• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
rcu_rdp_is_offloaded(struct rcu_data * rdp)16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_NOCB_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  lockdep_is_held(&rdp->nocb_lock) ||
31 		  lockdep_is_held(&rcu_state.nocb_mutex) ||
32 		  (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
33 		   rdp == this_cpu_ptr(&rcu_data)) ||
34 		  rcu_current_is_nocb_kthread(rdp)),
35 		"Unsafe read of RCU_NOCB offloaded state"
36 	);
37 
38 	return rcu_segcblist_is_offloaded(&rdp->cblist);
39 }
40 
41 /*
42  * Check the RCU kernel configuration parameters and print informative
43  * messages about anything out of the ordinary.
44  */
rcu_bootup_announce_oddness(void)45 static void __init rcu_bootup_announce_oddness(void)
46 {
47 	if (IS_ENABLED(CONFIG_RCU_TRACE))
48 		pr_info("\tRCU event tracing is enabled.\n");
49 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
50 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
51 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
52 			RCU_FANOUT);
53 	if (rcu_fanout_exact)
54 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
55 	if (IS_ENABLED(CONFIG_PROVE_RCU))
56 		pr_info("\tRCU lockdep checking is enabled.\n");
57 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
58 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
59 	if (RCU_NUM_LVLS >= 4)
60 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
61 	if (RCU_FANOUT_LEAF != 16)
62 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
63 			RCU_FANOUT_LEAF);
64 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
65 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
66 			rcu_fanout_leaf);
67 	if (nr_cpu_ids != NR_CPUS)
68 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
69 #ifdef CONFIG_RCU_BOOST
70 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
71 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
72 #endif
73 	if (blimit != DEFAULT_RCU_BLIMIT)
74 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
75 	if (qhimark != DEFAULT_RCU_QHIMARK)
76 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
77 	if (qlowmark != DEFAULT_RCU_QLOMARK)
78 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
79 	if (qovld != DEFAULT_RCU_QOVLD)
80 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
81 	if (jiffies_till_first_fqs != ULONG_MAX)
82 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 	if (jiffies_till_next_fqs != ULONG_MAX)
84 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 	if (jiffies_till_sched_qs != ULONG_MAX)
86 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 	if (rcu_kick_kthreads)
88 		pr_info("\tKick kthreads if too-long grace period.\n");
89 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
91 	if (gp_preinit_delay)
92 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 	if (gp_init_delay)
94 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 	if (gp_cleanup_delay)
96 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
97 	if (nohz_full_patience_delay < 0) {
98 		pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
99 		nohz_full_patience_delay = 0;
100 	} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
101 		pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
102 		nohz_full_patience_delay = 5 * MSEC_PER_SEC;
103 	} else if (nohz_full_patience_delay) {
104 		pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
105 	}
106 	nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
107 	if (!use_softirq)
108 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
109 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
110 		pr_info("\tRCU debug extended QS entry/exit.\n");
111 	rcupdate_announce_bootup_oddness();
112 }
113 
114 #ifdef CONFIG_PREEMPT_RCU
115 
116 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
117 static void rcu_read_unlock_special(struct task_struct *t);
118 
119 /*
120  * Tell them what RCU they are running.
121  */
rcu_bootup_announce(void)122 static void __init rcu_bootup_announce(void)
123 {
124 	pr_info("Preemptible hierarchical RCU implementation.\n");
125 	rcu_bootup_announce_oddness();
126 }
127 
128 /* Flags for rcu_preempt_ctxt_queue() decision table. */
129 #define RCU_GP_TASKS	0x8
130 #define RCU_EXP_TASKS	0x4
131 #define RCU_GP_BLKD	0x2
132 #define RCU_EXP_BLKD	0x1
133 
134 /*
135  * Queues a task preempted within an RCU-preempt read-side critical
136  * section into the appropriate location within the ->blkd_tasks list,
137  * depending on the states of any ongoing normal and expedited grace
138  * periods.  The ->gp_tasks pointer indicates which element the normal
139  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
140  * indicates which element the expedited grace period is waiting on (again,
141  * NULL if none).  If a grace period is waiting on a given element in the
142  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
143  * adding a task to the tail of the list blocks any grace period that is
144  * already waiting on one of the elements.  In contrast, adding a task
145  * to the head of the list won't block any grace period that is already
146  * waiting on one of the elements.
147  *
148  * This queuing is imprecise, and can sometimes make an ongoing grace
149  * period wait for a task that is not strictly speaking blocking it.
150  * Given the choice, we needlessly block a normal grace period rather than
151  * blocking an expedited grace period.
152  *
153  * Note that an endless sequence of expedited grace periods still cannot
154  * indefinitely postpone a normal grace period.  Eventually, all of the
155  * fixed number of preempted tasks blocking the normal grace period that are
156  * not also blocking the expedited grace period will resume and complete
157  * their RCU read-side critical sections.  At that point, the ->gp_tasks
158  * pointer will equal the ->exp_tasks pointer, at which point the end of
159  * the corresponding expedited grace period will also be the end of the
160  * normal grace period.
