1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2025 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84 enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
get_cfg80211_regdom(void)140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
get_wiphy_regdom(struct wiphy * wiphy)150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171 }
172
reg_get_dfs_region(struct wiphy * wiphy)173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203 out:
204 rcu_read_unlock();
205
206 return dfs_region;
207 }
208
rcu_free_regdom(const struct ieee80211_regdomain * r)209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
get_last_request(void)216 static struct regulatory_request *get_last_request(void)
217 {
218 return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
reg_free_request(struct regulatory_request * request)294 static void reg_free_request(struct regulatory_request *request)
295 {
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(request);
301 }
302
reg_free_last_request(void)303 static void reg_free_last_request(void)
304 {
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309 }
310
reg_update_last_request(struct regulatory_request * request)311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321 }
322
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)323 static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325 {
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(&core_request_world);
350 }
351
352 /*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
update_world_regdomain(const struct ieee80211_regdomain * rd)356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(false, rd);
365
366 cfg80211_world_regdom = rd;
367 }
368
is_world_regdom(const char * alpha2)369 bool is_world_regdom(const char *alpha2)
370 {
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
is_alpha2_set(const char * alpha2)376 static bool is_alpha2_set(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381 }
382
is_unknown_alpha2(const char * alpha2)383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
is_intersected_alpha2(const char * alpha2)394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
is_an_alpha2(const char * alpha2)406 static bool is_an_alpha2(const char *alpha2)
407 {
408 if (!alpha2)
409 return false;
410 return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 isascii(alpha2[1]) && isalpha(alpha2[1]);
412 }
413
alpha2_equal(const char * alpha2_x,const char * alpha2_y)414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415 {
416 if (!alpha2_x || !alpha2_y)
417 return false;
418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419 }
420
regdom_changes(const char * alpha2)421 static bool regdom_changes(const char *alpha2)
422 {
423 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424
425 if (!r)
426 return true;
427 return !alpha2_equal(r->alpha2, alpha2);
428 }
429
430 /*
431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433 * has ever been issued.
434 */
is_user_regdom_saved(void)435 static bool is_user_regdom_saved(void)
436 {
437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 return false;
439
440 /* This would indicate a mistake on the design */
441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 "Unexpected user alpha2: %c%c\n",
443 user_alpha2[0], user_alpha2[1]))
444 return false;
445
446 return true;
447 }
448
449 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)450 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451 {
452 struct ieee80211_regdomain *regd;
453 unsigned int i;
454
455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 GFP_KERNEL);
457 if (!regd)
458 return ERR_PTR(-ENOMEM);
459
460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
461
462 for (i = 0; i < src_regd->n_reg_rules; i++)
463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
464 sizeof(struct ieee80211_reg_rule));
465
466 return regd;
467 }
468
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 {
471 ASSERT_RTNL();
472
473 if (!IS_ERR(cfg80211_user_regdom))
474 kfree(cfg80211_user_regdom);
475 cfg80211_user_regdom = reg_copy_regd(rd);
476 }
477
478 struct reg_regdb_apply_request {
479 struct list_head list;
480 const struct ieee80211_regdomain *regdom;
481 };
482
483 static LIST_HEAD(reg_regdb_apply_list);
484 static DEFINE_MUTEX(reg_regdb_apply_mutex);
485
reg_regdb_apply(struct work_struct * work)486 static void reg_regdb_apply(struct work_struct *work)
487 {
488 struct reg_regdb_apply_request *request;
489
490 rtnl_lock();
491
492 mutex_lock(®_regdb_apply_mutex);
493 while (!list_empty(®_regdb_apply_list)) {
494 request = list_first_entry(®_regdb_apply_list,
495 struct reg_regdb_apply_request,
496 list);
497 list_del(&request->list);
498
499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
500 kfree(request);
501 }
502 mutex_unlock(®_regdb_apply_mutex);
503
504 rtnl_unlock();
505 }
506
507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508
reg_schedule_apply(const struct ieee80211_regdomain * regdom)509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510 {
511 struct reg_regdb_apply_request *request;
512
513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 if (!request) {
515 kfree(regdom);
516 return -ENOMEM;
517 }
518
519 request->regdom = regdom;
520
521 mutex_lock(®_regdb_apply_mutex);
522 list_add_tail(&request->list, ®_regdb_apply_list);
523 mutex_unlock(®_regdb_apply_mutex);
524
525 schedule_work(®_regdb_work);
526 return 0;
527 }
528
529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
530 /* Max number of consecutive attempts to communicate with CRDA */
531 #define REG_MAX_CRDA_TIMEOUTS 10
532
533 static u32 reg_crda_timeouts;
534
535 static void crda_timeout_work(struct work_struct *work);
536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537
crda_timeout_work(struct work_struct * work)538 static void crda_timeout_work(struct work_struct *work)
539 {
540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 rtnl_lock();
542 reg_crda_timeouts++;
543 restore_regulatory_settings(true, false);
544 rtnl_unlock();
545 }
546
cancel_crda_timeout(void)547 static void cancel_crda_timeout(void)
548 {
549 cancel_delayed_work(&crda_timeout);
550 }
551
cancel_crda_timeout_sync(void)552 static void cancel_crda_timeout_sync(void)
553 {
554 cancel_delayed_work_sync(&crda_timeout);
555 }
556
reset_crda_timeouts(void)557 static void reset_crda_timeouts(void)
558 {
559 reg_crda_timeouts = 0;
560 }
561
562 /*
563 * This lets us keep regulatory code which is updated on a regulatory
564 * basis in userspace.
565 */
call_crda(const char * alpha2)566 static int call_crda(const char *alpha2)
567 {
568 char country[12];
569 char *env[] = { country, NULL };
570 int ret;
571
572 snprintf(country, sizeof(country), "COUNTRY=%c%c",
573 alpha2[0], alpha2[1]);
574
575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 return -EINVAL;
578 }
579
580 if (!is_world_regdom((char *) alpha2))
581 pr_debug("Calling CRDA for country: %c%c\n",
582 alpha2[0], alpha2[1]);
583 else
584 pr_debug("Calling CRDA to update world regulatory domain\n");
585
586 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
587 if (ret)
588 return ret;
589
590 queue_delayed_work(system_power_efficient_wq,
591 &crda_timeout, msecs_to_jiffies(3142));
592 return 0;
593 }
594 #else
cancel_crda_timeout(void)595 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)596 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)597 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)598 static inline int call_crda(const char *alpha2)
599 {
600 return -ENODATA;
601 }
602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603
604 /* code to directly load a firmware database through request_firmware */
605 static const struct fwdb_header *regdb;
606
607 struct fwdb_country {
608 u8 alpha2[2];
609 __be16 coll_ptr;
610 /* this struct cannot be extended */
611 } __packed __aligned(4);
612
613 struct fwdb_collection {
614 u8 len;
615 u8 n_rules;
616 u8 dfs_region;
617 /* no optional data yet */
618 /* aligned to 2, then followed by __be16 array of rule pointers */
619 } __packed __aligned(4);
620
621 enum fwdb_flags {
622 FWDB_FLAG_NO_OFDM = BIT(0),
623 FWDB_FLAG_NO_OUTDOOR = BIT(1),
624 FWDB_FLAG_DFS = BIT(2),
625 FWDB_FLAG_NO_IR = BIT(3),
626 FWDB_FLAG_AUTO_BW = BIT(4),
627 };
628
629 struct fwdb_wmm_ac {
630 u8 ecw;
631 u8 aifsn;
632 __be16 cot;
633 } __packed;
634
635 struct fwdb_wmm_rule {
636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638 } __packed;
639
640 struct fwdb_rule {
641 u8 len;
642 u8 flags;
643 __be16 max_eirp;
644 __be32 start, end, max_bw;
645 /* start of optional data */
646 __be16 cac_timeout;
647 __be16 wmm_ptr;
648 } __packed __aligned(4);
649
650 #define FWDB_MAGIC 0x52474442
651 #define FWDB_VERSION 20
652
653 struct fwdb_header {
654 __be32 magic;
655 __be32 version;
656 struct fwdb_country country[];
657 } __packed __aligned(4);
658
ecw2cw(int ecw)659 static int ecw2cw(int ecw)
660 {
661 return (1 << ecw) - 1;
662 }
663
valid_wmm(struct fwdb_wmm_rule * rule)664 static bool valid_wmm(struct fwdb_wmm_rule *rule)
665 {
666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 int i;
668
669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
672 u8 aifsn = ac[i].aifsn;
673
674 if (cw_min >= cw_max)
675 return false;
676
677 if (aifsn < 1)
678 return false;
679 }
680
681 return true;
682 }
683
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685 {
686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687
688 if ((u8 *)rule + sizeof(rule->len) > data + size)
689 return false;
690
691 /* mandatory fields */
692 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 return false;
694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 struct fwdb_wmm_rule *wmm;
697
698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 return false;
700
701 wmm = (void *)(data + wmm_ptr);
702
703 if (!valid_wmm(wmm))
704 return false;
705 }
706 return true;
707 }
708
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)709 static bool valid_country(const u8 *data, unsigned int size,
710 const struct fwdb_country *country)
711 {
712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 struct fwdb_collection *coll = (void *)(data + ptr);
714 __be16 *rules_ptr;
715 unsigned int i;
716
717 /* make sure we can read len/n_rules */
718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 return false;
720
721 /* make sure base struct and all rules fit */
722 if ((u8 *)coll + ALIGN(coll->len, 2) +
723 (coll->n_rules * 2) > data + size)
724 return false;
725
726 /* mandatory fields must exist */
727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 return false;
729
730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731
732 for (i = 0; i < coll->n_rules; i++) {
733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734
735 if (!valid_rule(data, size, rule_ptr))
736 return false;
737 }
738
739 return true;
740 }
741
742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743 #include <keys/asymmetric-type.h>
744
745 static struct key *builtin_regdb_keys;
746
load_builtin_regdb_keys(void)747 static int __init load_builtin_regdb_keys(void)
748 {
749 builtin_regdb_keys =
750 keyring_alloc(".builtin_regdb_keys",
751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 if (IS_ERR(builtin_regdb_keys))
756 return PTR_ERR(builtin_regdb_keys);
757
758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759
760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 x509_load_certificate_list(shipped_regdb_certs,
762 shipped_regdb_certs_len,
763 builtin_regdb_keys);
764 #endif
765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 x509_load_certificate_list(extra_regdb_certs,
768 extra_regdb_certs_len,
769 builtin_regdb_keys);
770 #endif
771
772 return 0;
773 }
774
775 MODULE_FIRMWARE("regulatory.db.p7s");
776
regdb_has_valid_signature(const u8 * data,unsigned int size)777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778 {
779 const struct firmware *sig;
780 bool result;
781
782 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
783 return false;
784
785 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
786 builtin_regdb_keys,
787 VERIFYING_UNSPECIFIED_SIGNATURE,
788 NULL, NULL) == 0;
789
790 release_firmware(sig);
791
792 return result;
793 }
794
free_regdb_keyring(void)795 static void free_regdb_keyring(void)
796 {
797 key_put(builtin_regdb_keys);
798 }
799 #else
load_builtin_regdb_keys(void)800 static int load_builtin_regdb_keys(void)
801 {
802 return 0;
803 }
804
regdb_has_valid_signature(const u8 * data,unsigned int size)805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806 {
807 return true;
808 }
809
free_regdb_keyring(void)810 static void free_regdb_keyring(void)
811 {
812 }
813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814
valid_regdb(const u8 * data,unsigned int size)815 static bool valid_regdb(const u8 *data, unsigned int size)
816 {
817 const struct fwdb_header *hdr = (void *)data;
818 const struct fwdb_country *country;
819
820 if (size < sizeof(*hdr))
821 return false;
822
823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 return false;
825
826 if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 return false;
828
829 if (!regdb_has_valid_signature(data, size))
830 return false;
831
832 country = &hdr->country[0];
833 while ((u8 *)(country + 1) <= data + size) {
834 if (!country->coll_ptr)
835 break;
836 if (!valid_country(data, size, country))
837 return false;
838 country++;
839 }
840
841 return true;
842 }
843
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)844 static void set_wmm_rule(const struct fwdb_header *db,
845 const struct fwdb_country *country,
846 const struct fwdb_rule *rule,
847 struct ieee80211_reg_rule *rrule)
848 {
849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 struct fwdb_wmm_rule *wmm;
851 unsigned int i, wmm_ptr;
852
853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 wmm = (void *)((u8 *)db + wmm_ptr);
855
856 if (!valid_wmm(wmm)) {
857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 country->alpha2[0], country->alpha2[1]);
860 return;
861 }
862
863 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 wmm_rule->client[i].cw_min =
865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
868 wmm_rule->client[i].cot =
869 1000 * be16_to_cpu(wmm->client[i].cot);
870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 }
875
876 rrule->has_wmm = true;
877 }
878
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)879 static int __regdb_query_wmm(const struct fwdb_header *db,
880 const struct fwdb_country *country, int freq,
881 struct ieee80211_reg_rule *rrule)
882 {
883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 int i;
886
887 for (i = 0; i < coll->n_rules; i++) {
888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891
892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 continue;
894
895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 set_wmm_rule(db, country, rule, rrule);
898 return 0;
899 }
900 }
901
902 return -ENODATA;
903 }
904
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906 {
907 const struct fwdb_header *hdr = regdb;
908 const struct fwdb_country *country;
909
910 if (!regdb)
911 return -ENODATA;
912
913 if (IS_ERR(regdb))
914 return PTR_ERR(regdb);
915
916 country = &hdr->country[0];
917 while (country->coll_ptr) {
918 if (alpha2_equal(alpha2, country->alpha2))
919 return __regdb_query_wmm(regdb, country, freq, rule);
920
921 country++;
922 }
923
924 return -ENODATA;
925 }
926 EXPORT_SYMBOL(reg_query_regdb_wmm);
927
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)928 static int regdb_query_country(const struct fwdb_header *db,
929 const struct fwdb_country *country)
930 {
931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 struct ieee80211_regdomain *regdom;
934 unsigned int i;
935
936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 GFP_KERNEL);
938 if (!regdom)
939 return -ENOMEM;
940
941 regdom->n_reg_rules = coll->n_rules;
942 regdom->alpha2[0] = country->alpha2[0];
943 regdom->alpha2[1] = country->alpha2[1];
944 regdom->dfs_region = coll->dfs_region;
945
946 for (i = 0; i < regdom->n_reg_rules; i++) {
947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
951
952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955
956 rrule->power_rule.max_antenna_gain = 0;
957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958
959 rrule->flags = 0;
960 if (rule->flags & FWDB_FLAG_NO_OFDM)
961 rrule->flags |= NL80211_RRF_NO_OFDM;
962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 if (rule->flags & FWDB_FLAG_DFS)
965 rrule->flags |= NL80211_RRF_DFS;
966 if (rule->flags & FWDB_FLAG_NO_IR)
967 rrule->flags |= NL80211_RRF_NO_IR;
968 if (rule->flags & FWDB_FLAG_AUTO_BW)
969 rrule->flags |= NL80211_RRF_AUTO_BW;
970
971 rrule->dfs_cac_ms = 0;
972
973 /* handle optional data */
974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 rrule->dfs_cac_ms =
976 1000 * be16_to_cpu(rule->cac_timeout);
977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 set_wmm_rule(db, country, rule, rrule);
979 }
980
981 return reg_schedule_apply(regdom);
982 }
983
query_regdb(const char * alpha2)984 static int query_regdb(const char *alpha2)
985 {
986 const struct fwdb_header *hdr = regdb;
987 const struct fwdb_country *country;
988
989 ASSERT_RTNL();
990
991 if (IS_ERR(regdb))
992 return PTR_ERR(regdb);
993
994 country = &hdr->country[0];
995 while (country->coll_ptr) {
996 if (alpha2_equal(alpha2, country->alpha2))
997 return regdb_query_country(regdb, country);
998 country++;
999 }
1000
1001 return -ENODATA;
1002 }
1003
regdb_fw_cb(const struct firmware * fw,void * context)1004 static void regdb_fw_cb(const struct firmware *fw, void *context)
1005 {
1006 int set_error = 0;
1007 bool restore = true;
1008 void *db;
1009
1010 if (!fw) {
1011 pr_info("failed to load regulatory.db\n");
1012 set_error = -ENODATA;
1013 } else if (!valid_regdb(fw->data, fw->size)) {
1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 set_error = -EINVAL;
1016 }
1017
1018 rtnl_lock();
1019 if (regdb && !IS_ERR(regdb)) {
1020 /* negative case - a bug
1021 * positive case - can happen due to race in case of multiple cb's in
1022 * queue, due to usage of asynchronous callback
1023 *
1024 * Either case, just restore and free new db.
