• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef _UAPIVFIO_H
13 #define _UAPIVFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 
18 #define VFIO_API_VERSION	0
19 
20 
21 /* Kernel & User level defines for VFIO IOCTLs. */
22 
23 /* Extensions */
24 
25 #define VFIO_TYPE1_IOMMU		1
26 #define VFIO_SPAPR_TCE_IOMMU		2
27 #define VFIO_TYPE1v2_IOMMU		3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU		4
33 
34 /* Check if EEH is supported */
35 #define VFIO_EEH			5
36 
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39 
40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
41 
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU		8
48 
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL			9
51 
52 /*
53  * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
54  * devices, so this capability is subject to change as groups are added or
55  * removed.
56  */
57 #define VFIO_UPDATE_VADDR		10
58 
59 /*
60  * pKVM can control IOMMUs (first-stage) instead of the kernel to enforce
61  * DMA protection for guests.
62  * In this case, pKVM can provide a para-virtualized interface for the kernel
63  * and for guests to program the IOMMU, where it will ensure that no VM can
64  * access other VM data.
65  * This allows the guest to have access to program it's IOMMU compared to
66  * VFIO_TYPE1v2_IOMMU which program. the IOMMU from the host and leave the
67  * VM with no control over its DMA
68  */
69 #define VFIO_PKVM_IOMMU			30
70 
71 /*
72  * The IOCTL interface is designed for extensibility by embedding the
73  * structure length (argsz) and flags into structures passed between
74  * kernel and userspace.  We therefore use the _IO() macro for these
75  * defines to avoid implicitly embedding a size into the ioctl request.
76  * As structure fields are added, argsz will increase to match and flag
77  * bits will be defined to indicate additional fields with valid data.
78  * It's *always* the caller's responsibility to indicate the size of
79  * the structure passed by setting argsz appropriately.
80  */
81 
82 #define VFIO_TYPE	(';')
83 #define VFIO_BASE	100
84 
85 /*
86  * For extension of INFO ioctls, VFIO makes use of a capability chain
87  * designed after PCI/e capabilities.  A flag bit indicates whether
88  * this capability chain is supported and a field defined in the fixed
89  * structure defines the offset of the first capability in the chain.
90  * This field is only valid when the corresponding bit in the flags
91  * bitmap is set.  This offset field is relative to the start of the
92  * INFO buffer, as is the next field within each capability header.
93  * The id within the header is a shared address space per INFO ioctl,
94  * while the version field is specific to the capability id.  The
95  * contents following the header are specific to the capability id.
96  */
97 struct vfio_info_cap_header {
98 	__u16	id;		/* Identifies capability */
99 	__u16	version;	/* Version specific to the capability ID */
100 	__u32	next;		/* Offset of next capability */
101 };
102 
103 /*
104  * Callers of INFO ioctls passing insufficiently sized buffers will see
105  * the capability chain flag bit set, a zero value for the first capability
106  * offset (if available within the provided argsz), and argsz will be
107  * updated to report the necessary buffer size.  For compatibility, the
108  * INFO ioctl will not report error in this case, but the capability chain
109  * will not be available.
110  */
111 
112 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
113 
114 /**
115  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
116  *
117  * Report the version of the VFIO API.  This allows us to bump the entire
118  * API version should we later need to add or change features in incompatible
119  * ways.
120  * Return: VFIO_API_VERSION
121  * Availability: Always
122  */
123 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
124 
125 /**
126  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
127  *
128  * Check whether an extension is supported.
129  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
130  * Availability: Always
131  */
132 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
133 
134 /**
135  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
136  *
137  * Set the iommu to the given type.  The type must be supported by an
138  * iommu driver as verified by calling CHECK_EXTENSION using the same
139  * type.  A group must be set to this file descriptor before this
140  * ioctl is available.  The IOMMU interfaces enabled by this call are
141  * specific to the value set.
142  * Return: 0 on success, -errno on failure
143  * Availability: When VFIO group attached
144  */
145 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
146 
147 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
148 
149 /**
150  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
151  *						struct vfio_group_status)
152  *
153  * Retrieve information about the group.  Fills in provided
154  * struct vfio_group_info.  Caller sets argsz.
155  * Return: 0 on succes, -errno on failure.
156  * Availability: Always
157  */
158 struct vfio_group_status {
159 	__u32	argsz;
160 	__u32	flags;
161 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
162 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
163 };
164 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
165 
166 /**
167  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
168  *
169  * Set the container for the VFIO group to the open VFIO file
170  * descriptor provided.  Groups may only belong to a single
171  * container.  Containers may, at their discretion, support multiple
172  * groups.  Only when a container is set are all of the interfaces
173  * of the VFIO file descriptor and the VFIO group file descriptor
174  * available to the user.
175  * Return: 0 on success, -errno on failure.
176  * Availability: Always
177  */
178 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
179 
180 /**
181  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
182  *
183  * Remove the group from the attached container.  This is the
184  * opposite of the SET_CONTAINER call and returns the group to
185  * an initial state.  All device file descriptors must be released
186  * prior to calling this interface.  When removing the last group
187  * from a container, the IOMMU will be disabled and all state lost,
188  * effectively also returning the VFIO file descriptor to an initial
189  * state.
190  * Return: 0 on success, -errno on failure.
191  * Availability: When attached to container
192  */
193 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
194 
195 /**
196  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
197  *
198  * Return a new file descriptor for the device object described by
199  * the provided string.  The string should match a device listed in
200  * the devices subdirectory of the IOMMU group sysfs entry.  The
201  * group containing the device must already be added to this context.
202  * Return: new file descriptor on success, -errno on failure.
203  * Availability: When attached to container
204  */
205 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
206 
207 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
208 
209 /**
210  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
211  *						struct vfio_device_info)
212  *
213  * Retrieve information about the device.  Fills in provided
214  * struct vfio_device_info.  Caller sets argsz.
215  * Return: 0 on success, -errno on failure.
216  */
217 struct vfio_device_info {
218 	__u32	argsz;
219 	__u32	flags;
220 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
221 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
222 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
223 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
224 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
225 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
226 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
227 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
228 #define VFIO_DEVICE_FLAGS_CDX	(1 << 8)	/* vfio-cdx device */
229 	__u32	num_regions;	/* Max region index + 1 */
230 	__u32	num_irqs;	/* Max IRQ index + 1 */
231 	__u32   cap_offset;	/* Offset within info struct of first cap */
232 	__u32   pad;
233 };
234 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
235 
236 /*
237  * Vendor driver using Mediated device framework should provide device_api
238  * attribute in supported type attribute groups. Device API string should be one
239  * of the following corresponding to device flags in vfio_device_info structure.
240  */
241 
242 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
243 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
244 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
245 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
246 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
247 
248 /*
249  * The following capabilities are unique to s390 zPCI devices.  Their contents
250  * are further-defined in vfio_zdev.h
251  */
252 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
253 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
254 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
255 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
256 
257 /*
258  * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
259  * completion to the root bus with supported widths provided via flags.
260  */
261 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP	5
262 struct vfio_device_info_cap_pci_atomic_comp {
263 	struct vfio_info_cap_header header;
264 	__u32 flags;
265 #define VFIO_PCI_ATOMIC_COMP32	(1 << 0)
266 #define VFIO_PCI_ATOMIC_COMP64	(1 << 1)
267 #define VFIO_PCI_ATOMIC_COMP128	(1 << 2)
268 	__u32 reserved;
269 };
270 
271 /**
272  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
273  *				       struct vfio_region_info)
274  *
275  * Retrieve information about a device region.  Caller provides
276  * struct vfio_region_info with index value set.  Caller sets argsz.
