1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include "vfio.h"
41
42 #define DRIVER_VERSION "0.2"
43 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
45
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
62
63 struct vfio_iommu {
64 struct list_head domain_list;
65 struct list_head iova_list;
66 struct mutex lock;
67 struct rb_root dma_list;
68 struct list_head device_list;
69 struct mutex device_list_lock;
70 unsigned int dma_avail;
71 unsigned int vaddr_invalid_count;
72 uint64_t pgsize_bitmap;
73 uint64_t num_non_pinned_groups;
74 bool v2;
75 bool nesting;
76 bool dirty_page_tracking;
77 struct list_head emulated_iommu_groups;
78 };
79
80 struct vfio_domain {
81 struct iommu_domain *domain;
82 struct list_head next;
83 struct list_head group_list;
84 bool fgsp : 1; /* Fine-grained super pages */
85 bool enforce_cache_coherency : 1;
86 };
87
88 struct vfio_dma {
89 struct rb_node node;
90 dma_addr_t iova; /* Device address */
91 unsigned long vaddr; /* Process virtual addr */
92 size_t size; /* Map size (bytes) */
93 int prot; /* IOMMU_READ/WRITE */
94 bool iommu_mapped;
95 bool lock_cap; /* capable(CAP_IPC_LOCK) */
96 bool vaddr_invalid;
97 struct task_struct *task;
98 struct rb_root pfn_list; /* Ex-user pinned pfn list */
99 unsigned long *bitmap;
100 struct mm_struct *mm;
101 size_t locked_vm;
102 };
103
104 struct vfio_batch {
105 struct page **pages; /* for pin_user_pages_remote */
106 struct page *fallback_page; /* if pages alloc fails */
107 int capacity; /* length of pages array */
108 int size; /* of batch currently */
109 int offset; /* of next entry in pages */
110 };
111
112 struct vfio_iommu_group {
113 struct iommu_group *iommu_group;
114 struct list_head next;
115 bool pinned_page_dirty_scope;
116 };
117
118 struct vfio_iova {
119 struct list_head list;
120 dma_addr_t start;
121 dma_addr_t end;
122 };
123
124 /*
125 * Guest RAM pinning working set or DMA target
126 */
127 struct vfio_pfn {
128 struct rb_node node;
129 dma_addr_t iova; /* Device address */
130 unsigned long pfn; /* Host pfn */
131 unsigned int ref_count;
132 };
133
134 struct vfio_regions {
135 struct list_head list;
136 dma_addr_t iova;
137 phys_addr_t phys;
138 size_t len;
139 };
140
141 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
142
143 /*
144 * Input argument of number of bits to bitmap_set() is unsigned integer, which
145 * further casts to signed integer for unaligned multi-bit operation,
146 * __bitmap_set().
147 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
148 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
149 * system.
150 */
151 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
152 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153
154 static int put_pfn(unsigned long pfn, int prot);
155
156 static struct vfio_iommu_group*
157 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
158 struct iommu_group *iommu_group);
159
160 /*
161 * This code handles mapping and unmapping of user data buffers
162 * into DMA'ble space using the IOMMU
163 */
164
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)165 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
166 dma_addr_t start, size_t size)
167 {
168 struct rb_node *node = iommu->dma_list.rb_node;
169
170 while (node) {
171 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172
173 if (start + size <= dma->iova)
174 node = node->rb_left;
175 else if (start >= dma->iova + dma->size)
176 node = node->rb_right;
177 else
178 return dma;
179 }
180
181 return NULL;
182 }
183
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,u64 size)184 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
185 dma_addr_t start, u64 size)
186 {
187 struct rb_node *res = NULL;
188 struct rb_node *node = iommu->dma_list.rb_node;
189 struct vfio_dma *dma_res = NULL;
190
191 while (node) {
192 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193
194 if (start < dma->iova + dma->size) {
195 res = node;
196 dma_res = dma;
197 if (start >= dma->iova)
198 break;
199 node = node->rb_left;
200 } else {
201 node = node->rb_right;
202 }
203 }
204 if (res && size && dma_res->iova >= start + size)
205 res = NULL;
206 return res;
207 }
208
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)209 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210 {
211 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
212 struct vfio_dma *dma;
213
214 while (*link) {
215 parent = *link;
216 dma = rb_entry(parent, struct vfio_dma, node);
217
218 if (new->iova + new->size <= dma->iova)
219 link = &(*link)->rb_left;
220 else
221 link = &(*link)->rb_right;
222 }
223
224 rb_link_node(&new->node, parent, link);
225 rb_insert_color(&new->node, &iommu->dma_list);
226 }
227
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)228 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229 {
230 rb_erase(&old->node, &iommu->dma_list);
231 }
232
233
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)234 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235 {
236 uint64_t npages = dma->size / pgsize;
237
238 if (npages > DIRTY_BITMAP_PAGES_MAX)
239 return -EINVAL;
240
241 /*
242 * Allocate extra 64 bits that are used to calculate shift required for
243 * bitmap_shift_left() to manipulate and club unaligned number of pages
244 * in adjacent vfio_dma ranges.
245 */
246 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
247 GFP_KERNEL);
248 if (!dma->bitmap)
249 return -ENOMEM;
250
251 return 0;
252 }
253
vfio_dma_bitmap_free(struct vfio_dma * dma)254 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
255 {
256 kvfree(dma->bitmap);
257 dma->bitmap = NULL;
258 }
259
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)260 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
261 {
262 struct rb_node *p;
263 unsigned long pgshift = __ffs(pgsize);
264
265 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
266 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267
268 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
269 }
270 }
271
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)272 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
273 {
274 struct rb_node *n;
275 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276
277 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
278 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279
280 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
281 }
282 }
283
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)284 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
285 {
286 struct rb_node *n;
287
288 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
289 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
290 int ret;
291
292 ret = vfio_dma_bitmap_alloc(dma, pgsize);
293 if (ret) {
294 struct rb_node *p;
295
296 for (p = rb_prev(n); p; p = rb_prev(p)) {
297 struct vfio_dma *dma = rb_entry(p,
298 struct vfio_dma, node);
299
300 vfio_dma_bitmap_free(dma);
301 }
302 return ret;
303 }
304 vfio_dma_populate_bitmap(dma, pgsize);
305 }
306 return 0;
307 }
308
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)309 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
310 {
311 struct rb_node *n;
312
313 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
314 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315
316 vfio_dma_bitmap_free(dma);
317 }
318 }
319
320 /*
321 * Helper Functions for host iova-pfn list
322 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)323 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324 {
325 struct vfio_pfn *vpfn;
326 struct rb_node *node = dma->pfn_list.rb_node;
327
328 while (node) {
329 vpfn = rb_entry(node, struct vfio_pfn, node);
330
331 if (iova < vpfn->iova)
332 node = node->rb_left;
333 else if (iova > vpfn->iova)
334 node = node->rb_right;
335 else
336 return vpfn;
337 }
338 return NULL;
339 }
340
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)341 static void vfio_link_pfn(struct vfio_dma *dma,
342 struct vfio_pfn *new)
343 {
344 struct rb_node **link, *parent = NULL;
345 struct vfio_pfn *vpfn;
346
347 link = &dma->pfn_list.rb_node;
348 while (*link) {
349 parent = *link;
350 vpfn = rb_entry(parent, struct vfio_pfn, node);
351
352 if (new->iova < vpfn->iova)
353 link = &(*link)->rb_left;
354 else
355 link = &(*link)->rb_right;
356 }
357
358 rb_link_node(&new->node, parent, link);
359 rb_insert_color(&new->node, &dma->pfn_list);
360 }
361
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)362 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363 {
364 rb_erase(&old->node, &dma->pfn_list);
365 }
366
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)367 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
368 unsigned long pfn)
369 {
370 struct vfio_pfn *vpfn;
371
372 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
373 if (!vpfn)
374 return -ENOMEM;
375
376 vpfn->iova = iova;
377 vpfn->pfn = pfn;
378 vpfn->ref_count = 1;
379 vfio_link_pfn(dma, vpfn);
380 return 0;
381 }
382
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)383 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
384 struct vfio_pfn *vpfn)
385 {
386 vfio_unlink_pfn(dma, vpfn);
387 kfree(vpfn);
388 }
389
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)390 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
391 unsigned long iova)
392 {
393 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
394
395 if (vpfn)
396 vpfn->ref_count++;
397 return vpfn;
398 }
399
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)400 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
401 {
402 int ret = 0;
403
404 vpfn->ref_count--;
405 if (!vpfn->ref_count) {
406 ret = put_pfn(vpfn->pfn, dma->prot);
407 vfio_remove_from_pfn_list(dma, vpfn);
408 }
409 return ret;
410 }
411
mm_lock_acct(struct task_struct * task,struct mm_struct * mm,bool lock_cap,long npage)412 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
413 bool lock_cap, long npage)
414 {
415 int ret = mmap_write_lock_killable(mm);
416
417 if (ret)
418 return ret;
419
420 ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
421 mmap_write_unlock(mm);
422 return ret;
423 }
424
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)425 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426 {
427 struct mm_struct *mm;
428 int ret;
429
430 if (!npage)
431 return 0;
432
433 mm = dma->mm;
434 if (async && !mmget_not_zero(mm))
435 return -ESRCH; /* process exited */
436
437 ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
438 if (!ret)
439 dma->locked_vm += npage;
440
441 if (async)
442 mmput(mm);
443
444 return ret;
445 }
446
447 /*
448 * Some mappings aren't backed by a struct page, for example an mmap'd
449 * MMIO range for our own or another device. These use a different
450 * pfn conversion and shouldn't be tracked as locked pages.
451 * For compound pages, any driver that sets the reserved bit in head
452 * page needs to set the reserved bit in all subpages to be safe.
453 */
is_invalid_reserved_pfn(unsigned long pfn)454 static bool is_invalid_reserved_pfn(unsigned long pfn)
455 {
456 if (pfn_valid(pfn))
457 return PageReserved(pfn_to_page(pfn));
458
459 return true;
460 }
461
put_pfn(unsigned long pfn,int prot)462 static int put_pfn(unsigned long pfn, int prot)
463 {
464 if (!is_invalid_reserved_pfn(pfn)) {
465 struct page *page = pfn_to_page(pfn);
466
467 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
468 return 1;
469 }
470 return 0;
471 }
472
473 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474
vfio_batch_init(struct vfio_batch * batch)475 static void vfio_batch_init(struct vfio_batch *batch)
476 {
477 batch->size = 0;
478 batch->offset = 0;
479
480 if (unlikely(disable_hugepages))
481 goto fallback;
482
483 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
484 if (!batch->pages)
485 goto fallback;
486
487 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
488 return;
489
490 fallback:
491 batch->pages = &batch->fallback_page;
492 batch->capacity = 1;
493 }
494
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)495 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496 {
497 while (batch->size) {
498 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499
500 put_pfn(pfn, dma->prot);
501 batch->offset++;
502 batch->size--;
503 }
504 }
505
vfio_batch_fini(struct vfio_batch * batch)506 static void vfio_batch_fini(struct vfio_batch *batch)
507 {
508 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
509 free_page((unsigned long)batch->pages);
510 }
511
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,bool write_fault)512 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
513 unsigned long vaddr, unsigned long *pfn,
514 bool write_fault)
515 {
516 struct follow_pfnmap_args args = { .vma = vma, .address = vaddr };
517 int ret;
518
519 ret = follow_pfnmap_start(&args);
520 if (ret) {
521 bool unlocked = false;
522
523 ret = fixup_user_fault(mm, vaddr,
524 FAULT_FLAG_REMOTE |
525 (write_fault ? FAULT_FLAG_WRITE : 0),
526 &unlocked);
527 if (unlocked)
528 return -EAGAIN;
529
530 if (ret)
531 return ret;
532
533 ret = follow_pfnmap_start(&args);
534 if (ret)
535 return ret;
536 }
537
538 if (write_fault && !args.writable)
539 ret = -EFAULT;
540 else
541 *pfn = args.pfn;
542
543 follow_pfnmap_end(&args);
544 return ret;
545 }
546
547 /*
548 * Returns the positive number of pfns successfully obtained or a negative
549 * error code.
