1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* aux / Intel-PT */
172 			u64		aux_config;
173 			/*
174 			 * For AUX area events, aux_paused cannot be a state
175 			 * flag because it can be updated asynchronously to
176 			 * state.
177 			 */
178 			unsigned int	aux_paused;
179 		};
180 		struct { /* software */
181 			struct hrtimer	hrtimer;
182 		};
183 		struct { /* tracepoint */
184 			/* for tp_event->class */
185 			struct list_head	tp_list;
186 		};
187 		struct { /* amd_power */
188 			u64	pwr_acc;
189 			u64	ptsc;
190 		};
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 		struct { /* breakpoint */
193 			/*
194 			 * Crufty hack to avoid the chicken and egg
195 			 * problem hw_breakpoint has with context
196 			 * creation and event initalization.
197 			 */
198 			struct arch_hw_breakpoint	info;
199 			struct rhlist_head		bp_list;
200 		};
201 #endif
202 		struct { /* amd_iommu */
203 			u8	iommu_bank;
204 			u8	iommu_cntr;
205 			u16	padding;
206 			u64	conf;
207 			u64	conf1;
208 		};
209 	};
210 	/*
211 	 * If the event is a per task event, this will point to the task in
212 	 * question. See the comment in perf_event_alloc().
213 	 */
214 	struct task_struct		*target;
215 
216 	/*
217 	 * PMU would store hardware filter configuration
218 	 * here.
219 	 */
220 	void				*addr_filters;
221 
222 	/* Last sync'ed generation of filters */
223 	unsigned long			addr_filters_gen;
224 
225 /*
226  * hw_perf_event::state flags; used to track the PERF_EF_* state.
227  */
228 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH		0x04
231 
232 	int				state;
233 
234 	/*
235 	 * The last observed hardware counter value, updated with a
236 	 * local64_cmpxchg() such that pmu::read() can be called nested.
237 	 */
238 	local64_t			prev_count;
239 
240 	/*
241 	 * The period to start the next sample with.
242 	 */
243 	u64				sample_period;
244 
245 	union {
246 		struct { /* Sampling */
247 			/*
248 			 * The period we started this sample with.
249 			 */
250 			u64				last_period;
251 
252 			/*
253 			 * However much is left of the current period;
254 			 * note that this is a full 64bit value and
255 			 * allows for generation of periods longer
256 			 * than hardware might allow.
257 			 */
258 			local64_t			period_left;
259 		};
260 		struct { /* Topdown events counting for context switch */
261 			u64				saved_metric;
262 			u64				saved_slots;
263 		};
264 	};
265 
266 	/*
267 	 * State for throttling the event, see __perf_event_overflow() and
268 	 * perf_adjust_freq_unthr_context().
269 	 */
270 	u64                             interrupts_seq;
271 	u64				interrupts;
272 
273 	/*
274 	 * State for freq target events, see __perf_event_overflow() and
275 	 * perf_adjust_freq_unthr_context().
276 	 */
277 	u64				freq_time_stamp;
278 	u64				freq_count_stamp;
279 #endif
280 };
281 
282 struct perf_event;
283 struct perf_event_pmu_context;
284 
285 /*
286  * Common implementation detail of pmu::{start,commit,cancel}_txn
287  */
288 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
290 
291 /**
292  * pmu::capabilities flags
293  */
294 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
295 #define PERF_PMU_CAP_NO_NMI			0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
299 #define PERF_PMU_CAP_ITRACE			0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE			0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT			0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE			0x0200
304 #define PERF_PMU_CAP_AUX_PREFER_LARGE		0x0400
305 
306 /**
307  * pmu::scope
308  */
309 enum perf_pmu_scope {
310 	PERF_PMU_SCOPE_NONE	= 0,
311 	PERF_PMU_SCOPE_CORE,
312 	PERF_PMU_SCOPE_DIE,
313 	PERF_PMU_SCOPE_CLUSTER,
314 	PERF_PMU_SCOPE_PKG,
315 	PERF_PMU_SCOPE_SYS_WIDE,
316 	PERF_PMU_MAX_SCOPE,
317 };
318 
319 struct perf_output_handle;
320 
321 #define PMU_NULL_DEV	((void *)(~0UL))
322 
323 /**
324  * struct pmu - generic performance monitoring unit
325  */
326 struct pmu {
327 	struct list_head		entry;
328 
329 	struct module			*module;
330 	struct device			*dev;
331 	struct device			*parent;
332 	const struct attribute_group	**attr_groups;
333 	const struct attribute_group	**attr_update;
334 	const char			*name;
335 	int				type;
336 
337 	/*
338 	 * various common per-pmu feature flags
339 	 */
340 	int				capabilities;
341 
342 	/*
343 	 * PMU scope
344 	 */
345 	unsigned int			scope;
346 
347 	int __percpu			*pmu_disable_count;
348 	struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
349 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
350 	int				task_ctx_nr;
351 	int				hrtimer_interval_ms;
352 
353 	/* number of address filters this PMU can do */
354 	unsigned int			nr_addr_filters;
355 
356 	/*
357 	 * Fully disable/enable this PMU, can be used to protect from the PMI
358 	 * as well as for lazy/batch writing of the MSRs.
359 	 */
360 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
361 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
362 
363 	/*
364 	 * Try and initialize the event for this PMU.
365 	 *
366 	 * Returns:
367 	 *  -ENOENT	-- @event is not for this PMU
368 	 *
369 	 *  -ENODEV	-- @event is for this PMU but PMU not present
370 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
371 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
372 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
373 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
374 	 *
375 	 *  0		-- @event is for this PMU and valid
376 	 *
377 	 * Other error return values are allowed.
378 	 */
379 	int (*event_init)		(struct perf_event *event);
380 
381 	/*
382 	 * Notification that the event was mapped or unmapped.  Called
383 	 * in the context of the mapping task.
384 	 */
385 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
386 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
387 
388 	/*
389 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
390 	 * matching hw_perf_event::state flags.
391 	 */
392 #define PERF_EF_START	0x01		/* start the counter when adding    */
393 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
394 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
395 #define PERF_EF_PAUSE	0x08		/* AUX area event, pause tracing */
396 #define PERF_EF_RESUME	0x10		/* AUX area event, resume tracing */
397 
398 	/*
399 	 * Adds/Removes a counter to/from the PMU, can be done inside a
400 	 * transaction, see the ->*_txn() methods.
401 	 *
402 	 * The add/del callbacks will reserve all hardware resources required
403 	 * to service the event, this includes any counter constraint
404 	 * scheduling etc.
405 	 *
406 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
407 	 * is on.
408 	 *
409 	 * ->add() called without PERF_EF_START should result in the same state
410 	 *  as ->add() followed by ->stop().
411 	 *
412 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
413 	 *  ->stop() that must deal with already being stopped without
414 	 *  PERF_EF_UPDATE.
415 	 */
416 	int  (*add)			(struct perf_event *event, int flags);
417 	void (*del)			(struct perf_event *event, int flags);
418 
419 	/*
420 	 * Starts/Stops a counter present on the PMU.
421 	 *
422 	 * The PMI handler should stop the counter when perf_event_overflow()
423 	 * returns !0. ->start() will be used to continue.
424 	 *
425 	 * Also used to change the sample period.
426 	 *
427 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
428 	 * is on -- will be called from NMI context with the PMU generates
429 	 * NMIs.
430 	 *
431 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
432 	 *  period/count values like ->read() would.
