• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26 
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30 
31 #include <soc/bcm2835/raspberrypi-firmware.h>
32 
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 
36 static const struct debugfs_reg32 hvs_regs[] = {
37 	VC4_REG32(SCALER_DISPCTRL),
38 	VC4_REG32(SCALER_DISPSTAT),
39 	VC4_REG32(SCALER_DISPID),
40 	VC4_REG32(SCALER_DISPECTRL),
41 	VC4_REG32(SCALER_DISPPROF),
42 	VC4_REG32(SCALER_DISPDITHER),
43 	VC4_REG32(SCALER_DISPEOLN),
44 	VC4_REG32(SCALER_DISPLIST0),
45 	VC4_REG32(SCALER_DISPLIST1),
46 	VC4_REG32(SCALER_DISPLIST2),
47 	VC4_REG32(SCALER_DISPLSTAT),
48 	VC4_REG32(SCALER_DISPLACT0),
49 	VC4_REG32(SCALER_DISPLACT1),
50 	VC4_REG32(SCALER_DISPLACT2),
51 	VC4_REG32(SCALER_DISPCTRL0),
52 	VC4_REG32(SCALER_DISPBKGND0),
53 	VC4_REG32(SCALER_DISPSTAT0),
54 	VC4_REG32(SCALER_DISPBASE0),
55 	VC4_REG32(SCALER_DISPCTRL1),
56 	VC4_REG32(SCALER_DISPBKGND1),
57 	VC4_REG32(SCALER_DISPSTAT1),
58 	VC4_REG32(SCALER_DISPBASE1),
59 	VC4_REG32(SCALER_DISPCTRL2),
60 	VC4_REG32(SCALER_DISPBKGND2),
61 	VC4_REG32(SCALER_DISPSTAT2),
62 	VC4_REG32(SCALER_DISPBASE2),
63 	VC4_REG32(SCALER_DISPALPHA2),
64 	VC4_REG32(SCALER_OLEDOFFS),
65 	VC4_REG32(SCALER_OLEDCOEF0),
66 	VC4_REG32(SCALER_OLEDCOEF1),
67 	VC4_REG32(SCALER_OLEDCOEF2),
68 };
69 
vc4_hvs_dump_state(struct vc4_hvs * hvs)70 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71 {
72 	struct drm_device *drm = &hvs->vc4->base;
73 	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74 	int idx, i;
75 
76 	if (!drm_dev_enter(drm, &idx))
77 		return;
78 
79 	drm_print_regset32(&p, &hvs->regset);
80 
81 	DRM_INFO("HVS ctx:\n");
82 	for (i = 0; i < 64; i += 4) {
83 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85 			 readl((u32 __iomem *)hvs->dlist + i + 0),
86 			 readl((u32 __iomem *)hvs->dlist + i + 1),
87 			 readl((u32 __iomem *)hvs->dlist + i + 2),
88 			 readl((u32 __iomem *)hvs->dlist + i + 3));
89 	}
90 
91 	drm_dev_exit(idx);
92 }
93 
vc4_hvs_debugfs_underrun(struct seq_file * m,void * data)94 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95 {
96 	struct drm_debugfs_entry *entry = m->private;
97 	struct drm_device *dev = entry->dev;
98 	struct vc4_dev *vc4 = to_vc4_dev(dev);
99 	struct drm_printer p = drm_seq_file_printer(m);
100 
101 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102 
103 	return 0;
104 }
105 
vc4_hvs_debugfs_dlist(struct seq_file * m,void * data)106 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107 {
108 	struct drm_debugfs_entry *entry = m->private;
109 	struct drm_device *dev = entry->dev;
110 	struct vc4_dev *vc4 = to_vc4_dev(dev);
111 	struct vc4_hvs *hvs = vc4->hvs;
112 	struct drm_printer p = drm_seq_file_printer(m);
113 	unsigned int dlist_mem_size = hvs->dlist_mem_size;
114 	unsigned int next_entry_start;
115 	unsigned int i, j;
116 	u32 dlist_word, dispstat;
117 
118 	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
119 		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
120 					 SCALER_DISPSTATX_MODE);
121 		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
122 		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
123 			drm_printf(&p, "HVS chan %u disabled\n", i);
124 			continue;
125 		}
126 
127 		drm_printf(&p, "HVS chan %u:\n", i);
128 		next_entry_start = 0;
129 
130 		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) {
131 			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
132 			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
133 				   dlist_word);
134 			if (!next_entry_start ||
135 			    next_entry_start == j) {
136 				if (dlist_word & SCALER_CTL0_END)
137 					break;
138 				next_entry_start = j +
139 					VC4_GET_FIELD(dlist_word,
140 						      SCALER_CTL0_SIZE);
141 			}
142 		}
143 	}
144 
145 	return 0;
146 }
147 
148 /* The filter kernel is composed of dwords each containing 3 9-bit
149  * signed integers packed next to each other.
