1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 #include <linux/android_kabi.h>
26 
27 struct usb_device;
28 struct usb_driver;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 enum usb_wireless_status {
174 	USB_WIRELESS_STATUS_NA = 0,
175 	USB_WIRELESS_STATUS_DISCONNECTED,
176 	USB_WIRELESS_STATUS_CONNECTED,
177 };
178 
179 /**
180  * struct usb_interface - what usb device drivers talk to
181  * @altsetting: array of interface structures, one for each alternate
182  *	setting that may be selected.  Each one includes a set of
183  *	endpoint configurations.  They will be in no particular order.
184  * @cur_altsetting: the current altsetting.
185  * @num_altsetting: number of altsettings defined.
186  * @intf_assoc: interface association descriptor
187  * @minor: the minor number assigned to this interface, if this
188  *	interface is bound to a driver that uses the USB major number.
189  *	If this interface does not use the USB major, this field should
190  *	be unused.  The driver should set this value in the probe()
191  *	function of the driver, after it has been assigned a minor
192  *	number from the USB core by calling usb_register_dev().
193  * @condition: binding state of the interface: not bound, binding
194  *	(in probe()), bound to a driver, or unbinding (in disconnect())
195  * @sysfs_files_created: sysfs attributes exist
196  * @ep_devs_created: endpoint child pseudo-devices exist
197  * @unregistering: flag set when the interface is being unregistered
198  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
199  *	capability during autosuspend.
200  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
201  *	has been deferred.
202  * @needs_binding: flag set when the driver should be re-probed or unbound
203  *	following a reset or suspend operation it doesn't support.
204  * @authorized: This allows to (de)authorize individual interfaces instead
205  *	a whole device in contrast to the device authorization.
206  * @wireless_status: if the USB device uses a receiver/emitter combo, whether
207  *	the emitter is connected.
208  * @wireless_status_work: Used for scheduling wireless status changes
209  *	from atomic context.
210  * @dev: driver model's view of this device
211  * @usb_dev: if an interface is bound to the USB major, this will point
212  *	to the sysfs representation for that device.
213  * @reset_ws: Used for scheduling resets from atomic context.
214  * @resetting_device: USB core reset the device, so use alt setting 0 as
215  *	current; needs bandwidth alloc after reset.
216  *
217  * USB device drivers attach to interfaces on a physical device.  Each
218  * interface encapsulates a single high level function, such as feeding
219  * an audio stream to a speaker or reporting a change in a volume control.
220  * Many USB devices only have one interface.  The protocol used to talk to
221  * an interface's endpoints can be defined in a usb "class" specification,
222  * or by a product's vendor.  The (default) control endpoint is part of
223  * every interface, but is never listed among the interface's descriptors.
224  *
225  * The driver that is bound to the interface can use standard driver model
226  * calls such as dev_get_drvdata() on the dev member of this structure.
227  *
228  * Each interface may have alternate settings.  The initial configuration
229  * of a device sets altsetting 0, but the device driver can change
230  * that setting using usb_set_interface().  Alternate settings are often
231  * used to control the use of periodic endpoints, such as by having
232  * different endpoints use different amounts of reserved USB bandwidth.
233  * All standards-conformant USB devices that use isochronous endpoints
234  * will use them in non-default settings.
235  *
236  * The USB specification says that alternate setting numbers must run from
237  * 0 to one less than the total number of alternate settings.  But some
238  * devices manage to mess this up, and the structures aren't necessarily
239  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
240  * look up an alternate setting in the altsetting array based on its number.
241  */
242 struct usb_interface {
243 	/* array of alternate settings for this interface,
244 	 * stored in no particular order */
245 	struct usb_host_interface *altsetting;
246 
247 	struct usb_host_interface *cur_altsetting;	/* the currently
248 					 * active alternate setting */
249 	unsigned num_altsetting;	/* number of alternate settings */
250 
251 	/* If there is an interface association descriptor then it will list
252 	 * the associated interfaces */
253 	struct usb_interface_assoc_descriptor *intf_assoc;
254 
255 	int minor;			/* minor number this interface is
256 					 * bound to */
257 	enum usb_interface_condition condition;		/* state of binding */
258 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
259 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
260 	unsigned unregistering:1;	/* unregistration is in progress */
261 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
262 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
263 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
264 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
265 	unsigned authorized:1;		/* used for interface authorization */
266 	enum usb_wireless_status wireless_status;
267 	struct work_struct wireless_status_work;
268 
269 	struct device dev;		/* interface specific device info */
270 	struct device *usb_dev;
271 	struct work_struct reset_ws;	/* for resets in atomic context */
272 
273 	ANDROID_KABI_RESERVE(1);
274 	ANDROID_KABI_RESERVE(2);
275 	ANDROID_KABI_RESERVE(3);
276 	ANDROID_KABI_RESERVE(4);
277 };
278 
279 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
280 
usb_get_intfdata(struct usb_interface * intf)281 static inline void *usb_get_intfdata(struct usb_interface *intf)
282 {
283 	return dev_get_drvdata(&intf->dev);
284 }
285 
286 /**
287  * usb_set_intfdata() - associate driver-specific data with an interface
288  * @intf: USB interface
289  * @data: driver data
290  *
291  * Drivers can use this function in their probe() callbacks to associate
292  * driver-specific data with an interface.
293  *
294  * Note that there is generally no need to clear the driver-data pointer even
295  * if some drivers do so for historical or implementation-specific reasons.
296  */
usb_set_intfdata(struct usb_interface * intf,void * data)297 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
298 {
299 	dev_set_drvdata(&intf->dev, data);
300 }
301 
302 struct usb_interface *usb_get_intf(struct usb_interface *intf);
303 void usb_put_intf(struct usb_interface *intf);
304 
305 /* Hard limit */
306 #define USB_MAXENDPOINTS	30
307 /* this maximum is arbitrary */
308 #define USB_MAXINTERFACES	32
309 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
310 
311 bool usb_check_bulk_endpoints(
312 		const struct usb_interface *intf, const u8 *ep_addrs);
313 bool usb_check_int_endpoints(
314 		const struct usb_interface *intf, const u8 *ep_addrs);
315 
316 /*
317  * USB Resume Timer: Every Host controller driver should drive the resume
318  * signalling on the bus for the amount of time defined by this macro.
319  *
320  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
321  *
322  * Note that the USB Specification states we should drive resume for *at least*
323  * 20 ms, but it doesn't give an upper bound. This creates two possible
324  * situations which we want to avoid:
325  *
326  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
327  * us to fail USB Electrical Tests, thus failing Certification
328  *
329  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
330  * and while we can argue that's against the USB Specification, we don't have
331  * control over which devices a certification laboratory will be using for
332  * certification. If CertLab uses a device which was tested against Windows and
333  * that happens to have relaxed resume signalling rules, we might fall into
334  * situations where we fail interoperability and electrical tests.
335  *
336  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
337  * should cope with both LPJ calibration errors and devices not following every
338  * detail of the USB Specification.
339  */
340 #define USB_RESUME_TIMEOUT	40 /* ms */
341 
342 /**
343  * struct usb_interface_cache - long-term representation of a device interface
344  * @num_altsetting: number of altsettings defined.
345  * @ref: reference counter.
346  * @altsetting: variable-length array of interface structures, one for
347  *	each alternate setting that may be selected.  Each one includes a
348  *	set of endpoint configurations.  They will be in no particular order.
349  *
350  * These structures persist for the lifetime of a usb_device, unlike
351  * struct usb_interface (which persists only as long as its configuration
352  * is installed).  The altsetting arrays can be accessed through these
353  * structures at any time, permitting comparison of configurations and
354  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
355  */
356 struct usb_interface_cache {
357 	unsigned num_altsetting;	/* number of alternate settings */
358 	struct kref ref;		/* reference counter */
359 
360 	/* variable-length array of alternate settings for this interface,
361 	 * stored in no particular order */
362 	struct usb_host_interface altsetting[];
363 };
364 #define	ref_to_usb_interface_cache(r) \
365 		container_of(r, struct usb_interface_cache, ref)
366 #define	altsetting_to_usb_interface_cache(a) \
367 		container_of(a, struct usb_interface_cache, altsetting[0])
368 
369 /**
370  * struct usb_host_config - representation of a device's configuration
371  * @desc: the device's configuration descriptor.
372  * @string: pointer to the cached version of the iConfiguration string, if
373  *	present for this configuration.
374  * @intf_assoc: list of any interface association descriptors in this config
375  * @interface: array of pointers to usb_interface structures, one for each
376  *	interface in the configuration.  The number of interfaces is stored
377  *	in desc.bNumInterfaces.  These pointers are valid only while the
378  *	configuration is active.
379  * @intf_cache: array of pointers to usb_interface_cache structures, one
380  *	for each interface in the configuration.  These structures exist
381  *	for the entire life of the device.
382  * @extra: pointer to buffer containing all extra descriptors associated
383  *	with this configuration (those preceding the first interface
384  *	descriptor).
