1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25 #include <linux/android_kabi.h>
26
27 struct usb_device;
28 struct usb_driver;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 enum usb_wireless_status {
174 USB_WIRELESS_STATUS_NA = 0,
175 USB_WIRELESS_STATUS_DISCONNECTED,
176 USB_WIRELESS_STATUS_CONNECTED,
177 };
178
179 /**
180 * struct usb_interface - what usb device drivers talk to
181 * @altsetting: array of interface structures, one for each alternate
182 * setting that may be selected. Each one includes a set of
183 * endpoint configurations. They will be in no particular order.
184 * @cur_altsetting: the current altsetting.
185 * @num_altsetting: number of altsettings defined.
186 * @intf_assoc: interface association descriptor
187 * @minor: the minor number assigned to this interface, if this
188 * interface is bound to a driver that uses the USB major number.
189 * If this interface does not use the USB major, this field should
190 * be unused. The driver should set this value in the probe()
191 * function of the driver, after it has been assigned a minor
192 * number from the USB core by calling usb_register_dev().
193 * @condition: binding state of the interface: not bound, binding
194 * (in probe()), bound to a driver, or unbinding (in disconnect())
195 * @sysfs_files_created: sysfs attributes exist
196 * @ep_devs_created: endpoint child pseudo-devices exist
197 * @unregistering: flag set when the interface is being unregistered
198 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
199 * capability during autosuspend.
200 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
201 * has been deferred.
202 * @needs_binding: flag set when the driver should be re-probed or unbound
203 * following a reset or suspend operation it doesn't support.
204 * @authorized: This allows to (de)authorize individual interfaces instead
205 * a whole device in contrast to the device authorization.
206 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
207 * the emitter is connected.
208 * @wireless_status_work: Used for scheduling wireless status changes
209 * from atomic context.
210 * @dev: driver model's view of this device
211 * @usb_dev: if an interface is bound to the USB major, this will point
212 * to the sysfs representation for that device.
213 * @reset_ws: Used for scheduling resets from atomic context.
214 * @resetting_device: USB core reset the device, so use alt setting 0 as
215 * current; needs bandwidth alloc after reset.
216 *
217 * USB device drivers attach to interfaces on a physical device. Each
218 * interface encapsulates a single high level function, such as feeding
219 * an audio stream to a speaker or reporting a change in a volume control.
220 * Many USB devices only have one interface. The protocol used to talk to
221 * an interface's endpoints can be defined in a usb "class" specification,
222 * or by a product's vendor. The (default) control endpoint is part of
223 * every interface, but is never listed among the interface's descriptors.
224 *
225 * The driver that is bound to the interface can use standard driver model
226 * calls such as dev_get_drvdata() on the dev member of this structure.
227 *
228 * Each interface may have alternate settings. The initial configuration
229 * of a device sets altsetting 0, but the device driver can change
230 * that setting using usb_set_interface(). Alternate settings are often
231 * used to control the use of periodic endpoints, such as by having
232 * different endpoints use different amounts of reserved USB bandwidth.
233 * All standards-conformant USB devices that use isochronous endpoints
234 * will use them in non-default settings.
235 *
236 * The USB specification says that alternate setting numbers must run from
237 * 0 to one less than the total number of alternate settings. But some
238 * devices manage to mess this up, and the structures aren't necessarily
239 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
240 * look up an alternate setting in the altsetting array based on its number.
241 */
242 struct usb_interface {
243 /* array of alternate settings for this interface,
244 * stored in no particular order */
245 struct usb_host_interface *altsetting;
246
247 struct usb_host_interface *cur_altsetting; /* the currently
248 * active alternate setting */
249 unsigned num_altsetting; /* number of alternate settings */
250
251 /* If there is an interface association descriptor then it will list
252 * the associated interfaces */
253 struct usb_interface_assoc_descriptor *intf_assoc;
254
255 int minor; /* minor number this interface is
256 * bound to */
257 enum usb_interface_condition condition; /* state of binding */
258 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
259 unsigned ep_devs_created:1; /* endpoint "devices" exist */
260 unsigned unregistering:1; /* unregistration is in progress */
261 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
262 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
263 unsigned needs_binding:1; /* needs delayed unbind/rebind */
264 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
265 unsigned authorized:1; /* used for interface authorization */
266 enum usb_wireless_status wireless_status;
267 struct work_struct wireless_status_work;
268
269 struct device dev; /* interface specific device info */
270 struct device *usb_dev;
271 struct work_struct reset_ws; /* for resets in atomic context */
272
273 ANDROID_KABI_RESERVE(1);
274 ANDROID_KABI_RESERVE(2);
275 ANDROID_KABI_RESERVE(3);
276 ANDROID_KABI_RESERVE(4);
277 };
278
279 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
280
usb_get_intfdata(struct usb_interface * intf)281 static inline void *usb_get_intfdata(struct usb_interface *intf)
282 {
283 return dev_get_drvdata(&intf->dev);
284 }
285
286 /**
287 * usb_set_intfdata() - associate driver-specific data with an interface
288 * @intf: USB interface
289 * @data: driver data
290 *
291 * Drivers can use this function in their probe() callbacks to associate
292 * driver-specific data with an interface.
293 *
294 * Note that there is generally no need to clear the driver-data pointer even
295 * if some drivers do so for historical or implementation-specific reasons.
296 */
usb_set_intfdata(struct usb_interface * intf,void * data)297 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
298 {
299 dev_set_drvdata(&intf->dev, data);
300 }
301
302 struct usb_interface *usb_get_intf(struct usb_interface *intf);
303 void usb_put_intf(struct usb_interface *intf);
304
305 /* Hard limit */
306 #define USB_MAXENDPOINTS 30
307 /* this maximum is arbitrary */
308 #define USB_MAXINTERFACES 32
309 #define USB_MAXIADS (USB_MAXINTERFACES/2)
310
311 bool usb_check_bulk_endpoints(
312 const struct usb_interface *intf, const u8 *ep_addrs);
313 bool usb_check_int_endpoints(
314 const struct usb_interface *intf, const u8 *ep_addrs);
315
316 /*
317 * USB Resume Timer: Every Host controller driver should drive the resume
318 * signalling on the bus for the amount of time defined by this macro.
319 *
320 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
321 *
322 * Note that the USB Specification states we should drive resume for *at least*
323 * 20 ms, but it doesn't give an upper bound. This creates two possible
324 * situations which we want to avoid:
325 *
326 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
327 * us to fail USB Electrical Tests, thus failing Certification
328 *
329 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
330 * and while we can argue that's against the USB Specification, we don't have
331 * control over which devices a certification laboratory will be using for
332 * certification. If CertLab uses a device which was tested against Windows and
333 * that happens to have relaxed resume signalling rules, we might fall into
334 * situations where we fail interoperability and electrical tests.
335 *
336 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
337 * should cope with both LPJ calibration errors and devices not following every
338 * detail of the USB Specification.
339 */
340 #define USB_RESUME_TIMEOUT 40 /* ms */
341
342 /**
343 * struct usb_interface_cache - long-term representation of a device interface
344 * @num_altsetting: number of altsettings defined.
345 * @ref: reference counter.
346 * @altsetting: variable-length array of interface structures, one for
347 * each alternate setting that may be selected. Each one includes a
348 * set of endpoint configurations. They will be in no particular order.
349 *
350 * These structures persist for the lifetime of a usb_device, unlike
351 * struct usb_interface (which persists only as long as its configuration
352 * is installed). The altsetting arrays can be accessed through these
353 * structures at any time, permitting comparison of configurations and
354 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
355 */
356 struct usb_interface_cache {
357 unsigned num_altsetting; /* number of alternate settings */
358 struct kref ref; /* reference counter */
359
360 /* variable-length array of alternate settings for this interface,
361 * stored in no particular order */
362 struct usb_host_interface altsetting[];
363 };
364 #define ref_to_usb_interface_cache(r) \
365 container_of(r, struct usb_interface_cache, ref)
366 #define altsetting_to_usb_interface_cache(a) \
367 container_of(a, struct usb_interface_cache, altsetting[0])
368
369 /**
370 * struct usb_host_config - representation of a device's configuration
371 * @desc: the device's configuration descriptor.
372 * @string: pointer to the cached version of the iConfiguration string, if
373 * present for this configuration.
374 * @intf_assoc: list of any interface association descriptors in this config
375 * @interface: array of pointers to usb_interface structures, one for each
376 * interface in the configuration. The number of interfaces is stored
377 * in desc.bNumInterfaces. These pointers are valid only while the
378 * configuration is active.
379 * @intf_cache: array of pointers to usb_interface_cache structures, one
380 * for each interface in the configuration. These structures exist
381 * for the entire life of the device.
382 * @extra: pointer to buffer containing all extra descriptors associated
383 * with this configuration (those preceding the first interface
384 * descriptor).