433 	 *
434 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
435 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
436 	 *
437 	 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
438 	 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
439 	 * PERF_EF_RESUME.
440 	 *
441 	 * ->start() with PERF_EF_RESUME will start as simply as possible but
442 	 * only if the counter is not otherwise stopped. Will not overlap
443 	 * another ->start() with PERF_EF_RESUME nor ->stop() with
444 	 * PERF_EF_PAUSE.
445 	 *
446 	 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
447 	 * ->stop()/->start() invocations, just not itself.
448 	 */
449 	void (*start)			(struct perf_event *event, int flags);
450 	void (*stop)			(struct perf_event *event, int flags);
451 
452 	/*
453 	 * Updates the counter value of the event.
454 	 *
455 	 * For sampling capable PMUs this will also update the software period
456 	 * hw_perf_event::period_left field.
457 	 */
458 	void (*read)			(struct perf_event *event);
459 
460 	/*
461 	 * Group events scheduling is treated as a transaction, add
462 	 * group events as a whole and perform one schedulability test.
463 	 * If the test fails, roll back the whole group
464 	 *
465 	 * Start the transaction, after this ->add() doesn't need to
466 	 * do schedulability tests.
467 	 *
468 	 * Optional.
469 	 */
470 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
471 	/*
472 	 * If ->start_txn() disabled the ->add() schedulability test
473 	 * then ->commit_txn() is required to perform one. On success
474 	 * the transaction is closed. On error the transaction is kept
475 	 * open until ->cancel_txn() is called.
476 	 *
477 	 * Optional.
478 	 */
479 	int  (*commit_txn)		(struct pmu *pmu);
480 	/*
481 	 * Will cancel the transaction, assumes ->del() is called
482 	 * for each successful ->add() during the transaction.
483 	 *
484 	 * Optional.
485 	 */
486 	void (*cancel_txn)		(struct pmu *pmu);
487 
488 	/*
489 	 * Will return the value for perf_event_mmap_page::index for this event,
490 	 * if no implementation is provided it will default to 0 (see
491 	 * perf_event_idx_default).
492 	 */
493 	int (*event_idx)		(struct perf_event *event); /*optional */
494 
495 	/*
496 	 * context-switches callback
497 	 */
498 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
499 					bool sched_in);
500 
501 	/*
502 	 * Kmem cache of PMU specific data
503 	 */
504 	struct kmem_cache		*task_ctx_cache;
505 
506 	/*
507 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
508 	 * can be synchronized using this function. See Intel LBR callstack support
509 	 * implementation and Perf core context switch handling callbacks for usage
510 	 * examples.
511 	 */
512 	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
513 					 struct perf_event_pmu_context *next_epc);
514 					/* optional */
515 
516 	/*
517 	 * Set up pmu-private data structures for an AUX area
518 	 */
519 	void *(*setup_aux)		(struct perf_event *event, void **pages,
520 					 int nr_pages, bool overwrite);
521 					/* optional */
522 
523 	/*
524 	 * Free pmu-private AUX data structures
525 	 */
526 	void (*free_aux)		(void *aux); /* optional */
527 
528 	/*
529 	 * Take a snapshot of the AUX buffer without touching the event
530 	 * state, so that preempting ->start()/->stop() callbacks does
531 	 * not interfere with their logic. Called in PMI context.
532 	 *
533 	 * Returns the size of AUX data copied to the output handle.
534 	 *
535 	 * Optional.
536 	 */
537 	long (*snapshot_aux)		(struct perf_event *event,
538 					 struct perf_output_handle *handle,
539 					 unsigned long size);
540 
541 	/*
542 	 * Validate address range filters: make sure the HW supports the
543 	 * requested configuration and number of filters; return 0 if the
544 	 * supplied filters are valid, -errno otherwise.
545 	 *
546 	 * Runs in the context of the ioctl()ing process and is not serialized
547 	 * with the rest of the PMU callbacks.
548 	 */
549 	int (*addr_filters_validate)	(struct list_head *filters);
550 					/* optional */
551 
552 	/*
553 	 * Synchronize address range filter configuration:
554 	 * translate hw-agnostic filters into hardware configuration in
555 	 * event::hw::addr_filters.
556 	 *
557 	 * Runs as a part of filter sync sequence that is done in ->start()
558 	 * callback by calling perf_event_addr_filters_sync().
559 	 *
560 	 * May (and should) traverse event::addr_filters::list, for which its
561 	 * caller provides necessary serialization.
562 	 */
563 	void (*addr_filters_sync)	(struct perf_event *event);
564 					/* optional */
565 
566 	/*
567 	 * Check if event can be used for aux_output purposes for
568 	 * events of this PMU.
569 	 *
570 	 * Runs from perf_event_open(). Should return 0 for "no match"
571 	 * or non-zero for "match".
572 	 */
573 	int (*aux_output_match)		(struct perf_event *event);
574 					/* optional */
575 
576 	/*
577 	 * Skip programming this PMU on the given CPU. Typically needed for
578 	 * big.LITTLE things.
579 	 */
580 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
581 
582 	/*
583 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
584 	 */
585 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
586 };
587 
588 enum perf_addr_filter_action_t {
589 	PERF_ADDR_FILTER_ACTION_STOP = 0,
590 	PERF_ADDR_FILTER_ACTION_START,
591 	PERF_ADDR_FILTER_ACTION_FILTER,
592 };
593 
594 /**
595  * struct perf_addr_filter - address range filter definition
596  * @entry:	event's filter list linkage
597  * @path:	object file's path for file-based filters
598  * @offset:	filter range offset
599  * @size:	filter range size (size==0 means single address trigger)
600  * @action:	filter/start/stop
601  *
602  * This is a hardware-agnostic filter configuration as specified by the user.
603  */
604 struct perf_addr_filter {
605 	struct list_head	entry;
606 	struct path		path;
607 	unsigned long		offset;
608 	unsigned long		size;
609 	enum perf_addr_filter_action_t	action;
610 };
611 
612 /**
613  * struct perf_addr_filters_head - container for address range filters
614  * @list:	list of filters for this event
615  * @lock:	spinlock that serializes accesses to the @list and event's
616  *		(and its children's) filter generations.
617  * @nr_file_filters:	number of file-based filters
618  *
619  * A child event will use parent's @list (and therefore @lock), so they are
620  * bundled together; see perf_event_addr_filters().
621  */
622 struct perf_addr_filters_head {
623 	struct list_head	list;
624 	raw_spinlock_t		lock;
625 	unsigned int		nr_file_filters;
626 };
627 
628 struct perf_addr_filter_range {
629 	unsigned long		start;
630 	unsigned long		size;
631 };
632 
633 /**
634  * enum perf_event_state - the states of an event:
635  */
636 enum perf_event_state {
637 	PERF_EVENT_STATE_DEAD		= -4,
638 	PERF_EVENT_STATE_EXIT		= -3,
639 	PERF_EVENT_STATE_ERROR		= -2,
640 	PERF_EVENT_STATE_OFF		= -1,
641 	PERF_EVENT_STATE_INACTIVE	=  0,
642 	PERF_EVENT_STATE_ACTIVE		=  1,
643 };
644 
645 struct file;
646 struct perf_sample_data;
647 
648 typedef void (*perf_overflow_handler_t)(struct perf_event *,
649 					struct perf_sample_data *,
650 					struct pt_regs *regs);
651 
652 /*
653  * Event capabilities. For event_caps and groups caps.
654  *
655  * PERF_EV_CAP_SOFTWARE: Is a software event.