277  * Implementation of region mapping is bus driver specific.  This is
278  * intended to describe MMIO, I/O port, as well as bus specific
279  * regions (ex. PCI config space).  Zero sized regions may be used
280  * to describe unimplemented regions (ex. unimplemented PCI BARs).
281  * Return: 0 on success, -errno on failure.
282  */
283 struct vfio_region_info {
284 	__u32	argsz;
285 	__u32	flags;
286 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
287 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
288 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
289 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
290 	__u32	index;		/* Region index */
291 	__u32	cap_offset;	/* Offset within info struct of first cap */
292 	__aligned_u64	size;	/* Region size (bytes) */
293 	__aligned_u64	offset;	/* Region offset from start of device fd */
294 };
295 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
296 
297 /*
298  * The sparse mmap capability allows finer granularity of specifying areas
299  * within a region with mmap support.  When specified, the user should only
300  * mmap the offset ranges specified by the areas array.  mmaps outside of the
301  * areas specified may fail (such as the range covering a PCI MSI-X table) or
302  * may result in improper device behavior.
303  *
304  * The structures below define version 1 of this capability.
305  */
306 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
307 
308 struct vfio_region_sparse_mmap_area {
309 	__aligned_u64	offset;	/* Offset of mmap'able area within region */
310 	__aligned_u64	size;	/* Size of mmap'able area */
311 };
312 
313 struct vfio_region_info_cap_sparse_mmap {
314 	struct vfio_info_cap_header header;
315 	__u32	nr_areas;
316 	__u32	reserved;
317 	struct vfio_region_sparse_mmap_area areas[];
318 };
319 
320 /*
321  * The device specific type capability allows regions unique to a specific
322  * device or class of devices to be exposed.  This helps solve the problem for
323  * vfio bus drivers of defining which region indexes correspond to which region
324  * on the device, without needing to resort to static indexes, as done by
325  * vfio-pci.  For instance, if we were to go back in time, we might remove
326  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
327  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
328  * make a "VGA" device specific type to describe the VGA access space.  This
329  * means that non-VGA devices wouldn't need to waste this index, and thus the
330  * address space associated with it due to implementation of device file
331  * descriptor offsets in vfio-pci.
332  *
333  * The current implementation is now part of the user ABI, so we can't use this
334  * for VGA, but there are other upcoming use cases, such as opregions for Intel
335  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
336  * use this for future additions.
337  *
338  * The structure below defines version 1 of this capability.
339  */
340 #define VFIO_REGION_INFO_CAP_TYPE	2
341 
342 struct vfio_region_info_cap_type {
343 	struct vfio_info_cap_header header;
344 	__u32 type;	/* global per bus driver */
345 	__u32 subtype;	/* type specific */
346 };
347 
348 /*
349  * List of region types, global per bus driver.
350  * If you introduce a new type, please add it here.
351  */
352 
353 /* PCI region type containing a PCI vendor part */
354 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
355 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
356 #define VFIO_REGION_TYPE_GFX                    (1)
357 #define VFIO_REGION_TYPE_CCW			(2)
358 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
359 
360 /* sub-types for VFIO_REGION_TYPE_PCI_* */
361 
362 /* 8086 vendor PCI sub-types */
363 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
364 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
365 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
366 
367 /* 10de vendor PCI sub-types */
368 /*
369  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
370  *
371  * Deprecated, region no longer provided
372  */
373 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
374 
375 /* 1014 vendor PCI sub-types */
376 /*
377  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
378  * to do TLB invalidation on a GPU.
379  *
380  * Deprecated, region no longer provided
381  */
382 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
383 
384 /* sub-types for VFIO_REGION_TYPE_GFX */
385 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
386 
387 /**
388  * struct vfio_region_gfx_edid - EDID region layout.
389  *
390  * Set display link state and EDID blob.
391  *
392  * The EDID blob has monitor information such as brand, name, serial
393  * number, physical size, supported video modes and more.
394  *
395  * This special region allows userspace (typically qemu) set a virtual
396  * EDID for the virtual monitor, which allows a flexible display
397  * configuration.
398  *
399  * For the edid blob spec look here:
400  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
401  *
402  * On linux systems you can find the EDID blob in sysfs:
403  *    /sys/class/drm/${card}/${connector}/edid
404  *
405  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
406  * decode the EDID blob.
407  *
408  * @edid_offset: location of the edid blob, relative to the
409  *               start of the region (readonly).
410  * @edid_max_size: max size of the edid blob (readonly).
411  * @edid_size: actual edid size (read/write).
412  * @link_state: display link state (read/write).
413  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
414  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
415  * @max_xres: max display width (0 == no limitation, readonly).
416  * @max_yres: max display height (0 == no limitation, readonly).
417  *
418  * EDID update protocol:
419  *   (1) set link-state to down.
420  *   (2) update edid blob and size.
421  *   (3) set link-state to up.
422  */
423 struct vfio_region_gfx_edid {
424 	__u32 edid_offset;
425 	__u32 edid_max_size;
426 	__u32 edid_size;
427 	__u32 max_xres;
428 	__u32 max_yres;
429 	__u32 link_state;
430 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
431 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
432 };
433 
434 /* sub-types for VFIO_REGION_TYPE_CCW */
435 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
436 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
437 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
438 
439 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
440 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
441 
442 struct vfio_device_migration_info {
443 	__u32 device_state;         /* VFIO device state */
444 #define VFIO_DEVICE_STATE_V1_STOP      (0)
445 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
446 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
447 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
448 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
449 				     VFIO_DEVICE_STATE_V1_SAVING |  \
450 				     VFIO_DEVICE_STATE_V1_RESUMING)
451 
452 #define VFIO_DEVICE_STATE_VALID(state) \
453 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
454 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
455 
456 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
457 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
458 					      VFIO_DEVICE_STATE_V1_RESUMING))
459 
460 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
461 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
462 					     VFIO_DEVICE_STATE_V1_RESUMING)
463 
464 	__u32 reserved;
465 	__aligned_u64 pending_bytes;
466 	__aligned_u64 data_offset;
467 	__aligned_u64 data_size;
468 };
469 
470 /*
471  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
472  * which allows direct access to non-MSIX registers which happened to be within
473  * the same system page.
474  *
475  * Even though the userspace gets direct access to the MSIX data, the existing
476  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
477  */
478 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
479 
480 /*
481  * Capability with compressed real address (aka SSA - small system address)
482  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
483  * and by the userspace to associate a NVLink bridge with a GPU.
484  *
485  * Deprecated, capability no longer provided
486  */
487 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
488 
489 struct vfio_region_info_cap_nvlink2_ssatgt {
490 	struct vfio_info_cap_header header;
491 	__aligned_u64 tgt;
492 };
493 
494 /*
495  * Capability with an NVLink link speed. The value is read by
496  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
497  * property in the device tree. The value is fixed in the hardware
498  * and failing to provide the correct value results in the link
499  * not working with no indication from the driver why.
500  *
501  * Deprecated, capability no longer provided
502  */
503 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
504 
505 struct vfio_region_info_cap_nvlink2_lnkspd {
506 	struct vfio_info_cap_header header;
507 	__u32 link_speed;
508 	__u32 __pad;
509 };
510 
511 /**
512  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
513  *				    struct vfio_irq_info)
514  *
515  * Retrieve information about a device IRQ.  Caller provides
516  * struct vfio_irq_info with index value set.  Caller sets argsz.
517  * Implementation of IRQ mapping is bus driver specific.  Indexes
518  * using multiple IRQs are primarily intended to support MSI-like
519  * interrupt blocks.  Zero count irq blocks may be used to describe
520  * unimplemented interrupt types.