385  * @extralen: length of the extra descriptors buffer.
386  *
387  * USB devices may have multiple configurations, but only one can be active
388  * at any time.  Each encapsulates a different operational environment;
389  * for example, a dual-speed device would have separate configurations for
390  * full-speed and high-speed operation.  The number of configurations
391  * available is stored in the device descriptor as bNumConfigurations.
392  *
393  * A configuration can contain multiple interfaces.  Each corresponds to
394  * a different function of the USB device, and all are available whenever
395  * the configuration is active.  The USB standard says that interfaces
396  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
397  * of devices get this wrong.  In addition, the interface array is not
398  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
399  * look up an interface entry based on its number.
400  *
401  * Device drivers should not attempt to activate configurations.  The choice
402  * of which configuration to install is a policy decision based on such
403  * considerations as available power, functionality provided, and the user's
404  * desires (expressed through userspace tools).  However, drivers can call
405  * usb_reset_configuration() to reinitialize the current configuration and
406  * all its interfaces.
407  */
408 struct usb_host_config {
409 	struct usb_config_descriptor	desc;
410 
411 	char *string;		/* iConfiguration string, if present */
412 
413 	/* List of any Interface Association Descriptors in this
414 	 * configuration. */
415 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
416 
417 	/* the interfaces associated with this configuration,
418 	 * stored in no particular order */
419 	struct usb_interface *interface[USB_MAXINTERFACES];
420 
421 	/* Interface information available even when this is not the
422 	 * active configuration */
423 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
424 
425 	unsigned char *extra;   /* Extra descriptors */
426 	int extralen;
427 };
428 
429 /* USB2.0 and USB3.0 device BOS descriptor set */
430 struct usb_host_bos {
431 	struct usb_bos_descriptor	*desc;
432 
433 	struct usb_ext_cap_descriptor	*ext_cap;
434 	struct usb_ss_cap_descriptor	*ss_cap;
435 	struct usb_ssp_cap_descriptor	*ssp_cap;
436 	struct usb_ss_container_id_descriptor	*ss_id;
437 	struct usb_ptm_cap_descriptor	*ptm_cap;
438 
439 	ANDROID_KABI_RESERVE(1);
440 	ANDROID_KABI_RESERVE(2);
441 	ANDROID_KABI_RESERVE(3);
442 	ANDROID_KABI_RESERVE(4);
443 };
444 
445 int __usb_get_extra_descriptor(char *buffer, unsigned size,
446 	unsigned char type, void **ptr, size_t min);
447 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
448 				__usb_get_extra_descriptor((ifpoint)->extra, \
449 				(ifpoint)->extralen, \
450 				type, (void **)ptr, sizeof(**(ptr)))
451 
452 /* ----------------------------------------------------------------------- */
453 
454 /*
455  * Allocated per bus (tree of devices) we have:
456  */
457 struct usb_bus {
458 	struct device *controller;	/* host side hardware */
459 	struct device *sysdev;		/* as seen from firmware or bus */
460 	int busnum;			/* Bus number (in order of reg) */
461 	const char *bus_name;		/* stable id (PCI slot_name etc) */
462 	u8 uses_pio_for_control;	/*
463 					 * Does the host controller use PIO
464 					 * for control transfers?
465 					 */
466 	u8 otg_port;			/* 0, or number of OTG/HNP port */
467 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
468 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
469 	unsigned no_stop_on_short:1;    /*
470 					 * Quirk: some controllers don't stop
471 					 * the ep queue on a short transfer
472 					 * with the URB_SHORT_NOT_OK flag set.
473 					 */
474 	unsigned no_sg_constraint:1;	/* no sg constraint */
475 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
476 
477 	int devnum_next;		/* Next open device number in
478 					 * round-robin allocation */
479 	struct mutex devnum_next_mutex; /* devnum_next mutex */
480 
481 	DECLARE_BITMAP(devmap, 128);	/* USB device number allocation bitmap */
482 	struct usb_device *root_hub;	/* Root hub */
483 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
484 
485 	int bandwidth_allocated;	/* on this bus: how much of the time
486 					 * reserved for periodic (intr/iso)
487 					 * requests is used, on average?
488 					 * Units: microseconds/frame.
489 					 * Limits: Full/low speed reserve 90%,
490 					 * while high speed reserves 80%.
491 					 */
492 	int bandwidth_int_reqs;		/* number of Interrupt requests */
493 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
494 
495 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
496 
497 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
498 	struct mon_bus *mon_bus;	/* non-null when associated */
499 	int monitored;			/* non-zero when monitored */
500 #endif
501 
502 	ANDROID_KABI_RESERVE(1);
503 	ANDROID_KABI_RESERVE(2);
504 	ANDROID_KABI_RESERVE(3);
505 	ANDROID_KABI_RESERVE(4);
506 };
507 
508 struct usb_dev_state;
509 
510 /* ----------------------------------------------------------------------- */
511 
512 struct usb_tt;
513 
514 enum usb_link_tunnel_mode {
515 	USB_LINK_UNKNOWN = 0,
516 	USB_LINK_NATIVE,
517 	USB_LINK_TUNNELED,
518 };
519 
520 enum usb_port_connect_type {
521 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
522 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
523 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
524 	USB_PORT_NOT_USED,
525 };
526 
527 /*
528  * USB port quirks.
529  */
530 
531 /* For the given port, prefer the old (faster) enumeration scheme. */
532 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
533 
534 /* Decrease TRSTRCY to 10ms during device enumeration. */
535 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
536 
537 /*
538  * USB 2.0 Link Power Management (LPM) parameters.
539  */
540 struct usb2_lpm_parameters {
541 	/* Best effort service latency indicate how long the host will drive
542 	 * resume on an exit from L1.
543 	 */
544 	unsigned int besl;
545 
546 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
547 	 * When the timer counts to zero, the parent hub will initiate a LPM
548 	 * transition to L1.
549 	 */
550 	int timeout;
551 };
552 
553 /*
554  * USB 3.0 Link Power Management (LPM) parameters.
555  *
556  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
557  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
558  * All three are stored in nanoseconds.
559  */
560 struct usb3_lpm_parameters {
561 	/*
562 	 * Maximum exit latency (MEL) for the host to send a packet to the
563 	 * device (either a Ping for isoc endpoints, or a data packet for
564 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
565 	 * in the path to transition the links to U0.
566 	 */
567 	unsigned int mel;
568 	/*
569 	 * Maximum exit latency for a device-initiated LPM transition to bring
570 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
571 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
572 	 */
573 	unsigned int pel;
574 
575 	/*
576 	 * The System Exit Latency (SEL) includes PEL, and three other
577 	 * latencies.  After a device initiates a U0 transition, it will take
578 	 * some time from when the device sends the ERDY to when it will finally
579 	 * receive the data packet.  Basically, SEL should be the worse-case
580 	 * latency from when a device starts initiating a U0 transition to when
581 	 * it will get data.
582 	 */
583 	unsigned int sel;
584 	/*
585 	 * The idle timeout value that is currently programmed into the parent
586 	 * hub for this device.  When the timer counts to zero, the parent hub
587 	 * will initiate an LPM transition to either U1 or U2.
588 	 */
589 	int timeout;
590 };
591 
592 /**
593  * struct usb_device - kernel's representation of a USB device
594  * @devnum: device number; address on a USB bus
595  * @devpath: device ID string for use in messages (e.g., /port/...)
596  * @route: tree topology hex string for use with xHCI
597  * @state: device state: configured, not attached, etc.
598  * @speed: device speed: high/full/low (or error)
599  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
600  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
601  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
602  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
603  * @ttport: device port on that tt hub
604  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
605  * @parent: our hub, unless we're the root
606  * @bus: bus we're part of
607  * @ep0: endpoint 0 data (default control pipe)
608  * @dev: generic device interface
609  * @descriptor: USB device descriptor
610  * @bos: USB device BOS descriptor set
611  * @config: all of the device's configs
612  * @actconfig: the active configuration
613  * @ep_in: array of IN endpoints
614  * @ep_out: array of OUT endpoints
615  * @rawdescriptors: raw descriptors for each config
616  * @bus_mA: Current available from the bus
617  * @portnum: parent port number (origin 1)
618  * @level: number of USB hub ancestors
619  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
620  * @can_submit: URBs may be submitted
621  * @persist_enabled:  USB_PERSIST enabled for this device
622  * @reset_in_progress: the device is being reset
623  * @have_langid: whether string_langid is valid
624  * @authorized: policy has said we can use it;
625  *	(user space) policy determines if we authorize this device to be
626  *	used or not. By default, wired USB devices are authorized.
627  *	WUSB devices are not, until we authorize them from user space.