656  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
657  * from any CPU in the package where it is active.
658  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
659  * cannot be a group leader. If an event with this flag is detached from the
660  * group it is scheduled out and moved into an unrecoverable ERROR state.
661  * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
662  * PMU scope where it is active.
663  */
664 #define PERF_EV_CAP_SOFTWARE		BIT(0)
665 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
666 #define PERF_EV_CAP_SIBLING		BIT(2)
667 #define PERF_EV_CAP_READ_SCOPE		BIT(3)
668 
669 #define SWEVENT_HLIST_BITS		8
670 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
671 
672 struct swevent_hlist {
673 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
674 	struct rcu_head			rcu_head;
675 };
676 
677 #define PERF_ATTACH_CONTEXT	0x0001
678 #define PERF_ATTACH_GROUP	0x0002
679 #define PERF_ATTACH_TASK	0x0004
680 #define PERF_ATTACH_TASK_DATA	0x0008
681 #define PERF_ATTACH_ITRACE	0x0010
682 #define PERF_ATTACH_SCHED_CB	0x0020
683 #define PERF_ATTACH_CHILD	0x0040
684 #define PERF_ATTACH_EXCLUSIVE	0x0080
685 #define PERF_ATTACH_CALLCHAIN	0x0100
686 
687 struct bpf_prog;
688 struct perf_cgroup;
689 struct perf_buffer;
690 
691 struct pmu_event_list {
692 	raw_spinlock_t		lock;
693 	struct list_head	list;
694 };
695 
696 /*
697  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
698  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
699  * safe lock, and is only held by the CPU doing the modification, having IRQs
700  * disabled is sufficient since it will hold-off the IPIs.
701  */
702 #ifdef CONFIG_PROVE_LOCKING
703 #define lockdep_assert_event_ctx(event)				\
704 	WARN_ON_ONCE(__lockdep_enabled &&			\
705 		     (this_cpu_read(hardirqs_enabled) &&	\
706 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
707 #else
708 #define lockdep_assert_event_ctx(event)
709 #endif
710 
711 #define for_each_sibling_event(sibling, event)			\
712 	lockdep_assert_event_ctx(event);			\
713 	if ((event)->group_leader == (event))			\
714 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
715 
716 /**
717  * struct perf_event - performance event kernel representation:
718  */
719 struct perf_event {
720 #ifdef CONFIG_PERF_EVENTS
721 	/*
722 	 * entry onto perf_event_context::event_list;
723 	 *   modifications require ctx->lock
724 	 *   RCU safe iterations.
725 	 */
726 	struct list_head		event_entry;
727 
728 	/*
729 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
730 	 * either sufficies for read.
731 	 */
732 	struct list_head		sibling_list;
733 	struct list_head		active_list;
734 	/*
735 	 * Node on the pinned or flexible tree located at the event context;
736 	 */
737 	struct rb_node			group_node;
738 	u64				group_index;
739 	/*
740 	 * We need storage to track the entries in perf_pmu_migrate_context; we
741 	 * cannot use the event_entry because of RCU and we want to keep the
742 	 * group in tact which avoids us using the other two entries.
743 	 */
744 	struct list_head		migrate_entry;
745 
746 	struct hlist_node		hlist_entry;
747 	struct list_head		active_entry;
748 	int				nr_siblings;
749 
750 	/* Not serialized. Only written during event initialization. */
751 	int				event_caps;
752 	/* The cumulative AND of all event_caps for events in this group. */
753 	int				group_caps;
754 
755 	unsigned int			group_generation;
756 	struct perf_event		*group_leader;
757 	/*
758 	 * event->pmu will always point to pmu in which this event belongs.
759 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
760 	 * different pmu events is created.
761 	 */
762 	struct pmu			*pmu;
763 	void				*pmu_private;
764 
765 	enum perf_event_state		state;
766 	unsigned int			attach_state;
767 	local64_t			count;
768 	atomic64_t			child_count;
769 
770 	/*
771 	 * These are the total time in nanoseconds that the event
772 	 * has been enabled (i.e. eligible to run, and the task has
773 	 * been scheduled in, if this is a per-task event)
774 	 * and running (scheduled onto the CPU), respectively.
775 	 */
776 	u64				total_time_enabled;
777 	u64				total_time_running;
778 	u64				tstamp;
779 
780 	struct perf_event_attr		attr;
781 	u16				header_size;
782 	u16				id_header_size;
783 	u16				read_size;
784 	struct hw_perf_event		hw;
785 
786 	struct perf_event_context	*ctx;
787 	/*
788 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
789 	 * is added. This pmu_ctx can be of other pmu for sw event when that
790 	 * sw event is part of a group which also contains non-sw events.
791 	 */
792 	struct perf_event_pmu_context	*pmu_ctx;
793 	atomic_long_t			refcount;
794 
795 	/*
796 	 * These accumulate total time (in nanoseconds) that children
797 	 * events have been enabled and running, respectively.
798 	 */
799 	atomic64_t			child_total_time_enabled;
800 	atomic64_t			child_total_time_running;
801 
802 	/*
803 	 * Protect attach/detach and child_list:
804 	 */
805 	struct mutex			child_mutex;
806 	struct list_head		child_list;
807 	struct perf_event		*parent;
808 
809 	int				oncpu;
810 	int				cpu;
811 
812 	struct list_head		owner_entry;
813 	struct task_struct		*owner;
814 
815 	/* mmap bits */
816 	struct mutex			mmap_mutex;
817 	atomic_t			mmap_count;
818 
819 	struct perf_buffer		*rb;
820 	struct list_head		rb_entry;
821 	unsigned long			rcu_batches;
822 	int				rcu_pending;
823 
824 	/* poll related */
825 	wait_queue_head_t		waitq;
826 	struct fasync_struct		*fasync;
827 
828 	/* delayed work for NMIs and such */
829 	unsigned int			pending_wakeup;
830 	unsigned int			pending_kill;
831 	unsigned int			pending_disable;
832 	unsigned long			pending_addr;	/* SIGTRAP */
833 	struct irq_work			pending_irq;
834 	struct irq_work			pending_disable_irq;
835 	struct callback_head		pending_task;
836 	unsigned int			pending_work;
837 
838 	atomic_t			event_limit;
839 
840 	/* address range filters */
841 	struct perf_addr_filters_head	addr_filters;
842 	/* vma address array for file-based filders */
843 	struct perf_addr_filter_range	*addr_filter_ranges;
844 	unsigned long			addr_filters_gen;
845 
846 	/* for aux_output events */
847 	struct perf_event		*aux_event;
848 
849 	void (*destroy)(struct perf_event *);
850 	struct rcu_head			rcu_head;
851 
852 	struct pid_namespace		*ns;
853 	u64				id;
854 
855 	atomic64_t			lost_samples;
856 
857 	u64				(*clock)(void);
858 	perf_overflow_handler_t		overflow_handler;
859 	void				*overflow_handler_context;
860 	struct bpf_prog			*prog;
861 	u64				bpf_cookie;
862 
863 #ifdef CONFIG_EVENT_TRACING
864 	struct trace_event_call		*tp_event;
865 	struct event_filter		*filter;
866 #ifdef CONFIG_FUNCTION_TRACER
867 	struct ftrace_ops               ftrace_ops;
868 #endif
869 #endif
870 
871 #ifdef CONFIG_CGROUP_PERF
872 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
873 #endif
874 
875 #ifdef CONFIG_SECURITY
876 	void *security;
877 #endif
878 	struct list_head		sb_list;
879 
880 	/*
881 	 * Certain events gets forwarded to another pmu internally by over-
882 	 * writing kernel copy of event->attr.type without user being aware
883 	 * of it. event->orig_type contains original 'type' requested by
884 	 * user.