550 */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,long npages,int prot,unsigned long * pfn,struct page ** pages)551 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
552 long npages, int prot, unsigned long *pfn,
553 struct page **pages)
554 {
555 struct vm_area_struct *vma;
556 unsigned int flags = 0;
557 int ret;
558
559 if (prot & IOMMU_WRITE)
560 flags |= FOLL_WRITE;
561
562 mmap_read_lock(mm);
563 ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
564 pages, NULL);
565 if (ret > 0) {
566 *pfn = page_to_pfn(pages[0]);
567 goto done;
568 }
569
570 vaddr = untagged_addr_remote(mm, vaddr);
571
572 retry:
573 vma = vma_lookup(mm, vaddr);
574
575 if (vma && vma->vm_flags & VM_PFNMAP) {
576 ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
577 if (ret == -EAGAIN)
578 goto retry;
579
580 if (!ret) {
581 if (is_invalid_reserved_pfn(*pfn))
582 ret = 1;
583 else
584 ret = -EFAULT;
585 }
586 }
587 done:
588 mmap_read_unlock(mm);
589 return ret;
590 }
591
592 /*
593 * Attempt to pin pages. We really don't want to track all the pfns and
594 * the iommu can only map chunks of consecutive pfns anyway, so get the
595 * first page and all consecutive pages with the same locking.
596 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)597 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
598 long npage, unsigned long *pfn_base,
599 unsigned long limit, struct vfio_batch *batch)
600 {
601 unsigned long pfn;
602 struct mm_struct *mm = current->mm;
603 long ret, pinned = 0, lock_acct = 0;
604 bool rsvd;
605 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
606
607 /* This code path is only user initiated */
608 if (!mm)
609 return -ENODEV;
610
611 if (batch->size) {
612 /* Leftover pages in batch from an earlier call. */
613 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
614 pfn = *pfn_base;
615 rsvd = is_invalid_reserved_pfn(*pfn_base);
616 } else {
617 *pfn_base = 0;
618 }
619
620 while (npage) {
621 if (!batch->size) {
622 /*
623 * Large mappings may take a while to repeatedly refill
624 * the batch, so conditionally relinquish the CPU when
625 * needed to avoid stalls.
626 */
627 cond_resched();
628
629 /* Empty batch, so refill it. */
630 long req_pages = min_t(long, npage, batch->capacity);
631
632 ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
633 &pfn, batch->pages);
634 if (ret < 0)
635 goto unpin_out;
636
637 batch->size = ret;
638 batch->offset = 0;
639
640 if (!*pfn_base) {
641 *pfn_base = pfn;
642 rsvd = is_invalid_reserved_pfn(*pfn_base);
643 }
644 }
645
646 /*
647 * pfn is preset for the first iteration of this inner loop and
648 * updated at the end to handle a VM_PFNMAP pfn. In that case,
649 * batch->pages isn't valid (there's no struct page), so allow
650 * batch->pages to be touched only when there's more than one
651 * pfn to check, which guarantees the pfns are from a
652 * !VM_PFNMAP vma.
653 */
654 while (true) {
655 if (pfn != *pfn_base + pinned ||
656 rsvd != is_invalid_reserved_pfn(pfn))
657 goto out;
658
659 /*
660 * Reserved pages aren't counted against the user,
661 * externally pinned pages are already counted against
662 * the user.
663 */
664 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
665 if (!dma->lock_cap &&
666 mm->locked_vm + lock_acct + 1 > limit) {
667 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
668 __func__, limit << PAGE_SHIFT);
669 ret = -ENOMEM;
670 goto unpin_out;
671 }
672 lock_acct++;
673 }
674
675 pinned++;
676 npage--;
677 vaddr += PAGE_SIZE;
678 iova += PAGE_SIZE;
679 batch->offset++;
680 batch->size--;
681
682 if (!batch->size)
683 break;
684
685 pfn = page_to_pfn(batch->pages[batch->offset]);
686 }
687
688 if (unlikely(disable_hugepages))
689 break;
690 }
691
692 out:
693 ret = vfio_lock_acct(dma, lock_acct, false);
694
695 unpin_out:
696 if (batch->size == 1 && !batch->offset) {
697 /* May be a VM_PFNMAP pfn, which the batch can't remember. */
698 put_pfn(pfn, dma->prot);
699 batch->size = 0;
700 }
701
702 if (ret < 0) {
703 if (pinned && !rsvd) {
704 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
705 put_pfn(pfn, dma->prot);
706 }
707 vfio_batch_unpin(batch, dma);
708
709 return ret;
710 }
711
712 return pinned;
713 }
714
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)715 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
716 unsigned long pfn, long npage,
717 bool do_accounting)
718 {
719 long unlocked = 0, locked = 0;
720 long i;
721
722 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
723 if (put_pfn(pfn++, dma->prot)) {
724 unlocked++;
725 if (vfio_find_vpfn(dma, iova))
726 locked++;
727 }
728 }
729
730 if (do_accounting)
731 vfio_lock_acct(dma, locked - unlocked, true);
732
733 return unlocked;
734 }
735
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)736 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
737 unsigned long *pfn_base, bool do_accounting)
738 {
739 struct page *pages[1];
740 struct mm_struct *mm;
741 int ret;
742
743 mm = dma->mm;
744 if (!mmget_not_zero(mm))
745 return -ENODEV;
746
747 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
748 if (ret != 1)
749 goto out;
750
751 ret = 0;
752
753 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
754 ret = vfio_lock_acct(dma, 1, false);
755 if (ret) {
756 put_pfn(*pfn_base, dma->prot);
757 if (ret == -ENOMEM)
758 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
759 "(%ld) exceeded\n", __func__,
760 dma->task->comm, task_pid_nr(dma->task),
761 task_rlimit(dma->task, RLIMIT_MEMLOCK));
762 }
763 }
764
765 out:
766 mmput(mm);
767 return ret;
768 }
769
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)770 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
771 bool do_accounting)
772 {
773 int unlocked;
774 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
775
776 if (!vpfn)
777 return 0;
778
779 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
780
781 if (do_accounting)
782 vfio_lock_acct(dma, -unlocked, true);
783
784 return unlocked;
785 }
786
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)787 static int vfio_iommu_type1_pin_pages(void *iommu_data,
788 struct iommu_group *iommu_group,
789 dma_addr_t user_iova,
790 int npage, int prot,
791 struct page **pages)
792 {
793 struct vfio_iommu *iommu = iommu_data;
794 struct vfio_iommu_group *group;
795 int i, j, ret;
796 unsigned long remote_vaddr;
797 struct vfio_dma *dma;
798 bool do_accounting;
799
800 if (!iommu || !pages)
801 return -EINVAL;
802
803 /* Supported for v2 version only */
804 if (!iommu->v2)
805 return -EACCES;
806
807 mutex_lock(&iommu->lock);
808
809 if (WARN_ONCE(iommu->vaddr_invalid_count,
810 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
811 ret = -EBUSY;
812 goto pin_done;
813 }
814
815 /* Fail if no dma_umap notifier is registered */
816 if (list_empty(&iommu->device_list)) {
817 ret = -EINVAL;
818 goto pin_done;
819 }
820
821 /*
822 * If iommu capable domain exist in the container then all pages are
823 * already pinned and accounted. Accounting should be done if there is no
824 * iommu capable domain in the container.
825 */
826 do_accounting = list_empty(&iommu->domain_list);
827
828 for (i = 0; i < npage; i++) {
829 unsigned long phys_pfn;
830 dma_addr_t iova;
831 struct vfio_pfn *vpfn;
832
833 iova = user_iova + PAGE_SIZE * i;
834 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
835 if (!dma) {
836 ret = -EINVAL;
837 goto pin_unwind;
838 }
839
840 if ((dma->prot & prot) != prot) {
841 ret = -EPERM;
842 goto pin_unwind;
843 }
844
845 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
846 if (vpfn) {
847 pages[i] = pfn_to_page(vpfn->pfn);
848 continue;
849 }
850
851 remote_vaddr = dma->vaddr + (iova - dma->iova);
852 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
853 do_accounting);
854 if (ret)
855 goto pin_unwind;
856
857 if (!pfn_valid(phys_pfn)) {
858 ret = -EINVAL;
859 goto pin_unwind;
860 }
861
862 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
863 if (ret) {
864 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
865 vfio_lock_acct(dma, -1, true);
866 goto pin_unwind;
867 }
868
869 pages[i] = pfn_to_page(phys_pfn);
870
871 if (iommu->dirty_page_tracking) {
872 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
873
874 /*
875 * Bitmap populated with the smallest supported page
876 * size
877 */
878 bitmap_set(dma->bitmap,
879 (iova - dma->iova) >> pgshift, 1);
880 }
881 }
882 ret = i;
883
884 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
885 if (!group->pinned_page_dirty_scope) {
886 group->pinned_page_dirty_scope = true;
887 iommu->num_non_pinned_groups--;
888 }
889
890 goto pin_done;
891
892 pin_unwind:
893 pages[i] = NULL;
894 for (j = 0; j < i; j++) {
895 dma_addr_t iova;
896
897 iova = user_iova + PAGE_SIZE * j;
898 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
899 vfio_unpin_page_external(dma, iova, do_accounting);
900 pages[j] = NULL;
901 }
902 pin_done:
903 mutex_unlock(&iommu->lock);
904 return ret;
905 }
906
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)907 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
908 dma_addr_t user_iova, int npage)
909 {
910 struct vfio_iommu *iommu = iommu_data;
911 bool do_accounting;
912 int i;
913
914 /* Supported for v2 version only */
915 if (WARN_ON(!iommu->v2))
916 return;
917
918 mutex_lock(&iommu->lock);
919
920 do_accounting = list_empty(&iommu->domain_list);
921 for (i = 0; i < npage; i++) {
922 dma_addr_t iova = user_iova + PAGE_SIZE * i;
923 struct vfio_dma *dma;
924
925 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
926 if (!dma)
927 break;
928
929 vfio_unpin_page_external(dma, iova, do_accounting);
930 }
931
932 mutex_unlock(&iommu->lock);
933
934 WARN_ON(i != npage);
935 }
936
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)937 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
938 struct list_head *regions,
939 struct iommu_iotlb_gather *iotlb_gather)
940 {
941 long unlocked = 0;
942 struct vfio_regions *entry, *next;
943
944 iommu_iotlb_sync(domain->domain, iotlb_gather);
945
946 list_for_each_entry_safe(entry, next, regions, list) {
947 unlocked += vfio_unpin_pages_remote(dma,
948 entry->iova,
949 entry->phys >> PAGE_SHIFT,
950 entry->len >> PAGE_SHIFT,
951 false);
952 list_del(&entry->list);
953 kfree(entry);
954 }
955
956 cond_resched();
957
958 return unlocked;
959 }
960
961 /*
962 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
963 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
964 * of these regions (currently using a list).
