• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/cleanup.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	const char *vol_string = NULL;
181 	int max;
182 
183 	max = uinfo->value.integer.max = mc->max - mc->min;
184 	if (mc->platform_max && mc->platform_max < max)
185 		max = mc->platform_max;
186 
187 	if (max == 1) {
188 		/* Even two value controls ending in Volume should always be integer */
189 		vol_string = strstr(kcontrol->id.name, " Volume");
190 		if (vol_string && !strcmp(vol_string, " Volume"))
191 			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
192 		else
193 			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 	} else {
195 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196 	}
197 
198 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
199 	uinfo->value.integer.min = 0;
200 	uinfo->value.integer.max = max;
201 
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
205 
206 /**
207  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
208  * @kcontrol: mixer control
209  * @uinfo: control element information
210  *
211  * Callback to provide information about a single mixer control, or a double
212  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
213  * have a range that represents both positive and negative values either side
214  * of zero but without a sign bit. min is the minimum register value, max is
215  * the number of steps.
216  *
217  * Returns 0 for success.
218  */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)219 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
220 			  struct snd_ctl_elem_info *uinfo)
221 {
222 	struct soc_mixer_control *mc =
223 		(struct soc_mixer_control *)kcontrol->private_value;
224 	int max;
225 
226 	if (mc->platform_max)
227 		max = mc->platform_max;
228 	else
229 		max = mc->max;
230 
231 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
232 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
233 	else
234 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
235 
236 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
237 	uinfo->value.integer.min = 0;
238 	uinfo->value.integer.max = max;
239 
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
243 
244 /**
245  * snd_soc_get_volsw - single mixer get callback
246  * @kcontrol: mixer control
247  * @ucontrol: control element information
248  *
249  * Callback to get the value of a single mixer control, or a double mixer
250  * control that spans 2 registers.
251  *
252  * Returns 0 for success.
253  */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)254 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
255 	struct snd_ctl_elem_value *ucontrol)
256 {
257 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
258 	struct soc_mixer_control *mc =
259 		(struct soc_mixer_control *)kcontrol->private_value;
260 	unsigned int reg = mc->reg;
261 	unsigned int reg2 = mc->rreg;
262 	unsigned int shift = mc->shift;
263 	unsigned int rshift = mc->rshift;
264 	int max = mc->max;
265 	int min = mc->min;
266 	int sign_bit = mc->sign_bit;
267 	unsigned int mask = (1ULL << fls(max)) - 1;
268 	unsigned int invert = mc->invert;
269 	int val;
270 	int ret;
271 
272 	if (sign_bit)
273 		mask = BIT(sign_bit + 1) - 1;
274 
275 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
276 	if (ret)
277 		return ret;
278 
279 	ucontrol->value.integer.value[0] = val - min;
280 	if (invert)
281 		ucontrol->value.integer.value[0] =
282 			max - ucontrol->value.integer.value[0];
283 
284 	if (snd_soc_volsw_is_stereo(mc)) {
285 		if (reg == reg2)
286 			ret = snd_soc_read_signed(component, reg, mask, rshift,
287 				sign_bit, &val);
288 		else
289 			ret = snd_soc_read_signed(component, reg2, mask, shift,
290 				sign_bit, &val);
291 		if (ret)
292 			return ret;
293 
294 		ucontrol->value.integer.value[1] = val - min;
295 		if (invert)
296 			ucontrol->value.integer.value[1] =
297 				max - ucontrol->value.integer.value[1];
298 	}
299 
300 	return 0;
301 }
302 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
303 
304 /**
305  * snd_soc_put_volsw - single mixer put callback
306  * @kcontrol: mixer control
307  * @ucontrol: control element information
308  *
309  * Callback to set the value of a single mixer control, or a double mixer
310  * control that spans 2 registers.
311  *
312  * Returns 0 for success.