628  *	FIXME -- complete doc
629  * @authenticated: Crypto authentication passed
630  * @tunnel_mode: Connection native or tunneled over USB4
631  * @lpm_capable: device supports LPM
632  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
633  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
634  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
635  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
636  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
637  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
638  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
639  * @string_langid: language ID for strings
640  * @product: iProduct string, if present (static)
641  * @manufacturer: iManufacturer string, if present (static)
642  * @serial: iSerialNumber string, if present (static)
643  * @filelist: usbfs files that are open to this device
644  * @maxchild: number of ports if hub
645  * @quirks: quirks of the whole device
646  * @urbnum: number of URBs submitted for the whole device
647  * @active_duration: total time device is not suspended
648  * @connect_time: time device was first connected
649  * @do_remote_wakeup:  remote wakeup should be enabled
650  * @reset_resume: needs reset instead of resume
651  * @port_is_suspended: the upstream port is suspended (L2 or U3)
652  * @offload_at_suspend: offload activities during suspend is enabled.
653  * @offload_usage: number of offload activities happening on this usb device.
654  * @slot_id: Slot ID assigned by xHCI
655  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
656  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
657  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
658  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
659  *	to keep track of the number of functions that require USB 3.0 Link Power
660  *	Management to be disabled for this usb_device.  This count should only
661  *	be manipulated by those functions, with the bandwidth_mutex is held.
662  * @hub_delay: cached value consisting of:
663  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
664  *	Will be used as wValue for SetIsochDelay requests.
665  * @use_generic_driver: ask driver core to reprobe using the generic driver.
666  *
667  * Notes:
668  * Usbcore drivers should not set usbdev->state directly.  Instead use
669  * usb_set_device_state().
670  */
671 struct usb_device {
672 	int		devnum;
673 	char		devpath[16];
674 	u32		route;
675 	enum usb_device_state	state;
676 	enum usb_device_speed	speed;
677 	unsigned int		rx_lanes;
678 	unsigned int		tx_lanes;
679 	enum usb_ssp_rate	ssp_rate;
680 
681 	struct usb_tt	*tt;
682 	int		ttport;
683 
684 	unsigned int toggle[2];
685 
686 	struct usb_device *parent;
687 	struct usb_bus *bus;
688 	struct usb_host_endpoint ep0;
689 
690 	struct device dev;
691 
692 	struct usb_device_descriptor descriptor;
693 	struct usb_host_bos *bos;
694 	struct usb_host_config *config;
695 
696 	struct usb_host_config *actconfig;
697 	struct usb_host_endpoint *ep_in[16];
698 	struct usb_host_endpoint *ep_out[16];
699 
700 	char **rawdescriptors;
701 
702 	unsigned short bus_mA;
703 	u8 portnum;
704 	u8 level;
705 	u8 devaddr;
706 
707 	unsigned can_submit:1;
708 	unsigned persist_enabled:1;
709 	unsigned reset_in_progress:1;
710 	unsigned have_langid:1;
711 	unsigned authorized:1;
712 	unsigned authenticated:1;
713 	unsigned lpm_capable:1;
714 	unsigned lpm_devinit_allow:1;
715 	unsigned usb2_hw_lpm_capable:1;
716 	unsigned usb2_hw_lpm_besl_capable:1;
717 	unsigned usb2_hw_lpm_enabled:1;
718 	unsigned usb2_hw_lpm_allowed:1;
719 	unsigned usb3_lpm_u1_enabled:1;
720 	unsigned usb3_lpm_u2_enabled:1;
721 	int string_langid;
722 
723 	/* static strings from the device */
724 	char *product;
725 	char *manufacturer;
726 	char *serial;
727 
728 	struct list_head filelist;
729 
730 	int maxchild;
731 
732 	u32 quirks;
733 	atomic_t urbnum;
734 
735 	unsigned long active_duration;
736 
737 	unsigned long connect_time;
738 
739 	unsigned do_remote_wakeup:1;
740 	unsigned reset_resume:1;
741 	unsigned port_is_suspended:1;
742 	enum usb_link_tunnel_mode tunnel_mode;
743 
744 	int slot_id;
745 	struct usb2_lpm_parameters l1_params;
746 	struct usb3_lpm_parameters u1_params;
747 	struct usb3_lpm_parameters u2_params;
748 	unsigned lpm_disable_count;
749 
750 	u16 hub_delay;
751 	unsigned use_generic_driver:1;
752 
753 	ANDROID_KABI_USE(1, unsigned offload_at_suspend:1);
754 	ANDROID_KABI_USE(2, int offload_usage);
755 	ANDROID_KABI_RESERVE(3);
756 	ANDROID_KABI_RESERVE(4);
757 };
758 
759 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
760 
__intf_to_usbdev(struct usb_interface * intf)761 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
762 {
763 	return to_usb_device(intf->dev.parent);
764 }
__intf_to_usbdev_const(const struct usb_interface * intf)765 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
766 {
767 	return to_usb_device((const struct device *)intf->dev.parent);
768 }
769 
770 #define interface_to_usbdev(intf)					\
771 	_Generic((intf),						\
772 		 const struct usb_interface *: __intf_to_usbdev_const,	\
773 		 struct usb_interface *: __intf_to_usbdev)(intf)
774 
775 extern struct usb_device *usb_get_dev(struct usb_device *dev);
776 extern void usb_put_dev(struct usb_device *dev);
777 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
778 	int port1);
779 
780 /**
781  * usb_hub_for_each_child - iterate over all child devices on the hub
782  * @hdev:  USB device belonging to the usb hub
783  * @port1: portnum associated with child device
784  * @child: child device pointer
785  */
786 #define usb_hub_for_each_child(hdev, port1, child) \
787 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
788 			port1 <= hdev->maxchild; \
789 			child = usb_hub_find_child(hdev, ++port1)) \
790 		if (!child) continue; else
791 
792 /* USB device locking */
793 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
794 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
795 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
796 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
797 extern int usb_lock_device_for_reset(struct usb_device *udev,
798 				     const struct usb_interface *iface);
799 
800 /* USB port reset for device reinitialization */
801 extern int usb_reset_device(struct usb_device *dev);
802 extern void usb_queue_reset_device(struct usb_interface *dev);
803 
804 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
805 
806 #ifdef CONFIG_ACPI
807 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
808 	bool enable);
809 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
810 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
811 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)812 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
813 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)814 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
815 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)816 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
817 	{ return 0; }
818 #endif
819 
820 /* USB autosuspend and autoresume */
821 #ifdef CONFIG_PM
822 extern void usb_enable_autosuspend(struct usb_device *udev);
823 extern void usb_disable_autosuspend(struct usb_device *udev);
824 
825 extern int usb_autopm_get_interface(struct usb_interface *intf);
826 extern void usb_autopm_put_interface(struct usb_interface *intf);
827 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
828 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
829 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
830 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
831 
usb_mark_last_busy(struct usb_device * udev)832 static inline void usb_mark_last_busy(struct usb_device *udev)
833 {
834 	pm_runtime_mark_last_busy(&udev->dev);
835 }
836 
837 #else
838 
usb_enable_autosuspend(struct usb_device * udev)839 static inline int usb_enable_autosuspend(struct usb_device *udev)
840 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)841 static inline int usb_disable_autosuspend(struct usb_device *udev)
842 { return 0; }
843 
usb_autopm_get_interface(struct usb_interface * intf)844 static inline int usb_autopm_get_interface(struct usb_interface *intf)
845 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)846 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
847 { return 0; }
848 
usb_autopm_put_interface(struct usb_interface * intf)849 static inline void usb_autopm_put_interface(struct usb_interface *intf)
850 { }
usb_autopm_put_interface_async(struct usb_interface * intf)851 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
852 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)853 static inline void usb_autopm_get_interface_no_resume(
854 		struct usb_interface *intf)
855 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)856 static inline void usb_autopm_put_interface_no_suspend(
857 		struct usb_interface *intf)
858 { }
usb_mark_last_busy(struct usb_device * udev)859 static inline void usb_mark_last_busy(struct usb_device *udev)
860 { }
861 #endif
862 
863 #if IS_ENABLED(CONFIG_USB_XHCI_SIDEBAND)
864 int usb_offload_get(struct usb_device *udev);
865 int usb_offload_put(struct usb_device *udev);
866 bool usb_offload_check(struct usb_device *udev);
867 #else
868 
usb_offload_get(struct usb_device * udev)869 static inline int usb_offload_get(struct usb_device *udev)
870 { return 0; }
usb_offload_put(struct usb_device * udev)871 static inline int usb_offload_put(struct usb_device *udev)
872 { return 0; }
usb_offload_check(struct usb_device * udev)873 static inline bool usb_offload_check(struct usb_device *udev)
874 { return false; }
875 #endif
876 
877 extern int usb_disable_lpm(struct usb_device *udev);
878 extern void usb_enable_lpm(struct usb_device *udev);
879 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
880 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
881 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
882 
883 extern int usb_disable_ltm(struct usb_device *udev);
884 extern void usb_enable_ltm(struct usb_device *udev);
885 
usb_device_supports_ltm(struct usb_device * udev)886 static inline bool usb_device_supports_ltm(struct usb_device *udev)
887 {
888 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
889 		return false;
890 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
891 }
892 
usb_device_no_sg_constraint(struct usb_device * udev)893 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
894 {
895 	return udev && udev->bus && udev->bus->no_sg_constraint;
896 }
897 
898 
899 /*-------------------------------------------------------------------------*/
900 
901 /* for drivers using iso endpoints */
902 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
903 
904 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
905 extern int usb_alloc_streams(struct usb_interface *interface,
906 		struct usb_host_endpoint **eps, unsigned int num_eps,
907 		unsigned int num_streams, gfp_t mem_flags);
908 
909 /* Reverts a group of bulk endpoints back to not using stream IDs. */
910 extern int usb_free_streams(struct usb_interface *interface,
911 		struct usb_host_endpoint **eps, unsigned int num_eps,
912 		gfp_t mem_flags);
913 
914 /* used these for multi-interface device registration */
915 extern int usb_driver_claim_interface(struct usb_driver *driver,
916 			struct usb_interface *iface, void *data);
917 
918 /**
919  * usb_interface_claimed - returns true iff an interface is claimed
920  * @iface: the interface being checked
921  *
922  * Return: %true (nonzero) iff the interface is claimed, else %false
923  * (zero).