965 *
966 * This value specifies maximum number of regions for each IOTLB flush sync.
967 */
968 #define VFIO_IOMMU_TLB_SYNC_MAX 512
969
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)970 static size_t unmap_unpin_fast(struct vfio_domain *domain,
971 struct vfio_dma *dma, dma_addr_t *iova,
972 size_t len, phys_addr_t phys, long *unlocked,
973 struct list_head *unmapped_list,
974 int *unmapped_cnt,
975 struct iommu_iotlb_gather *iotlb_gather)
976 {
977 size_t unmapped = 0;
978 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
979
980 if (entry) {
981 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
982 iotlb_gather);
983
984 if (!unmapped) {
985 kfree(entry);
986 } else {
987 entry->iova = *iova;
988 entry->phys = phys;
989 entry->len = unmapped;
990 list_add_tail(&entry->list, unmapped_list);
991
992 *iova += unmapped;
993 (*unmapped_cnt)++;
994 }
995 }
996
997 /*
998 * Sync if the number of fast-unmap regions hits the limit
999 * or in case of errors.
1000 */
1001 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1002 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1003 iotlb_gather);
1004 *unmapped_cnt = 0;
1005 }
1006
1007 return unmapped;
1008 }
1009
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)1010 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1011 struct vfio_dma *dma, dma_addr_t *iova,
1012 size_t len, phys_addr_t phys,
1013 long *unlocked)
1014 {
1015 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1016
1017 if (unmapped) {
1018 *unlocked += vfio_unpin_pages_remote(dma, *iova,
1019 phys >> PAGE_SHIFT,
1020 unmapped >> PAGE_SHIFT,
1021 false);
1022 *iova += unmapped;
1023 cond_resched();
1024 }
1025 return unmapped;
1026 }
1027
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1028 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1029 bool do_accounting)
1030 {
1031 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1032 struct vfio_domain *domain, *d;
1033 LIST_HEAD(unmapped_region_list);
1034 struct iommu_iotlb_gather iotlb_gather;
1035 int unmapped_region_cnt = 0;
1036 long unlocked = 0;
1037
1038 if (!dma->size)
1039 return 0;
1040
1041 if (list_empty(&iommu->domain_list))
1042 return 0;
1043
1044 /*
1045 * We use the IOMMU to track the physical addresses, otherwise we'd
1046 * need a much more complicated tracking system. Unfortunately that
1047 * means we need to use one of the iommu domains to figure out the
1048 * pfns to unpin. The rest need to be unmapped in advance so we have
1049 * no iommu translations remaining when the pages are unpinned.
1050 */
1051 domain = d = list_first_entry(&iommu->domain_list,
1052 struct vfio_domain, next);
1053
1054 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1055 iommu_unmap(d->domain, dma->iova, dma->size);
1056 cond_resched();
1057 }
1058
1059 iommu_iotlb_gather_init(&iotlb_gather);
1060 while (iova < end) {
1061 size_t unmapped, len;
1062 phys_addr_t phys, next;
1063
1064 phys = iommu_iova_to_phys(domain->domain, iova);
1065 if (WARN_ON(!phys)) {
1066 iova += PAGE_SIZE;
1067 continue;
1068 }
1069
1070 /*
1071 * To optimize for fewer iommu_unmap() calls, each of which
1072 * may require hardware cache flushing, try to find the
1073 * largest contiguous physical memory chunk to unmap.
1074 */
1075 for (len = PAGE_SIZE;
1076 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1077 next = iommu_iova_to_phys(domain->domain, iova + len);
1078 if (next != phys + len)
1079 break;
1080 }
1081
1082 /*
1083 * First, try to use fast unmap/unpin. In case of failure,
1084 * switch to slow unmap/unpin path.
1085 */
1086 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1087 &unlocked, &unmapped_region_list,
1088 &unmapped_region_cnt,
1089 &iotlb_gather);
1090 if (!unmapped) {
1091 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1092 phys, &unlocked);
1093 if (WARN_ON(!unmapped))
1094 break;
1095 }
1096 }
1097
1098 dma->iommu_mapped = false;
1099
1100 if (unmapped_region_cnt) {
1101 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1102 &iotlb_gather);
1103 }
1104
1105 if (do_accounting) {
1106 vfio_lock_acct(dma, -unlocked, true);
1107 return 0;
1108 }
1109 return unlocked;
1110 }
1111
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1112 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1113 {
1114 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1115 vfio_unmap_unpin(iommu, dma, true);
1116 vfio_unlink_dma(iommu, dma);
1117 put_task_struct(dma->task);
1118 mmdrop(dma->mm);
1119 vfio_dma_bitmap_free(dma);
1120 if (dma->vaddr_invalid)
1121 iommu->vaddr_invalid_count--;
1122 kfree(dma);
1123 iommu->dma_avail++;
1124 }
1125
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1126 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1127 {
1128 struct vfio_domain *domain;
1129
1130 iommu->pgsize_bitmap = ULONG_MAX;
1131
1132 list_for_each_entry(domain, &iommu->domain_list, next)
1133 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1134
1135 /*
1136 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1137 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1138 * That way the user will be able to map/unmap buffers whose size/
1139 * start address is aligned with PAGE_SIZE. Pinning code uses that
1140 * granularity while iommu driver can use the sub-PAGE_SIZE size
1141 * to map the buffer.
1142 */
1143 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1144 iommu->pgsize_bitmap &= PAGE_MASK;
1145 iommu->pgsize_bitmap |= PAGE_SIZE;
1146 }
1147 }
1148
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1149 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1150 struct vfio_dma *dma, dma_addr_t base_iova,
1151 size_t pgsize)
1152 {
1153 unsigned long pgshift = __ffs(pgsize);
1154 unsigned long nbits = dma->size >> pgshift;
1155 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1156 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1157 unsigned long shift = bit_offset % BITS_PER_LONG;
1158 unsigned long leftover;
1159
1160 /*
1161 * mark all pages dirty if any IOMMU capable device is not able
1162 * to report dirty pages and all pages are pinned and mapped.
1163 */
1164 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1165 bitmap_set(dma->bitmap, 0, nbits);
1166
1167 if (shift) {
1168 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1169 nbits + shift);
1170
1171 if (copy_from_user(&leftover,
1172 (void __user *)(bitmap + copy_offset),
1173 sizeof(leftover)))
1174 return -EFAULT;
1175
1176 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1177 }
1178
1179 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1180 DIRTY_BITMAP_BYTES(nbits + shift)))
1181 return -EFAULT;
1182
1183 return 0;
1184 }
1185
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1186 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1187 dma_addr_t iova, size_t size, size_t pgsize)
1188 {
1189 struct vfio_dma *dma;
1190 struct rb_node *n;
1191 unsigned long pgshift = __ffs(pgsize);
1192 int ret;
1193
1194 /*
1195 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1196 * vfio_dma mappings may be clubbed by specifying large ranges, but
1197 * there must not be any previous mappings bisected by the range.
1198 * An error will be returned if these conditions are not met.
1199 */
1200 dma = vfio_find_dma(iommu, iova, 1);
1201 if (dma && dma->iova != iova)
1202 return -EINVAL;
1203
1204 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1205 if (dma && dma->iova + dma->size != iova + size)
1206 return -EINVAL;
1207
1208 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1209 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1210
1211 if (dma->iova < iova)
1212 continue;
1213
1214 if (dma->iova > iova + size - 1)
1215 break;
1216
1217 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1218 if (ret)
1219 return ret;
1220
1221 /*
1222 * Re-populate bitmap to include all pinned pages which are
1223 * considered as dirty but exclude pages which are unpinned and
1224 * pages which are marked dirty by vfio_dma_rw()
1225 */
1226 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1227 vfio_dma_populate_bitmap(dma, pgsize);
1228 }
1229 return 0;
1230 }
1231
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1232 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1233 {
1234 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1235 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1236 return -EINVAL;
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1243 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1244 * pages in response to an invalidation.
1245 */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1246 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1247 struct vfio_dma *dma)
1248 {
1249 struct vfio_device *device;
1250
1251 if (list_empty(&iommu->device_list))
1252 return;
1253
1254 /*
1255 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1256 * pinned within the range. Since vfio_unpin_pages() will eventually
1257 * call back down to this code and try to obtain the iommu->lock we must
1258 * drop it.
1259 */
1260 mutex_lock(&iommu->device_list_lock);
1261 mutex_unlock(&iommu->lock);
1262
1263 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1264 device->ops->dma_unmap(device, dma->iova, dma->size);
1265
1266 mutex_unlock(&iommu->device_list_lock);
1267 mutex_lock(&iommu->lock);
1268 }
1269
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1270 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1271 struct vfio_iommu_type1_dma_unmap *unmap,
1272 struct vfio_bitmap *bitmap)
1273 {
1274 struct vfio_dma *dma, *dma_last = NULL;
1275 size_t unmapped = 0, pgsize;
1276 int ret = -EINVAL, retries = 0;
1277 unsigned long pgshift;
1278 dma_addr_t iova = unmap->iova;
1279 u64 size = unmap->size;
1280 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1281 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1282 struct rb_node *n, *first_n;
1283
1284 mutex_lock(&iommu->lock);
1285
1286 /* Cannot update vaddr if mdev is present. */
1287 if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1288 ret = -EBUSY;
1289 goto unlock;
1290 }
1291
1292 pgshift = __ffs(iommu->pgsize_bitmap);
1293 pgsize = (size_t)1 << pgshift;
1294
1295 if (iova & (pgsize - 1))
1296 goto unlock;
1297
1298 if (unmap_all) {
1299 if (iova || size)
1300 goto unlock;
1301 size = U64_MAX;
1302 } else if (!size || size & (pgsize - 1) ||
1303 iova + size - 1 < iova || size > SIZE_MAX) {
1304 goto unlock;
1305 }
1306
1307 /* When dirty tracking is enabled, allow only min supported pgsize */
1308 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1309 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1310 goto unlock;
1311 }
1312
1313 WARN_ON((pgsize - 1) & PAGE_MASK);
1314 again:
1315 /*
1316 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1317 * avoid tracking individual mappings. This means that the granularity
1318 * of the original mapping was lost and the user was allowed to attempt
1319 * to unmap any range. Depending on the contiguousness of physical
1320 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1321 * or may not have worked. We only guaranteed unmap granularity
1322 * matching the original mapping; even though it was untracked here,
1323 * the original mappings are reflected in IOMMU mappings. This
1324 * resulted in a couple unusual behaviors. First, if a range is not
1325 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1326 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1327 * a zero sized unmap. Also, if an unmap request overlaps the first
1328 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1329 * This also returns success and the returned unmap size reflects the
1330 * actual size unmapped.