150  */
151 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
152 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
153 	((((c0) & 0x1ff) << 0) |				\
154 	 (((c1) & 0x1ff) << 9) |				\
155 	 (((c2) & 0x1ff) << 18))
156 
157 /* The whole filter kernel is arranged as the coefficients 0-16 going
158  * up, then a pad, then 17-31 going down and reversed within the
159  * dwords.  This means that a linear phase kernel (where it's
160  * symmetrical at the boundary between 15 and 16) has the last 5
161  * dwords matching the first 5, but reversed.
162  */
163 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
164 				c9, c10, c11, c12, c13, c14, c15)	\
165 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
166 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
167 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
168 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
169 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
170 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
171 
172 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
173 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
174 
175 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
176  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
177  */
178 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
179 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
180 				50, 82, 119, 155, 187, 213, 227);
181 
vc4_hvs_upload_linear_kernel(struct vc4_hvs * hvs,struct drm_mm_node * space,const u32 * kernel)182 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
183 					struct drm_mm_node *space,
184 					const u32 *kernel)
185 {
186 	int ret, i;
187 	u32 __iomem *dst_kernel;
188 
189 	/*
190 	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
191 	 * here since that function is only called from vc4_hvs_bind().
192 	 */
193 
194 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
195 	if (ret) {
196 		drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n",
197 			ret);
198 		return ret;
199 	}
200 
201 	dst_kernel = hvs->dlist + space->start;
202 
203 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
204 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
205 			writel(kernel[i], &dst_kernel[i]);
206 		else {
207 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
208 			       &dst_kernel[i]);
209 		}
210 	}
211 
212 	return 0;
213 }
214 
vc4_hvs_lut_load(struct vc4_hvs * hvs,struct vc4_crtc * vc4_crtc)215 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
216 			     struct vc4_crtc *vc4_crtc)
217 {
218 	struct drm_device *drm = &hvs->vc4->base;
219 	struct drm_crtc *crtc = &vc4_crtc->base;
220 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
221 	int idx;
222 	u32 i;
223 
224 	if (!drm_dev_enter(drm, &idx))
225 		return;
226 
227 	if (hvs->vc4->gen != VC4_GEN_4)
228 		goto exit;
229 
230 	/* The LUT memory is laid out with each HVS channel in order,
231 	 * each of which takes 256 writes for R, 256 for G, then 256
232 	 * for B.
233 	 */
234 	HVS_WRITE(SCALER_GAMADDR,
235 		  SCALER_GAMADDR_AUTOINC |
236 		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
237 
238 	for (i = 0; i < crtc->gamma_size; i++)
239 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
240 	for (i = 0; i < crtc->gamma_size; i++)
241 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
242 	for (i = 0; i < crtc->gamma_size; i++)
243 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
244 
245 exit:
246 	drm_dev_exit(idx);
247 }
248 
vc4_hvs_update_gamma_lut(struct vc4_hvs * hvs,struct vc4_crtc * vc4_crtc)249 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
250 				     struct vc4_crtc *vc4_crtc)
251 {
252 	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
253 	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
254 	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
255 	u32 i;
256 
257 	for (i = 0; i < length; i++) {
258 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
259 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
260 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
261 	}
262 
263 	vc4_hvs_lut_load(hvs, vc4_crtc);
264 }
265 
vc4_hvs_get_fifo_frame_count(struct vc4_hvs * hvs,unsigned int fifo)266 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
267 {
268 	struct drm_device *drm = &hvs->vc4->base;
269 	u8 field = 0;
270 	int idx;
271 
272 	if (!drm_dev_enter(drm, &idx))
273 		return 0;
274 
275 	switch (fifo) {
276 	case 0:
277 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
278 				      SCALER_DISPSTAT1_FRCNT0);
279 		break;
280 	case 1:
281 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
282 				      SCALER_DISPSTAT1_FRCNT1);
283 		break;
284 	case 2:
285 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
286 				      SCALER_DISPSTAT2_FRCNT2);
287 		break;
288 	}
289 
290 	drm_dev_exit(idx);
291 	return field;
292 }
293 
vc4_hvs_get_fifo_from_output(struct vc4_hvs * hvs,unsigned int output)294 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
295 {
296 	struct vc4_dev *vc4 = hvs->vc4;
297 	u32 reg;
298 	int ret;
299 
300 	if (vc4->gen == VC4_GEN_4)
301 		return output;
302 
303 	/*
304 	 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
305 	 * here, but this function is only used during the DRM device
306 	 * initialization, so we should be fine.
