1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 #include <trace/hooks/blk.h>
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mhash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58 
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 	if (!str)
63 		return 0;
64 	mphash_entries = simple_strtoul(str, &str, 0);
65 	return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68 
69 static u64 event;
70 static DEFINE_IDA(mnt_id_ida);
71 static DEFINE_IDA(mnt_group_ida);
72 
73 /* Don't allow confusion with old 32bit mount ID */
74 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
75 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
76 
77 static struct hlist_head *mount_hashtable __ro_after_init;
78 static struct hlist_head *mountpoint_hashtable __ro_after_init;
79 static struct kmem_cache *mnt_cache __ro_after_init;
80 static DECLARE_RWSEM(namespace_sem);
81 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
82 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
83 static DEFINE_RWLOCK(mnt_ns_tree_lock);
84 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
85 
86 struct mount_kattr {
87 	unsigned int attr_set;
88 	unsigned int attr_clr;
89 	unsigned int propagation;
90 	unsigned int lookup_flags;
91 	bool recurse;
92 	struct user_namespace *mnt_userns;
93 	struct mnt_idmap *mnt_idmap;
94 };
95 
96 /* /sys/fs */
97 struct kobject *fs_kobj __ro_after_init;
98 EXPORT_SYMBOL_GPL(fs_kobj);
99 
100 /*
101  * vfsmount lock may be taken for read to prevent changes to the
102  * vfsmount hash, ie. during mountpoint lookups or walking back
103  * up the tree.
104  *
105  * It should be taken for write in all cases where the vfsmount
106  * tree or hash is modified or when a vfsmount structure is modified.
107  */
108 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
109 
mnt_ns_cmp(u64 seq,const struct mnt_namespace * ns)110 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
111 {
112 	u64 seq_b = ns->seq;
113 
114 	if (seq < seq_b)
115 		return -1;
116 	if (seq > seq_b)
117 		return 1;
118 	return 0;
119 }
120 
node_to_mnt_ns(const struct rb_node * node)121 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
122 {
123 	if (!node)
124 		return NULL;
125 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
126 }
127 
mnt_ns_less(struct rb_node * a,const struct rb_node * b)128 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
129 {
130 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
131 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
132 	u64 seq_a = ns_a->seq;
133 
134 	return mnt_ns_cmp(seq_a, ns_b) < 0;
135 }
136 
mnt_ns_tree_add(struct mnt_namespace * ns)137 static void mnt_ns_tree_add(struct mnt_namespace *ns)
138 {
139 	guard(write_lock)(&mnt_ns_tree_lock);
140 	rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
141 }
142 
mnt_ns_release(struct mnt_namespace * ns)143 static void mnt_ns_release(struct mnt_namespace *ns)
144 {
145 	lockdep_assert_not_held(&mnt_ns_tree_lock);
146 
147 	/* keep alive for {list,stat}mount() */
148 	if (refcount_dec_and_test(&ns->passive)) {
149 		put_user_ns(ns->user_ns);
150 		kfree(ns);
151 	}
152 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))153 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
154 
155 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
156 {
157 	/* remove from global mount namespace list */
158 	if (!is_anon_ns(ns)) {
159 		guard(write_lock)(&mnt_ns_tree_lock);
160 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
161 	}
162 
163 	mnt_ns_release(ns);
164 }
165 
166 /*
167  * Returns the mount namespace which either has the specified id, or has the
168  * next smallest id afer the specified one.
169  */
mnt_ns_find_id_at(u64 mnt_ns_id)170 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
171 {
172 	struct rb_node *node = mnt_ns_tree.rb_node;
173 	struct mnt_namespace *ret = NULL;
174 
175 	lockdep_assert_held(&mnt_ns_tree_lock);
176 
177 	while (node) {
178 		struct mnt_namespace *n = node_to_mnt_ns(node);
179 
180 		if (mnt_ns_id <= n->seq) {
181 			ret = node_to_mnt_ns(node);
182 			if (mnt_ns_id == n->seq)
183 				break;
184 			node = node->rb_left;
185 		} else {
186 			node = node->rb_right;
187 		}
188 	}
189 	return ret;
190 }
191 
192 /*
193  * Lookup a mount namespace by id and take a passive reference count. Taking a
194  * passive reference means the mount namespace can be emptied if e.g., the last
195  * task holding an active reference exits. To access the mounts of the
196  * namespace the @namespace_sem must first be acquired. If the namespace has
197  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
198  * see that the mount rbtree of the namespace is empty.
199  */
lookup_mnt_ns(u64 mnt_ns_id)200 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
201 {
202        struct mnt_namespace *ns;
203 
204        guard(read_lock)(&mnt_ns_tree_lock);
205        ns = mnt_ns_find_id_at(mnt_ns_id);
206        if (!ns || ns->seq != mnt_ns_id)
207                return NULL;
208 
209        refcount_inc(&ns->passive);
210        return ns;
211 }
212 
lock_mount_hash(void)213 static inline void lock_mount_hash(void)
214 {
215 	write_seqlock(&mount_lock);
216 }
217 
unlock_mount_hash(void)218 static inline void unlock_mount_hash(void)
219 {
220 	write_sequnlock(&mount_lock);
221 }
222 
m_hash(struct vfsmount * mnt,struct dentry * dentry)223 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
224 {
225 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
226 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
227 	tmp = tmp + (tmp >> m_hash_shift);
228 	return &mount_hashtable[tmp & m_hash_mask];
229 }
230 
mp_hash(struct dentry * dentry)231 static inline struct hlist_head *mp_hash(struct dentry *dentry)
232 {
233 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
234 	tmp = tmp + (tmp >> mp_hash_shift);
235 	return &mountpoint_hashtable[tmp & mp_hash_mask];
236 }
237 
mnt_alloc_id(struct mount * mnt)238 static int mnt_alloc_id(struct mount *mnt)
239 {
240 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
241 
242 	if (res < 0)
243 		return res;
244 	mnt->mnt_id = res;
245 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
246 	return 0;
247 }
248 
mnt_free_id(struct mount * mnt)249 static void mnt_free_id(struct mount *mnt)
250 {
251 	ida_free(&mnt_id_ida, mnt->mnt_id);
252 }
253 
254 /*
255  * Allocate a new peer group ID
256  */
mnt_alloc_group_id(struct mount * mnt)257 static int mnt_alloc_group_id(struct mount *mnt)
258 {
259 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
260 
261 	if (res < 0)
262 		return res;
263 	mnt->mnt_group_id = res;
264 	return 0;
265 }
266 
267 /*
268  * Release a peer group ID
269  */
mnt_release_group_id(struct mount * mnt)270 void mnt_release_group_id(struct mount *mnt)
271 {
272 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
273 	mnt->mnt_group_id = 0;
274 }
275 
276 /*
277  * vfsmount lock must be held for read
278  */
mnt_add_count(struct mount * mnt,int n)279 static inline void mnt_add_count(struct mount *mnt, int n)
280 {
281 #ifdef CONFIG_SMP
282 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
283 #else
284 	preempt_disable();
285 	mnt->mnt_count += n;
286 	preempt_enable();
287 #endif
288 }
289 
290 /*
291  * vfsmount lock must be held for write
292  */
mnt_get_count(struct mount * mnt)293 int mnt_get_count(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_count;
306 #endif
307 }
308 
alloc_vfsmnt(const char * name)309 static struct mount *alloc_vfsmnt(const char *name)
310 {
311 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
312 	if (mnt) {
313 		int err;
314 
315 		err = mnt_alloc_id(mnt);
316 		if (err)
317 			goto out_free_cache;
318 
319 		if (name) {
320 			mnt->mnt_devname = kstrdup_const(name,
321 							 GFP_KERNEL_ACCOUNT);
322 			if (!mnt->mnt_devname)
323 				goto out_free_id;
324 		}
325 
326 #ifdef CONFIG_SMP
327 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
328 		if (!mnt->mnt_pcp)
329 			goto out_free_devname;
330 
331 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
332 #else
333 		mnt->mnt_count = 1;
334 		mnt->mnt_writers = 0;
335 #endif
336 
337 		INIT_HLIST_NODE(&mnt->mnt_hash);
338 		INIT_LIST_HEAD(&mnt->mnt_child);
339 		INIT_LIST_HEAD(&mnt->mnt_mounts);
340 		INIT_LIST_HEAD(&mnt->mnt_list);
341 		INIT_LIST_HEAD(&mnt->mnt_expire);
342 		INIT_LIST_HEAD(&mnt->mnt_share);
343 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
344 		INIT_LIST_HEAD(&mnt->mnt_slave);
345 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
346 		INIT_LIST_HEAD(&mnt->mnt_umounting);
347 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
348 		RB_CLEAR_NODE(&mnt->mnt_node);
349 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
350 	}
351 	return mnt;
352 
353 #ifdef CONFIG_SMP
354 out_free_devname:
355 	kfree_const(mnt->mnt_devname);
356 #endif
357 out_free_id:
358 	mnt_free_id(mnt);
359 out_free_cache:
360 	kmem_cache_free(mnt_cache, mnt);
361 	return NULL;
362 }
363 
364 /*
365  * Most r/o checks on a fs are for operations that take
366  * discrete amounts of time, like a write() or unlink().
367  * We must keep track of when those operations start
368  * (for permission checks) and when they end, so that
369  * we can determine when writes are able to occur to
370  * a filesystem.
371  */
372 /*
373  * __mnt_is_readonly: check whether a mount is read-only
374  * @mnt: the mount to check for its write status
375  *
376  * This shouldn't be used directly ouside of the VFS.
377  * It does not guarantee that the filesystem will stay
378  * r/w, just that it is right *now*.  This can not and
379  * should not be used in place of IS_RDONLY(inode).
380  * mnt_want/drop_write() will _keep_ the filesystem
381  * r/w.
382  */
__mnt_is_readonly(struct vfsmount * mnt)383 bool __mnt_is_readonly(struct vfsmount *mnt)
384 {
385 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
386 }
387 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
388 
mnt_inc_writers(struct mount * mnt)389 static inline void mnt_inc_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
393 #else
394 	mnt->mnt_writers++;
395 #endif
396 }
397 
mnt_dec_writers(struct mount * mnt)398 static inline void mnt_dec_writers(struct mount *mnt)
399 {
400 #ifdef CONFIG_SMP
401 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
402 #else
403 	mnt->mnt_writers--;
404 #endif
405 }
406 
mnt_get_writers(struct mount * mnt)407 static unsigned int mnt_get_writers(struct mount *mnt)
408 {
409 #ifdef CONFIG_SMP
410 	unsigned int count = 0;
411 	int cpu;
412 
413 	for_each_possible_cpu(cpu) {
414 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
415 	}
416 
417 	return count;
418 #else
419 	return mnt->mnt_writers;
420 #endif
421 }
422 
mnt_is_readonly(struct vfsmount * mnt)423 static int mnt_is_readonly(struct vfsmount *mnt)
424 {
425 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
426 		return 1;
427 	/*
428 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
429 	 * making sure if we don't see s_readonly_remount set yet, we also will
430 	 * not see any superblock / mount flag changes done by remount.
431 	 * It also pairs with the barrier in sb_end_ro_state_change()
432 	 * assuring that if we see s_readonly_remount already cleared, we will
433 	 * see the values of superblock / mount flags updated by remount.
434 	 */
435 	smp_rmb();
436 	return __mnt_is_readonly(mnt);
437 }
438 
439 /*
440  * Most r/o & frozen checks on a fs are for operations that take discrete
441  * amounts of time, like a write() or unlink().  We must keep track of when
442  * those operations start (for permission checks) and when they end, so that we
443  * can determine when writes are able to occur to a filesystem.
444  */
445 /**
446  * mnt_get_write_access - get write access to a mount without freeze protection
447  * @m: the mount on which to take a write
448  *
449  * This tells the low-level filesystem that a write is about to be performed to
450  * it, and makes sure that writes are allowed (mnt it read-write) before
451  * returning success. This operation does not protect against filesystem being
452  * frozen. When the write operation is finished, mnt_put_write_access() must be
453  * called. This is effectively a refcount.