924  *
925  * Note:
926  * Callers must own the driver model's usb bus readlock.  So driver
927  * probe() entries don't need extra locking, but other call contexts
928  * may need to explicitly claim that lock.
929  *
930  */
usb_interface_claimed(struct usb_interface * iface)931 static inline int usb_interface_claimed(struct usb_interface *iface)
932 {
933 	return (iface->dev.driver != NULL);
934 }
935 
936 extern void usb_driver_release_interface(struct usb_driver *driver,
937 			struct usb_interface *iface);
938 
939 int usb_set_wireless_status(struct usb_interface *iface,
940 			enum usb_wireless_status status);
941 
942 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
943 					 const struct usb_device_id *id);
944 extern int usb_match_one_id(struct usb_interface *interface,
945 			    const struct usb_device_id *id);
946 
947 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
948 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
949 		int minor);
950 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
951 		unsigned ifnum);
952 extern struct usb_host_interface *usb_altnum_to_altsetting(
953 		const struct usb_interface *intf, unsigned int altnum);
954 extern struct usb_host_interface *usb_find_alt_setting(
955 		struct usb_host_config *config,
956 		unsigned int iface_num,
957 		unsigned int alt_num);
958 
959 /* port claiming functions */
960 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
961 		struct usb_dev_state *owner);
962 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
963 		struct usb_dev_state *owner);
964 
965 /**
966  * usb_make_path - returns stable device path in the usb tree
967  * @dev: the device whose path is being constructed
968  * @buf: where to put the string
969  * @size: how big is "buf"?
970  *
971  * Return: Length of the string (> 0) or negative if size was too small.
972  *
973  * Note:
974  * This identifier is intended to be "stable", reflecting physical paths in
975  * hardware such as physical bus addresses for host controllers or ports on
976  * USB hubs.  That makes it stay the same until systems are physically
977  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
978  * controllers.  Adding and removing devices, including virtual root hubs
979  * in host controller driver modules, does not change these path identifiers;
980  * neither does rebooting or re-enumerating.  These are more useful identifiers
981  * than changeable ("unstable") ones like bus numbers or device addresses.
982  *
983  * With a partial exception for devices connected to USB 2.0 root hubs, these
984  * identifiers are also predictable.  So long as the device tree isn't changed,
985  * plugging any USB device into a given hub port always gives it the same path.
986  * Because of the use of "companion" controllers, devices connected to ports on
987  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
988  * high speed, and a different one if they are full or low speed.
989  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)990 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
991 {
992 	int actual;
993 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
994 			  dev->devpath);
995 	return (actual >= (int)size) ? -1 : actual;
996 }
997 
998 /*-------------------------------------------------------------------------*/
999 
1000 #define USB_DEVICE_ID_MATCH_DEVICE \
1001 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
1002 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
1003 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
1004 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
1005 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
1006 #define USB_DEVICE_ID_MATCH_DEV_INFO \
1007 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
1008 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
1009 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
1010 #define USB_DEVICE_ID_MATCH_INT_INFO \
1011 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
1012 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
1013 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
1014 
1015 /**
1016  * USB_DEVICE - macro used to describe a specific usb device
1017  * @vend: the 16 bit USB Vendor ID
1018  * @prod: the 16 bit USB Product ID
1019  *
1020  * This macro is used to create a struct usb_device_id that matches a
1021  * specific device.
1022  */
1023 #define USB_DEVICE(vend, prod) \
1024 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
1025 	.idVendor = (vend), \
1026 	.idProduct = (prod)
1027 /**
1028  * USB_DEVICE_VER - describe a specific usb device with a version range
1029  * @vend: the 16 bit USB Vendor ID
1030  * @prod: the 16 bit USB Product ID
1031  * @lo: the bcdDevice_lo value
1032  * @hi: the bcdDevice_hi value
1033  *
1034  * This macro is used to create a struct usb_device_id that matches a
1035  * specific device, with a version range.
1036  */
1037 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1038 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1039 	.idVendor = (vend), \
1040 	.idProduct = (prod), \
1041 	.bcdDevice_lo = (lo), \
1042 	.bcdDevice_hi = (hi)
1043 
1044 /**
1045  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1046  * @vend: the 16 bit USB Vendor ID
1047  * @prod: the 16 bit USB Product ID
1048  * @cl: bInterfaceClass value
1049  *
1050  * This macro is used to create a struct usb_device_id that matches a
1051  * specific interface class of devices.
1052  */
1053 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1054 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1055 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1056 	.idVendor = (vend), \
1057 	.idProduct = (prod), \
1058 	.bInterfaceClass = (cl)
1059 
1060 /**
1061  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1062  * @vend: the 16 bit USB Vendor ID
1063  * @prod: the 16 bit USB Product ID
1064  * @pr: bInterfaceProtocol value
1065  *
1066  * This macro is used to create a struct usb_device_id that matches a
1067  * specific interface protocol of devices.
1068  */
1069 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1070 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1071 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1072 	.idVendor = (vend), \
1073 	.idProduct = (prod), \
1074 	.bInterfaceProtocol = (pr)
1075 
1076 /**
1077  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1078  * @vend: the 16 bit USB Vendor ID
1079  * @prod: the 16 bit USB Product ID
1080  * @num: bInterfaceNumber value
1081  *
1082  * This macro is used to create a struct usb_device_id that matches a
1083  * specific interface number of devices.
1084  */
1085 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1086 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1087 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1088 	.idVendor = (vend), \
1089 	.idProduct = (prod), \
1090 	.bInterfaceNumber = (num)
1091 
1092 /**
1093  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1094  * @cl: bDeviceClass value
1095  * @sc: bDeviceSubClass value
1096  * @pr: bDeviceProtocol value
1097  *
1098  * This macro is used to create a struct usb_device_id that matches a
1099  * specific class of devices.
1100  */
1101 #define USB_DEVICE_INFO(cl, sc, pr) \
1102 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1103 	.bDeviceClass = (cl), \
1104 	.bDeviceSubClass = (sc), \
1105 	.bDeviceProtocol = (pr)
1106 
1107 /**
1108  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1109  * @cl: bInterfaceClass value
1110  * @sc: bInterfaceSubClass value
1111  * @pr: bInterfaceProtocol value
1112  *
1113  * This macro is used to create a struct usb_device_id that matches a
1114  * specific class of interfaces.
1115  */
1116 #define USB_INTERFACE_INFO(cl, sc, pr) \
1117 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1118 	.bInterfaceClass = (cl), \
1119 	.bInterfaceSubClass = (sc), \
1120 	.bInterfaceProtocol = (pr)
1121 
1122 /**
1123  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1124  * @vend: the 16 bit USB Vendor ID
1125  * @prod: the 16 bit USB Product ID
1126  * @cl: bInterfaceClass value
1127  * @sc: bInterfaceSubClass value
1128  * @pr: bInterfaceProtocol value
1129  *
1130  * This macro is used to create a struct usb_device_id that matches a
1131  * specific device with a specific class of interfaces.
1132  *
1133  * This is especially useful when explicitly matching devices that have
1134  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1135  */
1136 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1137 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1138 		| USB_DEVICE_ID_MATCH_DEVICE, \
1139 	.idVendor = (vend), \
1140 	.idProduct = (prod), \
1141 	.bInterfaceClass = (cl), \
1142 	.bInterfaceSubClass = (sc), \
1143 	.bInterfaceProtocol = (pr)
1144 
1145 /**
1146  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1147  * @vend: the 16 bit USB Vendor ID
1148  * @cl: bInterfaceClass value
1149  * @sc: bInterfaceSubClass value
1150  * @pr: bInterfaceProtocol value
1151  *
1152  * This macro is used to create a struct usb_device_id that matches a
1153  * specific vendor with a specific class of interfaces.