313  */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)314 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
315 	struct snd_ctl_elem_value *ucontrol)
316 {
317 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
318 	struct soc_mixer_control *mc =
319 		(struct soc_mixer_control *)kcontrol->private_value;
320 	unsigned int reg = mc->reg;
321 	unsigned int reg2 = mc->rreg;
322 	unsigned int shift = mc->shift;
323 	unsigned int rshift = mc->rshift;
324 	int max = mc->max;
325 	int min = mc->min;
326 	unsigned int sign_bit = mc->sign_bit;
327 	unsigned int mask = (1 << fls(max)) - 1;
328 	unsigned int invert = mc->invert;
329 	int err, ret;
330 	bool type_2r = false;
331 	unsigned int val2 = 0;
332 	unsigned int val, val_mask;
333 
334 	if (sign_bit)
335 		mask = BIT(sign_bit + 1) - 1;
336 
337 	if (ucontrol->value.integer.value[0] < 0)
338 		return -EINVAL;
339 	val = ucontrol->value.integer.value[0];
340 	if (mc->platform_max && val > mc->platform_max)
341 		return -EINVAL;
342 	if (val > max - min)
343 		return -EINVAL;
344 	val = (val + min) & mask;
345 	if (invert)
346 		val = max - val;
347 	val_mask = mask << shift;
348 	val = val << shift;
349 	if (snd_soc_volsw_is_stereo(mc)) {
350 		if (ucontrol->value.integer.value[1] < 0)
351 			return -EINVAL;
352 		val2 = ucontrol->value.integer.value[1];
353 		if (mc->platform_max && val2 > mc->platform_max)
354 			return -EINVAL;
355 		if (val2 > max - min)
356 			return -EINVAL;
357 		val2 = (val2 + min) & mask;
358 		if (invert)
359 			val2 = max - val2;
360 		if (reg == reg2) {
361 			val_mask |= mask << rshift;
362 			val |= val2 << rshift;
363 		} else {
364 			val2 = val2 << shift;
365 			type_2r = true;
366 		}
367 	}
368 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
369 	if (err < 0)
370 		return err;
371 	ret = err;
372 
373 	if (type_2r) {
374 		err = snd_soc_component_update_bits(component, reg2, val_mask,
375 						    val2);
376 		/* Don't discard any error code or drop change flag */
377 		if (ret == 0 || err < 0) {
378 			ret = err;
379 		}
380 	}
381 
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
385 
386 /**
387  * snd_soc_get_volsw_sx - single mixer get callback
388  * @kcontrol: mixer control
389  * @ucontrol: control element information
390  *
391  * Callback to get the value of a single mixer control, or a double mixer
392  * control that spans 2 registers.
393  *
394  * Returns 0 for success.
395  */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)396 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
397 		      struct snd_ctl_elem_value *ucontrol)
398 {
399 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
400 	struct soc_mixer_control *mc =
401 	    (struct soc_mixer_control *)kcontrol->private_value;
402 	unsigned int reg = mc->reg;
403 	unsigned int reg2 = mc->rreg;
404 	unsigned int shift = mc->shift;
405 	unsigned int rshift = mc->rshift;
406 	int max = mc->max;
407 	int min = mc->min;
408 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 	unsigned int val;
410 
411 	val = snd_soc_component_read(component, reg);
412 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
413 
414 	if (snd_soc_volsw_is_stereo(mc)) {
415 		val = snd_soc_component_read(component, reg2);
416 		val = ((val >> rshift) - min) & mask;
417 		ucontrol->value.integer.value[1] = val;
418 	}
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
423 
424 /**
425  * snd_soc_put_volsw_sx - double mixer set callback
426  * @kcontrol: mixer control
427  * @ucontrol: control element information
428  *
429  * Callback to set the value of a double mixer control that spans 2 registers.
430  *
431  * Returns 0 for success.
432  */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)433 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
434 			 struct snd_ctl_elem_value *ucontrol)
435 {
436 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
437 	struct soc_mixer_control *mc =
438 	    (struct soc_mixer_control *)kcontrol->private_value;
439 
440 	unsigned int reg = mc->reg;
441 	unsigned int reg2 = mc->rreg;
442 	unsigned int shift = mc->shift;
443 	unsigned int rshift = mc->rshift;
444 	int max = mc->max;
445 	int min = mc->min;
446 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
447 	int err = 0;
448 	int ret;
449 	unsigned int val, val_mask;
450 
451 	if (ucontrol->value.integer.value[0] < 0)
452 		return -EINVAL;
453 	val = ucontrol->value.integer.value[0];
454 	if (mc->platform_max && val > mc->platform_max)
455 		return -EINVAL;
456 	if (val > max)
457 		return -EINVAL;
458 	val_mask = mask << shift;
459 	val = (val + min) & mask;
460 	val = val << shift;
461 
462 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
463 	if (err < 0)
464 		return err;
465 	ret = err;
466 
467 	if (snd_soc_volsw_is_stereo(mc)) {
468 		unsigned int val2 = ucontrol->value.integer.value[1];
469 
470 		if (mc->platform_max && val2 > mc->platform_max)
471 			return -EINVAL;
472 		if (val2 > max)
473 			return -EINVAL;
474 
475 		val_mask = mask << rshift;
476 		val2 = (val2 + min) & mask;
477 		val2 = val2 << rshift;
478 
479 		err = snd_soc_component_update_bits(component, reg2, val_mask,
480 			val2);
481 
482 		/* Don't discard any error code or drop change flag */
483 		if (ret == 0 || err < 0) {
484 			ret = err;
485 		}
486 	}
487 	return ret;
488 }
489 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
490 
491 /**
492  * snd_soc_info_volsw_range - single mixer info callback with range.
