1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net-sysfs.c - network device class and attributes
4 *
5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6 */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 #include <net/rps.h>
28
29 #include "dev.h"
30 #include "net-sysfs.h"
31
32 #ifdef CONFIG_SYSFS
33 static const char fmt_hex[] = "%#x\n";
34 static const char fmt_dec[] = "%d\n";
35 static const char fmt_uint[] = "%u\n";
36 static const char fmt_ulong[] = "%lu\n";
37 static const char fmt_u64[] = "%llu\n";
38
39 /* Caller holds RTNL or RCU */
dev_isalive(const struct net_device * dev)40 static inline int dev_isalive(const struct net_device *dev)
41 {
42 return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
43 }
44
45 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))46 static ssize_t netdev_show(const struct device *dev,
47 struct device_attribute *attr, char *buf,
48 ssize_t (*format)(const struct net_device *, char *))
49 {
50 struct net_device *ndev = to_net_dev(dev);
51 ssize_t ret = -EINVAL;
52
53 rcu_read_lock();
54 if (dev_isalive(ndev))
55 ret = (*format)(ndev, buf);
56 rcu_read_unlock();
57
58 return ret;
59 }
60
61 /* generate a show function for simple field */
62 #define NETDEVICE_SHOW(field, format_string) \
63 static ssize_t format_##field(const struct net_device *dev, char *buf) \
64 { \
65 return sysfs_emit(buf, format_string, READ_ONCE(dev->field)); \
66 } \
67 static ssize_t field##_show(struct device *dev, \
68 struct device_attribute *attr, char *buf) \
69 { \
70 return netdev_show(dev, attr, buf, format_##field); \
71 } \
72
73 #define NETDEVICE_SHOW_RO(field, format_string) \
74 NETDEVICE_SHOW(field, format_string); \
75 static DEVICE_ATTR_RO(field)
76
77 #define NETDEVICE_SHOW_RW(field, format_string) \
78 NETDEVICE_SHOW(field, format_string); \
79 static DEVICE_ATTR_RW(field)
80
81 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))82 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
83 const char *buf, size_t len,
84 int (*set)(struct net_device *, unsigned long))
85 {
86 struct net_device *netdev = to_net_dev(dev);
87 struct net *net = dev_net(netdev);
88 unsigned long new;
89 int ret;
90
91 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
92 return -EPERM;
93
94 ret = kstrtoul(buf, 0, &new);
95 if (ret)
96 goto err;
97
98 if (!rtnl_trylock())
99 return restart_syscall();
100
101 if (dev_isalive(netdev)) {
102 ret = (*set)(netdev, new);
103 if (ret == 0)
104 ret = len;
105 }
106 rtnl_unlock();
107 err:
108 return ret;
109 }
110
111 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
112 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
113 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
114 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
115 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
116 NETDEVICE_SHOW_RO(type, fmt_dec);
117 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
118
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
120 char *buf)
121 {
122 struct net_device *ndev = to_net_dev(dev);
123
124 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
125 }
126 static DEVICE_ATTR_RO(iflink);
127
format_name_assign_type(const struct net_device * dev,char * buf)128 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
129 {
130 return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
131 }
132
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)133 static ssize_t name_assign_type_show(struct device *dev,
134 struct device_attribute *attr,
135 char *buf)
136 {
137 struct net_device *ndev = to_net_dev(dev);
138 ssize_t ret = -EINVAL;
139
140 if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
141 ret = netdev_show(dev, attr, buf, format_name_assign_type);
142
143 return ret;
144 }
145 static DEVICE_ATTR_RO(name_assign_type);
146
147 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
address_show(struct device * dev,struct device_attribute * attr,char * buf)148 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
149 char *buf)
150 {
151 struct net_device *ndev = to_net_dev(dev);
152 ssize_t ret = -EINVAL;
153
154 down_read(&dev_addr_sem);
155
156 rcu_read_lock();
157 if (dev_isalive(ndev))
158 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
159 rcu_read_unlock();
160
161 up_read(&dev_addr_sem);
162 return ret;
163 }
164 static DEVICE_ATTR_RO(address);
165
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)166 static ssize_t broadcast_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168 {
169 struct net_device *ndev = to_net_dev(dev);
170 int ret = -EINVAL;
171
172 rcu_read_lock();
173 if (dev_isalive(ndev))
174 ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
175 rcu_read_unlock();
176 return ret;
177 }
178 static DEVICE_ATTR_RO(broadcast);
179
change_carrier(struct net_device * dev,unsigned long new_carrier)180 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
181 {
182 if (!netif_running(dev))
183 return -EINVAL;
184 return dev_change_carrier(dev, (bool)new_carrier);
185 }
186
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)187 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
188 const char *buf, size_t len)
189 {
190 struct net_device *netdev = to_net_dev(dev);
191
192 /* The check is also done in change_carrier; this helps returning early
193 * without hitting the trylock/restart in netdev_store.
194 */
195 if (!netdev->netdev_ops->ndo_change_carrier)
196 return -EOPNOTSUPP;
197
198 return netdev_store(dev, attr, buf, len, change_carrier);
199 }
200
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t carrier_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct net_device *netdev = to_net_dev(dev);
205 int ret = -EINVAL;
206
207 if (!rtnl_trylock())
208 return restart_syscall();
209
210 if (netif_running(netdev)) {
211 /* Synchronize carrier state with link watch,
212 * see also rtnl_getlink().
213 */
214 linkwatch_sync_dev(netdev);
215
216 ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
217 }
218 rtnl_unlock();
219
220 return ret;
221 }
222 static DEVICE_ATTR_RW(carrier);
223
speed_show(struct device * dev,struct device_attribute * attr,char * buf)224 static ssize_t speed_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 struct net_device *netdev = to_net_dev(dev);
228 int ret = -EINVAL;
229
230 /* The check is also done in __ethtool_get_link_ksettings; this helps
231 * returning early without hitting the trylock/restart below.
232 */
233 if (!netdev->ethtool_ops->get_link_ksettings)
234 return ret;
235
236 if (!rtnl_trylock())
237 return restart_syscall();
238
239 if (netif_running(netdev)) {
240 struct ethtool_link_ksettings cmd;
241
242 if (!__ethtool_get_link_ksettings(netdev, &cmd))
243 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
244 }
245 rtnl_unlock();
246 return ret;
247 }
248 static DEVICE_ATTR_RO(speed);
249
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)250 static ssize_t duplex_show(struct device *dev,
251 struct device_attribute *attr, char *buf)
252 {
253 struct net_device *netdev = to_net_dev(dev);
254 int ret = -EINVAL;
255
256 /* The check is also done in __ethtool_get_link_ksettings; this helps
257 * returning early without hitting the trylock/restart below.