885 	 */
886 	__u32				orig_type;
887 #endif /* CONFIG_PERF_EVENTS */
888 };
889 
890 /*
891  *           ,-----------------------[1:n]------------------------.
892  *           V                                                    V
893  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
894  *                                        |                       |
895  *                                        `--[n:1]-> pmu <-[1:n]--'
896  *
897  *
898  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
899  * (similar to perf_event_context). Locking is as if it were a member of
900  * perf_event_context; specifically:
901  *
902  *   modification, both: ctx->mutex && ctx->lock
903  *   reading, either:    ctx->mutex || ctx->lock
904  *
905  * There is one exception to this; namely put_pmu_ctx() isn't always called
906  * with ctx->mutex held; this means that as long as we can guarantee the epc
907  * has events the above rules hold.
908  *
909  * Specificially, sys_perf_event_open()'s group_leader case depends on
910  * ctx->mutex pinning the configuration. Since we hold a reference on
911  * group_leader (through the filedesc) it can't go away, therefore it's
912  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
913  *
914  * perf_event holds a refcount on perf_event_context
915  * perf_event holds a refcount on perf_event_pmu_context
916  */
917 struct perf_event_pmu_context {
918 	struct pmu			*pmu;
919 	struct perf_event_context       *ctx;
920 
921 	struct list_head		pmu_ctx_entry;
922 
923 	struct list_head		pinned_active;
924 	struct list_head		flexible_active;
925 
926 	/* Used to avoid freeing per-cpu perf_event_pmu_context */
927 	unsigned int			embedded : 1;
928 
929 	unsigned int			nr_events;
930 	unsigned int			nr_cgroups;
931 	unsigned int			nr_freq;
932 
933 	atomic_t			refcount; /* event <-> epc */
934 	struct rcu_head			rcu_head;
935 
936 	void				*task_ctx_data; /* pmu specific data */
937 	/*
938 	 * Set when one or more (plausibly active) event can't be scheduled
939 	 * due to pmu overcommit or pmu constraints, except tolerant to
940 	 * events not necessary to be active due to scheduling constraints,
941 	 * such as cgroups.
942 	 */
943 	int				rotate_necessary;
944 };
945 
perf_pmu_ctx_is_active(struct perf_event_pmu_context * epc)946 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
947 {
948 	return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
949 }
950 
951 struct perf_event_groups {
952 	struct rb_root	tree;
953 	u64		index;
954 };
955 
956 
957 /**
958  * struct perf_event_context - event context structure
959  *
960  * Used as a container for task events and CPU events as well:
961  */
962 struct perf_event_context {
963 	/*
964 	 * Protect the states of the events in the list,
965 	 * nr_active, and the list:
966 	 */
967 	raw_spinlock_t			lock;
968 	/*
969 	 * Protect the list of events.  Locking either mutex or lock
970 	 * is sufficient to ensure the list doesn't change; to change
971 	 * the list you need to lock both the mutex and the spinlock.
972 	 */
973 	struct mutex			mutex;
974 
975 	struct list_head		pmu_ctx_list;
976 	struct perf_event_groups	pinned_groups;
977 	struct perf_event_groups	flexible_groups;
978 	struct list_head		event_list;
979 
980 	int				nr_events;
981 	int				nr_user;
982 	int				is_active;
983 
984 	int				nr_task_data;
985 	int				nr_stat;
986 	int				nr_freq;
987 	int				rotate_disable;
988 
989 	refcount_t			refcount; /* event <-> ctx */
990 	struct task_struct		*task;
991 
992 	/*
993 	 * Context clock, runs when context enabled.
994 	 */
995 	u64				time;
996 	u64				timestamp;
997 	u64				timeoffset;
998 
999 	/*
1000 	 * These fields let us detect when two contexts have both
1001 	 * been cloned (inherited) from a common ancestor.
1002 	 */
1003 	struct perf_event_context	*parent_ctx;
1004 	u64				parent_gen;
1005 	u64				generation;
1006 	int				pin_count;
1007 #ifdef CONFIG_CGROUP_PERF
1008 	int				nr_cgroups;	 /* cgroup evts */
1009 #endif
1010 	struct rcu_head			rcu_head;
1011 
1012 	/*
1013 	 * The count of events for which using the switch-out fast path
1014 	 * should be avoided.
1015 	 *
1016 	 * Sum (event->pending_work + events with
1017 	 *    (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1018 	 *
1019 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1020 	 * that until the signal is delivered.
1021 	 */
1022 	local_t				nr_no_switch_fast;
1023 };
1024 
1025 struct perf_cpu_pmu_context {
1026 	struct perf_event_pmu_context	epc;
1027 	struct perf_event_pmu_context	*task_epc;
1028 
1029 	struct list_head		sched_cb_entry;
1030 	int				sched_cb_usage;
1031 
1032 	int				active_oncpu;
1033 	int				exclusive;
1034 
1035 	raw_spinlock_t			hrtimer_lock;
1036 	struct hrtimer			hrtimer;
1037 	ktime_t				hrtimer_interval;
1038 	unsigned int			hrtimer_active;
1039 };
1040 
1041 /**
1042  * struct perf_event_cpu_context - per cpu event context structure
1043  */
1044 struct perf_cpu_context {
1045 	struct perf_event_context	ctx;
1046 	struct perf_event_context	*task_ctx;
1047 	int				online;
1048 
1049 #ifdef CONFIG_CGROUP_PERF
1050 	struct perf_cgroup		*cgrp;
1051 #endif
1052 
1053 	/*
1054 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1055 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1056 	 */
1057 	int				heap_size;
1058 	struct perf_event		**heap;
1059 	struct perf_event		*heap_default[2];
1060 };
1061 
1062 struct perf_output_handle {
1063 	struct perf_event		*event;
1064 	struct perf_buffer		*rb;
1065 	unsigned long			wakeup;
1066 	unsigned long			size;
1067 	u64				aux_flags;
1068 	union {
1069 		void			*addr;
1070 		unsigned long		head;
1071 	};
1072 	int				page;
1073 };
1074 
1075 struct bpf_perf_event_data_kern {
1076 	bpf_user_pt_regs_t *regs;
1077 	struct perf_sample_data *data;
1078 	struct perf_event *event;
1079 };
1080 
1081 #ifdef CONFIG_CGROUP_PERF
1082 
1083 /*
1084  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1085  * This is a per-cpu dynamically allocated data structure.
1086  */
1087 struct perf_cgroup_info {
1088 	u64				time;
1089 	u64				timestamp;
1090 	u64				timeoffset;
1091 	int				active;
1092 };
1093 
1094 struct perf_cgroup {
1095 	struct cgroup_subsys_state	css;
1096 	struct perf_cgroup_info	__percpu *info;
1097 };
1098 
1099 /*
1100  * Must ensure cgroup is pinned (css_get) before calling
1101  * this function. In other words, we cannot call this function
1102  * if there is no cgroup event for the current CPU context.