161  */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)162 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
163 	__releases(rnp->lock) /* But leaves rrupts disabled. */
164 {
165 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
166 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
167 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
168 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
169 	struct task_struct *t = current;
170 
171 	raw_lockdep_assert_held_rcu_node(rnp);
172 	WARN_ON_ONCE(rdp->mynode != rnp);
173 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
174 	/* RCU better not be waiting on newly onlined CPUs! */
175 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
176 		     rdp->grpmask);
177 
178 	/*
179 	 * Decide where to queue the newly blocked task.  In theory,
180 	 * this could be an if-statement.  In practice, when I tried
181 	 * that, it was quite messy.
182 	 */
183 	switch (blkd_state) {
184 	case 0:
185 	case                RCU_EXP_TASKS:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
187 	case RCU_GP_TASKS:
188 	case RCU_GP_TASKS + RCU_EXP_TASKS:
189 
190 		/*
191 		 * Blocking neither GP, or first task blocking the normal
192 		 * GP but not blocking the already-waiting expedited GP.
193 		 * Queue at the head of the list to avoid unnecessarily
194 		 * blocking the already-waiting GPs.
195 		 */
196 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 		break;
198 
199 	case                                              RCU_EXP_BLKD:
200 	case                                RCU_GP_BLKD:
201 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
202 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
203 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
204 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
205 
206 		/*
207 		 * First task arriving that blocks either GP, or first task
208 		 * arriving that blocks the expedited GP (with the normal
209 		 * GP already waiting), or a task arriving that blocks
210 		 * both GPs with both GPs already waiting.  Queue at the
211 		 * tail of the list to avoid any GP waiting on any of the
212 		 * already queued tasks that are not blocking it.
213 		 */
214 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
215 		break;
216 
217 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
218 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
219 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
220 
221 		/*
222 		 * Second or subsequent task blocking the expedited GP.
223 		 * The task either does not block the normal GP, or is the
224 		 * first task blocking the normal GP.  Queue just after
225 		 * the first task blocking the expedited GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
228 		break;
229 
230 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
231 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
232 
233 		/*
234 		 * Second or subsequent task blocking the normal GP.
235 		 * The task does not block the expedited GP. Queue just
236 		 * after the first task blocking the normal GP.
237 		 */
238 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
239 		break;
240 
241 	default:
242 
243 		/* Yet another exercise in excessive paranoia. */
244 		WARN_ON_ONCE(1);
245 		break;
246 	}
247 
248 	/*
249 	 * We have now queued the task.  If it was the first one to
250 	 * block either grace period, update the ->gp_tasks and/or
251 	 * ->exp_tasks pointers, respectively, to reference the newly
252 	 * blocked tasks.
253 	 */
254 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
255 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
256 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
257 	}
258 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
259 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
260 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
261 		     !(rnp->qsmask & rdp->grpmask));
262 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
263 		     !(rnp->expmask & rdp->grpmask));
264 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265 
266 	/*
267 	 * Report the quiescent state for the expedited GP.  This expedited
268 	 * GP should not be able to end until we report, so there should be
269 	 * no need to check for a subsequent expedited GP.  (Though we are
270 	 * still in a quiescent state in any case.)
271 	 *
272 	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
273 	 */
274 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
275 		rcu_report_exp_rdp(rdp);
276 	else
277 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
278 }
279 
280 /*
281  * Record a preemptible-RCU quiescent state for the specified CPU.
282  * Note that this does not necessarily mean that the task currently running
283  * on the CPU is in a quiescent state:  Instead, it means that the current
284  * grace period need not wait on any RCU read-side critical section that
285  * starts later on this CPU.  It also means that if the current task is
286  * in an RCU read-side critical section, it has already added itself to
287  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
288  * current task, there might be any number of other tasks blocked while
289  * in an RCU read-side critical section.
290  *
291  * Unlike non-preemptible-RCU, quiescent state reports for expedited
292  * grace periods are handled separately via deferred quiescent states
293  * and context switch events.
294  *
295  * Callers to this function must disable preemption.
296  */
rcu_qs(void)297 static void rcu_qs(void)
298 {
299 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
300 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
301 		trace_rcu_grace_period(TPS("rcu_preempt"),
302 				       __this_cpu_read(rcu_data.gp_seq),
303 				       TPS("cpuqs"));
304 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
305 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
306 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
307 	}
308 }
309 
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
rcu_note_context_switch(bool preempt)323 void rcu_note_context_switch(bool preempt)
324 {
325 	struct task_struct *t = current;
326 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327 	struct rcu_node *rnp;
328 
329 	trace_rcu_utilization(TPS("Start context switch"));
330 	lockdep_assert_irqs_disabled();
331 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
332 	if (rcu_preempt_depth() > 0 &&
333 	    !t->rcu_read_unlock_special.b.blocked) {
334 
335 		/* Possibly blocking in an RCU read-side critical section. */
336 		rnp = rdp->mynode;
337 		raw_spin_lock_rcu_node(rnp);
338 		t->rcu_read_unlock_special.b.blocked = true;
339 		t->rcu_blocked_node = rnp;
340 
341 		/*
342 		 * Verify the CPU's sanity, trace the preemption, and
343 		 * then queue the task as required based on the states
344 		 * of any ongoing and expedited grace periods.