493  * @kcontrol: mixer control
494  * @uinfo: control element information
495  *
496  * Callback to provide information, within a range, about a single
497  * mixer control.
498  *
499  * returns 0 for success.
500  */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)501 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
502 	struct snd_ctl_elem_info *uinfo)
503 {
504 	struct soc_mixer_control *mc =
505 		(struct soc_mixer_control *)kcontrol->private_value;
506 	int max;
507 
508 	max = mc->max - mc->min;
509 	if (mc->platform_max && mc->platform_max < max)
510 		max = mc->platform_max;
511 
512 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
513 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
514 	uinfo->value.integer.min = 0;
515 	uinfo->value.integer.max = max;
516 
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
520 
521 /**
522  * snd_soc_put_volsw_range - single mixer put value callback with range.
523  * @kcontrol: mixer control
524  * @ucontrol: control element information
525  *
526  * Callback to set the value, within a range, for a single mixer control.
527  *
528  * Returns 0 for success.
529  */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)530 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
531 	struct snd_ctl_elem_value *ucontrol)
532 {
533 	struct soc_mixer_control *mc =
534 		(struct soc_mixer_control *)kcontrol->private_value;
535 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
536 	unsigned int reg = mc->reg;
537 	unsigned int rreg = mc->rreg;
538 	unsigned int shift = mc->shift;
539 	int min = mc->min;
540 	int max = mc->max;
541 	unsigned int mask = (1 << fls(max)) - 1;
542 	unsigned int invert = mc->invert;
543 	unsigned int val, val_mask;
544 	int err, ret, tmp;
545 
546 	tmp = ucontrol->value.integer.value[0];
547 	if (tmp < 0)
548 		return -EINVAL;
549 	if (mc->platform_max && tmp > mc->platform_max)
550 		return -EINVAL;
551 	if (tmp > mc->max - mc->min)
552 		return -EINVAL;
553 
554 	if (invert)
555 		val = (max - ucontrol->value.integer.value[0]) & mask;
556 	else
557 		val = ((ucontrol->value.integer.value[0] + min) & mask);
558 	val_mask = mask << shift;
559 	val = val << shift;
560 
561 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
562 	if (err < 0)
563 		return err;
564 	ret = err;
565 
566 	if (snd_soc_volsw_is_stereo(mc)) {
567 		tmp = ucontrol->value.integer.value[1];
568 		if (tmp < 0)
569 			return -EINVAL;
570 		if (mc->platform_max && tmp > mc->platform_max)
571 			return -EINVAL;
572 		if (tmp > mc->max - mc->min)
573 			return -EINVAL;
574 
575 		if (invert)
576 			val = (max - ucontrol->value.integer.value[1]) & mask;
577 		else
578 			val = ((ucontrol->value.integer.value[1] + min) & mask);
579 		val_mask = mask << shift;
580 		val = val << shift;
581 
582 		err = snd_soc_component_update_bits(component, rreg, val_mask,
583 			val);
584 		/* Don't discard any error code or drop change flag */
585 		if (ret == 0 || err < 0) {
586 			ret = err;
587 		}
588 	}
589 
590 	return ret;
591 }
592 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
593 
594 /**
595  * snd_soc_get_volsw_range - single mixer get callback with range
596  * @kcontrol: mixer control
597  * @ucontrol: control element information
598  *
599  * Callback to get the value, within a range, of a single mixer control.
600  *
601  * Returns 0 for success.