258 */
259 if (!netdev->ethtool_ops->get_link_ksettings)
260 return ret;
261
262 if (!rtnl_trylock())
263 return restart_syscall();
264
265 if (netif_running(netdev)) {
266 struct ethtool_link_ksettings cmd;
267
268 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
269 const char *duplex;
270
271 switch (cmd.base.duplex) {
272 case DUPLEX_HALF:
273 duplex = "half";
274 break;
275 case DUPLEX_FULL:
276 duplex = "full";
277 break;
278 default:
279 duplex = "unknown";
280 break;
281 }
282 ret = sysfs_emit(buf, "%s\n", duplex);
283 }
284 }
285 rtnl_unlock();
286 return ret;
287 }
288 static DEVICE_ATTR_RO(duplex);
289
testing_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t testing_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292 {
293 struct net_device *netdev = to_net_dev(dev);
294
295 if (netif_running(netdev))
296 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
297
298 return -EINVAL;
299 }
300 static DEVICE_ATTR_RO(testing);
301
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)302 static ssize_t dormant_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct net_device *netdev = to_net_dev(dev);
306
307 if (netif_running(netdev))
308 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
309
310 return -EINVAL;
311 }
312 static DEVICE_ATTR_RO(dormant);
313
314 static const char *const operstates[] = {
315 "unknown",
316 "notpresent", /* currently unused */
317 "down",
318 "lowerlayerdown",
319 "testing",
320 "dormant",
321 "up"
322 };
323
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)324 static ssize_t operstate_show(struct device *dev,
325 struct device_attribute *attr, char *buf)
326 {
327 const struct net_device *netdev = to_net_dev(dev);
328 unsigned char operstate;
329
330 operstate = READ_ONCE(netdev->operstate);
331 if (!netif_running(netdev))
332 operstate = IF_OPER_DOWN;
333
334 if (operstate >= ARRAY_SIZE(operstates))
335 return -EINVAL; /* should not happen */
336
337 return sysfs_emit(buf, "%s\n", operstates[operstate]);
338 }
339 static DEVICE_ATTR_RO(operstate);
340
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)341 static ssize_t carrier_changes_show(struct device *dev,
342 struct device_attribute *attr,
343 char *buf)
344 {
345 struct net_device *netdev = to_net_dev(dev);
346
347 return sysfs_emit(buf, fmt_dec,
348 atomic_read(&netdev->carrier_up_count) +
349 atomic_read(&netdev->carrier_down_count));
350 }
351 static DEVICE_ATTR_RO(carrier_changes);
352
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)353 static ssize_t carrier_up_count_show(struct device *dev,
354 struct device_attribute *attr,
355 char *buf)
356 {
357 struct net_device *netdev = to_net_dev(dev);
358
359 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
360 }
361 static DEVICE_ATTR_RO(carrier_up_count);
362
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)363 static ssize_t carrier_down_count_show(struct device *dev,
364 struct device_attribute *attr,
365 char *buf)
366 {
367 struct net_device *netdev = to_net_dev(dev);
368
369 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
370 }
371 static DEVICE_ATTR_RO(carrier_down_count);
372
373 /* read-write attributes */
374
change_mtu(struct net_device * dev,unsigned long new_mtu)375 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
376 {
377 return dev_set_mtu(dev, (int)new_mtu);
378 }
379
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)380 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
381 const char *buf, size_t len)
382 {
383 return netdev_store(dev, attr, buf, len, change_mtu);
384 }
385 NETDEVICE_SHOW_RW(mtu, fmt_dec);
386
change_flags(struct net_device * dev,unsigned long new_flags)387 static int change_flags(struct net_device *dev, unsigned long new_flags)
388 {
389 return dev_change_flags(dev, (unsigned int)new_flags, NULL);
390 }
391
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)392 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
393 const char *buf, size_t len)
394 {
395 return netdev_store(dev, attr, buf, len, change_flags);
396 }
397 NETDEVICE_SHOW_RW(flags, fmt_hex);
398
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)399 static ssize_t tx_queue_len_store(struct device *dev,
400 struct device_attribute *attr,
401 const char *buf, size_t len)
402 {
403 if (!capable(CAP_NET_ADMIN))
404 return -EPERM;
405
406 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
407 }
408 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
409
change_gro_flush_timeout(struct net_device * dev,unsigned long val)410 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
411 {
412 WRITE_ONCE(dev->gro_flush_timeout, val);
413 return 0;
414 }
415
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)416 static ssize_t gro_flush_timeout_store(struct device *dev,
417 struct device_attribute *attr,
418 const char *buf, size_t len)
419 {
420 if (!capable(CAP_NET_ADMIN))
421 return -EPERM;
422
423 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
424 }
425 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
426
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)427 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
428 {
429 if (val > S32_MAX)
430 return -ERANGE;
431
432 WRITE_ONCE(dev->napi_defer_hard_irqs, val);
433 return 0;
434 }
435
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)436 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
437 struct device_attribute *attr,
438 const char *buf, size_t len)
439 {
440 if (!capable(CAP_NET_ADMIN))
441 return -EPERM;
442
443 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
444 }
445 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
446
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)447 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
448 const char *buf, size_t len)
449 {
450 struct net_device *netdev = to_net_dev(dev);
451 struct net *net = dev_net(netdev);
452 size_t count = len;
453 ssize_t ret = 0;
454
455 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
456 return -EPERM;
457
458 /* ignore trailing newline */
459 if (len > 0 && buf[len - 1] == '\n')
460 --count;
461
462 if (!rtnl_trylock())
463 return restart_syscall();
464
465 if (dev_isalive(netdev)) {
466 ret = dev_set_alias(netdev, buf, count);
467 if (ret < 0)
468 goto err;
469 ret = len;
470 netdev_state_change(netdev);
471 }
472 err:
473 rtnl_unlock();
474
475 return ret;
476 }
477
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)478 static ssize_t ifalias_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 const struct net_device *netdev = to_net_dev(dev);
482 char tmp[IFALIASZ];
483 ssize_t ret = 0;
484
485 ret = dev_get_alias(netdev, tmp, sizeof(tmp));
486 if (ret > 0)
487 ret = sysfs_emit(buf, "%s\n", tmp);
488 return ret;
489 }
490 static DEVICE_ATTR_RW(ifalias);
491
change_group(struct net_device * dev,unsigned long new_group)492 static int change_group(struct net_device *dev, unsigned long new_group)
493 {
494 dev_set_group(dev, (int)new_group);
495 return 0;
496 }
497
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)498 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t len)
500 {
501 return netdev_store(dev, attr, buf, len, change_group);
502 }
503 NETDEVICE_SHOW(group, fmt_dec);
504 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
505
change_proto_down(struct net_device * dev,unsigned long proto_down)506 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
507 {
508 return dev_change_proto_down(dev, (bool)proto_down);
509 }
510
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)511 static ssize_t proto_down_store(struct device *dev,
512 struct device_attribute *attr,
513 const char *buf, size_t len)
514 {
515 return netdev_store(dev, attr, buf, len, change_proto_down);
516 }
517 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
518
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)519 static ssize_t phys_port_id_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
521 {
522 struct net_device *netdev = to_net_dev(dev);
523 ssize_t ret = -EINVAL;
524
525 /* The check is also done in dev_get_phys_port_id; this helps returning
526 * early without hitting the trylock/restart below.
527 */
528 if (!netdev->netdev_ops->ndo_get_phys_port_id)
529 return -EOPNOTSUPP;
530
531 if (!rtnl_trylock())
532 return restart_syscall();
533
534 if (dev_isalive(netdev)) {
535 struct netdev_phys_item_id ppid;
536
537 ret = dev_get_phys_port_id(netdev, &ppid);
538 if (!ret)
539 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
540 }
541 rtnl_unlock();
542
543 return ret;
544 }
545 static DEVICE_ATTR_RO(phys_port_id);
546
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)547 static ssize_t phys_port_name_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct net_device *netdev = to_net_dev(dev);
551 ssize_t ret = -EINVAL;
552
553 /* The checks are also done in dev_get_phys_port_name; this helps
554 * returning early without hitting the trylock/restart below.
555 */
556 if (!netdev->netdev_ops->ndo_get_phys_port_name &&
557 !netdev->devlink_port)
558 return -EOPNOTSUPP;
559
560 if (!rtnl_trylock())
561 return restart_syscall();
562
563 if (dev_isalive(netdev)) {
564 char name[IFNAMSIZ];
565
566 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
567 if (!ret)
568 ret = sysfs_emit(buf, "%s\n", name);
569 }
570 rtnl_unlock();
571
572 return ret;
573 }
574 static DEVICE_ATTR_RO(phys_port_name);
575
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)576 static ssize_t phys_switch_id_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct net_device *netdev = to_net_dev(dev);
580 ssize_t ret = -EINVAL;
581
582 /* The checks are also done in dev_get_phys_port_name; this helps
583 * returning early without hitting the trylock/restart below. This works
584 * because recurse is false when calling dev_get_port_parent_id.