1154  *
1155  * This is especially useful when explicitly matching devices that have
1156  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1157  */
1158 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1159 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1160 		| USB_DEVICE_ID_MATCH_VENDOR, \
1161 	.idVendor = (vend), \
1162 	.bInterfaceClass = (cl), \
1163 	.bInterfaceSubClass = (sc), \
1164 	.bInterfaceProtocol = (pr)
1165 
1166 /* ----------------------------------------------------------------------- */
1167 
1168 /* Stuff for dynamic usb ids */
1169 struct usb_dynids {
1170 	spinlock_t lock;
1171 	struct list_head list;
1172 };
1173 
1174 struct usb_dynid {
1175 	struct list_head node;
1176 	struct usb_device_id id;
1177 };
1178 
1179 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1180 				const struct usb_device_id *id_table,
1181 				struct device_driver *driver,
1182 				const char *buf, size_t count);
1183 
1184 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1185 
1186 /**
1187  * struct usb_driver - identifies USB interface driver to usbcore
1188  * @name: The driver name should be unique among USB drivers,
1189  *	and should normally be the same as the module name.
1190  * @probe: Called to see if the driver is willing to manage a particular
1191  *	interface on a device.  If it is, probe returns zero and uses
1192  *	usb_set_intfdata() to associate driver-specific data with the
1193  *	interface.  It may also use usb_set_interface() to specify the
1194  *	appropriate altsetting.  If unwilling to manage the interface,
1195  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1196  *	negative errno value.
1197  * @disconnect: Called when the interface is no longer accessible, usually
1198  *	because its device has been (or is being) disconnected or the
1199  *	driver module is being unloaded.
1200  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1201  *	the "usbfs" filesystem.  This lets devices provide ways to
1202  *	expose information to user space regardless of where they
1203  *	do (or don't) show up otherwise in the filesystem.
1204  * @suspend: Called when the device is going to be suspended by the
1205  *	system either from system sleep or runtime suspend context. The
1206  *	return value will be ignored in system sleep context, so do NOT
1207  *	try to continue using the device if suspend fails in this case.
1208  *	Instead, let the resume or reset-resume routine recover from
1209  *	the failure.
1210  * @resume: Called when the device is being resumed by the system.
1211  * @reset_resume: Called when the suspended device has been reset instead
1212  *	of being resumed.
1213  * @pre_reset: Called by usb_reset_device() when the device is about to be
1214  *	reset.  This routine must not return until the driver has no active
1215  *	URBs for the device, and no more URBs may be submitted until the
1216  *	post_reset method is called.
1217  * @post_reset: Called by usb_reset_device() after the device
1218  *	has been reset
1219  * @shutdown: Called at shut-down time to quiesce the device.
1220  * @id_table: USB drivers use ID table to support hotplugging.
1221  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1222  *	or your driver's probe function will never get called.
1223  * @dev_groups: Attributes attached to the device that will be created once it
1224  *	is bound to the driver.
1225  * @dynids: used internally to hold the list of dynamically added device
1226  *	ids for this driver.
1227  * @driver: The driver-model core driver structure.
1228  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1229  *	added to this driver by preventing the sysfs file from being created.
1230  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1231  *	for interfaces bound to this driver.
1232  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1233  *	endpoints before calling the driver's disconnect method.
1234  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1235  *	to initiate lower power link state transitions when an idle timeout
1236  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1237  *
1238  * USB interface drivers must provide a name, probe() and disconnect()
1239  * methods, and an id_table.  Other driver fields are optional.
1240  *
1241  * The id_table is used in hotplugging.  It holds a set of descriptors,
1242  * and specialized data may be associated with each entry.  That table
1243  * is used by both user and kernel mode hotplugging support.
1244  *
1245  * The probe() and disconnect() methods are called in a context where
1246  * they can sleep, but they should avoid abusing the privilege.  Most
1247  * work to connect to a device should be done when the device is opened,
1248  * and undone at the last close.  The disconnect code needs to address
1249  * concurrency issues with respect to open() and close() methods, as
1250  * well as forcing all pending I/O requests to complete (by unlinking
1251  * them as necessary, and blocking until the unlinks complete).
1252  */
1253 struct usb_driver {
1254 	const char *name;
1255 
1256 	int (*probe) (struct usb_interface *intf,
1257 		      const struct usb_device_id *id);
1258 
1259 	void (*disconnect) (struct usb_interface *intf);
1260 
1261 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1262 			void *buf);
1263 
1264 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1265 	int (*resume) (struct usb_interface *intf);
1266 	int (*reset_resume)(struct usb_interface *intf);
1267 
1268 	int (*pre_reset)(struct usb_interface *intf);
1269 	int (*post_reset)(struct usb_interface *intf);
1270 
1271 	void (*shutdown)(struct usb_interface *intf);
1272 
1273 	const struct usb_device_id *id_table;
1274 	const struct attribute_group **dev_groups;
1275 
1276 	struct usb_dynids dynids;
1277 	struct device_driver driver;
1278 	unsigned int no_dynamic_id:1;
1279 	unsigned int supports_autosuspend:1;
1280 	unsigned int disable_hub_initiated_lpm:1;
1281 	unsigned int soft_unbind:1;
1282 
1283 	ANDROID_KABI_RESERVE(1);
1284 	ANDROID_KABI_RESERVE(2);
1285 	ANDROID_KABI_RESERVE(3);
1286 	ANDROID_KABI_RESERVE(4);
1287 };
1288 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
1289 
1290 /**
1291  * struct usb_device_driver - identifies USB device driver to usbcore
1292  * @name: The driver name should be unique among USB drivers,
1293  *	and should normally be the same as the module name.
1294  * @match: If set, used for better device/driver matching.
1295  * @probe: Called to see if the driver is willing to manage a particular
1296  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1297  *	to associate driver-specific data with the device.  If unwilling
1298  *	to manage the device, return a negative errno value.
1299  * @disconnect: Called when the device is no longer accessible, usually
1300  *	because it has been (or is being) disconnected or the driver's
1301  *	module is being unloaded.
1302  * @suspend: Called when the device is going to be suspended by the system.
1303  * @resume: Called when the device is being resumed by the system.
1304  * @choose_configuration: If non-NULL, called instead of the default
1305  *	usb_choose_configuration(). If this returns an error then we'll go
1306  *	on to call the normal usb_choose_configuration().
1307  * @dev_groups: Attributes attached to the device that will be created once it
1308  *	is bound to the driver.
1309  * @driver: The driver-model core driver structure.
1310  * @id_table: used with @match() to select better matching driver at
1311  * 	probe() time.
1312  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1313  *	for devices bound to this driver.
1314  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1315  *	resume and suspend functions will be called in addition to the driver's
1316  *	own, so this part of the setup does not need to be replicated.
1317  *
1318  * USB drivers must provide all the fields listed above except driver,
1319  * match, and id_table.
1320  */
1321 struct usb_device_driver {
1322 	const char *name;
1323 
1324 	bool (*match) (struct usb_device *udev);
1325 	int (*probe) (struct usb_device *udev);
1326 	void (*disconnect) (struct usb_device *udev);
1327 
1328 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1329 	int (*resume) (struct usb_device *udev, pm_message_t message);
1330 
1331 	int (*choose_configuration) (struct usb_device *udev);
1332 
1333 	const struct attribute_group **dev_groups;
1334 	struct device_driver driver;
1335 	const struct usb_device_id *id_table;
1336 	unsigned int supports_autosuspend:1;
1337 	unsigned int generic_subclass:1;
1338 };
1339 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1340 		driver)
1341 
1342 /**
1343  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1344  * @name: the usb class device name for this driver.  Will show up in sysfs.
1345  * @devnode: Callback to provide a naming hint for a possible
1346  *	device node to create.
1347  * @fops: pointer to the struct file_operations of this driver.
1348  * @minor_base: the start of the minor range for this driver.
1349  *
1350  * This structure is used for the usb_register_dev() and
1351  * usb_deregister_dev() functions, to consolidate a number of the
1352  * parameters used for them.