521  *
522  * The EVENTFD flag indicates the interrupt index supports eventfd based
523  * signaling.
524  *
525  * The MASKABLE flags indicates the index supports MASK and UNMASK
526  * actions described below.
527  *
528  * AUTOMASKED indicates that after signaling, the interrupt line is
529  * automatically masked by VFIO and the user needs to unmask the line
530  * to receive new interrupts.  This is primarily intended to distinguish
531  * level triggered interrupts.
532  *
533  * The NORESIZE flag indicates that the interrupt lines within the index
534  * are setup as a set and new subindexes cannot be enabled without first
535  * disabling the entire index.  This is used for interrupts like PCI MSI
536  * and MSI-X where the driver may only use a subset of the available
537  * indexes, but VFIO needs to enable a specific number of vectors
538  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
539  * then add and unmask vectors, it's up to userspace to make the decision
540  * whether to allocate the maximum supported number of vectors or tear
541  * down setup and incrementally increase the vectors as each is enabled.
542  * Absence of the NORESIZE flag indicates that vectors can be enabled
543  * and disabled dynamically without impacting other vectors within the
544  * index.
545  */
546 struct vfio_irq_info {
547 	__u32	argsz;
548 	__u32	flags;
549 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
550 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
551 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
552 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
553 	__u32	index;		/* IRQ index */
554 	__u32	count;		/* Number of IRQs within this index */
555 };
556 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
557 
558 /**
559  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
560  *
561  * Set signaling, masking, and unmasking of interrupts.  Caller provides
562  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
563  * the range of subindexes being specified.
564  *
565  * The DATA flags specify the type of data provided.  If DATA_NONE, the
566  * operation performs the specified action immediately on the specified
567  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
568  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
569  *
570  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
571  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
572  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
573  * data = {1,0,1}
574  *
575  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
576  * A value of -1 can be used to either de-assign interrupts if already
577  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
578  * to be trigger for interrupts [0,0] and [0,2]:
579  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
580  * data = {fd1, -1, fd2}
581  * If index [0,1] is previously set, two count = 1 ioctls calls would be
582  * required to set [0,0] and [0,2] without changing [0,1].
583  *
584  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
585  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
586  * from userspace (ie. simulate hardware triggering).
587  *
588  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
589  * enables the interrupt index for the device.  Individual subindex interrupts
590  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
591  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
592  *
593  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
594  * ACTION_TRIGGER specifies kernel->user signaling.
595  */
596 struct vfio_irq_set {
597 	__u32	argsz;
598 	__u32	flags;
599 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
600 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
601 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
602 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
603 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
604 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
605 	__u32	index;
606 	__u32	start;
607 	__u32	count;
608 	__u8	data[];
609 };
610 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
611 
612 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
613 					 VFIO_IRQ_SET_DATA_BOOL | \
614 					 VFIO_IRQ_SET_DATA_EVENTFD)
615 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
616 					 VFIO_IRQ_SET_ACTION_UNMASK | \
617 					 VFIO_IRQ_SET_ACTION_TRIGGER)
618 /**
619  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
620  *
621  * Reset a device.
622  */
623 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
624 
625 /*
626  * The VFIO-PCI bus driver makes use of the following fixed region and
627  * IRQ index mapping.  Unimplemented regions return a size of zero.
628  * Unimplemented IRQ types return a count of zero.
629  */
630 
631 enum {
632 	VFIO_PCI_BAR0_REGION_INDEX,
633 	VFIO_PCI_BAR1_REGION_INDEX,
634 	VFIO_PCI_BAR2_REGION_INDEX,
635 	VFIO_PCI_BAR3_REGION_INDEX,
636 	VFIO_PCI_BAR4_REGION_INDEX,
637 	VFIO_PCI_BAR5_REGION_INDEX,
638 	VFIO_PCI_ROM_REGION_INDEX,
639 	VFIO_PCI_CONFIG_REGION_INDEX,
640 	/*
641 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
642 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
643 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
644 	 * range is found at it's identity mapped offset from the region
645 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
646 	 * between described ranges are unimplemented.
647 	 */
648 	VFIO_PCI_VGA_REGION_INDEX,
649 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
650 				 /* device specific cap to define content. */
651 };
652 
653 enum {
654 	VFIO_PCI_INTX_IRQ_INDEX,
655 	VFIO_PCI_MSI_IRQ_INDEX,
656 	VFIO_PCI_MSIX_IRQ_INDEX,
657 	VFIO_PCI_ERR_IRQ_INDEX,
658 	VFIO_PCI_REQ_IRQ_INDEX,
659 	VFIO_PCI_NUM_IRQS
660 };
661 
662 /*
663  * The vfio-ccw bus driver makes use of the following fixed region and
664  * IRQ index mapping. Unimplemented regions return a size of zero.
665  * Unimplemented IRQ types return a count of zero.
666  */
667 
668 enum {
669 	VFIO_CCW_CONFIG_REGION_INDEX,
670 	VFIO_CCW_NUM_REGIONS
671 };
672 
673 enum {
674 	VFIO_CCW_IO_IRQ_INDEX,
675 	VFIO_CCW_CRW_IRQ_INDEX,
676 	VFIO_CCW_REQ_IRQ_INDEX,
677 	VFIO_CCW_NUM_IRQS
678 };
679 
680 /*
681  * The vfio-ap bus driver makes use of the following IRQ index mapping.
682  * Unimplemented IRQ types return a count of zero.
683  */
684 enum {
685 	VFIO_AP_REQ_IRQ_INDEX,
686 	VFIO_AP_NUM_IRQS
687 };
688 
689 /**
690  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
691  *					      struct vfio_pci_hot_reset_info)
692  *
693  * This command is used to query the affected devices in the hot reset for
694  * a given device.
695  *
696  * This command always reports the segment, bus, and devfn information for
697  * each affected device, and selectively reports the group_id or devid per
698  * the way how the calling device is opened.
699  *
700  *	- If the calling device is opened via the traditional group/container
701  *	  API, group_id is reported.  User should check if it has owned all
702  *	  the affected devices and provides a set of group fds to prove the
703  *	  ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl.
704  *
705  *	- If the calling device is opened as a cdev, devid is reported.
706  *	  Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this
707  *	  data type.  All the affected devices should be represented in
708  *	  the dev_set, ex. bound to a vfio driver, and also be owned by
709  *	  this interface which is determined by the following conditions:
710  *	  1) Has a valid devid within the iommufd_ctx of the calling device.
711  *	     Ownership cannot be determined across separate iommufd_ctx and
712  *	     the cdev calling conventions do not support a proof-of-ownership
713  *	     model as provided in the legacy group interface.  In this case
714  *	     valid devid with value greater than zero is provided in the return
715  *	     structure.
716  *	  2) Does not have a valid devid within the iommufd_ctx of the calling
717  *	     device, but belongs to the same IOMMU group as the calling device
718  *	     or another opened device that has a valid devid within the
719  *	     iommufd_ctx of the calling device.  This provides implicit ownership
720  *	     for devices within the same DMA isolation context.  In this case
721  *	     the devid value of VFIO_PCI_DEVID_OWNED is provided in the return
722  *	     structure.
723  *
724  *	  A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return
725  *	  structure for affected devices where device is NOT represented in the
726  *	  dev_set or ownership is not available.  Such devices prevent the use
727  *	  of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership
728  *	  calling conventions (ie. via legacy group accessed devices).  Flag
729  *	  VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the
730  *	  affected devices are represented in the dev_set and also owned by
731  *	  the user.  This flag is available only when
732  *	  flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved.