585 */
586 if (!netdev->netdev_ops->ndo_get_port_parent_id &&
587 !netdev->devlink_port)
588 return -EOPNOTSUPP;
589
590 if (!rtnl_trylock())
591 return restart_syscall();
592
593 if (dev_isalive(netdev)) {
594 struct netdev_phys_item_id ppid = { };
595
596 ret = dev_get_port_parent_id(netdev, &ppid, false);
597 if (!ret)
598 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
599 }
600 rtnl_unlock();
601
602 return ret;
603 }
604 static DEVICE_ATTR_RO(phys_switch_id);
605
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)606 static ssize_t threaded_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608 {
609 struct net_device *netdev = to_net_dev(dev);
610 ssize_t ret = -EINVAL;
611
612 rcu_read_lock();
613
614 if (dev_isalive(netdev))
615 ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
616
617 rcu_read_unlock();
618
619 return ret;
620 }
621
modify_napi_threaded(struct net_device * dev,unsigned long val)622 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
623 {
624 int ret;
625
626 if (list_empty(&dev->napi_list))
627 return -EOPNOTSUPP;
628
629 if (val != 0 && val != 1)
630 return -EOPNOTSUPP;
631
632 ret = dev_set_threaded(dev, val);
633
634 return ret;
635 }
636
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)637 static ssize_t threaded_store(struct device *dev,
638 struct device_attribute *attr,
639 const char *buf, size_t len)
640 {
641 return netdev_store(dev, attr, buf, len, modify_napi_threaded);
642 }
643 static DEVICE_ATTR_RW(threaded);
644
645 static struct attribute *net_class_attrs[] __ro_after_init = {
646 &dev_attr_netdev_group.attr,
647 &dev_attr_type.attr,
648 &dev_attr_dev_id.attr,
649 &dev_attr_dev_port.attr,
650 &dev_attr_iflink.attr,
651 &dev_attr_ifindex.attr,
652 &dev_attr_name_assign_type.attr,
653 &dev_attr_addr_assign_type.attr,
654 &dev_attr_addr_len.attr,
655 &dev_attr_link_mode.attr,
656 &dev_attr_address.attr,
657 &dev_attr_broadcast.attr,
658 &dev_attr_speed.attr,
659 &dev_attr_duplex.attr,
660 &dev_attr_dormant.attr,
661 &dev_attr_testing.attr,
662 &dev_attr_operstate.attr,
663 &dev_attr_carrier_changes.attr,
664 &dev_attr_ifalias.attr,
665 &dev_attr_carrier.attr,
666 &dev_attr_mtu.attr,
667 &dev_attr_flags.attr,
668 &dev_attr_tx_queue_len.attr,
669 &dev_attr_gro_flush_timeout.attr,
670 &dev_attr_napi_defer_hard_irqs.attr,
671 &dev_attr_phys_port_id.attr,
672 &dev_attr_phys_port_name.attr,
673 &dev_attr_phys_switch_id.attr,
674 &dev_attr_proto_down.attr,
675 &dev_attr_carrier_up_count.attr,
676 &dev_attr_carrier_down_count.attr,
677 &dev_attr_threaded.attr,
678 NULL,
679 };
680 ATTRIBUTE_GROUPS(net_class);
681
682 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)683 static ssize_t netstat_show(const struct device *d,
684 struct device_attribute *attr, char *buf,
685 unsigned long offset)
686 {
687 struct net_device *dev = to_net_dev(d);
688 ssize_t ret = -EINVAL;
689
690 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
691 offset % sizeof(u64) != 0);
692
693 rcu_read_lock();
694 if (dev_isalive(dev)) {
695 struct rtnl_link_stats64 temp;
696 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
697
698 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
699 }
700 rcu_read_unlock();
701 return ret;
702 }
703
704 /* generate a read-only statistics attribute */
705 #define NETSTAT_ENTRY(name) \
706 static ssize_t name##_show(struct device *d, \
707 struct device_attribute *attr, char *buf) \
708 { \
709 return netstat_show(d, attr, buf, \
710 offsetof(struct rtnl_link_stats64, name)); \
711 } \
712 static DEVICE_ATTR_RO(name)
713
714 NETSTAT_ENTRY(rx_packets);
715 NETSTAT_ENTRY(tx_packets);
716 NETSTAT_ENTRY(rx_bytes);
717 NETSTAT_ENTRY(tx_bytes);
718 NETSTAT_ENTRY(rx_errors);
719 NETSTAT_ENTRY(tx_errors);
720 NETSTAT_ENTRY(rx_dropped);
721 NETSTAT_ENTRY(tx_dropped);
722 NETSTAT_ENTRY(multicast);
723 NETSTAT_ENTRY(collisions);
724 NETSTAT_ENTRY(rx_length_errors);
725 NETSTAT_ENTRY(rx_over_errors);
726 NETSTAT_ENTRY(rx_crc_errors);
727 NETSTAT_ENTRY(rx_frame_errors);
728 NETSTAT_ENTRY(rx_fifo_errors);
729 NETSTAT_ENTRY(rx_missed_errors);
730 NETSTAT_ENTRY(tx_aborted_errors);
731 NETSTAT_ENTRY(tx_carrier_errors);
732 NETSTAT_ENTRY(tx_fifo_errors);
733 NETSTAT_ENTRY(tx_heartbeat_errors);
734 NETSTAT_ENTRY(tx_window_errors);
735 NETSTAT_ENTRY(rx_compressed);
736 NETSTAT_ENTRY(tx_compressed);
737 NETSTAT_ENTRY(rx_nohandler);
738
739 static struct attribute *netstat_attrs[] __ro_after_init = {
740 &dev_attr_rx_packets.attr,
741 &dev_attr_tx_packets.attr,
742 &dev_attr_rx_bytes.attr,
743 &dev_attr_tx_bytes.attr,
744 &dev_attr_rx_errors.attr,
745 &dev_attr_tx_errors.attr,
746 &dev_attr_rx_dropped.attr,
747 &dev_attr_tx_dropped.attr,
748 &dev_attr_multicast.attr,
749 &dev_attr_collisions.attr,
750 &dev_attr_rx_length_errors.attr,
751 &dev_attr_rx_over_errors.attr,
752 &dev_attr_rx_crc_errors.attr,
753 &dev_attr_rx_frame_errors.attr,
754 &dev_attr_rx_fifo_errors.attr,
755 &dev_attr_rx_missed_errors.attr,
756 &dev_attr_tx_aborted_errors.attr,
757 &dev_attr_tx_carrier_errors.attr,
758 &dev_attr_tx_fifo_errors.attr,
759 &dev_attr_tx_heartbeat_errors.attr,
760 &dev_attr_tx_window_errors.attr,
761 &dev_attr_rx_compressed.attr,
762 &dev_attr_tx_compressed.attr,
763 &dev_attr_rx_nohandler.attr,
764 NULL
765 };
766
767 static const struct attribute_group netstat_group = {
768 .name = "statistics",
769 .attrs = netstat_attrs,
770 };
771
772 static struct attribute *wireless_attrs[] = {
773 NULL
774 };
775
776 static const struct attribute_group wireless_group = {
777 .name = "wireless",
778 .attrs = wireless_attrs,
779 };
780
wireless_group_needed(struct net_device * ndev)781 static bool wireless_group_needed(struct net_device *ndev)
782 {
783 if (ndev->ieee80211_ptr)
784 return true;
785 if (ndev->wireless_handlers)
786 return true;
787 return false;
788 }
789
790 #else /* CONFIG_SYSFS */
791 #define net_class_groups NULL
792 #endif /* CONFIG_SYSFS */
793
794 #ifdef CONFIG_SYSFS
795 #define to_rx_queue_attr(_attr) \
796 container_of(_attr, struct rx_queue_attribute, attr)
797
798 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
799
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)800 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
801 char *buf)
802 {
803 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
804 struct netdev_rx_queue *queue = to_rx_queue(kobj);
805
806 if (!attribute->show)
807 return -EIO;
808
809 return attribute->show(queue, buf);
810 }
811
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)812 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
813 const char *buf, size_t count)
814 {
815 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
816 struct netdev_rx_queue *queue = to_rx_queue(kobj);
817
818 if (!attribute->store)
819 return -EIO;
820
821 return attribute->store(queue, buf, count);
822 }
823
824 static const struct sysfs_ops rx_queue_sysfs_ops = {
825 .show = rx_queue_attr_show,
826 .store = rx_queue_attr_store,
827 };
828
829 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)830 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
831 {
832 struct rps_map *map;
833 cpumask_var_t mask;
834 int i, len;
835
836 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
837 return -ENOMEM;
838
839 rcu_read_lock();
840 map = rcu_dereference(queue->rps_map);
841 if (map)
842 for (i = 0; i < map->len; i++)