385 * @extralen: length of the extra descriptors buffer.
386 *
387 * USB devices may have multiple configurations, but only one can be active
388 * at any time. Each encapsulates a different operational environment;
389 * for example, a dual-speed device would have separate configurations for
390 * full-speed and high-speed operation. The number of configurations
391 * available is stored in the device descriptor as bNumConfigurations.
392 *
393 * A configuration can contain multiple interfaces. Each corresponds to
394 * a different function of the USB device, and all are available whenever
395 * the configuration is active. The USB standard says that interfaces
396 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
397 * of devices get this wrong. In addition, the interface array is not
398 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
399 * look up an interface entry based on its number.
400 *
401 * Device drivers should not attempt to activate configurations. The choice
402 * of which configuration to install is a policy decision based on such
403 * considerations as available power, functionality provided, and the user's
404 * desires (expressed through userspace tools). However, drivers can call
405 * usb_reset_configuration() to reinitialize the current configuration and
406 * all its interfaces.
407 */
408 struct usb_host_config {
409 struct usb_config_descriptor desc;
410
411 char *string; /* iConfiguration string, if present */
412
413 /* List of any Interface Association Descriptors in this
414 * configuration. */
415 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
416
417 /* the interfaces associated with this configuration,
418 * stored in no particular order */
419 struct usb_interface *interface[USB_MAXINTERFACES];
420
421 /* Interface information available even when this is not the
422 * active configuration */
423 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
424
425 unsigned char *extra; /* Extra descriptors */
426 int extralen;
427 };
428
429 /* USB2.0 and USB3.0 device BOS descriptor set */
430 struct usb_host_bos {
431 struct usb_bos_descriptor *desc;
432
433 struct usb_ext_cap_descriptor *ext_cap;
434 struct usb_ss_cap_descriptor *ss_cap;
435 struct usb_ssp_cap_descriptor *ssp_cap;
436 struct usb_ss_container_id_descriptor *ss_id;
437 struct usb_ptm_cap_descriptor *ptm_cap;
438
439 ANDROID_KABI_RESERVE(1);
440 ANDROID_KABI_RESERVE(2);
441 ANDROID_KABI_RESERVE(3);
442 ANDROID_KABI_RESERVE(4);
443 };
444
445 int __usb_get_extra_descriptor(char *buffer, unsigned size,
446 unsigned char type, void **ptr, size_t min);
447 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
448 __usb_get_extra_descriptor((ifpoint)->extra, \
449 (ifpoint)->extralen, \
450 type, (void **)ptr, sizeof(**(ptr)))
451
452 /* ----------------------------------------------------------------------- */
453
454 /*
455 * Allocated per bus (tree of devices) we have:
456 */
457 struct usb_bus {
458 struct device *controller; /* host side hardware */
459 struct device *sysdev; /* as seen from firmware or bus */
460 int busnum; /* Bus number (in order of reg) */
461 const char *bus_name; /* stable id (PCI slot_name etc) */
462 u8 uses_pio_for_control; /*
463 * Does the host controller use PIO
464 * for control transfers?
465 */
466 u8 otg_port; /* 0, or number of OTG/HNP port */
467 unsigned is_b_host:1; /* true during some HNP roleswitches */
468 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
469 unsigned no_stop_on_short:1; /*
470 * Quirk: some controllers don't stop
471 * the ep queue on a short transfer
472 * with the URB_SHORT_NOT_OK flag set.
473 */
474 unsigned no_sg_constraint:1; /* no sg constraint */
475 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
476
477 int devnum_next; /* Next open device number in
478 * round-robin allocation */
479 struct mutex devnum_next_mutex; /* devnum_next mutex */
480
481 DECLARE_BITMAP(devmap, 128); /* USB device number allocation bitmap */
482 struct usb_device *root_hub; /* Root hub */
483 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
484
485 int bandwidth_allocated; /* on this bus: how much of the time
486 * reserved for periodic (intr/iso)
487 * requests is used, on average?
488 * Units: microseconds/frame.
489 * Limits: Full/low speed reserve 90%,
490 * while high speed reserves 80%.
491 */
492 int bandwidth_int_reqs; /* number of Interrupt requests */
493 int bandwidth_isoc_reqs; /* number of Isoc. requests */
494
495 unsigned resuming_ports; /* bit array: resuming root-hub ports */
496
497 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
498 struct mon_bus *mon_bus; /* non-null when associated */
499 int monitored; /* non-zero when monitored */
500 #endif
501
502 ANDROID_KABI_RESERVE(1);
503 ANDROID_KABI_RESERVE(2);
504 ANDROID_KABI_RESERVE(3);
505 ANDROID_KABI_RESERVE(4);
506 };
507
508 struct usb_dev_state;
509
510 /* ----------------------------------------------------------------------- */
511
512 struct usb_tt;
513
514 enum usb_link_tunnel_mode {
515 USB_LINK_UNKNOWN = 0,
516 USB_LINK_NATIVE,
517 USB_LINK_TUNNELED,
518 };
519
520 enum usb_port_connect_type {
521 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
522 USB_PORT_CONNECT_TYPE_HOT_PLUG,
523 USB_PORT_CONNECT_TYPE_HARD_WIRED,
524 USB_PORT_NOT_USED,
525 };
526
527 /*
528 * USB port quirks.
529 */
530
531 /* For the given port, prefer the old (faster) enumeration scheme. */
532 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
533
534 /* Decrease TRSTRCY to 10ms during device enumeration. */
535 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
536
537 /*
538 * USB 2.0 Link Power Management (LPM) parameters.
539 */
540 struct usb2_lpm_parameters {
541 /* Best effort service latency indicate how long the host will drive
542 * resume on an exit from L1.
543 */
544 unsigned int besl;
545
546 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
547 * When the timer counts to zero, the parent hub will initiate a LPM
548 * transition to L1.
549 */
550 int timeout;
551 };
552
553 /*
554 * USB 3.0 Link Power Management (LPM) parameters.
555 *
556 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
557 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
558 * All three are stored in nanoseconds.
559 */
560 struct usb3_lpm_parameters {
561 /*
562 * Maximum exit latency (MEL) for the host to send a packet to the
563 * device (either a Ping for isoc endpoints, or a data packet for
564 * interrupt endpoints), the hubs to decode the packet, and for all hubs
565 * in the path to transition the links to U0.
566 */
567 unsigned int mel;
568 /*
569 * Maximum exit latency for a device-initiated LPM transition to bring
570 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
571 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
572 */
573 unsigned int pel;
574
575 /*
576 * The System Exit Latency (SEL) includes PEL, and three other
577 * latencies. After a device initiates a U0 transition, it will take
578 * some time from when the device sends the ERDY to when it will finally
579 * receive the data packet. Basically, SEL should be the worse-case
580 * latency from when a device starts initiating a U0 transition to when
581 * it will get data.
582 */
583 unsigned int sel;
584 /*
585 * The idle timeout value that is currently programmed into the parent
586 * hub for this device. When the timer counts to zero, the parent hub
587 * will initiate an LPM transition to either U1 or U2.
588 */
589 int timeout;
590 };
591
592 /**
593 * struct usb_device - kernel's representation of a USB device
594 * @devnum: device number; address on a USB bus
595 * @devpath: device ID string for use in messages (e.g., /port/...)
596 * @route: tree topology hex string for use with xHCI
597 * @state: device state: configured, not attached, etc.
598 * @speed: device speed: high/full/low (or error)
599 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
600 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
601 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
602 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
603 * @ttport: device port on that tt hub
604 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
605 * @parent: our hub, unless we're the root
606 * @bus: bus we're part of
607 * @ep0: endpoint 0 data (default control pipe)
608 * @dev: generic device interface
609 * @descriptor: USB device descriptor
610 * @bos: USB device BOS descriptor set
611 * @config: all of the device's configs
612 * @actconfig: the active configuration
613 * @ep_in: array of IN endpoints
614 * @ep_out: array of OUT endpoints
615 * @rawdescriptors: raw descriptors for each config
616 * @bus_mA: Current available from the bus
617 * @portnum: parent port number (origin 1)
618 * @level: number of USB hub ancestors
619 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
620 * @can_submit: URBs may be submitted
621 * @persist_enabled: USB_PERSIST enabled for this device
622 * @reset_in_progress: the device is being reset
623 * @have_langid: whether string_langid is valid
624 * @authorized: policy has said we can use it;
625 * (user space) policy determines if we authorize this device to be
626 * used or not. By default, wired USB devices are authorized.
627 * WUSB devices are not, until we authorize them from user space.