1025 */
1026 } else if (set_error) {
1027 regdb = ERR_PTR(set_error);
1028 } else if (fw) {
1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 if (db) {
1031 regdb = db;
1032 restore = context && query_regdb(context);
1033 } else {
1034 restore = true;
1035 }
1036 }
1037
1038 if (restore)
1039 restore_regulatory_settings(true, false);
1040
1041 rtnl_unlock();
1042
1043 kfree(context);
1044
1045 release_firmware(fw);
1046 }
1047
1048 MODULE_FIRMWARE("regulatory.db");
1049
query_regdb_file(const char * alpha2)1050 static int query_regdb_file(const char *alpha2)
1051 {
1052 int err;
1053
1054 ASSERT_RTNL();
1055
1056 if (regdb)
1057 return query_regdb(alpha2);
1058
1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 if (!alpha2)
1061 return -ENOMEM;
1062
1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1064 ®_pdev->dev, GFP_KERNEL,
1065 (void *)alpha2, regdb_fw_cb);
1066 if (err)
1067 kfree(alpha2);
1068
1069 return err;
1070 }
1071
reg_reload_regdb(void)1072 int reg_reload_regdb(void)
1073 {
1074 const struct firmware *fw;
1075 void *db;
1076 int err;
1077 const struct ieee80211_regdomain *current_regdomain;
1078 struct regulatory_request *request;
1079
1080 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1081 if (err)
1082 return err;
1083
1084 if (!valid_regdb(fw->data, fw->size)) {
1085 err = -ENODATA;
1086 goto out;
1087 }
1088
1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 if (!db) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094
1095 rtnl_lock();
1096 if (!IS_ERR_OR_NULL(regdb))
1097 kfree(regdb);
1098 regdb = db;
1099
1100 /* reset regulatory domain */
1101 current_regdomain = get_cfg80211_regdom();
1102
1103 request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 if (!request) {
1105 err = -ENOMEM;
1106 goto out_unlock;
1107 }
1108
1109 request->wiphy_idx = WIPHY_IDX_INVALID;
1110 request->alpha2[0] = current_regdomain->alpha2[0];
1111 request->alpha2[1] = current_regdomain->alpha2[1];
1112 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114
1115 reg_process_hint(request);
1116
1117 out_unlock:
1118 rtnl_unlock();
1119 out:
1120 release_firmware(fw);
1121 return err;
1122 }
1123
reg_query_database(struct regulatory_request * request)1124 static bool reg_query_database(struct regulatory_request *request)
1125 {
1126 if (query_regdb_file(request->alpha2) == 0)
1127 return true;
1128
1129 if (call_crda(request->alpha2) == 0)
1130 return true;
1131
1132 return false;
1133 }
1134
reg_is_valid_request(const char * alpha2)1135 bool reg_is_valid_request(const char *alpha2)
1136 {
1137 struct regulatory_request *lr = get_last_request();
1138
1139 if (!lr || lr->processed)
1140 return false;
1141
1142 return alpha2_equal(lr->alpha2, alpha2);
1143 }
1144
reg_get_regdomain(struct wiphy * wiphy)1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146 {
1147 struct regulatory_request *lr = get_last_request();
1148
1149 /*
1150 * Follow the driver's regulatory domain, if present, unless a country
1151 * IE has been processed or a user wants to help complaince further
1152 */
1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 wiphy->regd)
1156 return get_wiphy_regdom(wiphy);
1157
1158 return get_cfg80211_regdom();
1159 }
1160
1161 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 const struct ieee80211_reg_rule *rule)
1164 {
1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 const struct ieee80211_freq_range *freq_range_tmp;
1167 const struct ieee80211_reg_rule *tmp;
1168 u32 start_freq, end_freq, idx, no;
1169
1170 for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 if (rule == &rd->reg_rules[idx])
1172 break;
1173
1174 if (idx == rd->n_reg_rules)
1175 return 0;
1176
1177 /* get start_freq */
1178 no = idx;
1179
1180 while (no) {
1181 tmp = &rd->reg_rules[--no];
1182 freq_range_tmp = &tmp->freq_range;
1183
1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 break;
1186
1187 freq_range = freq_range_tmp;
1188 }
1189
1190 start_freq = freq_range->start_freq_khz;
1191
1192 /* get end_freq */
1193 freq_range = &rule->freq_range;
1194 no = idx;
1195
1196 while (no < rd->n_reg_rules - 1) {
1197 tmp = &rd->reg_rules[++no];
1198 freq_range_tmp = &tmp->freq_range;
1199
1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 break;
1202
1203 freq_range = freq_range_tmp;
1204 }
1205
1206 end_freq = freq_range->end_freq_khz;
1207
1208 return end_freq - start_freq;
1209 }
1210
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 const struct ieee80211_reg_rule *rule)
1213 {
1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215
1216 if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222
1223 /*
1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 * are not allowed.
1226 */
1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230
1231 return bw;
1232 }
1233
1234 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236 {
1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 u32 freq_diff;
1239
1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 return false;
1242
1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 return false;
1245
1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247
1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 freq_range->max_bandwidth_khz > freq_diff)
1250 return false;
1251
1252 return true;
1253 }
1254
is_valid_rd(const struct ieee80211_regdomain * rd)1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256 {
1257 const struct ieee80211_reg_rule *reg_rule = NULL;
1258 unsigned int i;
1259
1260 if (!rd->n_reg_rules)
1261 return false;
1262
1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 return false;
1265
1266 for (i = 0; i < rd->n_reg_rules; i++) {
1267 reg_rule = &rd->reg_rules[i];
1268 if (!is_valid_reg_rule(reg_rule))
1269 return false;
1270 }
1271
1272 return true;
1273 }
1274
1275 /**
1276 * freq_in_rule_band - tells us if a frequency is in a frequency band
1277 * @freq_range: frequency rule we want to query
1278 * @freq_khz: frequency we are inquiring about
1279 *
1280 * This lets us know if a specific frequency rule is or is not relevant to
1281 * a specific frequency's band. Bands are device specific and artificial
1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283 * however it is safe for now to assume that a frequency rule should not be
1284 * part of a frequency's band if the start freq or end freq are off by more
1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286 * 60 GHz band.
1287 * This resolution can be lowered and should be considered as we add
1288 * regulatory rule support for other "bands".
1289 *
1290 * Returns: whether or not the frequency is in the range
1291 */
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 u32 freq_khz)
1294 {
1295 /*
1296 * From 802.11ad: directional multi-gigabit (DMG):
1297 * Pertaining to operation in a frequency band containing a channel
1298 * with the Channel starting frequency above 45 GHz.
1299 */
1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 return true;
1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 return true;
1305 return false;
1306 }
1307
1308 /*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320 }
1321
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325 {
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331
1332 /*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 &wmm_rule2->client[ac],
1411 &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 &wmm_rule2->ap[ac],
1414 &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432 }
1433
1434 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437 {
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459 }
1460
1461 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = ®_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(tmp_rule, rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(rule, tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483 }
1484
1485 /**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503 {
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(&intersected_rule, rd->reg_rules,
1553 &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 rd2->dfs_region);
1561
1562 return rd;
1563 }
1564
1565 /*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
map_regdom_flags(u32 rd_flags)1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY)
1607 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1608 return channel_flags;
1609 }
1610
1611 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1612 freq_reg_info_regd(u32 center_freq,
1613 const struct ieee80211_regdomain *regd, u32 bw)
1614 {
1615 int i;
1616 bool band_rule_found = false;
1617 bool bw_fits = false;
1618
1619 if (!regd)
1620 return ERR_PTR(-EINVAL);
1621
1622 for (i = 0; i < regd->n_reg_rules; i++) {
1623 const struct ieee80211_reg_rule *rr;
1624 const struct ieee80211_freq_range *fr = NULL;
1625
1626 rr = ®d->reg_rules[i];
1627 fr = &rr->freq_range;
1628
1629 /*
1630 * We only need to know if one frequency rule was
1631 * in center_freq's band, that's enough, so let's
1632 * not overwrite it once found
1633 */
1634 if (!band_rule_found)
1635 band_rule_found = freq_in_rule_band(fr, center_freq);
1636
1637 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1638
1639 if (band_rule_found && bw_fits)
1640 return rr;
1641 }
1642
1643 if (!band_rule_found)
1644 return ERR_PTR(-ERANGE);
1645
1646 return ERR_PTR(-EINVAL);
1647 }
1648
1649 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1650 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1651 {
1652 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1653 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1654 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1655 int i = ARRAY_SIZE(bws) - 1;
1656 u32 bw;
1657
1658 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1659 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1660 if (!IS_ERR(reg_rule))
1661 return reg_rule;
1662 }
1663
1664 return reg_rule;
1665 }
1666
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1667 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1668 u32 center_freq)
1669 {
1670 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1671
1672 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1673 }
1674 EXPORT_SYMBOL(freq_reg_info);
1675
reg_initiator_name(enum nl80211_reg_initiator initiator)1676 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1677 {
1678 switch (initiator) {
1679 case NL80211_REGDOM_SET_BY_CORE:
1680 return "core";
1681 case NL80211_REGDOM_SET_BY_USER:
1682 return "user";
1683 case NL80211_REGDOM_SET_BY_DRIVER:
1684 return "driver";
1685 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1686 return "country element";
1687 default:
1688 WARN_ON(1);
1689 return "bug";
1690 }
1691 }
1692 EXPORT_SYMBOL(reg_initiator_name);
1693
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1694 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1695 const struct ieee80211_reg_rule *reg_rule,
1696 const struct ieee80211_channel *chan)
1697 {
1698 const struct ieee80211_freq_range *freq_range = NULL;
1699 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1700 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1701
1702 freq_range = ®_rule->freq_range;
1703
1704 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1705 center_freq_khz = ieee80211_channel_to_khz(chan);
1706 /* Check if auto calculation requested */
1707 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1708 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1709
1710 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1711 if (!cfg80211_does_bw_fit_range(freq_range,
1712 center_freq_khz,
1713 MHZ_TO_KHZ(10)))
1714 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1715 if (!cfg80211_does_bw_fit_range(freq_range,
1716 center_freq_khz,
1717 MHZ_TO_KHZ(20)))
1718 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1719
1720 if (is_s1g) {
1721 /* S1G is strict about non overlapping channels. We can
1722 * calculate which bandwidth is allowed per channel by finding
1723 * the largest bandwidth which cleanly divides the freq_range.