843 cpumask_set_cpu(map->cpus[i], mask);
844
845 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
846 rcu_read_unlock();
847 free_cpumask_var(mask);
848
849 return len < PAGE_SIZE ? len : -EINVAL;
850 }
851
netdev_rx_queue_set_rps_mask(struct netdev_rx_queue * queue,cpumask_var_t mask)852 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
853 cpumask_var_t mask)
854 {
855 static DEFINE_MUTEX(rps_map_mutex);
856 struct rps_map *old_map, *map;
857 int cpu, i;
858
859 map = kzalloc(max_t(unsigned int,
860 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
861 GFP_KERNEL);
862 if (!map)
863 return -ENOMEM;
864
865 i = 0;
866 for_each_cpu_and(cpu, mask, cpu_online_mask)
867 map->cpus[i++] = cpu;
868
869 if (i) {
870 map->len = i;
871 } else {
872 kfree(map);
873 map = NULL;
874 }
875
876 mutex_lock(&rps_map_mutex);
877 old_map = rcu_dereference_protected(queue->rps_map,
878 mutex_is_locked(&rps_map_mutex));
879 rcu_assign_pointer(queue->rps_map, map);
880
881 if (map)
882 static_branch_inc(&rps_needed);
883 if (old_map)
884 static_branch_dec(&rps_needed);
885
886 mutex_unlock(&rps_map_mutex);
887
888 if (old_map)
889 kfree_rcu(old_map, rcu);
890 return 0;
891 }
892
rps_cpumask_housekeeping(struct cpumask * mask)893 int rps_cpumask_housekeeping(struct cpumask *mask)
894 {
895 if (!cpumask_empty(mask)) {
896 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
897 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
898 if (cpumask_empty(mask))
899 return -EINVAL;
900 }
901 return 0;
902 }
903
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)904 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
905 const char *buf, size_t len)
906 {
907 cpumask_var_t mask;
908 int err;
909
910 if (!capable(CAP_NET_ADMIN))
911 return -EPERM;
912
913 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
914 return -ENOMEM;
915
916 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
917 if (err)
918 goto out;
919
920 err = rps_cpumask_housekeeping(mask);
921 if (err)
922 goto out;
923
924 err = netdev_rx_queue_set_rps_mask(queue, mask);
925
926 out:
927 free_cpumask_var(mask);
928 return err ? : len;
929 }
930
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)931 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
932 char *buf)
933 {
934 struct rps_dev_flow_table *flow_table;
935 unsigned long val = 0;
936
937 rcu_read_lock();
938 flow_table = rcu_dereference(queue->rps_flow_table);
939 if (flow_table)
940 val = (unsigned long)flow_table->mask + 1;
941 rcu_read_unlock();
942
943 return sysfs_emit(buf, "%lu\n", val);
944 }
945
rps_dev_flow_table_release(struct rcu_head * rcu)946 static void rps_dev_flow_table_release(struct rcu_head *rcu)
947 {
948 struct rps_dev_flow_table *table = container_of(rcu,
949 struct rps_dev_flow_table, rcu);
950 vfree(table);
951 }
952
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)953 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
954 const char *buf, size_t len)
955 {
956 unsigned long mask, count;
957 struct rps_dev_flow_table *table, *old_table;
958 static DEFINE_SPINLOCK(rps_dev_flow_lock);
959 int rc;
960
961 if (!capable(CAP_NET_ADMIN))
962 return -EPERM;
963
964 rc = kstrtoul(buf, 0, &count);
965 if (rc < 0)
966 return rc;
967
968 if (count) {
969 mask = count - 1;
970 /* mask = roundup_pow_of_two(count) - 1;
971 * without overflows...
972 */
973 while ((mask | (mask >> 1)) != mask)
974 mask |= (mask >> 1);
975 /* On 64 bit arches, must check mask fits in table->mask (u32),
976 * and on 32bit arches, must check
977 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
978 */
979 #if BITS_PER_LONG > 32
980 if (mask > (unsigned long)(u32)mask)
981 return -EINVAL;
982 #else
983 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
984 / sizeof(struct rps_dev_flow)) {
985 /* Enforce a limit to prevent overflow */
986 return -EINVAL;
987 }
988 #endif
989 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
990 if (!table)
991 return -ENOMEM;
992
993 table->mask = mask;
994 for (count = 0; count <= mask; count++)
995 table->flows[count].cpu = RPS_NO_CPU;
996 } else {
997 table = NULL;
998 }
999
1000 spin_lock(&rps_dev_flow_lock);
1001 old_table = rcu_dereference_protected(queue->rps_flow_table,
1002 lockdep_is_held(&rps_dev_flow_lock));
1003 rcu_assign_pointer(queue->rps_flow_table, table);
1004 spin_unlock(&rps_dev_flow_lock);
1005
1006 if (old_table)
1007 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1008
1009 return len;
1010 }
1011
1012 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1013 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1014
1015 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1016 = __ATTR(rps_flow_cnt, 0644,
1017 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1018 #endif /* CONFIG_RPS */
1019
1020 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1021 #ifdef CONFIG_RPS
1022 &rps_cpus_attribute.attr,
1023 &rps_dev_flow_table_cnt_attribute.attr,
1024 #endif
1025 NULL
1026 };
1027 ATTRIBUTE_GROUPS(rx_queue_default);
1028
rx_queue_release(struct kobject * kobj)1029 static void rx_queue_release(struct kobject *kobj)
1030 {
1031 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1032 #ifdef CONFIG_RPS
1033 struct rps_map *map;
1034 struct rps_dev_flow_table *flow_table;
1035
1036 map = rcu_dereference_protected(queue->rps_map, 1);
1037 if (map) {
1038 RCU_INIT_POINTER(queue->rps_map, NULL);
1039 kfree_rcu(map, rcu);
1040 }
1041
1042 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1043 if (flow_table) {
1044 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1045 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1046 }
1047 #endif
1048
1049 memset(kobj, 0, sizeof(*kobj));
1050 netdev_put(queue->dev, &queue->dev_tracker);
1051 }
1052
rx_queue_namespace(const struct kobject * kobj)1053 static const void *rx_queue_namespace(const struct kobject *kobj)
1054 {
1055 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1056 struct device *dev = &queue->dev->dev;
1057 const void *ns = NULL;
1058
1059 if (dev->class && dev->class->namespace)
1060 ns = dev->class->namespace(dev);
1061
1062 return ns;
1063 }
1064
rx_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1065 static void rx_queue_get_ownership(const struct kobject *kobj,
1066 kuid_t *uid, kgid_t *gid)
1067 {
1068 const struct net *net = rx_queue_namespace(kobj);
1069
1070 net_ns_get_ownership(net, uid, gid);
1071 }
1072
1073 static const struct kobj_type rx_queue_ktype = {
1074 .sysfs_ops = &rx_queue_sysfs_ops,
1075 .release = rx_queue_release,
1076 .default_groups = rx_queue_default_groups,
1077 .namespace = rx_queue_namespace,
1078 .get_ownership = rx_queue_get_ownership,
1079 };
1080
rx_queue_default_mask(struct net_device * dev,struct netdev_rx_queue * queue)1081 static int rx_queue_default_mask(struct net_device *dev,
1082 struct netdev_rx_queue *queue)
1083 {
1084 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1085 struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1086
1087 if (rps_default_mask && !cpumask_empty(rps_default_mask))
1088 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1089 #endif
1090 return 0;
1091 }
1092
rx_queue_add_kobject(struct net_device * dev,int index)1093 static int rx_queue_add_kobject(struct net_device *dev, int index)
1094 {
1095 struct netdev_rx_queue *queue = dev->_rx + index;