1103  */
1104 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1105 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1106 {
1107 	return container_of(task_css_check(task, perf_event_cgrp_id,
1108 					   ctx ? lockdep_is_held(&ctx->lock)
1109 					       : true),
1110 			    struct perf_cgroup, css);
1111 }
1112 #endif /* CONFIG_CGROUP_PERF */
1113 
1114 #ifdef CONFIG_PERF_EVENTS
1115 
1116 extern struct perf_event_context *perf_cpu_task_ctx(void);
1117 
1118 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1119 				   struct perf_event *event);
1120 extern void perf_aux_output_end(struct perf_output_handle *handle,
1121 				unsigned long size);
1122 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1123 				unsigned long size);
1124 extern void *perf_get_aux(struct perf_output_handle *handle);
1125 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1126 extern void perf_event_itrace_started(struct perf_event *event);
1127 
1128 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1129 extern void perf_pmu_unregister(struct pmu *pmu);
1130 
1131 extern void __perf_event_task_sched_in(struct task_struct *prev,
1132 				       struct task_struct *task);
1133 extern void __perf_event_task_sched_out(struct task_struct *prev,
1134 					struct task_struct *next);
1135 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1136 extern void perf_event_exit_task(struct task_struct *child);
1137 extern void perf_event_free_task(struct task_struct *task);
1138 extern void perf_event_delayed_put(struct task_struct *task);
1139 extern struct file *perf_event_get(unsigned int fd);
1140 extern const struct perf_event *perf_get_event(struct file *file);
1141 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1142 extern void perf_event_print_debug(void);
1143 extern void perf_pmu_disable(struct pmu *pmu);
1144 extern void perf_pmu_enable(struct pmu *pmu);
1145 extern void perf_sched_cb_dec(struct pmu *pmu);
1146 extern void perf_sched_cb_inc(struct pmu *pmu);
1147 extern int perf_event_task_disable(void);
1148 extern int perf_event_task_enable(void);
1149 
1150 extern void perf_pmu_resched(struct pmu *pmu);
1151 
1152 extern int perf_event_refresh(struct perf_event *event, int refresh);
1153 extern void perf_event_update_userpage(struct perf_event *event);
1154 extern int perf_event_release_kernel(struct perf_event *event);
1155 extern struct perf_event *
1156 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1157 				int cpu,
1158 				struct task_struct *task,
1159 				perf_overflow_handler_t callback,
1160 				void *context);
1161 extern void perf_pmu_migrate_context(struct pmu *pmu,
1162 				int src_cpu, int dst_cpu);
1163 int perf_event_read_local(struct perf_event *event, u64 *value,
1164 			  u64 *enabled, u64 *running);
1165 extern u64 perf_event_read_value(struct perf_event *event,
1166 				 u64 *enabled, u64 *running);
1167 
1168 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1169 
branch_sample_no_flags(const struct perf_event * event)1170 static inline bool branch_sample_no_flags(const struct perf_event *event)
1171 {
1172 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1173 }
1174 
branch_sample_no_cycles(const struct perf_event * event)1175 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1176 {
1177 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1178 }
1179 
branch_sample_type(const struct perf_event * event)1180 static inline bool branch_sample_type(const struct perf_event *event)
1181 {
1182 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1183 }
1184 
branch_sample_hw_index(const struct perf_event * event)1185 static inline bool branch_sample_hw_index(const struct perf_event *event)
1186 {
1187 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1188 }
1189 
branch_sample_priv(const struct perf_event * event)1190 static inline bool branch_sample_priv(const struct perf_event *event)
1191 {
1192 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1193 }
1194 
branch_sample_counters(const struct perf_event * event)1195 static inline bool branch_sample_counters(const struct perf_event *event)
1196 {
1197 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1198 }
1199 
branch_sample_call_stack(const struct perf_event * event)1200 static inline bool branch_sample_call_stack(const struct perf_event *event)
1201 {
1202 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1203 }
1204 
1205 struct perf_sample_data {
1206 	/*
1207 	 * Fields set by perf_sample_data_init() unconditionally,
1208 	 * group so as to minimize the cachelines touched.
1209 	 */
1210 	u64				sample_flags;
1211 	u64				period;
1212 	u64				dyn_size;
1213 
1214 	/*
1215 	 * Fields commonly set by __perf_event_header__init_id(),
1216 	 * group so as to minimize the cachelines touched.
1217 	 */
1218 	u64				type;
1219 	struct {
1220 		u32	pid;
1221 		u32	tid;
1222 	}				tid_entry;
1223 	u64				time;
1224 	u64				id;
1225 	struct {
1226 		u32	cpu;
1227 		u32	reserved;
1228 	}				cpu_entry;
1229 
1230 	/*
1231 	 * The other fields, optionally {set,used} by
1232 	 * perf_{prepare,output}_sample().
1233 	 */
1234 	u64				ip;
1235 	struct perf_callchain_entry	*callchain;
1236 	struct perf_raw_record		*raw;
1237 	struct perf_branch_stack	*br_stack;
1238 	u64				*br_stack_cntr;
1239 	union perf_sample_weight	weight;
1240 	union  perf_mem_data_src	data_src;
1241 	u64				txn;
1242 
1243 	struct perf_regs		regs_user;
1244 	struct perf_regs		regs_intr;
1245 	u64				stack_user_size;
1246 
1247 	u64				stream_id;
1248 	u64				cgroup;
1249 	u64				addr;
1250 	u64				phys_addr;
1251 	u64				data_page_size;
1252 	u64				code_page_size;
1253 	u64				aux_size;
1254 } ____cacheline_aligned;
1255 
1256 /* default value for data source */
1257 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1258 		    PERF_MEM_S(LVL, NA)   |\
1259 		    PERF_MEM_S(SNOOP, NA) |\
1260 		    PERF_MEM_S(LOCK, NA)  |\
1261 		    PERF_MEM_S(TLB, NA)   |\
1262 		    PERF_MEM_S(LVLNUM, NA))
1263 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1264 static inline void perf_sample_data_init(struct perf_sample_data *data,
1265 					 u64 addr, u64 period)
1266 {
1267 	/* remaining struct members initialized in perf_prepare_sample() */
1268 	data->sample_flags = PERF_SAMPLE_PERIOD;
1269 	data->period = period;
1270 	data->dyn_size = 0;
1271 
1272 	if (addr) {
1273 		data->addr = addr;
1274 		data->sample_flags |= PERF_SAMPLE_ADDR;
1275 	}
1276 }
1277 
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1278 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1279 					      struct perf_event *event,
1280 					      struct pt_regs *regs)
1281 {
1282 	int size = 1;
1283 
1284 	data->callchain = perf_callchain(event, regs);
1285 	size += data->callchain->nr;
1286 
1287 	data->dyn_size += size * sizeof(u64);
1288 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1289 }
1290 
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_event * event,struct perf_raw_record * raw)1291 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1292 					     struct perf_event *event,
1293 					     struct perf_raw_record *raw)
1294 {
1295 	struct perf_raw_frag *frag = &raw->frag;
1296 	u32 sum = 0;
1297 	int size;
1298 
1299 	if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
1300 		return;
1301 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
1302 		return;
1303 
1304 	do {
1305 		sum += frag->size;
1306 		if (perf_raw_frag_last(frag))
1307 			break;
1308 		frag = frag->next;
1309 	} while (1);
1310 
1311 	size = round_up(sum + sizeof(u32), sizeof(u64));
1312 	raw->size = size - sizeof(u32);
1313 	frag->pad = raw->size - sum;
1314 
1315 	data->raw = raw;
1316 	data->dyn_size += size;
1317 	data->sample_flags |= PERF_SAMPLE_RAW;
1318 }
1319 
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs,u64 * brs_cntr)1320 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1321 					    struct perf_event *event,
1322 					    struct perf_branch_stack *brs,
1323 					    u64 *brs_cntr)
1324 {
1325 	int size = sizeof(u64); /* nr */
1326 
1327 	if (branch_sample_hw_index(event))
1328 		size += sizeof(u64);
1329 	size += brs->nr * sizeof(struct perf_branch_entry);
1330 
1331 	/*
1332 	 * The extension space for counters is appended after the
1333 	 * struct perf_branch_stack. It is used to store the occurrences
1334 	 * of events of each branch.