345 		 */
346 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
347 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 		trace_rcu_preempt_task(rcu_state.name,
349 				       t->pid,
350 				       (rnp->qsmask & rdp->grpmask)
351 				       ? rnp->gp_seq
352 				       : rcu_seq_snap(&rnp->gp_seq));
353 		rcu_preempt_ctxt_queue(rnp, rdp);
354 	} else {
355 		rcu_preempt_deferred_qs(t);
356 	}
357 
358 	/*
359 	 * Either we were not in an RCU read-side critical section to
360 	 * begin with, or we have now recorded that critical section
361 	 * globally.  Either way, we can now note a quiescent state
362 	 * for this CPU.  Again, if we were in an RCU read-side critical
363 	 * section, and if that critical section was blocking the current
364 	 * grace period, then the fact that the task has been enqueued
365 	 * means that we continue to block the current grace period.
366 	 */
367 	rcu_qs();
368 	if (rdp->cpu_no_qs.b.exp)
369 		rcu_report_exp_rdp(rdp);
370 	rcu_tasks_qs(current, preempt);
371 	trace_rcu_utilization(TPS("End context switch"));
372 }
373 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
374 
375 /*
376  * Check for preempted RCU readers blocking the current grace period
377  * for the specified rcu_node structure.  If the caller needs a reliable
378  * answer, it must hold the rcu_node's ->lock.
379  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)380 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
381 {
382 	return READ_ONCE(rnp->gp_tasks) != NULL;
383 }
384 
385 /* limit value for ->rcu_read_lock_nesting. */
386 #define RCU_NEST_PMAX (INT_MAX / 2)
387 
rcu_preempt_read_enter(void)388 static void rcu_preempt_read_enter(void)
389 {
390 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
391 }
392 
rcu_preempt_read_exit(void)393 static int rcu_preempt_read_exit(void)
394 {
395 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
396 
397 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
398 	return ret;
399 }
400 
rcu_preempt_depth_set(int val)401 static void rcu_preempt_depth_set(int val)
402 {
403 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
404 }
405 
406 /*
407  * Preemptible RCU implementation for rcu_read_lock().
408  * Just increment ->rcu_read_lock_nesting, shared state will be updated
409  * if we block.
410  */
__rcu_read_lock(void)411 void __rcu_read_lock(void)
412 {
413 	rcu_preempt_read_enter();
414 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
415 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
416 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
417 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
418 	barrier();  /* critical section after entry code. */
419 }
420 EXPORT_SYMBOL_GPL(__rcu_read_lock);
421 
422 /*
423  * Preemptible RCU implementation for rcu_read_unlock().
424  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
425  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
426  * invoke rcu_read_unlock_special() to clean up after a context switch
427  * in an RCU read-side critical section and other special cases.
428  */
__rcu_read_unlock(void)429 void __rcu_read_unlock(void)
430 {
431 	struct task_struct *t = current;
432 
433 	barrier();  // critical section before exit code.
434 	if (rcu_preempt_read_exit() == 0) {
435 		barrier();  // critical-section exit before .s check.
436 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
437 			rcu_read_unlock_special(t);
438 	}
439 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
440 		int rrln = rcu_preempt_depth();
441 
442 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
446 
447 /*
448  * Advance a ->blkd_tasks-list pointer to the next entry, instead
449  * returning NULL if at the end of the list.
450  */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)451 static struct list_head *rcu_next_node_entry(struct task_struct *t,
452 					     struct rcu_node *rnp)
453 {
454 	struct list_head *np;
455 
456 	np = t->rcu_node_entry.next;
457 	if (np == &rnp->blkd_tasks)
458 		np = NULL;
459 	return np;
460 }
461 
462 /*
463  * Return true if the specified rcu_node structure has tasks that were
464  * preempted within an RCU read-side critical section.
465  */
rcu_preempt_has_tasks(struct rcu_node * rnp)466 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
467 {
468 	return !list_empty(&rnp->blkd_tasks);
469 }
470 
471 /*
472  * Report deferred quiescent states.  The deferral time can
473  * be quite short, for example, in the case of the call from
474  * rcu_read_unlock_special().
475  */
476 static notrace void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)477 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
478 {
479 	bool empty_exp;
480 	bool empty_norm;
481 	bool empty_exp_now;
482 	struct list_head *np;
483 	bool drop_boost_mutex = false;
484 	struct rcu_data *rdp;
485 	struct rcu_node *rnp;
486 	union rcu_special special;
487 
488 	rdp = this_cpu_ptr(&rcu_data);
489 	if (rdp->defer_qs_iw_pending == DEFER_QS_PENDING)
490 		rdp->defer_qs_iw_pending = DEFER_QS_IDLE;
491 
492 	/*
493 	 * If RCU core is waiting for this CPU to exit its critical section,
494 	 * report the fact that it has exited.  Because irqs are disabled,
495 	 * t->rcu_read_unlock_special cannot change.
496 	 */
497 	special = t->rcu_read_unlock_special;
498 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
499 		local_irq_restore(flags);
500 		return;
501 	}
502 	t->rcu_read_unlock_special.s = 0;
503 	if (special.b.need_qs) {
504 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
505 			rdp->cpu_no_qs.b.norm = false;
506 			rcu_report_qs_rdp(rdp);
507 			udelay(rcu_unlock_delay);
508 		} else {
509 			rcu_qs();
510 		}
511 	}
512 
513 	/*
514 	 * Respond to a request by an expedited grace period for a
515 	 * quiescent state from this CPU.  Note that requests from
516 	 * tasks are handled when removing the task from the
517 	 * blocked-tasks list below.