602  */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)603 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
604 	struct snd_ctl_elem_value *ucontrol)
605 {
606 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
607 	struct soc_mixer_control *mc =
608 		(struct soc_mixer_control *)kcontrol->private_value;
609 	unsigned int reg = mc->reg;
610 	unsigned int rreg = mc->rreg;
611 	unsigned int shift = mc->shift;
612 	int min = mc->min;
613 	int max = mc->max;
614 	unsigned int mask = (1 << fls(max)) - 1;
615 	unsigned int invert = mc->invert;
616 	unsigned int val;
617 
618 	val = snd_soc_component_read(component, reg);
619 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
620 	if (invert)
621 		ucontrol->value.integer.value[0] =
622 			max - ucontrol->value.integer.value[0];
623 	else
624 		ucontrol->value.integer.value[0] =
625 			ucontrol->value.integer.value[0] - min;
626 
627 	if (snd_soc_volsw_is_stereo(mc)) {
628 		val = snd_soc_component_read(component, rreg);
629 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
630 		if (invert)
631 			ucontrol->value.integer.value[1] =
632 				max - ucontrol->value.integer.value[1];
633 		else
634 			ucontrol->value.integer.value[1] =
635 				ucontrol->value.integer.value[1] - min;
636 	}
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
641 
snd_soc_clip_to_platform_max(struct snd_kcontrol * kctl)642 static int snd_soc_clip_to_platform_max(struct snd_kcontrol *kctl)
643 {
644 	struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
645 	struct snd_ctl_elem_value *uctl;
646 	int ret;
647 
648 	if (!mc->platform_max)
649 		return 0;
650 
651 	uctl = kzalloc(sizeof(*uctl), GFP_KERNEL);
652 	if (!uctl)
653 		return -ENOMEM;
654 
655 	ret = kctl->get(kctl, uctl);
656 	if (ret < 0)
657 		goto out;
658 
659 	if (uctl->value.integer.value[0] > mc->platform_max)
660 		uctl->value.integer.value[0] = mc->platform_max;
661 
662 	if (snd_soc_volsw_is_stereo(mc) &&
663 	    uctl->value.integer.value[1] > mc->platform_max)
664 		uctl->value.integer.value[1] = mc->platform_max;
665 
666 	ret = kctl->put(kctl, uctl);
667 
668 out:
669 	kfree(uctl);
670 	return ret;
671 }
672 
673 /**
674  * snd_soc_limit_volume - Set new limit to an existing volume control.
675  *
676  * @card: where to look for the control
677  * @name: Name of the control
678  * @max: new maximum limit
679  *
680  * Return 0 for success, else error.
681  */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)682 int snd_soc_limit_volume(struct snd_soc_card *card,
683 	const char *name, int max)
684 {
685 	struct snd_kcontrol *kctl;
686 	int ret = -EINVAL;
687 
688 	/* Sanity check for name and max */
689 	if (unlikely(!name || max <= 0))
690 		return -EINVAL;
691 
692 	kctl = snd_soc_card_get_kcontrol(card, name);
693 	if (kctl) {
694 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
695 		if (max <= mc->max - mc->min) {
696 			mc->platform_max = max;
697 			ret = snd_soc_clip_to_platform_max(kctl);
698 		}
699 	}
700 	return ret;
701 }
702 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
703 
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)704 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
705 		       struct snd_ctl_elem_info *uinfo)
706 {
707 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
708 	struct soc_bytes *params = (void *)kcontrol->private_value;
709 
710 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
711 	uinfo->count = params->num_regs * component->val_bytes;
712 
713 	return 0;
714 }
715 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
716 
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)717 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
718 		      struct snd_ctl_elem_value *ucontrol)
719 {
720 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
721 	struct soc_bytes *params = (void *)kcontrol->private_value;
722 	int ret;
723 
724 	if (component->regmap)
725 		ret = regmap_raw_read(component->regmap, params->base,
726 				      ucontrol->value.bytes.data,
727 				      params->num_regs * component->val_bytes);
728 	else
729 		ret = -EINVAL;
730 
731 	/* Hide any masked bytes to ensure consistent data reporting */
732 	if (ret == 0 && params->mask) {
733 		switch (component->val_bytes) {
734 		case 1:
735 			ucontrol->value.bytes.data[0] &= ~params->mask;
736 			break;
737 		case 2:
738 			((u16 *)(&ucontrol->value.bytes.data))[0]
739 				&= cpu_to_be16(~params->mask);
740 			break;
741 		case 4:
742 			((u32 *)(&ucontrol->value.bytes.data))[0]
743 				&= cpu_to_be32(~params->mask);
744 			break;
745 		default:
746 			return -EINVAL;
747 		}
748 	}
749 
750 	return ret;
751 }
752 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
753 
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)754 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
755 		      struct snd_ctl_elem_value *ucontrol)
756 {
757 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
758 	struct soc_bytes *params = (void *)kcontrol->private_value;
759 	int ret, len;
760 	unsigned int val, mask;
761 
762 	if (!component->regmap || !params->num_regs)
763 		return -EINVAL;
764 
765 	len = params->num_regs * component->val_bytes;
766 
767 	void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
768 					   GFP_KERNEL | GFP_DMA);
769 	if (!data)
770 		return -ENOMEM;
771 
772 	/*
773 	 * If we've got a mask then we need to preserve the register
774 	 * bits.  We shouldn't modify the incoming data so take a
775 	 * copy.
