exempt_from_gc,bool want_ref)639 ___neigh_create(struct neigh_table *tbl, const void *pkey,
640 struct net_device *dev, u32 flags,
641 bool exempt_from_gc, bool want_ref)
642 {
643 u32 hash_val, key_len = tbl->key_len;
644 struct neighbour *n1, *rc, *n;
645 struct neigh_hash_table *nht;
646 int error;
647
648 n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
649 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
650 if (!n) {
651 rc = ERR_PTR(-ENOBUFS);
652 goto out;
653 }
654
655 memcpy(n->primary_key, pkey, key_len);
656 n->dev = dev;
657 netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
658
659 /* Protocol specific setup. */
660 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
661 rc = ERR_PTR(error);
662 goto out_neigh_release;
663 }
664
665 if (dev->netdev_ops->ndo_neigh_construct) {
666 error = dev->netdev_ops->ndo_neigh_construct(dev, n);
667 if (error < 0) {
668 rc = ERR_PTR(error);
669 goto out_neigh_release;
670 }
671 }
672
673 /* Device specific setup. */
674 if (n->parms->neigh_setup &&
675 (error = n->parms->neigh_setup(n)) < 0) {
676 rc = ERR_PTR(error);
677 goto out_neigh_release;
678 }
679
680 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
681
682 write_lock_bh(&tbl->lock);
683 nht = rcu_dereference_protected(tbl->nht,
684 lockdep_is_held(&tbl->lock));
685
686 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
687 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
688
689 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
690
691 if (n->parms->dead) {
692 rc = ERR_PTR(-EINVAL);
693 goto out_tbl_unlock;
694 }
695
696 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
697 lockdep_is_held(&tbl->lock));
698 n1 != NULL;
699 n1 = rcu_dereference_protected(n1->next,
700 lockdep_is_held(&tbl->lock))) {
701 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
702 if (want_ref)
703 neigh_hold(n1);
704 rc = n1;
705 goto out_tbl_unlock;
706 }
707 }
708
709 n->dead = 0;
710 if (!exempt_from_gc)
711 list_add_tail(&n->gc_list, &n->tbl->gc_list);
712 if (n->flags & NTF_MANAGED)
713 list_add_tail(&n->managed_list, &n->tbl->managed_list);
714 if (want_ref)
715 neigh_hold(n);
716 rcu_assign_pointer(n->next,
717 rcu_dereference_protected(nht->hash_buckets[hash_val],
718 lockdep_is_held(&tbl->lock)));
719 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
720 write_unlock_bh(&tbl->lock);
721 neigh_dbg(2, "neigh %p is created\n", n);
722 rc = n;
723 out:
724 return rc;
725 out_tbl_unlock:
726 write_unlock_bh(&tbl->lock);
727 out_neigh_release:
728 if (!exempt_from_gc)
729 atomic_dec(&tbl->gc_entries);
730 neigh_release(n);
731 goto out;
732 }
733
__neigh_create(struct neigh_table * tbl,const void * pkey,struct net_device * dev,bool want_ref)734 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
735 struct net_device *dev, bool want_ref)
736 {
737 bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK);
738
739 return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref);
740 }
741 EXPORT_SYMBOL(__neigh_create);
742
pneigh_hash(const void * pkey,unsigned int key_len)743 static u32 pneigh_hash(const void *pkey, unsigned int key_len)
744 {
745 u32 hash_val = *(u32 *)(pkey + key_len - 4);
746 hash_val ^= (hash_val >> 16);
747 hash_val ^= hash_val >> 8;
748 hash_val ^= hash_val >> 4;
749 hash_val &= PNEIGH_HASHMASK;
750 return hash_val;
751 }
752
__pneigh_lookup_1(struct pneigh_entry * n,struct net * net,const void * pkey,unsigned int key_len,struct net_device * dev)753 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
754 struct net *net,
755 const void *pkey,
756 unsigned int key_len,
757 struct net_device *dev)
758 {
759 while (n) {
760 if (!memcmp(n->key, pkey, key_len) &&
761 net_eq(pneigh_net(n), net) &&
762 (n->dev == dev || !n->dev))
763 return n;
764 n = n->next;
765 }
766 return NULL;
767 }
768
__pneigh_lookup(struct neigh_table * tbl,struct net * net,const void * pkey,struct net_device * dev)769 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
770 struct net *net, const void *pkey, struct net_device *dev)
771 {
772 unsigned int key_len = tbl->key_len;
773 u32 hash_val = pneigh_hash(pkey, key_len);
774
775 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
776 net, pkey, key_len, dev);
777 }
778 EXPORT_SYMBOL_GPL(__pneigh_lookup);
779
pneigh_lookup(struct neigh_table * tbl,struct net * net,const void * pkey,struct net_device * dev,int creat)780 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
781 struct net *net, const void *pkey,
782 struct net_device *dev, int creat)
783 {
784 struct pneigh_entry *n;
785 unsigned int key_len = tbl->key_len;
786 u32 hash_val = pneigh_hash(pkey, key_len);
787
788 read_lock_bh(&tbl->lock);
789 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
790 net, pkey, key_len, dev);
791 read_unlock_bh(&tbl->lock);
792
793 if (n || !creat)
794 goto out;
795
796 ASSERT_RTNL();
797
798 n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
799 if (!n)
800 goto out;
801
802 write_pnet(&n->net, net);
803 memcpy(n->key, pkey, key_len);
804 n->dev = dev;
805 netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
806
807 if (tbl->pconstructor && tbl->pconstructor(n)) {
808 netdev_put(dev, &n->dev_tracker);
809 kfree(n);
810 n = NULL;
811 goto out;
812 }
813
814 write_lock_bh(&tbl->lock);
815 n->next = tbl->phash_buckets[hash_val];
816 tbl->phash_buckets[hash_val] = n;
817 write_unlock_bh(&tbl->lock);
818 out:
819 return n;
820 }
821 EXPORT_SYMBOL(pneigh_lookup);
822
823
pneigh_delete(struct neigh_table * tbl,struct net * net,const void * pkey,struct net_device * dev)824 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
825 struct net_device *dev)
826 {
827 struct pneigh_entry *n, **np;
828 unsigned int key_len = tbl->key_len;
829 u32 hash_val = pneigh_hash(pkey, key_len);
830
831 write_lock_bh(&tbl->lock);
832 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
833 np = &n->next) {
834 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
835 net_eq(pneigh_net(n), net)) {
836 *np = n->next;
837 write_unlock_bh(&tbl->lock);
838 if (tbl->pdestructor)
839 tbl->pdestructor(n);
840 netdev_put(n->dev, &n->dev_tracker);
841 kfree(n);
842 return 0;
843 }
844 }
845 write_unlock_bh(&tbl->lock);
846 return -ENOENT;
847 }
848
pneigh_ifdown_and_unlock(struct neigh_table * tbl,struct net_device * dev)849 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
850 struct net_device *dev)
851 {
852 struct pneigh_entry *n, **np, *freelist = NULL;
853 u32 h;
854
855 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
856 np = &tbl->phash_buckets[h];
857 while ((n = *np) != NULL) {
858 if (!dev || n->dev == dev) {
859 *np = n->next;
860 n->next = freelist;
861 freelist = n;
862 continue;
863 }
864 np = &n->next;
865 }
866 }
867 write_unlock_bh(&tbl->lock);
868 while ((n = freelist)) {
869 freelist = n->next;
870 n->next = NULL;
871 if (tbl->pdestructor)
872 tbl->pdestructor(n);
873 netdev_put(n->dev, &n->dev_tracker);
874 kfree(n);
875 }
876 return -ENOENT;
877 }
878
879 static void neigh_parms_destroy(struct neigh_parms *parms);
880
neigh_parms_put(struct neigh_parms * parms)881 static inline void neigh_parms_put(struct neigh_parms *parms)
882 {
883 if (refcount_dec_and_test(&parms->refcnt))
884 neigh_parms_destroy(parms);
885 }
886
887 /*
888 * neighbour must already be out of the table;
889 *
890 */
neigh_destroy(struct neighbour * neigh)891 void neigh_destroy(struct neighbour *neigh)
892 {
893 struct net_device *dev = neigh->dev;
894
895 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
896
897 if (!neigh->dead) {
898 pr_warn("Destroying alive neighbour %p\n", neigh);
899 dump_stack();
900 return;
901 }
902
903 if (neigh_del_timer(neigh))
904 pr_warn("Impossible event\n");
905
906 write_lock_bh(&neigh->lock);
907 __skb_queue_purge(&neigh->arp_queue);
908 write_unlock_bh(&neigh->lock);
909 neigh->arp_queue_len_bytes = 0;
910
911 if (dev->netdev_ops->ndo_neigh_destroy)
912 dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
913
914 netdev_put(dev, &neigh->dev_tracker);
915 neigh_parms_put(neigh->parms);
916
917 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
918
919 atomic_dec(&neigh->tbl->entries);
920 kfree_rcu(neigh, rcu);
921 }
922 EXPORT_SYMBOL(neigh_destroy);
923
924 /* Neighbour state is suspicious;
925 disable fast path.
926
927 Called with write_locked neigh.
928 */
neigh_suspect(struct neighbour * neigh)929 static void neigh_suspect(struct neighbour *neigh)
930 {
931 neigh_dbg(2, "neigh %p is suspected\n", neigh);
932
933 WRITE_ONCE(neigh->output, neigh->ops->output);
934 }
935
936 /* Neighbour state is OK;
937 enable fast path.
938
939 Called with write_locked neigh.
940 */
neigh_connect(struct neighbour * neigh)941 static void neigh_connect(struct neighbour *neigh)
942 {
943 neigh_dbg(2, "neigh %p is connected\n", neigh);
944
945 WRITE_ONCE(neigh->output, neigh->ops->connected_output);
946 }
947
neigh_periodic_work(struct work_struct * work)948 static void neigh_periodic_work(struct work_struct *work)
949 {
950 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
951 struct neighbour *n;
952 struct neighbour __rcu **np;
953 unsigned int i;
954 struct neigh_hash_table *nht;
955
956 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
957
958 write_lock_bh(&tbl->lock);
959 nht = rcu_dereference_protected(tbl->nht,
960 lockdep_is_held(&tbl->lock));
961
962 /*
963 * periodically recompute ReachableTime from random function
964 */
965
966 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
967 struct neigh_parms *p;
968
969 WRITE_ONCE(tbl->last_rand, jiffies);
970 list_for_each_entry(p, &tbl->parms_list, list)
971 p->reachable_time =
972 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
973 }
974
975 if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
976 goto out;
977
978 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
979 np = &nht->hash_buckets[i];
980
981 while ((n = rcu_dereference_protected(*np,
982 lockdep_is_held(&tbl->lock))) != NULL) {
983 unsigned int state;
984
985 write_lock(&n->lock);
986
987 state = n->nud_state;
988 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
989 (n->flags & NTF_EXT_LEARNED)) {
990 write_unlock(&n->lock);
991 goto next_elt;
992 }
993
994 if (time_before(n->used, n->confirmed) &&
995 time_is_before_eq_jiffies(n->confirmed))
996 n->used = n->confirmed;
997
998 if (refcount_read(&n->refcnt) == 1 &&
999 (state == NUD_FAILED ||
1000 !time_in_range_open(jiffies, n->used,
1001 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
1002 rcu_assign_pointer(*np,
1003 rcu_dereference_protected(n->next,
1004 lockdep_is_held(&tbl->lock)));
1005 neigh_mark_dead(n);
1006 write_unlock(&n->lock);
1007 neigh_cleanup_and_release(n);
1008 continue;
1009 }
1010 write_unlock(&n->lock);
1011
1012 next_elt:
1013 np = &n->next;
1014 }
1015 /*
1016 * It's fine to release lock here, even if hash table
1017 * grows while we are preempted.
1018 */
1019 write_unlock_bh(&tbl->lock);
1020 cond_resched();
1021 write_lock_bh(&tbl->lock);
1022 nht = rcu_dereference_protected(tbl->nht,
1023 lockdep_is_held(&tbl->lock));
1024 }
1025 out:
1026 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
1027 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
1028 * BASE_REACHABLE_TIME.
1029 */
1030 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1031 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
1032 write_unlock_bh(&tbl->lock);
1033 }
1034
neigh_max_probes(struct neighbour * n)1035 static __inline__ int neigh_max_probes(struct neighbour *n)
1036 {
1037 struct neigh_parms *p = n->parms;
1038 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
1039 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
1040 NEIGH_VAR(p, MCAST_PROBES));
1041 }
1042
neigh_invalidate(struct neighbour * neigh)1043 static void neigh_invalidate(struct neighbour *neigh)
1044 __releases(neigh->lock)
1045 __acquires(neigh->lock)
1046 {
1047 struct sk_buff *skb;
1048
1049 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
1050 neigh_dbg(2, "neigh %p is failed\n", neigh);
1051 neigh->updated = jiffies;
1052
1053 /* It is very thin place. report_unreachable is very complicated
1054 routine. Particularly, it can hit the same neighbour entry!