1096 struct kobject *kobj = &queue->kobj;
1097 int error = 0;
1098
1099 /* Kobject_put later will trigger rx_queue_release call which
1100 * decreases dev refcount: Take that reference here
1101 */
1102 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1103
1104 kobj->kset = dev->queues_kset;
1105 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1106 "rx-%u", index);
1107 if (error)
1108 goto err;
1109
1110 if (dev->sysfs_rx_queue_group) {
1111 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1112 if (error)
1113 goto err;
1114 }
1115
1116 error = rx_queue_default_mask(dev, queue);
1117 if (error)
1118 goto err;
1119
1120 kobject_uevent(kobj, KOBJ_ADD);
1121
1122 return error;
1123
1124 err:
1125 kobject_put(kobj);
1126 return error;
1127 }
1128
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1129 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1130 kgid_t kgid)
1131 {
1132 struct netdev_rx_queue *queue = dev->_rx + index;
1133 struct kobject *kobj = &queue->kobj;
1134 int error;
1135
1136 error = sysfs_change_owner(kobj, kuid, kgid);
1137 if (error)
1138 return error;
1139
1140 if (dev->sysfs_rx_queue_group)
1141 error = sysfs_group_change_owner(
1142 kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1143
1144 return error;
1145 }
1146 #endif /* CONFIG_SYSFS */
1147
1148 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1149 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1150 {
1151 #ifdef CONFIG_SYSFS
1152 int i;
1153 int error = 0;
1154
1155 #ifndef CONFIG_RPS
1156 if (!dev->sysfs_rx_queue_group)
1157 return 0;
1158 #endif
1159 for (i = old_num; i < new_num; i++) {
1160 error = rx_queue_add_kobject(dev, i);
1161 if (error) {
1162 new_num = old_num;
1163 break;
1164 }
1165 }
1166
1167 while (--i >= new_num) {
1168 struct kobject *kobj = &dev->_rx[i].kobj;
1169
1170 if (!refcount_read(&dev_net(dev)->ns.count))
1171 kobj->uevent_suppress = 1;
1172 if (dev->sysfs_rx_queue_group)
1173 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1174 kobject_put(kobj);
1175 }
1176
1177 return error;
1178 #else
1179 return 0;
1180 #endif
1181 }
1182
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1183 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1184 kuid_t kuid, kgid_t kgid)
1185 {
1186 #ifdef CONFIG_SYSFS
1187 int error = 0;
1188 int i;
1189
1190 #ifndef CONFIG_RPS
1191 if (!dev->sysfs_rx_queue_group)
1192 return 0;
1193 #endif
1194 for (i = 0; i < num; i++) {
1195 error = rx_queue_change_owner(dev, i, kuid, kgid);
1196 if (error)
1197 break;
1198 }
1199
1200 return error;
1201 #else
1202 return 0;
1203 #endif
1204 }
1205
1206 #ifdef CONFIG_SYSFS
1207 /*
1208 * netdev_queue sysfs structures and functions.
1209 */
1210 struct netdev_queue_attribute {
1211 struct attribute attr;
1212 ssize_t (*show)(struct netdev_queue *queue, char *buf);
1213 ssize_t (*store)(struct netdev_queue *queue,
1214 const char *buf, size_t len);
1215 };
1216 #define to_netdev_queue_attr(_attr) \
1217 container_of(_attr, struct netdev_queue_attribute, attr)
1218
1219 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1220
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1221 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1222 struct attribute *attr, char *buf)
1223 {
1224 const struct netdev_queue_attribute *attribute
1225 = to_netdev_queue_attr(attr);
1226 struct netdev_queue *queue = to_netdev_queue(kobj);
1227
1228 if (!attribute->show)
1229 return -EIO;
1230
1231 return attribute->show(queue, buf);
1232 }
1233
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1234 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1235 struct attribute *attr,
1236 const char *buf, size_t count)
1237 {
1238 const struct netdev_queue_attribute *attribute
1239 = to_netdev_queue_attr(attr);
1240 struct netdev_queue *queue = to_netdev_queue(kobj);
1241
1242 if (!attribute->store)
1243 return -EIO;
1244
1245 return attribute->store(queue, buf, count);
1246 }
1247
1248 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1249 .show = netdev_queue_attr_show,
1250 .store = netdev_queue_attr_store,
1251 };
1252
tx_timeout_show(struct netdev_queue * queue,char * buf)1253 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1254 {
1255 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1256
1257 return sysfs_emit(buf, fmt_ulong, trans_timeout);
1258 }
1259
get_netdev_queue_index(struct netdev_queue * queue)1260 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1261 {
1262 struct net_device *dev = queue->dev;
1263 unsigned int i;
1264
1265 i = queue - dev->_tx;
1266 BUG_ON(i >= dev->num_tx_queues);
1267
1268 return i;
1269 }
1270
traffic_class_show(struct netdev_queue * queue,char * buf)1271 static ssize_t traffic_class_show(struct netdev_queue *queue,
1272 char *buf)
1273 {
1274 struct net_device *dev = queue->dev;
1275 int num_tc, tc;
1276 int index;
1277
1278 if (!netif_is_multiqueue(dev))
1279 return -ENOENT;
1280
1281 if (!rtnl_trylock())
1282 return restart_syscall();
1283
1284 index = get_netdev_queue_index(queue);
1285
1286 /* If queue belongs to subordinate dev use its TC mapping */
1287 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1288
1289 num_tc = dev->num_tc;
1290 tc = netdev_txq_to_tc(dev, index);
1291
1292 rtnl_unlock();
1293
1294 if (tc < 0)
1295 return -EINVAL;
1296
1297 /* We can report the traffic class one of two ways:
1298 * Subordinate device traffic classes are reported with the traffic
1299 * class first, and then the subordinate class so for example TC0 on
1300 * subordinate device 2 will be reported as "0-2". If the queue
1301 * belongs to the root device it will be reported with just the
1302 * traffic class, so just "0" for TC 0 for example.
1303 */
1304 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1305 sysfs_emit(buf, "%d\n", tc);
1306 }
1307
1308 #ifdef CONFIG_XPS
tx_maxrate_show(struct netdev_queue * queue,char * buf)1309 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1310 char *buf)
1311 {
1312 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1313 }
1314
tx_maxrate_store(struct netdev_queue * queue,const char * buf,size_t len)1315 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1316 const char *buf, size_t len)
1317 {
1318 struct net_device *dev = queue->dev;
1319 int err, index = get_netdev_queue_index(queue);
1320 u32 rate = 0;
1321
1322 if (!capable(CAP_NET_ADMIN))
1323 return -EPERM;
1324
1325 /* The check is also done later; this helps returning early without
1326 * hitting the trylock/restart below.
1327 */
1328 if (!dev->netdev_ops->ndo_set_tx_maxrate)
1329 return -EOPNOTSUPP;
1330
1331 err = kstrtou32(buf, 10, &rate);
1332 if (err < 0)
1333 return err;
1334
1335 if (!rtnl_trylock())
1336 return restart_syscall();
1337
1338 err = -EOPNOTSUPP;
1339 if (dev->netdev_ops->ndo_set_tx_maxrate)
1340 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1341
1342 rtnl_unlock();
1343 if (!err) {
1344 queue->tx_maxrate = rate;
1345 return len;
1346 }
1347 return err;
1348 }
1349
1350 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1351 = __ATTR_RW(tx_maxrate);
1352 #endif
1353
1354 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1355 = __ATTR_RO(tx_timeout);
1356
1357 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1358 = __ATTR_RO(traffic_class);
1359
1360 #ifdef CONFIG_BQL
1361 /*
1362 * Byte queue limits sysfs structures and functions.