1353  */
1354 struct usb_class_driver {
1355 	char *name;
1356 	char *(*devnode)(const struct device *dev, umode_t *mode);
1357 	const struct file_operations *fops;
1358 	int minor_base;
1359 };
1360 
1361 /*
1362  * use these in module_init()/module_exit()
1363  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1364  */
1365 extern int usb_register_driver(struct usb_driver *, struct module *,
1366 			       const char *);
1367 
1368 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1369 #define usb_register(driver) \
1370 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1371 
1372 extern void usb_deregister(struct usb_driver *);
1373 
1374 /**
1375  * module_usb_driver() - Helper macro for registering a USB driver
1376  * @__usb_driver: usb_driver struct
1377  *
1378  * Helper macro for USB drivers which do not do anything special in module
1379  * init/exit. This eliminates a lot of boilerplate. Each module may only
1380  * use this macro once, and calling it replaces module_init() and module_exit()
1381  */
1382 #define module_usb_driver(__usb_driver) \
1383 	module_driver(__usb_driver, usb_register, \
1384 		       usb_deregister)
1385 
1386 extern int usb_register_device_driver(struct usb_device_driver *,
1387 			struct module *);
1388 extern void usb_deregister_device_driver(struct usb_device_driver *);
1389 
1390 extern int usb_register_dev(struct usb_interface *intf,
1391 			    struct usb_class_driver *class_driver);
1392 extern void usb_deregister_dev(struct usb_interface *intf,
1393 			       struct usb_class_driver *class_driver);
1394 
1395 extern int usb_disabled(void);
1396 
1397 /* ----------------------------------------------------------------------- */
1398 
1399 /*
1400  * URB support, for asynchronous request completions
1401  */
1402 
1403 /*
1404  * urb->transfer_flags:
1405  *
1406  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1407  */
1408 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1409 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1410 					 * slot in the schedule */
1411 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1412 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1413 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1414 					 * needed */
1415 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1416 
1417 /* The following flags are used internally by usbcore and HCDs */
1418 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1419 #define URB_DIR_OUT		0
1420 #define URB_DIR_MASK		URB_DIR_IN
1421 
1422 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1423 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1424 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1425 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1426 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1427 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1428 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1429 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1430 
1431 struct usb_iso_packet_descriptor {
1432 	unsigned int offset;
1433 	unsigned int length;		/* expected length */
1434 	unsigned int actual_length;
1435 	int status;
1436 };
1437 
1438 struct urb;
1439 
1440 struct usb_anchor {
1441 	struct list_head urb_list;
1442 	wait_queue_head_t wait;
1443 	spinlock_t lock;
1444 	atomic_t suspend_wakeups;
1445 	unsigned int poisoned:1;
1446 };
1447 
init_usb_anchor(struct usb_anchor * anchor)1448 static inline void init_usb_anchor(struct usb_anchor *anchor)
1449 {
1450 	memset(anchor, 0, sizeof(*anchor));
1451 	INIT_LIST_HEAD(&anchor->urb_list);
1452 	init_waitqueue_head(&anchor->wait);
1453 	spin_lock_init(&anchor->lock);
1454 }
1455 
1456 typedef void (*usb_complete_t)(struct urb *);
1457 
1458 /**
1459  * struct urb - USB Request Block
1460  * @urb_list: For use by current owner of the URB.
1461  * @anchor_list: membership in the list of an anchor
1462  * @anchor: to anchor URBs to a common mooring
1463  * @ep: Points to the endpoint's data structure.  Will eventually
1464  *	replace @pipe.
1465  * @pipe: Holds endpoint number, direction, type, and more.
1466  *	Create these values with the eight macros available;
1467  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1468  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1469  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1470  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1471  *	is a different endpoint (and pipe) from "out" endpoint two.
1472  *	The current configuration controls the existence, type, and
1473  *	maximum packet size of any given endpoint.
1474  * @stream_id: the endpoint's stream ID for bulk streams
1475  * @dev: Identifies the USB device to perform the request.
1476  * @status: This is read in non-iso completion functions to get the
1477  *	status of the particular request.  ISO requests only use it
1478  *	to tell whether the URB was unlinked; detailed status for
1479  *	each frame is in the fields of the iso_frame-desc.
1480  * @transfer_flags: A variety of flags may be used to affect how URB
1481  *	submission, unlinking, or operation are handled.  Different
1482  *	kinds of URB can use different flags.
1483  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1484  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1485  *	(however, do not leave garbage in transfer_buffer even then).
1486  *	This buffer must be suitable for DMA; allocate it with
1487  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1488  *	of this buffer will be modified.  This buffer is used for the data
1489  *	stage of control transfers.
1490  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1491  *	the device driver is saying that it provided this DMA address,
1492  *	which the host controller driver should use in preference to the
1493  *	transfer_buffer.
1494  * @sg: scatter gather buffer list, the buffer size of each element in
1495  * 	the list (except the last) must be divisible by the endpoint's
1496  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1497  * @num_mapped_sgs: (internal) number of mapped sg entries
1498  * @num_sgs: number of entries in the sg list
1499  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1500  *	be broken up into chunks according to the current maximum packet
1501  *	size for the endpoint, which is a function of the configuration
1502  *	and is encoded in the pipe.  When the length is zero, neither
1503  *	transfer_buffer nor transfer_dma is used.
1504  * @actual_length: This is read in non-iso completion functions, and
1505  *	it tells how many bytes (out of transfer_buffer_length) were
1506  *	transferred.  It will normally be the same as requested, unless
1507  *	either an error was reported or a short read was performed.
1508  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1509  *	short reads be reported as errors.
1510  * @setup_packet: Only used for control transfers, this points to eight bytes
1511  *	of setup data.  Control transfers always start by sending this data
1512  *	to the device.  Then transfer_buffer is read or written, if needed.
1513  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1514  *	this field; setup_packet must point to a valid buffer.
1515  * @start_frame: Returns the initial frame for isochronous transfers.
1516  * @number_of_packets: Lists the number of ISO transfer buffers.
1517  * @interval: Specifies the polling interval for interrupt or isochronous
1518  *	transfers.  The units are frames (milliseconds) for full and low
1519  *	speed devices, and microframes (1/8 millisecond) for highspeed
1520  *	and SuperSpeed devices.
1521  * @error_count: Returns the number of ISO transfers that reported errors.
1522  * @context: For use in completion functions.  This normally points to
1523  *	request-specific driver context.
1524  * @complete: Completion handler. This URB is passed as the parameter to the
1525  *	completion function.  The completion function may then do what
1526  *	it likes with the URB, including resubmitting or freeing it.
1527  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1528  *	collect the transfer status for each buffer.
1529  *
1530  * This structure identifies USB transfer requests.  URBs must be allocated by
1531  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1532  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1533  * are submitted using usb_submit_urb(), and pending requests may be canceled
1534  * using usb_unlink_urb() or usb_kill_urb().
1535  *
1536  * Data Transfer Buffers:
1537  *
1538  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1539  * taken from the general page pool.  That is provided by transfer_buffer
1540  * (control requests also use setup_packet), and host controller drivers
1541  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1542  * mapping operations can be expensive on some platforms (perhaps using a dma
1543  * bounce buffer or talking to an IOMMU),
1544  * although they're cheap on commodity x86 and ppc hardware.
1545  *
1546  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1547  * which tells the host controller driver that no such mapping is needed for
1548  * the transfer_buffer since
1549  * the device driver is DMA-aware.  For example, a device driver might
1550  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1551  * When this transfer flag is provided, host controller drivers will
1552  * attempt to use the dma address found in the transfer_dma
1553  * field rather than determining a dma address themselves.
1554  *
1555  * Note that transfer_buffer must still be set if the controller
1556  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1557  * to root hub. If you have to transfer between highmem zone and the device
1558  * on such controller, create a bounce buffer or bail out with an error.
1559  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1560  * capable, assign NULL to it, so that usbmon knows not to use the value.
1561  * The setup_packet must always be set, so it cannot be located in highmem.
1562  *
1563  * Initialization:
1564  *
1565  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1566  * zero), and complete fields.  All URBs must also initialize
1567  * transfer_buffer and transfer_buffer_length.  They may provide the
1568  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1569  * to be treated as errors; that flag is invalid for write requests.
1570  *
1571  * Bulk URBs may
1572  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1573  * should always terminate with a short packet, even if it means adding an
1574  * extra zero length packet.
1575  *
1576  * Control URBs must provide a valid pointer in the setup_packet field.
1577  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1578  * beforehand.
1579  *
1580  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1581  * or, for highspeed devices, 125 microsecond units)
1582  * to poll for transfers.  After the URB has been submitted, the interval
1583  * field reflects how the transfer was actually scheduled.
1584  * The polling interval may be more frequent than requested.
1585  * For example, some controllers have a maximum interval of 32 milliseconds,
1586  * while others support intervals of up to 1024 milliseconds.
1587  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1588  * endpoints, as well as high speed interrupt endpoints, the encoding of
1589  * the transfer interval in the endpoint descriptor is logarithmic.
1590  * Device drivers must convert that value to linear units themselves.)
1591  *
1592  * If an isochronous endpoint queue isn't already running, the host
1593  * controller will schedule a new URB to start as soon as bandwidth
1594  * utilization allows.  If the queue is running then a new URB will be
1595  * scheduled to start in the first transfer slot following the end of the
1596  * preceding URB, if that slot has not already expired.  If the slot has
1597  * expired (which can happen when IRQ delivery is delayed for a long time),
1598  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1599  * is clear then the URB will be scheduled to start in the expired slot,
1600  * implying that some of its packets will not be transferred; if the flag
1601  * is set then the URB will be scheduled in the first unexpired slot,
1602  * breaking the queue's synchronization.  Upon URB completion, the
1603  * start_frame field will be set to the (micro)frame number in which the
1604  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1605  * and can go from as low as 256 to as high as 65536 frames.