518 	 */
519 	if (rdp->cpu_no_qs.b.exp)
520 		rcu_report_exp_rdp(rdp);
521 
522 	/* Clean up if blocked during RCU read-side critical section. */
523 	if (special.b.blocked) {
524 
525 		/*
526 		 * Remove this task from the list it blocked on.  The task
527 		 * now remains queued on the rcu_node corresponding to the
528 		 * CPU it first blocked on, so there is no longer any need
529 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
530 		 */
531 		rnp = t->rcu_blocked_node;
532 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
533 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
534 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
535 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
536 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
537 			     (!empty_norm || rnp->qsmask));
538 		empty_exp = sync_rcu_exp_done(rnp);
539 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
540 		np = rcu_next_node_entry(t, rnp);
541 		list_del_init(&t->rcu_node_entry);
542 		t->rcu_blocked_node = NULL;
543 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
544 						rnp->gp_seq, t->pid);
545 		if (&t->rcu_node_entry == rnp->gp_tasks)
546 			WRITE_ONCE(rnp->gp_tasks, np);
547 		if (&t->rcu_node_entry == rnp->exp_tasks)
548 			WRITE_ONCE(rnp->exp_tasks, np);
549 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
550 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
551 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
552 			if (&t->rcu_node_entry == rnp->boost_tasks)
553 				WRITE_ONCE(rnp->boost_tasks, np);
554 		}
555 
556 		/*
557 		 * If this was the last task on the current list, and if
558 		 * we aren't waiting on any CPUs, report the quiescent state.
559 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
560 		 * so we must take a snapshot of the expedited state.
561 		 */
562 		empty_exp_now = sync_rcu_exp_done(rnp);
563 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
564 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
565 							 rnp->gp_seq,
566 							 0, rnp->qsmask,
567 							 rnp->level,
568 							 rnp->grplo,
569 							 rnp->grphi,
570 							 !!rnp->gp_tasks);
571 			rcu_report_unblock_qs_rnp(rnp, flags);
572 		} else {
573 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
574 		}
575 
576 		/*
577 		 * If this was the last task on the expedited lists,
578 		 * then we need to report up the rcu_node hierarchy.
579 		 */
580 		if (!empty_exp && empty_exp_now)
581 			rcu_report_exp_rnp(rnp, true);
582 
583 		/* Unboost if we were boosted. */
584 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
585 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
586 	} else {
587 		local_irq_restore(flags);
588 	}
589 }
590 
591 /*
592  * Is a deferred quiescent-state pending, and are we also not in
593  * an RCU read-side critical section?  It is the caller's responsibility
594  * to ensure it is otherwise safe to report any deferred quiescent
595  * states.  The reason for this is that it is safe to report a
596  * quiescent state during context switch even though preemption
597  * is disabled.  This function cannot be expected to understand these
598  * nuances, so the caller must handle them.
599  */
rcu_preempt_need_deferred_qs(struct task_struct * t)600 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
601 {
602 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
603 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
604 	       rcu_preempt_depth() == 0;
605 }
606 
607 /*
608  * Report a deferred quiescent state if needed and safe to do so.
609  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
610  * not being in an RCU read-side critical section.  The caller must
611  * evaluate safety in terms of interrupt, softirq, and preemption
612  * disabling.
613  */
rcu_preempt_deferred_qs(struct task_struct * t)614 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
615 {
616 	unsigned long flags;
617 
618 	if (!rcu_preempt_need_deferred_qs(t))
619 		return;
620 	local_irq_save(flags);
621 	rcu_preempt_deferred_qs_irqrestore(t, flags);
622 }
623 
624 /*
625  * Minimal handler to give the scheduler a chance to re-evaluate.
626  */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)627 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
628 {
629 	unsigned long flags;
630 	struct rcu_data *rdp;
631 
632 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
633 	local_irq_save(flags);
634 
635 	/*
636 	 * If the IRQ work handler happens to run in the middle of RCU read-side
637 	 * critical section, it could be ineffective in getting the scheduler's
638 	 * attention to report a deferred quiescent state (the whole point of the
639 	 * IRQ work). For this reason, requeue the IRQ work.
640 	 *
641 	 * Basically, we want to avoid following situation:
642 	 * 1. rcu_read_unlock() queues IRQ work (state -> DEFER_QS_PENDING)
643 	 * 2. CPU enters new rcu_read_lock()
644 	 * 3. IRQ work runs but cannot report QS due to rcu_preempt_depth() > 0
645 	 * 4. rcu_read_unlock() does not re-queue work (state still PENDING)
646 	 * 5. Deferred QS reporting does not happen.
647 	 */
648 	if (rcu_preempt_depth() > 0)
649 		WRITE_ONCE(rdp->defer_qs_iw_pending, DEFER_QS_IDLE);
650 
651 	local_irq_restore(flags);
652 }
653 
654 /*
655  * Handle special cases during rcu_read_unlock(), such as needing to
656  * notify RCU core processing or task having blocked during the RCU
657  * read-side critical section.