1055
1056 So that, we try to be accurate and avoid dead loop. --ANK
1057 */
1058 while (neigh->nud_state == NUD_FAILED &&
1059 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1060 write_unlock(&neigh->lock);
1061 neigh->ops->error_report(neigh, skb);
1062 write_lock(&neigh->lock);
1063 }
1064 __skb_queue_purge(&neigh->arp_queue);
1065 neigh->arp_queue_len_bytes = 0;
1066 }
1067
neigh_probe(struct neighbour * neigh)1068 static void neigh_probe(struct neighbour *neigh)
1069 __releases(neigh->lock)
1070 {
1071 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1072 /* keep skb alive even if arp_queue overflows */
1073 if (skb)
1074 skb = skb_clone(skb, GFP_ATOMIC);
1075 write_unlock(&neigh->lock);
1076 if (neigh->ops->solicit)
1077 neigh->ops->solicit(neigh, skb);
1078 atomic_inc(&neigh->probes);
1079 consume_skb(skb);
1080 }
1081
1082 /* Called when a timer expires for a neighbour entry. */
1083
neigh_timer_handler(struct timer_list * t)1084 static void neigh_timer_handler(struct timer_list *t)
1085 {
1086 unsigned long now, next;
1087 struct neighbour *neigh = from_timer(neigh, t, timer);
1088 unsigned int state;
1089 int notify = 0;
1090
1091 write_lock(&neigh->lock);
1092
1093 state = neigh->nud_state;
1094 now = jiffies;
1095 next = now + HZ;
1096
1097 if (!(state & NUD_IN_TIMER))
1098 goto out;
1099
1100 if (state & NUD_REACHABLE) {
1101 if (time_before_eq(now,
1102 neigh->confirmed + neigh->parms->reachable_time)) {
1103 neigh_dbg(2, "neigh %p is still alive\n", neigh);
1104 next = neigh->confirmed + neigh->parms->reachable_time;
1105 } else if (time_before_eq(now,
1106 neigh->used +
1107 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1108 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1109 WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1110 neigh->updated = jiffies;
1111 neigh_suspect(neigh);
1112 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1113 } else {
1114 neigh_dbg(2, "neigh %p is suspected\n", neigh);
1115 WRITE_ONCE(neigh->nud_state, NUD_STALE);
1116 neigh->updated = jiffies;
1117 neigh_suspect(neigh);
1118 notify = 1;
1119 }
1120 } else if (state & NUD_DELAY) {
1121 if (time_before_eq(now,
1122 neigh->confirmed +
1123 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1124 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1125 WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1126 neigh->updated = jiffies;
1127 neigh_connect(neigh);
1128 notify = 1;
1129 next = neigh->confirmed + neigh->parms->reachable_time;
1130 } else {
1131 neigh_dbg(2, "neigh %p is probed\n", neigh);
1132 WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1133 neigh->updated = jiffies;
1134 atomic_set(&neigh->probes, 0);
1135 notify = 1;
1136 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1137 HZ/100);
1138 }
1139 } else {
1140 /* NUD_PROBE|NUD_INCOMPLETE */
1141 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1142 }
1143
1144 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1145 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1146 WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1147 notify = 1;
1148 neigh_invalidate(neigh);
1149 goto out;
1150 }
1151
1152 if (neigh->nud_state & NUD_IN_TIMER) {
1153 if (time_before(next, jiffies + HZ/100))
1154 next = jiffies + HZ/100;
1155 if (!mod_timer(&neigh->timer, next))
1156 neigh_hold(neigh);
1157 }
1158 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1159 neigh_probe(neigh);
1160 } else {
1161 out:
1162 write_unlock(&neigh->lock);
1163 }
1164
1165 if (notify)
1166 neigh_update_notify(neigh, 0);
1167
1168 trace_neigh_timer_handler(neigh, 0);
1169
1170 neigh_release(neigh);
1171 }
1172
__neigh_event_send(struct neighbour * neigh,struct sk_buff * skb,const bool immediate_ok)1173 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1174 const bool immediate_ok)
1175 {
1176 int rc;
1177 bool immediate_probe = false;
1178
1179 write_lock_bh(&neigh->lock);
1180
1181 rc = 0;
1182 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1183 goto out_unlock_bh;
1184 if (neigh->dead)
1185 goto out_dead;
1186
1187 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1188 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1189 NEIGH_VAR(neigh->parms, APP_PROBES)) {
1190 unsigned long next, now = jiffies;
1191
1192 atomic_set(&neigh->probes,
1193 NEIGH_VAR(neigh->parms, UCAST_PROBES));
1194 neigh_del_timer(neigh);
1195 WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1196 neigh->updated = now;
1197 if (!immediate_ok) {
1198 next = now + 1;
1199 } else {
1200 immediate_probe = true;
1201 next = now + max(NEIGH_VAR(neigh->parms,
1202 RETRANS_TIME),
1203 HZ / 100);
1204 }
1205 neigh_add_timer(neigh, next);
1206 } else {
1207 WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1208 neigh->updated = jiffies;
1209 write_unlock_bh(&neigh->lock);
1210
1211 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1212 return 1;
1213 }
1214 } else if (neigh->nud_state & NUD_STALE) {
1215 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1216 neigh_del_timer(neigh);
1217 WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1218 neigh->updated = jiffies;
1219 neigh_add_timer(neigh, jiffies +
1220 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1221 }
1222
1223 if (neigh->nud_state == NUD_INCOMPLETE) {
1224 if (skb) {
1225 while (neigh->arp_queue_len_bytes + skb->truesize >
1226 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1227 struct sk_buff *buff;
1228
1229 buff = __skb_dequeue(&neigh->arp_queue);
1230 if (!buff)
1231 break;
1232 neigh->arp_queue_len_bytes -= buff->truesize;
1233 kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1234 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1235 }
1236 skb_dst_force(skb);
1237 __skb_queue_tail(&neigh->arp_queue, skb);
1238 neigh->arp_queue_len_bytes += skb->truesize;
1239 }
1240 rc = 1;
1241 }
1242 out_unlock_bh:
1243 if (immediate_probe)
1244 neigh_probe(neigh);
1245 else
1246 write_unlock(&neigh->lock);
1247 local_bh_enable();
1248 trace_neigh_event_send_done(neigh, rc);
1249 return rc;
1250
1251 out_dead:
1252 if (neigh->nud_state & NUD_STALE)
1253 goto out_unlock_bh;
1254 write_unlock_bh(&neigh->lock);
1255 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1256 trace_neigh_event_send_dead(neigh, 1);
1257 return 1;
1258 }
1259 EXPORT_SYMBOL(__neigh_event_send);
1260
neigh_update_hhs(struct neighbour * neigh)1261 static void neigh_update_hhs(struct neighbour *neigh)
1262 {
1263 struct hh_cache *hh;
1264 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1265 = NULL;
1266
1267 if (neigh->dev->header_ops)
1268 update = neigh->dev->header_ops->cache_update;
1269
1270 if (update) {
1271 hh = &neigh->hh;
1272 if (READ_ONCE(hh->hh_len)) {
1273 write_seqlock_bh(&hh->hh_lock);
1274 update(hh, neigh->dev, neigh->ha);
1275 write_sequnlock_bh(&hh->hh_lock);
1276 }
1277 }
1278 }
1279
1280 /* Generic update routine.
1281 -- lladdr is new lladdr or NULL, if it is not supplied.
1282 -- new is new state.
1283 -- flags
1284 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1285 if it is different.
1286 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1287 lladdr instead of overriding it
1288 if it is different.
1289 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1290 NEIGH_UPDATE_F_USE means that the entry is user triggered.
1291 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed.
1292 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1293 NTF_ROUTER flag.
1294 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1295 a router.
1296
1297 Caller MUST hold reference count on the entry.
1298 */
__neigh_update(struct neighbour * neigh,const u8 * lladdr,u8 new,u32 flags,u32 nlmsg_pid,struct netlink_ext_ack * extack)1299 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1300 u8 new, u32 flags, u32 nlmsg_pid,
1301 struct netlink_ext_ack *extack)
1302 {
1303 bool gc_update = false, managed_update = false;
1304 int update_isrouter = 0;
1305 struct net_device *dev;
1306 int err, notify = 0;
1307 u8 old;
1308
1309 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1310
1311 write_lock_bh(&neigh->lock);
1312
1313 dev = neigh->dev;
1314 old = neigh->nud_state;
1315 err = -EPERM;
1316
1317 if (neigh->dead) {
1318 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1319 new = old;
1320 goto out;
1321 }
1322 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1323 (old & (NUD_NOARP | NUD_PERMANENT)))
1324 goto out;
1325
1326 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update);
1327 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1328 new = old & ~NUD_PERMANENT;
1329 WRITE_ONCE(neigh->nud_state, new);
1330 err = 0;
1331 goto out;
1332 }
1333
1334 if (!(new & NUD_VALID)) {
1335 neigh_del_timer(neigh);
1336 if (old & NUD_CONNECTED)
1337 neigh_suspect(neigh);
1338 WRITE_ONCE(neigh->nud_state, new);
1339 err = 0;
1340 notify = old & NUD_VALID;
1341 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1342 (new & NUD_FAILED)) {
1343 neigh_invalidate(neigh);
1344 notify = 1;
1345 }
1346 goto out;
1347 }
1348
1349 /* Compare new lladdr with cached one */
1350 if (!dev->addr_len) {
1351 /* First case: device needs no address. */
1352 lladdr = neigh->ha;
1353 } else if (lladdr) {
1354 /* The second case: if something is already cached
1355 and a new address is proposed:
1356 - compare new & old
1357 - if they are different, check override flag
1358 */
1359 if ((old & NUD_VALID) &&
1360 !memcmp(lladdr, neigh->ha, dev->addr_len))
1361 lladdr = neigh->ha;
1362 } else {
1363 /* No address is supplied; if we know something,
1364 use it, otherwise discard the request.
1365 */
1366 err = -EINVAL;
1367 if (!(old & NUD_VALID)) {
1368 NL_SET_ERR_MSG(extack, "No link layer address given");
1369 goto out;
1370 }
1371 lladdr = neigh->ha;
1372 }
1373
1374 /* Update confirmed timestamp for neighbour entry after we
1375 * received ARP packet even if it doesn't change IP to MAC binding.
1376 */
1377 if (new & NUD_CONNECTED)
1378 neigh->confirmed = jiffies;
1379
1380 /* If entry was valid and address is not changed,
1381 do not change entry state, if new one is STALE.
1382 */
1383 err = 0;
1384 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1385 if (old & NUD_VALID) {
1386 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1387 update_isrouter = 0;
1388 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1389 (old & NUD_CONNECTED)) {
1390 lladdr = neigh->ha;
1391 new = NUD_STALE;
1392 } else
1393 goto out;
1394 } else {
1395 if (lladdr == neigh->ha && new == NUD_STALE &&
1396 !(flags & NEIGH_UPDATE_F_ADMIN))
1397 new = old;
1398 }
1399 }
1400
1401 /* Update timestamp only once we know we will make a change to the
1402 * neighbour entry. Otherwise we risk to move the locktime window with
1403 * noop updates and ignore relevant ARP updates.
1404 */
1405 if (new != old || lladdr != neigh->ha)
1406 neigh->updated = jiffies;
1407
1408 if (new != old) {
1409 neigh_del_timer(neigh);
1410 if (new & NUD_PROBE)
1411 atomic_set(&neigh->probes, 0);
1412 if (new & NUD_IN_TIMER)
1413 neigh_add_timer(neigh, (jiffies +
1414 ((new & NUD_REACHABLE) ?
1415 neigh->parms->reachable_time :
1416 0)));
1417 WRITE_ONCE(neigh->nud_state, new);
1418 notify = 1;
1419 }
1420
1421 if (lladdr != neigh->ha) {
1422 write_seqlock(&neigh->ha_lock);
1423 memcpy(&neigh->ha, lladdr, dev->addr_len);
1424 write_sequnlock(&neigh->ha_lock);
1425 neigh_update_hhs(neigh);
1426 if (!(new & NUD_CONNECTED))
1427 neigh->confirmed = jiffies -
1428 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1429 notify = 1;
1430 }
1431 if (new == old)
1432 goto out;
1433 if (new & NUD_CONNECTED)
1434 neigh_connect(neigh);
1435 else
1436 neigh_suspect(neigh);
1437 if (!(old & NUD_VALID)) {
1438 struct sk_buff *skb;
1439
1440 /* Again: avoid dead loop if something went wrong */
1441
1442 while (neigh->nud_state & NUD_VALID &&
1443 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1444 struct dst_entry *dst = skb_dst(skb);
1445 struct neighbour *n2, *n1 = neigh;
1446 write_unlock_bh(&neigh->lock);
1447
1448 rcu_read_lock();
1449
1450 /* Why not just use 'neigh' as-is? The problem is that
1451 * things such as shaper, eql, and sch_teql can end up
1452 * using alternative, different, neigh objects to output
1453 * the packet in the output path. So what we need to do
1454 * here is re-lookup the top-level neigh in the path so
1455 * we can reinject the packet there.