1606  *
1607  * Isochronous URBs have a different data transfer model, in part because
1608  * the quality of service is only "best effort".  Callers provide specially
1609  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1610  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1611  * URBs are normally queued, submitted by drivers to arrange that
1612  * transfers are at least double buffered, and then explicitly resubmitted
1613  * in completion handlers, so
1614  * that data (such as audio or video) streams at as constant a rate as the
1615  * host controller scheduler can support.
1616  *
1617  * Completion Callbacks:
1618  *
1619  * The completion callback is made in_interrupt(), and one of the first
1620  * things that a completion handler should do is check the status field.
1621  * The status field is provided for all URBs.  It is used to report
1622  * unlinked URBs, and status for all non-ISO transfers.  It should not
1623  * be examined before the URB is returned to the completion handler.
1624  *
1625  * The context field is normally used to link URBs back to the relevant
1626  * driver or request state.
1627  *
1628  * When the completion callback is invoked for non-isochronous URBs, the
1629  * actual_length field tells how many bytes were transferred.  This field
1630  * is updated even when the URB terminated with an error or was unlinked.
1631  *
1632  * ISO transfer status is reported in the status and actual_length fields
1633  * of the iso_frame_desc array, and the number of errors is reported in
1634  * error_count.  Completion callbacks for ISO transfers will normally
1635  * (re)submit URBs to ensure a constant transfer rate.
1636  *
1637  * Note that even fields marked "public" should not be touched by the driver
1638  * when the urb is owned by the hcd, that is, since the call to
1639  * usb_submit_urb() till the entry into the completion routine.
1640  */
1641 struct urb {
1642 	/* private: usb core and host controller only fields in the urb */
1643 	struct kref kref;		/* reference count of the URB */
1644 	int unlinked;			/* unlink error code */
1645 	void *hcpriv;			/* private data for host controller */
1646 	atomic_t use_count;		/* concurrent submissions counter */
1647 	atomic_t reject;		/* submissions will fail */
1648 
1649 	/* public: documented fields in the urb that can be used by drivers */
1650 	struct list_head urb_list;	/* list head for use by the urb's
1651 					 * current owner */
1652 	struct list_head anchor_list;	/* the URB may be anchored */
1653 	struct usb_anchor *anchor;
1654 	struct usb_device *dev;		/* (in) pointer to associated device */
1655 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1656 	unsigned int pipe;		/* (in) pipe information */
1657 	unsigned int stream_id;		/* (in) stream ID */
1658 	int status;			/* (return) non-ISO status */
1659 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1660 	void *transfer_buffer;		/* (in) associated data buffer */
1661 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1662 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1663 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1664 	int num_sgs;			/* (in) number of entries in the sg list */
1665 	u32 transfer_buffer_length;	/* (in) data buffer length */
1666 	u32 actual_length;		/* (return) actual transfer length */
1667 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1668 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1669 	int start_frame;		/* (modify) start frame (ISO) */
1670 	int number_of_packets;		/* (in) number of ISO packets */
1671 	int interval;			/* (modify) transfer interval
1672 					 * (INT/ISO) */
1673 	int error_count;		/* (return) number of ISO errors */
1674 	void *context;			/* (in) context for completion */
1675 	usb_complete_t complete;	/* (in) completion routine */
1676 
1677 	ANDROID_KABI_RESERVE(1);
1678 	ANDROID_KABI_RESERVE(2);
1679 	ANDROID_KABI_RESERVE(3);
1680 	ANDROID_KABI_RESERVE(4);
1681 
1682 	struct usb_iso_packet_descriptor iso_frame_desc[];
1683 					/* (in) ISO ONLY */
1684 };
1685 
1686 /* ----------------------------------------------------------------------- */
1687 
1688 /**
1689  * usb_fill_control_urb - initializes a control urb
1690  * @urb: pointer to the urb to initialize.
1691  * @dev: pointer to the struct usb_device for this urb.
1692  * @pipe: the endpoint pipe
1693  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1694  *	suitable for DMA.
1695  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1696  *	suitable for DMA.
1697  * @buffer_length: length of the transfer buffer
1698  * @complete_fn: pointer to the usb_complete_t function
1699  * @context: what to set the urb context to.
1700  *
1701  * Initializes a control urb with the proper information needed to submit
1702  * it to a device.
1703  *
1704  * The transfer buffer and the setup_packet buffer will most likely be filled
1705  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1706  * allocating it via kmalloc() or equivalent, even for very small buffers.
1707  * If the buffers are embedded in a bigger structure, there is a risk that
1708  * the buffer itself, the previous fields and/or the next fields are corrupted
1709  * due to cache incoherencies; or slowed down if they are evicted from the
1710  * cache. For more information, check &struct urb.
1711  *
1712  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1713 static inline void usb_fill_control_urb(struct urb *urb,
1714 					struct usb_device *dev,
1715 					unsigned int pipe,
1716 					unsigned char *setup_packet,
1717 					void *transfer_buffer,
1718 					int buffer_length,
1719 					usb_complete_t complete_fn,
1720 					void *context)
1721 {
1722 	urb->dev = dev;
1723 	urb->pipe = pipe;
1724 	urb->setup_packet = setup_packet;
1725 	urb->transfer_buffer = transfer_buffer;
1726 	urb->transfer_buffer_length = buffer_length;
1727 	urb->complete = complete_fn;
1728 	urb->context = context;
1729 }
1730 
1731 /**
1732  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1733  * @urb: pointer to the urb to initialize.
1734  * @dev: pointer to the struct usb_device for this urb.
1735  * @pipe: the endpoint pipe
1736  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1737  *	suitable for DMA.
1738  * @buffer_length: length of the transfer buffer
1739  * @complete_fn: pointer to the usb_complete_t function
1740  * @context: what to set the urb context to.
1741  *
1742  * Initializes a bulk urb with the proper information needed to submit it
1743  * to a device.
1744  *
1745  * Refer to usb_fill_control_urb() for a description of the requirements for
1746  * transfer_buffer.
1747  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1748 static inline void usb_fill_bulk_urb(struct urb *urb,
1749 				     struct usb_device *dev,
1750 				     unsigned int pipe,
1751 				     void *transfer_buffer,
1752 				     int buffer_length,
1753 				     usb_complete_t complete_fn,
1754 				     void *context)
1755 {
1756 	urb->dev = dev;
1757 	urb->pipe = pipe;
1758 	urb->transfer_buffer = transfer_buffer;
1759 	urb->transfer_buffer_length = buffer_length;
1760 	urb->complete = complete_fn;
1761 	urb->context = context;
1762 }
1763 
1764 /**
1765  * usb_fill_int_urb - macro to help initialize a interrupt urb
1766  * @urb: pointer to the urb to initialize.
1767  * @dev: pointer to the struct usb_device for this urb.
1768  * @pipe: the endpoint pipe
1769  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1770  *	suitable for DMA.
1771  * @buffer_length: length of the transfer buffer
1772  * @complete_fn: pointer to the usb_complete_t function
1773  * @context: what to set the urb context to.
1774  * @interval: what to set the urb interval to, encoded like
1775  *	the endpoint descriptor's bInterval value.
1776  *
1777  * Initializes a interrupt urb with the proper information needed to submit
1778  * it to a device.
1779  *
1780  * Refer to usb_fill_control_urb() for a description of the requirements for
1781  * transfer_buffer.
1782  *
1783  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1784  * encoding of the endpoint interval, and express polling intervals in
1785  * microframes (eight per millisecond) rather than in frames (one per
1786  * millisecond).
1787  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1788 static inline void usb_fill_int_urb(struct urb *urb,
1789 				    struct usb_device *dev,
1790 				    unsigned int pipe,
1791 				    void *transfer_buffer,
1792 				    int buffer_length,
1793 				    usb_complete_t complete_fn,
1794 				    void *context,
1795 				    int interval)
1796 {
1797 	urb->dev = dev;
1798 	urb->pipe = pipe;
1799 	urb->transfer_buffer = transfer_buffer;
1800 	urb->transfer_buffer_length = buffer_length;
1801 	urb->complete = complete_fn;
1802 	urb->context = context;
1803 
1804 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1805 		/* make sure interval is within allowed range */
1806 		interval = clamp(interval, 1, 16);
1807 
1808 		urb->interval = 1 << (interval - 1);
1809 	} else {
1810 		urb->interval = interval;
1811 	}
1812 
1813 	urb->start_frame = -1;
1814 }
1815 
1816 extern void usb_init_urb(struct urb *urb);
1817 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1818 extern void usb_free_urb(struct urb *urb);
1819 #define usb_put_urb usb_free_urb
1820 extern struct urb *usb_get_urb(struct urb *urb);
1821 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1822 extern int usb_unlink_urb(struct urb *urb);
1823 extern void usb_kill_urb(struct urb *urb);
1824 extern void usb_poison_urb(struct urb *urb);
1825 extern void usb_unpoison_urb(struct urb *urb);
1826 extern void usb_block_urb(struct urb *urb);
1827 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1828 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1829 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1830 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1831 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1832 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1833 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1834 extern void usb_unanchor_urb(struct urb *urb);
1835 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1836 					 unsigned int timeout);
1837 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1838 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1839 extern int usb_anchor_empty(struct usb_anchor *anchor);
1840 
1841 #define usb_unblock_urb	usb_unpoison_urb
1842 
1843 /**
1844  * usb_urb_dir_in - check if an URB describes an IN transfer
1845  * @urb: URB to be checked
1846  *
1847  * Return: 1 if @urb describes an IN transfer (device-to-host),
1848  * otherwise 0.