628 * FIXME -- complete doc
629 * @authenticated: Crypto authentication passed
630 * @tunnel_mode: Connection native or tunneled over USB4
631 * @lpm_capable: device supports LPM
632 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
633 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
634 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
635 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
636 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
637 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
638 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
639 * @string_langid: language ID for strings
640 * @product: iProduct string, if present (static)
641 * @manufacturer: iManufacturer string, if present (static)
642 * @serial: iSerialNumber string, if present (static)
643 * @filelist: usbfs files that are open to this device
644 * @maxchild: number of ports if hub
645 * @quirks: quirks of the whole device
646 * @urbnum: number of URBs submitted for the whole device
647 * @active_duration: total time device is not suspended
648 * @connect_time: time device was first connected
649 * @do_remote_wakeup: remote wakeup should be enabled
650 * @reset_resume: needs reset instead of resume
651 * @port_is_suspended: the upstream port is suspended (L2 or U3)
652 * @offload_at_suspend: offload activities during suspend is enabled.
653 * @offload_usage: number of offload activities happening on this usb device.
654 * @slot_id: Slot ID assigned by xHCI
655 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
656 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
657 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
658 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
659 * to keep track of the number of functions that require USB 3.0 Link Power
660 * Management to be disabled for this usb_device. This count should only
661 * be manipulated by those functions, with the bandwidth_mutex is held.
662 * @hub_delay: cached value consisting of:
663 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
664 * Will be used as wValue for SetIsochDelay requests.
665 * @use_generic_driver: ask driver core to reprobe using the generic driver.
666 *
667 * Notes:
668 * Usbcore drivers should not set usbdev->state directly. Instead use
669 * usb_set_device_state().
670 */
671 struct usb_device {
672 int devnum;
673 char devpath[16];
674 u32 route;
675 enum usb_device_state state;
676 enum usb_device_speed speed;
677 unsigned int rx_lanes;
678 unsigned int tx_lanes;
679 enum usb_ssp_rate ssp_rate;
680
681 struct usb_tt *tt;
682 int ttport;
683
684 unsigned int toggle[2];
685
686 struct usb_device *parent;
687 struct usb_bus *bus;
688 struct usb_host_endpoint ep0;
689
690 struct device dev;
691
692 struct usb_device_descriptor descriptor;
693 struct usb_host_bos *bos;
694 struct usb_host_config *config;
695
696 struct usb_host_config *actconfig;
697 struct usb_host_endpoint *ep_in[16];
698 struct usb_host_endpoint *ep_out[16];
699
700 char **rawdescriptors;
701
702 unsigned short bus_mA;
703 u8 portnum;
704 u8 level;
705 u8 devaddr;
706
707 unsigned can_submit:1;
708 unsigned persist_enabled:1;
709 unsigned reset_in_progress:1;
710 unsigned have_langid:1;
711 unsigned authorized:1;
712 unsigned authenticated:1;
713 unsigned lpm_capable:1;
714 unsigned lpm_devinit_allow:1;
715 unsigned usb2_hw_lpm_capable:1;
716 unsigned usb2_hw_lpm_besl_capable:1;
717 unsigned usb2_hw_lpm_enabled:1;
718 unsigned usb2_hw_lpm_allowed:1;
719 unsigned usb3_lpm_u1_enabled:1;
720 unsigned usb3_lpm_u2_enabled:1;
721 int string_langid;
722
723 /* static strings from the device */
724 char *product;
725 char *manufacturer;
726 char *serial;
727
728 struct list_head filelist;
729
730 int maxchild;
731
732 u32 quirks;
733 atomic_t urbnum;
734
735 unsigned long active_duration;
736
737 unsigned long connect_time;
738
739 unsigned do_remote_wakeup:1;
740 unsigned reset_resume:1;
741 unsigned port_is_suspended:1;
742 enum usb_link_tunnel_mode tunnel_mode;
743
744 int slot_id;
745 struct usb2_lpm_parameters l1_params;
746 struct usb3_lpm_parameters u1_params;
747 struct usb3_lpm_parameters u2_params;
748 unsigned lpm_disable_count;
749
750 u16 hub_delay;
751 unsigned use_generic_driver:1;
752
753 ANDROID_KABI_USE(1, unsigned offload_at_suspend:1);
754 ANDROID_KABI_USE(2, int offload_usage);
755 ANDROID_KABI_RESERVE(3);
756 ANDROID_KABI_RESERVE(4);
757 };
758
759 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
760
__intf_to_usbdev(struct usb_interface * intf)761 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
762 {
763 return to_usb_device(intf->dev.parent);
764 }
__intf_to_usbdev_const(const struct usb_interface * intf)765 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
766 {
767 return to_usb_device((const struct device *)intf->dev.parent);
768 }
769
770 #define interface_to_usbdev(intf) \
771 _Generic((intf), \
772 const struct usb_interface *: __intf_to_usbdev_const, \
773 struct usb_interface *: __intf_to_usbdev)(intf)
774
775 extern struct usb_device *usb_get_dev(struct usb_device *dev);
776 extern void usb_put_dev(struct usb_device *dev);
777 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
778 int port1);
779
780 /**
781 * usb_hub_for_each_child - iterate over all child devices on the hub
782 * @hdev: USB device belonging to the usb hub
783 * @port1: portnum associated with child device
784 * @child: child device pointer
785 */
786 #define usb_hub_for_each_child(hdev, port1, child) \
787 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
788 port1 <= hdev->maxchild; \
789 child = usb_hub_find_child(hdev, ++port1)) \
790 if (!child) continue; else
791
792 /* USB device locking */
793 #define usb_lock_device(udev) device_lock(&(udev)->dev)
794 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
795 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
796 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
797 extern int usb_lock_device_for_reset(struct usb_device *udev,
798 const struct usb_interface *iface);
799
800 /* USB port reset for device reinitialization */
801 extern int usb_reset_device(struct usb_device *dev);
802 extern void usb_queue_reset_device(struct usb_interface *dev);
803
804 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
805
806 #ifdef CONFIG_ACPI
807 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
808 bool enable);
809 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
810 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
811 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)812 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
813 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)814 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
815 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)816 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
817 { return 0; }
818 #endif
819
820 /* USB autosuspend and autoresume */
821 #ifdef CONFIG_PM
822 extern void usb_enable_autosuspend(struct usb_device *udev);
823 extern void usb_disable_autosuspend(struct usb_device *udev);
824
825 extern int usb_autopm_get_interface(struct usb_interface *intf);
826 extern void usb_autopm_put_interface(struct usb_interface *intf);
827 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
828 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
829 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
830 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
831
usb_mark_last_busy(struct usb_device * udev)832 static inline void usb_mark_last_busy(struct usb_device *udev)
833 {
834 pm_runtime_mark_last_busy(&udev->dev);
835 }
836
837 #else
838
usb_enable_autosuspend(struct usb_device * udev)839 static inline int usb_enable_autosuspend(struct usb_device *udev)
840 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)841 static inline int usb_disable_autosuspend(struct usb_device *udev)
842 { return 0; }
843
usb_autopm_get_interface(struct usb_interface * intf)844 static inline int usb_autopm_get_interface(struct usb_interface *intf)
845 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)846 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
847 { return 0; }
848
usb_autopm_put_interface(struct usb_interface * intf)849 static inline void usb_autopm_put_interface(struct usb_interface *intf)
850 { }
usb_autopm_put_interface_async(struct usb_interface * intf)851 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
852 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)853 static inline void usb_autopm_get_interface_no_resume(
854 struct usb_interface *intf)
855 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)856 static inline void usb_autopm_put_interface_no_suspend(
857 struct usb_interface *intf)
858 { }
usb_mark_last_busy(struct usb_device * udev)859 static inline void usb_mark_last_busy(struct usb_device *udev)
860 { }
861 #endif
862
863 #if IS_ENABLED(CONFIG_USB_XHCI_SIDEBAND)
864 int usb_offload_get(struct usb_device *udev);
865 int usb_offload_put(struct usb_device *udev);
866 bool usb_offload_check(struct usb_device *udev);
867 #else
868
usb_offload_get(struct usb_device * udev)869 static inline int usb_offload_get(struct usb_device *udev)
870 { return 0; }
usb_offload_put(struct usb_device * udev)871 static inline int usb_offload_put(struct usb_device *udev)
872 { return 0; }
usb_offload_check(struct usb_device * udev)873 static inline bool usb_offload_check(struct usb_device *udev)
874 { return false; }
875 #endif
876
877 extern int usb_disable_lpm(struct usb_device *udev);
878 extern void usb_enable_lpm(struct usb_device *udev);
879 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
880 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
881 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
882
883 extern int usb_disable_ltm(struct usb_device *udev);
884 extern void usb_enable_ltm(struct usb_device *udev);
885
usb_device_supports_ltm(struct usb_device * udev)886 static inline bool usb_device_supports_ltm(struct usb_device *udev)
887 {
888 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
889 return false;
890 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
891 }
892
usb_device_no_sg_constraint(struct usb_device * udev)893 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
894 {
895 return udev && udev->bus && udev->bus->no_sg_constraint;
896 }
897
898
899 /*-------------------------------------------------------------------------*/
900
901 /* for drivers using iso endpoints */
902 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
903
904 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
905 extern int usb_alloc_streams(struct usb_interface *interface,
906 struct usb_host_endpoint **eps, unsigned int num_eps,
907 unsigned int num_streams, gfp_t mem_flags);
908
909 /* Reverts a group of bulk endpoints back to not using stream IDs. */
910 extern int usb_free_streams(struct usb_interface *interface,
911 struct usb_host_endpoint **eps, unsigned int num_eps,
912 gfp_t mem_flags);
913
914 /* used these for multi-interface device registration */
915 extern int usb_driver_claim_interface(struct usb_driver *driver,
916 struct usb_interface *iface, void *data);
917
918 /**
919 * usb_interface_claimed - returns true iff an interface is claimed
920 * @iface: the interface being checked
921 *
922 * Return: %true (nonzero) iff the interface is claimed, else %false
923 * (zero).