454  */
mnt_get_write_access(struct vfsmount * m)455 int mnt_get_write_access(struct vfsmount *m)
456 {
457 	struct mount *mnt = real_mount(m);
458 	int ret = 0;
459 
460 	preempt_disable();
461 	mnt_inc_writers(mnt);
462 	/*
463 	 * The store to mnt_inc_writers must be visible before we pass
464 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
465 	 * incremented count after it has set MNT_WRITE_HOLD.
466 	 */
467 	smp_mb();
468 	might_lock(&mount_lock.lock);
469 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
470 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
471 			cpu_relax();
472 		} else {
473 			/*
474 			 * This prevents priority inversion, if the task
475 			 * setting MNT_WRITE_HOLD got preempted on a remote
476 			 * CPU, and it prevents life lock if the task setting
477 			 * MNT_WRITE_HOLD has a lower priority and is bound to
478 			 * the same CPU as the task that is spinning here.
479 			 */
480 			preempt_enable();
481 			lock_mount_hash();
482 			unlock_mount_hash();
483 			preempt_disable();
484 		}
485 	}
486 	/*
487 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
488 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
489 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
490 	 * mnt_is_readonly() and bail in case we are racing with remount
491 	 * read-only.
492 	 */
493 	smp_rmb();
494 	if (mnt_is_readonly(m)) {
495 		mnt_dec_writers(mnt);
496 		ret = -EROFS;
497 	}
498 	preempt_enable();
499 
500 	return ret;
501 }
502 EXPORT_SYMBOL_GPL(mnt_get_write_access);
503 
504 /**
505  * mnt_want_write - get write access to a mount
506  * @m: the mount on which to take a write
507  *
508  * This tells the low-level filesystem that a write is about to be performed to
509  * it, and makes sure that writes are allowed (mount is read-write, filesystem
510  * is not frozen) before returning success.  When the write operation is
511  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
512  */
mnt_want_write(struct vfsmount * m)513 int mnt_want_write(struct vfsmount *m)
514 {
515 	int ret;
516 
517 	sb_start_write(m->mnt_sb);
518 	ret = mnt_get_write_access(m);
519 	if (ret)
520 		sb_end_write(m->mnt_sb);
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(mnt_want_write);
524 
525 /**
526  * mnt_get_write_access_file - get write access to a file's mount
527  * @file: the file who's mount on which to take a write
528  *
529  * This is like mnt_get_write_access, but if @file is already open for write it
530  * skips incrementing mnt_writers (since the open file already has a reference)
531  * and instead only does the check for emergency r/o remounts.  This must be
532  * paired with mnt_put_write_access_file.
533  */
mnt_get_write_access_file(struct file * file)534 int mnt_get_write_access_file(struct file *file)
535 {
536 	if (file->f_mode & FMODE_WRITER) {
537 		/*
538 		 * Superblock may have become readonly while there are still
539 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
540 		 */
541 		if (__mnt_is_readonly(file->f_path.mnt))
542 			return -EROFS;
543 		return 0;
544 	}
545 	return mnt_get_write_access(file->f_path.mnt);
546 }
547 
548 /**
549  * mnt_want_write_file - get write access to a file's mount
550  * @file: the file who's mount on which to take a write
551  *
552  * This is like mnt_want_write, but if the file is already open for writing it
553  * skips incrementing mnt_writers (since the open file already has a reference)
554  * and instead only does the freeze protection and the check for emergency r/o
555  * remounts.  This must be paired with mnt_drop_write_file.
556  */
mnt_want_write_file(struct file * file)557 int mnt_want_write_file(struct file *file)
558 {
559 	int ret;
560 
561 	sb_start_write(file_inode(file)->i_sb);
562 	ret = mnt_get_write_access_file(file);
563 	if (ret)
564 		sb_end_write(file_inode(file)->i_sb);
565 	return ret;
566 }
567 EXPORT_SYMBOL_GPL(mnt_want_write_file);
568 
569 /**
570  * mnt_put_write_access - give up write access to a mount
571  * @mnt: the mount on which to give up write access
572  *
573  * Tells the low-level filesystem that we are done
574  * performing writes to it.  Must be matched with
575  * mnt_get_write_access() call above.
576  */
mnt_put_write_access(struct vfsmount * mnt)577 void mnt_put_write_access(struct vfsmount *mnt)
578 {
579 	preempt_disable();
580 	mnt_dec_writers(real_mount(mnt));
581 	preempt_enable();
582 }
583 EXPORT_SYMBOL_GPL(mnt_put_write_access);
584 
585 /**
586  * mnt_drop_write - give up write access to a mount
587  * @mnt: the mount on which to give up write access
588  *
589  * Tells the low-level filesystem that we are done performing writes to it and
590  * also allows filesystem to be frozen again.  Must be matched with
591  * mnt_want_write() call above.
592  */
mnt_drop_write(struct vfsmount * mnt)593 void mnt_drop_write(struct vfsmount *mnt)
594 {
595 	mnt_put_write_access(mnt);
596 	sb_end_write(mnt->mnt_sb);
597 }
598 EXPORT_SYMBOL_GPL(mnt_drop_write);
599 
mnt_put_write_access_file(struct file * file)600 void mnt_put_write_access_file(struct file *file)
601 {
602 	if (!(file->f_mode & FMODE_WRITER))
603 		mnt_put_write_access(file->f_path.mnt);
604 }
605 
mnt_drop_write_file(struct file * file)606 void mnt_drop_write_file(struct file *file)
607 {
608 	mnt_put_write_access_file(file);
609 	sb_end_write(file_inode(file)->i_sb);
610 }
611 EXPORT_SYMBOL(mnt_drop_write_file);
612 
613 /**
614  * mnt_hold_writers - prevent write access to the given mount
615  * @mnt: mnt to prevent write access to
616  *
617  * Prevents write access to @mnt if there are no active writers for @mnt.
618  * This function needs to be called and return successfully before changing
619  * properties of @mnt that need to remain stable for callers with write access
620  * to @mnt.
621  *
622  * After this functions has been called successfully callers must pair it with
623  * a call to mnt_unhold_writers() in order to stop preventing write access to
624  * @mnt.
625  *
626  * Context: This function expects lock_mount_hash() to be held serializing
627  *          setting MNT_WRITE_HOLD.
628  * Return: On success 0 is returned.
629  *	   On error, -EBUSY is returned.
630  */
mnt_hold_writers(struct mount * mnt)631 static inline int mnt_hold_writers(struct mount *mnt)
632 {
633 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
634 	/*
635 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
636 	 * should be visible before we do.
637 	 */
638 	smp_mb();
639 
640 	/*
641 	 * With writers on hold, if this value is zero, then there are
642 	 * definitely no active writers (although held writers may subsequently
643 	 * increment the count, they'll have to wait, and decrement it after
644 	 * seeing MNT_READONLY).
645 	 *
646 	 * It is OK to have counter incremented on one CPU and decremented on
647 	 * another: the sum will add up correctly. The danger would be when we
648 	 * sum up each counter, if we read a counter before it is incremented,
649 	 * but then read another CPU's count which it has been subsequently
650 	 * decremented from -- we would see more decrements than we should.
651 	 * MNT_WRITE_HOLD protects against this scenario, because
652 	 * mnt_want_write first increments count, then smp_mb, then spins on
653 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
654 	 * we're counting up here.
655 	 */
656 	if (mnt_get_writers(mnt) > 0)
657 		return -EBUSY;
658 
659 	return 0;
660 }
661 
662 /**
663  * mnt_unhold_writers - stop preventing write access to the given mount
664  * @mnt: mnt to stop preventing write access to
665  *
666  * Stop preventing write access to @mnt allowing callers to gain write access
667  * to @mnt again.
668  *
669  * This function can only be called after a successful call to
670  * mnt_hold_writers().
671  *
672  * Context: This function expects lock_mount_hash() to be held.
673  */
mnt_unhold_writers(struct mount * mnt)674 static inline void mnt_unhold_writers(struct mount *mnt)
675 {
676 	/*
677 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
678 	 * that become unheld will see MNT_READONLY.
679 	 */
680 	smp_wmb();
681 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
682 }
683 
mnt_make_readonly(struct mount * mnt)684 static int mnt_make_readonly(struct mount *mnt)
685 {
686 	int ret;
687 
688 	ret = mnt_hold_writers(mnt);
689 	if (!ret)
690 		mnt->mnt.mnt_flags |= MNT_READONLY;
691 	mnt_unhold_writers(mnt);
692 	return ret;
693 }
694 
sb_prepare_remount_readonly(struct super_block * sb)695 int sb_prepare_remount_readonly(struct super_block *sb)
696 {
697 	struct mount *mnt;
698 	int err = 0;
699 
700 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
701 	if (atomic_long_read(&sb->s_remove_count))
702 		return -EBUSY;
703 
704 	lock_mount_hash();
705 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
706 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
707 			err = mnt_hold_writers(mnt);
708 			if (err)
709 				break;
710 		}
711 	}
712 	if (!err && atomic_long_read(&sb->s_remove_count))
713 		err = -EBUSY;
714 
715 	if (!err)
716 		sb_start_ro_state_change(sb);
717 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
718 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
719 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
720 	}
721 	unlock_mount_hash();
722 
723 	return err;
724 }
725 
free_vfsmnt(struct mount * mnt)726 static void free_vfsmnt(struct mount *mnt)
727 {
728 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
729 	kfree_const(mnt->mnt_devname);
730 #ifdef CONFIG_SMP
731 	free_percpu(mnt->mnt_pcp);
732 #endif
733 	kmem_cache_free(mnt_cache, mnt);
734 }
735 
delayed_free_vfsmnt(struct rcu_head * head)736 static void delayed_free_vfsmnt(struct rcu_head *head)
737 {
738 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
739 }
740 
741 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)742 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
743 {
744 	struct mount *mnt;
745 	if (read_seqretry(&mount_lock, seq))
746 		return 1;
747 	if (bastard == NULL)
748 		return 0;
749 	mnt = real_mount(bastard);
750 	mnt_add_count(mnt, 1);
751 	smp_mb();		// see mntput_no_expire() and do_umount()
752 	if (likely(!read_seqretry(&mount_lock, seq)))
753 		return 0;
754 	lock_mount_hash();
755 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
756 		mnt_add_count(mnt, -1);
757 		unlock_mount_hash();
758 		return 1;
759 	}
760 	unlock_mount_hash();
761 	/* caller will mntput() */
762 	return -1;
763 }
764 
765 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)766 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
767 {
768 	int res = __legitimize_mnt(bastard, seq);
769 	if (likely(!res))
770 		return true;
771 	if (unlikely(res < 0)) {
772 		rcu_read_unlock();
773 		mntput(bastard);
774 		rcu_read_lock();
775 	}
776 	return false;
777 }
778 
779 /**
780  * __lookup_mnt - find first child mount
781  * @mnt:	parent mount
782  * @dentry:	mountpoint
783  *
784  * If @mnt has a child mount @c mounted @dentry find and return it.
785  *
786  * Note that the child mount @c need not be unique. There are cases
787  * where shadow mounts are created. For example, during mount
788  * propagation when a source mount @mnt whose root got overmounted by a
789  * mount @o after path lookup but before @namespace_sem could be
790  * acquired gets copied and propagated. So @mnt gets copied including
791  * @o. When @mnt is propagated to a destination mount @d that already
792  * has another mount @n mounted at the same mountpoint then the source
793  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
794  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
795  * on @dentry.
796  *
797  * Return: The first child of @mnt mounted @dentry or NULL.
798  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)799 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
800 {
801 	struct hlist_head *head = m_hash(mnt, dentry);
802 	struct mount *p;
803 
804 	hlist_for_each_entry_rcu(p, head, mnt_hash)
805 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
806 			return p;
807 	return NULL;
808 }
809 
810 /*
811  * lookup_mnt - Return the first child mount mounted at path
812  *
813  * "First" means first mounted chronologically.  If you create the
814  * following mounts:
815  *
816  * mount /dev/sda1 /mnt
817  * mount /dev/sda2 /mnt
818  * mount /dev/sda3 /mnt
819  *
820  * Then lookup_mnt() on the base /mnt dentry in the root mount will
821  * return successively the root dentry and vfsmount of /dev/sda1, then
822  * /dev/sda2, then /dev/sda3, then NULL.