307 	 */
308 
309 	switch (output) {
310 	case 0:
311 		return 0;
312 
313 	case 1:
314 		return 1;
315 
316 	case 2:
317 		reg = HVS_READ(SCALER_DISPECTRL);
318 		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
319 		if (ret == 0)
320 			return 2;
321 
322 		return 0;
323 
324 	case 3:
325 		reg = HVS_READ(SCALER_DISPCTRL);
326 		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
327 		if (ret == 3)
328 			return -EPIPE;
329 
330 		return ret;
331 
332 	case 4:
333 		reg = HVS_READ(SCALER_DISPEOLN);
334 		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
335 		if (ret == 3)
336 			return -EPIPE;
337 
338 		return ret;
339 
340 	case 5:
341 		reg = HVS_READ(SCALER_DISPDITHER);
342 		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
343 		if (ret == 3)
344 			return -EPIPE;
345 
346 		return ret;
347 
348 	default:
349 		return -EPIPE;
350 	}
351 }
352 
vc4_hvs_init_channel(struct vc4_hvs * hvs,struct drm_crtc * crtc,struct drm_display_mode * mode,bool oneshot)353 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
354 				struct drm_display_mode *mode, bool oneshot)
355 {
356 	struct vc4_dev *vc4 = hvs->vc4;
357 	struct drm_device *drm = &vc4->base;
358 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
359 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
360 	unsigned int chan = vc4_crtc_state->assigned_channel;
361 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
362 	u32 dispbkgndx;
363 	u32 dispctrl;
364 	int idx;
365 
366 	if (!drm_dev_enter(drm, &idx))
367 		return -ENODEV;
368 
369 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
370 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
371 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
372 
373 	/* Turn on the scaler, which will wait for vstart to start
374 	 * compositing.
375 	 * When feeding the transposer, we should operate in oneshot
376 	 * mode.
377 	 */
378 	dispctrl = SCALER_DISPCTRLX_ENABLE;
379 	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
380 
381 	if (vc4->gen == VC4_GEN_4) {
382 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
383 					  SCALER_DISPCTRLX_WIDTH) |
384 			    VC4_SET_FIELD(mode->vdisplay,
385 					  SCALER_DISPCTRLX_HEIGHT) |
386 			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
387 		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
388 	} else {
389 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
390 					  SCALER5_DISPCTRLX_WIDTH) |
391 			    VC4_SET_FIELD(mode->vdisplay,
392 					  SCALER5_DISPCTRLX_HEIGHT) |
393 			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
394 		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
395 	}
396 
397 	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
398 
399 	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
400 	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
401 
402 	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
403 		  ((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) |
404 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
405 
406 	/* Reload the LUT, since the SRAMs would have been disabled if
407 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
408 	 */
409 	vc4_hvs_lut_load(hvs, vc4_crtc);
410 
411 	drm_dev_exit(idx);
412 
413 	return 0;
414 }
415 
vc4_hvs_stop_channel(struct vc4_hvs * hvs,unsigned int chan)416 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
417 {
418 	struct drm_device *drm = &hvs->vc4->base;
419 	int idx;
420 
421 	if (!drm_dev_enter(drm, &idx))
422 		return;
423 
424 	if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE))
425 		goto out;
426 
427 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
428 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
429 
430 	/* Once we leave, the scaler should be disabled and its fifo empty. */
431 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
432 
433 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
434 				   SCALER_DISPSTATX_MODE) !=
435 		     SCALER_DISPSTATX_MODE_DISABLED);
436 
437 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
438 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
439 		     SCALER_DISPSTATX_EMPTY);
440 
441 out:
442 	drm_dev_exit(idx);
443 }
444 
vc4_hvs_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)445 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
446 {
447 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
448 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
449 	struct drm_device *dev = crtc->dev;
450 	struct vc4_dev *vc4 = to_vc4_dev(dev);
451 	struct drm_plane *plane;
452 	unsigned long flags;
453 	const struct drm_plane_state *plane_state;
454 	u32 dlist_count = 0;
455 	int ret;
456 
457 	/* The pixelvalve can only feed one encoder (and encoders are
458 	 * 1:1 with connectors.)