924 *
925 * Note:
926 * Callers must own the driver model's usb bus readlock. So driver
927 * probe() entries don't need extra locking, but other call contexts
928 * may need to explicitly claim that lock.
929 *
930 */
usb_interface_claimed(struct usb_interface * iface)931 static inline int usb_interface_claimed(struct usb_interface *iface)
932 {
933 return (iface->dev.driver != NULL);
934 }
935
936 extern void usb_driver_release_interface(struct usb_driver *driver,
937 struct usb_interface *iface);
938
939 int usb_set_wireless_status(struct usb_interface *iface,
940 enum usb_wireless_status status);
941
942 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
943 const struct usb_device_id *id);
944 extern int usb_match_one_id(struct usb_interface *interface,
945 const struct usb_device_id *id);
946
947 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
948 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
949 int minor);
950 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
951 unsigned ifnum);
952 extern struct usb_host_interface *usb_altnum_to_altsetting(
953 const struct usb_interface *intf, unsigned int altnum);
954 extern struct usb_host_interface *usb_find_alt_setting(
955 struct usb_host_config *config,
956 unsigned int iface_num,
957 unsigned int alt_num);
958
959 /* port claiming functions */
960 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
961 struct usb_dev_state *owner);
962 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
963 struct usb_dev_state *owner);
964
965 /**
966 * usb_make_path - returns stable device path in the usb tree
967 * @dev: the device whose path is being constructed
968 * @buf: where to put the string
969 * @size: how big is "buf"?
970 *
971 * Return: Length of the string (> 0) or negative if size was too small.
972 *
973 * Note:
974 * This identifier is intended to be "stable", reflecting physical paths in
975 * hardware such as physical bus addresses for host controllers or ports on
976 * USB hubs. That makes it stay the same until systems are physically
977 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
978 * controllers. Adding and removing devices, including virtual root hubs
979 * in host controller driver modules, does not change these path identifiers;
980 * neither does rebooting or re-enumerating. These are more useful identifiers
981 * than changeable ("unstable") ones like bus numbers or device addresses.
982 *
983 * With a partial exception for devices connected to USB 2.0 root hubs, these
984 * identifiers are also predictable. So long as the device tree isn't changed,
985 * plugging any USB device into a given hub port always gives it the same path.
986 * Because of the use of "companion" controllers, devices connected to ports on
987 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
988 * high speed, and a different one if they are full or low speed.
989 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)990 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
991 {
992 int actual;
993 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
994 dev->devpath);
995 return (actual >= (int)size) ? -1 : actual;
996 }
997
998 /*-------------------------------------------------------------------------*/
999
1000 #define USB_DEVICE_ID_MATCH_DEVICE \
1001 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
1002 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
1003 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
1004 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
1005 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
1006 #define USB_DEVICE_ID_MATCH_DEV_INFO \
1007 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
1008 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
1009 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
1010 #define USB_DEVICE_ID_MATCH_INT_INFO \
1011 (USB_DEVICE_ID_MATCH_INT_CLASS | \
1012 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
1013 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
1014
1015 /**
1016 * USB_DEVICE - macro used to describe a specific usb device
1017 * @vend: the 16 bit USB Vendor ID
1018 * @prod: the 16 bit USB Product ID
1019 *
1020 * This macro is used to create a struct usb_device_id that matches a
1021 * specific device.
1022 */
1023 #define USB_DEVICE(vend, prod) \
1024 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
1025 .idVendor = (vend), \
1026 .idProduct = (prod)
1027 /**
1028 * USB_DEVICE_VER - describe a specific usb device with a version range
1029 * @vend: the 16 bit USB Vendor ID
1030 * @prod: the 16 bit USB Product ID
1031 * @lo: the bcdDevice_lo value
1032 * @hi: the bcdDevice_hi value
1033 *
1034 * This macro is used to create a struct usb_device_id that matches a
1035 * specific device, with a version range.
1036 */
1037 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1038 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1039 .idVendor = (vend), \
1040 .idProduct = (prod), \
1041 .bcdDevice_lo = (lo), \
1042 .bcdDevice_hi = (hi)
1043
1044 /**
1045 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1046 * @vend: the 16 bit USB Vendor ID
1047 * @prod: the 16 bit USB Product ID
1048 * @cl: bInterfaceClass value
1049 *
1050 * This macro is used to create a struct usb_device_id that matches a
1051 * specific interface class of devices.
1052 */
1053 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1054 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1055 USB_DEVICE_ID_MATCH_INT_CLASS, \
1056 .idVendor = (vend), \
1057 .idProduct = (prod), \
1058 .bInterfaceClass = (cl)
1059
1060 /**
1061 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1062 * @vend: the 16 bit USB Vendor ID
1063 * @prod: the 16 bit USB Product ID
1064 * @pr: bInterfaceProtocol value
1065 *
1066 * This macro is used to create a struct usb_device_id that matches a
1067 * specific interface protocol of devices.
1068 */
1069 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1070 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1071 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1072 .idVendor = (vend), \
1073 .idProduct = (prod), \
1074 .bInterfaceProtocol = (pr)
1075
1076 /**
1077 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1078 * @vend: the 16 bit USB Vendor ID
1079 * @prod: the 16 bit USB Product ID
1080 * @num: bInterfaceNumber value
1081 *
1082 * This macro is used to create a struct usb_device_id that matches a
1083 * specific interface number of devices.
1084 */
1085 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1086 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1087 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1088 .idVendor = (vend), \
1089 .idProduct = (prod), \
1090 .bInterfaceNumber = (num)
1091
1092 /**
1093 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1094 * @cl: bDeviceClass value
1095 * @sc: bDeviceSubClass value
1096 * @pr: bDeviceProtocol value
1097 *
1098 * This macro is used to create a struct usb_device_id that matches a
1099 * specific class of devices.
1100 */
1101 #define USB_DEVICE_INFO(cl, sc, pr) \
1102 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1103 .bDeviceClass = (cl), \
1104 .bDeviceSubClass = (sc), \
1105 .bDeviceProtocol = (pr)
1106
1107 /**
1108 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1109 * @cl: bInterfaceClass value
1110 * @sc: bInterfaceSubClass value
1111 * @pr: bInterfaceProtocol value
1112 *
1113 * This macro is used to create a struct usb_device_id that matches a
1114 * specific class of interfaces.
1115 */
1116 #define USB_INTERFACE_INFO(cl, sc, pr) \
1117 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1118 .bInterfaceClass = (cl), \
1119 .bInterfaceSubClass = (sc), \
1120 .bInterfaceProtocol = (pr)
1121
1122 /**
1123 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1124 * @vend: the 16 bit USB Vendor ID
1125 * @prod: the 16 bit USB Product ID
1126 * @cl: bInterfaceClass value
1127 * @sc: bInterfaceSubClass value
1128 * @pr: bInterfaceProtocol value
1129 *
1130 * This macro is used to create a struct usb_device_id that matches a
1131 * specific device with a specific class of interfaces.
1132 *
1133 * This is especially useful when explicitly matching devices that have
1134 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1135 */
1136 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1137 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1138 | USB_DEVICE_ID_MATCH_DEVICE, \
1139 .idVendor = (vend), \
1140 .idProduct = (prod), \
1141 .bInterfaceClass = (cl), \
1142 .bInterfaceSubClass = (sc), \
1143 .bInterfaceProtocol = (pr)
1144
1145 /**
1146 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1147 * @vend: the 16 bit USB Vendor ID
1148 * @cl: bInterfaceClass value
1149 * @sc: bInterfaceSubClass value
1150 * @pr: bInterfaceProtocol value
1151 *
1152 * This macro is used to create a struct usb_device_id that matches a
1153 * specific vendor with a specific class of interfaces.