1363 */
bql_show(char * buf,unsigned int value)1364 static ssize_t bql_show(char *buf, unsigned int value)
1365 {
1366 return sysfs_emit(buf, "%u\n", value);
1367 }
1368
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1369 static ssize_t bql_set(const char *buf, const size_t count,
1370 unsigned int *pvalue)
1371 {
1372 unsigned int value;
1373 int err;
1374
1375 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1376 value = DQL_MAX_LIMIT;
1377 } else {
1378 err = kstrtouint(buf, 10, &value);
1379 if (err < 0)
1380 return err;
1381 if (value > DQL_MAX_LIMIT)
1382 return -EINVAL;
1383 }
1384
1385 *pvalue = value;
1386
1387 return count;
1388 }
1389
bql_show_hold_time(struct netdev_queue * queue,char * buf)1390 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1391 char *buf)
1392 {
1393 struct dql *dql = &queue->dql;
1394
1395 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1396 }
1397
bql_set_hold_time(struct netdev_queue * queue,const char * buf,size_t len)1398 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1399 const char *buf, size_t len)
1400 {
1401 struct dql *dql = &queue->dql;
1402 unsigned int value;
1403 int err;
1404
1405 err = kstrtouint(buf, 10, &value);
1406 if (err < 0)
1407 return err;
1408
1409 dql->slack_hold_time = msecs_to_jiffies(value);
1410
1411 return len;
1412 }
1413
1414 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1415 = __ATTR(hold_time, 0644,
1416 bql_show_hold_time, bql_set_hold_time);
1417
bql_show_stall_thrs(struct netdev_queue * queue,char * buf)1418 static ssize_t bql_show_stall_thrs(struct netdev_queue *queue, char *buf)
1419 {
1420 struct dql *dql = &queue->dql;
1421
1422 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1423 }
1424
bql_set_stall_thrs(struct netdev_queue * queue,const char * buf,size_t len)1425 static ssize_t bql_set_stall_thrs(struct netdev_queue *queue,
1426 const char *buf, size_t len)
1427 {
1428 struct dql *dql = &queue->dql;
1429 unsigned int value;
1430 int err;
1431
1432 err = kstrtouint(buf, 10, &value);
1433 if (err < 0)
1434 return err;
1435
1436 value = msecs_to_jiffies(value);
1437 if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1438 return -ERANGE;
1439
1440 if (!dql->stall_thrs && value)
1441 dql->last_reap = jiffies;
1442 /* Force last_reap to be live */
1443 smp_wmb();
1444 dql->stall_thrs = value;
1445
1446 return len;
1447 }
1448
1449 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1450 __ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1451
bql_show_stall_max(struct netdev_queue * queue,char * buf)1452 static ssize_t bql_show_stall_max(struct netdev_queue *queue, char *buf)
1453 {
1454 return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1455 }
1456
bql_set_stall_max(struct netdev_queue * queue,const char * buf,size_t len)1457 static ssize_t bql_set_stall_max(struct netdev_queue *queue,
1458 const char *buf, size_t len)
1459 {
1460 WRITE_ONCE(queue->dql.stall_max, 0);
1461 return len;
1462 }
1463
1464 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1465 __ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1466
bql_show_stall_cnt(struct netdev_queue * queue,char * buf)1467 static ssize_t bql_show_stall_cnt(struct netdev_queue *queue, char *buf)
1468 {
1469 struct dql *dql = &queue->dql;
1470
1471 return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1472 }
1473
1474 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1475 __ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1476
bql_show_inflight(struct netdev_queue * queue,char * buf)1477 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1478 char *buf)
1479 {
1480 struct dql *dql = &queue->dql;
1481
1482 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1483 }
1484
1485 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1486 __ATTR(inflight, 0444, bql_show_inflight, NULL);
1487
1488 #define BQL_ATTR(NAME, FIELD) \
1489 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
1490 char *buf) \
1491 { \
1492 return bql_show(buf, queue->dql.FIELD); \
1493 } \
1494 \
1495 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
1496 const char *buf, size_t len) \
1497 { \
1498 return bql_set(buf, len, &queue->dql.FIELD); \
1499 } \
1500 \
1501 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1502 = __ATTR(NAME, 0644, \
1503 bql_show_ ## NAME, bql_set_ ## NAME)
1504
1505 BQL_ATTR(limit, limit);
1506 BQL_ATTR(limit_max, max_limit);
1507 BQL_ATTR(limit_min, min_limit);
1508
1509 static struct attribute *dql_attrs[] __ro_after_init = {
1510 &bql_limit_attribute.attr,
1511 &bql_limit_max_attribute.attr,
1512 &bql_limit_min_attribute.attr,
1513 &bql_hold_time_attribute.attr,
1514 &bql_inflight_attribute.attr,
1515 &bql_stall_thrs_attribute.attr,
1516 &bql_stall_cnt_attribute.attr,
1517 &bql_stall_max_attribute.attr,
1518 NULL
1519 };
1520
1521 static const struct attribute_group dql_group = {
1522 .name = "byte_queue_limits",
1523 .attrs = dql_attrs,
1524 };
1525 #else
1526 /* Fake declaration, all the code using it should be dead */
1527 static const struct attribute_group dql_group = {};
1528 #endif /* CONFIG_BQL */
1529
1530 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1531 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1532 int tc, char *buf, enum xps_map_type type)
1533 {
1534 struct xps_dev_maps *dev_maps;
1535 unsigned long *mask;
1536 unsigned int nr_ids;
1537 int j, len;
1538
1539 rcu_read_lock();
1540 dev_maps = rcu_dereference(dev->xps_maps[type]);
1541
1542 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1543 * when dev_maps hasn't been allocated yet, to be backward compatible.
1544 */
1545 nr_ids = dev_maps ? dev_maps->nr_ids :
1546 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1547
1548 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1549 if (!mask) {
1550 rcu_read_unlock();
1551 return -ENOMEM;
1552 }
1553
1554 if (!dev_maps || tc >= dev_maps->num_tc)
1555 goto out_no_maps;
1556
1557 for (j = 0; j < nr_ids; j++) {
1558 int i, tci = j * dev_maps->num_tc + tc;
1559 struct xps_map *map;
1560
1561 map = rcu_dereference(dev_maps->attr_map[tci]);
1562 if (!map)
1563 continue;
1564
1565 for (i = map->len; i--;) {
1566 if (map->queues[i] == index) {
1567 __set_bit(j, mask);
1568 break;
1569 }
1570 }
1571 }
1572 out_no_maps:
1573 rcu_read_unlock();
1574
1575 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1576 bitmap_free(mask);
1577
1578 return len < PAGE_SIZE ? len : -EINVAL;
1579 }
1580
xps_cpus_show(struct netdev_queue * queue,char * buf)1581 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1582 {
1583 struct net_device *dev = queue->dev;
1584 unsigned int index;
1585 int len, tc;
1586
1587 if (!netif_is_multiqueue(dev))
1588 return -ENOENT;
1589
1590 index = get_netdev_queue_index(queue);
1591
1592 if (!rtnl_trylock())
1593 return restart_syscall();
1594
1595 /* If queue belongs to subordinate dev use its map */
1596 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1597
1598 tc = netdev_txq_to_tc(dev, index);
1599 if (tc < 0) {
1600 rtnl_unlock();
1601 return -EINVAL;
1602 }
1603
1604 /* Make sure the subordinate device can't be freed */
1605 get_device(&dev->dev);
1606 rtnl_unlock();
1607
1608 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1609
1610 put_device(&dev->dev);
1611 return len;
1612 }
1613
xps_cpus_store(struct netdev_queue * queue,const char * buf,size_t len)1614 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1615 const char *buf, size_t len)
1616 {
1617 struct net_device *dev = queue->dev;
1618 unsigned int index;
1619 cpumask_var_t mask;
1620 int err;
1621
1622 if (!netif_is_multiqueue(dev))
1623 return -ENOENT;
1624
1625 if (!capable(CAP_NET_ADMIN))
1626 return -EPERM;
1627
1628 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1629 return -ENOMEM;
1630
1631 index = get_netdev_queue_index(queue);
1632
1633 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1634 if (err) {
1635 free_cpumask_var(mask);
1636 return err;
1637 }
1638
1639 if (!rtnl_trylock()) {
1640 free_cpumask_var(mask);
1641 return restart_syscall();
1642 }
1643
1644 err = netif_set_xps_queue(dev, mask, index);
1645 rtnl_unlock();
1646
1647 free_cpumask_var(mask);
1648
1649 return err ? : len;
1650 }
1651
1652 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1653 = __ATTR_RW(xps_cpus);
1654
xps_rxqs_show(struct netdev_queue * queue,char * buf)1655 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1656 {
1657 struct net_device *dev = queue->dev;
1658 unsigned int index;
1659 int tc;
1660
1661 index = get_netdev_queue_index(queue);
1662
1663 if (!rtnl_trylock())
1664 return restart_syscall();
1665
1666 tc = netdev_txq_to_tc(dev, index);
1667 rtnl_unlock();
1668 if (tc < 0)
1669 return -EINVAL;
1670
1671 return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1672 }
1673
xps_rxqs_store(struct netdev_queue * queue,const char * buf,size_t len)1674 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1675 size_t len)
1676 {
1677 struct net_device *dev = queue->dev;
1678 struct net *net = dev_net(dev);