1724 */
1725 int edge_offset;
1726 int ch_bw = max_bandwidth_khz;
1727
1728 while (ch_bw) {
1729 edge_offset = (center_freq_khz - ch_bw / 2) -
1730 freq_range->start_freq_khz;
1731 if (edge_offset % ch_bw == 0) {
1732 switch (KHZ_TO_MHZ(ch_bw)) {
1733 case 1:
1734 bw_flags |= IEEE80211_CHAN_1MHZ;
1735 break;
1736 case 2:
1737 bw_flags |= IEEE80211_CHAN_2MHZ;
1738 break;
1739 case 4:
1740 bw_flags |= IEEE80211_CHAN_4MHZ;
1741 break;
1742 case 8:
1743 bw_flags |= IEEE80211_CHAN_8MHZ;
1744 break;
1745 case 16:
1746 bw_flags |= IEEE80211_CHAN_16MHZ;
1747 break;
1748 default:
1749 /* If we got here, no bandwidths fit on
1750 * this frequency, ie. band edge.
1751 */
1752 bw_flags |= IEEE80211_CHAN_DISABLED;
1753 break;
1754 }
1755 break;
1756 }
1757 ch_bw /= 2;
1758 }
1759 } else {
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1761 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1763 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1765 bw_flags |= IEEE80211_CHAN_NO_HT40;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1767 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1769 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1771 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1772 }
1773 return bw_flags;
1774 }
1775
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1776 static void handle_channel_single_rule(struct wiphy *wiphy,
1777 enum nl80211_reg_initiator initiator,
1778 struct ieee80211_channel *chan,
1779 u32 flags,
1780 struct regulatory_request *lr,
1781 struct wiphy *request_wiphy,
1782 const struct ieee80211_reg_rule *reg_rule)
1783 {
1784 u32 bw_flags = 0;
1785 const struct ieee80211_power_rule *power_rule = NULL;
1786 const struct ieee80211_regdomain *regd;
1787
1788 regd = reg_get_regdomain(wiphy);
1789
1790 power_rule = ®_rule->power_rule;
1791 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1792
1793 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1794 request_wiphy && request_wiphy == wiphy &&
1795 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1796 /*
1797 * This guarantees the driver's requested regulatory domain
1798 * will always be used as a base for further regulatory
1799 * settings
1800 */
1801 chan->flags = chan->orig_flags =
1802 map_regdom_flags(reg_rule->flags) | bw_flags;
1803 chan->max_antenna_gain = chan->orig_mag =
1804 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1805 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1806 (int) MBM_TO_DBM(power_rule->max_eirp);
1807
1808 if (chan->flags & IEEE80211_CHAN_RADAR) {
1809 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1810 if (reg_rule->dfs_cac_ms)
1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812 }
1813
1814 if (chan->flags & IEEE80211_CHAN_PSD)
1815 chan->psd = reg_rule->psd;
1816
1817 return;
1818 }
1819
1820 chan->dfs_state = NL80211_DFS_USABLE;
1821 chan->dfs_state_entered = jiffies;
1822
1823 chan->beacon_found = false;
1824 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1825 chan->max_antenna_gain =
1826 min_t(int, chan->orig_mag,
1827 MBI_TO_DBI(power_rule->max_antenna_gain));
1828 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1829
1830 if (chan->flags & IEEE80211_CHAN_RADAR) {
1831 if (reg_rule->dfs_cac_ms)
1832 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1833 else
1834 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1835 }
1836
1837 if (chan->flags & IEEE80211_CHAN_PSD)
1838 chan->psd = reg_rule->psd;
1839
1840 if (chan->orig_mpwr) {
1841 /*
1842 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1843 * will always follow the passed country IE power settings.
1844 */
1845 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1847 chan->max_power = chan->max_reg_power;
1848 else
1849 chan->max_power = min(chan->orig_mpwr,
1850 chan->max_reg_power);
1851 } else
1852 chan->max_power = chan->max_reg_power;
1853 }
1854
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1855 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1856 enum nl80211_reg_initiator initiator,
1857 struct ieee80211_channel *chan,
1858 u32 flags,
1859 struct regulatory_request *lr,
1860 struct wiphy *request_wiphy,
1861 const struct ieee80211_reg_rule *rrule1,
1862 const struct ieee80211_reg_rule *rrule2,
1863 struct ieee80211_freq_range *comb_range)
1864 {
1865 u32 bw_flags1 = 0;
1866 u32 bw_flags2 = 0;
1867 const struct ieee80211_power_rule *power_rule1 = NULL;
1868 const struct ieee80211_power_rule *power_rule2 = NULL;
1869 const struct ieee80211_regdomain *regd;
1870
1871 regd = reg_get_regdomain(wiphy);
1872
1873 power_rule1 = &rrule1->power_rule;
1874 power_rule2 = &rrule2->power_rule;
1875 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1876 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1877
1878 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1879 request_wiphy && request_wiphy == wiphy &&
1880 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1881 /* This guarantees the driver's requested regulatory domain
1882 * will always be used as a base for further regulatory
1883 * settings
1884 */
1885 chan->flags =
1886 map_regdom_flags(rrule1->flags) |
1887 map_regdom_flags(rrule2->flags) |
1888 bw_flags1 |
1889 bw_flags2;
1890 chan->orig_flags = chan->flags;
1891 chan->max_antenna_gain =
1892 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1893 MBI_TO_DBI(power_rule2->max_antenna_gain));
1894 chan->orig_mag = chan->max_antenna_gain;
1895 chan->max_reg_power =
1896 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1897 MBM_TO_DBM(power_rule2->max_eirp));
1898 chan->max_power = chan->max_reg_power;
1899 chan->orig_mpwr = chan->max_reg_power;
1900
1901 if (chan->flags & IEEE80211_CHAN_RADAR) {
1902 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1903 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1904 chan->dfs_cac_ms = max_t(unsigned int,
1905 rrule1->dfs_cac_ms,
1906 rrule2->dfs_cac_ms);
1907 }
1908
1909 if ((rrule1->flags & NL80211_RRF_PSD) &&
1910 (rrule2->flags & NL80211_RRF_PSD))
1911 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1912 else
1913 chan->flags &= ~NL80211_RRF_PSD;
1914
1915 return;
1916 }
1917
1918 chan->dfs_state = NL80211_DFS_USABLE;
1919 chan->dfs_state_entered = jiffies;
1920
1921 chan->beacon_found = false;
1922 chan->flags = flags | bw_flags1 | bw_flags2 |
1923 map_regdom_flags(rrule1->flags) |
1924 map_regdom_flags(rrule2->flags);
1925
1926 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1927 * (otherwise no adj. rule case), recheck therefore
1928 */
1929 if (cfg80211_does_bw_fit_range(comb_range,
1930 ieee80211_channel_to_khz(chan),
1931 MHZ_TO_KHZ(10)))
1932 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1933 if (cfg80211_does_bw_fit_range(comb_range,
1934 ieee80211_channel_to_khz(chan),
1935 MHZ_TO_KHZ(20)))
1936 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1937
1938 chan->max_antenna_gain =
1939 min_t(int, chan->orig_mag,
1940 min_t(int,
1941 MBI_TO_DBI(power_rule1->max_antenna_gain),
1942 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1943 chan->max_reg_power = min_t(int,
1944 MBM_TO_DBM(power_rule1->max_eirp),
1945 MBM_TO_DBM(power_rule2->max_eirp));
1946
1947 if (chan->flags & IEEE80211_CHAN_RADAR) {
1948 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1949 chan->dfs_cac_ms = max_t(unsigned int,
1950 rrule1->dfs_cac_ms,
1951 rrule2->dfs_cac_ms);
1952 else
1953 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1954 }
1955
1956 if (chan->orig_mpwr) {
1957 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1958 * will always follow the passed country IE power settings.
1959 */
1960 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1961 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1962 chan->max_power = chan->max_reg_power;
1963 else
1964 chan->max_power = min(chan->orig_mpwr,
1965 chan->max_reg_power);
1966 } else {
1967 chan->max_power = chan->max_reg_power;
1968 }
1969 }
1970
1971 /* Note that right now we assume the desired channel bandwidth
1972 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1973 * per channel, the primary and the extension channel).
1974 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1975 static void handle_channel(struct wiphy *wiphy,
1976 enum nl80211_reg_initiator initiator,
1977 struct ieee80211_channel *chan)
1978 {
1979 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1980 struct regulatory_request *lr = get_last_request();
1981 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1982 const struct ieee80211_reg_rule *rrule = NULL;
1983 const struct ieee80211_reg_rule *rrule1 = NULL;
1984 const struct ieee80211_reg_rule *rrule2 = NULL;
1985
1986 u32 flags = chan->orig_flags;
1987
1988 rrule = freq_reg_info(wiphy, orig_chan_freq);
1989 if (IS_ERR(rrule)) {
1990 /* check for adjacent match, therefore get rules for
1991 * chan - 20 MHz and chan + 20 MHz and test
1992 * if reg rules are adjacent
1993 */
1994 rrule1 = freq_reg_info(wiphy,
1995 orig_chan_freq - MHZ_TO_KHZ(20));
1996 rrule2 = freq_reg_info(wiphy,
1997 orig_chan_freq + MHZ_TO_KHZ(20));
1998 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1999 struct ieee80211_freq_range comb_range;
2000
2001 if (rrule1->freq_range.end_freq_khz !=
2002 rrule2->freq_range.start_freq_khz)
2003 goto disable_chan;
2004
2005 comb_range.start_freq_khz =
2006 rrule1->freq_range.start_freq_khz;
2007 comb_range.end_freq_khz =
2008 rrule2->freq_range.end_freq_khz;
2009 comb_range.max_bandwidth_khz =
2010 min_t(u32,
2011 rrule1->freq_range.max_bandwidth_khz,
2012 rrule2->freq_range.max_bandwidth_khz);
2013
2014 if (!cfg80211_does_bw_fit_range(&comb_range,
2015 orig_chan_freq,
2016 MHZ_TO_KHZ(20)))
2017 goto disable_chan;
2018
2019 handle_channel_adjacent_rules(wiphy, initiator, chan,
2020 flags, lr, request_wiphy,
2021 rrule1, rrule2,
2022 &comb_range);
2023 return;
2024 }
2025
2026 disable_chan:
2027 /* We will disable all channels that do not match our
2028 * received regulatory rule unless the hint is coming
2029 * from a Country IE and the Country IE had no information
2030 * about a band. The IEEE 802.11 spec allows for an AP
2031 * to send only a subset of the regulatory rules allowed,
2032 * so an AP in the US that only supports 2.4 GHz may only send
2033 * a country IE with information for the 2.4 GHz band
2034 * while 5 GHz is still supported.
2035 */
2036 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2037 PTR_ERR(rrule) == -ERANGE)
2038 return;
2039
2040 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2041 request_wiphy && request_wiphy == wiphy &&
2042 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2043 pr_debug("Disabling freq %d.%03d MHz for good\n",
2044 chan->center_freq, chan->freq_offset);
2045 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2046 chan->flags = chan->orig_flags;
2047 } else {
2048 pr_debug("Disabling freq %d.%03d MHz\n",
2049 chan->center_freq, chan->freq_offset);
2050 chan->flags |= IEEE80211_CHAN_DISABLED;
2051 }
2052 return;
2053 }
2054
2055 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2056 request_wiphy, rrule);
2057 }
2058
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2059 static void handle_band(struct wiphy *wiphy,
2060 enum nl80211_reg_initiator initiator,
2061 struct ieee80211_supported_band *sband)
2062 {
2063 unsigned int i;
2064
2065 if (!sband)
2066 return;
2067
2068 for (i = 0; i < sband->n_channels; i++)
2069 handle_channel(wiphy, initiator, &sband->channels[i]);
2070 }
2071
reg_request_cell_base(struct regulatory_request * request)2072 static bool reg_request_cell_base(struct regulatory_request *request)
2073 {
2074 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2075 return false;
2076 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2077 }
2078
reg_last_request_cell_base(void)2079 bool reg_last_request_cell_base(void)
2080 {
2081 return reg_request_cell_base(get_last_request());
2082 }
2083
2084 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2085 /* Core specific check */
2086 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2087 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2088 {
2089 struct regulatory_request *lr = get_last_request();
2090
2091 if (!reg_num_devs_support_basehint)
2092 return REG_REQ_IGNORE;
2093
2094 if (reg_request_cell_base(lr) &&
2095 !regdom_changes(pending_request->alpha2))
2096 return REG_REQ_ALREADY_SET;
2097
2098 return REG_REQ_OK;
2099 }
2100
2101 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2102 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2103 {
2104 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2105 }
2106 #else
2107 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2108 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2109 {
2110 return REG_REQ_IGNORE;
2111 }
2112
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2113 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2114 {
2115 return true;
2116 }
2117 #endif
2118
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2119 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2120 {
2121 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2122 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2123 return true;
2124 return false;
2125 }
2126
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2127 static bool ignore_reg_update(struct wiphy *wiphy,
2128 enum nl80211_reg_initiator initiator)
2129 {
2130 struct regulatory_request *lr = get_last_request();
2131
2132 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2133 return true;
2134
2135 if (!lr) {
2136 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2137 reg_initiator_name(initiator));
2138 return true;
2139 }
2140
2141 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2142 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2143 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2144 reg_initiator_name(initiator));
2145 return true;
2146 }
2147
2148 /*
2149 * wiphy->regd will be set once the device has its own
2150 * desired regulatory domain set
2151 */
2152 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2153 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2154 !is_world_regdom(lr->alpha2)) {
2155 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2156 reg_initiator_name(initiator));
2157 return true;
2158 }
2159
2160 if (reg_request_cell_base(lr))
2161 return reg_dev_ignore_cell_hint(wiphy);
2162
2163 return false;
2164 }
2165
reg_is_world_roaming(struct wiphy * wiphy)2166 static bool reg_is_world_roaming(struct wiphy *wiphy)
2167 {
2168 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2169 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2170 struct regulatory_request *lr = get_last_request();
2171
2172 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2173 return true;
2174
2175 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2176 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2177 return true;
2178
2179 return false;
2180 }
2181
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2182 static void reg_call_notifier(struct wiphy *wiphy,
2183 struct regulatory_request *request)
2184 {
2185 if (wiphy->reg_notifier)
2186 wiphy->reg_notifier(wiphy, request);
2187 }
2188
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2189 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2190 struct reg_beacon *reg_beacon)
2191 {
2192 struct ieee80211_supported_band *sband;
2193 struct ieee80211_channel *chan;
2194 bool channel_changed = false;
2195 struct ieee80211_channel chan_before;
2196 struct regulatory_request *lr = get_last_request();
2197
2198 sband = wiphy->bands[reg_beacon->chan.band];
2199 chan = &sband->channels[chan_idx];
2200
2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2202 return;
2203
2204 if (chan->beacon_found)
2205 return;
2206
2207 chan->beacon_found = true;
2208
2209 if (!reg_is_world_roaming(wiphy))
2210 return;
2211
2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 return;
2214
2215 chan_before = *chan;
2216
2217 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 channel_changed = true;
2220 }
2221
2222 if (channel_changed) {
2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2225 reg_call_notifier(wiphy, lr);
2226 }
2227 }
2228
2229 /*
2230 * Called when a scan on a wiphy finds a beacon on
2231 * new channel
2232 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2233 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2234 struct reg_beacon *reg_beacon)
2235 {
2236 unsigned int i;
2237 struct ieee80211_supported_band *sband;
2238
2239 if (!wiphy->bands[reg_beacon->chan.band])
2240 return;
2241
2242 sband = wiphy->bands[reg_beacon->chan.band];
2243
2244 for (i = 0; i < sband->n_channels; i++)
2245 handle_reg_beacon(wiphy, i, reg_beacon);
2246 }
2247
2248 /*
2249 * Called upon reg changes or a new wiphy is added
2250 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2251 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2252 {
2253 unsigned int i;
2254 struct ieee80211_supported_band *sband;
2255 struct reg_beacon *reg_beacon;
2256
2257 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2258 if (!wiphy->bands[reg_beacon->chan.band])
2259 continue;
2260 sband = wiphy->bands[reg_beacon->chan.band];
2261 for (i = 0; i < sband->n_channels; i++)
2262 handle_reg_beacon(wiphy, i, reg_beacon);
2263 }
2264 }
2265
2266 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2267 static void reg_process_beacons(struct wiphy *wiphy)
2268 {
2269 /*
2270 * Means we are just firing up cfg80211, so no beacons would
2271 * have been processed yet.