733  *	  When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero
734  *	  length fd array on the calling device as the ownership is validated
735  *	  by iommufd_ctx.
736  *
737  * Return: 0 on success, -errno on failure:
738  *	-enospc = insufficient buffer, -enodev = unsupported for device.
739  */
740 struct vfio_pci_dependent_device {
741 	union {
742 		__u32   group_id;
743 		__u32	devid;
744 #define VFIO_PCI_DEVID_OWNED		0
745 #define VFIO_PCI_DEVID_NOT_OWNED	-1
746 	};
747 	__u16	segment;
748 	__u8	bus;
749 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
750 };
751 
752 struct vfio_pci_hot_reset_info {
753 	__u32	argsz;
754 	__u32	flags;
755 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID		(1 << 0)
756 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED	(1 << 1)
757 	__u32	count;
758 	struct vfio_pci_dependent_device	devices[];
759 };
760 
761 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
762 
763 /**
764  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
765  *				    struct vfio_pci_hot_reset)
766  *
767  * A PCI hot reset results in either a bus or slot reset which may affect
768  * other devices sharing the bus/slot.  The calling user must have
769  * ownership of the full set of affected devices as determined by the
770  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl.
771  *
772  * When called on a device file descriptor acquired through the vfio
773  * group interface, the user is required to provide proof of ownership
774  * of those affected devices via the group_fds array in struct
775  * vfio_pci_hot_reset.
776  *
777  * When called on a direct cdev opened vfio device, the flags field of
778  * struct vfio_pci_hot_reset_info reports the ownership status of the
779  * affected devices and this ioctl must be called with an empty group_fds
780  * array.  See above INFO ioctl definition for ownership requirements.
781  *
782  * Mixed usage of legacy groups and cdevs across the set of affected
783  * devices is not supported.
784  *
785  * Return: 0 on success, -errno on failure.
786  */
787 struct vfio_pci_hot_reset {
788 	__u32	argsz;
789 	__u32	flags;
790 	__u32	count;
791 	__s32	group_fds[];
792 };
793 
794 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
795 
796 /**
797  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
798  *                                    struct vfio_device_query_gfx_plane)
799  *
800  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
801  *
802  * flags supported:
803  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
804  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
805  *   support for dma-buf.
806  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
807  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
808  *   support for region.
809  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
810  *   with each call to query the plane info.
811  * - Others are invalid and return -EINVAL.
812  *
813  * Note:
814  * 1. Plane could be disabled by guest. In that case, success will be
815  *    returned with zero-initialized drm_format, size, width and height
816  *    fields.
817  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
818  *
819  * Return: 0 on success, -errno on other failure.
820  */
821 struct vfio_device_gfx_plane_info {
822 	__u32 argsz;
823 	__u32 flags;
824 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
825 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
826 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
827 	/* in */
828 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
829 	/* out */
830 	__u32 drm_format;	/* drm format of plane */
831 	__aligned_u64 drm_format_mod;   /* tiled mode */
832 	__u32 width;	/* width of plane */
833 	__u32 height;	/* height of plane */
834 	__u32 stride;	/* stride of plane */
835 	__u32 size;	/* size of plane in bytes, align on page*/
836 	__u32 x_pos;	/* horizontal position of cursor plane */
837 	__u32 y_pos;	/* vertical position of cursor plane*/
838 	__u32 x_hot;    /* horizontal position of cursor hotspot */
839 	__u32 y_hot;    /* vertical position of cursor hotspot */
840 	union {
841 		__u32 region_index;	/* region index */
842 		__u32 dmabuf_id;	/* dma-buf id */
843 	};
844 	__u32 reserved;
845 };
846 
847 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
848 
849 /**
850  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
851  *
852  * Return a new dma-buf file descriptor for an exposed guest framebuffer
853  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
854  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
855  */
856 
857 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
858 
859 /**
860  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
861  *                              struct vfio_device_ioeventfd)
862  *
863  * Perform a write to the device at the specified device fd offset, with
864  * the specified data and width when the provided eventfd is triggered.
865  * vfio bus drivers may not support this for all regions, for all widths,
866  * or at all.  vfio-pci currently only enables support for BAR regions,
867  * excluding the MSI-X vector table.
868  *
869  * Return: 0 on success, -errno on failure.
870  */
871 struct vfio_device_ioeventfd {
872 	__u32	argsz;
873 	__u32	flags;
874 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
875 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
876 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
877 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
878 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
879 	__aligned_u64	offset;		/* device fd offset of write */
880 	__aligned_u64	data;		/* data to be written */
881 	__s32	fd;			/* -1 for de-assignment */
882 	__u32	reserved;
883 };
884 
885 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
886 
887 /**
888  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
889  *			       struct vfio_device_feature)
890  *
891  * Get, set, or probe feature data of the device.  The feature is selected
892  * using the FEATURE_MASK portion of the flags field.  Support for a feature
893  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
894  * may optionally include the GET and/or SET bits to determine read vs write
895  * access of the feature respectively.  Probing a feature will return success
896  * if the feature is supported and all of the optionally indicated GET/SET
897  * methods are supported.  The format of the data portion of the structure is
898  * specific to the given feature.  The data portion is not required for
899  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
900  *
901  * Return 0 on success, -errno on failure.
902  */
903 struct vfio_device_feature {
904 	__u32	argsz;
905 	__u32	flags;
906 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
907 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
908 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
909 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
910 	__u8	data[];
911 };
912 
913 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
914 
915 /*
916  * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18,
917  *				   struct vfio_device_bind_iommufd)
918  * @argsz:	 User filled size of this data.
919  * @flags:	 Must be 0.
920  * @iommufd:	 iommufd to bind.
921  * @out_devid:	 The device id generated by this bind. devid is a handle for
922  *		 this device/iommufd bond and can be used in IOMMUFD commands.
923  *
924  * Bind a vfio_device to the specified iommufd.
925  *
926  * User is restricted from accessing the device before the binding operation
927  * is completed.  Only allowed on cdev fds.
928  *
929  * Unbind is automatically conducted when device fd is closed.
930  *
931  * Return: 0 on success, -errno on failure.
932  */
933 struct vfio_device_bind_iommufd {
934 	__u32		argsz;
935 	__u32		flags;
936 	__s32		iommufd;
937 	__u32		out_devid;
938 };
939 
940 #define VFIO_DEVICE_BIND_IOMMUFD	_IO(VFIO_TYPE, VFIO_BASE + 18)
941 
942 /*
943  * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19,
944  *					struct vfio_device_attach_iommufd_pt)
945  * @argsz:	User filled size of this data.
946  * @flags:	Must be 0.
947  * @pt_id:	Input the target id which can represent an ioas or a hwpt
948  *		allocated via iommufd subsystem.
949  *		Output the input ioas id or the attached hwpt id which could
950  *		be the specified hwpt itself or a hwpt automatically created
951  *		for the specified ioas by kernel during the attachment.
952  *
953  * Associate the device with an address space within the bound iommufd.
954  * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close.  This is only
955  * allowed on cdev fds.
956  *
957  * If a vfio device is currently attached to a valid hw_pagetable, without doing
958  * a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl
959  * passing in another hw_pagetable (hwpt) id is allowed. This action, also known
960  * as a hw_pagetable replacement, will replace the device's currently attached
961  * hw_pagetable with a new hw_pagetable corresponding to the given pt_id.
962  *
963  * Return: 0 on success, -errno on failure.
964  */
965 struct vfio_device_attach_iommufd_pt {
966 	__u32	argsz;
967 	__u32	flags;
968 	__u32	pt_id;
969 };
970 
971 #define VFIO_DEVICE_ATTACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 19)
972 
973 /*
974  * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20,
975  *					struct vfio_device_detach_iommufd_pt)
976  * @argsz:	User filled size of this data.