1679 unsigned long *mask;
1680 unsigned int index;
1681 int err;
1682
1683 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1684 return -EPERM;
1685
1686 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1687 if (!mask)
1688 return -ENOMEM;
1689
1690 index = get_netdev_queue_index(queue);
1691
1692 err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1693 if (err) {
1694 bitmap_free(mask);
1695 return err;
1696 }
1697
1698 if (!rtnl_trylock()) {
1699 bitmap_free(mask);
1700 return restart_syscall();
1701 }
1702
1703 cpus_read_lock();
1704 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1705 cpus_read_unlock();
1706
1707 rtnl_unlock();
1708
1709 bitmap_free(mask);
1710 return err ? : len;
1711 }
1712
1713 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1714 = __ATTR_RW(xps_rxqs);
1715 #endif /* CONFIG_XPS */
1716
1717 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1718 &queue_trans_timeout.attr,
1719 &queue_traffic_class.attr,
1720 #ifdef CONFIG_XPS
1721 &xps_cpus_attribute.attr,
1722 &xps_rxqs_attribute.attr,
1723 &queue_tx_maxrate.attr,
1724 #endif
1725 NULL
1726 };
1727 ATTRIBUTE_GROUPS(netdev_queue_default);
1728
netdev_queue_release(struct kobject * kobj)1729 static void netdev_queue_release(struct kobject *kobj)
1730 {
1731 struct netdev_queue *queue = to_netdev_queue(kobj);
1732
1733 memset(kobj, 0, sizeof(*kobj));
1734 netdev_put(queue->dev, &queue->dev_tracker);
1735 }
1736
netdev_queue_namespace(const struct kobject * kobj)1737 static const void *netdev_queue_namespace(const struct kobject *kobj)
1738 {
1739 struct netdev_queue *queue = to_netdev_queue(kobj);
1740 struct device *dev = &queue->dev->dev;
1741 const void *ns = NULL;
1742
1743 if (dev->class && dev->class->namespace)
1744 ns = dev->class->namespace(dev);
1745
1746 return ns;
1747 }
1748
netdev_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1749 static void netdev_queue_get_ownership(const struct kobject *kobj,
1750 kuid_t *uid, kgid_t *gid)
1751 {
1752 const struct net *net = netdev_queue_namespace(kobj);
1753
1754 net_ns_get_ownership(net, uid, gid);
1755 }
1756
1757 static const struct kobj_type netdev_queue_ktype = {
1758 .sysfs_ops = &netdev_queue_sysfs_ops,
1759 .release = netdev_queue_release,
1760 .default_groups = netdev_queue_default_groups,
1761 .namespace = netdev_queue_namespace,
1762 .get_ownership = netdev_queue_get_ownership,
1763 };
1764
netdev_uses_bql(const struct net_device * dev)1765 static bool netdev_uses_bql(const struct net_device *dev)
1766 {
1767 if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1768 return false;
1769
1770 return IS_ENABLED(CONFIG_BQL);
1771 }
1772
netdev_queue_add_kobject(struct net_device * dev,int index)1773 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1774 {
1775 struct netdev_queue *queue = dev->_tx + index;
1776 struct kobject *kobj = &queue->kobj;
1777 int error = 0;
1778
1779 /* Kobject_put later will trigger netdev_queue_release call
1780 * which decreases dev refcount: Take that reference here
1781 */
1782 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1783
1784 kobj->kset = dev->queues_kset;
1785 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1786 "tx-%u", index);
1787 if (error)
1788 goto err;
1789
1790 if (netdev_uses_bql(dev)) {
1791 error = sysfs_create_group(kobj, &dql_group);
1792 if (error)
1793 goto err;
1794 }
1795
1796 kobject_uevent(kobj, KOBJ_ADD);
1797 return 0;
1798
1799 err:
1800 kobject_put(kobj);
1801 return error;
1802 }
1803
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)1804 static int tx_queue_change_owner(struct net_device *ndev, int index,
1805 kuid_t kuid, kgid_t kgid)
1806 {
1807 struct netdev_queue *queue = ndev->_tx + index;
1808 struct kobject *kobj = &queue->kobj;
1809 int error;
1810
1811 error = sysfs_change_owner(kobj, kuid, kgid);
1812 if (error)
1813 return error;
1814
1815 if (netdev_uses_bql(ndev))
1816 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1817
1818 return error;
1819 }
1820 #endif /* CONFIG_SYSFS */
1821
1822 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1823 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1824 {
1825 #ifdef CONFIG_SYSFS
1826 int i;
1827 int error = 0;
1828
1829 /* Tx queue kobjects are allowed to be updated when a device is being
1830 * unregistered, but solely to remove queues from qdiscs. Any path
1831 * adding queues should be fixed.
1832 */
1833 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1834 "New queues can't be registered after device unregistration.");
1835
1836 for (i = old_num; i < new_num; i++) {
1837 error = netdev_queue_add_kobject(dev, i);
1838 if (error) {
1839 new_num = old_num;
1840 break;
1841 }
1842 }
1843
1844 while (--i >= new_num) {
1845 struct netdev_queue *queue = dev->_tx + i;
1846
1847 if (!refcount_read(&dev_net(dev)->ns.count))
1848 queue->kobj.uevent_suppress = 1;
1849
1850 if (netdev_uses_bql(dev))
1851 sysfs_remove_group(&queue->kobj, &dql_group);
1852
1853 kobject_put(&queue->kobj);
1854 }
1855
1856 return error;
1857 #else
1858 return 0;
1859 #endif /* CONFIG_SYSFS */
1860 }
1861
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1862 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1863 kuid_t kuid, kgid_t kgid)
1864 {
1865 #ifdef CONFIG_SYSFS
1866 int error = 0;
1867 int i;
1868
1869 for (i = 0; i < num; i++) {
1870 error = tx_queue_change_owner(dev, i, kuid, kgid);
1871 if (error)
1872 break;
1873 }
1874
1875 return error;
1876 #else
1877 return 0;
1878 #endif /* CONFIG_SYSFS */
1879 }
1880
register_queue_kobjects(struct net_device * dev)1881 static int register_queue_kobjects(struct net_device *dev)
1882 {
1883 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1884
1885 #ifdef CONFIG_SYSFS
1886 dev->queues_kset = kset_create_and_add("queues",
1887 NULL, &dev->dev.kobj);
1888 if (!dev->queues_kset)
1889 return -ENOMEM;
1890 real_rx = dev->real_num_rx_queues;
1891 #endif
1892 real_tx = dev->real_num_tx_queues;
1893
1894 error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1895 if (error)
1896 goto error;
1897 rxq = real_rx;
1898
1899 error = netdev_queue_update_kobjects(dev, 0, real_tx);
1900 if (error)
1901 goto error;
1902 txq = real_tx;
1903
1904 return 0;
1905
1906 error:
1907 netdev_queue_update_kobjects(dev, txq, 0);
1908 net_rx_queue_update_kobjects(dev, rxq, 0);
1909 #ifdef CONFIG_SYSFS
1910 kset_unregister(dev->queues_kset);
1911 #endif
1912 return error;
1913 }
1914
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)1915 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1916 {
1917 int error = 0, real_rx = 0, real_tx = 0;
1918
1919 #ifdef CONFIG_SYSFS
1920 if (ndev->queues_kset) {
1921 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1922 if (error)
1923 return error;
1924 }
1925 real_rx = ndev->real_num_rx_queues;
1926 #endif
1927 real_tx = ndev->real_num_tx_queues;
1928
1929 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1930 if (error)
1931 return error;
1932
1933 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1934 if (error)
1935 return error;
1936
1937 return 0;
1938 }
1939
remove_queue_kobjects(struct net_device * dev)1940 static void remove_queue_kobjects(struct net_device *dev)
1941 {
1942 int real_rx = 0, real_tx = 0;
1943
1944 #ifdef CONFIG_SYSFS
1945 real_rx = dev->real_num_rx_queues;
1946 #endif
1947 real_tx = dev->real_num_tx_queues;
1948
1949 net_rx_queue_update_kobjects(dev, real_rx, 0);
1950 netdev_queue_update_kobjects(dev, real_tx, 0);
1951
1952 dev->real_num_rx_queues = 0;
1953 dev->real_num_tx_queues = 0;
1954 #ifdef CONFIG_SYSFS
1955 kset_unregister(dev->queues_kset);
1956 #endif
1957 }
1958
net_current_may_mount(void)1959 static bool net_current_may_mount(void)
1960 {
1961 struct net *net = current->nsproxy->net_ns;
1962
1963 return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1964 }
1965
net_grab_current_ns(void)1966 static void *net_grab_current_ns(void)
1967 {
1968 struct net *ns = current->nsproxy->net_ns;
1969 #ifdef CONFIG_NET_NS
1970 if (ns)
1971 refcount_inc(&ns->passive);
1972 #endif
1973 return ns;
1974 }
1975
net_initial_ns(void)1976 static const void *net_initial_ns(void)
1977 {
1978 return &init_net;
1979 }
1980
net_netlink_ns(struct sock * sk)1981 static const void *net_netlink_ns(struct sock *sk)
1982 {
1983 return sock_net(sk);
1984 }
1985
1986 const struct kobj_ns_type_operations net_ns_type_operations = {
1987 .type = KOBJ_NS_TYPE_NET,
1988 .current_may_mount = net_current_may_mount,
1989 .grab_current_ns = net_grab_current_ns,
1990 .netlink_ns = net_netlink_ns,
1991 .initial_ns = net_initial_ns,
1992 .drop_ns = net_drop_ns,
1993 };
1994 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1995
netdev_uevent(const struct device * d,struct kobj_uevent_env * env)1996 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
1997 {
1998 const struct net_device *dev = to_net_dev(d);
1999 int retval;
2000
2001 /* pass interface to uevent. */
2002 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2003 if (retval)
2004 goto exit;
2005
2006 /* pass ifindex to uevent.