823  *
824  * lookup_mnt takes a reference to the found vfsmount.
825  */
lookup_mnt(const struct path * path)826 struct vfsmount *lookup_mnt(const struct path *path)
827 {
828 	struct mount *child_mnt;
829 	struct vfsmount *m;
830 	unsigned seq;
831 
832 	rcu_read_lock();
833 	do {
834 		seq = read_seqbegin(&mount_lock);
835 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
836 		m = child_mnt ? &child_mnt->mnt : NULL;
837 	} while (!legitimize_mnt(m, seq));
838 	rcu_read_unlock();
839 	return m;
840 }
841 
842 /*
843  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
844  *                         current mount namespace.
845  *
846  * The common case is dentries are not mountpoints at all and that
847  * test is handled inline.  For the slow case when we are actually
848  * dealing with a mountpoint of some kind, walk through all of the
849  * mounts in the current mount namespace and test to see if the dentry
850  * is a mountpoint.
851  *
852  * The mount_hashtable is not usable in the context because we
853  * need to identify all mounts that may be in the current mount
854  * namespace not just a mount that happens to have some specified
855  * parent mount.
856  */
__is_local_mountpoint(struct dentry * dentry)857 bool __is_local_mountpoint(struct dentry *dentry)
858 {
859 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
860 	struct mount *mnt, *n;
861 	bool is_covered = false;
862 
863 	down_read(&namespace_sem);
864 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
865 		is_covered = (mnt->mnt_mountpoint == dentry);
866 		if (is_covered)
867 			break;
868 	}
869 	up_read(&namespace_sem);
870 
871 	return is_covered;
872 }
873 
lookup_mountpoint(struct dentry * dentry)874 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
875 {
876 	struct hlist_head *chain = mp_hash(dentry);
877 	struct mountpoint *mp;
878 
879 	hlist_for_each_entry(mp, chain, m_hash) {
880 		if (mp->m_dentry == dentry) {
881 			mp->m_count++;
882 			return mp;
883 		}
884 	}
885 	return NULL;
886 }
887 
get_mountpoint(struct dentry * dentry)888 static struct mountpoint *get_mountpoint(struct dentry *dentry)
889 {
890 	struct mountpoint *mp, *new = NULL;
891 	int ret;
892 
893 	if (d_mountpoint(dentry)) {
894 		/* might be worth a WARN_ON() */
895 		if (d_unlinked(dentry))
896 			return ERR_PTR(-ENOENT);
897 mountpoint:
898 		read_seqlock_excl(&mount_lock);
899 		mp = lookup_mountpoint(dentry);
900 		read_sequnlock_excl(&mount_lock);
901 		if (mp)
902 			goto done;
903 	}
904 
905 	if (!new)
906 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
907 	if (!new)
908 		return ERR_PTR(-ENOMEM);
909 
910 
911 	/* Exactly one processes may set d_mounted */
912 	ret = d_set_mounted(dentry);
913 
914 	/* Someone else set d_mounted? */
915 	if (ret == -EBUSY)
916 		goto mountpoint;
917 
918 	/* The dentry is not available as a mountpoint? */
919 	mp = ERR_PTR(ret);
920 	if (ret)
921 		goto done;
922 
923 	/* Add the new mountpoint to the hash table */
924 	read_seqlock_excl(&mount_lock);
925 	new->m_dentry = dget(dentry);
926 	new->m_count = 1;
927 	hlist_add_head(&new->m_hash, mp_hash(dentry));
928 	INIT_HLIST_HEAD(&new->m_list);
929 	read_sequnlock_excl(&mount_lock);
930 
931 	mp = new;
932 	new = NULL;
933 done:
934 	kfree(new);
935 	return mp;
936 }
937 
938 /*
939  * vfsmount lock must be held.  Additionally, the caller is responsible
940  * for serializing calls for given disposal list.
941  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)942 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
943 {
944 	if (!--mp->m_count) {
945 		struct dentry *dentry = mp->m_dentry;
946 		BUG_ON(!hlist_empty(&mp->m_list));
947 		spin_lock(&dentry->d_lock);
948 		dentry->d_flags &= ~DCACHE_MOUNTED;
949 		spin_unlock(&dentry->d_lock);
950 		dput_to_list(dentry, list);
951 		hlist_del(&mp->m_hash);
952 		kfree(mp);
953 	}
954 }
955 
956 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)957 static void put_mountpoint(struct mountpoint *mp)
958 {
959 	__put_mountpoint(mp, &ex_mountpoints);
960 }
961 
check_mnt(struct mount * mnt)962 static inline int check_mnt(struct mount *mnt)
963 {
964 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
965 }
966 
967 /*
968  * vfsmount lock must be held for write
969  */
touch_mnt_namespace(struct mnt_namespace * ns)970 static void touch_mnt_namespace(struct mnt_namespace *ns)
971 {
972 	if (ns) {
973 		ns->event = ++event;
974 		wake_up_interruptible(&ns->poll);
975 	}
976 }
977 
978 /*
979  * vfsmount lock must be held for write
980  */
__touch_mnt_namespace(struct mnt_namespace * ns)981 static void __touch_mnt_namespace(struct mnt_namespace *ns)
982 {
983 	if (ns && ns->event != event) {
984 		ns->event = event;
985 		wake_up_interruptible(&ns->poll);
986 	}
987 }
988 
989 /*
990  * vfsmount lock must be held for write
991  */
unhash_mnt(struct mount * mnt)992 static struct mountpoint *unhash_mnt(struct mount *mnt)
993 {
994 	struct mountpoint *mp;
995 	mnt->mnt_parent = mnt;
996 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
997 	list_del_init(&mnt->mnt_child);
998 	hlist_del_init_rcu(&mnt->mnt_hash);
999 	hlist_del_init(&mnt->mnt_mp_list);
1000 	mp = mnt->mnt_mp;
1001 	mnt->mnt_mp = NULL;
1002 	return mp;
1003 }
1004 
1005 /*
1006  * vfsmount lock must be held for write
1007  */
umount_mnt(struct mount * mnt)1008 static void umount_mnt(struct mount *mnt)
1009 {
1010 	put_mountpoint(unhash_mnt(mnt));
1011 }
1012 
1013 /*
1014  * vfsmount lock must be held for write
1015  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1016 void mnt_set_mountpoint(struct mount *mnt,
1017 			struct mountpoint *mp,
1018 			struct mount *child_mnt)
1019 {
1020 	mp->m_count++;
1021 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1022 	child_mnt->mnt_mountpoint = mp->m_dentry;
1023 	child_mnt->mnt_parent = mnt;
1024 	child_mnt->mnt_mp = mp;
1025 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1026 }
1027 
1028 /**
1029  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1030  *
1031  * @new_parent: the source mount
1032  * @top_mnt:    the mount beneath which @new_parent is mounted
1033  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1034  *
1035  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1036  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1037  * @new_mp. And mount @new_parent on the old parent and old
1038  * mountpoint of @top_mnt.
1039  *
1040  * Context: This function expects namespace_lock() and lock_mount_hash()
1041  *          to have been acquired in that order.
1042  */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1043 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1044 				       struct mount *top_mnt,
1045 				       struct mountpoint *new_mp)
1046 {
1047 	struct mount *old_top_parent = top_mnt->mnt_parent;
1048 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1049 
1050 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1051 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1052 }
1053 
1054 
__attach_mnt(struct mount * mnt,struct mount * parent)1055 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1056 {
1057 	hlist_add_head_rcu(&mnt->mnt_hash,
1058 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1059 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1060 }
1061 
1062 /**
1063  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1064  *              list of child mounts
1065  * @parent:  the parent
1066  * @mnt:     the new mount
1067  * @mp:      the new mountpoint
1068  * @beneath: whether to mount @mnt beneath or on top of @parent
1069  *
1070  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1071  * to @parent's child mount list and to @mount_hashtable.
1072  *
1073  * If @beneath is true, remove @mnt from its current parent and
1074  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1075  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1076  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1077  *
1078  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1079  * to the correct parent.
1080  *
1081  * Context: This function expects namespace_lock() and lock_mount_hash()
1082  *          to have been acquired in that order.
1083  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1084 static void attach_mnt(struct mount *mnt, struct mount *parent,
1085 		       struct mountpoint *mp, bool beneath)
1086 {
1087 	if (beneath)
1088 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1089 	else
1090 		mnt_set_mountpoint(parent, mp, mnt);
1091 	/*
1092 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1093 	 * beneath @parent then @mnt will need to be attached to
1094 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1095 	 * isn't the same mount as @parent.
1096 	 */
1097 	__attach_mnt(mnt, mnt->mnt_parent);
1098 }
1099 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1100 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1101 {
1102 	struct mountpoint *old_mp = mnt->mnt_mp;
1103 	struct mount *old_parent = mnt->mnt_parent;
1104 
1105 	list_del_init(&mnt->mnt_child);
1106 	hlist_del_init(&mnt->mnt_mp_list);
1107 	hlist_del_init_rcu(&mnt->mnt_hash);
1108 
1109 	attach_mnt(mnt, parent, mp, false);
1110 
1111 	put_mountpoint(old_mp);
1112 	mnt_add_count(old_parent, -1);
1113 }
1114 
node_to_mount(struct rb_node * node)1115 static inline struct mount *node_to_mount(struct rb_node *node)
1116 {
1117 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1118 }
1119 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1120 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1121 {
1122 	struct rb_node **link = &ns->mounts.rb_node;
1123 	struct rb_node *parent = NULL;
1124 
1125 	WARN_ON(mnt_ns_attached(mnt));
1126 	mnt->mnt_ns = ns;
1127 	while (*link) {
1128 		parent = *link;
1129 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1130 			link = &parent->rb_left;
1131 		else
1132 			link = &parent->rb_right;
1133 	}
1134 	rb_link_node(&mnt->mnt_node, parent, link);
1135 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1136 }
1137 
1138 /*
1139  * vfsmount lock must be held for write
1140  */
commit_tree(struct mount * mnt)1141 static void commit_tree(struct mount *mnt)
1142 {
1143 	struct mount *parent = mnt->mnt_parent;
1144 	struct mount *m;
1145 	LIST_HEAD(head);
1146 	struct mnt_namespace *n = parent->mnt_ns;
1147 
1148 	BUG_ON(parent == mnt);
1149 
1150 	list_add_tail(&head, &mnt->mnt_list);
1151 	while (!list_empty(&head)) {
1152 		m = list_first_entry(&head, typeof(*m), mnt_list);
1153 		list_del(&m->mnt_list);
1154 
1155 		mnt_add_to_ns(n, m);
1156 	}
1157 	n->nr_mounts += n->pending_mounts;
1158 	n->pending_mounts = 0;
1159 
1160 	__attach_mnt(mnt, parent);
1161 	touch_mnt_namespace(n);
1162 }
1163 
next_mnt(struct mount * p,struct mount * root)1164 static struct mount *next_mnt(struct mount *p, struct mount *root)
1165 {
1166 	struct list_head *next = p->mnt_mounts.next;
1167 	if (next == &p->mnt_mounts) {
1168 		while (1) {
1169 			if (p == root)
1170 				return NULL;
1171 			next = p->mnt_child.next;
1172 			if (next != &p->mnt_parent->mnt_mounts)
1173 				break;
1174 			p = p->mnt_parent;
1175 		}
1176 	}
1177 	return list_entry(next, struct mount, mnt_child);
1178 }
1179 
skip_mnt_tree(struct mount * p)1180 static struct mount *skip_mnt_tree(struct mount *p)
1181 {
1182 	struct list_head *prev = p->mnt_mounts.prev;
1183 	while (prev != &p->mnt_mounts) {
1184 		p = list_entry(prev, struct mount, mnt_child);
1185 		prev = p->mnt_mounts.prev;
1186 	}
1187 	return p;
1188 }
1189 
1190 /**
1191  * vfs_create_mount - Create a mount for a configured superblock
1192  * @fc: The configuration context with the superblock attached
1193  *
1194  * Create a mount to an already configured superblock.  If necessary, the
1195  * caller should invoke vfs_get_tree() before calling this.