1335 	 */
1336 	if (brs_cntr)
1337 		size += brs->nr * sizeof(u64);
1338 
1339 	data->br_stack = brs;
1340 	data->br_stack_cntr = brs_cntr;
1341 	data->dyn_size += size;
1342 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1343 }
1344 
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1345 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1346 					struct perf_event *event)
1347 {
1348 	u32 size = sizeof(struct perf_event_header);
1349 
1350 	size += event->header_size + event->id_header_size;
1351 	size += data->dyn_size;
1352 
1353 	return size;
1354 }
1355 
1356 /*
1357  * Clear all bitfields in the perf_branch_entry.
1358  * The to and from fields are not cleared because they are
1359  * systematically modified by caller.
1360  */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1361 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1362 {
1363 	br->mispred = 0;
1364 	br->predicted = 0;
1365 	br->in_tx = 0;
1366 	br->abort = 0;
1367 	br->cycles = 0;
1368 	br->type = 0;
1369 	br->spec = PERF_BR_SPEC_NA;
1370 	br->reserved = 0;
1371 }
1372 
1373 extern void perf_output_sample(struct perf_output_handle *handle,
1374 			       struct perf_event_header *header,
1375 			       struct perf_sample_data *data,
1376 			       struct perf_event *event);
1377 extern void perf_prepare_sample(struct perf_sample_data *data,
1378 				struct perf_event *event,
1379 				struct pt_regs *regs);
1380 extern void perf_prepare_header(struct perf_event_header *header,
1381 				struct perf_sample_data *data,
1382 				struct perf_event *event,
1383 				struct pt_regs *regs);
1384 
1385 extern int perf_event_overflow(struct perf_event *event,
1386 				 struct perf_sample_data *data,
1387 				 struct pt_regs *regs);
1388 
1389 extern void perf_event_output_forward(struct perf_event *event,
1390 				     struct perf_sample_data *data,
1391 				     struct pt_regs *regs);
1392 extern void perf_event_output_backward(struct perf_event *event,
1393 				       struct perf_sample_data *data,
1394 				       struct pt_regs *regs);
1395 extern int perf_event_output(struct perf_event *event,
1396 			     struct perf_sample_data *data,
1397 			     struct pt_regs *regs);
1398 
1399 static inline bool
is_default_overflow_handler(struct perf_event * event)1400 is_default_overflow_handler(struct perf_event *event)
1401 {
1402 	perf_overflow_handler_t overflow_handler = event->overflow_handler;
1403 
1404 	if (likely(overflow_handler == perf_event_output_forward))
1405 		return true;
1406 	if (unlikely(overflow_handler == perf_event_output_backward))
1407 		return true;
1408 	return false;
1409 }
1410 
1411 extern void
1412 perf_event_header__init_id(struct perf_event_header *header,
1413 			   struct perf_sample_data *data,
1414 			   struct perf_event *event);
1415 extern void
1416 perf_event__output_id_sample(struct perf_event *event,
1417 			     struct perf_output_handle *handle,
1418 			     struct perf_sample_data *sample);
1419 
1420 extern void
1421 perf_log_lost_samples(struct perf_event *event, u64 lost);
1422 
event_has_any_exclude_flag(struct perf_event * event)1423 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1424 {
1425 	struct perf_event_attr *attr = &event->attr;
1426 
1427 	return attr->exclude_idle || attr->exclude_user ||
1428 	       attr->exclude_kernel || attr->exclude_hv ||
1429 	       attr->exclude_guest || attr->exclude_host;
1430 }
1431 
is_sampling_event(struct perf_event * event)1432 static inline bool is_sampling_event(struct perf_event *event)
1433 {
1434 	return event->attr.sample_period != 0;
1435 }
1436 
1437 /*
1438  * Return 1 for a software event, 0 for a hardware event
1439  */
is_software_event(struct perf_event * event)1440 static inline int is_software_event(struct perf_event *event)
1441 {
1442 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1443 }
1444 
1445 /*
1446  * Return 1 for event in sw context, 0 for event in hw context
1447  */
in_software_context(struct perf_event * event)1448 static inline int in_software_context(struct perf_event *event)
1449 {
1450 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1451 }
1452 
is_exclusive_pmu(struct pmu * pmu)1453 static inline int is_exclusive_pmu(struct pmu *pmu)
1454 {
1455 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1456 }
1457 
1458 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1459 
1460 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1461 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1462 
1463 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1464 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1465 #endif
1466 
1467 /*
1468  * When generating a perf sample in-line, instead of from an interrupt /
1469  * exception, we lack a pt_regs. This is typically used from software events
1470  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1471  *
1472  * We typically don't need a full set, but (for x86) do require:
1473  * - ip for PERF_SAMPLE_IP
1474  * - cs for user_mode() tests
1475  * - sp for PERF_SAMPLE_CALLCHAIN
1476  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1477  *
1478  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1479  * things like PERF_SAMPLE_REGS_INTR.
1480  */
perf_fetch_caller_regs(struct pt_regs * regs)1481 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1482 {
1483 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1484 }
1485 
1486 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1487 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1488 {
1489 	if (static_key_false(&perf_swevent_enabled[event_id]))
1490 		__perf_sw_event(event_id, nr, regs, addr);
1491 }
1492 
1493 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1494 
1495 /*
1496  * 'Special' version for the scheduler, it hard assumes no recursion,
1497  * which is guaranteed by us not actually scheduling inside other swevents
1498  * because those disable preemption.
1499  */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1500 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1501 {
1502 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1503 
1504 	perf_fetch_caller_regs(regs);
1505 	___perf_sw_event(event_id, nr, regs, addr);
1506 }
1507 
1508 extern struct static_key_false perf_sched_events;
1509 
__perf_sw_enabled(int swevt)1510 static __always_inline bool __perf_sw_enabled(int swevt)
1511 {
1512 	return static_key_false(&perf_swevent_enabled[swevt]);
1513 }
1514 
perf_event_task_migrate(struct task_struct * task)1515 static inline void perf_event_task_migrate(struct task_struct *task)
1516 {
1517 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1518 		task->sched_migrated = 1;
1519 }
1520 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1521 static inline void perf_event_task_sched_in(struct task_struct *prev,
1522 					    struct task_struct *task)
1523 {
1524 	if (static_branch_unlikely(&perf_sched_events))
1525 		__perf_event_task_sched_in(prev, task);
1526 
1527 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1528 	    task->sched_migrated) {
1529 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1530 		task->sched_migrated = 0;
1531 	}
1532 }
1533 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1534 static inline void perf_event_task_sched_out(struct task_struct *prev,
1535 					     struct task_struct *next)
1536 {
1537 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1538 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1539 
1540 #ifdef CONFIG_CGROUP_PERF
1541 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1542 	    perf_cgroup_from_task(prev, NULL) !=
1543 	    perf_cgroup_from_task(next, NULL))
1544 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1545 #endif
1546 
1547 	if (static_branch_unlikely(&perf_sched_events))
1548 		__perf_event_task_sched_out(prev, next);
1549 }
1550 
1551 extern void perf_event_mmap(struct vm_area_struct *vma);
1552 
1553 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1554 			       bool unregister, const char *sym);
1555 extern void perf_event_bpf_event(struct bpf_prog *prog,
1556 				 enum perf_bpf_event_type type,
1557 				 u16 flags);
1558 
1559 #ifdef CONFIG_GUEST_PERF_EVENTS
1560 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1561 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1562 {
1563 	/*
1564 	 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1565 	 * the callbacks between a !NULL check and dereferences, to ensure
1566 	 * pending stores/changes to the callback pointers are visible before a
1567 	 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1568 	 * module from unloading callbacks while readers are active.