977  * @flags:	Must be 0.
978  *
979  * Remove the association of the device and its current associated address
980  * space.  After it, the device should be in a blocking DMA state.  This is only
981  * allowed on cdev fds.
982  *
983  * Return: 0 on success, -errno on failure.
984  */
985 struct vfio_device_detach_iommufd_pt {
986 	__u32	argsz;
987 	__u32	flags;
988 };
989 
990 #define VFIO_DEVICE_DETACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 20)
991 
992 /*
993  * Provide support for setting a PCI VF Token, which is used as a shared
994  * secret between PF and VF drivers.  This feature may only be set on a
995  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
996  * open VFs.  Data provided when setting this feature is a 16-byte array
997  * (__u8 b[16]), representing a UUID.
998  */
999 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
1000 
1001 /*
1002  * Indicates the device can support the migration API through
1003  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
1004  * ERROR states are always supported. Support for additional states is
1005  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
1006  * set.
1007  *
1008  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
1009  * RESUMING are supported.
1010  *
1011  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
1012  * is supported in addition to the STOP_COPY states.
1013  *
1014  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
1015  * PRE_COPY is supported in addition to the STOP_COPY states.
1016  *
1017  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
1018  * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
1019  * in addition to the STOP_COPY states.
1020  *
1021  * Other combinations of flags have behavior to be defined in the future.
1022  */
1023 struct vfio_device_feature_migration {
1024 	__aligned_u64 flags;
1025 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
1026 #define VFIO_MIGRATION_P2P		(1 << 1)
1027 #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
1028 };
1029 #define VFIO_DEVICE_FEATURE_MIGRATION 1
1030 
1031 /*
1032  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
1033  * device. The new state is supplied in device_state, see enum
1034  * vfio_device_mig_state for details
1035  *
1036  * The kernel migration driver must fully transition the device to the new state
1037  * value before the operation returns to the user.
1038  *
1039  * The kernel migration driver must not generate asynchronous device state
1040  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
1041  * ioctl as described above.
1042  *
1043  * If this function fails then current device_state may be the original
1044  * operating state or some other state along the combination transition path.
1045  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
1046  * to return to the original state, or attempt to return to some other state
1047  * such as RUNNING or STOP.
1048  *
1049  * If the new_state starts a new data transfer session then the FD associated
1050  * with that session is returned in data_fd. The user is responsible to close
1051  * this FD when it is finished. The user must consider the migration data stream
1052  * carried over the FD to be opaque and must preserve the byte order of the
1053  * stream. The user is not required to preserve buffer segmentation when writing
1054  * the data stream during the RESUMING operation.
1055  *
1056  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
1057  * device, data_fd will be -1.
1058  */
1059 struct vfio_device_feature_mig_state {
1060 	__u32 device_state; /* From enum vfio_device_mig_state */
1061 	__s32 data_fd;
1062 };
1063 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
1064 
1065 /*
1066  * The device migration Finite State Machine is described by the enum
1067  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
1068  * transfer session by returning a FD, in this case the migration data will
1069  * flow over the FD using read() and write() as discussed below.
1070  *
1071  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
1072  *  RUNNING - The device is running normally
1073  *  STOP - The device does not change the internal or external state
1074  *  STOP_COPY - The device internal state can be read out
1075  *  RESUMING - The device is stopped and is loading a new internal state
1076  *  ERROR - The device has failed and must be reset
1077  *
1078  * And optional states to support VFIO_MIGRATION_P2P:
1079  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
1080  * And VFIO_MIGRATION_PRE_COPY:
1081  *  PRE_COPY - The device is running normally but tracking internal state
1082  *             changes
1083  * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
1084  *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
1085  *
1086  * The FSM takes actions on the arcs between FSM states. The driver implements
1087  * the following behavior for the FSM arcs:
1088  *
1089  * RUNNING_P2P -> STOP
1090  * STOP_COPY -> STOP
1091  *   While in STOP the device must stop the operation of the device. The device
1092  *   must not generate interrupts, DMA, or any other change to external state.
1093  *   It must not change its internal state. When stopped the device and kernel
1094  *   migration driver must accept and respond to interaction to support external
1095  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
1096  *   Failure by the user to restrict device access while in STOP must not result
1097  *   in error conditions outside the user context (ex. host system faults).
1098  *
1099  *   The STOP_COPY arc will terminate a data transfer session.
1100  *
1101  * RESUMING -> STOP
1102  *   Leaving RESUMING terminates a data transfer session and indicates the
1103  *   device should complete processing of the data delivered by write(). The
1104  *   kernel migration driver should complete the incorporation of data written
1105  *   to the data transfer FD into the device internal state and perform
1106  *   final validity and consistency checking of the new device state. If the
1107  *   user provided data is found to be incomplete, inconsistent, or otherwise
1108  *   invalid, the migration driver must fail the SET_STATE ioctl and
1109  *   optionally go to the ERROR state as described below.
1110  *
1111  *   While in STOP the device has the same behavior as other STOP states
1112  *   described above.
1113  *
1114  *   To abort a RESUMING session the device must be reset.
1115  *
1116  * PRE_COPY -> RUNNING
1117  * RUNNING_P2P -> RUNNING
1118  *   While in RUNNING the device is fully operational, the device may generate
1119  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
1120  *   and the device may advance its internal state.
1121  *
1122  *   The PRE_COPY arc will terminate a data transfer session.
1123  *
1124  * PRE_COPY_P2P -> RUNNING_P2P
1125  * RUNNING -> RUNNING_P2P
1126  * STOP -> RUNNING_P2P
1127  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
1128  *   state defined below.
1129  *
1130  *   The PRE_COPY_P2P arc will terminate a data transfer session.
1131  *
1132  * RUNNING -> PRE_COPY
1133  * RUNNING_P2P -> PRE_COPY_P2P
1134  * STOP -> STOP_COPY
1135  *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
1136  *   which share a data transfer session. Moving between these states alters
1137  *   what is streamed in session, but does not terminate or otherwise affect
1138  *   the associated fd.
1139  *
1140  *   These arcs begin the process of saving the device state and will return a
1141  *   new data_fd. The migration driver may perform actions such as enabling
1142  *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
1143  *
1144  *   Each arc does not change the device operation, the device remains
1145  *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
1146  *   in PRE_COPY_P2P -> STOP_COPY.
1147  *
1148  * PRE_COPY -> PRE_COPY_P2P
1149  *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
1150  *   However, while in the PRE_COPY_P2P state, the device is partially running
1151  *   in the P2P quiescent state defined below, like RUNNING_P2P.
1152  *
1153  * PRE_COPY_P2P -> PRE_COPY
1154  *   This arc allows returning the device to a full RUNNING behavior while
1155  *   continuing all the behaviors of PRE_COPY.
1156  *
1157  * PRE_COPY_P2P -> STOP_COPY
1158  *   While in the STOP_COPY state the device has the same behavior as STOP
1159  *   with the addition that the data transfers session continues to stream the
1160  *   migration state. End of stream on the FD indicates the entire device
1161  *   state has been transferred.
1162  *
1163  *   The user should take steps to restrict access to vfio device regions while
1164  *   the device is in STOP_COPY or risk corruption of the device migration data
1165  *   stream.
1166  *
1167  * STOP -> RESUMING
1168  *   Entering the RESUMING state starts a process of restoring the device state
1169  *   and will return a new data_fd. The data stream fed into the data_fd should
1170  *   be taken from the data transfer output of a single FD during saving from
1171  *   a compatible device. The migration driver may alter/reset the internal
1172  *   device state for this arc if required to prepare the device to receive the
1173  *   migration data.