1331 *
1332 * We attempt to maintain compatibility with this "v1" interface, but
1333 * we take control out of the hands of the IOMMU. Therefore, an unmap
1334 * request offset from the beginning of the original mapping will
1335 * return success with zero sized unmap. And an unmap request covering
1336 * the first iova of mapping will unmap the entire range.
1337 *
1338 * The v2 version of this interface intends to be more deterministic.
1339 * Unmap requests must fully cover previous mappings. Multiple
1340 * mappings may still be unmaped by specifying large ranges, but there
1341 * must not be any previous mappings bisected by the range. An error
1342 * will be returned if these conditions are not met. The v2 interface
1343 * will only return success and a size of zero if there were no
1344 * mappings within the range.
1345 */
1346 if (iommu->v2 && !unmap_all) {
1347 dma = vfio_find_dma(iommu, iova, 1);
1348 if (dma && dma->iova != iova)
1349 goto unlock;
1350
1351 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1352 if (dma && dma->iova + dma->size != iova + size)
1353 goto unlock;
1354 }
1355
1356 ret = 0;
1357 n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1358
1359 while (n) {
1360 dma = rb_entry(n, struct vfio_dma, node);
1361 if (dma->iova >= iova + size)
1362 break;
1363
1364 if (!iommu->v2 && iova > dma->iova)
1365 break;
1366
1367 if (invalidate_vaddr) {
1368 if (dma->vaddr_invalid) {
1369 struct rb_node *last_n = n;
1370
1371 for (n = first_n; n != last_n; n = rb_next(n)) {
1372 dma = rb_entry(n,
1373 struct vfio_dma, node);
1374 dma->vaddr_invalid = false;
1375 iommu->vaddr_invalid_count--;
1376 }
1377 ret = -EINVAL;
1378 unmapped = 0;
1379 break;
1380 }
1381 dma->vaddr_invalid = true;
1382 iommu->vaddr_invalid_count++;
1383 unmapped += dma->size;
1384 n = rb_next(n);
1385 continue;
1386 }
1387
1388 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1389 if (dma_last == dma) {
1390 BUG_ON(++retries > 10);
1391 } else {
1392 dma_last = dma;
1393 retries = 0;
1394 }
1395
1396 vfio_notify_dma_unmap(iommu, dma);
1397 goto again;
1398 }
1399
1400 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1401 ret = update_user_bitmap(bitmap->data, iommu, dma,
1402 iova, pgsize);
1403 if (ret)
1404 break;
1405 }
1406
1407 unmapped += dma->size;
1408 n = rb_next(n);
1409 vfio_remove_dma(iommu, dma);
1410 }
1411
1412 unlock:
1413 mutex_unlock(&iommu->lock);
1414
1415 /* Report how much was unmapped */
1416 unmap->size = unmapped;
1417
1418 return ret;
1419 }
1420
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1421 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1422 unsigned long pfn, long npage, int prot)
1423 {
1424 struct vfio_domain *d;
1425 int ret;
1426
1427 list_for_each_entry(d, &iommu->domain_list, next) {
1428 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1429 npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1430 GFP_KERNEL_ACCOUNT);
1431 if (ret)
1432 goto unwind;
1433
1434 cond_resched();
1435 }
1436
1437 return 0;
1438
1439 unwind:
1440 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1441 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1442 cond_resched();
1443 }
1444
1445 return ret;
1446 }
1447
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1448 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1449 size_t map_size)
1450 {
1451 dma_addr_t iova = dma->iova;
1452 unsigned long vaddr = dma->vaddr;
1453 struct vfio_batch batch;
1454 size_t size = map_size;
1455 long npage;
1456 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1457 int ret = 0;
1458
1459 vfio_batch_init(&batch);
1460
1461 while (size) {
1462 /* Pin a contiguous chunk of memory */
1463 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1464 size >> PAGE_SHIFT, &pfn, limit,
1465 &batch);
1466 if (npage <= 0) {
1467 WARN_ON(!npage);
1468 ret = (int)npage;
1469 break;
1470 }
1471
1472 /* Map it! */
1473 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1474 dma->prot);
1475 if (ret) {
1476 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1477 npage, true);
1478 vfio_batch_unpin(&batch, dma);
1479 break;
1480 }
1481
1482 size -= npage << PAGE_SHIFT;
1483 dma->size += npage << PAGE_SHIFT;
1484 }
1485
1486 vfio_batch_fini(&batch);
1487 dma->iommu_mapped = true;
1488
1489 if (ret)
1490 vfio_remove_dma(iommu, dma);
1491
1492 return ret;
1493 }
1494
1495 /*
1496 * Check dma map request is within a valid iova range
1497 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1498 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1499 dma_addr_t start, dma_addr_t end)
1500 {
1501 struct list_head *iova = &iommu->iova_list;
1502 struct vfio_iova *node;
1503
1504 list_for_each_entry(node, iova, list) {
1505 if (start >= node->start && end <= node->end)
1506 return true;
1507 }
1508
1509 /*
1510 * Check for list_empty() as well since a container with
1511 * a single mdev device will have an empty list.
1512 */
1513 return list_empty(iova);
1514 }
1515
vfio_change_dma_owner(struct vfio_dma * dma)1516 static int vfio_change_dma_owner(struct vfio_dma *dma)
1517 {
1518 struct task_struct *task = current->group_leader;
1519 struct mm_struct *mm = current->mm;
1520 long npage = dma->locked_vm;
1521 bool lock_cap;
1522 int ret;
1523
1524 if (mm == dma->mm)
1525 return 0;
1526
1527 lock_cap = capable(CAP_IPC_LOCK);
1528 ret = mm_lock_acct(task, mm, lock_cap, npage);
1529 if (ret)
1530 return ret;
1531
1532 if (mmget_not_zero(dma->mm)) {
1533 mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1534 mmput(dma->mm);
1535 }
1536
1537 if (dma->task != task) {
1538 put_task_struct(dma->task);
1539 dma->task = get_task_struct(task);
1540 }
1541 mmdrop(dma->mm);
1542 dma->mm = mm;
1543 mmgrab(dma->mm);
1544 dma->lock_cap = lock_cap;
1545 return 0;
1546 }
1547
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1548 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1549 struct vfio_iommu_type1_dma_map *map)
1550 {
1551 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1552 dma_addr_t iova = map->iova;
1553 unsigned long vaddr = map->vaddr;
1554 size_t size = map->size;
1555 int ret = 0, prot = 0;
1556 size_t pgsize;
1557 struct vfio_dma *dma;
1558
1559 /* Verify that none of our __u64 fields overflow */
1560 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1561 return -EINVAL;
1562
1563 /* READ/WRITE from device perspective */
1564 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1565 prot |= IOMMU_WRITE;
1566 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1567 prot |= IOMMU_READ;
1568
1569 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1570 return -EINVAL;
1571
1572 mutex_lock(&iommu->lock);
1573
1574 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1575
1576 WARN_ON((pgsize - 1) & PAGE_MASK);
1577
1578 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1579 ret = -EINVAL;
1580 goto out_unlock;
1581 }
1582
1583 /* Don't allow IOVA or virtual address wrap */
1584 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1585 ret = -EINVAL;
1586 goto out_unlock;
1587 }
1588
1589 dma = vfio_find_dma(iommu, iova, size);
1590 if (set_vaddr) {
1591 if (!dma) {
1592 ret = -ENOENT;
1593 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1594 dma->size != size) {
1595 ret = -EINVAL;
1596 } else {
1597 ret = vfio_change_dma_owner(dma);
1598 if (ret)
1599 goto out_unlock;
1600 dma->vaddr = vaddr;
1601 dma->vaddr_invalid = false;
1602 iommu->vaddr_invalid_count--;
1603 }
1604 goto out_unlock;
1605 } else if (dma) {
1606 ret = -EEXIST;
1607 goto out_unlock;
1608 }
1609
1610 if (!iommu->dma_avail) {
1611 ret = -ENOSPC;
1612 goto out_unlock;
1613 }
1614
1615 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1616 ret = -EINVAL;
1617 goto out_unlock;
1618 }
1619
1620 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1621 if (!dma) {
1622 ret = -ENOMEM;
1623 goto out_unlock;
1624 }
1625
1626 iommu->dma_avail--;
1627 dma->iova = iova;
1628 dma->vaddr = vaddr;
1629 dma->prot = prot;
1630
1631 /*
1632 * We need to be able to both add to a task's locked memory and test
1633 * against the locked memory limit and we need to be able to do both
1634 * outside of this call path as pinning can be asynchronous via the
1635 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1636 * task_struct. Save the group_leader so that all DMA tracking uses
1637 * the same task, to make debugging easier. VM locked pages requires
1638 * an mm_struct, so grab the mm in case the task dies.