1456 */
1457 n2 = NULL;
1458 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1459 n2 = dst_neigh_lookup_skb(dst, skb);
1460 if (n2)
1461 n1 = n2;
1462 }
1463 READ_ONCE(n1->output)(n1, skb);
1464 if (n2)
1465 neigh_release(n2);
1466 rcu_read_unlock();
1467
1468 write_lock_bh(&neigh->lock);
1469 }
1470 __skb_queue_purge(&neigh->arp_queue);
1471 neigh->arp_queue_len_bytes = 0;
1472 }
1473 out:
1474 if (update_isrouter)
1475 neigh_update_is_router(neigh, flags, ¬ify);
1476 write_unlock_bh(&neigh->lock);
1477 if (((new ^ old) & NUD_PERMANENT) || gc_update)
1478 neigh_update_gc_list(neigh);
1479 if (managed_update)
1480 neigh_update_managed_list(neigh);
1481 if (notify)
1482 neigh_update_notify(neigh, nlmsg_pid);
1483 trace_neigh_update_done(neigh, err);
1484 return err;
1485 }
1486
neigh_update(struct neighbour * neigh,const u8 * lladdr,u8 new,u32 flags,u32 nlmsg_pid)1487 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1488 u32 flags, u32 nlmsg_pid)
1489 {
1490 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1491 }
1492 EXPORT_SYMBOL(neigh_update);
1493
1494 /* Update the neigh to listen temporarily for probe responses, even if it is
1495 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1496 */
__neigh_set_probe_once(struct neighbour * neigh)1497 void __neigh_set_probe_once(struct neighbour *neigh)
1498 {
1499 if (neigh->dead)
1500 return;
1501 neigh->updated = jiffies;
1502 if (!(neigh->nud_state & NUD_FAILED))
1503 return;
1504 WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1505 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1506 neigh_add_timer(neigh,
1507 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1508 HZ/100));
1509 }
1510 EXPORT_SYMBOL(__neigh_set_probe_once);
1511
neigh_event_ns(struct neigh_table * tbl,u8 * lladdr,void * saddr,struct net_device * dev)1512 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1513 u8 *lladdr, void *saddr,
1514 struct net_device *dev)
1515 {
1516 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1517 lladdr || !dev->addr_len);
1518 if (neigh)
1519 neigh_update(neigh, lladdr, NUD_STALE,
1520 NEIGH_UPDATE_F_OVERRIDE, 0);
1521 return neigh;
1522 }
1523 EXPORT_SYMBOL(neigh_event_ns);
1524
1525 /* called with read_lock_bh(&n->lock); */
neigh_hh_init(struct neighbour * n)1526 static void neigh_hh_init(struct neighbour *n)
1527 {
1528 struct net_device *dev = n->dev;
1529 __be16 prot = n->tbl->protocol;
1530 struct hh_cache *hh = &n->hh;
1531
1532 write_lock_bh(&n->lock);
1533
1534 /* Only one thread can come in here and initialize the
1535 * hh_cache entry.
1536 */
1537 if (!hh->hh_len)
1538 dev->header_ops->cache(n, hh, prot);
1539
1540 write_unlock_bh(&n->lock);
1541 }
1542
1543 /* Slow and careful. */
1544
neigh_resolve_output(struct neighbour * neigh,struct sk_buff * skb)1545 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1546 {
1547 int rc = 0;
1548
1549 if (!neigh_event_send(neigh, skb)) {
1550 int err;
1551 struct net_device *dev = neigh->dev;
1552 unsigned int seq;
1553
1554 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1555 neigh_hh_init(neigh);
1556
1557 do {
1558 __skb_pull(skb, skb_network_offset(skb));
1559 seq = read_seqbegin(&neigh->ha_lock);
1560 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1561 neigh->ha, NULL, skb->len);
1562 } while (read_seqretry(&neigh->ha_lock, seq));
1563
1564 if (err >= 0)
1565 rc = dev_queue_xmit(skb);
1566 else
1567 goto out_kfree_skb;
1568 }
1569 out:
1570 return rc;
1571 out_kfree_skb:
1572 rc = -EINVAL;
1573 kfree_skb(skb);
1574 goto out;
1575 }
1576 EXPORT_SYMBOL(neigh_resolve_output);
1577
1578 /* As fast as possible without hh cache */
1579
neigh_connected_output(struct neighbour * neigh,struct sk_buff * skb)1580 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1581 {
1582 struct net_device *dev = neigh->dev;
1583 unsigned int seq;
1584 int err;
1585
1586 do {
1587 __skb_pull(skb, skb_network_offset(skb));
1588 seq = read_seqbegin(&neigh->ha_lock);
1589 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1590 neigh->ha, NULL, skb->len);
1591 } while (read_seqretry(&neigh->ha_lock, seq));
1592
1593 if (err >= 0)
1594 err = dev_queue_xmit(skb);
1595 else {
1596 err = -EINVAL;
1597 kfree_skb(skb);
1598 }
1599 return err;
1600 }
1601 EXPORT_SYMBOL(neigh_connected_output);
1602
neigh_direct_output(struct neighbour * neigh,struct sk_buff * skb)1603 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1604 {
1605 return dev_queue_xmit(skb);
1606 }
1607 EXPORT_SYMBOL(neigh_direct_output);
1608
neigh_managed_work(struct work_struct * work)1609 static void neigh_managed_work(struct work_struct *work)
1610 {
1611 struct neigh_table *tbl = container_of(work, struct neigh_table,
1612 managed_work.work);
1613 struct neighbour *neigh;
1614
1615 write_lock_bh(&tbl->lock);
1616 list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1617 neigh_event_send_probe(neigh, NULL, false);
1618 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1619 NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1620 write_unlock_bh(&tbl->lock);
1621 }
1622
neigh_proxy_process(struct timer_list * t)1623 static void neigh_proxy_process(struct timer_list *t)
1624 {
1625 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1626 long sched_next = 0;
1627 unsigned long now = jiffies;
1628 struct sk_buff *skb, *n;
1629
1630 spin_lock(&tbl->proxy_queue.lock);
1631
1632 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1633 long tdif = NEIGH_CB(skb)->sched_next - now;
1634
1635 if (tdif <= 0) {
1636 struct net_device *dev = skb->dev;
1637
1638 neigh_parms_qlen_dec(dev, tbl->family);
1639 __skb_unlink(skb, &tbl->proxy_queue);
1640
1641 if (tbl->proxy_redo && netif_running(dev)) {
1642 rcu_read_lock();
1643 tbl->proxy_redo(skb);
1644 rcu_read_unlock();
1645 } else {
1646 kfree_skb(skb);
1647 }
1648
1649 dev_put(dev);
1650 } else if (!sched_next || tdif < sched_next)
1651 sched_next = tdif;
1652 }
1653 del_timer(&tbl->proxy_timer);
1654 if (sched_next)
1655 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1656 spin_unlock(&tbl->proxy_queue.lock);
1657 }
1658
neigh_proxy_delay(struct neigh_parms * p)1659 static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1660 {
1661 /* If proxy_delay is zero, do not call get_random_u32_below()
1662 * as it is undefined behavior.
1663 */
1664 unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1665
1666 return proxy_delay ?
1667 jiffies + get_random_u32_below(proxy_delay) : jiffies;
1668 }
1669
pneigh_enqueue(struct neigh_table * tbl,struct neigh_parms * p,struct sk_buff * skb)1670 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1671 struct sk_buff *skb)
1672 {
1673 unsigned long sched_next = neigh_proxy_delay(p);
1674
1675 if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1676 kfree_skb(skb);
1677 return;
1678 }
1679
1680 NEIGH_CB(skb)->sched_next = sched_next;
1681 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1682
1683 spin_lock(&tbl->proxy_queue.lock);
1684 if (del_timer(&tbl->proxy_timer)) {
1685 if (time_before(tbl->proxy_timer.expires, sched_next))
1686 sched_next = tbl->proxy_timer.expires;
1687 }
1688 skb_dst_drop(skb);
1689 dev_hold(skb->dev);
1690 __skb_queue_tail(&tbl->proxy_queue, skb);
1691 p->qlen++;
1692 mod_timer(&tbl->proxy_timer, sched_next);
1693 spin_unlock(&tbl->proxy_queue.lock);
1694 }
1695 EXPORT_SYMBOL(pneigh_enqueue);
1696
lookup_neigh_parms(struct neigh_table * tbl,struct net * net,int ifindex)1697 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1698 struct net *net, int ifindex)
1699 {
1700 struct neigh_parms *p;
1701
1702 list_for_each_entry(p, &tbl->parms_list, list) {
1703 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1704 (!p->dev && !ifindex && net_eq(net, &init_net)))
1705 return p;
1706 }
1707
1708 return NULL;
1709 }
1710
neigh_parms_alloc(struct net_device * dev,struct neigh_table * tbl)1711 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1712 struct neigh_table *tbl)
1713 {
1714 struct neigh_parms *p;
1715 struct net *net = dev_net(dev);
1716 const struct net_device_ops *ops = dev->netdev_ops;
1717
1718 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1719 if (p) {
1720 p->tbl = tbl;
1721 refcount_set(&p->refcnt, 1);
1722 p->reachable_time =
1723 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1724 p->qlen = 0;
1725 netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1726 p->dev = dev;
1727 write_pnet(&p->net, net);
1728 p->sysctl_table = NULL;
1729
1730 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1731 netdev_put(dev, &p->dev_tracker);
1732 kfree(p);
1733 return NULL;
1734 }
1735
1736 write_lock_bh(&tbl->lock);
1737 list_add(&p->list, &tbl->parms.list);
1738 write_unlock_bh(&tbl->lock);
1739
1740 neigh_parms_data_state_cleanall(p);
1741 }
1742 return p;
1743 }
1744 EXPORT_SYMBOL(neigh_parms_alloc);
1745
neigh_rcu_free_parms(struct rcu_head * head)1746 static void neigh_rcu_free_parms(struct rcu_head *head)
1747 {
1748 struct neigh_parms *parms =
1749 container_of(head, struct neigh_parms, rcu_head);
1750
1751 neigh_parms_put(parms);
1752 }
1753
neigh_parms_release(struct neigh_table * tbl,struct neigh_parms * parms)1754 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1755 {
1756 if (!parms || parms == &tbl->parms)
1757 return;
1758 write_lock_bh(&tbl->lock);
1759 list_del(&parms->list);
1760 parms->dead = 1;
1761 write_unlock_bh(&tbl->lock);
1762 netdev_put(parms->dev, &parms->dev_tracker);
1763 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1764 }
1765 EXPORT_SYMBOL(neigh_parms_release);
1766
neigh_parms_destroy(struct neigh_parms * parms)1767 static void neigh_parms_destroy(struct neigh_parms *parms)
1768 {
1769 kfree(parms);
1770 }
1771
1772 static struct lock_class_key neigh_table_proxy_queue_class;
1773
1774 static struct neigh_table __rcu *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1775
neigh_table_init(int index,struct neigh_table * tbl)1776 void neigh_table_init(int index, struct neigh_table *tbl)
1777 {
1778 unsigned long now = jiffies;
1779 unsigned long phsize;
1780
1781 INIT_LIST_HEAD(&tbl->parms_list);
1782 INIT_LIST_HEAD(&tbl->gc_list);
1783 INIT_LIST_HEAD(&tbl->managed_list);
1784
1785 list_add(&tbl->parms.list, &tbl->parms_list);
1786 write_pnet(&tbl->parms.net, &init_net);
1787 refcount_set(&tbl->parms.refcnt, 1);
1788 tbl->parms.reachable_time =
1789 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1790 tbl->parms.qlen = 0;
1791
1792 tbl->stats = alloc_percpu(struct neigh_statistics);
1793 if (!tbl->stats)
1794 panic("cannot create neighbour cache statistics");
1795
1796 #ifdef CONFIG_PROC_FS
1797 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1798 &neigh_stat_seq_ops, tbl))
1799 panic("cannot create neighbour proc dir entry");
1800 #endif
1801
1802 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1803
1804 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1805 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1806
1807 if (!tbl->nht || !tbl->phash_buckets)
1808 panic("cannot allocate neighbour cache hashes");
1809
1810 if (!tbl->entry_size)
1811 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1812 tbl->key_len, NEIGH_PRIV_ALIGN);
1813 else
1814 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1815
1816 rwlock_init(&tbl->lock);
1817
1818 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1819 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1820 tbl->parms.reachable_time);
1821 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1822 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1823
1824 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1825 skb_queue_head_init_class(&tbl->proxy_queue,
1826 &neigh_table_proxy_queue_class);
1827
1828 tbl->last_flush = now;
1829 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1830
1831 rcu_assign_pointer(neigh_tables[index], tbl);
1832 }
1833 EXPORT_SYMBOL(neigh_table_init);
1834
1835 /*
1836 * Only called from ndisc_cleanup(), which means this is dead code
1837 * because we no longer can unload IPv6 module.