1569 	 */
1570 	return rcu_dereference(perf_guest_cbs);
1571 }
perf_guest_state(void)1572 static inline unsigned int perf_guest_state(void)
1573 {
1574 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1575 
1576 	return guest_cbs ? guest_cbs->state() : 0;
1577 }
perf_guest_get_ip(void)1578 static inline unsigned long perf_guest_get_ip(void)
1579 {
1580 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1581 
1582 	/*
1583 	 * Arbitrarily return '0' in the unlikely scenario that the callbacks
1584 	 * are unregistered between checking guest state and getting the IP.
1585 	 */
1586 	return guest_cbs ? guest_cbs->get_ip() : 0;
1587 }
perf_guest_handle_intel_pt_intr(void)1588 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1589 {
1590 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1591 
1592 	if (guest_cbs && guest_cbs->handle_intel_pt_intr)
1593 		return guest_cbs->handle_intel_pt_intr();
1594 	return 0;
1595 }
1596 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1597 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1598 #else
perf_guest_state(void)1599 static inline unsigned int perf_guest_state(void)		 { return 0; }
perf_guest_get_ip(void)1600 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
perf_guest_handle_intel_pt_intr(void)1601 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1602 #endif /* CONFIG_GUEST_PERF_EVENTS */
1603 
1604 extern void perf_event_exec(void);
1605 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1606 extern void perf_event_namespaces(struct task_struct *tsk);
1607 extern void perf_event_fork(struct task_struct *tsk);
1608 extern void perf_event_text_poke(const void *addr,
1609 				 const void *old_bytes, size_t old_len,
1610 				 const void *new_bytes, size_t new_len);
1611 
1612 /* Callchains */
1613 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1614 
1615 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1616 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1617 extern struct perf_callchain_entry *
1618 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1619 		   u32 max_stack, bool crosstask, bool add_mark);
1620 extern int get_callchain_buffers(int max_stack);
1621 extern void put_callchain_buffers(void);
1622 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1623 extern void put_callchain_entry(int rctx);
1624 
1625 extern int sysctl_perf_event_max_stack;
1626 extern int sysctl_perf_event_max_contexts_per_stack;
1627 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1628 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1629 {
1630 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1631 		struct perf_callchain_entry *entry = ctx->entry;
1632 		entry->ip[entry->nr++] = ip;
1633 		++ctx->contexts;
1634 		return 0;
1635 	} else {
1636 		ctx->contexts_maxed = true;
1637 		return -1; /* no more room, stop walking the stack */
1638 	}
1639 }
1640 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1641 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1642 {
1643 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1644 		struct perf_callchain_entry *entry = ctx->entry;
1645 		entry->ip[entry->nr++] = ip;
1646 		++ctx->nr;
1647 		return 0;
1648 	} else {
1649 		return -1; /* no more room, stop walking the stack */
1650 	}
1651 }
1652 
1653 extern int sysctl_perf_event_paranoid;
1654 extern int sysctl_perf_event_mlock;
1655 extern int sysctl_perf_event_sample_rate;
1656 extern int sysctl_perf_cpu_time_max_percent;
1657 
1658 extern void perf_sample_event_took(u64 sample_len_ns);
1659 
1660 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
1661 		void *buffer, size_t *lenp, loff_t *ppos);
1662 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
1663 		void *buffer, size_t *lenp, loff_t *ppos);
1664 int perf_event_max_stack_handler(const struct ctl_table *table, int write,
1665 		void *buffer, size_t *lenp, loff_t *ppos);
1666 
1667 /* Access to perf_event_open(2) syscall. */
1668 #define PERF_SECURITY_OPEN		0
1669 
1670 /* Finer grained perf_event_open(2) access control. */
1671 #define PERF_SECURITY_CPU		1
1672 #define PERF_SECURITY_KERNEL		2
1673 #define PERF_SECURITY_TRACEPOINT	3
1674 
perf_is_paranoid(void)1675 static inline int perf_is_paranoid(void)
1676 {
1677 	return sysctl_perf_event_paranoid > -1;
1678 }
1679 
1680 int perf_allow_kernel(struct perf_event_attr *attr);
1681 
perf_allow_cpu(struct perf_event_attr * attr)1682 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1683 {
1684 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1685 		return -EACCES;
1686 
1687 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1688 }
1689 
perf_allow_tracepoint(struct perf_event_attr * attr)1690 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1691 {
1692 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1693 		return -EPERM;
1694 
1695 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1696 }
1697 
1698 extern void perf_event_init(void);
1699 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1700 			  int entry_size, struct pt_regs *regs,
1701 			  struct hlist_head *head, int rctx,
1702 			  struct task_struct *task);
1703 extern void perf_bp_event(struct perf_event *event, void *data);
1704 
1705 #ifndef perf_misc_flags
1706 # define perf_misc_flags(regs) \
1707 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1708 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1709 #endif
1710 #ifndef perf_arch_bpf_user_pt_regs
1711 # define perf_arch_bpf_user_pt_regs(regs) regs
1712 #endif
1713 
has_branch_stack(struct perf_event * event)1714 static inline bool has_branch_stack(struct perf_event *event)
1715 {
1716 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1717 }
1718 
needs_branch_stack(struct perf_event * event)1719 static inline bool needs_branch_stack(struct perf_event *event)
1720 {
1721 	return event->attr.branch_sample_type != 0;
1722 }
1723 
has_aux(struct perf_event * event)1724 static inline bool has_aux(struct perf_event *event)
1725 {
1726 	return event->pmu->setup_aux;
1727 }
1728 
has_aux_action(struct perf_event * event)1729 static inline bool has_aux_action(struct perf_event *event)
1730 {
1731 	return event->attr.aux_sample_size ||
1732 	       event->attr.aux_pause ||
1733 	       event->attr.aux_resume;
1734 }
1735 
is_write_backward(struct perf_event * event)1736 static inline bool is_write_backward(struct perf_event *event)
1737 {
1738 	return !!event->attr.write_backward;
1739 }
1740 
has_addr_filter(struct perf_event * event)1741 static inline bool has_addr_filter(struct perf_event *event)
1742 {
1743 	return event->pmu->nr_addr_filters;
1744 }
1745 
1746 /*
1747  * An inherited event uses parent's filters
1748  */
1749 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1750 perf_event_addr_filters(struct perf_event *event)
1751 {
1752 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1753 
1754 	if (event->parent)
1755 		ifh = &event->parent->addr_filters;
1756 
1757 	return ifh;
1758 }
1759 
perf_event_fasync(struct perf_event * event)1760 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1761 {
1762 	/* Only the parent has fasync state */
1763 	if (event->parent)
1764 		event = event->parent;
1765 	return &event->fasync;
1766 }
1767 
1768 extern void perf_event_addr_filters_sync(struct perf_event *event);
1769 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1770 
1771 extern int perf_output_begin(struct perf_output_handle *handle,
1772 			     struct perf_sample_data *data,
1773 			     struct perf_event *event, unsigned int size);
1774 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1775 				     struct perf_sample_data *data,
1776 				     struct perf_event *event,
1777 				     unsigned int size);
1778 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1779 				      struct perf_sample_data *data,
1780 				      struct perf_event *event,
1781 				      unsigned int size);
1782 
1783 extern void perf_output_end(struct perf_output_handle *handle);
1784 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1785 			     const void *buf, unsigned int len);
1786 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1787 				     unsigned int len);
1788 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1789 				 struct perf_output_handle *handle,
1790 				 unsigned long from, unsigned long to);
1791 extern int perf_swevent_get_recursion_context(void);
1792 extern void perf_swevent_put_recursion_context(int rctx);
1793 extern u64 perf_swevent_set_period(struct perf_event *event);