1639 */
1640 get_task_struct(current->group_leader);
1641 dma->task = current->group_leader;
1642 dma->lock_cap = capable(CAP_IPC_LOCK);
1643 dma->mm = current->mm;
1644 mmgrab(dma->mm);
1645
1646 dma->pfn_list = RB_ROOT;
1647
1648 /* Insert zero-sized and grow as we map chunks of it */
1649 vfio_link_dma(iommu, dma);
1650
1651 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1652 if (list_empty(&iommu->domain_list))
1653 dma->size = size;
1654 else
1655 ret = vfio_pin_map_dma(iommu, dma, size);
1656
1657 if (!ret && iommu->dirty_page_tracking) {
1658 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1659 if (ret)
1660 vfio_remove_dma(iommu, dma);
1661 }
1662
1663 out_unlock:
1664 mutex_unlock(&iommu->lock);
1665 return ret;
1666 }
1667
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1668 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1669 struct vfio_domain *domain)
1670 {
1671 struct vfio_batch batch;
1672 struct vfio_domain *d = NULL;
1673 struct rb_node *n;
1674 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1675 int ret;
1676
1677 /* Arbitrarily pick the first domain in the list for lookups */
1678 if (!list_empty(&iommu->domain_list))
1679 d = list_first_entry(&iommu->domain_list,
1680 struct vfio_domain, next);
1681
1682 vfio_batch_init(&batch);
1683
1684 n = rb_first(&iommu->dma_list);
1685
1686 for (; n; n = rb_next(n)) {
1687 struct vfio_dma *dma;
1688 dma_addr_t iova;
1689
1690 dma = rb_entry(n, struct vfio_dma, node);
1691 iova = dma->iova;
1692
1693 while (iova < dma->iova + dma->size) {
1694 phys_addr_t phys;
1695 size_t size;
1696
1697 if (dma->iommu_mapped) {
1698 phys_addr_t p;
1699 dma_addr_t i;
1700
1701 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1702 ret = -EINVAL;
1703 goto unwind;
1704 }
1705
1706 phys = iommu_iova_to_phys(d->domain, iova);
1707
1708 if (WARN_ON(!phys)) {
1709 iova += PAGE_SIZE;
1710 continue;
1711 }
1712
1713 size = PAGE_SIZE;
1714 p = phys + size;
1715 i = iova + size;
1716 while (i < dma->iova + dma->size &&
1717 p == iommu_iova_to_phys(d->domain, i)) {
1718 size += PAGE_SIZE;
1719 p += PAGE_SIZE;
1720 i += PAGE_SIZE;
1721 }
1722 } else {
1723 unsigned long pfn;
1724 unsigned long vaddr = dma->vaddr +
1725 (iova - dma->iova);
1726 size_t n = dma->iova + dma->size - iova;
1727 long npage;
1728
1729 npage = vfio_pin_pages_remote(dma, vaddr,
1730 n >> PAGE_SHIFT,
1731 &pfn, limit,
1732 &batch);
1733 if (npage <= 0) {
1734 WARN_ON(!npage);
1735 ret = (int)npage;
1736 goto unwind;
1737 }
1738
1739 phys = pfn << PAGE_SHIFT;
1740 size = npage << PAGE_SHIFT;
1741 }
1742
1743 ret = iommu_map(domain->domain, iova, phys, size,
1744 dma->prot | IOMMU_CACHE,
1745 GFP_KERNEL_ACCOUNT);
1746 if (ret) {
1747 if (!dma->iommu_mapped) {
1748 vfio_unpin_pages_remote(dma, iova,
1749 phys >> PAGE_SHIFT,
1750 size >> PAGE_SHIFT,
1751 true);
1752 vfio_batch_unpin(&batch, dma);
1753 }
1754 goto unwind;
1755 }
1756
1757 iova += size;
1758 }
1759 }
1760
1761 /* All dmas are now mapped, defer to second tree walk for unwind */
1762 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1763 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1764
1765 dma->iommu_mapped = true;
1766 }
1767
1768 vfio_batch_fini(&batch);
1769 return 0;
1770
1771 unwind:
1772 for (; n; n = rb_prev(n)) {
1773 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1774 dma_addr_t iova;
1775
1776 if (dma->iommu_mapped) {
1777 iommu_unmap(domain->domain, dma->iova, dma->size);
1778 continue;
1779 }
1780
1781 iova = dma->iova;
1782 while (iova < dma->iova + dma->size) {
1783 phys_addr_t phys, p;
1784 size_t size;
1785 dma_addr_t i;
1786
1787 phys = iommu_iova_to_phys(domain->domain, iova);
1788 if (!phys) {
1789 iova += PAGE_SIZE;
1790 continue;
1791 }
1792
1793 size = PAGE_SIZE;
1794 p = phys + size;
1795 i = iova + size;
1796 while (i < dma->iova + dma->size &&
1797 p == iommu_iova_to_phys(domain->domain, i)) {
1798 size += PAGE_SIZE;
1799 p += PAGE_SIZE;
1800 i += PAGE_SIZE;
1801 }
1802
1803 iommu_unmap(domain->domain, iova, size);
1804 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1805 size >> PAGE_SHIFT, true);
1806 }
1807 }
1808
1809 vfio_batch_fini(&batch);
1810 return ret;
1811 }
1812
1813 /*
1814 * We change our unmap behavior slightly depending on whether the IOMMU
1815 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1816 * for practically any contiguous power-of-two mapping we give it. This means
1817 * we don't need to look for contiguous chunks ourselves to make unmapping
1818 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1819 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1820 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1821 * hugetlbfs is in use.
1822 */
vfio_test_domain_fgsp(struct vfio_domain * domain,struct list_head * regions)1823 static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1824 {
1825 int ret, order = get_order(PAGE_SIZE * 2);
1826 struct vfio_iova *region;
1827 struct page *pages;
1828 dma_addr_t start;
1829
1830 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1831 if (!pages)
1832 return;
1833
1834 list_for_each_entry(region, regions, list) {
1835 start = ALIGN(region->start, PAGE_SIZE * 2);
1836 if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1837 continue;
1838
1839 ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1840 IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1841 GFP_KERNEL_ACCOUNT);
1842 if (!ret) {
1843 size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1844
1845 if (unmapped == PAGE_SIZE)
1846 iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1847 else
1848 domain->fgsp = true;
1849 }
1850 break;
1851 }
1852
1853 __free_pages(pages, order);
1854 }
1855
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1856 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1857 struct iommu_group *iommu_group)
1858 {
1859 struct vfio_iommu_group *g;
1860
1861 list_for_each_entry(g, &domain->group_list, next) {
1862 if (g->iommu_group == iommu_group)
1863 return g;
1864 }
1865
1866 return NULL;
1867 }
1868
1869 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1870 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1871 struct iommu_group *iommu_group)
1872 {
1873 struct vfio_iommu_group *group;
1874 struct vfio_domain *domain;
1875
1876 list_for_each_entry(domain, &iommu->domain_list, next) {
1877 group = find_iommu_group(domain, iommu_group);
1878 if (group)
1879 return group;
1880 }
1881
1882 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1883 if (group->iommu_group == iommu_group)
1884 return group;
1885 return NULL;
1886 }
1887
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1888 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1889 phys_addr_t *base)
1890 {
1891 struct iommu_resv_region *region;
1892 bool ret = false;
1893
1894 list_for_each_entry(region, group_resv_regions, list) {
1895 /*
1896 * The presence of any 'real' MSI regions should take
1897 * precedence over the software-managed one if the
1898 * IOMMU driver happens to advertise both types.
1899 */
1900 if (region->type == IOMMU_RESV_MSI) {
1901 ret = false;
1902 break;
1903 }
1904
1905 if (region->type == IOMMU_RESV_SW_MSI) {
1906 *base = region->start;
1907 ret = true;
1908 }
1909 }
1910
1911 return ret;
1912 }
1913
1914 /*
1915 * This is a helper function to insert an address range to iova list.
1916 * The list is initially created with a single entry corresponding to
1917 * the IOMMU domain geometry to which the device group is attached.
1918 * The list aperture gets modified when a new domain is added to the
1919 * container if the new aperture doesn't conflict with the current one
1920 * or with any existing dma mappings. The list is also modified to
1921 * exclude any reserved regions associated with the device group.
1922 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1923 static int vfio_iommu_iova_insert(struct list_head *head,
1924 dma_addr_t start, dma_addr_t end)
1925 {
1926 struct vfio_iova *region;
1927
1928 region = kmalloc(sizeof(*region), GFP_KERNEL);
1929 if (!region)
1930 return -ENOMEM;
1931
1932 INIT_LIST_HEAD(®ion->list);
1933 region->start = start;
1934 region->end = end;
1935
1936 list_add_tail(®ion->list, head);
1937 return 0;
1938 }
1939
1940 /*
1941 * Check the new iommu aperture conflicts with existing aper or with any
1942 * existing dma mappings.
1943 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1944 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1945 dma_addr_t start, dma_addr_t end)
1946 {
1947 struct vfio_iova *first, *last;
1948 struct list_head *iova = &iommu->iova_list;
1949
1950 if (list_empty(iova))
1951 return false;
1952
1953 /* Disjoint sets, return conflict */
1954 first = list_first_entry(iova, struct vfio_iova, list);
1955 last = list_last_entry(iova, struct vfio_iova, list);
1956 if (start > last->end || end < first->start)
1957 return true;
1958
1959 /* Check for any existing dma mappings below the new start */
1960 if (start > first->start) {
1961 if (vfio_find_dma(iommu, first->start, start - first->start))
1962 return true;
1963 }
1964
1965 /* Check for any existing dma mappings beyond the new end */
1966 if (end < last->end) {
1967 if (vfio_find_dma(iommu, end + 1, last->end - end))
1968 return true;
1969 }
1970
1971 return false;
1972 }
1973
1974 /*
1975 * Resize iommu iova aperture window. This is called only if the new
1976 * aperture has no conflict with existing aperture and dma mappings.
1977 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1978 static int vfio_iommu_aper_resize(struct list_head *iova,
1979 dma_addr_t start, dma_addr_t end)
1980 {
1981 struct vfio_iova *node, *next;
1982
1983 if (list_empty(iova))
1984 return vfio_iommu_iova_insert(iova, start, end);
1985
1986 /* Adjust iova list start */
1987 list_for_each_entry_safe(node, next, iova, list) {
1988 if (start < node->start)
1989 break;
1990 if (start >= node->start && start < node->end) {
1991 node->start = start;
1992 break;
1993 }
1994 /* Delete nodes before new start */
1995 list_del(&node->list);
1996 kfree(node);
1997 }
1998
1999 /* Adjust iova list end */
2000 list_for_each_entry_safe(node, next, iova, list) {
2001 if (end > node->end)
2002 continue;
2003 if (end > node->start && end <= node->end) {
2004 node->end = end;
2005 continue;
2006 }
2007 /* Delete nodes after new end */
2008 list_del(&node->list);
2009 kfree(node);
2010 }
2011
2012 return 0;
2013 }
2014
2015 /*
2016 * Check reserved region conflicts with existing dma mappings
2017 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2018 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2019 struct list_head *resv_regions)
2020 {
2021 struct iommu_resv_region *region;
2022
2023 /* Check for conflict with existing dma mappings */
2024 list_for_each_entry(region, resv_regions, list) {
2025 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2026 continue;
2027
2028 if (vfio_find_dma(iommu, region->start, region->length))
2029 return true;
2030 }
2031
2032 return false;
2033 }
2034
2035 /*
2036 * Check iova region overlap with reserved regions and
2037 * exclude them from the iommu iova range
2038 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2039 static int vfio_iommu_resv_exclude(struct list_head *iova,
2040 struct list_head *resv_regions)
2041 {
2042 struct iommu_resv_region *resv;
2043 struct vfio_iova *n, *next;
2044
2045 list_for_each_entry(resv, resv_regions, list) {
2046 phys_addr_t start, end;
2047
2048 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2049 continue;
2050
2051 start = resv->start;
2052 end = resv->start + resv->length - 1;
2053
2054 list_for_each_entry_safe(n, next, iova, list) {
2055 int ret = 0;
2056
2057 /* No overlap */
2058 if (start > n->end || end < n->start)
2059 continue;
2060 /*
2061 * Insert a new node if current node overlaps with the
2062 * reserve region to exclude that from valid iova range.
2063 * Note that, new node is inserted before the current
2064 * node and finally the current node is deleted keeping
2065 * the list updated and sorted.