2272 */
2273 if (!last_request)
2274 return;
2275 wiphy_update_beacon_reg(wiphy);
2276 }
2277
is_ht40_allowed(struct ieee80211_channel * chan)2278 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2279 {
2280 if (!chan)
2281 return false;
2282 if (chan->flags & IEEE80211_CHAN_DISABLED)
2283 return false;
2284 /* This would happen when regulatory rules disallow HT40 completely */
2285 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2286 return false;
2287 return true;
2288 }
2289
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2290 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2291 struct ieee80211_channel *channel)
2292 {
2293 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2294 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2295 const struct ieee80211_regdomain *regd;
2296 unsigned int i;
2297 u32 flags;
2298
2299 if (!is_ht40_allowed(channel)) {
2300 channel->flags |= IEEE80211_CHAN_NO_HT40;
2301 return;
2302 }
2303
2304 /*
2305 * We need to ensure the extension channels exist to
2306 * be able to use HT40- or HT40+, this finds them (or not)
2307 */
2308 for (i = 0; i < sband->n_channels; i++) {
2309 struct ieee80211_channel *c = &sband->channels[i];
2310
2311 if (c->center_freq == (channel->center_freq - 20))
2312 channel_before = c;
2313 if (c->center_freq == (channel->center_freq + 20))
2314 channel_after = c;
2315 }
2316
2317 flags = 0;
2318 regd = get_wiphy_regdom(wiphy);
2319 if (regd) {
2320 const struct ieee80211_reg_rule *reg_rule =
2321 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2322 regd, MHZ_TO_KHZ(20));
2323
2324 if (!IS_ERR(reg_rule))
2325 flags = reg_rule->flags;
2326 }
2327
2328 /*
2329 * Please note that this assumes target bandwidth is 20 MHz,
2330 * if that ever changes we also need to change the below logic
2331 * to include that as well.
2332 */
2333 if (!is_ht40_allowed(channel_before) ||
2334 flags & NL80211_RRF_NO_HT40MINUS)
2335 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2336 else
2337 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2338
2339 if (!is_ht40_allowed(channel_after) ||
2340 flags & NL80211_RRF_NO_HT40PLUS)
2341 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2342 else
2343 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2344 }
2345
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2346 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2347 struct ieee80211_supported_band *sband)
2348 {
2349 unsigned int i;
2350
2351 if (!sband)
2352 return;
2353
2354 for (i = 0; i < sband->n_channels; i++)
2355 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2356 }
2357
reg_process_ht_flags(struct wiphy * wiphy)2358 static void reg_process_ht_flags(struct wiphy *wiphy)
2359 {
2360 enum nl80211_band band;
2361
2362 if (!wiphy)
2363 return;
2364
2365 for (band = 0; band < NUM_NL80211_BANDS; band++)
2366 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2367 }
2368
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2369 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2370 {
2371 struct cfg80211_chan_def chandef = {};
2372 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2373 enum nl80211_iftype iftype;
2374 bool ret;
2375 int link;
2376
2377 iftype = wdev->iftype;
2378
2379 /* make sure the interface is active */
2380 if (!wdev->netdev || !netif_running(wdev->netdev))
2381 return true;
2382
2383 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2384 struct ieee80211_channel *chan;
2385
2386 if (!wdev->valid_links && link > 0)
2387 break;
2388 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2389 continue;
2390 switch (iftype) {
2391 case NL80211_IFTYPE_AP:
2392 case NL80211_IFTYPE_P2P_GO:
2393 if (!wdev->links[link].ap.beacon_interval)
2394 continue;
2395 chandef = wdev->links[link].ap.chandef;
2396 break;
2397 case NL80211_IFTYPE_MESH_POINT:
2398 if (!wdev->u.mesh.beacon_interval)
2399 continue;
2400 chandef = wdev->u.mesh.chandef;
2401 break;
2402 case NL80211_IFTYPE_ADHOC:
2403 if (!wdev->u.ibss.ssid_len)
2404 continue;
2405 chandef = wdev->u.ibss.chandef;
2406 break;
2407 case NL80211_IFTYPE_STATION:
2408 case NL80211_IFTYPE_P2P_CLIENT:
2409 /* Maybe we could consider disabling that link only? */
2410 if (!wdev->links[link].client.current_bss)
2411 continue;
2412
2413 chan = wdev->links[link].client.current_bss->pub.channel;
2414 if (!chan)
2415 continue;
2416
2417 if (!rdev->ops->get_channel ||
2418 rdev_get_channel(rdev, wdev, link, &chandef))
2419 cfg80211_chandef_create(&chandef, chan,
2420 NL80211_CHAN_NO_HT);
2421 break;
2422 case NL80211_IFTYPE_MONITOR:
2423 case NL80211_IFTYPE_AP_VLAN:
2424 case NL80211_IFTYPE_P2P_DEVICE:
2425 /* no enforcement required */
2426 break;
2427 case NL80211_IFTYPE_OCB:
2428 if (!wdev->u.ocb.chandef.chan)
2429 continue;
2430 chandef = wdev->u.ocb.chandef;
2431 break;
2432 case NL80211_IFTYPE_NAN:
2433 /* we have no info, but NAN is also pretty universal */
2434 continue;
2435 default:
2436 /* others not implemented for now */
2437 WARN_ON_ONCE(1);
2438 break;
2439 }
2440
2441 switch (iftype) {
2442 case NL80211_IFTYPE_AP:
2443 case NL80211_IFTYPE_P2P_GO:
2444 case NL80211_IFTYPE_ADHOC:
2445 case NL80211_IFTYPE_MESH_POINT:
2446 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2447 iftype);
2448 if (!ret)
2449 return ret;
2450 break;
2451 case NL80211_IFTYPE_STATION:
2452 case NL80211_IFTYPE_P2P_CLIENT:
2453 ret = cfg80211_chandef_usable(wiphy, &chandef,
2454 IEEE80211_CHAN_DISABLED);
2455 if (!ret)
2456 return ret;
2457 break;
2458 default:
2459 break;
2460 }
2461 }
2462
2463 return true;
2464 }
2465
reg_leave_invalid_chans(struct wiphy * wiphy)2466 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2467 {
2468 struct wireless_dev *wdev;
2469 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2470
2471 wiphy_lock(wiphy);
2472 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2473 if (!reg_wdev_chan_valid(wiphy, wdev))
2474 cfg80211_leave(rdev, wdev);
2475 wiphy_unlock(wiphy);
2476 }
2477
reg_check_chans_work(struct work_struct * work)2478 static void reg_check_chans_work(struct work_struct *work)
2479 {
2480 struct cfg80211_registered_device *rdev;
2481
2482 pr_debug("Verifying active interfaces after reg change\n");
2483 rtnl_lock();
2484
2485 for_each_rdev(rdev)
2486 reg_leave_invalid_chans(&rdev->wiphy);
2487
2488 rtnl_unlock();
2489 }
2490
reg_check_channels(void)2491 void reg_check_channels(void)
2492 {
2493 /*
2494 * Give usermode a chance to do something nicer (move to another
2495 * channel, orderly disconnection), before forcing a disconnection.
2496 */
2497 mod_delayed_work(system_power_efficient_wq,
2498 ®_check_chans,
2499 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2500 }
2501
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2502 static void wiphy_update_regulatory(struct wiphy *wiphy,
2503 enum nl80211_reg_initiator initiator)
2504 {
2505 enum nl80211_band band;
2506 struct regulatory_request *lr = get_last_request();
2507
2508 if (ignore_reg_update(wiphy, initiator)) {
2509 /*
2510 * Regulatory updates set by CORE are ignored for custom
2511 * regulatory cards. Let us notify the changes to the driver,
2512 * as some drivers used this to restore its orig_* reg domain.
2513 */
2514 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2515 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2516 !(wiphy->regulatory_flags &
2517 REGULATORY_WIPHY_SELF_MANAGED))
2518 reg_call_notifier(wiphy, lr);
2519 return;
2520 }
2521
2522 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2523
2524 for (band = 0; band < NUM_NL80211_BANDS; band++)
2525 handle_band(wiphy, initiator, wiphy->bands[band]);
2526
2527 reg_process_beacons(wiphy);
2528 reg_process_ht_flags(wiphy);
2529 reg_call_notifier(wiphy, lr);
2530 }
2531
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2532 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2533 {
2534 struct cfg80211_registered_device *rdev;
2535 struct wiphy *wiphy;
2536
2537 ASSERT_RTNL();
2538
2539 for_each_rdev(rdev) {
2540 wiphy = &rdev->wiphy;
2541 wiphy_update_regulatory(wiphy, initiator);
2542 }
2543
2544 reg_check_channels();
2545 }
2546
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2547 static void handle_channel_custom(struct wiphy *wiphy,
2548 struct ieee80211_channel *chan,
2549 const struct ieee80211_regdomain *regd,
2550 u32 min_bw)
2551 {
2552 u32 bw_flags = 0;
2553 const struct ieee80211_reg_rule *reg_rule = NULL;
2554 const struct ieee80211_power_rule *power_rule = NULL;
2555 u32 bw, center_freq_khz;
2556
2557 center_freq_khz = ieee80211_channel_to_khz(chan);
2558 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2559 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2560 if (!IS_ERR(reg_rule))
2561 break;
2562 }
2563
2564 if (IS_ERR_OR_NULL(reg_rule)) {
2565 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2566 chan->center_freq, chan->freq_offset);
2567 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2568 chan->flags |= IEEE80211_CHAN_DISABLED;
2569 } else {
2570 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2571 chan->flags = chan->orig_flags;
2572 }
2573 return;
2574 }
2575
2576 power_rule = ®_rule->power_rule;
2577 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2578
2579 chan->dfs_state_entered = jiffies;
2580 chan->dfs_state = NL80211_DFS_USABLE;
2581
2582 chan->beacon_found = false;
2583
2584 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2585 chan->flags = chan->orig_flags | bw_flags |
2586 map_regdom_flags(reg_rule->flags);
2587 else
2588 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2589
2590 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2591 chan->max_reg_power = chan->max_power =
2592 (int) MBM_TO_DBM(power_rule->max_eirp);
2593
2594 if (chan->flags & IEEE80211_CHAN_RADAR) {
2595 if (reg_rule->dfs_cac_ms)
2596 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2597 else
2598 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2599 }
2600
2601 if (chan->flags & IEEE80211_CHAN_PSD)
2602 chan->psd = reg_rule->psd;
2603
2604 chan->max_power = chan->max_reg_power;
2605 }
2606
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2607 static void handle_band_custom(struct wiphy *wiphy,
2608 struct ieee80211_supported_band *sband,
2609 const struct ieee80211_regdomain *regd)
2610 {
2611 unsigned int i;
2612
2613 if (!sband)
2614 return;
2615
2616 /*
2617 * We currently assume that you always want at least 20 MHz,
2618 * otherwise channel 12 might get enabled if this rule is
2619 * compatible to US, which permits 2402 - 2472 MHz.