776 	 */
777 	if (params->mask) {
778 		ret = regmap_read(component->regmap, params->base, &val);
779 		if (ret != 0)
780 			return ret;
781 
782 		val &= params->mask;
783 
784 		switch (component->val_bytes) {
785 		case 1:
786 			((u8 *)data)[0] &= ~params->mask;
787 			((u8 *)data)[0] |= val;
788 			break;
789 		case 2:
790 			mask = ~params->mask;
791 			ret = regmap_parse_val(component->regmap,
792 							&mask, &mask);
793 			if (ret != 0)
794 				return ret;
795 
796 			((u16 *)data)[0] &= mask;
797 
798 			ret = regmap_parse_val(component->regmap,
799 							&val, &val);
800 			if (ret != 0)
801 				return ret;
802 
803 			((u16 *)data)[0] |= val;
804 			break;
805 		case 4:
806 			mask = ~params->mask;
807 			ret = regmap_parse_val(component->regmap,
808 							&mask, &mask);
809 			if (ret != 0)
810 				return ret;
811 
812 			((u32 *)data)[0] &= mask;
813 
814 			ret = regmap_parse_val(component->regmap,
815 							&val, &val);
816 			if (ret != 0)
817 				return ret;
818 
819 			((u32 *)data)[0] |= val;
820 			break;
821 		default:
822 			return -EINVAL;
823 		}
824 	}
825 
826 	return regmap_raw_write(component->regmap, params->base, data, len);
827 }
828 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
829 
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)830 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
831 			struct snd_ctl_elem_info *ucontrol)
832 {
833 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
834 
835 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
836 	ucontrol->count = params->max;
837 
838 	return 0;
839 }
840 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
841 
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)842 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
843 				unsigned int size, unsigned int __user *tlv)
844 {
845 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
846 	unsigned int count = size < params->max ? size : params->max;
847 	int ret = -ENXIO;
848 
849 	switch (op_flag) {
850 	case SNDRV_CTL_TLV_OP_READ:
851 		if (params->get)
852 			ret = params->get(kcontrol, tlv, count);
853 		break;
854 	case SNDRV_CTL_TLV_OP_WRITE:
855 		if (params->put)
856 			ret = params->put(kcontrol, tlv, count);
857 		break;
858 	}
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
862 
863 /**
864  * snd_soc_info_xr_sx - signed multi register info callback
865  * @kcontrol: mreg control
866  * @uinfo: control element information
867  *
868  * Callback to provide information of a control that can
869  * span multiple codec registers which together
870  * forms a single signed value in a MSB/LSB manner.
871  *
872  * Returns 0 for success.
873  */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)874 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
875 	struct snd_ctl_elem_info *uinfo)
876 {
877 	struct soc_mreg_control *mc =
878 		(struct soc_mreg_control *)kcontrol->private_value;
879 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
880 	uinfo->count = 1;
881 	uinfo->value.integer.min = mc->min;
882 	uinfo->value.integer.max = mc->max;
883 
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
887 
888 /**
889  * snd_soc_get_xr_sx - signed multi register get callback
890  * @kcontrol: mreg control
891  * @ucontrol: control element information
892  *
893  * Callback to get the value of a control that can span
894  * multiple codec registers which together forms a single
895  * signed value in a MSB/LSB manner. The control supports
896  * specifying total no of bits used to allow for bitfields
897  * across the multiple codec registers.
898  *
899  * Returns 0 for success.