2066 */
2067 if (start > n->start)
2068 ret = vfio_iommu_iova_insert(&n->list, n->start,
2069 start - 1);
2070 if (!ret && end < n->end)
2071 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2072 n->end);
2073 if (ret)
2074 return ret;
2075
2076 list_del(&n->list);
2077 kfree(n);
2078 }
2079 }
2080
2081 if (list_empty(iova))
2082 return -EINVAL;
2083
2084 return 0;
2085 }
2086
vfio_iommu_resv_free(struct list_head * resv_regions)2087 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2088 {
2089 struct iommu_resv_region *n, *next;
2090
2091 list_for_each_entry_safe(n, next, resv_regions, list) {
2092 list_del(&n->list);
2093 kfree(n);
2094 }
2095 }
2096
vfio_iommu_iova_free(struct list_head * iova)2097 static void vfio_iommu_iova_free(struct list_head *iova)
2098 {
2099 struct vfio_iova *n, *next;
2100
2101 list_for_each_entry_safe(n, next, iova, list) {
2102 list_del(&n->list);
2103 kfree(n);
2104 }
2105 }
2106
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2107 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2108 struct list_head *iova_copy)
2109 {
2110 struct list_head *iova = &iommu->iova_list;
2111 struct vfio_iova *n;
2112 int ret;
2113
2114 list_for_each_entry(n, iova, list) {
2115 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2116 if (ret)
2117 goto out_free;
2118 }
2119
2120 return 0;
2121
2122 out_free:
2123 vfio_iommu_iova_free(iova_copy);
2124 return ret;
2125 }
2126
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2127 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2128 struct list_head *iova_copy)
2129 {
2130 struct list_head *iova = &iommu->iova_list;
2131
2132 vfio_iommu_iova_free(iova);
2133
2134 list_splice_tail(iova_copy, iova);
2135 }
2136
vfio_iommu_domain_alloc(struct device * dev,void * data)2137 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2138 {
2139 struct iommu_domain **domain = data;
2140
2141 *domain = iommu_paging_domain_alloc(dev);
2142 return 1; /* Don't iterate */
2143 }
2144
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2145 static int vfio_iommu_type1_attach_group(void *iommu_data,
2146 struct iommu_group *iommu_group, enum vfio_group_type type)
2147 {
2148 struct vfio_iommu *iommu = iommu_data;
2149 struct vfio_iommu_group *group;
2150 struct vfio_domain *domain, *d;
2151 bool resv_msi;
2152 phys_addr_t resv_msi_base = 0;
2153 struct iommu_domain_geometry *geo;
2154 LIST_HEAD(iova_copy);
2155 LIST_HEAD(group_resv_regions);
2156 int ret = -EBUSY;
2157
2158 mutex_lock(&iommu->lock);
2159
2160 /* Attach could require pinning, so disallow while vaddr is invalid. */
2161 if (iommu->vaddr_invalid_count)
2162 goto out_unlock;
2163
2164 /* Check for duplicates */
2165 ret = -EINVAL;
2166 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2167 goto out_unlock;
2168
2169 ret = -ENOMEM;
2170 group = kzalloc(sizeof(*group), GFP_KERNEL);
2171 if (!group)
2172 goto out_unlock;
2173 group->iommu_group = iommu_group;
2174
2175 if (type == VFIO_EMULATED_IOMMU) {
2176 list_add(&group->next, &iommu->emulated_iommu_groups);
2177 /*
2178 * An emulated IOMMU group cannot dirty memory directly, it can
2179 * only use interfaces that provide dirty tracking.
2180 * The iommu scope can only be promoted with the addition of a
2181 * dirty tracking group.
2182 */
2183 group->pinned_page_dirty_scope = true;
2184 ret = 0;
2185 goto out_unlock;
2186 }
2187
2188 ret = -ENOMEM;
2189 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2190 if (!domain)
2191 goto out_free_group;
2192
2193 /*
2194 * Going via the iommu_group iterator avoids races, and trivially gives
2195 * us a representative device for the IOMMU API call. We don't actually
2196 * want to iterate beyond the first device (if any).
2197 */
2198 iommu_group_for_each_dev(iommu_group, &domain->domain,
2199 vfio_iommu_domain_alloc);
2200 if (IS_ERR(domain->domain)) {
2201 ret = PTR_ERR(domain->domain);
2202 goto out_free_domain;
2203 }
2204
2205 if (iommu->nesting) {
2206 ret = iommu_enable_nesting(domain->domain);
2207 if (ret)
2208 goto out_domain;
2209 }
2210
2211 ret = iommu_attach_group(domain->domain, group->iommu_group);
2212 if (ret)
2213 goto out_domain;
2214
2215 /* Get aperture info */
2216 geo = &domain->domain->geometry;
2217 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2218 geo->aperture_end)) {
2219 ret = -EINVAL;
2220 goto out_detach;
2221 }
2222
2223 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2224 if (ret)
2225 goto out_detach;
2226
2227 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2228 ret = -EINVAL;
2229 goto out_detach;
2230 }
2231
2232 /*
2233 * We don't want to work on the original iova list as the list
2234 * gets modified and in case of failure we have to retain the
2235 * original list. Get a copy here.
2236 */
2237 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2238 if (ret)
2239 goto out_detach;
2240
2241 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2242 geo->aperture_end);
2243 if (ret)
2244 goto out_detach;
2245
2246 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2247 if (ret)
2248 goto out_detach;
2249
2250 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2251
2252 INIT_LIST_HEAD(&domain->group_list);
2253 list_add(&group->next, &domain->group_list);
2254
2255 if (!allow_unsafe_interrupts &&
2256 !iommu_group_has_isolated_msi(iommu_group)) {
2257 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2258 __func__);
2259 ret = -EPERM;
2260 goto out_detach;
2261 }
2262
2263 /*
2264 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2265 * no-snoop set) then VFIO always turns this feature on because on Intel
2266 * platforms it optimizes KVM to disable wbinvd emulation.
2267 */
2268 if (domain->domain->ops->enforce_cache_coherency)
2269 domain->enforce_cache_coherency =
2270 domain->domain->ops->enforce_cache_coherency(
2271 domain->domain);
2272
2273 /*
2274 * Try to match an existing compatible domain. We don't want to
2275 * preclude an IOMMU driver supporting multiple bus_types and being
2276 * able to include different bus_types in the same IOMMU domain, so
2277 * we test whether the domains use the same iommu_ops rather than
2278 * testing if they're on the same bus_type.
2279 */
2280 list_for_each_entry(d, &iommu->domain_list, next) {
2281 if (d->domain->ops == domain->domain->ops &&
2282 d->enforce_cache_coherency ==
2283 domain->enforce_cache_coherency) {
2284 iommu_detach_group(domain->domain, group->iommu_group);
2285 if (!iommu_attach_group(d->domain,
2286 group->iommu_group)) {
2287 list_add(&group->next, &d->group_list);
2288 iommu_domain_free(domain->domain);
2289 kfree(domain);
2290 goto done;
2291 }
2292
2293 ret = iommu_attach_group(domain->domain,
2294 group->iommu_group);
2295 if (ret)
2296 goto out_domain;
2297 }
2298 }
2299
2300 vfio_test_domain_fgsp(domain, &iova_copy);
2301
2302 /* replay mappings on new domains */
2303 ret = vfio_iommu_replay(iommu, domain);
2304 if (ret)
2305 goto out_detach;
2306
2307 if (resv_msi) {
2308 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2309 if (ret && ret != -ENODEV)
2310 goto out_detach;
2311 }
2312
2313 list_add(&domain->next, &iommu->domain_list);
2314 vfio_update_pgsize_bitmap(iommu);
2315 done:
2316 /* Delete the old one and insert new iova list */
2317 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2318
2319 /*
2320 * An iommu backed group can dirty memory directly and therefore
2321 * demotes the iommu scope until it declares itself dirty tracking
2322 * capable via the page pinning interface.
2323 */
2324 iommu->num_non_pinned_groups++;
2325 mutex_unlock(&iommu->lock);
2326 vfio_iommu_resv_free(&group_resv_regions);
2327
2328 return 0;
2329
2330 out_detach:
2331 iommu_detach_group(domain->domain, group->iommu_group);
2332 out_domain:
2333 iommu_domain_free(domain->domain);
2334 vfio_iommu_iova_free(&iova_copy);
2335 vfio_iommu_resv_free(&group_resv_regions);
2336 out_free_domain:
2337 kfree(domain);
2338 out_free_group:
2339 kfree(group);
2340 out_unlock:
2341 mutex_unlock(&iommu->lock);
2342 return ret;
2343 }
2344
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2345 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2346 {
2347 struct rb_node *node;
2348
2349 while ((node = rb_first(&iommu->dma_list)))
2350 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2351 }
2352
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2353 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2354 {
2355 struct rb_node *n, *p;
2356
2357 n = rb_first(&iommu->dma_list);
2358 for (; n; n = rb_next(n)) {
2359 struct vfio_dma *dma;
2360 long locked = 0, unlocked = 0;
2361
2362 dma = rb_entry(n, struct vfio_dma, node);
2363 unlocked += vfio_unmap_unpin(iommu, dma, false);
2364 p = rb_first(&dma->pfn_list);
2365 for (; p; p = rb_next(p)) {
2366 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2367 node);
2368
2369 if (!is_invalid_reserved_pfn(vpfn->pfn))
2370 locked++;
2371 }
2372 vfio_lock_acct(dma, locked - unlocked, true);
2373 }
2374 }
2375
2376 /*
2377 * Called when a domain is removed in detach. It is possible that
2378 * the removed domain decided the iova aperture window. Modify the
2379 * iova aperture with the smallest window among existing domains.
2380 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2381 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2382 struct list_head *iova_copy)
2383 {
2384 struct vfio_domain *domain;
2385 struct vfio_iova *node;
2386 dma_addr_t start = 0;
2387 dma_addr_t end = (dma_addr_t)~0;
2388
2389 if (list_empty(iova_copy))
2390 return;
2391
2392 list_for_each_entry(domain, &iommu->domain_list, next) {
2393 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2394
2395 if (geo->aperture_start > start)
2396 start = geo->aperture_start;
2397 if (geo->aperture_end < end)
2398 end = geo->aperture_end;
2399 }
2400
2401 /* Modify aperture limits. The new aper is either same or bigger */
2402 node = list_first_entry(iova_copy, struct vfio_iova, list);
2403 node->start = start;
2404 node = list_last_entry(iova_copy, struct vfio_iova, list);
2405 node->end = end;
2406 }
2407
2408 /*
2409 * Called when a group is detached. The reserved regions for that
2410 * group can be part of valid iova now. But since reserved regions
2411 * may be duplicated among groups, populate the iova valid regions
2412 * list again.
2413 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2414 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2415 struct list_head *iova_copy)
2416 {
2417 struct vfio_domain *d;
2418 struct vfio_iommu_group *g;
2419 struct vfio_iova *node;
2420 dma_addr_t start, end;
2421 LIST_HEAD(resv_regions);
2422 int ret;
2423
2424 if (list_empty(iova_copy))
2425 return -EINVAL;
2426
2427 list_for_each_entry(d, &iommu->domain_list, next) {
2428 list_for_each_entry(g, &d->group_list, next) {
2429 ret = iommu_get_group_resv_regions(g->iommu_group,
2430 &resv_regions);
2431 if (ret)
2432 goto done;
2433 }
2434 }
2435
2436 node = list_first_entry(iova_copy, struct vfio_iova, list);
2437 start = node->start;
2438 node = list_last_entry(iova_copy, struct vfio_iova, list);
2439 end = node->end;
2440
2441 /* purge the iova list and create new one */
2442 vfio_iommu_iova_free(iova_copy);
2443
2444 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2445 if (ret)
2446 goto done;
2447
2448 /* Exclude current reserved regions from iova ranges */
2449 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2450 done:
2451 vfio_iommu_resv_free(&resv_regions);
2452 return ret;
2453 }
2454
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2455 static void vfio_iommu_type1_detach_group(void *iommu_data,
2456 struct iommu_group *iommu_group)
2457 {
2458 struct vfio_iommu *iommu = iommu_data;
2459 struct vfio_domain *domain;
2460 struct vfio_iommu_group *group;
2461 bool update_dirty_scope = false;
2462 LIST_HEAD(iova_copy);
2463
2464 mutex_lock(&iommu->lock);
2465 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2466 if (group->iommu_group != iommu_group)
2467 continue;
2468 update_dirty_scope = !group->pinned_page_dirty_scope;
2469 list_del(&group->next);
2470 kfree(group);
2471
2472 if (list_empty(&iommu->emulated_iommu_groups) &&
2473 list_empty(&iommu->domain_list)) {
2474 WARN_ON(!list_empty(&iommu->device_list));
2475 vfio_iommu_unmap_unpin_all(iommu);
2476 }
2477 goto detach_group_done;
2478 }
2479
2480 /*
2481 * Get a copy of iova list. This will be used to update
2482 * and to replace the current one later. Please note that
2483 * we will leave the original list as it is if update fails.