2620 */
2621 for (i = 0; i < sband->n_channels; i++)
2622 handle_channel_custom(wiphy, &sband->channels[i], regd,
2623 MHZ_TO_KHZ(20));
2624 }
2625
2626 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2627 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2628 const struct ieee80211_regdomain *regd)
2629 {
2630 const struct ieee80211_regdomain *new_regd, *tmp;
2631 enum nl80211_band band;
2632 unsigned int bands_set = 0;
2633
2634 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2635 "wiphy should have REGULATORY_CUSTOM_REG\n");
2636 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2637
2638 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2639 if (!wiphy->bands[band])
2640 continue;
2641 handle_band_custom(wiphy, wiphy->bands[band], regd);
2642 bands_set++;
2643 }
2644
2645 /*
2646 * no point in calling this if it won't have any effect
2647 * on your device's supported bands.
2648 */
2649 WARN_ON(!bands_set);
2650 new_regd = reg_copy_regd(regd);
2651 if (IS_ERR(new_regd))
2652 return;
2653
2654 rtnl_lock();
2655 wiphy_lock(wiphy);
2656
2657 tmp = get_wiphy_regdom(wiphy);
2658 rcu_assign_pointer(wiphy->regd, new_regd);
2659 rcu_free_regdom(tmp);
2660
2661 wiphy_unlock(wiphy);
2662 rtnl_unlock();
2663 }
2664 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2665
reg_set_request_processed(void)2666 static void reg_set_request_processed(void)
2667 {
2668 bool need_more_processing = false;
2669 struct regulatory_request *lr = get_last_request();
2670
2671 lr->processed = true;
2672
2673 spin_lock(®_requests_lock);
2674 if (!list_empty(®_requests_list))
2675 need_more_processing = true;
2676 spin_unlock(®_requests_lock);
2677
2678 cancel_crda_timeout();
2679
2680 if (need_more_processing)
2681 schedule_work(®_work);
2682 }
2683
2684 /**
2685 * reg_process_hint_core - process core regulatory requests
2686 * @core_request: a pending core regulatory request
2687 *
2688 * The wireless subsystem can use this function to process
2689 * a regulatory request issued by the regulatory core.
2690 *
2691 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2692 * hint was processed or ignored
2693 */
2694 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2695 reg_process_hint_core(struct regulatory_request *core_request)
2696 {
2697 if (reg_query_database(core_request)) {
2698 core_request->intersect = false;
2699 core_request->processed = false;
2700 reg_update_last_request(core_request);
2701 return REG_REQ_OK;
2702 }
2703
2704 return REG_REQ_IGNORE;
2705 }
2706
2707 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2708 __reg_process_hint_user(struct regulatory_request *user_request)
2709 {
2710 struct regulatory_request *lr = get_last_request();
2711
2712 if (reg_request_cell_base(user_request))
2713 return reg_ignore_cell_hint(user_request);
2714
2715 if (reg_request_cell_base(lr))
2716 return REG_REQ_IGNORE;
2717
2718 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2719 return REG_REQ_INTERSECT;
2720 /*
2721 * If the user knows better the user should set the regdom
2722 * to their country before the IE is picked up
2723 */
2724 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2725 lr->intersect)
2726 return REG_REQ_IGNORE;
2727 /*
2728 * Process user requests only after previous user/driver/core
2729 * requests have been processed
2730 */
2731 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2732 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2733 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2734 regdom_changes(lr->alpha2))
2735 return REG_REQ_IGNORE;
2736
2737 if (!regdom_changes(user_request->alpha2))
2738 return REG_REQ_ALREADY_SET;
2739
2740 return REG_REQ_OK;
2741 }
2742
2743 /**
2744 * reg_process_hint_user - process user regulatory requests
2745 * @user_request: a pending user regulatory request
2746 *
2747 * The wireless subsystem can use this function to process
2748 * a regulatory request initiated by userspace.
2749 *
2750 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2751 * hint was processed or ignored
2752 */
2753 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2754 reg_process_hint_user(struct regulatory_request *user_request)
2755 {
2756 enum reg_request_treatment treatment;
2757
2758 treatment = __reg_process_hint_user(user_request);
2759 if (treatment == REG_REQ_IGNORE ||
2760 treatment == REG_REQ_ALREADY_SET)
2761 return REG_REQ_IGNORE;
2762
2763 user_request->intersect = treatment == REG_REQ_INTERSECT;
2764 user_request->processed = false;
2765
2766 if (reg_query_database(user_request)) {
2767 reg_update_last_request(user_request);
2768 user_alpha2[0] = user_request->alpha2[0];
2769 user_alpha2[1] = user_request->alpha2[1];
2770 return REG_REQ_OK;
2771 }
2772
2773 return REG_REQ_IGNORE;
2774 }
2775
2776 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2777 __reg_process_hint_driver(struct regulatory_request *driver_request)
2778 {
2779 struct regulatory_request *lr = get_last_request();
2780
2781 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2782 if (regdom_changes(driver_request->alpha2))
2783 return REG_REQ_OK;
2784 return REG_REQ_ALREADY_SET;
2785 }
2786
2787 /*
2788 * This would happen if you unplug and plug your card
2789 * back in or if you add a new device for which the previously
2790 * loaded card also agrees on the regulatory domain.
2791 */
2792 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2793 !regdom_changes(driver_request->alpha2))
2794 return REG_REQ_ALREADY_SET;
2795
2796 return REG_REQ_INTERSECT;
2797 }
2798
2799 /**
2800 * reg_process_hint_driver - process driver regulatory requests
2801 * @wiphy: the wireless device for the regulatory request
2802 * @driver_request: a pending driver regulatory request
2803 *
2804 * The wireless subsystem can use this function to process
2805 * a regulatory request issued by an 802.11 driver.
2806 *
2807 * Returns: one of the different reg request treatment values.
2808 */
2809 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2810 reg_process_hint_driver(struct wiphy *wiphy,
2811 struct regulatory_request *driver_request)
2812 {
2813 const struct ieee80211_regdomain *regd, *tmp;
2814 enum reg_request_treatment treatment;
2815
2816 treatment = __reg_process_hint_driver(driver_request);
2817
2818 switch (treatment) {
2819 case REG_REQ_OK:
2820 break;
2821 case REG_REQ_IGNORE:
2822 return REG_REQ_IGNORE;
2823 case REG_REQ_INTERSECT:
2824 case REG_REQ_ALREADY_SET:
2825 regd = reg_copy_regd(get_cfg80211_regdom());
2826 if (IS_ERR(regd))
2827 return REG_REQ_IGNORE;
2828
2829 tmp = get_wiphy_regdom(wiphy);
2830 ASSERT_RTNL();
2831 wiphy_lock(wiphy);
2832 rcu_assign_pointer(wiphy->regd, regd);
2833 wiphy_unlock(wiphy);
2834 rcu_free_regdom(tmp);
2835 }
2836
2837
2838 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2839 driver_request->processed = false;
2840
2841 /*
2842 * Since CRDA will not be called in this case as we already
2843 * have applied the requested regulatory domain before we just
2844 * inform userspace we have processed the request
2845 */
2846 if (treatment == REG_REQ_ALREADY_SET) {
2847 nl80211_send_reg_change_event(driver_request);
2848 reg_update_last_request(driver_request);
2849 reg_set_request_processed();
2850 return REG_REQ_ALREADY_SET;
2851 }
2852
2853 if (reg_query_database(driver_request)) {
2854 reg_update_last_request(driver_request);
2855 return REG_REQ_OK;
2856 }
2857
2858 return REG_REQ_IGNORE;
2859 }
2860
2861 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2862 __reg_process_hint_country_ie(struct wiphy *wiphy,
2863 struct regulatory_request *country_ie_request)
2864 {
2865 struct wiphy *last_wiphy = NULL;
2866 struct regulatory_request *lr = get_last_request();
2867
2868 if (reg_request_cell_base(lr)) {
2869 /* Trust a Cell base station over the AP's country IE */
2870 if (regdom_changes(country_ie_request->alpha2))
2871 return REG_REQ_IGNORE;
2872 return REG_REQ_ALREADY_SET;
2873 } else {
2874 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2875 return REG_REQ_IGNORE;
2876 }
2877
2878 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2879 return -EINVAL;
2880
2881 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2882 return REG_REQ_OK;
2883
2884 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2885
2886 if (last_wiphy != wiphy) {
2887 /*
2888 * Two cards with two APs claiming different
2889 * Country IE alpha2s. We could
2890 * intersect them, but that seems unlikely
2891 * to be correct. Reject second one for now.
2892 */
2893 if (regdom_changes(country_ie_request->alpha2))
2894 return REG_REQ_IGNORE;
2895 return REG_REQ_ALREADY_SET;
2896 }
2897
2898 if (regdom_changes(country_ie_request->alpha2))
2899 return REG_REQ_OK;
2900 return REG_REQ_ALREADY_SET;
2901 }
2902
2903 /**
2904 * reg_process_hint_country_ie - process regulatory requests from country IEs
2905 * @wiphy: the wireless device for the regulatory request
2906 * @country_ie_request: a regulatory request from a country IE
2907 *
2908 * The wireless subsystem can use this function to process
2909 * a regulatory request issued by a country Information Element.
2910 *
2911 * Returns: one of the different reg request treatment values.
2912 */
2913 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2914 reg_process_hint_country_ie(struct wiphy *wiphy,
2915 struct regulatory_request *country_ie_request)
2916 {
2917 enum reg_request_treatment treatment;
2918
2919 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2920
2921 switch (treatment) {
2922 case REG_REQ_OK:
2923 break;
2924 case REG_REQ_IGNORE:
2925 return REG_REQ_IGNORE;
2926 case REG_REQ_ALREADY_SET:
2927 reg_free_request(country_ie_request);
2928 return REG_REQ_ALREADY_SET;
2929 case REG_REQ_INTERSECT:
2930 /*
2931 * This doesn't happen yet, not sure we
2932 * ever want to support it for this case.
2933 */
2934 WARN_ONCE(1, "Unexpected intersection for country elements");
2935 return REG_REQ_IGNORE;
2936 }
2937
2938 country_ie_request->intersect = false;
2939 country_ie_request->processed = false;
2940
2941 if (reg_query_database(country_ie_request)) {
2942 reg_update_last_request(country_ie_request);
2943 return REG_REQ_OK;
2944 }
2945
2946 return REG_REQ_IGNORE;
2947 }
2948
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2949 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2950 {
2951 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2952 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2953 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2954 bool dfs_domain_same;
2955
2956 rcu_read_lock();
2957
2958 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2959 wiphy1_regd = rcu_dereference(wiphy1->regd);
2960 if (!wiphy1_regd)
2961 wiphy1_regd = cfg80211_regd;
2962
2963 wiphy2_regd = rcu_dereference(wiphy2->regd);
2964 if (!wiphy2_regd)
2965 wiphy2_regd = cfg80211_regd;
2966
2967 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2968
2969 rcu_read_unlock();
2970
2971 return dfs_domain_same;
2972 }
2973
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2974 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2975 struct ieee80211_channel *src_chan)
2976 {
2977 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2978 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2979 return;
2980
2981 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2982 src_chan->flags & IEEE80211_CHAN_DISABLED)
2983 return;
2984
2985 if (src_chan->center_freq == dst_chan->center_freq &&
2986 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2987 dst_chan->dfs_state = src_chan->dfs_state;
2988 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2989 }
2990 }
2991
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2992 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2993 struct wiphy *src_wiphy)
2994 {
2995 struct ieee80211_supported_band *src_sband, *dst_sband;
2996 struct ieee80211_channel *src_chan, *dst_chan;
2997 int i, j, band;
2998
2999 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3000 return;
3001
3002 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3003 dst_sband = dst_wiphy->bands[band];
3004 src_sband = src_wiphy->bands[band];
3005 if (!dst_sband || !src_sband)
3006 continue;
3007
3008 for (i = 0; i < dst_sband->n_channels; i++) {
3009 dst_chan = &dst_sband->channels[i];
3010 for (j = 0; j < src_sband->n_channels; j++) {
3011 src_chan = &src_sband->channels[j];
3012 reg_copy_dfs_chan_state(dst_chan, src_chan);
3013 }
3014 }
3015 }
3016 }
3017
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3018 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3019 {
3020 struct cfg80211_registered_device *rdev;
3021
3022 ASSERT_RTNL();
3023
3024 for_each_rdev(rdev) {
3025 if (wiphy == &rdev->wiphy)
3026 continue;
3027 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3028 }
3029 }
3030
3031 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3032 static void reg_process_hint(struct regulatory_request *reg_request)
3033 {
3034 struct wiphy *wiphy = NULL;
3035 enum reg_request_treatment treatment;
3036 enum nl80211_reg_initiator initiator = reg_request->initiator;
3037
3038 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3039 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3040
3041 switch (initiator) {
3042 case NL80211_REGDOM_SET_BY_CORE:
3043 treatment = reg_process_hint_core(reg_request);
3044 break;
3045 case NL80211_REGDOM_SET_BY_USER:
3046 treatment = reg_process_hint_user(reg_request);
3047 break;
3048 case NL80211_REGDOM_SET_BY_DRIVER:
3049 if (!wiphy)
3050 goto out_free;
3051 treatment = reg_process_hint_driver(wiphy, reg_request);
3052 break;
3053 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3054 if (!wiphy)
3055 goto out_free;
3056 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3057 break;
3058 default:
3059 WARN(1, "invalid initiator %d\n", initiator);
3060 goto out_free;
3061 }
3062
3063 if (treatment == REG_REQ_IGNORE)
3064 goto out_free;
3065
3066 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3067 "unexpected treatment value %d\n", treatment);
3068
3069 /* This is required so that the orig_* parameters are saved.