459 	 */
460 	if (hweight32(crtc_state->connector_mask) > 1)
461 		return -EINVAL;
462 
463 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
464 		dlist_count += vc4_plane_dlist_size(plane_state);
465 
466 	dlist_count++; /* Account for SCALER_CTL0_END. */
467 
468 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
469 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
470 				 dlist_count);
471 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
472 	if (ret)
473 		return ret;
474 
475 	return 0;
476 }
477 
vc4_hvs_install_dlist(struct drm_crtc * crtc)478 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
479 {
480 	struct drm_device *dev = crtc->dev;
481 	struct vc4_dev *vc4 = to_vc4_dev(dev);
482 	struct vc4_hvs *hvs = vc4->hvs;
483 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
484 	int idx;
485 
486 	if (!drm_dev_enter(dev, &idx))
487 		return;
488 
489 	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
490 		  vc4_state->mm.start);
491 
492 	drm_dev_exit(idx);
493 }
494 
vc4_hvs_update_dlist(struct drm_crtc * crtc)495 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
496 {
497 	struct drm_device *dev = crtc->dev;
498 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
499 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
500 	unsigned long flags;
501 
502 	if (crtc->state->event) {
503 		crtc->state->event->pipe = drm_crtc_index(crtc);
504 
505 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
506 
507 		spin_lock_irqsave(&dev->event_lock, flags);
508 
509 		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
510 			vc4_crtc->event = crtc->state->event;
511 			crtc->state->event = NULL;
512 		}
513 
514 		spin_unlock_irqrestore(&dev->event_lock, flags);
515 	}
516 
517 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
518 	vc4_crtc->current_dlist = vc4_state->mm.start;
519 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
520 }
521 
vc4_hvs_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)522 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
523 			  struct drm_atomic_state *state)
524 {
525 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
526 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
530 	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
531 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
532 }
533 
vc4_hvs_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)534 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
535 			   struct drm_atomic_state *state)
536 {
537 	struct drm_device *dev = crtc->dev;
538 	struct vc4_dev *vc4 = to_vc4_dev(dev);
539 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
540 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
541 	bool oneshot = vc4_crtc->feeds_txp;
542 
543 	vc4_hvs_install_dlist(crtc);
544 	vc4_hvs_update_dlist(crtc);
545 	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
546 }
547 
vc4_hvs_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)548 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
549 			    struct drm_atomic_state *state)
550 {
551 	struct drm_device *dev = crtc->dev;
552 	struct vc4_dev *vc4 = to_vc4_dev(dev);
553 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
554 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
555 	unsigned int chan = vc4_state->assigned_channel;
556 
557 	vc4_hvs_stop_channel(vc4->hvs, chan);
558 }
559 
vc4_hvs_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)560 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
561 			  struct drm_atomic_state *state)
562 {
563 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
564 									 crtc);
565 	struct drm_device *dev = crtc->dev;
566 	struct vc4_dev *vc4 = to_vc4_dev(dev);
567 	struct vc4_hvs *hvs = vc4->hvs;
568 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
569 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
570 	unsigned int channel = vc4_state->assigned_channel;
571 	struct drm_plane *plane;
572 	struct vc4_plane_state *vc4_plane_state;
573 	bool debug_dump_regs = false;
574 	bool enable_bg_fill = false;
575 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
576 	u32 __iomem *dlist_next = dlist_start;
577 	unsigned int zpos = 0;
578 	bool found = false;
579 	int idx;
580 
581 	if (!drm_dev_enter(dev, &idx)) {
582 		vc4_crtc_send_vblank(crtc);
583 		return;
584 	}
585 
586 	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
587 		goto exit;
588 
589 	if (debug_dump_regs) {
590 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
591 		vc4_hvs_dump_state(hvs);
592 	}
593 
594 	/* Copy all the active planes' dlist contents to the hardware dlist. */
595 	do {
596 		found = false;
597 
598 		drm_atomic_crtc_for_each_plane(plane, crtc) {
599 			if (plane->state->normalized_zpos != zpos)
600 				continue;
601 
602 			/* Is this the first active plane? */
603 			if (dlist_next == dlist_start) {
604 				/* We need to enable background fill when a plane
605 				 * could be alpha blending from the background, i.e.
606 				 * where no other plane is underneath. It suffices to
607 				 * consider the first active plane here since we set
608 				 * needs_bg_fill such that either the first plane
609 				 * already needs it or all planes on top blend from
610 				 * the first or a lower plane.