2484 */
2485 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2486
2487 list_for_each_entry(domain, &iommu->domain_list, next) {
2488 group = find_iommu_group(domain, iommu_group);
2489 if (!group)
2490 continue;
2491
2492 iommu_detach_group(domain->domain, group->iommu_group);
2493 update_dirty_scope = !group->pinned_page_dirty_scope;
2494 list_del(&group->next);
2495 kfree(group);
2496 /*
2497 * Group ownership provides privilege, if the group list is
2498 * empty, the domain goes away. If it's the last domain with
2499 * iommu and external domain doesn't exist, then all the
2500 * mappings go away too. If it's the last domain with iommu and
2501 * external domain exist, update accounting
2502 */
2503 if (list_empty(&domain->group_list)) {
2504 if (list_is_singular(&iommu->domain_list)) {
2505 if (list_empty(&iommu->emulated_iommu_groups)) {
2506 WARN_ON(!list_empty(
2507 &iommu->device_list));
2508 vfio_iommu_unmap_unpin_all(iommu);
2509 } else {
2510 vfio_iommu_unmap_unpin_reaccount(iommu);
2511 }
2512 }
2513 iommu_domain_free(domain->domain);
2514 list_del(&domain->next);
2515 kfree(domain);
2516 vfio_iommu_aper_expand(iommu, &iova_copy);
2517 vfio_update_pgsize_bitmap(iommu);
2518 }
2519 break;
2520 }
2521
2522 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2523 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2524 else
2525 vfio_iommu_iova_free(&iova_copy);
2526
2527 detach_group_done:
2528 /*
2529 * Removal of a group without dirty tracking may allow the iommu scope
2530 * to be promoted.
2531 */
2532 if (update_dirty_scope) {
2533 iommu->num_non_pinned_groups--;
2534 if (iommu->dirty_page_tracking)
2535 vfio_iommu_populate_bitmap_full(iommu);
2536 }
2537 mutex_unlock(&iommu->lock);
2538 }
2539
vfio_iommu_type1_open(unsigned long arg)2540 static void *vfio_iommu_type1_open(unsigned long arg)
2541 {
2542 struct vfio_iommu *iommu;
2543
2544 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2545 if (!iommu)
2546 return ERR_PTR(-ENOMEM);
2547
2548 switch (arg) {
2549 case VFIO_TYPE1_IOMMU:
2550 break;
2551 case VFIO_TYPE1_NESTING_IOMMU:
2552 iommu->nesting = true;
2553 fallthrough;
2554 case VFIO_TYPE1v2_IOMMU:
2555 iommu->v2 = true;
2556 break;
2557 default:
2558 kfree(iommu);
2559 return ERR_PTR(-EINVAL);
2560 }
2561
2562 INIT_LIST_HEAD(&iommu->domain_list);
2563 INIT_LIST_HEAD(&iommu->iova_list);
2564 iommu->dma_list = RB_ROOT;
2565 iommu->dma_avail = dma_entry_limit;
2566 mutex_init(&iommu->lock);
2567 mutex_init(&iommu->device_list_lock);
2568 INIT_LIST_HEAD(&iommu->device_list);
2569 iommu->pgsize_bitmap = PAGE_MASK;
2570 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2571
2572 return iommu;
2573 }
2574
vfio_release_domain(struct vfio_domain * domain)2575 static void vfio_release_domain(struct vfio_domain *domain)
2576 {
2577 struct vfio_iommu_group *group, *group_tmp;
2578
2579 list_for_each_entry_safe(group, group_tmp,
2580 &domain->group_list, next) {
2581 iommu_detach_group(domain->domain, group->iommu_group);
2582 list_del(&group->next);
2583 kfree(group);
2584 }
2585
2586 iommu_domain_free(domain->domain);
2587 }
2588
vfio_iommu_type1_release(void * iommu_data)2589 static void vfio_iommu_type1_release(void *iommu_data)
2590 {
2591 struct vfio_iommu *iommu = iommu_data;
2592 struct vfio_domain *domain, *domain_tmp;
2593 struct vfio_iommu_group *group, *next_group;
2594
2595 list_for_each_entry_safe(group, next_group,
2596 &iommu->emulated_iommu_groups, next) {
2597 list_del(&group->next);
2598 kfree(group);
2599 }
2600
2601 vfio_iommu_unmap_unpin_all(iommu);
2602
2603 list_for_each_entry_safe(domain, domain_tmp,
2604 &iommu->domain_list, next) {
2605 vfio_release_domain(domain);
2606 list_del(&domain->next);
2607 kfree(domain);
2608 }
2609
2610 vfio_iommu_iova_free(&iommu->iova_list);
2611
2612 kfree(iommu);
2613 }
2614
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2615 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2616 {
2617 struct vfio_domain *domain;
2618 int ret = 1;
2619
2620 mutex_lock(&iommu->lock);
2621 list_for_each_entry(domain, &iommu->domain_list, next) {
2622 if (!(domain->enforce_cache_coherency)) {
2623 ret = 0;
2624 break;
2625 }
2626 }
2627 mutex_unlock(&iommu->lock);
2628
2629 return ret;
2630 }
2631
vfio_iommu_has_emulated(struct vfio_iommu * iommu)2632 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2633 {
2634 bool ret;
2635
2636 mutex_lock(&iommu->lock);
2637 ret = !list_empty(&iommu->emulated_iommu_groups);
2638 mutex_unlock(&iommu->lock);
2639 return ret;
2640 }
2641
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2642 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2643 unsigned long arg)
2644 {
2645 switch (arg) {
2646 case VFIO_TYPE1_IOMMU:
2647 case VFIO_TYPE1v2_IOMMU:
2648 case VFIO_TYPE1_NESTING_IOMMU:
2649 case VFIO_UNMAP_ALL:
2650 return 1;
2651 case VFIO_UPDATE_VADDR:
2652 /*
2653 * Disable this feature if mdevs are present. They cannot
2654 * safely pin/unpin/rw while vaddrs are being updated.
2655 */
2656 return iommu && !vfio_iommu_has_emulated(iommu);
2657 case VFIO_DMA_CC_IOMMU:
2658 if (!iommu)
2659 return 0;
2660 return vfio_domains_have_enforce_cache_coherency(iommu);
2661 default:
2662 return 0;
2663 }
2664 }
2665
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2666 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2667 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2668 size_t size)
2669 {
2670 struct vfio_info_cap_header *header;
2671 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2672
2673 header = vfio_info_cap_add(caps, size,
2674 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2675 if (IS_ERR(header))
2676 return PTR_ERR(header);
2677
2678 iova_cap = container_of(header,
2679 struct vfio_iommu_type1_info_cap_iova_range,
2680 header);
2681 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2682 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2683 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2684 return 0;
2685 }
2686
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2687 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2688 struct vfio_info_cap *caps)
2689 {
2690 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2691 struct vfio_iova *iova;
2692 size_t size;
2693 int iovas = 0, i = 0, ret;
2694
2695 list_for_each_entry(iova, &iommu->iova_list, list)
2696 iovas++;
2697
2698 if (!iovas) {
2699 /*
2700 * Return 0 as a container with a single mdev device
2701 * will have an empty list
2702 */
2703 return 0;
2704 }
2705
2706 size = struct_size(cap_iovas, iova_ranges, iovas);
2707
2708 cap_iovas = kzalloc(size, GFP_KERNEL);
2709 if (!cap_iovas)
2710 return -ENOMEM;
2711
2712 cap_iovas->nr_iovas = iovas;
2713
2714 list_for_each_entry(iova, &iommu->iova_list, list) {
2715 cap_iovas->iova_ranges[i].start = iova->start;
2716 cap_iovas->iova_ranges[i].end = iova->end;
2717 i++;
2718 }
2719
2720 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2721
2722 kfree(cap_iovas);
2723 return ret;
2724 }
2725
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2726 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2727 struct vfio_info_cap *caps)
2728 {
2729 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2730
2731 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2732 cap_mig.header.version = 1;
2733
2734 cap_mig.flags = 0;
2735 /* support minimum pgsize */
2736 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2737 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2738
2739 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2740 }
2741
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2742 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2743 struct vfio_info_cap *caps)
2744 {
2745 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2746
2747 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2748 cap_dma_avail.header.version = 1;
2749
2750 cap_dma_avail.avail = iommu->dma_avail;
2751
2752 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2753 sizeof(cap_dma_avail));
2754 }
2755
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2756 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2757 unsigned long arg)
2758 {
2759 struct vfio_iommu_type1_info info = {};
2760 unsigned long minsz;
2761 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2762 int ret;
2763
2764 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2765
2766 if (copy_from_user(&info, (void __user *)arg, minsz))
2767 return -EFAULT;
2768
2769 if (info.argsz < minsz)
2770 return -EINVAL;
2771
2772 minsz = min_t(size_t, info.argsz, sizeof(info));
2773
2774 mutex_lock(&iommu->lock);
2775 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2776
2777 info.iova_pgsizes = iommu->pgsize_bitmap;
2778
2779 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2780
2781 if (!ret)
2782 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2783
2784 if (!ret)
2785 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2786
2787 mutex_unlock(&iommu->lock);
2788
2789 if (ret)
2790 return ret;
2791
2792 if (caps.size) {
2793 info.flags |= VFIO_IOMMU_INFO_CAPS;
2794
2795 if (info.argsz < sizeof(info) + caps.size) {
2796 info.argsz = sizeof(info) + caps.size;
2797 } else {
2798 vfio_info_cap_shift(&caps, sizeof(info));
2799 if (copy_to_user((void __user *)arg +
2800 sizeof(info), caps.buf,
2801 caps.size)) {
2802 kfree(caps.buf);
2803 return -EFAULT;
2804 }
2805 info.cap_offset = sizeof(info);
2806 }
2807
2808 kfree(caps.buf);
2809 }
2810
2811 return copy_to_user((void __user *)arg, &info, minsz) ?