3070 * NOTE: treatment must be set for any case that reaches here!
3071 */
3072 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3073 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3074 wiphy_update_regulatory(wiphy, initiator);
3075 wiphy_all_share_dfs_chan_state(wiphy);
3076 reg_check_channels();
3077 }
3078
3079 return;
3080
3081 out_free:
3082 reg_free_request(reg_request);
3083 }
3084
notify_self_managed_wiphys(struct regulatory_request * request)3085 static void notify_self_managed_wiphys(struct regulatory_request *request)
3086 {
3087 struct cfg80211_registered_device *rdev;
3088 struct wiphy *wiphy;
3089
3090 for_each_rdev(rdev) {
3091 wiphy = &rdev->wiphy;
3092 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3093 request->initiator == NL80211_REGDOM_SET_BY_USER)
3094 reg_call_notifier(wiphy, request);
3095 }
3096 }
3097
3098 /*
3099 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3100 * Regulatory hints come on a first come first serve basis and we
3101 * must process each one atomically.
3102 */
reg_process_pending_hints(void)3103 static void reg_process_pending_hints(void)
3104 {
3105 struct regulatory_request *reg_request, *lr;
3106
3107 lr = get_last_request();
3108
3109 /* When last_request->processed becomes true this will be rescheduled */
3110 if (lr && !lr->processed) {
3111 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3112 return;
3113 }
3114
3115 spin_lock(®_requests_lock);
3116
3117 if (list_empty(®_requests_list)) {
3118 spin_unlock(®_requests_lock);
3119 return;
3120 }
3121
3122 reg_request = list_first_entry(®_requests_list,
3123 struct regulatory_request,
3124 list);
3125 list_del_init(®_request->list);
3126
3127 spin_unlock(®_requests_lock);
3128
3129 notify_self_managed_wiphys(reg_request);
3130
3131 reg_process_hint(reg_request);
3132
3133 lr = get_last_request();
3134
3135 spin_lock(®_requests_lock);
3136 if (!list_empty(®_requests_list) && lr && lr->processed)
3137 schedule_work(®_work);
3138 spin_unlock(®_requests_lock);
3139 }
3140
3141 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3142 static void reg_process_pending_beacon_hints(void)
3143 {
3144 struct cfg80211_registered_device *rdev;
3145 struct reg_beacon *pending_beacon, *tmp;
3146
3147 /* This goes through the _pending_ beacon list */
3148 spin_lock_bh(®_pending_beacons_lock);
3149
3150 list_for_each_entry_safe(pending_beacon, tmp,
3151 ®_pending_beacons, list) {
3152 list_del_init(&pending_beacon->list);
3153
3154 /* Applies the beacon hint to current wiphys */
3155 for_each_rdev(rdev)
3156 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3157
3158 /* Remembers the beacon hint for new wiphys or reg changes */
3159 list_add_tail(&pending_beacon->list, ®_beacon_list);
3160 }
3161
3162 spin_unlock_bh(®_pending_beacons_lock);
3163 }
3164
reg_process_self_managed_hint(struct wiphy * wiphy)3165 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3166 {
3167 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3168 const struct ieee80211_regdomain *tmp;
3169 const struct ieee80211_regdomain *regd;
3170 enum nl80211_band band;
3171 struct regulatory_request request = {};
3172
3173 ASSERT_RTNL();
3174 lockdep_assert_wiphy(wiphy);
3175
3176 spin_lock(®_requests_lock);
3177 regd = rdev->requested_regd;
3178 rdev->requested_regd = NULL;
3179 spin_unlock(®_requests_lock);
3180
3181 if (!regd)
3182 return;
3183
3184 tmp = get_wiphy_regdom(wiphy);
3185 rcu_assign_pointer(wiphy->regd, regd);
3186 rcu_free_regdom(tmp);
3187
3188 for (band = 0; band < NUM_NL80211_BANDS; band++)
3189 handle_band_custom(wiphy, wiphy->bands[band], regd);
3190
3191 reg_process_ht_flags(wiphy);
3192
3193 request.wiphy_idx = get_wiphy_idx(wiphy);
3194 request.alpha2[0] = regd->alpha2[0];
3195 request.alpha2[1] = regd->alpha2[1];
3196 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3197
3198 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3199 reg_call_notifier(wiphy, &request);
3200
3201 nl80211_send_wiphy_reg_change_event(&request);
3202 }
3203
reg_process_self_managed_hints(void)3204 static void reg_process_self_managed_hints(void)
3205 {
3206 struct cfg80211_registered_device *rdev;
3207
3208 ASSERT_RTNL();
3209
3210 for_each_rdev(rdev) {
3211 wiphy_lock(&rdev->wiphy);
3212 reg_process_self_managed_hint(&rdev->wiphy);
3213 wiphy_unlock(&rdev->wiphy);
3214 }
3215
3216 reg_check_channels();
3217 }
3218
reg_todo(struct work_struct * work)3219 static void reg_todo(struct work_struct *work)
3220 {
3221 rtnl_lock();
3222 reg_process_pending_hints();
3223 reg_process_pending_beacon_hints();
3224 reg_process_self_managed_hints();
3225 rtnl_unlock();
3226 }
3227
queue_regulatory_request(struct regulatory_request * request)3228 static void queue_regulatory_request(struct regulatory_request *request)
3229 {
3230 request->alpha2[0] = toupper(request->alpha2[0]);
3231 request->alpha2[1] = toupper(request->alpha2[1]);
3232
3233 spin_lock(®_requests_lock);
3234 list_add_tail(&request->list, ®_requests_list);
3235 spin_unlock(®_requests_lock);
3236
3237 schedule_work(®_work);
3238 }
3239
3240 /*
3241 * Core regulatory hint -- happens during cfg80211_init()
3242 * and when we restore regulatory settings.
3243 */
regulatory_hint_core(const char * alpha2)3244 static int regulatory_hint_core(const char *alpha2)
3245 {
3246 struct regulatory_request *request;
3247
3248 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3249 if (!request)
3250 return -ENOMEM;
3251
3252 request->alpha2[0] = alpha2[0];
3253 request->alpha2[1] = alpha2[1];
3254 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3255 request->wiphy_idx = WIPHY_IDX_INVALID;
3256
3257 queue_regulatory_request(request);
3258
3259 return 0;
3260 }
3261
3262 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3263 int regulatory_hint_user(const char *alpha2,
3264 enum nl80211_user_reg_hint_type user_reg_hint_type)
3265 {
3266 struct regulatory_request *request;
3267
3268 if (WARN_ON(!alpha2))
3269 return -EINVAL;
3270
3271 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3272 return -EINVAL;
3273
3274 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3275 if (!request)
3276 return -ENOMEM;
3277
3278 request->wiphy_idx = WIPHY_IDX_INVALID;
3279 request->alpha2[0] = alpha2[0];
3280 request->alpha2[1] = alpha2[1];
3281 request->initiator = NL80211_REGDOM_SET_BY_USER;
3282 request->user_reg_hint_type = user_reg_hint_type;
3283
3284 /* Allow calling CRDA again */
3285 reset_crda_timeouts();
3286
3287 queue_regulatory_request(request);
3288
3289 return 0;
3290 }
3291
regulatory_hint_indoor(bool is_indoor,u32 portid)3292 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3293 {
3294 spin_lock(®_indoor_lock);
3295
3296 /* It is possible that more than one user space process is trying to
3297 * configure the indoor setting. To handle such cases, clear the indoor
3298 * setting in case that some process does not think that the device
3299 * is operating in an indoor environment. In addition, if a user space
3300 * process indicates that it is controlling the indoor setting, save its
3301 * portid, i.e., make it the owner.
3302 */
3303 reg_is_indoor = is_indoor;
3304 if (reg_is_indoor) {
3305 if (!reg_is_indoor_portid)
3306 reg_is_indoor_portid = portid;
3307 } else {
3308 reg_is_indoor_portid = 0;
3309 }
3310
3311 spin_unlock(®_indoor_lock);
3312
3313 if (!is_indoor)
3314 reg_check_channels();
3315 }
3316
regulatory_netlink_notify(u32 portid)3317 void regulatory_netlink_notify(u32 portid)
3318 {
3319 spin_lock(®_indoor_lock);
3320
3321 if (reg_is_indoor_portid != portid) {
3322 spin_unlock(®_indoor_lock);
3323 return;
3324 }
3325
3326 reg_is_indoor = false;
3327 reg_is_indoor_portid = 0;
3328
3329 spin_unlock(®_indoor_lock);
3330
3331 reg_check_channels();
3332 }
3333
3334 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3335 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3336 {
3337 struct regulatory_request *request;
3338
3339 if (WARN_ON(!alpha2 || !wiphy))
3340 return -EINVAL;
3341
3342 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3343
3344 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3345 if (!request)
3346 return -ENOMEM;
3347
3348 request->wiphy_idx = get_wiphy_idx(wiphy);
3349
3350 request->alpha2[0] = alpha2[0];
3351 request->alpha2[1] = alpha2[1];
3352 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3353
3354 /* Allow calling CRDA again */
3355 reset_crda_timeouts();
3356
3357 queue_regulatory_request(request);
3358
3359 return 0;
3360 }
3361 EXPORT_SYMBOL(regulatory_hint);
3362
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3363 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3364 const u8 *country_ie, u8 country_ie_len)
3365 {
3366 char alpha2[2];
3367 enum environment_cap env = ENVIRON_ANY;
3368 struct regulatory_request *request = NULL, *lr;
3369
3370 /* IE len must be evenly divisible by 2 */
3371 if (country_ie_len & 0x01)
3372 return;
3373
3374 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3375 return;
3376
3377 request = kzalloc(sizeof(*request), GFP_KERNEL);
3378 if (!request)
3379 return;
3380
3381 alpha2[0] = country_ie[0];
3382 alpha2[1] = country_ie[1];
3383
3384 if (country_ie[2] == 'I')
3385 env = ENVIRON_INDOOR;
3386 else if (country_ie[2] == 'O')
3387 env = ENVIRON_OUTDOOR;
3388
3389 rcu_read_lock();
3390 lr = get_last_request();
3391
3392 if (unlikely(!lr))
3393 goto out;
3394
3395 /*
3396 * We will run this only upon a successful connection on cfg80211.
3397 * We leave conflict resolution to the workqueue, where can hold
3398 * the RTNL.
3399 */
3400 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3401 lr->wiphy_idx != WIPHY_IDX_INVALID)
3402 goto out;
3403
3404 request->wiphy_idx = get_wiphy_idx(wiphy);
3405 request->alpha2[0] = alpha2[0];
3406 request->alpha2[1] = alpha2[1];
3407 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3408 request->country_ie_env = env;
3409
3410 /* Allow calling CRDA again */
3411 reset_crda_timeouts();
3412
3413 queue_regulatory_request(request);
3414 request = NULL;
3415 out:
3416 kfree(request);
3417 rcu_read_unlock();
3418 }
3419
restore_alpha2(char * alpha2,bool reset_user)3420 static void restore_alpha2(char *alpha2, bool reset_user)
3421 {
3422 /* indicates there is no alpha2 to consider for restoration */
3423 alpha2[0] = '9';
3424 alpha2[1] = '7';
3425
3426 /* The user setting has precedence over the module parameter */
3427 if (is_user_regdom_saved()) {
3428 /* Unless we're asked to ignore it and reset it */
3429 if (reset_user) {
3430 pr_debug("Restoring regulatory settings including user preference\n");
3431 user_alpha2[0] = '9';
3432 user_alpha2[1] = '7';
3433
3434 /*
3435 * If we're ignoring user settings, we still need to
3436 * check the module parameter to ensure we put things
3437 * back as they were for a full restore.
3438 */
3439 if (!is_world_regdom(ieee80211_regdom)) {
3440 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3441 ieee80211_regdom[0], ieee80211_regdom[1]);
3442 alpha2[0] = ieee80211_regdom[0];
3443 alpha2[1] = ieee80211_regdom[1];
3444 }
3445 } else {
3446 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3447 user_alpha2[0], user_alpha2[1]);
3448 alpha2[0] = user_alpha2[0];
3449 alpha2[1] = user_alpha2[1];
3450 }
3451 } else if (!is_world_regdom(ieee80211_regdom)) {
3452 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3453 ieee80211_regdom[0], ieee80211_regdom[1]);
3454 alpha2[0] = ieee80211_regdom[0];
3455 alpha2[1] = ieee80211_regdom[1];
3456 } else
3457 pr_debug("Restoring regulatory settings\n");
3458 }
3459
restore_custom_reg_settings(struct wiphy * wiphy)3460 static void restore_custom_reg_settings(struct wiphy *wiphy)
3461 {
3462 struct ieee80211_supported_band *sband;
3463 enum nl80211_band band;
3464 struct ieee80211_channel *chan;
3465 int i;
3466
3467 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3468 sband = wiphy->bands[band];
3469 if (!sband)
3470 continue;
3471 for (i = 0; i < sband->n_channels; i++) {
3472 chan = &sband->channels[i];
3473 chan->flags = chan->orig_flags;
3474 chan->max_antenna_gain = chan->orig_mag;
3475 chan->max_power = chan->orig_mpwr;
3476 chan->beacon_found = false;
3477 }
3478 }
3479 }
3480
3481 /*
3482 * Restoring regulatory settings involves ignoring any
3483 * possibly stale country IE information and user regulatory
3484 * settings if so desired, this includes any beacon hints
3485 * learned as we could have traveled outside to another country
3486 * after disconnection. To restore regulatory settings we do
3487 * exactly what we did at bootup:
3488 *
3489 * - send a core regulatory hint
3490 * - send a user regulatory hint if applicable
3491 *
3492 * Device drivers that send a regulatory hint for a specific country
3493 * keep their own regulatory domain on wiphy->regd so that does
3494 * not need to be remembered.