1196  *
1197  * Note that this does not attach the mount to anything.
1198  */
vfs_create_mount(struct fs_context * fc)1199 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1200 {
1201 	struct mount *mnt;
1202 
1203 	if (!fc->root)
1204 		return ERR_PTR(-EINVAL);
1205 
1206 	mnt = alloc_vfsmnt(fc->source ?: "none");
1207 	if (!mnt)
1208 		return ERR_PTR(-ENOMEM);
1209 
1210 	if (fc->sb_flags & SB_KERNMOUNT)
1211 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1212 
1213 	atomic_inc(&fc->root->d_sb->s_active);
1214 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1215 	mnt->mnt.mnt_root	= dget(fc->root);
1216 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1217 	mnt->mnt_parent		= mnt;
1218 
1219 	lock_mount_hash();
1220 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1221 	unlock_mount_hash();
1222 	return &mnt->mnt;
1223 }
1224 EXPORT_SYMBOL(vfs_create_mount);
1225 
fc_mount(struct fs_context * fc)1226 struct vfsmount *fc_mount(struct fs_context *fc)
1227 {
1228 	int err = vfs_get_tree(fc);
1229 	if (!err) {
1230 		up_write(&fc->root->d_sb->s_umount);
1231 		return vfs_create_mount(fc);
1232 	}
1233 	return ERR_PTR(err);
1234 }
1235 EXPORT_SYMBOL(fc_mount);
1236 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1237 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1238 				int flags, const char *name,
1239 				void *data)
1240 {
1241 	struct fs_context *fc;
1242 	struct vfsmount *mnt;
1243 	int ret = 0;
1244 
1245 	if (!type)
1246 		return ERR_PTR(-EINVAL);
1247 
1248 	fc = fs_context_for_mount(type, flags);
1249 	if (IS_ERR(fc))
1250 		return ERR_CAST(fc);
1251 
1252 	if (name)
1253 		ret = vfs_parse_fs_string(fc, "source",
1254 					  name, strlen(name));
1255 	if (!ret)
1256 		ret = parse_monolithic_mount_data(fc, data);
1257 	if (!ret)
1258 		mnt = fc_mount(fc);
1259 	else
1260 		mnt = ERR_PTR(ret);
1261 
1262 	put_fs_context(fc);
1263 	return mnt;
1264 }
1265 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1266 
1267 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1268 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1269 	     const char *name, void *data)
1270 {
1271 	/* Until it is worked out how to pass the user namespace
1272 	 * through from the parent mount to the submount don't support
1273 	 * unprivileged mounts with submounts.
1274 	 */
1275 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1276 		return ERR_PTR(-EPERM);
1277 
1278 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1279 }
1280 EXPORT_SYMBOL_GPL(vfs_submount);
1281 
clone_mnt(struct mount * old,struct dentry * root,int flag)1282 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1283 					int flag)
1284 {
1285 	struct super_block *sb = old->mnt.mnt_sb;
1286 	struct mount *mnt;
1287 	int err;
1288 
1289 	mnt = alloc_vfsmnt(old->mnt_devname);
1290 	if (!mnt)
1291 		return ERR_PTR(-ENOMEM);
1292 
1293 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1294 		mnt->mnt_group_id = 0; /* not a peer of original */
1295 	else
1296 		mnt->mnt_group_id = old->mnt_group_id;
1297 
1298 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1299 		err = mnt_alloc_group_id(mnt);
1300 		if (err)
1301 			goto out_free;
1302 	}
1303 
1304 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1305 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1306 
1307 	atomic_inc(&sb->s_active);
1308 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1309 
1310 	mnt->mnt.mnt_sb = sb;
1311 	mnt->mnt.mnt_root = dget(root);
1312 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1313 	mnt->mnt_parent = mnt;
1314 	lock_mount_hash();
1315 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1316 	unlock_mount_hash();
1317 
1318 	if ((flag & CL_SLAVE) ||
1319 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1320 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1321 		mnt->mnt_master = old;
1322 		CLEAR_MNT_SHARED(mnt);
1323 	} else if (!(flag & CL_PRIVATE)) {
1324 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1325 			list_add(&mnt->mnt_share, &old->mnt_share);
1326 		if (IS_MNT_SLAVE(old))
1327 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1328 		mnt->mnt_master = old->mnt_master;
1329 	} else {
1330 		CLEAR_MNT_SHARED(mnt);
1331 	}
1332 	if (flag & CL_MAKE_SHARED)
1333 		set_mnt_shared(mnt);
1334 
1335 	/* stick the duplicate mount on the same expiry list
1336 	 * as the original if that was on one */
1337 	if (flag & CL_EXPIRE) {
1338 		if (!list_empty(&old->mnt_expire))
1339 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1340 	}
1341 
1342 	return mnt;
1343 
1344  out_free:
1345 	mnt_free_id(mnt);
1346 	free_vfsmnt(mnt);
1347 	return ERR_PTR(err);
1348 }
1349 
cleanup_mnt(struct mount * mnt)1350 static void cleanup_mnt(struct mount *mnt)
1351 {
1352 	struct hlist_node *p;
1353 	struct mount *m;
1354 	/*
1355 	 * The warning here probably indicates that somebody messed
1356 	 * up a mnt_want/drop_write() pair.  If this happens, the
1357 	 * filesystem was probably unable to make r/w->r/o transitions.
1358 	 * The locking used to deal with mnt_count decrement provides barriers,
1359 	 * so mnt_get_writers() below is safe.
1360 	 */
1361 	WARN_ON(mnt_get_writers(mnt));
1362 	if (unlikely(mnt->mnt_pins.first))
1363 		mnt_pin_kill(mnt);
1364 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1365 		hlist_del(&m->mnt_umount);
1366 		mntput(&m->mnt);
1367 	}
1368 	fsnotify_vfsmount_delete(&mnt->mnt);
1369 	dput(mnt->mnt.mnt_root);
1370 	deactivate_super(mnt->mnt.mnt_sb);
1371 	mnt_free_id(mnt);
1372 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1373 }
1374 
__cleanup_mnt(struct rcu_head * head)1375 static void __cleanup_mnt(struct rcu_head *head)
1376 {
1377 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1378 }
1379 
1380 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1381 static void delayed_mntput(struct work_struct *unused)
1382 {
1383 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1384 	struct mount *m, *t;
1385 
1386 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1387 		cleanup_mnt(m);
1388 }
1389 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1390 
mntput_no_expire(struct mount * mnt)1391 static void mntput_no_expire(struct mount *mnt)
1392 {
1393 	LIST_HEAD(list);
1394 	int count;
1395 
1396 	rcu_read_lock();
1397 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1398 		/*
1399 		 * Since we don't do lock_mount_hash() here,
1400 		 * ->mnt_ns can change under us.  However, if it's
1401 		 * non-NULL, then there's a reference that won't
1402 		 * be dropped until after an RCU delay done after
1403 		 * turning ->mnt_ns NULL.  So if we observe it
1404 		 * non-NULL under rcu_read_lock(), the reference
1405 		 * we are dropping is not the final one.
1406 		 */
1407 		mnt_add_count(mnt, -1);
1408 		rcu_read_unlock();
1409 		return;
1410 	}
1411 	lock_mount_hash();
1412 	/*
1413 	 * make sure that if __legitimize_mnt() has not seen us grab
1414 	 * mount_lock, we'll see their refcount increment here.
1415 	 */
1416 	smp_mb();
1417 	mnt_add_count(mnt, -1);
1418 	count = mnt_get_count(mnt);
1419 	if (count != 0) {
1420 		WARN_ON(count < 0);
1421 		rcu_read_unlock();
1422 		unlock_mount_hash();
1423 		return;
1424 	}
1425 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1426 		rcu_read_unlock();
1427 		unlock_mount_hash();
1428 		return;
1429 	}
1430 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1431 	rcu_read_unlock();
1432 
1433 	list_del(&mnt->mnt_instance);
1434 
1435 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1436 		struct mount *p, *tmp;
1437 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1438 			__put_mountpoint(unhash_mnt(p), &list);
1439 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1440 		}
1441 	}
1442 	unlock_mount_hash();
1443 	shrink_dentry_list(&list);
1444 
1445 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1446 		struct task_struct *task = current;
1447 		if (likely(!(task->flags & PF_KTHREAD))) {
1448 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1449 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1450 				return;
1451 		}
1452 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1453 			schedule_delayed_work(&delayed_mntput_work, 1);
1454 		return;
1455 	}
1456 	cleanup_mnt(mnt);
1457 }
1458 
mntput(struct vfsmount * mnt)1459 void mntput(struct vfsmount *mnt)
1460 {
1461 	if (mnt) {
1462 		struct mount *m = real_mount(mnt);
1463 		/* avoid cacheline pingpong */
1464 		if (unlikely(m->mnt_expiry_mark))
1465 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1466 		mntput_no_expire(m);
1467 	}
1468 }
1469 EXPORT_SYMBOL(mntput);
1470 
mntget(struct vfsmount * mnt)1471 struct vfsmount *mntget(struct vfsmount *mnt)
1472 {
1473 	if (mnt)
1474 		mnt_add_count(real_mount(mnt), 1);
1475 	return mnt;
1476 }
1477 EXPORT_SYMBOL_NS_GPL(mntget, ANDROID_GKI_VFS_EXPORT_ONLY);
1478 
1479 /*
1480  * Make a mount point inaccessible to new lookups.
1481  * Because there may still be current users, the caller MUST WAIT
1482  * for an RCU grace period before destroying the mount point.
1483  */
mnt_make_shortterm(struct vfsmount * mnt)1484 void mnt_make_shortterm(struct vfsmount *mnt)
1485 {
1486 	if (mnt)
1487 		real_mount(mnt)->mnt_ns = NULL;
1488 }
1489 
1490 /**
1491  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1492  * @path: path to check
1493  *
1494  *  d_mountpoint() can only be used reliably to establish if a dentry is
1495  *  not mounted in any namespace and that common case is handled inline.
1496  *  d_mountpoint() isn't aware of the possibility there may be multiple
1497  *  mounts using a given dentry in a different namespace. This function
1498  *  checks if the passed in path is a mountpoint rather than the dentry
1499  *  alone.
1500  */
path_is_mountpoint(const struct path * path)1501 bool path_is_mountpoint(const struct path *path)
1502 {
1503 	unsigned seq;
1504 	bool res;
1505 
1506 	if (!d_mountpoint(path->dentry))
1507 		return false;
1508 
1509 	rcu_read_lock();
1510 	do {
1511 		seq = read_seqbegin(&mount_lock);
1512 		res = __path_is_mountpoint(path);
1513 	} while (read_seqretry(&mount_lock, seq));
1514 	rcu_read_unlock();
1515 
1516 	return res;
1517 }
1518 EXPORT_SYMBOL(path_is_mountpoint);
1519 
mnt_clone_internal(const struct path * path)1520 struct vfsmount *mnt_clone_internal(const struct path *path)
1521 {
1522 	struct mount *p;
1523 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1524 	if (IS_ERR(p))
1525 		return ERR_CAST(p);
1526 	p->mnt.mnt_flags |= MNT_INTERNAL;
1527 	return &p->mnt;
1528 }
1529 
1530 /*
1531  * Returns the mount which either has the specified mnt_id, or has the next
1532  * smallest id afer the specified one.
1533  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1534 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1535 {
1536 	struct rb_node *node = ns->mounts.rb_node;
1537 	struct mount *ret = NULL;
1538 
1539 	while (node) {
1540 		struct mount *m = node_to_mount(node);
1541 
1542 		if (mnt_id <= m->mnt_id_unique) {
1543 			ret = node_to_mount(node);
1544 			if (mnt_id == m->mnt_id_unique)
1545 				break;
1546 			node = node->rb_left;
1547 		} else {
1548 			node = node->rb_right;
1549 		}
1550 	}
1551 	return ret;
1552 }
1553 
1554 /*
1555  * Returns the mount which either has the specified mnt_id, or has the next
1556  * greater id before the specified one.