611 				 */
612 				vc4_plane_state = to_vc4_plane_state(plane->state);
613 				enable_bg_fill = vc4_plane_state->needs_bg_fill;
614 			}
615 
616 			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
617 
618 			found = true;
619 		}
620 
621 		zpos++;
622 	} while (found);
623 
624 	writel(SCALER_CTL0_END, dlist_next);
625 	dlist_next++;
626 
627 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
628 
629 	if (enable_bg_fill)
630 		/* This sets a black background color fill, as is the case
631 		 * with other DRM drivers.
632 		 */
633 		HVS_WRITE(SCALER_DISPBKGNDX(channel),
634 			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
635 			  SCALER_DISPBKGND_FILL);
636 
637 	/* Only update DISPLIST if the CRTC was already running and is not
638 	 * being disabled.
639 	 * vc4_crtc_enable() takes care of updating the dlist just after
640 	 * re-enabling VBLANK interrupts and before enabling the engine.
641 	 * If the CRTC is being disabled, there's no point in updating this
642 	 * information.
643 	 */
644 	if (crtc->state->active && old_state->active) {
645 		vc4_hvs_install_dlist(crtc);
646 		vc4_hvs_update_dlist(crtc);
647 	}
648 
649 	if (crtc->state->color_mgmt_changed) {
650 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
651 
652 		if (crtc->state->gamma_lut) {
653 			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
654 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
655 		} else {
656 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
657 			 * in hardware, which is the same as a linear lut that
658 			 * DRM expects us to use in absence of a user lut.
659 			 */
660 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
661 		}
662 		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
663 	}
664 
665 	if (debug_dump_regs) {
666 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
667 		vc4_hvs_dump_state(hvs);
668 	}
669 
670 exit:
671 	drm_dev_exit(idx);
672 }
673 
vc4_hvs_mask_underrun(struct vc4_hvs * hvs,int channel)674 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
675 {
676 	struct vc4_dev *vc4 = hvs->vc4;
677 	struct drm_device *drm = &vc4->base;
678 	u32 dispctrl;
679 	int idx;
680 
681 	if (!drm_dev_enter(drm, &idx))
682 		return;
683 
684 	dispctrl = HVS_READ(SCALER_DISPCTRL);
685 	dispctrl &= ~((vc4->gen == VC4_GEN_5) ?
686 		      SCALER5_DISPCTRL_DSPEISLUR(channel) :
687 		      SCALER_DISPCTRL_DSPEISLUR(channel));
688 
689 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
690 
691 	drm_dev_exit(idx);
692 }
693 
vc4_hvs_unmask_underrun(struct vc4_hvs * hvs,int channel)694 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
695 {
696 	struct vc4_dev *vc4 = hvs->vc4;
697 	struct drm_device *drm = &vc4->base;
698 	u32 dispctrl;
699 	int idx;
700 
701 	if (!drm_dev_enter(drm, &idx))
702 		return;
703 
704 	dispctrl = HVS_READ(SCALER_DISPCTRL);
705 	dispctrl |= ((vc4->gen == VC4_GEN_5) ?
706 		     SCALER5_DISPCTRL_DSPEISLUR(channel) :
707 		     SCALER_DISPCTRL_DSPEISLUR(channel));
708 
709 	HVS_WRITE(SCALER_DISPSTAT,
710 		  SCALER_DISPSTAT_EUFLOW(channel));
711 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
712 
713 	drm_dev_exit(idx);
714 }
715 
vc4_hvs_report_underrun(struct drm_device * dev)716 static void vc4_hvs_report_underrun(struct drm_device *dev)
717 {
718 	struct vc4_dev *vc4 = to_vc4_dev(dev);
719 
720 	atomic_inc(&vc4->underrun);
721 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
722 }
723 
vc4_hvs_irq_handler(int irq,void * data)724 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
725 {
726 	struct drm_device *dev = data;
727 	struct vc4_dev *vc4 = to_vc4_dev(dev);
728 	struct vc4_hvs *hvs = vc4->hvs;
729 	irqreturn_t irqret = IRQ_NONE;
730 	int channel;
731 	u32 control;
732 	u32 status;
733 	u32 dspeislur;
734 
735 	/*
736 	 * NOTE: We don't need to protect the register access using
737 	 * drm_dev_enter() there because the interrupt handler lifetime
738 	 * is tied to the device itself, and not to the DRM device.
739 	 *
740 	 * So when the device will be gone, one of the first thing we
741 	 * will be doing will be to unregister the interrupt handler,
742 	 * and then unregister the DRM device. drm_dev_enter() would
743 	 * thus always succeed if we are here.