1174  *
1175  * STOP_COPY -> PRE_COPY
1176  * STOP_COPY -> PRE_COPY_P2P
1177  *   These arcs are not permitted and return error if requested. Future
1178  *   revisions of this API may define behaviors for these arcs, in this case
1179  *   support will be discoverable by a new flag in
1180  *   VFIO_DEVICE_FEATURE_MIGRATION.
1181  *
1182  * any -> ERROR
1183  *   ERROR cannot be specified as a device state, however any transition request
1184  *   can be failed with an errno return and may then move the device_state into
1185  *   ERROR. In this case the device was unable to execute the requested arc and
1186  *   was also unable to restore the device to any valid device_state.
1187  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1188  *   device_state back to RUNNING.
1189  *
1190  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1191  * state for the device for the purposes of managing multiple devices within a
1192  * user context where peer-to-peer DMA between devices may be active. The
1193  * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1194  * any new P2P DMA transactions. If the device can identify P2P transactions
1195  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1196  * driver must complete any such outstanding operations prior to completing the
1197  * FSM arc into a P2P state. For the purpose of specification the states
1198  * behave as though the device was fully running if not supported. Like while in
1199  * STOP or STOP_COPY the user must not touch the device, otherwise the state
1200  * can be exited.
1201  *
1202  * The remaining possible transitions are interpreted as combinations of the
1203  * above FSM arcs. As there are multiple paths through the FSM arcs the path
1204  * should be selected based on the following rules:
1205  *   - Select the shortest path.
1206  *   - The path cannot have saving group states as interior arcs, only
1207  *     starting/end states.
1208  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1209  *
1210  * The automatic transit through the FSM arcs that make up the combination
1211  * transition is invisible to the user. When working with combination arcs the
1212  * user may see any step along the path in the device_state if SET_STATE
1213  * fails. When handling these types of errors users should anticipate future
1214  * revisions of this protocol using new states and those states becoming
1215  * visible in this case.
1216  *
1217  * The optional states cannot be used with SET_STATE if the device does not
1218  * support them. The user can discover if these states are supported by using
1219  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1220  * avoid knowing about these optional states if the kernel driver supports them.
1221  *
1222  * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1223  * is not present.
1224  */
1225 enum vfio_device_mig_state {
1226 	VFIO_DEVICE_STATE_ERROR = 0,
1227 	VFIO_DEVICE_STATE_STOP = 1,
1228 	VFIO_DEVICE_STATE_RUNNING = 2,
1229 	VFIO_DEVICE_STATE_STOP_COPY = 3,
1230 	VFIO_DEVICE_STATE_RESUMING = 4,
1231 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1232 	VFIO_DEVICE_STATE_PRE_COPY = 6,
1233 	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1234 	VFIO_DEVICE_STATE_NR,
1235 };
1236 
1237 /**
1238  * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1239  *
1240  * This ioctl is used on the migration data FD in the precopy phase of the
1241  * migration data transfer. It returns an estimate of the current data sizes
1242  * remaining to be transferred. It allows the user to judge when it is
1243  * appropriate to leave PRE_COPY for STOP_COPY.
1244  *
1245  * This ioctl is valid only in PRE_COPY states and kernel driver should
1246  * return -EINVAL from any other migration state.
1247  *
1248  * The vfio_precopy_info data structure returned by this ioctl provides
1249  * estimates of data available from the device during the PRE_COPY states.
1250  * This estimate is split into two categories, initial_bytes and
1251  * dirty_bytes.
1252  *
1253  * The initial_bytes field indicates the amount of initial precopy
1254  * data available from the device. This field should have a non-zero initial
1255  * value and decrease as migration data is read from the device.
1256  * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1257  * reaches zero. Leaving PRE_COPY earlier might make things slower.
1258  *
1259  * The dirty_bytes field tracks device state changes relative to data
1260  * previously retrieved.  This field starts at zero and may increase as
1261  * the internal device state is modified or decrease as that modified
1262  * state is read from the device.
1263  *
1264  * Userspace may use the combination of these fields to estimate the
1265  * potential data size available during the PRE_COPY phases, as well as
1266  * trends relative to the rate the device is dirtying its internal
1267  * state, but these fields are not required to have any bearing relative
1268  * to the data size available during the STOP_COPY phase.
1269  *
1270  * Drivers have a lot of flexibility in when and what they transfer during the
1271  * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1272  *
1273  * During pre-copy the migration data FD has a temporary "end of stream" that is
1274  * reached when both initial_bytes and dirty_byte are zero. For instance, this
1275  * may indicate that the device is idle and not currently dirtying any internal
1276  * state. When read() is done on this temporary end of stream the kernel driver
1277  * should return ENOMSG from read(). Userspace can wait for more data (which may
1278  * never come) by using poll.
1279  *
1280  * Once in STOP_COPY the migration data FD has a permanent end of stream
1281  * signaled in the usual way by read() always returning 0 and poll always
1282  * returning readable. ENOMSG may not be returned in STOP_COPY.
1283  * Support for this ioctl is mandatory if a driver claims to support
1284  * VFIO_MIGRATION_PRE_COPY.
1285  *
1286  * Return: 0 on success, -1 and errno set on failure.
1287  */
1288 struct vfio_precopy_info {
1289 	__u32 argsz;
1290 	__u32 flags;
1291 	__aligned_u64 initial_bytes;
1292 	__aligned_u64 dirty_bytes;
1293 };
1294 
1295 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1296 
1297 /*
1298  * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1299  * state with the platform-based power management.  Device use of lower power
1300  * states depends on factors managed by the runtime power management core,
1301  * including system level support and coordinating support among dependent
1302  * devices.  Enabling device low power entry does not guarantee lower power
1303  * usage by the device, nor is a mechanism provided through this feature to
1304  * know the current power state of the device.  If any device access happens
1305  * (either from the host or through the vfio uAPI) when the device is in the
1306  * low power state, then the host will move the device out of the low power
1307  * state as necessary prior to the access.  Once the access is completed, the
1308  * device may re-enter the low power state.  For single shot low power support
1309  * with wake-up notification, see
1310  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1311  * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1312  * calling LOW_POWER_EXIT.
1313  */
1314 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1315 
1316 /*
1317  * This device feature has the same behavior as
1318  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1319  * provides an eventfd for wake-up notification.  When the device moves out of
1320  * the low power state for the wake-up, the host will not allow the device to
1321  * re-enter a low power state without a subsequent user call to one of the low
1322  * power entry device feature IOCTLs.  Access to mmap'd device regions is
1323  * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1324  * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1325  * or through any other access (where the wake-up notification has been
1326  * generated).  The access to mmap'd device regions will not trigger low power
1327  * exit.
1328  *
1329  * The notification through the provided eventfd will be generated only when
1330  * the device has entered and is resumed from a low power state after
1331  * calling this device feature IOCTL.  A device that has not entered low power
1332  * state, as managed through the runtime power management core, will not
1333  * generate a notification through the provided eventfd on access.  Calling the
1334  * LOW_POWER_EXIT feature is optional in the case where notification has been
1335  * signaled on the provided eventfd that a resume from low power has occurred.
1336  */
1337 struct vfio_device_low_power_entry_with_wakeup {
1338 	__s32 wakeup_eventfd;
1339 	__u32 reserved;
1340 };
1341 
1342 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1343 
1344 /*
1345  * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1346  * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1347  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1348  * This device feature IOCTL may itself generate a wakeup eventfd notification
1349  * in the latter case if the device had previously entered a low power state.