1557  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1558 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1559 {
1560 	struct rb_node *node = ns->mounts.rb_node;
1561 	struct mount *ret = NULL;
1562 
1563 	while (node) {
1564 		struct mount *m = node_to_mount(node);
1565 
1566 		if (mnt_id >= m->mnt_id_unique) {
1567 			ret = node_to_mount(node);
1568 			if (mnt_id == m->mnt_id_unique)
1569 				break;
1570 			node = node->rb_right;
1571 		} else {
1572 			node = node->rb_left;
1573 		}
1574 	}
1575 	return ret;
1576 }
1577 
1578 #ifdef CONFIG_PROC_FS
1579 
1580 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1581 static void *m_start(struct seq_file *m, loff_t *pos)
1582 {
1583 	struct proc_mounts *p = m->private;
1584 
1585 	down_read(&namespace_sem);
1586 
1587 	return mnt_find_id_at(p->ns, *pos);
1588 }
1589 
m_next(struct seq_file * m,void * v,loff_t * pos)1590 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1591 {
1592 	struct mount *next = NULL, *mnt = v;
1593 	struct rb_node *node = rb_next(&mnt->mnt_node);
1594 
1595 	++*pos;
1596 	if (node) {
1597 		next = node_to_mount(node);
1598 		*pos = next->mnt_id_unique;
1599 	}
1600 	return next;
1601 }
1602 
m_stop(struct seq_file * m,void * v)1603 static void m_stop(struct seq_file *m, void *v)
1604 {
1605 	up_read(&namespace_sem);
1606 }
1607 
m_show(struct seq_file * m,void * v)1608 static int m_show(struct seq_file *m, void *v)
1609 {
1610 	struct proc_mounts *p = m->private;
1611 	struct mount *r = v;
1612 	return p->show(m, &r->mnt);
1613 }
1614 
1615 const struct seq_operations mounts_op = {
1616 	.start	= m_start,
1617 	.next	= m_next,
1618 	.stop	= m_stop,
1619 	.show	= m_show,
1620 };
1621 
1622 #endif  /* CONFIG_PROC_FS */
1623 
1624 /**
1625  * may_umount_tree - check if a mount tree is busy
1626  * @m: root of mount tree
1627  *
1628  * This is called to check if a tree of mounts has any
1629  * open files, pwds, chroots or sub mounts that are
1630  * busy.
1631  */
may_umount_tree(struct vfsmount * m)1632 int may_umount_tree(struct vfsmount *m)
1633 {
1634 	struct mount *mnt = real_mount(m);
1635 	int actual_refs = 0;
1636 	int minimum_refs = 0;
1637 	struct mount *p;
1638 	BUG_ON(!m);
1639 
1640 	/* write lock needed for mnt_get_count */
1641 	lock_mount_hash();
1642 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1643 		actual_refs += mnt_get_count(p);
1644 		minimum_refs += 2;
1645 	}
1646 	unlock_mount_hash();
1647 
1648 	if (actual_refs > minimum_refs)
1649 		return 0;
1650 
1651 	return 1;
1652 }
1653 
1654 EXPORT_SYMBOL(may_umount_tree);
1655 
1656 /**
1657  * may_umount - check if a mount point is busy
1658  * @mnt: root of mount
1659  *
1660  * This is called to check if a mount point has any
1661  * open files, pwds, chroots or sub mounts. If the
1662  * mount has sub mounts this will return busy
1663  * regardless of whether the sub mounts are busy.
1664  *
1665  * Doesn't take quota and stuff into account. IOW, in some cases it will
1666  * give false negatives. The main reason why it's here is that we need
1667  * a non-destructive way to look for easily umountable filesystems.
1668  */
may_umount(struct vfsmount * mnt)1669 int may_umount(struct vfsmount *mnt)
1670 {
1671 	int ret = 1;
1672 	down_read(&namespace_sem);
1673 	lock_mount_hash();
1674 	if (propagate_mount_busy(real_mount(mnt), 2))
1675 		ret = 0;
1676 	unlock_mount_hash();
1677 	up_read(&namespace_sem);
1678 	return ret;
1679 }
1680 
1681 EXPORT_SYMBOL(may_umount);
1682 
namespace_unlock(void)1683 static void namespace_unlock(void)
1684 {
1685 	struct hlist_head head;
1686 	struct hlist_node *p;
1687 	struct mount *m;
1688 	LIST_HEAD(list);
1689 
1690 	hlist_move_list(&unmounted, &head);
1691 	list_splice_init(&ex_mountpoints, &list);
1692 
1693 	up_write(&namespace_sem);
1694 
1695 	shrink_dentry_list(&list);
1696 
1697 	if (likely(hlist_empty(&head)))
1698 		return;
1699 
1700 	synchronize_rcu_expedited();
1701 
1702 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1703 		hlist_del(&m->mnt_umount);
1704 		mntput(&m->mnt);
1705 	}
1706 }
1707 
namespace_lock(void)1708 static inline void namespace_lock(void)
1709 {
1710 	down_write(&namespace_sem);
1711 }
1712 
1713 enum umount_tree_flags {
1714 	UMOUNT_SYNC = 1,
1715 	UMOUNT_PROPAGATE = 2,
1716 	UMOUNT_CONNECTED = 4,
1717 };
1718 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1719 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1720 {
1721 	/* Leaving mounts connected is only valid for lazy umounts */
1722 	if (how & UMOUNT_SYNC)
1723 		return true;
1724 
1725 	/* A mount without a parent has nothing to be connected to */
1726 	if (!mnt_has_parent(mnt))
1727 		return true;
1728 
1729 	/* Because the reference counting rules change when mounts are
1730 	 * unmounted and connected, umounted mounts may not be
1731 	 * connected to mounted mounts.
1732 	 */
1733 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1734 		return true;
1735 
1736 	/* Has it been requested that the mount remain connected? */
1737 	if (how & UMOUNT_CONNECTED)
1738 		return false;
1739 
1740 	/* Is the mount locked such that it needs to remain connected? */
1741 	if (IS_MNT_LOCKED(mnt))
1742 		return false;
1743 
1744 	/* By default disconnect the mount */
1745 	return true;
1746 }
1747 
1748 /*
1749  * mount_lock must be held
1750  * namespace_sem must be held for write
1751  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1752 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1753 {
1754 	LIST_HEAD(tmp_list);
1755 	struct mount *p;
1756 
1757 	if (how & UMOUNT_PROPAGATE)
1758 		propagate_mount_unlock(mnt);
1759 
1760 	/* Gather the mounts to umount */
1761 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1762 		p->mnt.mnt_flags |= MNT_UMOUNT;
1763 		if (mnt_ns_attached(p))
1764 			move_from_ns(p, &tmp_list);
1765 		else
1766 			list_move(&p->mnt_list, &tmp_list);
1767 	}
1768 
1769 	/* Hide the mounts from mnt_mounts */
1770 	list_for_each_entry(p, &tmp_list, mnt_list) {
1771 		list_del_init(&p->mnt_child);
1772 	}
1773 
1774 	/* Add propagated mounts to the tmp_list */
1775 	if (how & UMOUNT_PROPAGATE)
1776 		propagate_umount(&tmp_list);
1777 
1778 	while (!list_empty(&tmp_list)) {
1779 		struct mnt_namespace *ns;
1780 		bool disconnect;
1781 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1782 		list_del_init(&p->mnt_expire);
1783 		list_del_init(&p->mnt_list);
1784 		ns = p->mnt_ns;
1785 		if (ns) {
1786 			ns->nr_mounts--;
1787 			__touch_mnt_namespace(ns);
1788 		}
1789 		p->mnt_ns = NULL;
1790 		if (how & UMOUNT_SYNC)
1791 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1792 
1793 		disconnect = disconnect_mount(p, how);
1794 		if (mnt_has_parent(p)) {
1795 			mnt_add_count(p->mnt_parent, -1);
1796 			if (!disconnect) {
1797 				/* Don't forget about p */
1798 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1799 			} else {
1800 				umount_mnt(p);
1801 			}
1802 		}
1803 		change_mnt_propagation(p, MS_PRIVATE);
1804 		if (disconnect)
1805 			hlist_add_head(&p->mnt_umount, &unmounted);
1806 	}
1807 }
1808 
1809 static void shrink_submounts(struct mount *mnt);
1810 
do_umount_root(struct super_block * sb)1811 static int do_umount_root(struct super_block *sb)
1812 {
1813 	int ret = 0;
1814 
1815 	down_write(&sb->s_umount);
1816 	if (!sb_rdonly(sb)) {
1817 		struct fs_context *fc;
1818 
1819 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1820 						SB_RDONLY);
1821 		if (IS_ERR(fc)) {
1822 			ret = PTR_ERR(fc);
1823 		} else {
1824 			ret = parse_monolithic_mount_data(fc, NULL);
1825 			if (!ret)
1826 				ret = reconfigure_super(fc);
1827 			put_fs_context(fc);
1828 		}
1829 	}
1830 	up_write(&sb->s_umount);
1831 	return ret;
1832 }
1833 
do_umount(struct mount * mnt,int flags)1834 static int do_umount(struct mount *mnt, int flags)
1835 {
1836 	struct super_block *sb = mnt->mnt.mnt_sb;
1837 	int retval;
1838 
1839 	retval = security_sb_umount(&mnt->mnt, flags);
1840 	if (retval)
1841 		return retval;
1842 
1843 	/*
1844 	 * Allow userspace to request a mountpoint be expired rather than
1845 	 * unmounting unconditionally. Unmount only happens if:
1846 	 *  (1) the mark is already set (the mark is cleared by mntput())
1847 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1848 	 */
1849 	if (flags & MNT_EXPIRE) {
1850 		if (&mnt->mnt == current->fs->root.mnt ||
1851 		    flags & (MNT_FORCE | MNT_DETACH))
1852 			return -EINVAL;
1853 
1854 		/*
1855 		 * probably don't strictly need the lock here if we examined
1856 		 * all race cases, but it's a slowpath.
1857 		 */
1858 		lock_mount_hash();
1859 		if (mnt_get_count(mnt) != 2) {
1860 			unlock_mount_hash();
1861 			return -EBUSY;
1862 		}
1863 		unlock_mount_hash();
1864 
1865 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1866 			return -EAGAIN;
1867 	}
1868 
1869 	/*
1870 	 * If we may have to abort operations to get out of this
1871 	 * mount, and they will themselves hold resources we must
1872 	 * allow the fs to do things. In the Unix tradition of
1873 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1874 	 * might fail to complete on the first run through as other tasks
1875 	 * must return, and the like. Thats for the mount program to worry
1876 	 * about for the moment.
1877 	 */
1878 
1879 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1880 		sb->s_op->umount_begin(sb);
1881 	}
1882 
1883 	/*
1884 	 * No sense to grab the lock for this test, but test itself looks
1885 	 * somewhat bogus. Suggestions for better replacement?
1886 	 * Ho-hum... In principle, we might treat that as umount + switch
1887 	 * to rootfs. GC would eventually take care of the old vfsmount.
1888 	 * Actually it makes sense, especially if rootfs would contain a
1889 	 * /reboot - static binary that would close all descriptors and
1890 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1891 	 */
1892 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1893 		/*
1894 		 * Special case for "unmounting" root ...
1895 		 * we just try to remount it readonly.
1896 		 */
1897 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1898 			return -EPERM;
1899 		return do_umount_root(sb);
1900 	}
1901 
1902 	namespace_lock();
1903 	lock_mount_hash();
1904 
1905 	/* Recheck MNT_LOCKED with the locks held */
1906 	retval = -EINVAL;
1907 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1908 		goto out;
1909 
1910 	event++;
1911 	if (flags & MNT_DETACH) {
1912 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1913 			umount_tree(mnt, UMOUNT_PROPAGATE);
1914 		retval = 0;
1915 	} else {
1916 		smp_mb(); // paired with __legitimize_mnt()
1917 		shrink_submounts(mnt);
1918 		retval = -EBUSY;
1919 		if (!propagate_mount_busy(mnt, 2)) {
1920 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1921 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1922 			retval = 0;
1923 		}
1924 	}
1925 out:
1926 	unlock_mount_hash();
1927 	namespace_unlock();
1928 	return retval;
1929 }
1930 
1931 /*
1932  * __detach_mounts - lazily unmount all mounts on the specified dentry
1933  *
1934  * During unlink, rmdir, and d_drop it is possible to loose the path
1935  * to an existing mountpoint, and wind up leaking the mount.