1838 */
neigh_table_clear(int index,struct neigh_table * tbl)1839 int neigh_table_clear(int index, struct neigh_table *tbl)
1840 {
1841 RCU_INIT_POINTER(neigh_tables[index], NULL);
1842 synchronize_rcu();
1843
1844 /* It is not clean... Fix it to unload IPv6 module safely */
1845 cancel_delayed_work_sync(&tbl->managed_work);
1846 cancel_delayed_work_sync(&tbl->gc_work);
1847 del_timer_sync(&tbl->proxy_timer);
1848 pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1849 neigh_ifdown(tbl, NULL);
1850 if (atomic_read(&tbl->entries))
1851 pr_crit("neighbour leakage\n");
1852
1853 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1854 neigh_hash_free_rcu);
1855 tbl->nht = NULL;
1856
1857 kfree(tbl->phash_buckets);
1858 tbl->phash_buckets = NULL;
1859
1860 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1861
1862 free_percpu(tbl->stats);
1863 tbl->stats = NULL;
1864
1865 return 0;
1866 }
1867 EXPORT_SYMBOL(neigh_table_clear);
1868
neigh_find_table(int family)1869 static struct neigh_table *neigh_find_table(int family)
1870 {
1871 struct neigh_table *tbl = NULL;
1872
1873 switch (family) {
1874 case AF_INET:
1875 tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ARP_TABLE]);
1876 break;
1877 case AF_INET6:
1878 tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ND_TABLE]);
1879 break;
1880 }
1881
1882 return tbl;
1883 }
1884
1885 const struct nla_policy nda_policy[NDA_MAX+1] = {
1886 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID },
1887 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1888 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1889 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) },
1890 [NDA_PROBES] = { .type = NLA_U32 },
1891 [NDA_VLAN] = { .type = NLA_U16 },
1892 [NDA_PORT] = { .type = NLA_U16 },
1893 [NDA_VNI] = { .type = NLA_U32 },
1894 [NDA_IFINDEX] = { .type = NLA_U32 },
1895 [NDA_MASTER] = { .type = NLA_U32 },
1896 [NDA_PROTOCOL] = { .type = NLA_U8 },
1897 [NDA_NH_ID] = { .type = NLA_U32 },
1898 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1899 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED },
1900 };
1901
neigh_delete(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1902 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1903 struct netlink_ext_ack *extack)
1904 {
1905 struct net *net = sock_net(skb->sk);
1906 struct ndmsg *ndm;
1907 struct nlattr *dst_attr;
1908 struct neigh_table *tbl;
1909 struct neighbour *neigh;
1910 struct net_device *dev = NULL;
1911 int err = -EINVAL;
1912
1913 ASSERT_RTNL();
1914 if (nlmsg_len(nlh) < sizeof(*ndm))
1915 goto out;
1916
1917 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1918 if (!dst_attr) {
1919 NL_SET_ERR_MSG(extack, "Network address not specified");
1920 goto out;
1921 }
1922
1923 ndm = nlmsg_data(nlh);
1924 if (ndm->ndm_ifindex) {
1925 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1926 if (dev == NULL) {
1927 err = -ENODEV;
1928 goto out;
1929 }
1930 }
1931
1932 tbl = neigh_find_table(ndm->ndm_family);
1933 if (tbl == NULL)
1934 return -EAFNOSUPPORT;
1935
1936 if (nla_len(dst_attr) < (int)tbl->key_len) {
1937 NL_SET_ERR_MSG(extack, "Invalid network address");
1938 goto out;
1939 }
1940
1941 if (ndm->ndm_flags & NTF_PROXY) {
1942 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1943 goto out;
1944 }
1945
1946 if (dev == NULL)
1947 goto out;
1948
1949 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1950 if (neigh == NULL) {
1951 err = -ENOENT;
1952 goto out;
1953 }
1954
1955 err = __neigh_update(neigh, NULL, NUD_FAILED,
1956 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1957 NETLINK_CB(skb).portid, extack);
1958 write_lock_bh(&tbl->lock);
1959 neigh_release(neigh);
1960 neigh_remove_one(neigh, tbl);
1961 write_unlock_bh(&tbl->lock);
1962
1963 out:
1964 return err;
1965 }
1966
neigh_add(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1967 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1968 struct netlink_ext_ack *extack)
1969 {
1970 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1971 NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1972 struct net *net = sock_net(skb->sk);
1973 struct ndmsg *ndm;
1974 struct nlattr *tb[NDA_MAX+1];
1975 struct neigh_table *tbl;
1976 struct net_device *dev = NULL;
1977 struct neighbour *neigh;
1978 void *dst, *lladdr;
1979 u8 protocol = 0;
1980 u32 ndm_flags;
1981 int err;
1982
1983 ASSERT_RTNL();
1984 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1985 nda_policy, extack);
1986 if (err < 0)
1987 goto out;
1988
1989 err = -EINVAL;
1990 if (!tb[NDA_DST]) {
1991 NL_SET_ERR_MSG(extack, "Network address not specified");
1992 goto out;
1993 }
1994
1995 ndm = nlmsg_data(nlh);
1996 ndm_flags = ndm->ndm_flags;
1997 if (tb[NDA_FLAGS_EXT]) {
1998 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1999
2000 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
2001 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
2002 hweight32(NTF_EXT_MASK)));
2003 ndm_flags |= (ext << NTF_EXT_SHIFT);
2004 }
2005 if (ndm->ndm_ifindex) {
2006 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
2007 if (dev == NULL) {
2008 err = -ENODEV;
2009 goto out;
2010 }
2011
2012 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
2013 NL_SET_ERR_MSG(extack, "Invalid link address");
2014 goto out;
2015 }
2016 }
2017
2018 tbl = neigh_find_table(ndm->ndm_family);
2019 if (tbl == NULL)
2020 return -EAFNOSUPPORT;
2021
2022 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
2023 NL_SET_ERR_MSG(extack, "Invalid network address");
2024 goto out;
2025 }
2026
2027 dst = nla_data(tb[NDA_DST]);
2028 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
2029
2030 if (tb[NDA_PROTOCOL])
2031 protocol = nla_get_u8(tb[NDA_PROTOCOL]);
2032 if (ndm_flags & NTF_PROXY) {
2033 struct pneigh_entry *pn;
2034
2035 if (ndm_flags & NTF_MANAGED) {
2036 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
2037 goto out;
2038 }
2039
2040 err = -ENOBUFS;
2041 pn = pneigh_lookup(tbl, net, dst, dev, 1);
2042 if (pn) {
2043 pn->flags = ndm_flags;
2044 if (protocol)
2045 pn->protocol = protocol;
2046 err = 0;
2047 }
2048 goto out;
2049 }
2050
2051 if (!dev) {
2052 NL_SET_ERR_MSG(extack, "Device not specified");
2053 goto out;
2054 }
2055
2056 if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2057 err = -EINVAL;
2058 goto out;
2059 }
2060
2061 neigh = neigh_lookup(tbl, dst, dev);
2062 if (neigh == NULL) {
2063 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT;
2064 bool exempt_from_gc = ndm_permanent ||
2065 ndm_flags & NTF_EXT_LEARNED;
2066
2067 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2068 err = -ENOENT;
2069 goto out;
2070 }
2071 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2072 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2073 err = -EINVAL;
2074 goto out;
2075 }
2076
2077 neigh = ___neigh_create(tbl, dst, dev,
2078 ndm_flags &
2079 (NTF_EXT_LEARNED | NTF_MANAGED),
2080 exempt_from_gc, true);
2081 if (IS_ERR(neigh)) {
2082 err = PTR_ERR(neigh);
2083 goto out;
2084 }
2085 } else {
2086 if (nlh->nlmsg_flags & NLM_F_EXCL) {
2087 err = -EEXIST;
2088 neigh_release(neigh);
2089 goto out;
2090 }
2091
2092 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2093 flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2094 NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2095 }
2096
2097 if (protocol)
2098 neigh->protocol = protocol;
2099 if (ndm_flags & NTF_EXT_LEARNED)
2100 flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2101 if (ndm_flags & NTF_ROUTER)
2102 flags |= NEIGH_UPDATE_F_ISROUTER;
2103 if (ndm_flags & NTF_MANAGED)
2104 flags |= NEIGH_UPDATE_F_MANAGED;
2105 if (ndm_flags & NTF_USE)
2106 flags |= NEIGH_UPDATE_F_USE;
2107
2108 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2109 NETLINK_CB(skb).portid, extack);
2110 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2111 neigh_event_send(neigh, NULL);
2112 err = 0;
2113 }
2114 neigh_release(neigh);
2115 out:
2116 return err;
2117 }
2118
neightbl_fill_parms(struct sk_buff * skb,struct neigh_parms * parms)2119 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2120 {
2121 struct nlattr *nest;
2122
2123 nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2124 if (nest == NULL)
2125 return -ENOBUFS;
2126
2127 if ((parms->dev &&
2128 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2129 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2130 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2131 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2132 /* approximative value for deprecated QUEUE_LEN (in packets) */
2133 nla_put_u32(skb, NDTPA_QUEUE_LEN,
2134 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2135 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2136 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2137 nla_put_u32(skb, NDTPA_UCAST_PROBES,
2138 NEIGH_VAR(parms, UCAST_PROBES)) ||
2139 nla_put_u32(skb, NDTPA_MCAST_PROBES,
2140 NEIGH_VAR(parms, MCAST_PROBES)) ||
2141 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2142 NEIGH_VAR(parms, MCAST_REPROBES)) ||
2143 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2144 NDTPA_PAD) ||
2145 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2146 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2147 nla_put_msecs(skb, NDTPA_GC_STALETIME,
2148 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2149 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2150 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2151 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2152 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2153 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2154 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2155 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2156 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2157 nla_put_msecs(skb, NDTPA_LOCKTIME,
2158 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2159 nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2160 NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2161 goto nla_put_failure;
2162 return nla_nest_end(skb, nest);
2163
2164 nla_put_failure:
2165 nla_nest_cancel(skb, nest);
2166 return -EMSGSIZE;
2167 }
2168
neightbl_fill_info(struct sk_buff * skb,struct neigh_table * tbl,u32 pid,u32 seq,int type,int flags)2169 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2170 u32 pid, u32 seq, int type, int flags)
2171 {
2172 struct nlmsghdr *nlh;
2173 struct ndtmsg *ndtmsg;
2174
2175 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2176 if (nlh == NULL)
2177 return -EMSGSIZE;
2178
2179 ndtmsg = nlmsg_data(nlh);
2180
2181 read_lock_bh(&tbl->lock);
2182 ndtmsg->ndtm_family = tbl->family;
2183 ndtmsg->ndtm_pad1 = 0;
2184 ndtmsg->ndtm_pad2 = 0;
2185
2186 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2187 nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2188 NDTA_PAD) ||
2189 nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2190 nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2191 nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2192 goto nla_put_failure;
2193 {
2194 unsigned long now = jiffies;
2195 long flush_delta = now - READ_ONCE(tbl->last_flush);
2196 long rand_delta = now - READ_ONCE(tbl->last_rand);
2197 struct neigh_hash_table *nht;
2198 struct ndt_config ndc = {
2199 .ndtc_key_len = tbl->key_len,
2200 .ndtc_entry_size = tbl->entry_size,
2201 .ndtc_entries = atomic_read(&tbl->entries),
2202 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
2203 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
2204 .ndtc_proxy_qlen = READ_ONCE(tbl->proxy_queue.qlen),
2205 };
2206
2207 rcu_read_lock();
2208 nht = rcu_dereference(tbl->nht);
2209 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2210 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2211 rcu_read_unlock();
2212
2213 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2214 goto nla_put_failure;
2215 }
2216
2217 {
2218 int cpu;
2219 struct ndt_stats ndst;
2220
2221 memset(&ndst, 0, sizeof(ndst));
2222
2223 for_each_possible_cpu(cpu) {
2224 struct neigh_statistics *st;
2225
2226 st = per_cpu_ptr(tbl->stats, cpu);
2227 ndst.ndts_allocs += READ_ONCE(st->allocs);
2228 ndst.ndts_destroys += READ_ONCE(st->destroys);
2229 ndst.ndts_hash_grows += READ_ONCE(st->hash_grows);
2230 ndst.ndts_res_failed += READ_ONCE(st->res_failed);
2231 ndst.ndts_lookups += READ_ONCE(st->lookups);
2232 ndst.ndts_hits += READ_ONCE(st->hits);
2233 ndst.ndts_rcv_probes_mcast += READ_ONCE(st->rcv_probes_mcast);
2234 ndst.ndts_rcv_probes_ucast += READ_ONCE(st->rcv_probes_ucast);
2235 ndst.ndts_periodic_gc_runs += READ_ONCE(st->periodic_gc_runs);
2236 ndst.ndts_forced_gc_runs += READ_ONCE(st->forced_gc_runs);
2237 ndst.ndts_table_fulls += READ_ONCE(st->table_fulls);
2238 }
2239
2240 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2241 NDTA_PAD))
2242 goto nla_put_failure;
2243 }
2244
2245 BUG_ON(tbl->parms.dev);
2246 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2247 goto nla_put_failure;
2248
2249 read_unlock_bh(&tbl->lock);
2250 nlmsg_end(skb, nlh);
2251 return 0;
2252
2253 nla_put_failure:
2254 read_unlock_bh(&tbl->lock);
2255 nlmsg_cancel(skb, nlh);