658  */
rcu_read_unlock_special(struct task_struct * t)659 static void rcu_read_unlock_special(struct task_struct *t)
660 {
661 	unsigned long flags;
662 	bool irqs_were_disabled;
663 	bool preempt_bh_were_disabled =
664 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
665 
666 	/* NMI handlers cannot block and cannot safely manipulate state. */
667 	if (in_nmi())
668 		return;
669 
670 	local_irq_save(flags);
671 	irqs_were_disabled = irqs_disabled_flags(flags);
672 	if (preempt_bh_were_disabled || irqs_were_disabled) {
673 		bool expboost; // Expedited GP in flight or possible boosting.
674 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
675 		struct rcu_node *rnp = rdp->mynode;
676 
677 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
678 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
679 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
680 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
681 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
682 			    t->rcu_blocked_node);
683 		// Need to defer quiescent state until everything is enabled.
684 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
685 			// Using softirq, safe to awaken, and either the
686 			// wakeup is free or there is either an expedited
687 			// GP in flight or a potential need to deboost.
688 			raise_softirq_irqoff(RCU_SOFTIRQ);
689 		} else {
690 			// Enabling BH or preempt does reschedule, so...
691 			// Also if no expediting and no possible deboosting,
692 			// slow is OK.  Plus nohz_full CPUs eventually get
693 			// tick enabled.
694 			set_tsk_need_resched(current);
695 			set_preempt_need_resched();
696 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
697 			    expboost && rdp->defer_qs_iw_pending != DEFER_QS_PENDING &&
698 			    cpu_online(rdp->cpu)) {
699 				// Get scheduler to re-evaluate and call hooks.
700 				// If !IRQ_WORK, FQS scan will eventually IPI.
701 				rdp->defer_qs_iw_pending = DEFER_QS_PENDING;
702 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
703 			}
704 		}
705 		local_irq_restore(flags);
706 		return;
707 	}
708 	rcu_preempt_deferred_qs_irqrestore(t, flags);
709 }
710 
711 /*
712  * Check that the list of blocked tasks for the newly completed grace
713  * period is in fact empty.  It is a serious bug to complete a grace
714  * period that still has RCU readers blocked!  This function must be
715  * invoked -before- updating this rnp's ->gp_seq.
716  *
717  * Also, if there are blocked tasks on the list, they automatically
718  * block the newly created grace period, so set up ->gp_tasks accordingly.
719  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)720 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
721 {
722 	struct task_struct *t;
723 
724 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
725 	raw_lockdep_assert_held_rcu_node(rnp);
726 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
727 		dump_blkd_tasks(rnp, 10);
728 	if (rcu_preempt_has_tasks(rnp) &&
729 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
730 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
731 		t = container_of(rnp->gp_tasks, struct task_struct,
732 				 rcu_node_entry);
733 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
734 						rnp->gp_seq, t->pid);
735 	}
736 	WARN_ON_ONCE(rnp->qsmask);
737 }
738 
739 /*
740  * Check for a quiescent state from the current CPU, including voluntary
741  * context switches for Tasks RCU.  When a task blocks, the task is
742  * recorded in the corresponding CPU's rcu_node structure, which is checked
743  * elsewhere, hence this function need only check for quiescent states
744  * related to the current CPU, not to those related to tasks.
745  */
rcu_flavor_sched_clock_irq(int user)746 static void rcu_flavor_sched_clock_irq(int user)
747 {
748 	struct task_struct *t = current;
749 
750 	lockdep_assert_irqs_disabled();
751 	if (rcu_preempt_depth() > 0 ||
752 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
753 		/* No QS, force context switch if deferred. */
754 		if (rcu_preempt_need_deferred_qs(t)) {
755 			set_tsk_need_resched(t);
756 			set_preempt_need_resched();
757 		}
758 	} else if (rcu_preempt_need_deferred_qs(t)) {
759 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
760 		return;
761 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
762 		rcu_qs(); /* Report immediate QS. */
763 		return;
764 	}
765 
766 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
767 	if (rcu_preempt_depth() > 0 &&
768 	    __this_cpu_read(rcu_data.core_needs_qs) &&
769 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
770 	    !t->rcu_read_unlock_special.b.need_qs &&
771 	    time_after(jiffies, rcu_state.gp_start + HZ))
772 		t->rcu_read_unlock_special.b.need_qs = true;
773 }
774 
775 /*
776  * Check for a task exiting while in a preemptible-RCU read-side
777  * critical section, clean up if so.  No need to issue warnings, as
778  * debug_check_no_locks_held() already does this if lockdep is enabled.
779  * Besides, if this function does anything other than just immediately
780  * return, there was a bug of some sort.  Spewing warnings from this
781  * function is like as not to simply obscure important prior warnings.
782  */
exit_rcu(void)783 void exit_rcu(void)
784 {
785 	struct task_struct *t = current;
786 
787 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
788 		rcu_preempt_depth_set(1);
789 		barrier();
790 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
791 	} else if (unlikely(rcu_preempt_depth())) {
792 		rcu_preempt_depth_set(1);
793 	} else {
794 		return;
795 	}
796 	__rcu_read_unlock();
797 	rcu_preempt_deferred_qs(current);
798 }
799 
800 /*
801  * Dump the blocked-tasks state, but limit the list dump to the
802  * specified number of elements.