2007 * ifindex is useful as it won't change (interface name may change)
2008 * and is what RtNetlink uses natively.
2009 */
2010 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2011
2012 exit:
2013 return retval;
2014 }
2015
2016 /*
2017 * netdev_release -- destroy and free a dead device.
2018 * Called when last reference to device kobject is gone.
2019 */
netdev_release(struct device * d)2020 static void netdev_release(struct device *d)
2021 {
2022 struct net_device *dev = to_net_dev(d);
2023
2024 BUG_ON(dev->reg_state != NETREG_RELEASED);
2025
2026 /* no need to wait for rcu grace period:
2027 * device is dead and about to be freed.
2028 */
2029 kfree(rcu_access_pointer(dev->ifalias));
2030 kvfree(dev);
2031 }
2032
net_namespace(const struct device * d)2033 static const void *net_namespace(const struct device *d)
2034 {
2035 const struct net_device *dev = to_net_dev(d);
2036
2037 return dev_net(dev);
2038 }
2039
net_get_ownership(const struct device * d,kuid_t * uid,kgid_t * gid)2040 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2041 {
2042 const struct net_device *dev = to_net_dev(d);
2043 const struct net *net = dev_net(dev);
2044
2045 net_ns_get_ownership(net, uid, gid);
2046 }
2047
2048 static const struct class net_class = {
2049 .name = "net",
2050 .dev_release = netdev_release,
2051 .dev_groups = net_class_groups,
2052 .dev_uevent = netdev_uevent,
2053 .ns_type = &net_ns_type_operations,
2054 .namespace = net_namespace,
2055 .get_ownership = net_get_ownership,
2056 };
2057
2058 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)2059 static int of_dev_node_match(struct device *dev, const void *data)
2060 {
2061 for (; dev; dev = dev->parent) {
2062 if (dev->of_node == data)
2063 return 1;
2064 }
2065
2066 return 0;
2067 }
2068
2069 /*
2070 * of_find_net_device_by_node - lookup the net device for the device node
2071 * @np: OF device node
2072 *
2073 * Looks up the net_device structure corresponding with the device node.
2074 * If successful, returns a pointer to the net_device with the embedded
2075 * struct device refcount incremented by one, or NULL on failure. The
2076 * refcount must be dropped when done with the net_device.
2077 */
of_find_net_device_by_node(struct device_node * np)2078 struct net_device *of_find_net_device_by_node(struct device_node *np)
2079 {
2080 struct device *dev;
2081
2082 dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2083 if (!dev)
2084 return NULL;
2085
2086 return to_net_dev(dev);
2087 }
2088 EXPORT_SYMBOL(of_find_net_device_by_node);
2089 #endif
2090
2091 /* Delete sysfs entries but hold kobject reference until after all
2092 * netdev references are gone.
2093 */
netdev_unregister_kobject(struct net_device * ndev)2094 void netdev_unregister_kobject(struct net_device *ndev)
2095 {
2096 struct device *dev = &ndev->dev;
2097
2098 if (!refcount_read(&dev_net(ndev)->ns.count))
2099 dev_set_uevent_suppress(dev, 1);
2100
2101 kobject_get(&dev->kobj);
2102
2103 remove_queue_kobjects(ndev);
2104
2105 pm_runtime_set_memalloc_noio(dev, false);
2106
2107 device_del(dev);
2108 }
2109
2110 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)2111 int netdev_register_kobject(struct net_device *ndev)
2112 {
2113 struct device *dev = &ndev->dev;
2114 const struct attribute_group **groups = ndev->sysfs_groups;
2115 int error = 0;
2116
2117 device_initialize(dev);
2118 dev->class = &net_class;
2119 dev->platform_data = ndev;
2120 dev->groups = groups;
2121
2122 dev_set_name(dev, "%s", ndev->name);
2123
2124 #ifdef CONFIG_SYSFS
2125 /* Allow for a device specific group */
2126 if (*groups)
2127 groups++;
2128
2129 *groups++ = &netstat_group;
2130
2131 if (wireless_group_needed(ndev))
2132 *groups++ = &wireless_group;
2133 #endif /* CONFIG_SYSFS */
2134
2135 error = device_add(dev);
2136 if (error)
2137 return error;
2138
2139 error = register_queue_kobjects(ndev);
2140 if (error) {
2141 device_del(dev);
2142 return error;
2143 }
2144
2145 pm_runtime_set_memalloc_noio(dev, true);
2146
2147 return error;
2148 }
2149
2150 /* Change owner for sysfs entries when moving network devices across network
2151 * namespaces owned by different user namespaces.
2152 */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2153 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2154 const struct net *net_new)
2155 {
2156 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2157 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2158 struct device *dev = &ndev->dev;
2159 int error;
2160
2161 net_ns_get_ownership(net_old, &old_uid, &old_gid);
2162 net_ns_get_ownership(net_new, &new_uid, &new_gid);
2163
2164 /* The network namespace was changed but the owning user namespace is
2165 * identical so there's no need to change the owner of sysfs entries.
2166 */
2167 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2168 return 0;
2169
2170 error = device_change_owner(dev, new_uid, new_gid);
2171 if (error)
2172 return error;
2173
2174 error = queue_change_owner(ndev, new_uid, new_gid);
2175 if (error)
2176 return error;
2177
2178 return 0;
2179 }
2180
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2181 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2182 const void *ns)
2183 {
2184 return class_create_file_ns(&net_class, class_attr, ns);
2185 }
2186 EXPORT_SYMBOL(netdev_class_create_file_ns);
2187
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2188 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2189 const void *ns)
2190 {
2191 class_remove_file_ns(&net_class, class_attr, ns);
2192 }
2193 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2194
netdev_kobject_init(void)2195 int __init netdev_kobject_init(void)
2196 {
2197 kobj_ns_type_register(&net_ns_type_operations);
2198 return class_register(&net_class);
2199 }
2200