1936  * detach_mounts allows lazily unmounting those mounts instead of
1937  * leaking them.
1938  *
1939  * The caller may hold dentry->d_inode->i_mutex.
1940  */
__detach_mounts(struct dentry * dentry)1941 void __detach_mounts(struct dentry *dentry)
1942 {
1943 	struct mountpoint *mp;
1944 	struct mount *mnt;
1945 
1946 	namespace_lock();
1947 	lock_mount_hash();
1948 	mp = lookup_mountpoint(dentry);
1949 	if (!mp)
1950 		goto out_unlock;
1951 
1952 	event++;
1953 	while (!hlist_empty(&mp->m_list)) {
1954 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1955 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1956 			umount_mnt(mnt);
1957 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1958 		}
1959 		else umount_tree(mnt, UMOUNT_CONNECTED);
1960 	}
1961 	put_mountpoint(mp);
1962 out_unlock:
1963 	unlock_mount_hash();
1964 	namespace_unlock();
1965 }
1966 
1967 /*
1968  * Is the caller allowed to modify his namespace?
1969  */
may_mount(void)1970 bool may_mount(void)
1971 {
1972 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1973 }
1974 
warn_mandlock(void)1975 static void warn_mandlock(void)
1976 {
1977 	pr_warn_once("=======================================================\n"
1978 		     "WARNING: The mand mount option has been deprecated and\n"
1979 		     "         and is ignored by this kernel. Remove the mand\n"
1980 		     "         option from the mount to silence this warning.\n"
1981 		     "=======================================================\n");
1982 }
1983 
can_umount(const struct path * path,int flags)1984 static int can_umount(const struct path *path, int flags)
1985 {
1986 	struct mount *mnt = real_mount(path->mnt);
1987 	struct super_block *sb = path->dentry->d_sb;
1988 
1989 	if (!may_mount())
1990 		return -EPERM;
1991 	if (!path_mounted(path))
1992 		return -EINVAL;
1993 	if (!check_mnt(mnt))
1994 		return -EINVAL;
1995 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1996 		return -EINVAL;
1997 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1998 		return -EPERM;
1999 	return 0;
2000 }
2001 
2002 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2003 int path_umount(struct path *path, int flags)
2004 {
2005 	struct mount *mnt = real_mount(path->mnt);
2006 	int ret;
2007 
2008 	ret = can_umount(path, flags);
2009 	if (!ret)
2010 		ret = do_umount(mnt, flags);
2011 
2012 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2013 	dput(path->dentry);
2014 	mntput_no_expire(mnt);
2015 	return ret;
2016 }
2017 
ksys_umount(char __user * name,int flags)2018 static int ksys_umount(char __user *name, int flags)
2019 {
2020 	int lookup_flags = LOOKUP_MOUNTPOINT;
2021 	struct path path;
2022 	int ret;
2023 
2024 	// basic validity checks done first
2025 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2026 		return -EINVAL;
2027 
2028 	if (!(flags & UMOUNT_NOFOLLOW))
2029 		lookup_flags |= LOOKUP_FOLLOW;
2030 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2031 	if (ret)
2032 		return ret;
2033 	return path_umount(&path, flags);
2034 }
2035 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2036 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2037 {
2038 	return ksys_umount(name, flags);
2039 }
2040 
2041 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2042 
2043 /*
2044  *	The 2.0 compatible umount. No flags.
2045  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2046 SYSCALL_DEFINE1(oldumount, char __user *, name)
2047 {
2048 	return ksys_umount(name, 0);
2049 }
2050 
2051 #endif
2052 
is_mnt_ns_file(struct dentry * dentry)2053 static bool is_mnt_ns_file(struct dentry *dentry)
2054 {
2055 	struct ns_common *ns;
2056 
2057 	/* Is this a proxy for a mount namespace? */
2058 	if (dentry->d_op != &ns_dentry_operations)
2059 		return false;
2060 
2061 	ns = d_inode(dentry)->i_private;
2062 
2063 	return ns->ops == &mntns_operations;
2064 }
2065 
from_mnt_ns(struct mnt_namespace * mnt)2066 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2067 {
2068 	return &mnt->ns;
2069 }
2070 
__lookup_next_mnt_ns(struct mnt_namespace * mntns,bool previous)2071 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2072 {
2073 	guard(read_lock)(&mnt_ns_tree_lock);
2074 	for (;;) {
2075 		struct rb_node *node;
2076 
2077 		if (previous)
2078 			node = rb_prev(&mntns->mnt_ns_tree_node);
2079 		else
2080 			node = rb_next(&mntns->mnt_ns_tree_node);
2081 		if (!node)
2082 			return ERR_PTR(-ENOENT);
2083 
2084 		mntns = node_to_mnt_ns(node);
2085 		node = &mntns->mnt_ns_tree_node;
2086 
2087 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2088 			continue;
2089 
2090 		/*
2091 		 * Holding mnt_ns_tree_lock prevents the mount namespace from
2092 		 * being freed but it may well be on it's deathbed. We want an
2093 		 * active reference, not just a passive one here as we're
2094 		 * persisting the mount namespace.
2095 		 */
2096 		if (!refcount_inc_not_zero(&mntns->ns.count))
2097 			continue;
2098 
2099 		return mntns;
2100 	}
2101 }
2102 
mnt_ns_loop(struct dentry * dentry)2103 static bool mnt_ns_loop(struct dentry *dentry)
2104 {
2105 	/* Could bind mounting the mount namespace inode cause a
2106 	 * mount namespace loop?
2107 	 */
2108 	struct mnt_namespace *mnt_ns;
2109 	if (!is_mnt_ns_file(dentry))
2110 		return false;
2111 
2112 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2113 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2114 }
2115 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2116 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2117 					int flag)
2118 {
2119 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2120 		*dst_parent, *dst_mnt;
2121 
2122 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2123 		return ERR_PTR(-EINVAL);
2124 
2125 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2126 		return ERR_PTR(-EINVAL);
2127 
2128 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2129 	if (IS_ERR(dst_mnt))
2130 		return dst_mnt;
2131 
2132 	src_parent = src_root;
2133 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2134 
2135 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2136 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2137 			continue;
2138 
2139 		for (src_mnt = src_root_child; src_mnt;
2140 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2141 			if (!(flag & CL_COPY_UNBINDABLE) &&
2142 			    IS_MNT_UNBINDABLE(src_mnt)) {
2143 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2144 					/* Both unbindable and locked. */
2145 					dst_mnt = ERR_PTR(-EPERM);
2146 					goto out;
2147 				} else {
2148 					src_mnt = skip_mnt_tree(src_mnt);
2149 					continue;
2150 				}
2151 			}
2152 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2153 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2154 				src_mnt = skip_mnt_tree(src_mnt);
2155 				continue;
2156 			}
2157 			while (src_parent != src_mnt->mnt_parent) {
2158 				src_parent = src_parent->mnt_parent;
2159 				dst_mnt = dst_mnt->mnt_parent;
2160 			}
2161 
2162 			src_parent = src_mnt;
2163 			dst_parent = dst_mnt;
2164 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2165 			if (IS_ERR(dst_mnt))
2166 				goto out;
2167 			lock_mount_hash();
2168 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2169 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2170 			unlock_mount_hash();
2171 		}
2172 	}
2173 	return res;
2174 
2175 out:
2176 	if (res) {
2177 		lock_mount_hash();
2178 		umount_tree(res, UMOUNT_SYNC);
2179 		unlock_mount_hash();
2180 	}
2181 	return dst_mnt;
2182 }
2183 
2184 /* Caller should check returned pointer for errors */
2185 
collect_mounts(const struct path * path)2186 struct vfsmount *collect_mounts(const struct path *path)
2187 {
2188 	struct mount *tree;
2189 	namespace_lock();
2190 	if (!check_mnt(real_mount(path->mnt)))
2191 		tree = ERR_PTR(-EINVAL);
2192 	else
2193 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2194 				 CL_COPY_ALL | CL_PRIVATE);
2195 	namespace_unlock();
2196 	if (IS_ERR(tree))
2197 		return ERR_CAST(tree);
2198 	return &tree->mnt;
2199 }
2200 
2201 static void free_mnt_ns(struct mnt_namespace *);
2202 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2203 
dissolve_on_fput(struct vfsmount * mnt)2204 void dissolve_on_fput(struct vfsmount *mnt)
2205 {
2206 	struct mnt_namespace *ns;
2207 	namespace_lock();
2208 	lock_mount_hash();
2209 	ns = real_mount(mnt)->mnt_ns;
2210 	if (ns) {
2211 		if (is_anon_ns(ns))
2212 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2213 		else
2214 			ns = NULL;
2215 	}
2216 	unlock_mount_hash();
2217 	namespace_unlock();
2218 	if (ns)
2219 		free_mnt_ns(ns);
2220 }
2221 
drop_collected_mounts(struct vfsmount * mnt)2222 void drop_collected_mounts(struct vfsmount *mnt)
2223 {
2224 	namespace_lock();
2225 	lock_mount_hash();
2226 	umount_tree(real_mount(mnt), 0);
2227 	unlock_mount_hash();
2228 	namespace_unlock();
2229 }
2230 
__has_locked_children(struct mount * mnt,struct dentry * dentry)2231 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2232 {
2233 	struct mount *child;
2234 
2235 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2236 		if (!is_subdir(child->mnt_mountpoint, dentry))
2237 			continue;
2238 
2239 		if (child->mnt.mnt_flags & MNT_LOCKED)
2240 			return true;
2241 	}
2242 	return false;
2243 }
2244 
has_locked_children(struct mount * mnt,struct dentry * dentry)2245 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2246 {
2247 	bool res;
2248 
2249 	read_seqlock_excl(&mount_lock);
2250 	res = __has_locked_children(mnt, dentry);
2251 	read_sequnlock_excl(&mount_lock);
2252 	return res;
2253 }
2254 
2255 /**
2256  * clone_private_mount - create a private clone of a path
2257  * @path: path to clone
2258  *
2259  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2260  * will not be attached anywhere in the namespace and will be private (i.e.
2261  * changes to the originating mount won't be propagated into this).
2262  *
2263  * Release with mntput().