803  */
804 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)805 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
806 {
807 	int cpu;
808 	int i;
809 	struct list_head *lhp;
810 	struct rcu_data *rdp;
811 	struct rcu_node *rnp1;
812 
813 	raw_lockdep_assert_held_rcu_node(rnp);
814 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
815 		__func__, rnp->grplo, rnp->grphi, rnp->level,
816 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
817 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
818 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
819 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
820 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
821 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
822 		READ_ONCE(rnp->exp_tasks));
823 	pr_info("%s: ->blkd_tasks", __func__);
824 	i = 0;
825 	list_for_each(lhp, &rnp->blkd_tasks) {
826 		pr_cont(" %p", lhp);
827 		if (++i >= ncheck)
828 			break;
829 	}
830 	pr_cont("\n");
831 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
832 		rdp = per_cpu_ptr(&rcu_data, cpu);
833 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
834 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
835 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
836 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
837 	}
838 }
839 
rcu_preempt_deferred_qs_init(struct rcu_data * rdp)840 static void rcu_preempt_deferred_qs_init(struct rcu_data *rdp)
841 {
842 	rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(rcu_preempt_deferred_qs_handler);
843 }
844 #else /* #ifdef CONFIG_PREEMPT_RCU */
845 
846 /*
847  * If strict grace periods are enabled, and if the calling
848  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
849  * report that quiescent state and, if requested, spin for a bit.
850  */
rcu_read_unlock_strict(void)851 void rcu_read_unlock_strict(void)
852 {
853 	struct rcu_data *rdp;
854 
855 	if (irqs_disabled() || in_atomic_preempt_off() || !rcu_state.gp_kthread)
856 		return;
857 
858 	/*
859 	 * rcu_report_qs_rdp() can only be invoked with a stable rdp and
860 	 * from the local CPU.
861 	 *
862 	 * The in_atomic_preempt_off() check ensures that we come here holding
863 	 * the last preempt_count (which will get dropped once we return to
864 	 * __rcu_read_unlock().
865 	 */
866 	rdp = this_cpu_ptr(&rcu_data);
867 	rdp->cpu_no_qs.b.norm = false;
868 	rcu_report_qs_rdp(rdp);
869 	udelay(rcu_unlock_delay);
870 }
871 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
872 
873 /*
874  * Tell them what RCU they are running.
875  */
rcu_bootup_announce(void)876 static void __init rcu_bootup_announce(void)
877 {
878 	pr_info("Hierarchical RCU implementation.\n");
879 	rcu_bootup_announce_oddness();
880 }
881 
882 /*
883  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
884  * how many quiescent states passed, just if there was at least one since
885  * the start of the grace period, this just sets a flag.  The caller must
886  * have disabled preemption.
887  */
rcu_qs(void)888 static void rcu_qs(void)
889 {
890 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
891 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
892 		return;
893 	trace_rcu_grace_period(TPS("rcu_sched"),
894 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
895 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
896 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
897 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
898 }
899 
900 /*
901  * Register an urgently needed quiescent state.  If there is an
902  * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
903  * dyntick-idle quiescent state visible to other CPUs, which will in
904  * some cases serve for expedited as well as normal grace periods.
905  * Either way, register a lightweight quiescent state.
906  */
rcu_all_qs(void)907 void rcu_all_qs(void)
908 {
909 	unsigned long flags;
910 
911 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
912 		return;
913 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
914 	/* Load rcu_urgent_qs before other flags. */
915 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
916 		preempt_enable();
917 		return;
918 	}
919 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
920 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
921 		local_irq_save(flags);
922 		rcu_momentary_eqs();
923 		local_irq_restore(flags);
924 	}
925 	rcu_qs();
926 	preempt_enable();
927 }
928 EXPORT_SYMBOL_GPL(rcu_all_qs);
929 
930 /*
931  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
932  */
rcu_note_context_switch(bool preempt)933 void rcu_note_context_switch(bool preempt)
934 {
935 	trace_rcu_utilization(TPS("Start context switch"));
936 	rcu_qs();
937 	/* Load rcu_urgent_qs before other flags. */
938 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
939 		goto out;
940 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
941 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
942 		rcu_momentary_eqs();
943 out:
944 	rcu_tasks_qs(current, preempt);
945 	trace_rcu_utilization(TPS("End context switch"));
946 }
947 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
948 
949 /*
950  * Because preemptible RCU does not exist, there are never any preempted
951  * RCU readers.
952  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)953 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
954 {
955 	return 0;
956 }
957 
958 /*
959  * Because there is no preemptible RCU, there can be no readers blocked.
960  */
rcu_preempt_has_tasks(struct rcu_node * rnp)961 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
962 {
963 	return false;
964 }
965 
966 /*
967  * Because there is no preemptible RCU, there can be no deferred quiescent
968  * states.
969  */
rcu_preempt_need_deferred_qs(struct task_struct * t)970 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
971 {
972 	return false;
973 }
974 
975 // Except that we do need to respond to a request by an expedited
976 // grace period for a quiescent state from this CPU.  Note that in
977 // non-preemptible kernels, there can be no context switches within RCU
978 // read-side critical sections, which in turn means that the leaf rcu_node
979 // structure's blocked-tasks list is always empty.  is therefore no need to
980 // actually check it.  Instead, a quiescent state from this CPU suffices,
981 // and this function is only called from such a quiescent state.
rcu_preempt_deferred_qs(struct task_struct * t)982 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
983 {
984 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
985 
986 	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
987 		rcu_report_exp_rdp(rdp);
988 }
989 
990 /*
991  * Because there is no preemptible RCU, there can be no readers blocked,
992  * so there is no need to check for blocked tasks.  So check only for
993  * bogus qsmask values.