900  */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)901 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
902 	struct snd_ctl_elem_value *ucontrol)
903 {
904 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
905 	struct soc_mreg_control *mc =
906 		(struct soc_mreg_control *)kcontrol->private_value;
907 	unsigned int regbase = mc->regbase;
908 	unsigned int regcount = mc->regcount;
909 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
910 	unsigned int regwmask = (1UL<<regwshift)-1;
911 	unsigned int invert = mc->invert;
912 	unsigned long mask = (1UL<<mc->nbits)-1;
913 	long min = mc->min;
914 	long max = mc->max;
915 	long val = 0;
916 	unsigned int i;
917 
918 	for (i = 0; i < regcount; i++) {
919 		unsigned int regval = snd_soc_component_read(component, regbase+i);
920 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
921 	}
922 	val &= mask;
923 	if (min < 0 && val > max)
924 		val |= ~mask;
925 	if (invert)
926 		val = max - val;
927 	ucontrol->value.integer.value[0] = val;
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
932 
933 /**
934  * snd_soc_put_xr_sx - signed multi register get callback
935  * @kcontrol: mreg control
936  * @ucontrol: control element information
937  *
938  * Callback to set the value of a control that can span
939  * multiple codec registers which together forms a single
940  * signed value in a MSB/LSB manner. The control supports
941  * specifying total no of bits used to allow for bitfields
942  * across the multiple codec registers.
943  *
944  * Returns 0 for success.
945  */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)946 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
947 	struct snd_ctl_elem_value *ucontrol)
948 {
949 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
950 	struct soc_mreg_control *mc =
951 		(struct soc_mreg_control *)kcontrol->private_value;
952 	unsigned int regbase = mc->regbase;
953 	unsigned int regcount = mc->regcount;
954 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
955 	unsigned int regwmask = (1UL<<regwshift)-1;
956 	unsigned int invert = mc->invert;
957 	unsigned long mask = (1UL<<mc->nbits)-1;
958 	long max = mc->max;
959 	long val = ucontrol->value.integer.value[0];
960 	int ret = 0;
961 	unsigned int i;
962 
963 	if (val < mc->min || val > mc->max)
964 		return -EINVAL;
965 	if (invert)
966 		val = max - val;
967 	val &= mask;
968 	for (i = 0; i < regcount; i++) {
969 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
970 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
971 		int err = snd_soc_component_update_bits(component, regbase+i,
972 							regmask, regval);
973 		if (err < 0)
974 			return err;
975 		if (err > 0)
976 			ret = err;
977 	}
978 
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
982 
983 /**
984  * snd_soc_get_strobe - strobe get callback
985  * @kcontrol: mixer control
986  * @ucontrol: control element information
987  *
988  * Callback get the value of a strobe mixer control.
989  *
990  * Returns 0 for success.
991  */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)992 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
993 	struct snd_ctl_elem_value *ucontrol)
994 {
995 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
996 	struct soc_mixer_control *mc =
997 		(struct soc_mixer_control *)kcontrol->private_value;
998 	unsigned int reg = mc->reg;
999 	unsigned int shift = mc->shift;
1000 	unsigned int mask = 1 << shift;
1001 	unsigned int invert = mc->invert != 0;
1002 	unsigned int val;
1003 
1004 	val = snd_soc_component_read(component, reg);
1005 	val &= mask;
1006 
1007 	if (shift != 0 && val != 0)
1008 		val = val >> shift;
1009 	ucontrol->value.enumerated.item[0] = val ^ invert;
1010 
1011 	return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
1014 
1015 /**
1016  * snd_soc_put_strobe - strobe put callback
1017  * @kcontrol: mixer control
1018  * @ucontrol: control element information
1019  *
1020  * Callback strobe a register bit to high then low (or the inverse)
1021  * in one pass of a single mixer enum control.
1022  *
1023  * Returns 1 for success.
1024  */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1025 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1026 	struct snd_ctl_elem_value *ucontrol)
1027 {
1028 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1029 	struct soc_mixer_control *mc =
1030 		(struct soc_mixer_control *)kcontrol->private_value;
1031 	unsigned int reg = mc->reg;
1032 	unsigned int shift = mc->shift;
1033 	unsigned int mask = 1 << shift;
1034 	unsigned int invert = mc->invert != 0;
1035 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1036 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1037 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1038 	int err;
1039 
1040 	err = snd_soc_component_update_bits(component, reg, mask, val1);
1041 	if (err < 0)
1042 		return err;
1043 
1044 	return snd_soc_component_update_bits(component, reg, mask, val2);
1045 }
1046 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1047