2256 return -EMSGSIZE;
2257 }
2258
neightbl_fill_param_info(struct sk_buff * skb,struct neigh_table * tbl,struct neigh_parms * parms,u32 pid,u32 seq,int type,unsigned int flags)2259 static int neightbl_fill_param_info(struct sk_buff *skb,
2260 struct neigh_table *tbl,
2261 struct neigh_parms *parms,
2262 u32 pid, u32 seq, int type,
2263 unsigned int flags)
2264 {
2265 struct ndtmsg *ndtmsg;
2266 struct nlmsghdr *nlh;
2267
2268 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2269 if (nlh == NULL)
2270 return -EMSGSIZE;
2271
2272 ndtmsg = nlmsg_data(nlh);
2273
2274 read_lock_bh(&tbl->lock);
2275 ndtmsg->ndtm_family = tbl->family;
2276 ndtmsg->ndtm_pad1 = 0;
2277 ndtmsg->ndtm_pad2 = 0;
2278
2279 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2280 neightbl_fill_parms(skb, parms) < 0)
2281 goto errout;
2282
2283 read_unlock_bh(&tbl->lock);
2284 nlmsg_end(skb, nlh);
2285 return 0;
2286 errout:
2287 read_unlock_bh(&tbl->lock);
2288 nlmsg_cancel(skb, nlh);
2289 return -EMSGSIZE;
2290 }
2291
2292 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2293 [NDTA_NAME] = { .type = NLA_STRING },
2294 [NDTA_THRESH1] = { .type = NLA_U32 },
2295 [NDTA_THRESH2] = { .type = NLA_U32 },
2296 [NDTA_THRESH3] = { .type = NLA_U32 },
2297 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
2298 [NDTA_PARMS] = { .type = NLA_NESTED },
2299 };
2300
2301 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2302 [NDTPA_IFINDEX] = { .type = NLA_U32 },
2303 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
2304 [NDTPA_QUEUE_LENBYTES] = { .type = NLA_U32 },
2305 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
2306 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
2307 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
2308 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
2309 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
2310 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
2311 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
2312 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
2313 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
2314 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
2315 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
2316 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
2317 [NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 },
2318 };
2319
neightbl_set(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2320 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2321 struct netlink_ext_ack *extack)
2322 {
2323 struct net *net = sock_net(skb->sk);
2324 struct neigh_table *tbl;
2325 struct ndtmsg *ndtmsg;
2326 struct nlattr *tb[NDTA_MAX+1];
2327 bool found = false;
2328 int err, tidx;
2329
2330 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2331 nl_neightbl_policy, extack);
2332 if (err < 0)
2333 goto errout;
2334
2335 if (tb[NDTA_NAME] == NULL) {
2336 err = -EINVAL;
2337 goto errout;
2338 }
2339
2340 ndtmsg = nlmsg_data(nlh);
2341
2342 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2343 tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2344 if (!tbl)
2345 continue;
2346 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2347 continue;
2348 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2349 found = true;
2350 break;
2351 }
2352 }
2353
2354 if (!found)
2355 return -ENOENT;
2356
2357 /*
2358 * We acquire tbl->lock to be nice to the periodic timers and
2359 * make sure they always see a consistent set of values.
2360 */
2361 write_lock_bh(&tbl->lock);
2362
2363 if (tb[NDTA_PARMS]) {
2364 struct nlattr *tbp[NDTPA_MAX+1];
2365 struct neigh_parms *p;
2366 int i, ifindex = 0;
2367
2368 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2369 tb[NDTA_PARMS],
2370 nl_ntbl_parm_policy, extack);
2371 if (err < 0)
2372 goto errout_tbl_lock;
2373
2374 if (tbp[NDTPA_IFINDEX])
2375 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2376
2377 p = lookup_neigh_parms(tbl, net, ifindex);
2378 if (p == NULL) {
2379 err = -ENOENT;
2380 goto errout_tbl_lock;
2381 }
2382
2383 for (i = 1; i <= NDTPA_MAX; i++) {
2384 if (tbp[i] == NULL)
2385 continue;
2386
2387 switch (i) {
2388 case NDTPA_QUEUE_LEN:
2389 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2390 nla_get_u32(tbp[i]) *
2391 SKB_TRUESIZE(ETH_FRAME_LEN));
2392 break;
2393 case NDTPA_QUEUE_LENBYTES:
2394 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2395 nla_get_u32(tbp[i]));
2396 break;
2397 case NDTPA_PROXY_QLEN:
2398 NEIGH_VAR_SET(p, PROXY_QLEN,
2399 nla_get_u32(tbp[i]));
2400 break;
2401 case NDTPA_APP_PROBES:
2402 NEIGH_VAR_SET(p, APP_PROBES,
2403 nla_get_u32(tbp[i]));
2404 break;
2405 case NDTPA_UCAST_PROBES:
2406 NEIGH_VAR_SET(p, UCAST_PROBES,
2407 nla_get_u32(tbp[i]));
2408 break;
2409 case NDTPA_MCAST_PROBES:
2410 NEIGH_VAR_SET(p, MCAST_PROBES,
2411 nla_get_u32(tbp[i]));
2412 break;
2413 case NDTPA_MCAST_REPROBES:
2414 NEIGH_VAR_SET(p, MCAST_REPROBES,
2415 nla_get_u32(tbp[i]));
2416 break;
2417 case NDTPA_BASE_REACHABLE_TIME:
2418 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2419 nla_get_msecs(tbp[i]));
2420 /* update reachable_time as well, otherwise, the change will
2421 * only be effective after the next time neigh_periodic_work
2422 * decides to recompute it (can be multiple minutes)
2423 */
2424 p->reachable_time =
2425 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2426 break;
2427 case NDTPA_GC_STALETIME:
2428 NEIGH_VAR_SET(p, GC_STALETIME,
2429 nla_get_msecs(tbp[i]));
2430 break;
2431 case NDTPA_DELAY_PROBE_TIME:
2432 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2433 nla_get_msecs(tbp[i]));
2434 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2435 break;
2436 case NDTPA_INTERVAL_PROBE_TIME_MS:
2437 NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2438 nla_get_msecs(tbp[i]));
2439 break;
2440 case NDTPA_RETRANS_TIME:
2441 NEIGH_VAR_SET(p, RETRANS_TIME,
2442 nla_get_msecs(tbp[i]));
2443 break;
2444 case NDTPA_ANYCAST_DELAY:
2445 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2446 nla_get_msecs(tbp[i]));
2447 break;
2448 case NDTPA_PROXY_DELAY:
2449 NEIGH_VAR_SET(p, PROXY_DELAY,
2450 nla_get_msecs(tbp[i]));
2451 break;
2452 case NDTPA_LOCKTIME:
2453 NEIGH_VAR_SET(p, LOCKTIME,
2454 nla_get_msecs(tbp[i]));
2455 break;
2456 }
2457 }
2458 }
2459
2460 err = -ENOENT;
2461 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2462 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2463 !net_eq(net, &init_net))
2464 goto errout_tbl_lock;
2465
2466 if (tb[NDTA_THRESH1])
2467 WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2468
2469 if (tb[NDTA_THRESH2])
2470 WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2471
2472 if (tb[NDTA_THRESH3])
2473 WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2474
2475 if (tb[NDTA_GC_INTERVAL])
2476 WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2477
2478 err = 0;
2479
2480 errout_tbl_lock:
2481 write_unlock_bh(&tbl->lock);
2482 errout:
2483 return err;
2484 }
2485
neightbl_valid_dump_info(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2486 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2487 struct netlink_ext_ack *extack)
2488 {
2489 struct ndtmsg *ndtm;
2490
2491 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2492 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2493 return -EINVAL;
2494 }
2495
2496 ndtm = nlmsg_data(nlh);
2497 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) {
2498 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2499 return -EINVAL;
2500 }
2501
2502 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2503 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2504 return -EINVAL;
2505 }
2506
2507 return 0;
2508 }
2509
neightbl_dump_info(struct sk_buff * skb,struct netlink_callback * cb)2510 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2511 {
2512 const struct nlmsghdr *nlh = cb->nlh;
2513 struct net *net = sock_net(skb->sk);
2514 int family, tidx, nidx = 0;
2515 int tbl_skip = cb->args[0];
2516 int neigh_skip = cb->args[1];
2517 struct neigh_table *tbl;
2518
2519 if (cb->strict_check) {
2520 int err = neightbl_valid_dump_info(nlh, cb->extack);
2521
2522 if (err < 0)
2523 return err;
2524 }
2525
2526 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2527
2528 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2529 struct neigh_parms *p;
2530
2531 tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2532 if (!tbl)
2533 continue;
2534
2535 if (tidx < tbl_skip || (family && tbl->family != family))
2536 continue;
2537
2538 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2539 nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2540 NLM_F_MULTI) < 0)
2541 break;
2542
2543 nidx = 0;
2544 p = list_next_entry(&tbl->parms, list);
2545 list_for_each_entry_from(p, &tbl->parms_list, list) {
2546 if (!net_eq(neigh_parms_net(p), net))
2547 continue;
2548
2549 if (nidx < neigh_skip)
2550 goto next;
2551
2552 if (neightbl_fill_param_info(skb, tbl, p,
2553 NETLINK_CB(cb->skb).portid,
2554 nlh->nlmsg_seq,
2555 RTM_NEWNEIGHTBL,
2556 NLM_F_MULTI) < 0)
2557 goto out;
2558 next:
2559 nidx++;
2560 }
2561
2562 neigh_skip = 0;
2563 }
2564 out:
2565 cb->args[0] = tidx;
2566 cb->args[1] = nidx;
2567
2568 return skb->len;
2569 }
2570
neigh_fill_info(struct sk_buff * skb,struct neighbour * neigh,u32 pid,u32 seq,int type,unsigned int flags)2571 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2572 u32 pid, u32 seq, int type, unsigned int flags)
2573 {
2574 u32 neigh_flags, neigh_flags_ext;
2575 unsigned long now = jiffies;
2576 struct nda_cacheinfo ci;
2577 struct nlmsghdr *nlh;
2578 struct ndmsg *ndm;
2579
2580 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2581 if (nlh == NULL)
2582 return -EMSGSIZE;
2583
2584 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2585 neigh_flags = neigh->flags & NTF_OLD_MASK;
2586
2587 ndm = nlmsg_data(nlh);
2588 ndm->ndm_family = neigh->ops->family;
2589 ndm->ndm_pad1 = 0;
2590 ndm->ndm_pad2 = 0;
2591 ndm->ndm_flags = neigh_flags;
2592 ndm->ndm_type = neigh->type;
2593 ndm->ndm_ifindex = neigh->dev->ifindex;
2594
2595 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2596 goto nla_put_failure;
2597
2598 read_lock_bh(&neigh->lock);
2599 ndm->ndm_state = neigh->nud_state;
2600 if (neigh->nud_state & NUD_VALID) {
2601 char haddr[MAX_ADDR_LEN];
2602
2603 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2604 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2605 read_unlock_bh(&neigh->lock);
2606 goto nla_put_failure;
2607 }
2608 }
2609
2610 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2611 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2612 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2613 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1;
2614 read_unlock_bh(&neigh->lock);
2615
2616 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2617 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2618 goto nla_put_failure;
2619
2620 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2621 goto nla_put_failure;
2622 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2623 goto nla_put_failure;
2624
2625 nlmsg_end(skb, nlh);
2626 return 0;
2627
2628 nla_put_failure:
2629 nlmsg_cancel(skb, nlh);
2630 return -EMSGSIZE;
2631 }
2632
pneigh_fill_info(struct sk_buff * skb,struct pneigh_entry * pn,u32 pid,u32 seq,int type,unsigned int flags,struct neigh_table * tbl)2633 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2634 u32 pid, u32 seq, int type, unsigned int flags,
2635 struct neigh_table *tbl)
2636 {
2637 u32 neigh_flags, neigh_flags_ext;
2638 struct nlmsghdr *nlh;
2639 struct ndmsg *ndm;
2640
2641 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2642 if (nlh == NULL)
2643 return -EMSGSIZE;
2644
2645 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2646 neigh_flags = pn->flags & NTF_OLD_MASK;
2647
2648 ndm = nlmsg_data(nlh);
2649 ndm->ndm_family = tbl->family;
2650 ndm->ndm_pad1 = 0;
2651 ndm->ndm_pad2 = 0;
2652 ndm->ndm_flags = neigh_flags | NTF_PROXY;
2653 ndm->ndm_type = RTN_UNICAST;
2654 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2655 ndm->ndm_state = NUD_NONE;
2656
2657 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2658 goto nla_put_failure;
2659
2660 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2661 goto nla_put_failure;
2662 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2663 goto nla_put_failure;
2664
2665 nlmsg_end(skb, nlh);
2666 return 0;
2667
2668 nla_put_failure:
2669 nlmsg_cancel(skb, nlh);
2670 return -EMSGSIZE;
2671 }
2672
neigh_update_notify(struct neighbour * neigh,u32 nlmsg_pid)2673 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2674 {
2675 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2676 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2677 }
2678
neigh_master_filtered(struct net_device * dev,int master_idx)2679 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2680 {
2681 struct net_device *master;
2682
2683 if (!master_idx)
2684 return false;
2685
2686 master = dev ? netdev_master_upper_dev_get_rcu(dev) : NULL;
2687
2688 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2689 * invalid value for ifindex to denote "no master".