744 	 */
745 
746 	status = HVS_READ(SCALER_DISPSTAT);
747 	control = HVS_READ(SCALER_DISPCTRL);
748 
749 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
750 		dspeislur = (vc4->gen == VC4_GEN_5) ?
751 			SCALER5_DISPCTRL_DSPEISLUR(channel) :
752 			SCALER_DISPCTRL_DSPEISLUR(channel);
753 
754 		/* Interrupt masking is not always honored, so check it here. */
755 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
756 		    control & dspeislur) {
757 			vc4_hvs_mask_underrun(hvs, channel);
758 			vc4_hvs_report_underrun(dev);
759 
760 			irqret = IRQ_HANDLED;
761 		}
762 	}
763 
764 	/* Clear every per-channel interrupt flag. */
765 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
766 				   SCALER_DISPSTAT_IRQMASK(1) |
767 				   SCALER_DISPSTAT_IRQMASK(2));
768 
769 	return irqret;
770 }
771 
vc4_hvs_debugfs_init(struct drm_minor * minor)772 int vc4_hvs_debugfs_init(struct drm_minor *minor)
773 {
774 	struct drm_device *drm = minor->dev;
775 	struct vc4_dev *vc4 = to_vc4_dev(drm);
776 	struct vc4_hvs *hvs = vc4->hvs;
777 
778 	if (!vc4->hvs)
779 		return -ENODEV;
780 
781 	if (vc4->gen == VC4_GEN_4)
782 		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
783 				    minor->debugfs_root,
784 				    &vc4->load_tracker_enabled);
785 
786 	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
787 
788 	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
789 
790 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
791 
792 	return 0;
793 }
794 
__vc4_hvs_alloc(struct vc4_dev * vc4,struct platform_device * pdev)795 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
796 {
797 	struct drm_device *drm = &vc4->base;
798 	struct vc4_hvs *hvs;
799 
800 	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
801 	if (!hvs)
802 		return ERR_PTR(-ENOMEM);
803 
804 	hvs->vc4 = vc4;
805 	hvs->pdev = pdev;
806 
807 	spin_lock_init(&hvs->mm_lock);
808 
809 	/* Set up the HVS display list memory manager.  We never
810 	 * overwrite the setup from the bootloader (just 128b out of
811 	 * our 16K), since we don't want to scramble the screen when
812 	 * transitioning from the firmware's boot setup to runtime.
813 	 */
814 	hvs->dlist_mem_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END;
815 	drm_mm_init(&hvs->dlist_mm,
816 		    HVS_BOOTLOADER_DLIST_END,
817 		    hvs->dlist_mem_size);
818 
819 	/* Set up the HVS LBM memory manager.  We could have some more
820 	 * complicated data structure that allowed reuse of LBM areas
821 	 * between planes when they don't overlap on the screen, but
822 	 * for now we just allocate globally.
823 	 */
824 	if (vc4->gen == VC4_GEN_4)
825 		/* 48k words of 2x12-bit pixels */
826 		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
827 	else
828 		/* 60k words of 4x12-bit pixels */
829 		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
830 
831 	vc4->hvs = hvs;
832 
833 	return hvs;
834 }
835 
vc4_hvs_bind(struct device * dev,struct device * master,void * data)836 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
837 {
838 	struct platform_device *pdev = to_platform_device(dev);
839 	struct drm_device *drm = dev_get_drvdata(master);
840 	struct vc4_dev *vc4 = to_vc4_dev(drm);
841 	struct vc4_hvs *hvs = NULL;
842 	int ret;
843 	u32 dispctrl;
844 	u32 reg, top;
845 
846 	hvs = __vc4_hvs_alloc(vc4, NULL);
847 	if (IS_ERR(hvs))
848 		return PTR_ERR(hvs);
849 
850 	hvs->regs = vc4_ioremap_regs(pdev, 0);
851 	if (IS_ERR(hvs->regs))
852 		return PTR_ERR(hvs->regs);
853 
854 	hvs->regset.base = hvs->regs;
855 	hvs->regset.regs = hvs_regs;
856 	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
857 
858 	if (vc4->gen == VC4_GEN_5) {
859 		struct rpi_firmware *firmware;
860 		struct device_node *node;
861 		unsigned int max_rate;
862 
863 		node = rpi_firmware_find_node();
864 		if (!node)
865 			return -EINVAL;
866 
867 		firmware = rpi_firmware_get(node);
868 		of_node_put(node);
869 		if (!firmware)
870 			return -EPROBE_DEFER;
871 
872 		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
873 		if (IS_ERR(hvs->core_clk)) {
874 			dev_err(&pdev->dev, "Couldn't get core clock\n");
875 			return PTR_ERR(hvs->core_clk);
876 		}
877 
878 		max_rate = rpi_firmware_clk_get_max_rate(firmware,
879 							 RPI_FIRMWARE_CORE_CLK_ID);
880 		rpi_firmware_put(firmware);
881 		if (max_rate >= 550000000)
882 			hvs->vc5_hdmi_enable_hdmi_20 = true;
883 
884 		if (max_rate >= 600000000)
885 			hvs->vc5_hdmi_enable_4096by2160 = true;
886 
887 		hvs->max_core_rate = max_rate;
888 
889 		ret = clk_prepare_enable(hvs->core_clk);
890 		if (ret) {
891 			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
892 			return ret;
893 		}
894 	}
895 
896 	if (vc4->gen == VC4_GEN_4)
897 		hvs->dlist = hvs->regs + SCALER_DLIST_START;
898 	else
899 		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
900 
901 	/* Upload filter kernels.  We only have the one for now, so we
902 	 * keep it around for the lifetime of the driver.