994  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)995 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
996 {
997 	WARN_ON_ONCE(rnp->qsmask);
998 }
999 
1000 /*
1001  * Check to see if this CPU is in a non-context-switch quiescent state,
1002  * namely user mode and idle loop.
1003  */
rcu_flavor_sched_clock_irq(int user)1004 static void rcu_flavor_sched_clock_irq(int user)
1005 {
1006 	if (user || rcu_is_cpu_rrupt_from_idle() ||
1007 	     (IS_ENABLED(CONFIG_PREEMPT_COUNT) &&
1008 	      (preempt_count() == HARDIRQ_OFFSET))) {
1009 
1010 		/*
1011 		 * Get here if this CPU took its interrupt from user
1012 		 * mode, from the idle loop without this being a nested
1013 		 * interrupt, or while not holding the task preempt count
1014 		 * (with PREEMPT_COUNT=y). In this case, the CPU is in a
1015 		 * quiescent state, so note it.
1016 		 *
1017 		 * No memory barrier is required here because rcu_qs()
1018 		 * references only CPU-local variables that other CPUs
1019 		 * neither access nor modify, at least not while the
1020 		 * corresponding CPU is online.
1021 		 */
1022 		rcu_qs();
1023 	}
1024 }
1025 
1026 /*
1027  * Because preemptible RCU does not exist, tasks cannot possibly exit
1028  * while in preemptible RCU read-side critical sections.
1029  */
exit_rcu(void)1030 void exit_rcu(void)
1031 {
1032 }
1033 
1034 /*
1035  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1036  */
1037 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)1038 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1039 {
1040 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1041 }
1042 
rcu_preempt_deferred_qs_init(struct rcu_data * rdp)1043 static void rcu_preempt_deferred_qs_init(struct rcu_data *rdp) { }
1044 
1045 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1046 
1047 /*
1048  * If boosting, set rcuc kthreads to realtime priority.
1049  */
rcu_cpu_kthread_setup(unsigned int cpu)1050 static void rcu_cpu_kthread_setup(unsigned int cpu)
1051 {
1052 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1053 #ifdef CONFIG_RCU_BOOST
1054 	struct sched_param sp;
1055 
1056 	sp.sched_priority = kthread_prio;
1057 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1058 #endif /* #ifdef CONFIG_RCU_BOOST */
1059 
1060 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1061 }
1062 
rcu_is_callbacks_nocb_kthread(struct rcu_data * rdp)1063 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1064 {
1065 #ifdef CONFIG_RCU_NOCB_CPU
1066 	return rdp->nocb_cb_kthread == current;
1067 #else
1068 	return false;
1069 #endif
1070 }
1071 
1072 /*
1073  * Is the current CPU running the RCU-callbacks kthread?
1074  * Caller must have preemption disabled.
1075  */
rcu_is_callbacks_kthread(struct rcu_data * rdp)1076 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1077 {
1078 	return rdp->rcu_cpu_kthread_task == current ||
1079 			rcu_is_callbacks_nocb_kthread(rdp);
1080 }
1081 
1082 #ifdef CONFIG_RCU_BOOST
1083 
1084 /*
1085  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1086  * or ->boost_tasks, advancing the pointer to the next task in the
1087  * ->blkd_tasks list.
1088  *
1089  * Note that irqs must be enabled: boosting the task can block.
1090  * Returns 1 if there are more tasks needing to be boosted.
1091  */
rcu_boost(struct rcu_node * rnp)1092 static int rcu_boost(struct rcu_node *rnp)
1093 {
1094 	unsigned long flags;
1095 	struct task_struct *t;
1096 	struct list_head *tb;
1097 
1098 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1099 	    READ_ONCE(rnp->boost_tasks) == NULL)
1100 		return 0;  /* Nothing left to boost. */
1101 
1102 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1103 
1104 	/*
1105 	 * Recheck under the lock: all tasks in need of boosting
1106 	 * might exit their RCU read-side critical sections on their own.
1107 	 */
1108 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1109 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1110 		return 0;
1111 	}
1112 
1113 	/*
1114 	 * Preferentially boost tasks blocking expedited grace periods.
1115 	 * This cannot starve the normal grace periods because a second
1116 	 * expedited grace period must boost all blocked tasks, including
1117 	 * those blocking the pre-existing normal grace period.
1118 	 */
1119 	if (rnp->exp_tasks != NULL)
1120 		tb = rnp->exp_tasks;
1121 	else
1122 		tb = rnp->boost_tasks;
1123 
1124 	/*
1125 	 * We boost task t by manufacturing an rt_mutex that appears to
1126 	 * be held by task t.  We leave a pointer to that rt_mutex where
1127 	 * task t can find it, and task t will release the mutex when it
1128 	 * exits its outermost RCU read-side critical section.  Then
1129 	 * simply acquiring this artificial rt_mutex will boost task
1130 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1131 	 *
1132 	 * Note that task t must acquire rnp->lock to remove itself from
1133 	 * the ->blkd_tasks list, which it will do from exit() if from
1134 	 * nowhere else.  We therefore are guaranteed that task t will
1135 	 * stay around at least until we drop rnp->lock.  Note that
1136 	 * rnp->lock also resolves races between our priority boosting
1137 	 * and task t's exiting its outermost RCU read-side critical
1138 	 * section.