1350  */
1351 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1352 
1353 /*
1354  * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1355  * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1356  * DMA logging.
1357  *
1358  * DMA logging allows a device to internally record what DMAs the device is
1359  * initiating and report them back to userspace. It is part of the VFIO
1360  * migration infrastructure that allows implementing dirty page tracking
1361  * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1362  * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1363  *
1364  * When DMA logging is started a range of IOVAs to monitor is provided and the
1365  * device can optimize its logging to cover only the IOVA range given. Each
1366  * DMA that the device initiates inside the range will be logged by the device
1367  * for later retrieval.
1368  *
1369  * page_size is an input that hints what tracking granularity the device
1370  * should try to achieve. If the device cannot do the hinted page size then
1371  * it's the driver choice which page size to pick based on its support.
1372  * On output the device will return the page size it selected.
1373  *
1374  * ranges is a pointer to an array of
1375  * struct vfio_device_feature_dma_logging_range.
1376  *
1377  * The core kernel code guarantees to support by minimum num_ranges that fit
1378  * into a single kernel page. User space can try higher values but should give
1379  * up if the above can't be achieved as of some driver limitations.
1380  *
1381  * A single call to start device DMA logging can be issued and a matching stop
1382  * should follow at the end. Another start is not allowed in the meantime.
1383  */
1384 struct vfio_device_feature_dma_logging_control {
1385 	__aligned_u64 page_size;
1386 	__u32 num_ranges;
1387 	__u32 __reserved;
1388 	__aligned_u64 ranges;
1389 };
1390 
1391 struct vfio_device_feature_dma_logging_range {
1392 	__aligned_u64 iova;
1393 	__aligned_u64 length;
1394 };
1395 
1396 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1397 
1398 /*
1399  * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1400  * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1401  */
1402 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1403 
1404 /*
1405  * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1406  *
1407  * Query the device's DMA log for written pages within the given IOVA range.
1408  * During querying the log is cleared for the IOVA range.
1409  *
1410  * bitmap is a pointer to an array of u64s that will hold the output bitmap
1411  * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1412  * is given by:
1413  *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1414  *
1415  * The input page_size can be any power of two value and does not have to
1416  * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1417  * will format its internal logging to match the reporting page size, possibly
1418  * by replicating bits if the internal page size is lower than requested.
1419  *
1420  * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1421  * perform any initialization of the user provided bitmap.
1422  *
1423  * If any error is returned userspace should assume that the dirty log is
1424  * corrupted. Error recovery is to consider all memory dirty and try to
1425  * restart the dirty tracking, or to abort/restart the whole migration.
1426  *
1427  * If DMA logging is not enabled, an error will be returned.
1428  *
1429  */
1430 struct vfio_device_feature_dma_logging_report {
1431 	__aligned_u64 iova;
1432 	__aligned_u64 length;
1433 	__aligned_u64 page_size;
1434 	__aligned_u64 bitmap;
1435 };
1436 
1437 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1438 
1439 /*
1440  * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1441  * be required to complete stop copy.
1442  *
1443  * Note: Can be called on each device state.
1444  */
1445 
1446 struct vfio_device_feature_mig_data_size {
1447 	__aligned_u64 stop_copy_length;
1448 };
1449 
1450 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1451 
1452 /**
1453  * Upon VFIO_DEVICE_FEATURE_SET, set or clear the BUS mastering for the device
1454  * based on the operation specified in op flag.
1455  *
1456  * The functionality is incorporated for devices that needs bus master control,
1457  * but the in-band device interface lacks the support. Consequently, it is not
1458  * applicable to PCI devices, as bus master control for PCI devices is managed
1459  * in-band through the configuration space. At present, this feature is supported
1460  * only for CDX devices.
1461  * When the device's BUS MASTER setting is configured as CLEAR, it will result in
1462  * blocking all incoming DMA requests from the device. On the other hand, configuring
1463  * the device's BUS MASTER setting as SET (enable) will grant the device the
1464  * capability to perform DMA to the host memory.
1465  */
1466 struct vfio_device_feature_bus_master {
1467 	__u32 op;
1468 #define		VFIO_DEVICE_FEATURE_CLEAR_MASTER	0	/* Clear Bus Master */
1469 #define		VFIO_DEVICE_FEATURE_SET_MASTER		1	/* Set Bus Master */
1470 };
1471 #define VFIO_DEVICE_FEATURE_BUS_MASTER 10
1472 
1473 /* -------- API for Type1 VFIO IOMMU -------- */
1474 
1475 /**
1476  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1477  *
1478  * Retrieve information about the IOMMU object. Fills in provided
1479  * struct vfio_iommu_info. Caller sets argsz.
1480  *
1481  * XXX Should we do these by CHECK_EXTENSION too?
1482  */
1483 struct vfio_iommu_type1_info {
1484 	__u32	argsz;
1485 	__u32	flags;
1486 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1487 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1488 	__aligned_u64	iova_pgsizes;		/* Bitmap of supported page sizes */
1489 	__u32   cap_offset;	/* Offset within info struct of first cap */
1490 	__u32   pad;
1491 };
1492 
1493 /*
1494  * The IOVA capability allows to report the valid IOVA range(s)
1495  * excluding any non-relaxable reserved regions exposed by
1496  * devices attached to the container. Any DMA map attempt
1497  * outside the valid iova range will return error.
1498  *
1499  * The structures below define version 1 of this capability.
1500  */
1501 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1502 
1503 struct vfio_iova_range {
1504 	__u64	start;
1505 	__u64	end;
1506 };
1507 
1508 struct vfio_iommu_type1_info_cap_iova_range {
1509 	struct	vfio_info_cap_header header;
1510 	__u32	nr_iovas;
1511 	__u32	reserved;
1512 	struct	vfio_iova_range iova_ranges[];
1513 };
1514 
1515 /*
1516  * The migration capability allows to report supported features for migration.
1517  *
1518  * The structures below define version 1 of this capability.
1519  *
1520  * The existence of this capability indicates that IOMMU kernel driver supports
1521  * dirty page logging.
1522  *
1523  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1524  * page logging.
1525  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1526  * size in bytes that can be used by user applications when getting the dirty
1527  * bitmap.
1528  */
1529 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1530 
1531 struct vfio_iommu_type1_info_cap_migration {
1532 	struct	vfio_info_cap_header header;
1533 	__u32	flags;
1534 	__u64	pgsize_bitmap;
1535 	__u64	max_dirty_bitmap_size;		/* in bytes */
1536 };
1537 
1538 /*
1539  * The DMA available capability allows to report the current number of
1540  * simultaneously outstanding DMA mappings that are allowed.
1541  *
1542  * The structure below defines version 1 of this capability.
1543  *
1544  * avail: specifies the current number of outstanding DMA mappings allowed.
1545  */
1546 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1547 
1548 struct vfio_iommu_type1_info_dma_avail {
1549 	struct	vfio_info_cap_header header;
1550 	__u32	avail;
1551 };
1552 
1553 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1554 
1555 /**
1556  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1557  *
1558  * Map process virtual addresses to IO virtual addresses using the
1559  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1560  *
1561  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1562  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1563  * maintain memory consistency within the user application, the updated vaddr
1564  * must address the same memory object as originally mapped.  Failure to do so
1565  * will result in user memory corruption and/or device misbehavior.  iova and
1566  * size must match those in the original MAP_DMA call.  Protection is not
1567  * changed, and the READ & WRITE flags must be 0.