2264  */
clone_private_mount(const struct path * path)2265 struct vfsmount *clone_private_mount(const struct path *path)
2266 {
2267 	struct mount *old_mnt = real_mount(path->mnt);
2268 	struct mount *new_mnt;
2269 
2270 	down_read(&namespace_sem);
2271 	if (IS_MNT_UNBINDABLE(old_mnt))
2272 		goto invalid;
2273 
2274 	if (!check_mnt(old_mnt))
2275 		goto invalid;
2276 
2277 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) {
2278 		up_read(&namespace_sem);
2279 		return ERR_PTR(-EPERM);
2280 	}
2281 
2282 	if (__has_locked_children(old_mnt, path->dentry))
2283 		goto invalid;
2284 
2285 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2286 	up_read(&namespace_sem);
2287 
2288 	if (IS_ERR(new_mnt))
2289 		return ERR_CAST(new_mnt);
2290 
2291 	/* Longterm mount to be removed by kern_unmount*() */
2292 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2293 
2294 	return &new_mnt->mnt;
2295 
2296 invalid:
2297 	up_read(&namespace_sem);
2298 	return ERR_PTR(-EINVAL);
2299 }
2300 EXPORT_SYMBOL_GPL(clone_private_mount);
2301 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2302 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2303 		   struct vfsmount *root)
2304 {
2305 	struct mount *mnt;
2306 	int res = f(root, arg);
2307 	if (res)
2308 		return res;
2309 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2310 		res = f(&mnt->mnt, arg);
2311 		if (res)
2312 			return res;
2313 	}
2314 	return 0;
2315 }
2316 
lock_mnt_tree(struct mount * mnt)2317 static void lock_mnt_tree(struct mount *mnt)
2318 {
2319 	struct mount *p;
2320 
2321 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2322 		int flags = p->mnt.mnt_flags;
2323 		/* Don't allow unprivileged users to change mount flags */
2324 		flags |= MNT_LOCK_ATIME;
2325 
2326 		if (flags & MNT_READONLY)
2327 			flags |= MNT_LOCK_READONLY;
2328 
2329 		if (flags & MNT_NODEV)
2330 			flags |= MNT_LOCK_NODEV;
2331 
2332 		if (flags & MNT_NOSUID)
2333 			flags |= MNT_LOCK_NOSUID;
2334 
2335 		if (flags & MNT_NOEXEC)
2336 			flags |= MNT_LOCK_NOEXEC;
2337 		/* Don't allow unprivileged users to reveal what is under a mount */
2338 		if (list_empty(&p->mnt_expire))
2339 			flags |= MNT_LOCKED;
2340 		p->mnt.mnt_flags = flags;
2341 	}
2342 }
2343 
cleanup_group_ids(struct mount * mnt,struct mount * end)2344 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2345 {
2346 	struct mount *p;
2347 
2348 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2349 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2350 			mnt_release_group_id(p);
2351 	}
2352 }
2353 
invent_group_ids(struct mount * mnt,bool recurse)2354 static int invent_group_ids(struct mount *mnt, bool recurse)
2355 {
2356 	struct mount *p;
2357 
2358 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2359 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2360 			int err = mnt_alloc_group_id(p);
2361 			if (err) {
2362 				cleanup_group_ids(mnt, p);
2363 				return err;
2364 			}
2365 		}
2366 	}
2367 
2368 	return 0;
2369 }
2370 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2371 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2372 {
2373 	unsigned int max = READ_ONCE(sysctl_mount_max);
2374 	unsigned int mounts = 0;
2375 	struct mount *p;
2376 
2377 	if (ns->nr_mounts >= max)
2378 		return -ENOSPC;
2379 	max -= ns->nr_mounts;
2380 	if (ns->pending_mounts >= max)
2381 		return -ENOSPC;
2382 	max -= ns->pending_mounts;
2383 
2384 	for (p = mnt; p; p = next_mnt(p, mnt))
2385 		mounts++;
2386 
2387 	if (mounts > max)
2388 		return -ENOSPC;
2389 
2390 	ns->pending_mounts += mounts;
2391 	return 0;
2392 }
2393 
2394 enum mnt_tree_flags_t {
2395 	MNT_TREE_MOVE = BIT(0),
2396 	MNT_TREE_BENEATH = BIT(1),
2397 };
2398 
2399 /**
2400  * attach_recursive_mnt - attach a source mount tree
2401  * @source_mnt: mount tree to be attached
2402  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2403  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2404  * @flags:      modify how @source_mnt is supposed to be attached
2405  *
2406  *  NOTE: in the table below explains the semantics when a source mount
2407  *  of a given type is attached to a destination mount of a given type.
2408  * ---------------------------------------------------------------------------
2409  * |         BIND MOUNT OPERATION                                            |
2410  * |**************************************************************************
2411  * | source-->| shared        |       private  |       slave    | unbindable |
2412  * | dest     |               |                |                |            |
2413  * |   |      |               |                |                |            |
2414  * |   v      |               |                |                |            |
2415  * |**************************************************************************
2416  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2417  * |          |               |                |                |            |
2418  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2419  * ***************************************************************************
2420  * A bind operation clones the source mount and mounts the clone on the
2421  * destination mount.
2422  *
2423  * (++)  the cloned mount is propagated to all the mounts in the propagation
2424  * 	 tree of the destination mount and the cloned mount is added to
2425  * 	 the peer group of the source mount.
2426  * (+)   the cloned mount is created under the destination mount and is marked
2427  *       as shared. The cloned mount is added to the peer group of the source
2428  *       mount.
2429  * (+++) the mount is propagated to all the mounts in the propagation tree
2430  *       of the destination mount and the cloned mount is made slave
2431  *       of the same master as that of the source mount. The cloned mount
2432  *       is marked as 'shared and slave'.
2433  * (*)   the cloned mount is made a slave of the same master as that of the
2434  * 	 source mount.
2435  *
2436  * ---------------------------------------------------------------------------
2437  * |         		MOVE MOUNT OPERATION                                 |
2438  * |**************************************************************************
2439  * | source-->| shared        |       private  |       slave    | unbindable |
2440  * | dest     |               |                |                |            |
2441  * |   |      |               |                |                |            |
2442  * |   v      |               |                |                |            |
2443  * |**************************************************************************
2444  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2445  * |          |               |                |                |            |
2446  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2447  * ***************************************************************************
2448  *
2449  * (+)  the mount is moved to the destination. And is then propagated to
2450  * 	all the mounts in the propagation tree of the destination mount.
2451  * (+*)  the mount is moved to the destination.
2452  * (+++)  the mount is moved to the destination and is then propagated to
2453  * 	all the mounts belonging to the destination mount's propagation tree.
2454  * 	the mount is marked as 'shared and slave'.
2455  * (*)	the mount continues to be a slave at the new location.
2456  *
2457  * if the source mount is a tree, the operations explained above is
2458  * applied to each mount in the tree.
2459  * Must be called without spinlocks held, since this function can sleep
2460  * in allocations.
2461  *
2462  * Context: The function expects namespace_lock() to be held.
2463  * Return: If @source_mnt was successfully attached 0 is returned.
2464  *         Otherwise a negative error code is returned.
2465  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2466 static int attach_recursive_mnt(struct mount *source_mnt,
2467 				struct mount *top_mnt,
2468 				struct mountpoint *dest_mp,
2469 				enum mnt_tree_flags_t flags)
2470 {
2471 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2472 	HLIST_HEAD(tree_list);
2473 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2474 	struct mountpoint *smp;
2475 	struct mount *child, *dest_mnt, *p;
2476 	struct hlist_node *n;
2477 	int err = 0;
2478 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2479 
2480 	/*
2481 	 * Preallocate a mountpoint in case the new mounts need to be
2482 	 * mounted beneath mounts on the same mountpoint.
2483 	 */
2484 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2485 	if (IS_ERR(smp))
2486 		return PTR_ERR(smp);
2487 
2488 	/* Is there space to add these mounts to the mount namespace? */
2489 	if (!moving) {
2490 		err = count_mounts(ns, source_mnt);
2491 		if (err)
2492 			goto out;
2493 	}
2494 
2495 	if (beneath)
2496 		dest_mnt = top_mnt->mnt_parent;
2497 	else
2498 		dest_mnt = top_mnt;
2499 
2500 	if (IS_MNT_SHARED(dest_mnt)) {
2501 		err = invent_group_ids(source_mnt, true);
2502 		if (err)
2503 			goto out;
2504 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2505 	}
2506 	lock_mount_hash();
2507 	if (err)
2508 		goto out_cleanup_ids;
2509 
2510 	if (IS_MNT_SHARED(dest_mnt)) {
2511 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2512 			set_mnt_shared(p);
2513 	}
2514 
2515 	if (moving) {
2516 		if (beneath)
2517 			dest_mp = smp;
2518 		unhash_mnt(source_mnt);
2519 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2520 		touch_mnt_namespace(source_mnt->mnt_ns);
2521 	} else {
2522 		if (source_mnt->mnt_ns) {
2523 			LIST_HEAD(head);
2524 
2525 			/* move from anon - the caller will destroy */
2526 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2527 				move_from_ns(p, &head);
2528 			list_del_init(&head);
2529 		}
2530 		if (beneath)
2531 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2532 		else
2533 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2534 		commit_tree(source_mnt);
2535 	}
2536 
2537 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2538 		struct mount *q;
2539 		hlist_del_init(&child->mnt_hash);
2540 		/* Notice when we are propagating across user namespaces */
2541 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2542 			lock_mnt_tree(child);
2543 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2544 		q = __lookup_mnt(&child->mnt_parent->mnt,
2545 				 child->mnt_mountpoint);
2546 		if (q)
2547 			mnt_change_mountpoint(child, smp, q);
2548 		commit_tree(child);
2549 	}
2550 	put_mountpoint(smp);
2551 	unlock_mount_hash();
2552 
2553 	return 0;
2554 
2555  out_cleanup_ids:
2556 	while (!hlist_empty(&tree_list)) {
2557 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2558 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2559 		umount_tree(child, UMOUNT_SYNC);
2560 	}
2561 	unlock_mount_hash();
2562 	cleanup_group_ids(source_mnt, NULL);
2563  out:
2564 	ns->pending_mounts = 0;
2565 
2566 	read_seqlock_excl(&mount_lock);
2567 	put_mountpoint(smp);
2568 	read_sequnlock_excl(&mount_lock);
2569 
2570 	return err;
2571 }
2572 
2573 /**
2574  * do_lock_mount - lock mount and mountpoint
2575  * @path:    target path
2576  * @beneath: whether the intention is to mount beneath @path
2577  *
2578  * Follow the mount stack on @path until the top mount @mnt is found. If
2579  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2580  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2581  * until nothing is stacked on top of it anymore.
2582  *
2583  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2584  * against concurrent removal of the new mountpoint from another mount
2585  * namespace.
2586  *
2587  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2588  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2589  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2590  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2591  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2592  * on top of it for @beneath.
2593  *
2594  * In addition, @beneath needs to make sure that @mnt hasn't been
2595  * unmounted or moved from its current mountpoint in between dropping
2596  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2597  * being unmounted would be detected later by e.g., calling
2598  * check_mnt(mnt) in the function it's called from. For the @beneath
2599  * case however, it's useful to detect it directly in do_lock_mount().
2600  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2601  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2602  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2603  *
2604  * Return: Either the target mountpoint on the top mount or the top
2605  *         mount's mountpoint.
2606  */
do_lock_mount(struct path * path,bool beneath)2607 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2608 {
2609 	struct vfsmount *mnt = path->mnt;
2610 	struct dentry *dentry;
2611 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2612 	struct path under = {};
2613 
2614 	for (;;) {
2615 		struct mount *m = real_mount(mnt);
2616 
2617 		if (beneath) {
2618 			path_put(&under);
2619 			read_seqlock_excl(&mount_lock);
2620 			under.mnt = mntget(&m->mnt_parent->mnt);
2621 			under.dentry = dget(m->mnt_mountpoint);
2622 			read_sequnlock_excl(&mount_lock);
2623 			dentry = under.dentry;
2624 		} else {
2625 			dentry = path->dentry;
2626 		}
2627 
2628 		inode_lock(dentry->d_inode);
2629 		namespace_lock();
2630 
2631 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2632 			break;		// not to be mounted on
2633 
2634 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2635 				        &m->mnt_parent->mnt != under.mnt)) {
2636 			namespace_unlock();
2637 			inode_unlock(dentry->d_inode);
2638 			continue;	// got moved
2639 		}
2640 
2641 		mnt = lookup_mnt(path);
2642 		if (unlikely(mnt)) {
2643 			namespace_unlock();
2644 			inode_unlock(dentry->d_inode);
2645 			path_put(path);
2646 			path->mnt = mnt;
2647 			path->dentry = dget(mnt->mnt_root);
2648 			continue;	// got overmounted
2649 		}
2650 		mp = get_mountpoint(dentry);
2651 		if (IS_ERR(mp))
2652 			break;
2653 		if (beneath) {
2654 			/*
2655 			 * @under duplicates the references that will stay
2656 			 * at least until namespace_unlock(), so the path_put()
2657 			 * below is safe (and OK to do under namespace_lock -
2658 			 * we are not dropping the final references here).