1139 	 */
1140 	t = container_of(tb, struct task_struct, rcu_node_entry);
1141 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1142 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1143 	/* Lock only for side effect: boosts task t's priority. */
1144 	rt_mutex_lock(&rnp->boost_mtx);
1145 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1146 	rnp->n_boosts++;
1147 
1148 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1149 	       READ_ONCE(rnp->boost_tasks) != NULL;
1150 }
1151 
1152 /*
1153  * Priority-boosting kthread, one per leaf rcu_node.
1154  */
rcu_boost_kthread(void * arg)1155 static int rcu_boost_kthread(void *arg)
1156 {
1157 	struct rcu_node *rnp = (struct rcu_node *)arg;
1158 	int spincnt = 0;
1159 	int more2boost;
1160 
1161 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1162 	for (;;) {
1163 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1164 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1165 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1166 			 READ_ONCE(rnp->exp_tasks));
1167 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1168 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1169 		more2boost = rcu_boost(rnp);
1170 		if (more2boost)
1171 			spincnt++;
1172 		else
1173 			spincnt = 0;
1174 		if (spincnt > 10) {
1175 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1176 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1177 			schedule_timeout_idle(2);
1178 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1179 			spincnt = 0;
1180 		}
1181 	}
1182 	/* NOTREACHED */
1183 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Check to see if it is time to start boosting RCU readers that are
1189  * blocking the current grace period, and, if so, tell the per-rcu_node
1190  * kthread to start boosting them.  If there is an expedited grace
1191  * period in progress, it is always time to boost.
1192  *
1193  * The caller must hold rnp->lock, which this function releases.
1194  * The ->boost_kthread_task is immortal, so we don't need to worry
1195  * about it going away.
1196  */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1197 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198 	__releases(rnp->lock)
1199 {
1200 	raw_lockdep_assert_held_rcu_node(rnp);
1201 	if (!rnp->boost_kthread_task ||
1202 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1203 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1204 		return;
1205 	}
1206 	if (rnp->exp_tasks != NULL ||
1207 	    (rnp->gp_tasks != NULL &&
1208 	     rnp->boost_tasks == NULL &&
1209 	     rnp->qsmask == 0 &&
1210 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1211 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1212 		if (rnp->exp_tasks == NULL)
1213 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1214 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1215 		rcu_wake_cond(rnp->boost_kthread_task,
1216 			      READ_ONCE(rnp->boost_kthread_status));
1217 	} else {
1218 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 	}
1220 }
1221 
1222 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1223 
1224 /*
1225  * Do priority-boost accounting for the start of a new grace period.
1226  */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1227 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1228 {
1229 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1230 }
1231 
1232 /*
1233  * Create an RCU-boost kthread for the specified node if one does not
1234  * already exist.  We only create this kthread for preemptible RCU.
1235  */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1236 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1237 {
1238 	unsigned long flags;
1239 	int rnp_index = rnp - rcu_get_root();
1240 	struct sched_param sp;
1241 	struct task_struct *t;
1242 
1243 	if (rnp->boost_kthread_task)
1244 		return;
1245 
1246 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1247 			   "rcub/%d", rnp_index);
1248 	if (WARN_ON_ONCE(IS_ERR(t)))
1249 		return;
1250 
1251 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1252 	rnp->boost_kthread_task = t;
1253 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1254 	sp.sched_priority = kthread_prio;
1255 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1256 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1257 }
1258 
rcu_boost_task(struct rcu_node * rnp)1259 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1260 {
1261 	return READ_ONCE(rnp->boost_kthread_task);
1262 }
1263 
1264 #else /* #ifdef CONFIG_RCU_BOOST */
1265 
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1266 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267 	__releases(rnp->lock)
1268 {
1269 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270 }
1271 
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1272 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1273 {
1274 }
1275 
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1276 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1277 {
1278 }
1279 
rcu_boost_task(struct rcu_node * rnp)1280 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1281 {
1282 	return NULL;
1283 }
1284 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1285 
1286 /*
1287  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1288  * grace-period kthread will do force_quiescent_state() processing?
1289  * The idea is to avoid waking up RCU core processing on such a
1290  * CPU unless the grace period has extended for too long.
1291  *
1292  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1293  * RCU_NOCB_CPU CPUs.
1294  */
rcu_nohz_full_cpu(void)1295 static bool rcu_nohz_full_cpu(void)
1296 {
1297 #ifdef CONFIG_NO_HZ_FULL
1298 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1299 	    (!rcu_gp_in_progress() ||
1300 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1301 		return true;
1302 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1303 	return false;
1304 }
1305 
1306 /*
1307  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1308  */
rcu_bind_gp_kthread(void)1309 static void rcu_bind_gp_kthread(void)
1310 {
1311 	if (!tick_nohz_full_enabled())
1312 		return;
1313 	housekeeping_affine(current, HK_TYPE_RCU);
1314 }
1315