1154 *
1155 * This is especially useful when explicitly matching devices that have
1156 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1157 */
1158 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1159 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1160 | USB_DEVICE_ID_MATCH_VENDOR, \
1161 .idVendor = (vend), \
1162 .bInterfaceClass = (cl), \
1163 .bInterfaceSubClass = (sc), \
1164 .bInterfaceProtocol = (pr)
1165
1166 /* ----------------------------------------------------------------------- */
1167
1168 /* Stuff for dynamic usb ids */
1169 struct usb_dynids {
1170 spinlock_t lock;
1171 struct list_head list;
1172 };
1173
1174 struct usb_dynid {
1175 struct list_head node;
1176 struct usb_device_id id;
1177 };
1178
1179 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1180 const struct usb_device_id *id_table,
1181 struct device_driver *driver,
1182 const char *buf, size_t count);
1183
1184 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1185
1186 /**
1187 * struct usb_driver - identifies USB interface driver to usbcore
1188 * @name: The driver name should be unique among USB drivers,
1189 * and should normally be the same as the module name.
1190 * @probe: Called to see if the driver is willing to manage a particular
1191 * interface on a device. If it is, probe returns zero and uses
1192 * usb_set_intfdata() to associate driver-specific data with the
1193 * interface. It may also use usb_set_interface() to specify the
1194 * appropriate altsetting. If unwilling to manage the interface,
1195 * return -ENODEV, if genuine IO errors occurred, an appropriate
1196 * negative errno value.
1197 * @disconnect: Called when the interface is no longer accessible, usually
1198 * because its device has been (or is being) disconnected or the
1199 * driver module is being unloaded.
1200 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1201 * the "usbfs" filesystem. This lets devices provide ways to
1202 * expose information to user space regardless of where they
1203 * do (or don't) show up otherwise in the filesystem.
1204 * @suspend: Called when the device is going to be suspended by the
1205 * system either from system sleep or runtime suspend context. The
1206 * return value will be ignored in system sleep context, so do NOT
1207 * try to continue using the device if suspend fails in this case.
1208 * Instead, let the resume or reset-resume routine recover from
1209 * the failure.
1210 * @resume: Called when the device is being resumed by the system.
1211 * @reset_resume: Called when the suspended device has been reset instead
1212 * of being resumed.
1213 * @pre_reset: Called by usb_reset_device() when the device is about to be
1214 * reset. This routine must not return until the driver has no active
1215 * URBs for the device, and no more URBs may be submitted until the
1216 * post_reset method is called.
1217 * @post_reset: Called by usb_reset_device() after the device
1218 * has been reset
1219 * @shutdown: Called at shut-down time to quiesce the device.
1220 * @id_table: USB drivers use ID table to support hotplugging.
1221 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1222 * or your driver's probe function will never get called.
1223 * @dev_groups: Attributes attached to the device that will be created once it
1224 * is bound to the driver.
1225 * @dynids: used internally to hold the list of dynamically added device
1226 * ids for this driver.
1227 * @driver: The driver-model core driver structure.
1228 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1229 * added to this driver by preventing the sysfs file from being created.
1230 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1231 * for interfaces bound to this driver.
1232 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1233 * endpoints before calling the driver's disconnect method.
1234 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1235 * to initiate lower power link state transitions when an idle timeout
1236 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1237 *
1238 * USB interface drivers must provide a name, probe() and disconnect()
1239 * methods, and an id_table. Other driver fields are optional.
1240 *
1241 * The id_table is used in hotplugging. It holds a set of descriptors,
1242 * and specialized data may be associated with each entry. That table
1243 * is used by both user and kernel mode hotplugging support.
1244 *
1245 * The probe() and disconnect() methods are called in a context where
1246 * they can sleep, but they should avoid abusing the privilege. Most
1247 * work to connect to a device should be done when the device is opened,
1248 * and undone at the last close. The disconnect code needs to address
1249 * concurrency issues with respect to open() and close() methods, as
1250 * well as forcing all pending I/O requests to complete (by unlinking
1251 * them as necessary, and blocking until the unlinks complete).
1252 */
1253 struct usb_driver {
1254 const char *name;
1255
1256 int (*probe) (struct usb_interface *intf,
1257 const struct usb_device_id *id);
1258
1259 void (*disconnect) (struct usb_interface *intf);
1260
1261 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1262 void *buf);
1263
1264 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1265 int (*resume) (struct usb_interface *intf);
1266 int (*reset_resume)(struct usb_interface *intf);
1267
1268 int (*pre_reset)(struct usb_interface *intf);
1269 int (*post_reset)(struct usb_interface *intf);
1270
1271 void (*shutdown)(struct usb_interface *intf);
1272
1273 const struct usb_device_id *id_table;
1274 const struct attribute_group **dev_groups;
1275
1276 struct usb_dynids dynids;
1277 struct device_driver driver;
1278 unsigned int no_dynamic_id:1;
1279 unsigned int supports_autosuspend:1;
1280 unsigned int disable_hub_initiated_lpm:1;
1281 unsigned int soft_unbind:1;
1282
1283 ANDROID_KABI_RESERVE(1);
1284 ANDROID_KABI_RESERVE(2);
1285 ANDROID_KABI_RESERVE(3);
1286 ANDROID_KABI_RESERVE(4);
1287 };
1288 #define to_usb_driver(d) container_of(d, struct usb_driver, driver)
1289
1290 /**
1291 * struct usb_device_driver - identifies USB device driver to usbcore
1292 * @name: The driver name should be unique among USB drivers,
1293 * and should normally be the same as the module name.
1294 * @match: If set, used for better device/driver matching.
1295 * @probe: Called to see if the driver is willing to manage a particular
1296 * device. If it is, probe returns zero and uses dev_set_drvdata()
1297 * to associate driver-specific data with the device. If unwilling
1298 * to manage the device, return a negative errno value.
1299 * @disconnect: Called when the device is no longer accessible, usually
1300 * because it has been (or is being) disconnected or the driver's
1301 * module is being unloaded.
1302 * @suspend: Called when the device is going to be suspended by the system.
1303 * @resume: Called when the device is being resumed by the system.
1304 * @choose_configuration: If non-NULL, called instead of the default
1305 * usb_choose_configuration(). If this returns an error then we'll go
1306 * on to call the normal usb_choose_configuration().
1307 * @dev_groups: Attributes attached to the device that will be created once it
1308 * is bound to the driver.
1309 * @driver: The driver-model core driver structure.
1310 * @id_table: used with @match() to select better matching driver at
1311 * probe() time.
1312 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1313 * for devices bound to this driver.
1314 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1315 * resume and suspend functions will be called in addition to the driver's
1316 * own, so this part of the setup does not need to be replicated.
1317 *
1318 * USB drivers must provide all the fields listed above except driver,
1319 * match, and id_table.
1320 */
1321 struct usb_device_driver {
1322 const char *name;
1323
1324 bool (*match) (struct usb_device *udev);
1325 int (*probe) (struct usb_device *udev);
1326 void (*disconnect) (struct usb_device *udev);
1327
1328 int (*suspend) (struct usb_device *udev, pm_message_t message);
1329 int (*resume) (struct usb_device *udev, pm_message_t message);
1330
1331 int (*choose_configuration) (struct usb_device *udev);
1332
1333 const struct attribute_group **dev_groups;
1334 struct device_driver driver;
1335 const struct usb_device_id *id_table;
1336 unsigned int supports_autosuspend:1;
1337 unsigned int generic_subclass:1;
1338 };
1339 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1340 driver)
1341
1342 /**
1343 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1344 * @name: the usb class device name for this driver. Will show up in sysfs.
1345 * @devnode: Callback to provide a naming hint for a possible
1346 * device node to create.
1347 * @fops: pointer to the struct file_operations of this driver.
1348 * @minor_base: the start of the minor range for this driver.
1349 *
1350 * This structure is used for the usb_register_dev() and
1351 * usb_deregister_dev() functions, to consolidate a number of the
1352 * parameters used for them.