1568  */
1569 struct vfio_iommu_type1_dma_map {
1570 	__u32	argsz;
1571 	__u32	flags;
1572 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1573 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1574 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1575 	__u64	vaddr;				/* Process virtual address */
1576 	__u64	iova;				/* IO virtual address */
1577 	__u64	size;				/* Size of mapping (bytes) */
1578 };
1579 
1580 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1581 
1582 struct vfio_bitmap {
1583 	__u64        pgsize;	/* page size for bitmap in bytes */
1584 	__u64        size;	/* in bytes */
1585 	__u64 __user *data;	/* one bit per page */
1586 };
1587 
1588 /**
1589  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1590  *							struct vfio_dma_unmap)
1591  *
1592  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1593  * Caller sets argsz.  The actual unmapped size is returned in the size
1594  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1595  * or size different from those used in the original mapping call will
1596  * succeed.
1597  *
1598  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1599  * before unmapping IO virtual addresses. When this flag is set, the user must
1600  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1601  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1602  * A bit in the bitmap represents one page, of user provided page size in
1603  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1604  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1605  * pages in the range of unmapped size is returned in the user-provided
1606  * vfio_bitmap.data.
1607  *
1608  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1609  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1610  *
1611  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1612  * virtual addresses in the iova range.  DMA to already-mapped pages continues.
1613  * Groups may not be added to the container while any addresses are invalid.
1614  * This cannot be combined with the get-dirty-bitmap flag.
1615  */
1616 struct vfio_iommu_type1_dma_unmap {
1617 	__u32	argsz;
1618 	__u32	flags;
1619 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1620 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1621 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1622 	__u64	iova;				/* IO virtual address */
1623 	__u64	size;				/* Size of mapping (bytes) */
1624 	__u8    data[];
1625 };
1626 
1627 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1628 
1629 /*
1630  * IOCTLs to enable/disable IOMMU container usage.
1631  * No parameters are supported.
1632  */
1633 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1634 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1635 
1636 /**
1637  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1638  *                                     struct vfio_iommu_type1_dirty_bitmap)
1639  * IOCTL is used for dirty pages logging.
1640  * Caller should set flag depending on which operation to perform, details as
1641  * below:
1642  *
1643  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1644  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1645  * the device; designed to be used when a migration is in progress. Dirty pages
1646  * are logged until logging is disabled by user application by calling the IOCTL
1647  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1648  *
1649  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1650  * the IOMMU driver to stop logging dirtied pages.
1651  *
1652  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1653  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1654  * The user must specify the IOVA range and the pgsize through the structure
1655  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1656  * supports getting a bitmap of the smallest supported pgsize only and can be
1657  * modified in future to get a bitmap of any specified supported pgsize. The
1658  * user must provide a zeroed memory area for the bitmap memory and specify its
1659  * size in bitmap.size. One bit is used to represent one page consecutively
1660  * starting from iova offset. The user should provide page size in bitmap.pgsize
1661  * field. A bit set in the bitmap indicates that the page at that offset from
1662  * iova is dirty. The caller must set argsz to a value including the size of
1663  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1664  * actual bitmap. If dirty pages logging is not enabled, an error will be
1665  * returned.
1666  *
1667  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1668  *
1669  */
1670 struct vfio_iommu_type1_dirty_bitmap {
1671 	__u32        argsz;
1672 	__u32        flags;
1673 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1674 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1675 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1676 	__u8         data[];
1677 };
1678 
1679 struct vfio_iommu_type1_dirty_bitmap_get {
1680 	__u64              iova;	/* IO virtual address */
1681 	__u64              size;	/* Size of iova range */
1682 	struct vfio_bitmap bitmap;
1683 };
1684 
1685 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1686 
1687 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1688 
1689 /*
1690  * The SPAPR TCE DDW info struct provides the information about
1691  * the details of Dynamic DMA window capability.
1692  *
1693  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1694  * @max_dynamic_windows_supported tells the maximum number of windows
1695  * which the platform can create.
1696  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1697  * this allows splitting a table into smaller chunks which reduces
1698  * the amount of physically contiguous memory required for the table.
1699  */
1700 struct vfio_iommu_spapr_tce_ddw_info {
1701 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1702 	__u32 max_dynamic_windows_supported;
1703 	__u32 levels;
1704 };
1705 
1706 /*
1707  * The SPAPR TCE info struct provides the information about the PCI bus
1708  * address ranges available for DMA, these values are programmed into
1709  * the hardware so the guest has to know that information.
1710  *
1711  * The DMA 32 bit window start is an absolute PCI bus address.
1712  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1713  * addresses too so the window works as a filter rather than an offset
1714  * for IOVA addresses.
1715  *
1716  * Flags supported:
1717  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1718  *   (DDW) support is present. @ddw is only supported when DDW is present.
1719  */
1720 struct vfio_iommu_spapr_tce_info {
1721 	__u32 argsz;
1722 	__u32 flags;
1723 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1724 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1725 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1726 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1727 };
1728 
1729 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1730 
1731 /*
1732  * EEH PE operation struct provides ways to:
1733  * - enable/disable EEH functionality;
1734  * - unfreeze IO/DMA for frozen PE;
1735  * - read PE state;
1736  * - reset PE;
1737  * - configure PE;
1738  * - inject EEH error.
1739  */
1740 struct vfio_eeh_pe_err {
1741 	__u32 type;
1742 	__u32 func;
1743 	__u64 addr;
1744 	__u64 mask;
1745 };
1746 
1747 struct vfio_eeh_pe_op {
1748 	__u32 argsz;
1749 	__u32 flags;
1750 	__u32 op;
1751 	union {
1752 		struct vfio_eeh_pe_err err;
1753 	};
1754 };
1755 
1756 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1757 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1758 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1759 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1760 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1761 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1762 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1763 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1764 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1765 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1766 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1767 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1768 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1769 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1770 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1771 
1772 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1773 
1774 /**
1775  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1776  *
1777  * Registers user space memory where DMA is allowed. It pins
1778  * user pages and does the locked memory accounting so
1779  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1780  * get faster.
1781  */
1782 struct vfio_iommu_spapr_register_memory {
1783 	__u32	argsz;
1784 	__u32	flags;
1785 	__u64	vaddr;				/* Process virtual address */
1786 	__u64	size;				/* Size of mapping (bytes) */
1787 };
1788 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1789 
1790 /**
1791  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1792  *
1793  * Unregisters user space memory registered with
1794  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1795  * Uses vfio_iommu_spapr_register_memory for parameters.
1796  */
1797 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1798 
1799 /**
1800  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1801  *
1802  * Creates an additional TCE table and programs it (sets a new DMA window)
1803  * to every IOMMU group in the container. It receives page shift, window
1804  * size and number of levels in the TCE table being created.
1805  *
1806  * It allocates and returns an offset on a PCI bus of the new DMA window.
1807  */
1808 struct vfio_iommu_spapr_tce_create {
1809 	__u32 argsz;
1810 	__u32 flags;
1811 	/* in */
1812 	__u32 page_shift;
1813 	__u32 __resv1;
1814 	__u64 window_size;
1815 	__u32 levels;
1816 	__u32 __resv2;
1817 	/* out */
1818 	__u64 start_addr;
1819 };
1820 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1821 
1822 /**
1823  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1824  *
1825  * Unprograms a TCE table from all groups in the container and destroys it.
1826  * It receives a PCI bus offset as a window id.
1827  */
1828 struct vfio_iommu_spapr_tce_remove {
1829 	__u32 argsz;
1830 	__u32 flags;
1831 	/* in */
1832 	__u64 start_addr;
1833 };
1834 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1835 
1836 /* ***************************************************************** */
1837 
1838 #endif /* _UAPIVFIO_H */
1839