2690 */
2691 if (master_idx == -1)
2692 return !!master;
2693
2694 if (!master || master->ifindex != master_idx)
2695 return true;
2696
2697 return false;
2698 }
2699
neigh_ifindex_filtered(struct net_device * dev,int filter_idx)2700 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2701 {
2702 if (filter_idx && (!dev || dev->ifindex != filter_idx))
2703 return true;
2704
2705 return false;
2706 }
2707
2708 struct neigh_dump_filter {
2709 int master_idx;
2710 int dev_idx;
2711 };
2712
neigh_dump_table(struct neigh_table * tbl,struct sk_buff * skb,struct netlink_callback * cb,struct neigh_dump_filter * filter)2713 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2714 struct netlink_callback *cb,
2715 struct neigh_dump_filter *filter)
2716 {
2717 struct net *net = sock_net(skb->sk);
2718 struct neighbour *n;
2719 int rc, h, s_h = cb->args[1];
2720 int idx, s_idx = idx = cb->args[2];
2721 struct neigh_hash_table *nht;
2722 unsigned int flags = NLM_F_MULTI;
2723
2724 if (filter->dev_idx || filter->master_idx)
2725 flags |= NLM_F_DUMP_FILTERED;
2726
2727 nht = rcu_dereference(tbl->nht);
2728
2729 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2730 if (h > s_h)
2731 s_idx = 0;
2732 for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0;
2733 n != NULL;
2734 n = rcu_dereference(n->next)) {
2735 if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2736 goto next;
2737 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2738 neigh_master_filtered(n->dev, filter->master_idx))
2739 goto next;
2740 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2741 cb->nlh->nlmsg_seq,
2742 RTM_NEWNEIGH,
2743 flags) < 0) {
2744 rc = -1;
2745 goto out;
2746 }
2747 next:
2748 idx++;
2749 }
2750 }
2751 rc = skb->len;
2752 out:
2753 cb->args[1] = h;
2754 cb->args[2] = idx;
2755 return rc;
2756 }
2757
pneigh_dump_table(struct neigh_table * tbl,struct sk_buff * skb,struct netlink_callback * cb,struct neigh_dump_filter * filter)2758 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2759 struct netlink_callback *cb,
2760 struct neigh_dump_filter *filter)
2761 {
2762 struct pneigh_entry *n;
2763 struct net *net = sock_net(skb->sk);
2764 int rc, h, s_h = cb->args[3];
2765 int idx, s_idx = idx = cb->args[4];
2766 unsigned int flags = NLM_F_MULTI;
2767
2768 if (filter->dev_idx || filter->master_idx)
2769 flags |= NLM_F_DUMP_FILTERED;
2770
2771 read_lock_bh(&tbl->lock);
2772
2773 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2774 if (h > s_h)
2775 s_idx = 0;
2776 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2777 if (idx < s_idx || pneigh_net(n) != net)
2778 goto next;
2779 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2780 neigh_master_filtered(n->dev, filter->master_idx))
2781 goto next;
2782 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2783 cb->nlh->nlmsg_seq,
2784 RTM_NEWNEIGH, flags, tbl) < 0) {
2785 read_unlock_bh(&tbl->lock);
2786 rc = -1;
2787 goto out;
2788 }
2789 next:
2790 idx++;
2791 }
2792 }
2793
2794 read_unlock_bh(&tbl->lock);
2795 rc = skb->len;
2796 out:
2797 cb->args[3] = h;
2798 cb->args[4] = idx;
2799 return rc;
2800
2801 }
2802
neigh_valid_dump_req(const struct nlmsghdr * nlh,bool strict_check,struct neigh_dump_filter * filter,struct netlink_ext_ack * extack)2803 static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2804 bool strict_check,
2805 struct neigh_dump_filter *filter,
2806 struct netlink_ext_ack *extack)
2807 {
2808 struct nlattr *tb[NDA_MAX + 1];
2809 int err, i;
2810
2811 if (strict_check) {
2812 struct ndmsg *ndm;
2813
2814 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2815 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2816 return -EINVAL;
2817 }
2818
2819 ndm = nlmsg_data(nlh);
2820 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex ||
2821 ndm->ndm_state || ndm->ndm_type) {
2822 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2823 return -EINVAL;
2824 }
2825
2826 if (ndm->ndm_flags & ~NTF_PROXY) {
2827 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2828 return -EINVAL;
2829 }
2830
2831 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2832 tb, NDA_MAX, nda_policy,
2833 extack);
2834 } else {
2835 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2836 NDA_MAX, nda_policy, extack);
2837 }
2838 if (err < 0)
2839 return err;
2840
2841 for (i = 0; i <= NDA_MAX; ++i) {
2842 if (!tb[i])
2843 continue;
2844
2845 /* all new attributes should require strict_check */
2846 switch (i) {
2847 case NDA_IFINDEX:
2848 filter->dev_idx = nla_get_u32(tb[i]);
2849 break;
2850 case NDA_MASTER:
2851 filter->master_idx = nla_get_u32(tb[i]);
2852 break;
2853 default:
2854 if (strict_check) {
2855 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2856 return -EINVAL;
2857 }
2858 }
2859 }
2860
2861 return 0;
2862 }
2863
neigh_dump_info(struct sk_buff * skb,struct netlink_callback * cb)2864 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2865 {
2866 const struct nlmsghdr *nlh = cb->nlh;
2867 struct neigh_dump_filter filter = {};
2868 struct neigh_table *tbl;
2869 int t, family, s_t;
2870 int proxy = 0;
2871 int err;
2872
2873 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2874
2875 /* check for full ndmsg structure presence, family member is
2876 * the same for both structures
2877 */
2878 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2879 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2880 proxy = 1;
2881
2882 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2883 if (err < 0 && cb->strict_check)
2884 return err;
2885 err = 0;
2886
2887 s_t = cb->args[0];
2888
2889 rcu_read_lock();
2890 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2891 tbl = rcu_dereference(neigh_tables[t]);
2892
2893 if (!tbl)
2894 continue;
2895 if (t < s_t || (family && tbl->family != family))
2896 continue;
2897 if (t > s_t)
2898 memset(&cb->args[1], 0, sizeof(cb->args) -
2899 sizeof(cb->args[0]));
2900 if (proxy)
2901 err = pneigh_dump_table(tbl, skb, cb, &filter);
2902 else
2903 err = neigh_dump_table(tbl, skb, cb, &filter);
2904 if (err < 0)
2905 break;
2906 }
2907 rcu_read_unlock();
2908
2909 cb->args[0] = t;
2910 return skb->len;
2911 }
2912
neigh_valid_get_req(const struct nlmsghdr * nlh,struct neigh_table ** tbl,void ** dst,int * dev_idx,u8 * ndm_flags,struct netlink_ext_ack * extack)2913 static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2914 struct neigh_table **tbl,
2915 void **dst, int *dev_idx, u8 *ndm_flags,
2916 struct netlink_ext_ack *extack)
2917 {
2918 struct nlattr *tb[NDA_MAX + 1];
2919 struct ndmsg *ndm;
2920 int err, i;
2921
2922 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2923 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2924 return -EINVAL;
2925 }
2926
2927 ndm = nlmsg_data(nlh);
2928 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state ||
2929 ndm->ndm_type) {
2930 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2931 return -EINVAL;
2932 }
2933
2934 if (ndm->ndm_flags & ~NTF_PROXY) {
2935 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2936 return -EINVAL;
2937 }
2938
2939 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2940 NDA_MAX, nda_policy, extack);
2941 if (err < 0)
2942 return err;
2943
2944 *ndm_flags = ndm->ndm_flags;
2945 *dev_idx = ndm->ndm_ifindex;
2946 *tbl = neigh_find_table(ndm->ndm_family);
2947 if (*tbl == NULL) {
2948 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2949 return -EAFNOSUPPORT;
2950 }
2951
2952 for (i = 0; i <= NDA_MAX; ++i) {
2953 if (!tb[i])
2954 continue;
2955
2956 switch (i) {
2957 case NDA_DST:
2958 if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2959 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2960 return -EINVAL;
2961 }
2962 *dst = nla_data(tb[i]);
2963 break;
2964 default:
2965 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2966 return -EINVAL;
2967 }
2968 }
2969
2970 return 0;
2971 }
2972
neigh_nlmsg_size(void)2973 static inline size_t neigh_nlmsg_size(void)
2974 {
2975 return NLMSG_ALIGN(sizeof(struct ndmsg))
2976 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2977 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2978 + nla_total_size(sizeof(struct nda_cacheinfo))
2979 + nla_total_size(4) /* NDA_PROBES */
2980 + nla_total_size(4) /* NDA_FLAGS_EXT */
2981 + nla_total_size(1); /* NDA_PROTOCOL */
2982 }
2983
neigh_get_reply(struct net * net,struct neighbour * neigh,u32 pid,u32 seq)2984 static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2985 u32 pid, u32 seq)
2986 {
2987 struct sk_buff *skb;
2988 int err = 0;
2989
2990 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2991 if (!skb)
2992 return -ENOBUFS;
2993
2994 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2995 if (err) {
2996 kfree_skb(skb);
2997 goto errout;
2998 }
2999
3000 err = rtnl_unicast(skb, net, pid);
3001 errout:
3002 return err;
3003 }
3004
pneigh_nlmsg_size(void)3005 static inline size_t pneigh_nlmsg_size(void)
3006 {
3007 return NLMSG_ALIGN(sizeof(struct ndmsg))
3008 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
3009 + nla_total_size(4) /* NDA_FLAGS_EXT */
3010 + nla_total_size(1); /* NDA_PROTOCOL */
3011 }
3012
pneigh_get_reply(struct net * net,struct pneigh_entry * neigh,u32 pid,u32 seq,struct neigh_table * tbl)3013 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
3014 u32 pid, u32 seq, struct neigh_table *tbl)
3015 {
3016 struct sk_buff *skb;
3017 int err = 0;
3018
3019 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
3020 if (!skb)
3021 return -ENOBUFS;
3022
3023 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
3024 if (err) {
3025 kfree_skb(skb);
3026 goto errout;
3027 }
3028
3029 err = rtnl_unicast(skb, net, pid);
3030 errout:
3031 return err;
3032 }
3033
neigh_get(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)3034 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
3035 struct netlink_ext_ack *extack)
3036 {
3037 struct net *net = sock_net(in_skb->sk);
3038 struct net_device *dev = NULL;
3039 struct neigh_table *tbl = NULL;
3040 struct neighbour *neigh;
3041 void *dst = NULL;
3042 u8 ndm_flags = 0;
3043 int dev_idx = 0;
3044 int err;
3045
3046 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
3047 extack);
3048 if (err < 0)
3049 return err;
3050
3051 if (dev_idx) {
3052 dev = __dev_get_by_index(net, dev_idx);
3053 if (!dev) {
3054 NL_SET_ERR_MSG(extack, "Unknown device ifindex");
3055 return -ENODEV;
3056 }
3057 }
3058
3059 if (!dst) {
3060 NL_SET_ERR_MSG(extack, "Network address not specified");
3061 return -EINVAL;
3062 }
3063
3064 if (ndm_flags & NTF_PROXY) {
3065 struct pneigh_entry *pn;
3066
3067 pn = pneigh_lookup(tbl, net, dst, dev, 0);
3068 if (!pn) {
3069 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3070 return -ENOENT;
3071 }
3072 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3073 nlh->nlmsg_seq, tbl);
3074 }
3075
3076 if (!dev) {
3077 NL_SET_ERR_MSG(extack, "No device specified");
3078 return -EINVAL;
3079 }
3080
3081 neigh = neigh_lookup(tbl, dst, dev);
3082 if (!neigh) {
3083 NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3084 return -ENOENT;
3085 }
3086
3087 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3088 nlh->nlmsg_seq);
3089
3090 neigh_release(neigh);
3091
3092 return err;
3093 }
3094
neigh_for_each(struct neigh_table * tbl,void (* cb)(struct neighbour *,void *),void * cookie)3095 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3096 {
3097 int chain;
3098 struct neigh_hash_table *nht;
3099
3100 rcu_read_lock();
3101 nht = rcu_dereference(tbl->nht);
3102
3103 read_lock_bh(&tbl->lock); /* avoid resizes */
3104 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3105 struct neighbour *n;
3106
3107 for (n = rcu_dereference(nht->hash_buckets[chain]);
3108 n != NULL;
3109 n = rcu_dereference(n->next))
3110 cb(n, cookie);
3111 }
3112 read_unlock_bh(&tbl->lock);
3113 rcu_read_unlock();
3114 }
3115 EXPORT_SYMBOL(neigh_for_each);
3116
3117 /* The tbl->lock must be held as a writer and BH disabled. */