3495 */
restore_regulatory_settings(bool reset_user,bool cached)3496 static void restore_regulatory_settings(bool reset_user, bool cached)
3497 {
3498 char alpha2[2];
3499 char world_alpha2[2];
3500 struct reg_beacon *reg_beacon, *btmp;
3501 LIST_HEAD(tmp_reg_req_list);
3502 struct cfg80211_registered_device *rdev;
3503
3504 ASSERT_RTNL();
3505
3506 /*
3507 * Clear the indoor setting in case that it is not controlled by user
3508 * space, as otherwise there is no guarantee that the device is still
3509 * operating in an indoor environment.
3510 */
3511 spin_lock(®_indoor_lock);
3512 if (reg_is_indoor && !reg_is_indoor_portid) {
3513 reg_is_indoor = false;
3514 reg_check_channels();
3515 }
3516 spin_unlock(®_indoor_lock);
3517
3518 reset_regdomains(true, &world_regdom);
3519 restore_alpha2(alpha2, reset_user);
3520
3521 /*
3522 * If there's any pending requests we simply
3523 * stash them to a temporary pending queue and
3524 * add then after we've restored regulatory
3525 * settings.
3526 */
3527 spin_lock(®_requests_lock);
3528 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3529 spin_unlock(®_requests_lock);
3530
3531 /* Clear beacon hints */
3532 spin_lock_bh(®_pending_beacons_lock);
3533 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3534 list_del(®_beacon->list);
3535 kfree(reg_beacon);
3536 }
3537 spin_unlock_bh(®_pending_beacons_lock);
3538
3539 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3540 list_del(®_beacon->list);
3541 kfree(reg_beacon);
3542 }
3543
3544 /* First restore to the basic regulatory settings */
3545 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3546 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3547
3548 for_each_rdev(rdev) {
3549 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3550 continue;
3551 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3552 restore_custom_reg_settings(&rdev->wiphy);
3553 }
3554
3555 if (cached && (!is_an_alpha2(alpha2) ||
3556 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3557 reset_regdomains(false, cfg80211_world_regdom);
3558 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3559 print_regdomain(get_cfg80211_regdom());
3560 nl80211_send_reg_change_event(&core_request_world);
3561 reg_set_request_processed();
3562
3563 if (is_an_alpha2(alpha2) &&
3564 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3565 struct regulatory_request *ureq;
3566
3567 spin_lock(®_requests_lock);
3568 ureq = list_last_entry(®_requests_list,
3569 struct regulatory_request,
3570 list);
3571 list_del(&ureq->list);
3572 spin_unlock(®_requests_lock);
3573
3574 notify_self_managed_wiphys(ureq);
3575 reg_update_last_request(ureq);
3576 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3577 REGD_SOURCE_CACHED);
3578 }
3579 } else {
3580 regulatory_hint_core(world_alpha2);
3581
3582 /*
3583 * This restores the ieee80211_regdom module parameter
3584 * preference or the last user requested regulatory
3585 * settings, user regulatory settings takes precedence.
3586 */
3587 if (is_an_alpha2(alpha2))
3588 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3589 }
3590
3591 spin_lock(®_requests_lock);
3592 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3593 spin_unlock(®_requests_lock);
3594
3595 pr_debug("Kicking the queue\n");
3596
3597 schedule_work(®_work);
3598 }
3599
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3600 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3601 {
3602 struct cfg80211_registered_device *rdev;
3603 struct wireless_dev *wdev;
3604
3605 for_each_rdev(rdev) {
3606 wiphy_lock(&rdev->wiphy);
3607 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3608 if (!(wdev->wiphy->regulatory_flags & flag)) {
3609 wiphy_unlock(&rdev->wiphy);
3610 return false;
3611 }
3612 }
3613 wiphy_unlock(&rdev->wiphy);
3614 }
3615
3616 return true;
3617 }
3618
regulatory_hint_disconnect(void)3619 void regulatory_hint_disconnect(void)
3620 {
3621 /* Restore of regulatory settings is not required when wiphy(s)
3622 * ignore IE from connected access point but clearance of beacon hints
3623 * is required when wiphy(s) supports beacon hints.
3624 */
3625 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3626 struct reg_beacon *reg_beacon, *btmp;
3627
3628 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3629 return;
3630
3631 spin_lock_bh(®_pending_beacons_lock);
3632 list_for_each_entry_safe(reg_beacon, btmp,
3633 ®_pending_beacons, list) {
3634 list_del(®_beacon->list);
3635 kfree(reg_beacon);
3636 }
3637 spin_unlock_bh(®_pending_beacons_lock);
3638
3639 list_for_each_entry_safe(reg_beacon, btmp,
3640 ®_beacon_list, list) {
3641 list_del(®_beacon->list);
3642 kfree(reg_beacon);
3643 }
3644
3645 return;
3646 }
3647
3648 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3649 restore_regulatory_settings(false, true);
3650 }
3651
freq_is_chan_12_13_14(u32 freq)3652 static bool freq_is_chan_12_13_14(u32 freq)
3653 {
3654 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3655 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3656 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3657 return true;
3658 return false;
3659 }
3660
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3661 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3662 {
3663 struct reg_beacon *pending_beacon;
3664
3665 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3666 if (ieee80211_channel_equal(beacon_chan,
3667 &pending_beacon->chan))
3668 return true;
3669 return false;
3670 }
3671
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3672 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3673 struct ieee80211_channel *beacon_chan,
3674 gfp_t gfp)
3675 {
3676 struct reg_beacon *reg_beacon;
3677 bool processing;
3678
3679 if (beacon_chan->beacon_found ||
3680 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3681 (beacon_chan->band == NL80211_BAND_2GHZ &&
3682 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3683 return;
3684
3685 spin_lock_bh(®_pending_beacons_lock);
3686 processing = pending_reg_beacon(beacon_chan);
3687 spin_unlock_bh(®_pending_beacons_lock);
3688
3689 if (processing)
3690 return;
3691
3692 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3693 if (!reg_beacon)
3694 return;
3695
3696 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3697 beacon_chan->center_freq, beacon_chan->freq_offset,
3698 ieee80211_freq_khz_to_channel(
3699 ieee80211_channel_to_khz(beacon_chan)),
3700 wiphy_name(wiphy));
3701
3702 memcpy(®_beacon->chan, beacon_chan,
3703 sizeof(struct ieee80211_channel));
3704
3705 /*
3706 * Since we can be called from BH or and non-BH context
3707 * we must use spin_lock_bh()
3708 */
3709 spin_lock_bh(®_pending_beacons_lock);
3710 list_add_tail(®_beacon->list, ®_pending_beacons);
3711 spin_unlock_bh(®_pending_beacons_lock);
3712
3713 schedule_work(®_work);
3714 }
3715
print_rd_rules(const struct ieee80211_regdomain * rd)3716 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717 {
3718 unsigned int i;
3719 const struct ieee80211_reg_rule *reg_rule = NULL;
3720 const struct ieee80211_freq_range *freq_range = NULL;
3721 const struct ieee80211_power_rule *power_rule = NULL;
3722 char bw[32], cac_time[32];
3723
3724 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726 for (i = 0; i < rd->n_reg_rules; i++) {
3727 reg_rule = &rd->reg_rules[i];
3728 freq_range = ®_rule->freq_range;
3729 power_rule = ®_rule->power_rule;
3730
3731 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733 freq_range->max_bandwidth_khz,
3734 reg_get_max_bandwidth(rd, reg_rule));
3735 else
3736 snprintf(bw, sizeof(bw), "%d KHz",
3737 freq_range->max_bandwidth_khz);
3738
3739 if (reg_rule->flags & NL80211_RRF_DFS)
3740 scnprintf(cac_time, sizeof(cac_time), "%u s",
3741 reg_rule->dfs_cac_ms/1000);
3742 else
3743 scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746 /*
3747 * There may not be documentation for max antenna gain
3748 * in certain regions
3749 */
3750 if (power_rule->max_antenna_gain)
3751 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752 freq_range->start_freq_khz,
3753 freq_range->end_freq_khz,
3754 bw,
3755 power_rule->max_antenna_gain,
3756 power_rule->max_eirp,
3757 cac_time);
3758 else
3759 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760 freq_range->start_freq_khz,
3761 freq_range->end_freq_khz,
3762 bw,
3763 power_rule->max_eirp,
3764 cac_time);
3765 }
3766 }
3767
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3768 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769 {
3770 switch (dfs_region) {
3771 case NL80211_DFS_UNSET:
3772 case NL80211_DFS_FCC:
3773 case NL80211_DFS_ETSI:
3774 case NL80211_DFS_JP:
3775 return true;
3776 default:
3777 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778 return false;
3779 }
3780 }
3781
print_regdomain(const struct ieee80211_regdomain * rd)3782 static void print_regdomain(const struct ieee80211_regdomain *rd)
3783 {
3784 struct regulatory_request *lr = get_last_request();
3785
3786 if (is_intersected_alpha2(rd->alpha2)) {
3787 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788 struct cfg80211_registered_device *rdev;
3789 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790 if (rdev) {
3791 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792 rdev->country_ie_alpha2[0],
3793 rdev->country_ie_alpha2[1]);
3794 } else
3795 pr_debug("Current regulatory domain intersected:\n");
3796 } else
3797 pr_debug("Current regulatory domain intersected:\n");
3798 } else if (is_world_regdom(rd->alpha2)) {
3799 pr_debug("World regulatory domain updated:\n");
3800 } else {
3801 if (is_unknown_alpha2(rd->alpha2))
3802 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803 else {
3804 if (reg_request_cell_base(lr))
3805 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806 rd->alpha2[0], rd->alpha2[1]);
3807 else
3808 pr_debug("Regulatory domain changed to country: %c%c\n",
3809 rd->alpha2[0], rd->alpha2[1]);
3810 }
3811 }
3812
3813 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814 print_rd_rules(rd);
3815 }
3816
print_regdomain_info(const struct ieee80211_regdomain * rd)3817 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818 {
3819 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820 print_rd_rules(rd);
3821 }
3822
reg_set_rd_core(const struct ieee80211_regdomain * rd)3823 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824 {
3825 if (!is_world_regdom(rd->alpha2))
3826 return -EINVAL;
3827 update_world_regdomain(rd);
3828 return 0;
3829 }
3830
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3831 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832 struct regulatory_request *user_request)
3833 {
3834 const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836 if (!regdom_changes(rd->alpha2))
3837 return -EALREADY;
3838
3839 if (!is_valid_rd(rd)) {
3840 pr_err("Invalid regulatory domain detected: %c%c\n",
3841 rd->alpha2[0], rd->alpha2[1]);
3842 print_regdomain_info(rd);
3843 return -EINVAL;
3844 }
3845
3846 if (!user_request->intersect) {
3847 reset_regdomains(false, rd);
3848 return 0;
3849 }
3850
3851 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852 if (!intersected_rd)
3853 return -EINVAL;
3854
3855 kfree(rd);
3856 rd = NULL;
3857 reset_regdomains(false, intersected_rd);
3858
3859 return 0;
3860 }
3861
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3862 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863 struct regulatory_request *driver_request)
3864 {
3865 const struct ieee80211_regdomain *regd;
3866 const struct ieee80211_regdomain *intersected_rd = NULL;
3867 const struct ieee80211_regdomain *tmp = NULL;
3868 struct wiphy *request_wiphy;
3869
3870 if (is_world_regdom(rd->alpha2))
3871 return -EINVAL;
3872
3873 if (!regdom_changes(rd->alpha2))
3874 return -EALREADY;
3875
3876 if (!is_valid_rd(rd)) {
3877 pr_err("Invalid regulatory domain detected: %c%c\n",
3878 rd->alpha2[0], rd->alpha2[1]);
3879 print_regdomain_info(rd);
3880 return -EINVAL;
3881 }
3882
3883 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884 if (!request_wiphy)
3885 return -ENODEV;
3886
3887 if (!driver_request->intersect) {
3888 ASSERT_RTNL();
3889 wiphy_lock(request_wiphy);
3890 if (request_wiphy->regd)
3891 tmp = get_wiphy_regdom(request_wiphy);
3892
3893 regd = reg_copy_regd(rd);
3894 if (IS_ERR(regd)) {
3895 wiphy_unlock(request_wiphy);
3896 return PTR_ERR(regd);
3897 }
3898
3899 rcu_assign_pointer(request_wiphy->regd, regd);
3900 rcu_free_regdom(tmp);
3901 wiphy_unlock(request_wiphy);
3902 reset_regdomains(false, rd);
3903 return 0;
3904 }
3905
3906 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907 if (!intersected_rd)
3908 return -EINVAL;
3909
3910 /*
3911 * We can trash what CRDA provided now.