1794 extern void perf_event_enable(struct perf_event *event);
1795 extern void perf_event_disable(struct perf_event *event);
1796 extern void perf_event_disable_local(struct perf_event *event);
1797 extern void perf_event_disable_inatomic(struct perf_event *event);
1798 extern void perf_event_task_tick(void);
1799 extern int perf_event_account_interrupt(struct perf_event *event);
1800 extern int perf_event_period(struct perf_event *event, u64 value);
1801 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1802 #else /* !CONFIG_PERF_EVENTS: */
1803 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1804 perf_aux_output_begin(struct perf_output_handle *handle,
1805 		      struct perf_event *event)				{ return NULL; }
1806 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1807 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1808 									{ }
1809 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1810 perf_aux_output_skip(struct perf_output_handle *handle,
1811 		     unsigned long size)				{ return -EINVAL; }
1812 static inline void *
perf_get_aux(struct perf_output_handle * handle)1813 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1814 static inline void
perf_event_task_migrate(struct task_struct * task)1815 perf_event_task_migrate(struct task_struct *task)			{ }
1816 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1817 perf_event_task_sched_in(struct task_struct *prev,
1818 			 struct task_struct *task)			{ }
1819 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1820 perf_event_task_sched_out(struct task_struct *prev,
1821 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1822 static inline int perf_event_init_task(struct task_struct *child,
1823 				       u64 clone_flags)			{ return 0; }
perf_event_exit_task(struct task_struct * child)1824 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1825 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1826 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1827 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1828 static inline const struct perf_event *perf_get_event(struct file *file)
1829 {
1830 	return ERR_PTR(-EINVAL);
1831 }
perf_event_attrs(struct perf_event * event)1832 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1833 {
1834 	return ERR_PTR(-EINVAL);
1835 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1836 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1837 					u64 *enabled, u64 *running)
1838 {
1839 	return -EINVAL;
1840 }
perf_event_print_debug(void)1841 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1842 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1843 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1844 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1845 {
1846 	return -EINVAL;
1847 }
1848 
1849 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1850 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1851 static inline void
perf_bp_event(struct perf_event * event,void * data)1852 perf_bp_event(struct perf_event *event, void *data)			{ }
1853 
perf_event_mmap(struct vm_area_struct * vma)1854 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1855 
1856 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1857 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1858 				      bool unregister, const char *sym)	{ }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1859 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1860 					enum perf_bpf_event_type type,
1861 					u16 flags)			{ }
perf_event_exec(void)1862 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1863 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1864 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1865 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1866 static inline void perf_event_text_poke(const void *addr,
1867 					const void *old_bytes,
1868 					size_t old_len,
1869 					const void *new_bytes,
1870 					size_t new_len)			{ }
perf_event_init(void)1871 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1872 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1873 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1874 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1875 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1876 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1877 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1878 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1879 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
perf_event_period(struct perf_event * event,u64 value)1880 static inline int perf_event_period(struct perf_event *event, u64 value)
1881 {
1882 	return -EINVAL;
1883 }
perf_event_pause(struct perf_event * event,bool reset)1884 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1885 {
1886 	return 0;
1887 }
1888 #endif
1889 
1890 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1891 extern void perf_restore_debug_store(void);
1892 #else
perf_restore_debug_store(void)1893 static inline void perf_restore_debug_store(void)			{ }
1894 #endif
1895 
1896 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1897 
1898 struct perf_pmu_events_attr {
1899 	struct device_attribute attr;
1900 	u64 id;
1901 	const char *event_str;
1902 };
1903 
1904 struct perf_pmu_events_ht_attr {
1905 	struct device_attribute			attr;
1906 	u64					id;
1907 	const char				*event_str_ht;
1908 	const char				*event_str_noht;
1909 };
1910 
1911 struct perf_pmu_events_hybrid_attr {
1912 	struct device_attribute			attr;
1913 	u64					id;
1914 	const char				*event_str;
1915 	u64					pmu_type;
1916 };
1917 
1918 struct perf_pmu_format_hybrid_attr {
1919 	struct device_attribute			attr;
1920 	u64					pmu_type;
1921 };
1922 
1923 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1924 			      char *page);
1925 
1926 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1927 static struct perf_pmu_events_attr _var = {				\
1928 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1929 	.id   =  _id,							\
1930 };
1931 
1932 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1933 static struct perf_pmu_events_attr _var = {				    \
1934 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1935 	.id		= 0,						    \
1936 	.event_str	= _str,						    \
1937 };
1938 
1939 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1940 	(&((struct perf_pmu_events_attr[]) {				\
1941 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1942 		  .id = _id, }						\
1943 	})[0].attr.attr)
1944 
1945 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1946 static ssize_t								\
1947 _name##_show(struct device *dev,					\
1948 			       struct device_attribute *attr,		\
1949 			       char *page)				\
1950 {									\
1951 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1952 	return sprintf(page, _format "\n");				\
1953 }									\
1954 
1955 #define PMU_FORMAT_ATTR(_name, _format)					\
1956 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1957 									\
1958 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1959 
1960 /* Performance counter hotplug functions */
1961 #ifdef CONFIG_PERF_EVENTS
1962 int perf_event_init_cpu(unsigned int cpu);
1963 int perf_event_exit_cpu(unsigned int cpu);
1964 #else
1965 #define perf_event_init_cpu	NULL
1966 #define perf_event_exit_cpu	NULL
1967 #endif
1968 
1969 extern void arch_perf_update_userpage(struct perf_event *event,
1970 				      struct perf_event_mmap_page *userpg,
1971 				      u64 now);
1972 
1973 /*
1974  * Snapshot branch stack on software events.
1975  *
1976  * Branch stack can be very useful in understanding software events. For
1977  * example, when a long function, e.g. sys_perf_event_open, returns an
1978  * errno, it is not obvious why the function failed. Branch stack could
1979  * provide very helpful information in this type of scenarios.
1980  *
1981  * On software event, it is necessary to stop the hardware branch recorder
1982  * fast. Otherwise, the hardware register/buffer will be flushed with
1983  * entries of the triggering event. Therefore, static call is used to
1984  * stop the hardware recorder.
1985  */
1986 
1987 /*
1988  * cnt is the number of entries allocated for entries.
1989  * Return number of entries copied to .
1990  */
1991 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1992 					   unsigned int cnt);
1993 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1994 
1995 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)1996 static inline void perf_lopwr_cb(bool mode)
1997 {
1998 }
1999 #endif
2000 
2001 #endif /* _LINUX_PERF_EVENT_H */
2002