1353 */
1354 struct usb_class_driver {
1355 char *name;
1356 char *(*devnode)(const struct device *dev, umode_t *mode);
1357 const struct file_operations *fops;
1358 int minor_base;
1359 };
1360
1361 /*
1362 * use these in module_init()/module_exit()
1363 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1364 */
1365 extern int usb_register_driver(struct usb_driver *, struct module *,
1366 const char *);
1367
1368 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1369 #define usb_register(driver) \
1370 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1371
1372 extern void usb_deregister(struct usb_driver *);
1373
1374 /**
1375 * module_usb_driver() - Helper macro for registering a USB driver
1376 * @__usb_driver: usb_driver struct
1377 *
1378 * Helper macro for USB drivers which do not do anything special in module
1379 * init/exit. This eliminates a lot of boilerplate. Each module may only
1380 * use this macro once, and calling it replaces module_init() and module_exit()
1381 */
1382 #define module_usb_driver(__usb_driver) \
1383 module_driver(__usb_driver, usb_register, \
1384 usb_deregister)
1385
1386 extern int usb_register_device_driver(struct usb_device_driver *,
1387 struct module *);
1388 extern void usb_deregister_device_driver(struct usb_device_driver *);
1389
1390 extern int usb_register_dev(struct usb_interface *intf,
1391 struct usb_class_driver *class_driver);
1392 extern void usb_deregister_dev(struct usb_interface *intf,
1393 struct usb_class_driver *class_driver);
1394
1395 extern int usb_disabled(void);
1396
1397 /* ----------------------------------------------------------------------- */
1398
1399 /*
1400 * URB support, for asynchronous request completions
1401 */
1402
1403 /*
1404 * urb->transfer_flags:
1405 *
1406 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1407 */
1408 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1409 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1410 * slot in the schedule */
1411 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1412 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1413 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1414 * needed */
1415 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1416
1417 /* The following flags are used internally by usbcore and HCDs */
1418 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1419 #define URB_DIR_OUT 0
1420 #define URB_DIR_MASK URB_DIR_IN
1421
1422 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1423 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1424 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1425 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1426 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1427 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1428 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1429 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1430
1431 struct usb_iso_packet_descriptor {
1432 unsigned int offset;
1433 unsigned int length; /* expected length */
1434 unsigned int actual_length;
1435 int status;
1436 };
1437
1438 struct urb;
1439
1440 struct usb_anchor {
1441 struct list_head urb_list;
1442 wait_queue_head_t wait;
1443 spinlock_t lock;
1444 atomic_t suspend_wakeups;
1445 unsigned int poisoned:1;
1446 };
1447
init_usb_anchor(struct usb_anchor * anchor)1448 static inline void init_usb_anchor(struct usb_anchor *anchor)
1449 {
1450 memset(anchor, 0, sizeof(*anchor));
1451 INIT_LIST_HEAD(&anchor->urb_list);
1452 init_waitqueue_head(&anchor->wait);
1453 spin_lock_init(&anchor->lock);
1454 }
1455
1456 typedef void (*usb_complete_t)(struct urb *);
1457
1458 /**
1459 * struct urb - USB Request Block
1460 * @urb_list: For use by current owner of the URB.
1461 * @anchor_list: membership in the list of an anchor
1462 * @anchor: to anchor URBs to a common mooring
1463 * @ep: Points to the endpoint's data structure. Will eventually
1464 * replace @pipe.
1465 * @pipe: Holds endpoint number, direction, type, and more.
1466 * Create these values with the eight macros available;
1467 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1468 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1469 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1470 * numbers range from zero to fifteen. Note that "in" endpoint two
1471 * is a different endpoint (and pipe) from "out" endpoint two.
1472 * The current configuration controls the existence, type, and
1473 * maximum packet size of any given endpoint.
1474 * @stream_id: the endpoint's stream ID for bulk streams
1475 * @dev: Identifies the USB device to perform the request.
1476 * @status: This is read in non-iso completion functions to get the
1477 * status of the particular request. ISO requests only use it
1478 * to tell whether the URB was unlinked; detailed status for
1479 * each frame is in the fields of the iso_frame-desc.
1480 * @transfer_flags: A variety of flags may be used to affect how URB
1481 * submission, unlinking, or operation are handled. Different
1482 * kinds of URB can use different flags.
1483 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1484 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1485 * (however, do not leave garbage in transfer_buffer even then).
1486 * This buffer must be suitable for DMA; allocate it with
1487 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1488 * of this buffer will be modified. This buffer is used for the data
1489 * stage of control transfers.
1490 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1491 * the device driver is saying that it provided this DMA address,
1492 * which the host controller driver should use in preference to the
1493 * transfer_buffer.
1494 * @sg: scatter gather buffer list, the buffer size of each element in
1495 * the list (except the last) must be divisible by the endpoint's
1496 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1497 * @num_mapped_sgs: (internal) number of mapped sg entries
1498 * @num_sgs: number of entries in the sg list
1499 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1500 * be broken up into chunks according to the current maximum packet
1501 * size for the endpoint, which is a function of the configuration
1502 * and is encoded in the pipe. When the length is zero, neither
1503 * transfer_buffer nor transfer_dma is used.
1504 * @actual_length: This is read in non-iso completion functions, and
1505 * it tells how many bytes (out of transfer_buffer_length) were
1506 * transferred. It will normally be the same as requested, unless
1507 * either an error was reported or a short read was performed.
1508 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1509 * short reads be reported as errors.
1510 * @setup_packet: Only used for control transfers, this points to eight bytes
1511 * of setup data. Control transfers always start by sending this data
1512 * to the device. Then transfer_buffer is read or written, if needed.
1513 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1514 * this field; setup_packet must point to a valid buffer.
1515 * @start_frame: Returns the initial frame for isochronous transfers.
1516 * @number_of_packets: Lists the number of ISO transfer buffers.
1517 * @interval: Specifies the polling interval for interrupt or isochronous
1518 * transfers. The units are frames (milliseconds) for full and low
1519 * speed devices, and microframes (1/8 millisecond) for highspeed
1520 * and SuperSpeed devices.
1521 * @error_count: Returns the number of ISO transfers that reported errors.
1522 * @context: For use in completion functions. This normally points to
1523 * request-specific driver context.
1524 * @complete: Completion handler. This URB is passed as the parameter to the
1525 * completion function. The completion function may then do what
1526 * it likes with the URB, including resubmitting or freeing it.
1527 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1528 * collect the transfer status for each buffer.
1529 *
1530 * This structure identifies USB transfer requests. URBs must be allocated by
1531 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1532 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1533 * are submitted using usb_submit_urb(), and pending requests may be canceled
1534 * using usb_unlink_urb() or usb_kill_urb().
1535 *
1536 * Data Transfer Buffers:
1537 *
1538 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1539 * taken from the general page pool. That is provided by transfer_buffer
1540 * (control requests also use setup_packet), and host controller drivers
1541 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1542 * mapping operations can be expensive on some platforms (perhaps using a dma
1543 * bounce buffer or talking to an IOMMU),
1544 * although they're cheap on commodity x86 and ppc hardware.
1545 *
1546 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1547 * which tells the host controller driver that no such mapping is needed for
1548 * the transfer_buffer since
1549 * the device driver is DMA-aware. For example, a device driver might
1550 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1551 * When this transfer flag is provided, host controller drivers will
1552 * attempt to use the dma address found in the transfer_dma
1553 * field rather than determining a dma address themselves.
1554 *
1555 * Note that transfer_buffer must still be set if the controller
1556 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1557 * to root hub. If you have to transfer between highmem zone and the device
1558 * on such controller, create a bounce buffer or bail out with an error.
1559 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1560 * capable, assign NULL to it, so that usbmon knows not to use the value.
1561 * The setup_packet must always be set, so it cannot be located in highmem.
1562 *
1563 * Initialization:
1564 *
1565 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1566 * zero), and complete fields. All URBs must also initialize
1567 * transfer_buffer and transfer_buffer_length. They may provide the
1568 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1569 * to be treated as errors; that flag is invalid for write requests.
1570 *
1571 * Bulk URBs may
1572 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1573 * should always terminate with a short packet, even if it means adding an
1574 * extra zero length packet.
1575 *
1576 * Control URBs must provide a valid pointer in the setup_packet field.
1577 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1578 * beforehand.
1579 *
1580 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1581 * or, for highspeed devices, 125 microsecond units)
1582 * to poll for transfers. After the URB has been submitted, the interval
1583 * field reflects how the transfer was actually scheduled.
1584 * The polling interval may be more frequent than requested.
1585 * For example, some controllers have a maximum interval of 32 milliseconds,
1586 * while others support intervals of up to 1024 milliseconds.
1587 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1588 * endpoints, as well as high speed interrupt endpoints, the encoding of
1589 * the transfer interval in the endpoint descriptor is logarithmic.
1590 * Device drivers must convert that value to linear units themselves.)
1591 *
1592 * If an isochronous endpoint queue isn't already running, the host
1593 * controller will schedule a new URB to start as soon as bandwidth
1594 * utilization allows. If the queue is running then a new URB will be
1595 * scheduled to start in the first transfer slot following the end of the
1596 * preceding URB, if that slot has not already expired. If the slot has
1597 * expired (which can happen when IRQ delivery is delayed for a long time),
1598 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1599 * is clear then the URB will be scheduled to start in the expired slot,
1600 * implying that some of its packets will not be transferred; if the flag
1601 * is set then the URB will be scheduled in the first unexpired slot,
1602 * breaking the queue's synchronization. Upon URB completion, the
1603 * start_frame field will be set to the (micro)frame number in which the
1604 * transfer was scheduled. Ranges for frame counter values are HC-specific
1605 * and can go from as low as 256 to as high as 65536 frames.