2812 -EFAULT : 0;
2813 }
2814
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2815 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2816 unsigned long arg)
2817 {
2818 struct vfio_iommu_type1_dma_map map;
2819 unsigned long minsz;
2820 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2821 VFIO_DMA_MAP_FLAG_VADDR;
2822
2823 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2824
2825 if (copy_from_user(&map, (void __user *)arg, minsz))
2826 return -EFAULT;
2827
2828 if (map.argsz < minsz || map.flags & ~mask)
2829 return -EINVAL;
2830
2831 return vfio_dma_do_map(iommu, &map);
2832 }
2833
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2834 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2835 unsigned long arg)
2836 {
2837 struct vfio_iommu_type1_dma_unmap unmap;
2838 struct vfio_bitmap bitmap = { 0 };
2839 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2840 VFIO_DMA_UNMAP_FLAG_VADDR |
2841 VFIO_DMA_UNMAP_FLAG_ALL;
2842 unsigned long minsz;
2843 int ret;
2844
2845 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2846
2847 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2848 return -EFAULT;
2849
2850 if (unmap.argsz < minsz || unmap.flags & ~mask)
2851 return -EINVAL;
2852
2853 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2854 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2855 VFIO_DMA_UNMAP_FLAG_VADDR)))
2856 return -EINVAL;
2857
2858 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2859 unsigned long pgshift;
2860
2861 if (unmap.argsz < (minsz + sizeof(bitmap)))
2862 return -EINVAL;
2863
2864 if (copy_from_user(&bitmap,
2865 (void __user *)(arg + minsz),
2866 sizeof(bitmap)))
2867 return -EFAULT;
2868
2869 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2870 return -EINVAL;
2871
2872 pgshift = __ffs(bitmap.pgsize);
2873 ret = verify_bitmap_size(unmap.size >> pgshift,
2874 bitmap.size);
2875 if (ret)
2876 return ret;
2877 }
2878
2879 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2880 if (ret)
2881 return ret;
2882
2883 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2884 -EFAULT : 0;
2885 }
2886
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2887 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2888 unsigned long arg)
2889 {
2890 struct vfio_iommu_type1_dirty_bitmap dirty;
2891 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2892 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2893 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2894 unsigned long minsz;
2895 int ret = 0;
2896
2897 if (!iommu->v2)
2898 return -EACCES;
2899
2900 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2901
2902 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2903 return -EFAULT;
2904
2905 if (dirty.argsz < minsz || dirty.flags & ~mask)
2906 return -EINVAL;
2907
2908 /* only one flag should be set at a time */
2909 if (__ffs(dirty.flags) != __fls(dirty.flags))
2910 return -EINVAL;
2911
2912 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2913 size_t pgsize;
2914
2915 mutex_lock(&iommu->lock);
2916 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2917 if (!iommu->dirty_page_tracking) {
2918 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2919 if (!ret)
2920 iommu->dirty_page_tracking = true;
2921 }
2922 mutex_unlock(&iommu->lock);
2923 return ret;
2924 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2925 mutex_lock(&iommu->lock);
2926 if (iommu->dirty_page_tracking) {
2927 iommu->dirty_page_tracking = false;
2928 vfio_dma_bitmap_free_all(iommu);
2929 }
2930 mutex_unlock(&iommu->lock);
2931 return 0;
2932 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2933 struct vfio_iommu_type1_dirty_bitmap_get range;
2934 unsigned long pgshift;
2935 size_t data_size = dirty.argsz - minsz;
2936 size_t iommu_pgsize;
2937
2938 if (!data_size || data_size < sizeof(range))
2939 return -EINVAL;
2940
2941 if (copy_from_user(&range, (void __user *)(arg + minsz),
2942 sizeof(range)))
2943 return -EFAULT;
2944
2945 if (range.iova + range.size < range.iova)
2946 return -EINVAL;
2947 if (!access_ok((void __user *)range.bitmap.data,
2948 range.bitmap.size))
2949 return -EINVAL;
2950
2951 pgshift = __ffs(range.bitmap.pgsize);
2952 ret = verify_bitmap_size(range.size >> pgshift,
2953 range.bitmap.size);
2954 if (ret)
2955 return ret;
2956
2957 mutex_lock(&iommu->lock);
2958
2959 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2960
2961 /* allow only smallest supported pgsize */
2962 if (range.bitmap.pgsize != iommu_pgsize) {
2963 ret = -EINVAL;
2964 goto out_unlock;
2965 }
2966 if (range.iova & (iommu_pgsize - 1)) {
2967 ret = -EINVAL;
2968 goto out_unlock;
2969 }
2970 if (!range.size || range.size & (iommu_pgsize - 1)) {
2971 ret = -EINVAL;
2972 goto out_unlock;
2973 }
2974
2975 if (iommu->dirty_page_tracking)
2976 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2977 iommu, range.iova,
2978 range.size,
2979 range.bitmap.pgsize);
2980 else
2981 ret = -EINVAL;
2982 out_unlock:
2983 mutex_unlock(&iommu->lock);
2984
2985 return ret;
2986 }
2987
2988 return -EINVAL;
2989 }
2990
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2991 static long vfio_iommu_type1_ioctl(void *iommu_data,
2992 unsigned int cmd, unsigned long arg)
2993 {
2994 struct vfio_iommu *iommu = iommu_data;
2995
2996 switch (cmd) {
2997 case VFIO_CHECK_EXTENSION:
2998 return vfio_iommu_type1_check_extension(iommu, arg);
2999 case VFIO_IOMMU_GET_INFO:
3000 return vfio_iommu_type1_get_info(iommu, arg);
3001 case VFIO_IOMMU_MAP_DMA:
3002 return vfio_iommu_type1_map_dma(iommu, arg);
3003 case VFIO_IOMMU_UNMAP_DMA:
3004 return vfio_iommu_type1_unmap_dma(iommu, arg);
3005 case VFIO_IOMMU_DIRTY_PAGES:
3006 return vfio_iommu_type1_dirty_pages(iommu, arg);
3007 default:
3008 return -ENOTTY;
3009 }
3010 }
3011
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)3012 static void vfio_iommu_type1_register_device(void *iommu_data,
3013 struct vfio_device *vdev)
3014 {
3015 struct vfio_iommu *iommu = iommu_data;
3016
3017 if (!vdev->ops->dma_unmap)
3018 return;
3019
3020 /*
3021 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3022 * iteration for dma_unmap must be done under the device_list_lock.
3023 * Holding both locks here allows avoiding the device_list_lock in
3024 * several fast paths. See vfio_notify_dma_unmap()
3025 */
3026 mutex_lock(&iommu->lock);
3027 mutex_lock(&iommu->device_list_lock);
3028 list_add(&vdev->iommu_entry, &iommu->device_list);
3029 mutex_unlock(&iommu->device_list_lock);
3030 mutex_unlock(&iommu->lock);
3031 }
3032
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3033 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3034 struct vfio_device *vdev)
3035 {
3036 struct vfio_iommu *iommu = iommu_data;
3037
3038 if (!vdev->ops->dma_unmap)
3039 return;
3040
3041 mutex_lock(&iommu->lock);
3042 mutex_lock(&iommu->device_list_lock);
3043 list_del(&vdev->iommu_entry);
3044 mutex_unlock(&iommu->device_list_lock);
3045 mutex_unlock(&iommu->lock);
3046 }
3047
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3048 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3049 dma_addr_t user_iova, void *data,
3050 size_t count, bool write,
3051 size_t *copied)
3052 {
3053 struct mm_struct *mm;
3054 unsigned long vaddr;
3055 struct vfio_dma *dma;
3056 bool kthread = current->mm == NULL;
3057 size_t offset;
3058
3059 *copied = 0;
3060
3061 dma = vfio_find_dma(iommu, user_iova, 1);
3062 if (!dma)
3063 return -EINVAL;
3064
3065 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3066 !(dma->prot & IOMMU_READ))
3067 return -EPERM;
3068
3069 mm = dma->mm;
3070 if (!mmget_not_zero(mm))
3071 return -EPERM;
3072
3073 if (kthread)
3074 kthread_use_mm(mm);
3075 else if (current->mm != mm)
3076 goto out;
3077
3078 offset = user_iova - dma->iova;
3079
3080 if (count > dma->size - offset)
3081 count = dma->size - offset;
3082
3083 vaddr = dma->vaddr + offset;
3084
3085 if (write) {
3086 *copied = copy_to_user((void __user *)vaddr, data,
3087 count) ? 0 : count;
3088 if (*copied && iommu->dirty_page_tracking) {
3089 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3090 /*
3091 * Bitmap populated with the smallest supported page
3092 * size
3093 */
3094 bitmap_set(dma->bitmap, offset >> pgshift,
3095 ((offset + *copied - 1) >> pgshift) -
3096 (offset >> pgshift) + 1);
3097 }
3098 } else
3099 *copied = copy_from_user(data, (void __user *)vaddr,
3100 count) ? 0 : count;
3101 if (kthread)
3102 kthread_unuse_mm(mm);
3103 out:
3104 mmput(mm);
3105 return *copied ? 0 : -EFAULT;
3106 }
3107
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3108 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3109 void *data, size_t count, bool write)
3110 {
3111 struct vfio_iommu *iommu = iommu_data;
3112 int ret = 0;
3113 size_t done;
3114
3115 mutex_lock(&iommu->lock);
3116
3117 if (WARN_ONCE(iommu->vaddr_invalid_count,
3118 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3119 ret = -EBUSY;
3120 goto out;
3121 }
3122
3123 while (count > 0) {
3124 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3125 count, write, &done);
3126 if (ret)
3127 break;
3128
3129 count -= done;
3130 data += done;
3131 user_iova += done;
3132 }
3133
3134 out:
3135 mutex_unlock(&iommu->lock);
3136 return ret;
3137 }
3138
3139 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3140 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3141 struct iommu_group *iommu_group)
3142 {
3143 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3144 struct vfio_iommu *iommu = iommu_data;
3145 struct vfio_domain *d;
3146
3147 if (!iommu || !iommu_group)
3148 return ERR_PTR(-EINVAL);
3149
3150 mutex_lock(&iommu->lock);
3151 list_for_each_entry(d, &iommu->domain_list, next) {
3152 if (find_iommu_group(d, iommu_group)) {
3153 domain = d->domain;
3154 break;
3155 }
3156 }
3157 mutex_unlock(&iommu->lock);
3158
3159 return domain;
3160 }
3161
3162 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3163 .name = "vfio-iommu-type1",
3164 .owner = THIS_MODULE,
3165 .open = vfio_iommu_type1_open,
3166 .release = vfio_iommu_type1_release,
3167 .ioctl = vfio_iommu_type1_ioctl,
3168 .attach_group = vfio_iommu_type1_attach_group,
3169 .detach_group = vfio_iommu_type1_detach_group,
3170 .pin_pages = vfio_iommu_type1_pin_pages,
3171 .unpin_pages = vfio_iommu_type1_unpin_pages,
3172 .register_device = vfio_iommu_type1_register_device,
3173 .unregister_device = vfio_iommu_type1_unregister_device,
3174 .dma_rw = vfio_iommu_type1_dma_rw,
3175 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3176 };
3177
vfio_iommu_type1_init(void)3178 static int __init vfio_iommu_type1_init(void)
3179 {
3180 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3181 }
3182
vfio_iommu_type1_cleanup(void)3183 static void __exit vfio_iommu_type1_cleanup(void)
3184 {
3185 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3186 }
3187
3188 module_init(vfio_iommu_type1_init);
3189 module_exit(vfio_iommu_type1_cleanup);
3190
3191 MODULE_VERSION(DRIVER_VERSION);
3192 MODULE_LICENSE("GPL v2");
3193 MODULE_AUTHOR(DRIVER_AUTHOR);
3194 MODULE_DESCRIPTION(DRIVER_DESC);
3195