1849  */
usb_urb_dir_in(struct urb * urb)1850 static inline int usb_urb_dir_in(struct urb *urb)
1851 {
1852 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1853 }
1854 
1855 /**
1856  * usb_urb_dir_out - check if an URB describes an OUT transfer
1857  * @urb: URB to be checked
1858  *
1859  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1860  * otherwise 0.
1861  */
usb_urb_dir_out(struct urb * urb)1862 static inline int usb_urb_dir_out(struct urb *urb)
1863 {
1864 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1865 }
1866 
1867 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1868 int usb_urb_ep_type_check(const struct urb *urb);
1869 
1870 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1871 	gfp_t mem_flags, dma_addr_t *dma);
1872 void usb_free_coherent(struct usb_device *dev, size_t size,
1873 	void *addr, dma_addr_t dma);
1874 
1875 /*-------------------------------------------------------------------*
1876  *                         SYNCHRONOUS CALL SUPPORT                  *
1877  *-------------------------------------------------------------------*/
1878 
1879 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1880 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1881 	void *data, __u16 size, int timeout);
1882 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1883 	void *data, int len, int *actual_length, int timeout);
1884 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1885 	void *data, int len, int *actual_length,
1886 	int timeout);
1887 
1888 /* wrappers around usb_control_msg() for the most common standard requests */
1889 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1890 			 __u8 requesttype, __u16 value, __u16 index,
1891 			 const void *data, __u16 size, int timeout,
1892 			 gfp_t memflags);
1893 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1894 			 __u8 requesttype, __u16 value, __u16 index,
1895 			 void *data, __u16 size, int timeout,
1896 			 gfp_t memflags);
1897 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1898 	unsigned char descindex, void *buf, int size);
1899 extern int usb_get_status(struct usb_device *dev,
1900 	int recip, int type, int target, void *data);
1901 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1902 static inline int usb_get_std_status(struct usb_device *dev,
1903 	int recip, int target, void *data)
1904 {
1905 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1906 		data);
1907 }
1908 
usb_get_ptm_status(struct usb_device * dev,void * data)1909 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1910 {
1911 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1912 		0, data);
1913 }
1914 
1915 extern int usb_string(struct usb_device *dev, int index,
1916 	char *buf, size_t size);
1917 extern char *usb_cache_string(struct usb_device *udev, int index);
1918 
1919 /* wrappers that also update important state inside usbcore */
1920 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1921 extern int usb_reset_configuration(struct usb_device *dev);
1922 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1923 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1924 
1925 /* this request isn't really synchronous, but it belongs with the others */
1926 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1927 
1928 /* choose and set configuration for device */
1929 extern int usb_choose_configuration(struct usb_device *udev);
1930 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1931 
1932 /*
1933  * timeouts, in milliseconds, used for sending/receiving control messages
1934  * they typically complete within a few frames (msec) after they're issued
1935  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1936  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1937  */
1938 #define USB_CTRL_GET_TIMEOUT	5000
1939 #define USB_CTRL_SET_TIMEOUT	5000
1940 
1941 
1942 /**
1943  * struct usb_sg_request - support for scatter/gather I/O
1944  * @status: zero indicates success, else negative errno
1945  * @bytes: counts bytes transferred.
1946  *
1947  * These requests are initialized using usb_sg_init(), and then are used
1948  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1949  * members of the request object aren't for driver access.
1950  *
1951  * The status and bytecount values are valid only after usb_sg_wait()
1952  * returns.  If the status is zero, then the bytecount matches the total
1953  * from the request.
1954  *
1955  * After an error completion, drivers may need to clear a halt condition
1956  * on the endpoint.
1957  */
1958 struct usb_sg_request {
1959 	int			status;
1960 	size_t			bytes;
1961 
1962 	/* private:
1963 	 * members below are private to usbcore,
1964 	 * and are not provided for driver access!
1965 	 */
1966 	spinlock_t		lock;
1967 
1968 	struct usb_device	*dev;
1969 	int			pipe;
1970 
1971 	int			entries;
1972 	struct urb		**urbs;
1973 
1974 	int			count;
1975 	struct completion	complete;
1976 };
1977 
1978 int usb_sg_init(
1979 	struct usb_sg_request	*io,
1980 	struct usb_device	*dev,
1981 	unsigned		pipe,
1982 	unsigned		period,
1983 	struct scatterlist	*sg,
1984 	int			nents,
1985 	size_t			length,
1986 	gfp_t			mem_flags
1987 );
1988 void usb_sg_cancel(struct usb_sg_request *io);
1989 void usb_sg_wait(struct usb_sg_request *io);
1990 
1991 
1992 /* ----------------------------------------------------------------------- */
1993 
1994 /*
1995  * For various legacy reasons, Linux has a small cookie that's paired with
1996  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1997  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1998  * an unsigned int encoded as:
1999  *
2000  *  - direction:	bit 7		(0 = Host-to-Device [Out],
2001  *					 1 = Device-to-Host [In] ...
2002  *					like endpoint bEndpointAddress)
2003  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
2004  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
2005  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
2006  *					 10 = control, 11 = bulk)
2007  *
2008  * Given the device address and endpoint descriptor, pipes are redundant.
2009  */
2010 
2011 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
2012 /* (yet ... they're the values used by usbfs) */
2013 #define PIPE_ISOCHRONOUS		0
2014 #define PIPE_INTERRUPT			1
2015 #define PIPE_CONTROL			2
2016 #define PIPE_BULK			3
2017 
2018 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
2019 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
2020 
2021 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
2022 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
2023 
2024 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
2025 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
2026 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
2027 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
2028 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
2029 
__create_pipe(struct usb_device * dev,unsigned int endpoint)2030 static inline unsigned int __create_pipe(struct usb_device *dev,
2031 		unsigned int endpoint)
2032 {
2033 	return (dev->devnum << 8) | (endpoint << 15);
2034 }
2035 
2036 /* Create various pipes... */
2037 #define usb_sndctrlpipe(dev, endpoint)	\
2038 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2039 #define usb_rcvctrlpipe(dev, endpoint)	\
2040 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2041 #define usb_sndisocpipe(dev, endpoint)	\
2042 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2043 #define usb_rcvisocpipe(dev, endpoint)	\
2044 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2045 #define usb_sndbulkpipe(dev, endpoint)	\
2046 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2047 #define usb_rcvbulkpipe(dev, endpoint)	\
2048 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2049 #define usb_sndintpipe(dev, endpoint)	\
2050 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2051 #define usb_rcvintpipe(dev, endpoint)	\
2052 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2053 
2054 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2055 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2056 {
2057 	struct usb_host_endpoint **eps;
2058 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2059 	return eps[usb_pipeendpoint(pipe)];
2060 }
2061 
usb_maxpacket(struct usb_device * udev,int pipe)2062 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2063 {
2064 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2065 
2066 	if (!ep)
2067 		return 0;
2068 
2069 	/* NOTE:  only 0x07ff bits are for packet size... */
2070 	return usb_endpoint_maxp(&ep->desc);
2071 }
2072 
2073 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2074 static inline int usb_translate_errors(int error_code)
2075 {
2076 	switch (error_code) {
2077 	case 0:
2078 	case -ENOMEM:
2079 	case -ENODEV:
2080 	case -EOPNOTSUPP:
2081 		return error_code;
2082 	default:
2083 		return -EIO;
2084 	}
2085 }
2086 
2087 /* Events from the usb core */
2088 #define USB_DEVICE_ADD		0x0001
2089 #define USB_DEVICE_REMOVE	0x0002
2090 #define USB_BUS_ADD		0x0003
2091 #define USB_BUS_REMOVE		0x0004
2092 extern void usb_register_notify(struct notifier_block *nb);
2093 extern void usb_unregister_notify(struct notifier_block *nb);
2094 
2095 /* debugfs stuff */
2096 extern struct dentry *usb_debug_root;
2097 
2098 /* LED triggers */
2099 enum usb_led_event {
2100 	USB_LED_EVENT_HOST = 0,
2101 	USB_LED_EVENT_GADGET = 1,
2102 };
2103 
2104 #ifdef CONFIG_USB_LED_TRIG
2105 extern void usb_led_activity(enum usb_led_event ev);
2106 #else
usb_led_activity(enum usb_led_event ev)2107 static inline void usb_led_activity(enum usb_led_event ev) {}
2108 #endif
2109 
2110 #endif  /* __KERNEL__ */
2111 
2112 #endif
2113