903 	 */
904 	ret = vc4_hvs_upload_linear_kernel(hvs,
905 					   &hvs->mitchell_netravali_filter,
906 					   mitchell_netravali_1_3_1_3_kernel);
907 	if (ret)
908 		return ret;
909 
910 	reg = HVS_READ(SCALER_DISPECTRL);
911 	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
912 	HVS_WRITE(SCALER_DISPECTRL,
913 		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
914 
915 	reg = HVS_READ(SCALER_DISPCTRL);
916 	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
917 	HVS_WRITE(SCALER_DISPCTRL,
918 		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
919 
920 	reg = HVS_READ(SCALER_DISPEOLN);
921 	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
922 	HVS_WRITE(SCALER_DISPEOLN,
923 		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
924 
925 	reg = HVS_READ(SCALER_DISPDITHER);
926 	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
927 	HVS_WRITE(SCALER_DISPDITHER,
928 		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
929 
930 	dispctrl = HVS_READ(SCALER_DISPCTRL);
931 
932 	dispctrl |= SCALER_DISPCTRL_ENABLE;
933 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
934 		    SCALER_DISPCTRL_DISPEIRQ(1) |
935 		    SCALER_DISPCTRL_DISPEIRQ(2);
936 
937 	if (vc4->gen == VC4_GEN_4)
938 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
939 			      SCALER_DISPCTRL_SLVWREIRQ |
940 			      SCALER_DISPCTRL_SLVRDEIRQ |
941 			      SCALER_DISPCTRL_DSPEIEOF(0) |
942 			      SCALER_DISPCTRL_DSPEIEOF(1) |
943 			      SCALER_DISPCTRL_DSPEIEOF(2) |
944 			      SCALER_DISPCTRL_DSPEIEOLN(0) |
945 			      SCALER_DISPCTRL_DSPEIEOLN(1) |
946 			      SCALER_DISPCTRL_DSPEIEOLN(2) |
947 			      SCALER_DISPCTRL_DSPEISLUR(0) |
948 			      SCALER_DISPCTRL_DSPEISLUR(1) |
949 			      SCALER_DISPCTRL_DSPEISLUR(2) |
950 			      SCALER_DISPCTRL_SCLEIRQ);
951 	else
952 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
953 			      SCALER5_DISPCTRL_SLVEIRQ |
954 			      SCALER5_DISPCTRL_DSPEIEOF(0) |
955 			      SCALER5_DISPCTRL_DSPEIEOF(1) |
956 			      SCALER5_DISPCTRL_DSPEIEOF(2) |
957 			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
958 			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
959 			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
960 			      SCALER5_DISPCTRL_DSPEISLUR(0) |
961 			      SCALER5_DISPCTRL_DSPEISLUR(1) |
962 			      SCALER5_DISPCTRL_DSPEISLUR(2) |
963 			      SCALER_DISPCTRL_SCLEIRQ);
964 
965 
966 	/* Set AXI panic mode.
967 	 * VC4 panics when < 2 lines in FIFO.
968 	 * VC5 panics when less than 1 line in the FIFO.
969 	 */
970 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
971 		      SCALER_DISPCTRL_PANIC1_MASK |
972 		      SCALER_DISPCTRL_PANIC2_MASK);
973 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
974 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
975 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
976 
977 	/* Set AXI panic mode.
978 	 * VC4 panics when < 2 lines in FIFO.
979 	 * VC5 panics when less than 1 line in the FIFO.
