• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	CPUID_8000_0022_EAX,
19 	CPUID_7_2_EDX,
20 	CPUID_24_0_EBX,
21 	CPUID_8000_0021_ECX,
22 	NR_KVM_CPU_CAPS,
23 
24 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
25 };
26 
27 /*
28  * Define a KVM-only feature flag.
29  *
30  * For features that are scattered by cpufeatures.h, __feature_translate() also
31  * needs to be updated to translate the kernel-defined feature into the
32  * KVM-defined feature.
33  *
34  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
35  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
36  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
37  * needed in this case.
38  */
39 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
40 
41 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
42 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
43 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
44 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
45 
46 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
47 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
48 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
49 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
50 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
51 #define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
52 
53 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
54 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
55 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
56 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
57 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
58 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
59 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
60 
61 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
62 #define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
63 #define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
64 #define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
65 
66 /* CPUID level 0x80000007 (EDX). */
67 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
68 
69 /* CPUID level 0x80000022 (EAX) */
70 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
71 
72 /* CPUID level 0x80000021 (ECX) */
73 #define KVM_X86_FEATURE_TSA_SQ_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1)
74 #define KVM_X86_FEATURE_TSA_L1_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2)
75 
76 struct cpuid_reg {
77 	u32 function;
78 	u32 index;
79 	int reg;
80 };
81 
82 static const struct cpuid_reg reverse_cpuid[] = {
83 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
84 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
85 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
86 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
87 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
88 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
89 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
90 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
91 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
92 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
93 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
94 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
95 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
96 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
97 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
98 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
99 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
100 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
101 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
102 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
103 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
104 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
105 	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
106 	[CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX},
107 };
108 
109 /*
110  * Reverse CPUID and its derivatives can only be used for hardware-defined
111  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
112  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
113  * is nonsensical as the bit number/mask is an arbitrary software-defined value
114  * and can't be used by KVM to query/control guest capabilities.  And obviously
115  * the leaf being queried must have an entry in the lookup table.
116  */
reverse_cpuid_check(unsigned int x86_leaf)117 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
118 {
119 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
120 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
121 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
122 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
123 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
124 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
125 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
126 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
127 }
128 
129 /*
130  * Translate feature bits that are scattered in the kernel's cpufeatures word
131  * into KVM feature words that align with hardware's definitions.
132  */
__feature_translate(int x86_feature)133 static __always_inline u32 __feature_translate(int x86_feature)
134 {
135 #define KVM_X86_TRANSLATE_FEATURE(f)	\
136 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
137 
138 	switch (x86_feature) {
139 	KVM_X86_TRANSLATE_FEATURE(SGX1);
140 	KVM_X86_TRANSLATE_FEATURE(SGX2);
141 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
142 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
143 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
144 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
145 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
146 	KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO);
147 	KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO);
148 	default:
149 		return x86_feature;
150 	}
151 }
152 
__feature_leaf(int x86_feature)153 static __always_inline u32 __feature_leaf(int x86_feature)
154 {
155 	return __feature_translate(x86_feature) / 32;
156 }
157 
158 /*
159  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
160  * the hardware defined bit number (stored in bits 4:0) and a software defined
161  * "word" (stored in bits 31:5).  The word is used to index into arrays of
162  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
163  */
__feature_bit(int x86_feature)164 static __always_inline u32 __feature_bit(int x86_feature)
165 {
166 	x86_feature = __feature_translate(x86_feature);
167 
168 	reverse_cpuid_check(x86_feature / 32);
169 	return 1 << (x86_feature & 31);
170 }
171 
172 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
173 
x86_feature_cpuid(unsigned int x86_feature)174 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
175 {
176 	unsigned int x86_leaf = __feature_leaf(x86_feature);
177 
178 	reverse_cpuid_check(x86_leaf);
179 	return reverse_cpuid[x86_leaf];
180 }
181 
__cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,u32 reg)182 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
183 						  u32 reg)
184 {
185 	switch (reg) {
186 	case CPUID_EAX:
187 		return &entry->eax;
188 	case CPUID_EBX:
189 		return &entry->ebx;
190 	case CPUID_ECX:
191 		return &entry->ecx;
192 	case CPUID_EDX:
193 		return &entry->edx;
194 	default:
195 		BUILD_BUG();
196 		return NULL;
197 	}
198 }
199 
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)200 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
201 						unsigned int x86_feature)
202 {
203 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
204 
205 	return __cpuid_entry_get_reg(entry, cpuid.reg);
206 }
207 
cpuid_entry_get(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)208 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
209 					   unsigned int x86_feature)
210 {
211 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
212 
213 	return *reg & __feature_bit(x86_feature);
214 }
215 
cpuid_entry_has(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)216 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
217 					    unsigned int x86_feature)
218 {
219 	return cpuid_entry_get(entry, x86_feature);
220 }
221 
cpuid_entry_clear(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)222 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
223 					      unsigned int x86_feature)
224 {
225 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
226 
227 	*reg &= ~__feature_bit(x86_feature);
228 }
229 
cpuid_entry_set(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)230 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
231 					    unsigned int x86_feature)
232 {
233 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
234 
235 	*reg |= __feature_bit(x86_feature);
236 }
237 
cpuid_entry_change(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool set)238 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
239 					       unsigned int x86_feature,
240 					       bool set)
241 {
242 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
243 
244 	/*
245 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
246 	 * compiler into using CMOV instead of Jcc when possible.
247 	 */
248 	if (set)
249 		*reg |= __feature_bit(x86_feature);
250 	else
251 		*reg &= ~__feature_bit(x86_feature);
252 }
253 
254 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
255