__neigh_for_each_release(struct neigh_table * tbl,int (* cb)(struct neighbour *))3118 void __neigh_for_each_release(struct neigh_table *tbl,
3119 int (*cb)(struct neighbour *))
3120 {
3121 int chain;
3122 struct neigh_hash_table *nht;
3123
3124 nht = rcu_dereference_protected(tbl->nht,
3125 lockdep_is_held(&tbl->lock));
3126 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3127 struct neighbour *n;
3128 struct neighbour __rcu **np;
3129
3130 np = &nht->hash_buckets[chain];
3131 while ((n = rcu_dereference_protected(*np,
3132 lockdep_is_held(&tbl->lock))) != NULL) {
3133 int release;
3134
3135 write_lock(&n->lock);
3136 release = cb(n);
3137 if (release) {
3138 rcu_assign_pointer(*np,
3139 rcu_dereference_protected(n->next,
3140 lockdep_is_held(&tbl->lock)));
3141 neigh_mark_dead(n);
3142 } else
3143 np = &n->next;
3144 write_unlock(&n->lock);
3145 if (release)
3146 neigh_cleanup_and_release(n);
3147 }
3148 }
3149 }
3150 EXPORT_SYMBOL(__neigh_for_each_release);
3151
neigh_xmit(int index,struct net_device * dev,const void * addr,struct sk_buff * skb)3152 int neigh_xmit(int index, struct net_device *dev,
3153 const void *addr, struct sk_buff *skb)
3154 {
3155 int err = -EAFNOSUPPORT;
3156
3157 if (likely(index < NEIGH_NR_TABLES)) {
3158 struct neigh_table *tbl;
3159 struct neighbour *neigh;
3160
3161 rcu_read_lock();
3162 tbl = rcu_dereference(neigh_tables[index]);
3163 if (!tbl)
3164 goto out_unlock;
3165 if (index == NEIGH_ARP_TABLE) {
3166 u32 key = *((u32 *)addr);
3167
3168 neigh = __ipv4_neigh_lookup_noref(dev, key);
3169 } else {
3170 neigh = __neigh_lookup_noref(tbl, addr, dev);
3171 }
3172 if (!neigh)
3173 neigh = __neigh_create(tbl, addr, dev, false);
3174 err = PTR_ERR(neigh);
3175 if (IS_ERR(neigh)) {
3176 rcu_read_unlock();
3177 goto out_kfree_skb;
3178 }
3179 err = READ_ONCE(neigh->output)(neigh, skb);
3180 out_unlock:
3181 rcu_read_unlock();
3182 }
3183 else if (index == NEIGH_LINK_TABLE) {
3184 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3185 addr, NULL, skb->len);
3186 if (err < 0)
3187 goto out_kfree_skb;
3188 err = dev_queue_xmit(skb);
3189 }
3190 out:
3191 return err;
3192 out_kfree_skb:
3193 kfree_skb(skb);
3194 goto out;
3195 }
3196 EXPORT_SYMBOL(neigh_xmit);
3197
3198 #ifdef CONFIG_PROC_FS
3199
neigh_get_first(struct seq_file * seq)3200 static struct neighbour *neigh_get_first(struct seq_file *seq)
3201 {
3202 struct neigh_seq_state *state = seq->private;
3203 struct net *net = seq_file_net(seq);
3204 struct neigh_hash_table *nht = state->nht;
3205 struct neighbour *n = NULL;
3206 int bucket;
3207
3208 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3209 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
3210 n = rcu_dereference(nht->hash_buckets[bucket]);
3211
3212 while (n) {
3213 if (!net_eq(dev_net(n->dev), net))
3214 goto next;
3215 if (state->neigh_sub_iter) {
3216 loff_t fakep = 0;
3217 void *v;
3218
3219 v = state->neigh_sub_iter(state, n, &fakep);
3220 if (!v)
3221 goto next;
3222 }
3223 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3224 break;
3225 if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3226 break;
3227 next:
3228 n = rcu_dereference(n->next);
3229 }
3230
3231 if (n)
3232 break;
3233 }
3234 state->bucket = bucket;
3235
3236 return n;
3237 }
3238
neigh_get_next(struct seq_file * seq,struct neighbour * n,loff_t * pos)3239 static struct neighbour *neigh_get_next(struct seq_file *seq,
3240 struct neighbour *n,
3241 loff_t *pos)
3242 {
3243 struct neigh_seq_state *state = seq->private;
3244 struct net *net = seq_file_net(seq);
3245 struct neigh_hash_table *nht = state->nht;
3246
3247 if (state->neigh_sub_iter) {
3248 void *v = state->neigh_sub_iter(state, n, pos);
3249 if (v)
3250 return n;
3251 }
3252 n = rcu_dereference(n->next);
3253
3254 while (1) {
3255 while (n) {
3256 if (!net_eq(dev_net(n->dev), net))
3257 goto next;
3258 if (state->neigh_sub_iter) {
3259 void *v = state->neigh_sub_iter(state, n, pos);
3260 if (v)
3261 return n;
3262 goto next;
3263 }
3264 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3265 break;
3266
3267 if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3268 break;
3269 next:
3270 n = rcu_dereference(n->next);
3271 }
3272
3273 if (n)
3274 break;
3275
3276 if (++state->bucket >= (1 << nht->hash_shift))
3277 break;
3278
3279 n = rcu_dereference(nht->hash_buckets[state->bucket]);
3280 }
3281
3282 if (n && pos)
3283 --(*pos);
3284 return n;
3285 }
3286
neigh_get_idx(struct seq_file * seq,loff_t * pos)3287 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3288 {
3289 struct neighbour *n = neigh_get_first(seq);
3290
3291 if (n) {
3292 --(*pos);
3293 while (*pos) {
3294 n = neigh_get_next(seq, n, pos);
3295 if (!n)
3296 break;
3297 }
3298 }
3299 return *pos ? NULL : n;
3300 }
3301
pneigh_get_first(struct seq_file * seq)3302 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3303 {
3304 struct neigh_seq_state *state = seq->private;
3305 struct net *net = seq_file_net(seq);
3306 struct neigh_table *tbl = state->tbl;
3307 struct pneigh_entry *pn = NULL;
3308 int bucket;
3309
3310 state->flags |= NEIGH_SEQ_IS_PNEIGH;
3311 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3312 pn = tbl->phash_buckets[bucket];
3313 while (pn && !net_eq(pneigh_net(pn), net))
3314 pn = pn->next;
3315 if (pn)
3316 break;
3317 }
3318 state->bucket = bucket;
3319
3320 return pn;
3321 }
3322
pneigh_get_next(struct seq_file * seq,struct pneigh_entry * pn,loff_t * pos)3323 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3324 struct pneigh_entry *pn,
3325 loff_t *pos)
3326 {
3327 struct neigh_seq_state *state = seq->private;
3328 struct net *net = seq_file_net(seq);
3329 struct neigh_table *tbl = state->tbl;
3330
3331 do {
3332 pn = pn->next;
3333 } while (pn && !net_eq(pneigh_net(pn), net));
3334
3335 while (!pn) {
3336 if (++state->bucket > PNEIGH_HASHMASK)
3337 break;
3338 pn = tbl->phash_buckets[state->bucket];
3339 while (pn && !net_eq(pneigh_net(pn), net))
3340 pn = pn->next;
3341 if (pn)
3342 break;
3343 }
3344
3345 if (pn && pos)
3346 --(*pos);
3347
3348 return pn;
3349 }
3350
pneigh_get_idx(struct seq_file * seq,loff_t * pos)3351 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3352 {
3353 struct pneigh_entry *pn = pneigh_get_first(seq);
3354
3355 if (pn) {
3356 --(*pos);
3357 while (*pos) {
3358 pn = pneigh_get_next(seq, pn, pos);
3359 if (!pn)
3360 break;
3361 }
3362 }
3363 return *pos ? NULL : pn;
3364 }
3365
neigh_get_idx_any(struct seq_file * seq,loff_t * pos)3366 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3367 {
3368 struct neigh_seq_state *state = seq->private;
3369 void *rc;
3370 loff_t idxpos = *pos;
3371
3372 rc = neigh_get_idx(seq, &idxpos);
3373 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3374 rc = pneigh_get_idx(seq, &idxpos);
3375
3376 return rc;
3377 }
3378
neigh_seq_start(struct seq_file * seq,loff_t * pos,struct neigh_table * tbl,unsigned int neigh_seq_flags)3379 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3380 __acquires(tbl->lock)
3381 __acquires(rcu)
3382 {
3383 struct neigh_seq_state *state = seq->private;
3384
3385 state->tbl = tbl;
3386 state->bucket = 0;
3387 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3388
3389 rcu_read_lock();
3390 state->nht = rcu_dereference(tbl->nht);
3391 read_lock_bh(&tbl->lock);
3392
3393 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3394 }
3395 EXPORT_SYMBOL(neigh_seq_start);
3396
neigh_seq_next(struct seq_file * seq,void * v,loff_t * pos)3397 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3398 {
3399 struct neigh_seq_state *state;
3400 void *rc;
3401
3402 if (v == SEQ_START_TOKEN) {
3403 rc = neigh_get_first(seq);
3404 goto out;
3405 }
3406
3407 state = seq->private;
3408 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3409 rc = neigh_get_next(seq, v, NULL);
3410 if (rc)
3411 goto out;
3412 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3413 rc = pneigh_get_first(seq);
3414 } else {
3415 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3416 rc = pneigh_get_next(seq, v, NULL);
3417 }
3418 out:
3419 ++(*pos);
3420 return rc;
3421 }
3422 EXPORT_SYMBOL(neigh_seq_next);
3423
neigh_seq_stop(struct seq_file * seq,void * v)3424 void neigh_seq_stop(struct seq_file *seq, void *v)
3425 __releases(tbl->lock)
3426 __releases(rcu)
3427 {
3428 struct neigh_seq_state *state = seq->private;
3429 struct neigh_table *tbl = state->tbl;
3430
3431 read_unlock_bh(&tbl->lock);
3432 rcu_read_unlock();
3433 }
3434 EXPORT_SYMBOL(neigh_seq_stop);
3435
3436 /* statistics via seq_file */
3437
neigh_stat_seq_start(struct seq_file * seq,loff_t * pos)3438 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3439 {
3440 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3441 int cpu;
3442
3443 if (*pos == 0)
3444 return SEQ_START_TOKEN;
3445
3446 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3447 if (!cpu_possible(cpu))
3448 continue;
3449 *pos = cpu+1;
3450 return per_cpu_ptr(tbl->stats, cpu);
3451 }
3452 return NULL;
3453 }
3454
neigh_stat_seq_next(struct seq_file * seq,void * v,loff_t * pos)3455 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3456 {
3457 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3458 int cpu;
3459
3460 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3461 if (!cpu_possible(cpu))
3462 continue;
3463 *pos = cpu+1;
3464 return per_cpu_ptr(tbl->stats, cpu);
3465 }
3466 (*pos)++;
3467 return NULL;
3468 }
3469
neigh_stat_seq_stop(struct seq_file * seq,void * v)3470 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3471 {
3472
3473 }
3474
neigh_stat_seq_show(struct seq_file * seq,void * v)3475 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3476 {
3477 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3478 struct neigh_statistics *st = v;
3479
3480 if (v == SEQ_START_TOKEN) {
3481 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3482 return 0;
3483 }
3484
3485 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
3486 "%08lx %08lx %08lx "
3487 "%08lx %08lx %08lx\n",
3488 atomic_read(&tbl->entries),
3489
3490 st->allocs,
3491 st->destroys,
3492 st->hash_grows,
3493
3494 st->lookups,
3495 st->hits,
3496
3497 st->res_failed,
3498
3499 st->rcv_probes_mcast,
3500 st->rcv_probes_ucast,
3501
3502 st->periodic_gc_runs,
3503 st->forced_gc_runs,
3504 st->unres_discards,
3505 st->table_fulls
3506 );
3507
3508 return 0;
3509 }
3510
3511 static const struct seq_operations neigh_stat_seq_ops = {
3512 .start = neigh_stat_seq_start,
3513 .next = neigh_stat_seq_next,
3514 .stop = neigh_stat_seq_stop,
3515 .show = neigh_stat_seq_show,
3516 };
3517 #endif /* CONFIG_PROC_FS */
3518
__neigh_notify(struct neighbour * n,int type,int flags,u32 pid)3519 static void __neigh_notify(struct neighbour *n, int type, int flags,
3520 u32 pid)
3521 {
3522 struct sk_buff *skb;
3523 int err = -ENOBUFS;
3524 struct net *net;
3525
3526 rcu_read_lock();
3527 net = dev_net_rcu(n->dev);
3528 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3529 if (skb == NULL)
3530 goto errout;
3531
3532 err = neigh_fill_info(skb, n, pid, 0, type, flags);
3533 if (err < 0) {
3534 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3535 WARN_ON(err == -EMSGSIZE);
3536 kfree_skb(skb);
3537 goto errout;
3538 }
3539 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3540 goto out;
3541 errout:
3542 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3543 out:
3544 rcu_read_unlock();
3545 }
3546
neigh_app_ns(struct neighbour * n)3547 void neigh_app_ns(struct neighbour *n)
3548 {
3549 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3550 }
3551 EXPORT_SYMBOL(neigh_app_ns);
3552
3553 #ifdef CONFIG_SYSCTL
3554 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3555
proc_unres_qlen(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3556 static int proc_unres_qlen(const struct ctl_table *ctl, int write,
3557 void *buffer, size_t *lenp, loff_t *ppos)
3558 {
3559 int size, ret;
3560 struct ctl_table tmp = *ctl;
3561
3562 tmp.extra1 = SYSCTL_ZERO;