1606 *
1607 * Isochronous URBs have a different data transfer model, in part because
1608 * the quality of service is only "best effort". Callers provide specially
1609 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1610 * at the end. Each such packet is an individual ISO transfer. Isochronous
1611 * URBs are normally queued, submitted by drivers to arrange that
1612 * transfers are at least double buffered, and then explicitly resubmitted
1613 * in completion handlers, so
1614 * that data (such as audio or video) streams at as constant a rate as the
1615 * host controller scheduler can support.
1616 *
1617 * Completion Callbacks:
1618 *
1619 * The completion callback is made in_interrupt(), and one of the first
1620 * things that a completion handler should do is check the status field.
1621 * The status field is provided for all URBs. It is used to report
1622 * unlinked URBs, and status for all non-ISO transfers. It should not
1623 * be examined before the URB is returned to the completion handler.
1624 *
1625 * The context field is normally used to link URBs back to the relevant
1626 * driver or request state.
1627 *
1628 * When the completion callback is invoked for non-isochronous URBs, the
1629 * actual_length field tells how many bytes were transferred. This field
1630 * is updated even when the URB terminated with an error or was unlinked.
1631 *
1632 * ISO transfer status is reported in the status and actual_length fields
1633 * of the iso_frame_desc array, and the number of errors is reported in
1634 * error_count. Completion callbacks for ISO transfers will normally
1635 * (re)submit URBs to ensure a constant transfer rate.
1636 *
1637 * Note that even fields marked "public" should not be touched by the driver
1638 * when the urb is owned by the hcd, that is, since the call to
1639 * usb_submit_urb() till the entry into the completion routine.
1640 */
1641 struct urb {
1642 /* private: usb core and host controller only fields in the urb */
1643 struct kref kref; /* reference count of the URB */
1644 int unlinked; /* unlink error code */
1645 void *hcpriv; /* private data for host controller */
1646 atomic_t use_count; /* concurrent submissions counter */
1647 atomic_t reject; /* submissions will fail */
1648
1649 /* public: documented fields in the urb that can be used by drivers */
1650 struct list_head urb_list; /* list head for use by the urb's
1651 * current owner */
1652 struct list_head anchor_list; /* the URB may be anchored */
1653 struct usb_anchor *anchor;
1654 struct usb_device *dev; /* (in) pointer to associated device */
1655 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1656 unsigned int pipe; /* (in) pipe information */
1657 unsigned int stream_id; /* (in) stream ID */
1658 int status; /* (return) non-ISO status */
1659 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1660 void *transfer_buffer; /* (in) associated data buffer */
1661 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1662 struct scatterlist *sg; /* (in) scatter gather buffer list */
1663 int num_mapped_sgs; /* (internal) mapped sg entries */
1664 int num_sgs; /* (in) number of entries in the sg list */
1665 u32 transfer_buffer_length; /* (in) data buffer length */
1666 u32 actual_length; /* (return) actual transfer length */
1667 unsigned char *setup_packet; /* (in) setup packet (control only) */
1668 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1669 int start_frame; /* (modify) start frame (ISO) */
1670 int number_of_packets; /* (in) number of ISO packets */
1671 int interval; /* (modify) transfer interval
1672 * (INT/ISO) */
1673 int error_count; /* (return) number of ISO errors */
1674 void *context; /* (in) context for completion */
1675 usb_complete_t complete; /* (in) completion routine */
1676
1677 ANDROID_KABI_RESERVE(1);
1678 ANDROID_KABI_RESERVE(2);
1679 ANDROID_KABI_RESERVE(3);
1680 ANDROID_KABI_RESERVE(4);
1681
1682 struct usb_iso_packet_descriptor iso_frame_desc[];
1683 /* (in) ISO ONLY */
1684 };
1685
1686 /* ----------------------------------------------------------------------- */
1687
1688 /**
1689 * usb_fill_control_urb - initializes a control urb
1690 * @urb: pointer to the urb to initialize.
1691 * @dev: pointer to the struct usb_device for this urb.
1692 * @pipe: the endpoint pipe
1693 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1694 * suitable for DMA.
1695 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1696 * suitable for DMA.
1697 * @buffer_length: length of the transfer buffer
1698 * @complete_fn: pointer to the usb_complete_t function
1699 * @context: what to set the urb context to.
1700 *
1701 * Initializes a control urb with the proper information needed to submit
1702 * it to a device.
1703 *
1704 * The transfer buffer and the setup_packet buffer will most likely be filled
1705 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1706 * allocating it via kmalloc() or equivalent, even for very small buffers.
1707 * If the buffers are embedded in a bigger structure, there is a risk that
1708 * the buffer itself, the previous fields and/or the next fields are corrupted
1709 * due to cache incoherencies; or slowed down if they are evicted from the
1710 * cache. For more information, check &struct urb.
1711 *
1712 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1713 static inline void usb_fill_control_urb(struct urb *urb,
1714 struct usb_device *dev,
1715 unsigned int pipe,
1716 unsigned char *setup_packet,
1717 void *transfer_buffer,
1718 int buffer_length,
1719 usb_complete_t complete_fn,
1720 void *context)
1721 {
1722 urb->dev = dev;
1723 urb->pipe = pipe;
1724 urb->setup_packet = setup_packet;
1725 urb->transfer_buffer = transfer_buffer;
1726 urb->transfer_buffer_length = buffer_length;
1727 urb->complete = complete_fn;
1728 urb->context = context;
1729 }
1730
1731 /**
1732 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1733 * @urb: pointer to the urb to initialize.
1734 * @dev: pointer to the struct usb_device for this urb.
1735 * @pipe: the endpoint pipe
1736 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1737 * suitable for DMA.
1738 * @buffer_length: length of the transfer buffer
1739 * @complete_fn: pointer to the usb_complete_t function
1740 * @context: what to set the urb context to.
1741 *
1742 * Initializes a bulk urb with the proper information needed to submit it
1743 * to a device.
1744 *
1745 * Refer to usb_fill_control_urb() for a description of the requirements for
1746 * transfer_buffer.
1747 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1748 static inline void usb_fill_bulk_urb(struct urb *urb,
1749 struct usb_device *dev,
1750 unsigned int pipe,
1751 void *transfer_buffer,
1752 int buffer_length,
1753 usb_complete_t complete_fn,
1754 void *context)
1755 {
1756 urb->dev = dev;
1757 urb->pipe = pipe;
1758 urb->transfer_buffer = transfer_buffer;
1759 urb->transfer_buffer_length = buffer_length;
1760 urb->complete = complete_fn;
1761 urb->context = context;
1762 }
1763
1764 /**
1765 * usb_fill_int_urb - macro to help initialize a interrupt urb
1766 * @urb: pointer to the urb to initialize.
1767 * @dev: pointer to the struct usb_device for this urb.
1768 * @pipe: the endpoint pipe
1769 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1770 * suitable for DMA.
1771 * @buffer_length: length of the transfer buffer
1772 * @complete_fn: pointer to the usb_complete_t function
1773 * @context: what to set the urb context to.
1774 * @interval: what to set the urb interval to, encoded like
1775 * the endpoint descriptor's bInterval value.
1776 *
1777 * Initializes a interrupt urb with the proper information needed to submit
1778 * it to a device.
1779 *
1780 * Refer to usb_fill_control_urb() for a description of the requirements for
1781 * transfer_buffer.
1782 *
1783 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1784 * encoding of the endpoint interval, and express polling intervals in
1785 * microframes (eight per millisecond) rather than in frames (one per
1786 * millisecond).
1787 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1788 static inline void usb_fill_int_urb(struct urb *urb,
1789 struct usb_device *dev,
1790 unsigned int pipe,
1791 void *transfer_buffer,
1792 int buffer_length,
1793 usb_complete_t complete_fn,
1794 void *context,
1795 int interval)
1796 {
1797 urb->dev = dev;
1798 urb->pipe = pipe;
1799 urb->transfer_buffer = transfer_buffer;
1800 urb->transfer_buffer_length = buffer_length;
1801 urb->complete = complete_fn;
1802 urb->context = context;
1803
1804 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1805 /* make sure interval is within allowed range */
1806 interval = clamp(interval, 1, 16);
1807
1808 urb->interval = 1 << (interval - 1);
1809 } else {
1810 urb->interval = interval;
1811 }
1812
1813 urb->start_frame = -1;
1814 }
1815
1816 extern void usb_init_urb(struct urb *urb);
1817 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1818 extern void usb_free_urb(struct urb *urb);
1819 #define usb_put_urb usb_free_urb
1820 extern struct urb *usb_get_urb(struct urb *urb);
1821 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1822 extern int usb_unlink_urb(struct urb *urb);
1823 extern void usb_kill_urb(struct urb *urb);
1824 extern void usb_poison_urb(struct urb *urb);
1825 extern void usb_unpoison_urb(struct urb *urb);
1826 extern void usb_block_urb(struct urb *urb);
1827 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1828 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1829 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1830 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1831 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1832 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1833 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1834 extern void usb_unanchor_urb(struct urb *urb);
1835 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1836 unsigned int timeout);
1837 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1838 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1839 extern int usb_anchor_empty(struct usb_anchor *anchor);
1840
1841 #define usb_unblock_urb usb_unpoison_urb
1842
1843 /**
1844 * usb_urb_dir_in - check if an URB describes an IN transfer
1845 * @urb: URB to be checked
1846 *
1847 * Return: 1 if @urb describes an IN transfer (device-to-host),
1848 * otherwise 0.