3912 * However if a driver requested this specific regulatory
3913 * domain we keep it for its private use
3914 */
3915 tmp = get_wiphy_regdom(request_wiphy);
3916 rcu_assign_pointer(request_wiphy->regd, rd);
3917 rcu_free_regdom(tmp);
3918
3919 rd = NULL;
3920
3921 reset_regdomains(false, intersected_rd);
3922
3923 return 0;
3924 }
3925
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3926 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927 struct regulatory_request *country_ie_request)
3928 {
3929 struct wiphy *request_wiphy;
3930
3931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932 !is_unknown_alpha2(rd->alpha2))
3933 return -EINVAL;
3934
3935 /*
3936 * Lets only bother proceeding on the same alpha2 if the current
3937 * rd is non static (it means CRDA was present and was used last)
3938 * and the pending request came in from a country IE
3939 */
3940
3941 if (!is_valid_rd(rd)) {
3942 pr_err("Invalid regulatory domain detected: %c%c\n",
3943 rd->alpha2[0], rd->alpha2[1]);
3944 print_regdomain_info(rd);
3945 return -EINVAL;
3946 }
3947
3948 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949 if (!request_wiphy)
3950 return -ENODEV;
3951
3952 if (country_ie_request->intersect)
3953 return -EINVAL;
3954
3955 reset_regdomains(false, rd);
3956 return 0;
3957 }
3958
3959 /*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3964 int set_regdom(const struct ieee80211_regdomain *rd,
3965 enum ieee80211_regd_source regd_src)
3966 {
3967 struct regulatory_request *lr;
3968 bool user_reset = false;
3969 int r;
3970
3971 if (IS_ERR_OR_NULL(rd))
3972 return -ENODATA;
3973
3974 if (!reg_is_valid_request(rd->alpha2)) {
3975 kfree(rd);
3976 return -EINVAL;
3977 }
3978
3979 if (regd_src == REGD_SOURCE_CRDA)
3980 reset_crda_timeouts();
3981
3982 lr = get_last_request();
3983
3984 /* Note that this doesn't update the wiphys, this is done below */
3985 switch (lr->initiator) {
3986 case NL80211_REGDOM_SET_BY_CORE:
3987 r = reg_set_rd_core(rd);
3988 break;
3989 case NL80211_REGDOM_SET_BY_USER:
3990 cfg80211_save_user_regdom(rd);
3991 r = reg_set_rd_user(rd, lr);
3992 user_reset = true;
3993 break;
3994 case NL80211_REGDOM_SET_BY_DRIVER:
3995 r = reg_set_rd_driver(rd, lr);
3996 break;
3997 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998 r = reg_set_rd_country_ie(rd, lr);
3999 break;
4000 default:
4001 WARN(1, "invalid initiator %d\n", lr->initiator);
4002 kfree(rd);
4003 return -EINVAL;
4004 }
4005
4006 if (r) {
4007 switch (r) {
4008 case -EALREADY:
4009 reg_set_request_processed();
4010 break;
4011 default:
4012 /* Back to world regulatory in case of errors */
4013 restore_regulatory_settings(user_reset, false);
4014 }
4015
4016 kfree(rd);
4017 return r;
4018 }
4019
4020 /* This would make this whole thing pointless */
4021 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022 return -EINVAL;
4023
4024 /* update all wiphys now with the new established regulatory domain */
4025 update_all_wiphy_regulatory(lr->initiator);
4026
4027 print_regdomain(get_cfg80211_regdom());
4028
4029 nl80211_send_reg_change_event(lr);
4030
4031 reg_set_request_processed();
4032
4033 return 0;
4034 }
4035
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4036 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037 struct ieee80211_regdomain *rd)
4038 {
4039 const struct ieee80211_regdomain *regd;
4040 const struct ieee80211_regdomain *prev_regd;
4041 struct cfg80211_registered_device *rdev;
4042
4043 if (WARN_ON(!wiphy || !rd))
4044 return -EINVAL;
4045
4046 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048 return -EPERM;
4049
4050 if (WARN(!is_valid_rd(rd),
4051 "Invalid regulatory domain detected: %c%c\n",
4052 rd->alpha2[0], rd->alpha2[1])) {
4053 print_regdomain_info(rd);
4054 return -EINVAL;
4055 }
4056
4057 regd = reg_copy_regd(rd);
4058 if (IS_ERR(regd))
4059 return PTR_ERR(regd);
4060
4061 rdev = wiphy_to_rdev(wiphy);
4062
4063 spin_lock(®_requests_lock);
4064 prev_regd = rdev->requested_regd;
4065 rdev->requested_regd = regd;
4066 spin_unlock(®_requests_lock);
4067
4068 kfree(prev_regd);
4069 return 0;
4070 }
4071
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4072 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073 struct ieee80211_regdomain *rd)
4074 {
4075 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077 if (ret)
4078 return ret;
4079
4080 schedule_work(®_work);
4081 return 0;
4082 }
4083 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4085 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086 struct ieee80211_regdomain *rd)
4087 {
4088 int ret;
4089
4090 ASSERT_RTNL();
4091
4092 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093 if (ret)
4094 return ret;
4095
4096 /* process the request immediately */
4097 reg_process_self_managed_hint(wiphy);
4098 reg_check_channels();
4099 return 0;
4100 }
4101 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
wiphy_regulatory_register(struct wiphy * wiphy)4103 void wiphy_regulatory_register(struct wiphy *wiphy)
4104 {
4105 struct regulatory_request *lr = get_last_request();
4106
4107 /* self-managed devices ignore beacon hints and country IE */
4108 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110 REGULATORY_COUNTRY_IE_IGNORE;
4111
4112 /*
4113 * The last request may have been received before this
4114 * registration call. Call the driver notifier if
4115 * initiator is USER.
4116 */
4117 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118 reg_call_notifier(wiphy, lr);
4119 }
4120
4121 if (!reg_dev_ignore_cell_hint(wiphy))
4122 reg_num_devs_support_basehint++;
4123
4124 wiphy_update_regulatory(wiphy, lr->initiator);
4125 wiphy_all_share_dfs_chan_state(wiphy);
4126 reg_process_self_managed_hints();
4127 }
4128
wiphy_regulatory_deregister(struct wiphy * wiphy)4129 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130 {
4131 struct wiphy *request_wiphy = NULL;
4132 struct regulatory_request *lr;
4133
4134 lr = get_last_request();
4135
4136 if (!reg_dev_ignore_cell_hint(wiphy))
4137 reg_num_devs_support_basehint--;
4138
4139 rcu_free_regdom(get_wiphy_regdom(wiphy));
4140 RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142 if (lr)
4143 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145 if (!request_wiphy || request_wiphy != wiphy)
4146 return;
4147
4148 lr->wiphy_idx = WIPHY_IDX_INVALID;
4149 lr->country_ie_env = ENVIRON_ANY;
4150 }
4151
4152 /*
4153 * See FCC notices for UNII band definitions
4154 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
cfg80211_get_unii(int freq)4157 int cfg80211_get_unii(int freq)
4158 {
4159 /* UNII-1 */
4160 if (freq >= 5150 && freq <= 5250)
4161 return 0;
4162
4163 /* UNII-2A */
4164 if (freq > 5250 && freq <= 5350)
4165 return 1;
4166
4167 /* UNII-2B */
4168 if (freq > 5350 && freq <= 5470)
4169 return 2;
4170
4171 /* UNII-2C */
4172 if (freq > 5470 && freq <= 5725)
4173 return 3;
4174
4175 /* UNII-3 */
4176 if (freq > 5725 && freq <= 5825)
4177 return 4;
4178
4179 /* UNII-5 */
4180 if (freq > 5925 && freq <= 6425)
4181 return 5;
4182
4183 /* UNII-6 */
4184 if (freq > 6425 && freq <= 6525)
4185 return 6;
4186
4187 /* UNII-7 */
4188 if (freq > 6525 && freq <= 6875)
4189 return 7;
4190
4191 /* UNII-8 */
4192 if (freq > 6875 && freq <= 7125)
4193 return 8;
4194
4195 return -EINVAL;
4196 }
4197
regulatory_indoor_allowed(void)4198 bool regulatory_indoor_allowed(void)
4199 {
4200 return reg_is_indoor;
4201 }
4202
regulatory_pre_cac_allowed(struct wiphy * wiphy)4203 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204 {
4205 const struct ieee80211_regdomain *regd = NULL;
4206 const struct ieee80211_regdomain *wiphy_regd = NULL;
4207 bool pre_cac_allowed = false;
4208
4209 rcu_read_lock();
4210
4211 regd = rcu_dereference(cfg80211_regdomain);
4212 wiphy_regd = rcu_dereference(wiphy->regd);
4213 if (!wiphy_regd) {
4214 if (regd->dfs_region == NL80211_DFS_ETSI)
4215 pre_cac_allowed = true;
4216
4217 rcu_read_unlock();
4218
4219 return pre_cac_allowed;
4220 }
4221
4222 if (regd->dfs_region == wiphy_regd->dfs_region &&
4223 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224 pre_cac_allowed = true;
4225
4226 rcu_read_unlock();
4227
4228 return pre_cac_allowed;
4229 }
4230 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4232 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233 {
4234 struct wireless_dev *wdev;
4235 unsigned int link_id;
4236
4237 /* If we finished CAC or received radar, we should end any
4238 * CAC running on the same channels.
4239 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4240 * either all channels are available - those the CAC_FINISHED
4241 * event has effected another wdev state, or there is a channel
4242 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4243 * event has effected another wdev state.
4244 * In both cases we should end the CAC on the wdev.
4245 */
4246 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4247 struct cfg80211_chan_def *chandef;
4248
4249 for_each_valid_link(wdev, link_id) {
4250 if (!wdev->links[link_id].cac_started)
4251 continue;
4252
4253 chandef = wdev_chandef(wdev, link_id);
4254 if (!chandef)
4255 continue;
4256
4257 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4258 rdev_end_cac(rdev, wdev->netdev, link_id);
4259 }
4260 }
4261 }
4262
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4263 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4264 struct cfg80211_chan_def *chandef,
4265 enum nl80211_dfs_state dfs_state,
4266 enum nl80211_radar_event event)
4267 {
4268 struct cfg80211_registered_device *rdev;
4269
4270 ASSERT_RTNL();
4271
4272 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4273 return;
4274
4275 for_each_rdev(rdev) {
4276 if (wiphy == &rdev->wiphy)
4277 continue;
4278
4279 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4280 continue;
4281
4282 if (!ieee80211_get_channel(&rdev->wiphy,
4283 chandef->chan->center_freq))
4284 continue;
4285
4286 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4287
4288 if (event == NL80211_RADAR_DETECTED ||
4289 event == NL80211_RADAR_CAC_FINISHED) {
4290 cfg80211_sched_dfs_chan_update(rdev);
4291 cfg80211_check_and_end_cac(rdev);
4292 }
4293
4294 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4295 }
4296 }
4297
regulatory_init_db(void)4298 static int __init regulatory_init_db(void)
4299 {
4300 int err;
4301
4302 /*
4303 * It's possible that - due to other bugs/issues - cfg80211
4304 * never called regulatory_init() below, or that it failed;
4305 * in that case, don't try to do any further work here as
4306 * it's doomed to lead to crashes.
4307 */
4308 if (IS_ERR_OR_NULL(reg_pdev))
4309 return -EINVAL;
4310
4311 err = load_builtin_regdb_keys();
4312 if (err) {
4313 platform_device_unregister(reg_pdev);
4314 return err;
4315 }
4316
4317 /* We always try to get an update for the static regdomain */
4318 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4319 if (err) {
4320 if (err == -ENOMEM) {
4321 platform_device_unregister(reg_pdev);
4322 return err;
4323 }
4324 /*
4325 * N.B. kobject_uevent_env() can fail mainly for when we're out
4326 * memory which is handled and propagated appropriately above
4327 * but it can also fail during a netlink_broadcast() or during
4328 * early boot for call_usermodehelper(). For now treat these
4329 * errors as non-fatal.
4330 */
4331 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4332 }
4333
4334 /*
4335 * Finally, if the user set the module parameter treat it
4336 * as a user hint.
4337 */
4338 if (!is_world_regdom(ieee80211_regdom))
4339 regulatory_hint_user(ieee80211_regdom,
4340 NL80211_USER_REG_HINT_USER);
4341
4342 return 0;
4343 }
4344 #ifndef MODULE
4345 late_initcall(regulatory_init_db);
4346 #endif
4347
regulatory_init(void)4348 int __init regulatory_init(void)
4349 {
4350 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4351 if (IS_ERR(reg_pdev))
4352 return PTR_ERR(reg_pdev);
4353
4354 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4355
4356 user_alpha2[0] = '9';
4357 user_alpha2[1] = '7';
4358
4359 #ifdef MODULE
4360 return regulatory_init_db();
4361 #else
4362 return 0;
4363 #endif
4364 }
4365
regulatory_exit(void)4366 void regulatory_exit(void)
4367 {
4368 struct regulatory_request *reg_request, *tmp;
4369 struct reg_beacon *reg_beacon, *btmp;
4370
4371 cancel_work_sync(®_work);
4372 cancel_crda_timeout_sync();
4373 cancel_delayed_work_sync(®_check_chans);
4374
4375 /* Lock to suppress warnings */
4376 rtnl_lock();
4377 reset_regdomains(true, NULL);
4378 rtnl_unlock();
4379
4380 dev_set_uevent_suppress(®_pdev->dev, true);
4381
4382 platform_device_unregister(reg_pdev);
4383
4384 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4385 list_del(®_beacon->list);
4386 kfree(reg_beacon);
4387 }
4388
4389 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4390 list_del(®_beacon->list);
4391 kfree(reg_beacon);
4392 }
4393
4394 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4395 list_del(®_request->list);
4396 kfree(reg_request);
4397 }
4398
4399 if (!IS_ERR_OR_NULL(regdb))
4400 kfree(regdb);
4401 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4402 kfree(cfg80211_user_regdom);
4403
4404 free_regdb_keyring();
4405 }
4406