3563 tmp.extra2 = &unres_qlen_max;
3564 tmp.data = &size;
3565
3566 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3567 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3568
3569 if (write && !ret)
3570 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3571 return ret;
3572 }
3573
neigh_copy_dflt_parms(struct net * net,struct neigh_parms * p,int index)3574 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3575 int index)
3576 {
3577 struct net_device *dev;
3578 int family = neigh_parms_family(p);
3579
3580 rcu_read_lock();
3581 for_each_netdev_rcu(net, dev) {
3582 struct neigh_parms *dst_p =
3583 neigh_get_dev_parms_rcu(dev, family);
3584
3585 if (dst_p && !test_bit(index, dst_p->data_state))
3586 dst_p->data[index] = p->data[index];
3587 }
3588 rcu_read_unlock();
3589 }
3590
neigh_proc_update(const struct ctl_table * ctl,int write)3591 static void neigh_proc_update(const struct ctl_table *ctl, int write)
3592 {
3593 struct net_device *dev = ctl->extra1;
3594 struct neigh_parms *p = ctl->extra2;
3595 struct net *net = neigh_parms_net(p);
3596 int index = (int *) ctl->data - p->data;
3597
3598 if (!write)
3599 return;
3600
3601 set_bit(index, p->data_state);
3602 if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3603 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3604 if (!dev) /* NULL dev means this is default value */
3605 neigh_copy_dflt_parms(net, p, index);
3606 }
3607
neigh_proc_dointvec_zero_intmax(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3608 static int neigh_proc_dointvec_zero_intmax(const struct ctl_table *ctl, int write,
3609 void *buffer, size_t *lenp,
3610 loff_t *ppos)
3611 {
3612 struct ctl_table tmp = *ctl;
3613 int ret;
3614
3615 tmp.extra1 = SYSCTL_ZERO;
3616 tmp.extra2 = SYSCTL_INT_MAX;
3617
3618 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3619 neigh_proc_update(ctl, write);
3620 return ret;
3621 }
3622
neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3623 static int neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table *ctl, int write,
3624 void *buffer, size_t *lenp, loff_t *ppos)
3625 {
3626 struct ctl_table tmp = *ctl;
3627 int ret;
3628
3629 int min = msecs_to_jiffies(1);
3630
3631 tmp.extra1 = &min;
3632 tmp.extra2 = NULL;
3633
3634 ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3635 neigh_proc_update(ctl, write);
3636 return ret;
3637 }
3638
neigh_proc_dointvec(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3639 int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer,
3640 size_t *lenp, loff_t *ppos)
3641 {
3642 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3643
3644 neigh_proc_update(ctl, write);
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(neigh_proc_dointvec);
3648
neigh_proc_dointvec_jiffies(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3649 int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer,
3650 size_t *lenp, loff_t *ppos)
3651 {
3652 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3653
3654 neigh_proc_update(ctl, write);
3655 return ret;
3656 }
3657 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3658
neigh_proc_dointvec_userhz_jiffies(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3659 static int neigh_proc_dointvec_userhz_jiffies(const struct ctl_table *ctl, int write,
3660 void *buffer, size_t *lenp,
3661 loff_t *ppos)
3662 {
3663 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3664
3665 neigh_proc_update(ctl, write);
3666 return ret;
3667 }
3668
neigh_proc_dointvec_ms_jiffies(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3669 int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write,
3670 void *buffer, size_t *lenp, loff_t *ppos)
3671 {
3672 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3673
3674 neigh_proc_update(ctl, write);
3675 return ret;
3676 }
3677 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3678
neigh_proc_dointvec_unres_qlen(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3679 static int neigh_proc_dointvec_unres_qlen(const struct ctl_table *ctl, int write,
3680 void *buffer, size_t *lenp,
3681 loff_t *ppos)
3682 {
3683 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3684
3685 neigh_proc_update(ctl, write);
3686 return ret;
3687 }
3688
neigh_proc_base_reachable_time(const struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)3689 static int neigh_proc_base_reachable_time(const struct ctl_table *ctl, int write,
3690 void *buffer, size_t *lenp,
3691 loff_t *ppos)
3692 {
3693 struct neigh_parms *p = ctl->extra2;
3694 int ret;
3695
3696 if (strcmp(ctl->procname, "base_reachable_time") == 0)
3697 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3698 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3699 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3700 else
3701 ret = -1;
3702
3703 if (write && ret == 0) {
3704 /* update reachable_time as well, otherwise, the change will
3705 * only be effective after the next time neigh_periodic_work
3706 * decides to recompute it
3707 */
3708 p->reachable_time =
3709 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3710 }
3711 return ret;
3712 }
3713
3714 #define NEIGH_PARMS_DATA_OFFSET(index) \
3715 (&((struct neigh_parms *) 0)->data[index])
3716
3717 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3718 [NEIGH_VAR_ ## attr] = { \
3719 .procname = name, \
3720 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3721 .maxlen = sizeof(int), \
3722 .mode = mval, \
3723 .proc_handler = proc, \
3724 }
3725
3726 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3727 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3728
3729 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3730 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3731
3732 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3733 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3734
3735 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3736 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3737
3738 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3739 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3740
3741 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3742 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3743
3744 static struct neigh_sysctl_table {
3745 struct ctl_table_header *sysctl_header;
3746 struct ctl_table neigh_vars[NEIGH_VAR_MAX];
3747 } neigh_sysctl_template __read_mostly = {
3748 .neigh_vars = {
3749 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3750 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3751 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3752 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3753 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3754 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3755 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3756 NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3757 "interval_probe_time_ms"),
3758 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3759 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3760 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3761 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3762 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3763 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3764 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3765 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3766 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3767 [NEIGH_VAR_GC_INTERVAL] = {
3768 .procname = "gc_interval",
3769 .maxlen = sizeof(int),
3770 .mode = 0644,
3771 .proc_handler = proc_dointvec_jiffies,
3772 },
3773 [NEIGH_VAR_GC_THRESH1] = {
3774 .procname = "gc_thresh1",
3775 .maxlen = sizeof(int),
3776 .mode = 0644,
3777 .extra1 = SYSCTL_ZERO,
3778 .extra2 = SYSCTL_INT_MAX,
3779 .proc_handler = proc_dointvec_minmax,
3780 },
3781 [NEIGH_VAR_GC_THRESH2] = {
3782 .procname = "gc_thresh2",
3783 .maxlen = sizeof(int),
3784 .mode = 0644,
3785 .extra1 = SYSCTL_ZERO,
3786 .extra2 = SYSCTL_INT_MAX,
3787 .proc_handler = proc_dointvec_minmax,
3788 },
3789 [NEIGH_VAR_GC_THRESH3] = {
3790 .procname = "gc_thresh3",
3791 .maxlen = sizeof(int),
3792 .mode = 0644,
3793 .extra1 = SYSCTL_ZERO,
3794 .extra2 = SYSCTL_INT_MAX,
3795 .proc_handler = proc_dointvec_minmax,
3796 },
3797 },
3798 };
3799
neigh_sysctl_register(struct net_device * dev,struct neigh_parms * p,proc_handler * handler)3800 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3801 proc_handler *handler)
3802 {
3803 int i;
3804 struct neigh_sysctl_table *t;
3805 const char *dev_name_source;
3806 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3807 char *p_name;
3808 size_t neigh_vars_size;
3809
3810 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3811 if (!t)
3812 goto err;
3813
3814 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3815 t->neigh_vars[i].data += (long) p;
3816 t->neigh_vars[i].extra1 = dev;
3817 t->neigh_vars[i].extra2 = p;
3818 }
3819
3820 neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3821 if (dev) {
3822 dev_name_source = dev->name;
3823 /* Terminate the table early */
3824 neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3825 } else {
3826 struct neigh_table *tbl = p->tbl;
3827 dev_name_source = "default";
3828 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3829 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3830 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3831 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3832 }
3833
3834 if (handler) {
3835 /* RetransTime */
3836 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3837 /* ReachableTime */
3838 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3839 /* RetransTime (in milliseconds)*/
3840 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3841 /* ReachableTime (in milliseconds) */
3842 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3843 } else {
3844 /* Those handlers will update p->reachable_time after
3845 * base_reachable_time(_ms) is set to ensure the new timer starts being
3846 * applied after the next neighbour update instead of waiting for
3847 * neigh_periodic_work to update its value (can be multiple minutes)
3848 * So any handler that replaces them should do this as well
3849 */
3850 /* ReachableTime */
3851 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3852 neigh_proc_base_reachable_time;
3853 /* ReachableTime (in milliseconds) */
3854 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3855 neigh_proc_base_reachable_time;
3856 }
3857
3858 switch (neigh_parms_family(p)) {
3859 case AF_INET:
3860 p_name = "ipv4";
3861 break;
3862 case AF_INET6:
3863 p_name = "ipv6";
3864 break;
3865 default:
3866 BUG();
3867 }
3868
3869 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3870 p_name, dev_name_source);
3871 t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3872 neigh_path, t->neigh_vars,
3873 neigh_vars_size);
3874 if (!t->sysctl_header)
3875 goto free;
3876
3877 p->sysctl_table = t;
3878 return 0;
3879
3880 free:
3881 kfree(t);
3882 err:
3883 return -ENOBUFS;
3884 }
3885 EXPORT_SYMBOL(neigh_sysctl_register);
3886
neigh_sysctl_unregister(struct neigh_parms * p)3887 void neigh_sysctl_unregister(struct neigh_parms *p)
3888 {
3889 if (p->sysctl_table) {
3890 struct neigh_sysctl_table *t = p->sysctl_table;
3891 p->sysctl_table = NULL;
3892 unregister_net_sysctl_table(t->sysctl_header);
3893 kfree(t);
3894 }
3895 }
3896 EXPORT_SYMBOL(neigh_sysctl_unregister);
3897
3898 #endif /* CONFIG_SYSCTL */
3899
neigh_init(void)3900 static int __init neigh_init(void)
3901 {
3902 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3903 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3904 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info,
3905 RTNL_FLAG_DUMP_UNLOCKED);
3906
3907 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3908 0);
3909 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3910
3911 return 0;
3912 }
3913
3914 subsys_initcall(neigh_init);
3915