1849 */
usb_urb_dir_in(struct urb * urb)1850 static inline int usb_urb_dir_in(struct urb *urb)
1851 {
1852 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1853 }
1854
1855 /**
1856 * usb_urb_dir_out - check if an URB describes an OUT transfer
1857 * @urb: URB to be checked
1858 *
1859 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1860 * otherwise 0.
1861 */
usb_urb_dir_out(struct urb * urb)1862 static inline int usb_urb_dir_out(struct urb *urb)
1863 {
1864 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1865 }
1866
1867 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1868 int usb_urb_ep_type_check(const struct urb *urb);
1869
1870 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1871 gfp_t mem_flags, dma_addr_t *dma);
1872 void usb_free_coherent(struct usb_device *dev, size_t size,
1873 void *addr, dma_addr_t dma);
1874
1875 /*-------------------------------------------------------------------*
1876 * SYNCHRONOUS CALL SUPPORT *
1877 *-------------------------------------------------------------------*/
1878
1879 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1880 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1881 void *data, __u16 size, int timeout);
1882 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1883 void *data, int len, int *actual_length, int timeout);
1884 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1885 void *data, int len, int *actual_length,
1886 int timeout);
1887
1888 /* wrappers around usb_control_msg() for the most common standard requests */
1889 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1890 __u8 requesttype, __u16 value, __u16 index,
1891 const void *data, __u16 size, int timeout,
1892 gfp_t memflags);
1893 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1894 __u8 requesttype, __u16 value, __u16 index,
1895 void *data, __u16 size, int timeout,
1896 gfp_t memflags);
1897 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1898 unsigned char descindex, void *buf, int size);
1899 extern int usb_get_status(struct usb_device *dev,
1900 int recip, int type, int target, void *data);
1901
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1902 static inline int usb_get_std_status(struct usb_device *dev,
1903 int recip, int target, void *data)
1904 {
1905 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1906 data);
1907 }
1908
usb_get_ptm_status(struct usb_device * dev,void * data)1909 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1910 {
1911 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1912 0, data);
1913 }
1914
1915 extern int usb_string(struct usb_device *dev, int index,
1916 char *buf, size_t size);
1917 extern char *usb_cache_string(struct usb_device *udev, int index);
1918
1919 /* wrappers that also update important state inside usbcore */
1920 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1921 extern int usb_reset_configuration(struct usb_device *dev);
1922 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1923 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1924
1925 /* this request isn't really synchronous, but it belongs with the others */
1926 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1927
1928 /* choose and set configuration for device */
1929 extern int usb_choose_configuration(struct usb_device *udev);
1930 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1931
1932 /*
1933 * timeouts, in milliseconds, used for sending/receiving control messages
1934 * they typically complete within a few frames (msec) after they're issued
1935 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1936 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1937 */
1938 #define USB_CTRL_GET_TIMEOUT 5000
1939 #define USB_CTRL_SET_TIMEOUT 5000
1940
1941
1942 /**
1943 * struct usb_sg_request - support for scatter/gather I/O
1944 * @status: zero indicates success, else negative errno
1945 * @bytes: counts bytes transferred.
1946 *
1947 * These requests are initialized using usb_sg_init(), and then are used
1948 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1949 * members of the request object aren't for driver access.
1950 *
1951 * The status and bytecount values are valid only after usb_sg_wait()
1952 * returns. If the status is zero, then the bytecount matches the total
1953 * from the request.
1954 *
1955 * After an error completion, drivers may need to clear a halt condition
1956 * on the endpoint.
1957 */
1958 struct usb_sg_request {
1959 int status;
1960 size_t bytes;
1961
1962 /* private:
1963 * members below are private to usbcore,
1964 * and are not provided for driver access!
1965 */
1966 spinlock_t lock;
1967
1968 struct usb_device *dev;
1969 int pipe;
1970
1971 int entries;
1972 struct urb **urbs;
1973
1974 int count;
1975 struct completion complete;
1976 };
1977
1978 int usb_sg_init(
1979 struct usb_sg_request *io,
1980 struct usb_device *dev,
1981 unsigned pipe,
1982 unsigned period,
1983 struct scatterlist *sg,
1984 int nents,
1985 size_t length,
1986 gfp_t mem_flags
1987 );
1988 void usb_sg_cancel(struct usb_sg_request *io);
1989 void usb_sg_wait(struct usb_sg_request *io);
1990
1991
1992 /* ----------------------------------------------------------------------- */
1993
1994 /*
1995 * For various legacy reasons, Linux has a small cookie that's paired with
1996 * a struct usb_device to identify an endpoint queue. Queue characteristics
1997 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1998 * an unsigned int encoded as:
1999 *
2000 * - direction: bit 7 (0 = Host-to-Device [Out],
2001 * 1 = Device-to-Host [In] ...
2002 * like endpoint bEndpointAddress)
2003 * - device address: bits 8-14 ... bit positions known to uhci-hcd
2004 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
2005 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
2006 * 10 = control, 11 = bulk)
2007 *
2008 * Given the device address and endpoint descriptor, pipes are redundant.
2009 */
2010
2011 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
2012 /* (yet ... they're the values used by usbfs) */
2013 #define PIPE_ISOCHRONOUS 0
2014 #define PIPE_INTERRUPT 1
2015 #define PIPE_CONTROL 2
2016 #define PIPE_BULK 3
2017
2018 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
2019 #define usb_pipeout(pipe) (!usb_pipein(pipe))
2020
2021 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
2022 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
2023
2024 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
2025 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
2026 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
2027 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
2028 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
2029
__create_pipe(struct usb_device * dev,unsigned int endpoint)2030 static inline unsigned int __create_pipe(struct usb_device *dev,
2031 unsigned int endpoint)
2032 {
2033 return (dev->devnum << 8) | (endpoint << 15);
2034 }
2035
2036 /* Create various pipes... */
2037 #define usb_sndctrlpipe(dev, endpoint) \
2038 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2039 #define usb_rcvctrlpipe(dev, endpoint) \
2040 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2041 #define usb_sndisocpipe(dev, endpoint) \
2042 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2043 #define usb_rcvisocpipe(dev, endpoint) \
2044 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2045 #define usb_sndbulkpipe(dev, endpoint) \
2046 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2047 #define usb_rcvbulkpipe(dev, endpoint) \
2048 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2049 #define usb_sndintpipe(dev, endpoint) \
2050 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2051 #define usb_rcvintpipe(dev, endpoint) \
2052 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2053
2054 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2055 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2056 {
2057 struct usb_host_endpoint **eps;
2058 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2059 return eps[usb_pipeendpoint(pipe)];
2060 }
2061
usb_maxpacket(struct usb_device * udev,int pipe)2062 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2063 {
2064 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2065
2066 if (!ep)
2067 return 0;
2068
2069 /* NOTE: only 0x07ff bits are for packet size... */
2070 return usb_endpoint_maxp(&ep->desc);
2071 }
2072
2073 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2074 static inline int usb_translate_errors(int error_code)
2075 {
2076 switch (error_code) {
2077 case 0:
2078 case -ENOMEM:
2079 case -ENODEV:
2080 case -EOPNOTSUPP:
2081 return error_code;
2082 default:
2083 return -EIO;
2084 }
2085 }
2086
2087 /* Events from the usb core */
2088 #define USB_DEVICE_ADD 0x0001
2089 #define USB_DEVICE_REMOVE 0x0002
2090 #define USB_BUS_ADD 0x0003
2091 #define USB_BUS_REMOVE 0x0004
2092 extern void usb_register_notify(struct notifier_block *nb);
2093 extern void usb_unregister_notify(struct notifier_block *nb);
2094
2095 /* debugfs stuff */
2096 extern struct dentry *usb_debug_root;
2097
2098 /* LED triggers */
2099 enum usb_led_event {
2100 USB_LED_EVENT_HOST = 0,
2101 USB_LED_EVENT_GADGET = 1,
2102 };
2103
2104 #ifdef CONFIG_USB_LED_TRIG
2105 extern void usb_led_activity(enum usb_led_event ev);
2106 #else
usb_led_activity(enum usb_led_event ev)2107 static inline void usb_led_activity(enum usb_led_event ev) {}
2108 #endif
2109
2110 #endif /* __KERNEL__ */
2111
2112 #endif
2113