980 	 */
981 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
982 		      SCALER_DISPCTRL_PANIC1_MASK |
983 		      SCALER_DISPCTRL_PANIC2_MASK);
984 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
985 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
986 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
987 
988 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
989 
990 	/* Recompute Composite Output Buffer (COB) allocations for the displays
991 	 */
992 	if (vc4->gen == VC4_GEN_4) {
993 		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
994 		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
995 		 * TXP composing RGBA to memory), whilst the remainder are only
996 		 * 24bpp RGB.
997 		 *
998 		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
999 		 * channel 0.
1000 		 */
1001 		#define VC4_COB_SIZE		20736
1002 		#define VC4_COB_LINE_WIDTH	2048
1003 		#define VC4_COB_NUM_LINES	3
1004 		reg = 0;
1005 		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
1006 		reg |= (top - 1) << 16;
1007 		HVS_WRITE(SCALER_DISPBASE2, reg);
1008 		reg = top;
1009 		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
1010 		reg |= (top - 1) << 16;
1011 		HVS_WRITE(SCALER_DISPBASE1, reg);
1012 		reg = top;
1013 		top = VC4_COB_SIZE;
1014 		reg |= (top - 1) << 16;
1015 		HVS_WRITE(SCALER_DISPBASE0, reg);
1016 	} else {
1017 		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
1018 		 * The bottom 4096 pixels are full RGBA (intended for the TXP
1019 		 * composing RGBA to memory), whilst the remainder are only
1020 		 * RGB. Addressing is always pixel wide.
1021 		 *
1022 		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
1023 		 * lines. to channel 0.
1024 		 */
1025 		#define VC5_COB_SIZE		44416
1026 		#define VC5_COB_LINE_WIDTH	4096
1027 		#define VC5_COB_NUM_LINES	3
1028 		reg = 0;
1029 		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1030 		reg |= top << 16;
1031 		HVS_WRITE(SCALER_DISPBASE2, reg);
1032 		top += 16;
1033 		reg = top;
1034 		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1035 		reg |= top << 16;
1036 		HVS_WRITE(SCALER_DISPBASE1, reg);
1037 		top += 16;
1038 		reg = top;
1039 		top = VC5_COB_SIZE;
1040 		reg |= top << 16;
1041 		HVS_WRITE(SCALER_DISPBASE0, reg);
1042 	}
1043 
1044 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1045 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1046 	if (ret)
1047 		return ret;
1048 
1049 	return 0;
1050 }
1051 
vc4_hvs_unbind(struct device * dev,struct device * master,void * data)1052 static void vc4_hvs_unbind(struct device *dev, struct device *master,
1053 			   void *data)
1054 {
1055 	struct drm_device *drm = dev_get_drvdata(master);
1056 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1057 	struct vc4_hvs *hvs = vc4->hvs;
1058 	struct drm_mm_node *node, *next;
1059 
1060 	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1061 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1062 
1063 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1064 		drm_mm_remove_node(node);
1065 
1066 	drm_mm_takedown(&vc4->hvs->dlist_mm);
1067 
1068 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1069 		drm_mm_remove_node(node);
1070 	drm_mm_takedown(&vc4->hvs->lbm_mm);
1071 
1072 	clk_disable_unprepare(hvs->core_clk);
1073 
1074 	vc4->hvs = NULL;
1075 }
1076 
1077 static const struct component_ops vc4_hvs_ops = {
1078 	.bind   = vc4_hvs_bind,
1079 	.unbind = vc4_hvs_unbind,
1080 };
1081 
vc4_hvs_dev_probe(struct platform_device * pdev)1082 static int vc4_hvs_dev_probe(struct platform_device *pdev)
1083 {
1084 	return component_add(&pdev->dev, &vc4_hvs_ops);
1085 }
1086 
vc4_hvs_dev_remove(struct platform_device * pdev)1087 static void vc4_hvs_dev_remove(struct platform_device *pdev)
1088 {
1089 	component_del(&pdev->dev, &vc4_hvs_ops);
1090 }
1091 
1092 static const struct of_device_id vc4_hvs_dt_match[] = {
1093 	{ .compatible = "brcm,bcm2711-hvs" },
1094 	{ .compatible = "brcm,bcm2835-hvs" },
1095 	{}
1096 };
1097 
1098 struct platform_driver vc4_hvs_driver = {
1099 	.probe = vc4_hvs_dev_probe,
1100 	.remove_new = vc4_hvs_dev_remove,
1101 	.driver = {
1102 		.name = "vc4_hvs",
1103 		.of_match_table = vc4_hvs_dt_match,
1104 	},
1105 };
1106