2659 			 */
2660 			path_put(&under);
2661 		}
2662 		return mp;
2663 	}
2664 	namespace_unlock();
2665 	inode_unlock(dentry->d_inode);
2666 	if (beneath)
2667 		path_put(&under);
2668 	return mp;
2669 }
2670 
lock_mount(struct path * path)2671 static inline struct mountpoint *lock_mount(struct path *path)
2672 {
2673 	return do_lock_mount(path, false);
2674 }
2675 
unlock_mount(struct mountpoint * where)2676 static void unlock_mount(struct mountpoint *where)
2677 {
2678 	inode_unlock(where->m_dentry->d_inode);
2679 	read_seqlock_excl(&mount_lock);
2680 	put_mountpoint(where);
2681 	read_sequnlock_excl(&mount_lock);
2682 	namespace_unlock();
2683 }
2684 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2685 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2686 {
2687 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2688 		return -EINVAL;
2689 
2690 	if (d_is_dir(mp->m_dentry) !=
2691 	      d_is_dir(mnt->mnt.mnt_root))
2692 		return -ENOTDIR;
2693 
2694 	return attach_recursive_mnt(mnt, p, mp, 0);
2695 }
2696 
may_change_propagation(const struct mount * m)2697 static int may_change_propagation(const struct mount *m)
2698 {
2699         struct mnt_namespace *ns = m->mnt_ns;
2700 
2701 	 // it must be mounted in some namespace
2702 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2703 		 return -EINVAL;
2704 	 // and the caller must be admin in userns of that namespace
2705 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2706 		 return -EPERM;
2707 	 return 0;
2708 }
2709 
2710 /*
2711  * Sanity check the flags to change_mnt_propagation.
2712  */
2713 
flags_to_propagation_type(int ms_flags)2714 static int flags_to_propagation_type(int ms_flags)
2715 {
2716 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2717 
2718 	/* Fail if any non-propagation flags are set */
2719 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2720 		return 0;
2721 	/* Only one propagation flag should be set */
2722 	if (!is_power_of_2(type))
2723 		return 0;
2724 	return type;
2725 }
2726 
2727 /*
2728  * recursively change the type of the mountpoint.
2729  */
do_change_type(struct path * path,int ms_flags)2730 static int do_change_type(struct path *path, int ms_flags)
2731 {
2732 	struct mount *m;
2733 	struct mount *mnt = real_mount(path->mnt);
2734 	int recurse = ms_flags & MS_REC;
2735 	int type;
2736 	int err = 0;
2737 
2738 	if (!path_mounted(path))
2739 		return -EINVAL;
2740 
2741 	type = flags_to_propagation_type(ms_flags);
2742 	if (!type)
2743 		return -EINVAL;
2744 
2745 	namespace_lock();
2746 	err = may_change_propagation(mnt);
2747 	if (err)
2748 		goto out_unlock;
2749 
2750 	if (type == MS_SHARED) {
2751 		err = invent_group_ids(mnt, recurse);
2752 		if (err)
2753 			goto out_unlock;
2754 	}
2755 
2756 	lock_mount_hash();
2757 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2758 		change_mnt_propagation(m, type);
2759 	unlock_mount_hash();
2760 
2761  out_unlock:
2762 	namespace_unlock();
2763 	return err;
2764 }
2765 
__do_loopback(struct path * old_path,int recurse)2766 static struct mount *__do_loopback(struct path *old_path, int recurse)
2767 {
2768 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2769 
2770 	if (IS_MNT_UNBINDABLE(old))
2771 		return mnt;
2772 
2773 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2774 		return mnt;
2775 
2776 	if (!recurse && __has_locked_children(old, old_path->dentry))
2777 		return mnt;
2778 
2779 	if (recurse)
2780 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2781 	else
2782 		mnt = clone_mnt(old, old_path->dentry, 0);
2783 
2784 	if (!IS_ERR(mnt))
2785 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2786 
2787 	return mnt;
2788 }
2789 
2790 /*
2791  * do loopback mount.
2792  */
do_loopback(struct path * path,const char * old_name,int recurse)2793 static int do_loopback(struct path *path, const char *old_name,
2794 				int recurse)
2795 {
2796 	struct path old_path;
2797 	struct mount *mnt = NULL, *parent;
2798 	struct mountpoint *mp;
2799 	int err;
2800 	if (!old_name || !*old_name)
2801 		return -EINVAL;
2802 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2803 	if (err)
2804 		return err;
2805 
2806 	err = -EINVAL;
2807 	if (mnt_ns_loop(old_path.dentry))
2808 		goto out;
2809 
2810 	mp = lock_mount(path);
2811 	if (IS_ERR(mp)) {
2812 		err = PTR_ERR(mp);
2813 		goto out;
2814 	}
2815 
2816 	parent = real_mount(path->mnt);
2817 	if (!check_mnt(parent))
2818 		goto out2;
2819 
2820 	mnt = __do_loopback(&old_path, recurse);
2821 	if (IS_ERR(mnt)) {
2822 		err = PTR_ERR(mnt);
2823 		goto out2;
2824 	}
2825 
2826 	err = graft_tree(mnt, parent, mp);
2827 	if (err) {
2828 		lock_mount_hash();
2829 		umount_tree(mnt, UMOUNT_SYNC);
2830 		unlock_mount_hash();
2831 	}
2832 out2:
2833 	unlock_mount(mp);
2834 out:
2835 	path_put(&old_path);
2836 	return err;
2837 }
2838 
open_detached_copy(struct path * path,bool recursive)2839 static struct file *open_detached_copy(struct path *path, bool recursive)
2840 {
2841 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2842 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2843 	struct mount *mnt, *p;
2844 	struct file *file;
2845 
2846 	if (IS_ERR(ns))
2847 		return ERR_CAST(ns);
2848 
2849 	namespace_lock();
2850 	mnt = __do_loopback(path, recursive);
2851 	if (IS_ERR(mnt)) {
2852 		namespace_unlock();
2853 		free_mnt_ns(ns);
2854 		return ERR_CAST(mnt);
2855 	}
2856 
2857 	lock_mount_hash();
2858 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2859 		mnt_add_to_ns(ns, p);
2860 		ns->nr_mounts++;
2861 	}
2862 	ns->root = mnt;
2863 	mntget(&mnt->mnt);
2864 	unlock_mount_hash();
2865 	namespace_unlock();
2866 
2867 	mntput(path->mnt);
2868 	path->mnt = &mnt->mnt;
2869 	file = dentry_open(path, O_PATH, current_cred());
2870 	if (IS_ERR(file))
2871 		dissolve_on_fput(path->mnt);
2872 	else
2873 		file->f_mode |= FMODE_NEED_UNMOUNT;
2874 	return file;
2875 }
2876 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2877 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2878 {
2879 	struct file *file;
2880 	struct path path;
2881 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2882 	bool detached = flags & OPEN_TREE_CLONE;
2883 	int error;
2884 	int fd;
2885 
2886 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2887 
2888 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2889 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2890 		      OPEN_TREE_CLOEXEC))
2891 		return -EINVAL;
2892 
2893 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2894 		return -EINVAL;
2895 
2896 	if (flags & AT_NO_AUTOMOUNT)
2897 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2898 	if (flags & AT_SYMLINK_NOFOLLOW)
2899 		lookup_flags &= ~LOOKUP_FOLLOW;
2900 	if (flags & AT_EMPTY_PATH)
2901 		lookup_flags |= LOOKUP_EMPTY;
2902 
2903 	if (detached && !may_mount())
2904 		return -EPERM;
2905 
2906 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2907 	if (fd < 0)
2908 		return fd;
2909 
2910 	error = user_path_at(dfd, filename, lookup_flags, &path);
2911 	if (unlikely(error)) {
2912 		file = ERR_PTR(error);
2913 	} else {
2914 		if (detached)
2915 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2916 		else
2917 			file = dentry_open(&path, O_PATH, current_cred());
2918 		path_put(&path);
2919 	}
2920 	if (IS_ERR(file)) {
2921 		put_unused_fd(fd);
2922 		return PTR_ERR(file);
2923 	}
2924 	fd_install(fd, file);
2925 	return fd;
2926 }
2927 
2928 /*
2929  * Don't allow locked mount flags to be cleared.
2930  *
2931  * No locks need to be held here while testing the various MNT_LOCK
2932  * flags because those flags can never be cleared once they are set.
2933  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2934 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2935 {
2936 	unsigned int fl = mnt->mnt.mnt_flags;
2937 
2938 	if ((fl & MNT_LOCK_READONLY) &&
2939 	    !(mnt_flags & MNT_READONLY))
2940 		return false;
2941 
2942 	if ((fl & MNT_LOCK_NODEV) &&
2943 	    !(mnt_flags & MNT_NODEV))
2944 		return false;
2945 
2946 	if ((fl & MNT_LOCK_NOSUID) &&
2947 	    !(mnt_flags & MNT_NOSUID))
2948 		return false;
2949 
2950 	if ((fl & MNT_LOCK_NOEXEC) &&
2951 	    !(mnt_flags & MNT_NOEXEC))
2952 		return false;
2953 
2954 	if ((fl & MNT_LOCK_ATIME) &&
2955 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2956 		return false;
2957 
2958 	return true;
2959 }
2960 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2961 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2962 {
2963 	bool readonly_request = (mnt_flags & MNT_READONLY);
2964 
2965 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2966 		return 0;
2967 
2968 	if (readonly_request)
2969 		return mnt_make_readonly(mnt);
2970 
2971 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2972 	return 0;
2973 }
2974 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2975 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2976 {
2977 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2978 	mnt->mnt.mnt_flags = mnt_flags;
2979 	touch_mnt_namespace(mnt->mnt_ns);
2980 }
2981 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2982 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2983 {
2984 	struct super_block *sb = mnt->mnt_sb;
2985 
2986 	if (!__mnt_is_readonly(mnt) &&
2987 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2988 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2989 		char *buf, *mntpath;
2990 
2991 		buf = (char *)__get_free_page(GFP_KERNEL);
2992 		if (buf)
2993 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2994 		else
2995 			mntpath = ERR_PTR(-ENOMEM);
2996 		if (IS_ERR(mntpath))
2997 			mntpath = "(unknown)";
2998 
2999 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3000 			sb->s_type->name,
3001 			is_mounted(mnt) ? "remounted" : "mounted",
3002 			mntpath, &sb->s_time_max,
3003 			(unsigned long long)sb->s_time_max);
3004 
3005 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3006 		if (buf)
3007 			free_page((unsigned long)buf);
3008 	}
3009 }
3010 
3011 /*
3012  * Handle reconfiguration of the mountpoint only without alteration of the
3013  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3014  * to mount(2).
3015  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3016 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3017 {
3018 	struct super_block *sb = path->mnt->mnt_sb;
3019 	struct mount *mnt = real_mount(path->mnt);
3020 	int ret;
3021 
3022 	if (!check_mnt(mnt))
3023 		return -EINVAL;
3024 
3025 	if (!path_mounted(path))
3026 		return -EINVAL;
3027 
3028 	if (!can_change_locked_flags(mnt, mnt_flags))
3029 		return -EPERM;
3030 
3031 	/*
3032 	 * We're only checking whether the superblock is read-only not
3033 	 * changing it, so only take down_read(&sb->s_umount).
3034 	 */
3035 	down_read(&sb->s_umount);
3036 	lock_mount_hash();
3037 	ret = change_mount_ro_state(mnt, mnt_flags);
3038 	if (ret == 0)
3039 		set_mount_attributes(mnt, mnt_flags);
3040 	unlock_mount_hash();
3041 	up_read(&sb->s_umount);
3042 
3043 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3044 
3045 	return ret;
3046 }
3047 
3048 /*
3049  * change filesystem flags. dir should be a physical root of filesystem.
3050  * If you've mounted a non-root directory somewhere and want to do remount
3051  * on it - tough luck.
3052  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3053 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3054 		      int mnt_flags, void *data)
3055 {
3056 	int err;
3057 	struct super_block *sb = path->mnt->mnt_sb;
3058 	struct mount *mnt = real_mount(path->mnt);
3059 	struct fs_context *fc;
3060 
3061 	if (!check_mnt(mnt))
3062 		return -EINVAL;
3063 
3064 	if (!path_mounted(path))
3065 		return -EINVAL;
3066 
3067 	if (!can_change_locked_flags(mnt, mnt_flags))
3068 		return -EPERM;
3069 
3070 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3071 	if (IS_ERR(fc))
3072 		return PTR_ERR(fc);
3073 
3074 	/*
3075 	 * Indicate to the filesystem that the remount request is coming
3076 	 * from the legacy mount system call.
3077 	 */
3078 	fc->oldapi = true;
3079 
3080 	err = parse_monolithic_mount_data(fc, data);
3081 	if (!err) {
3082 		down_write(&sb->s_umount);
3083 		err = -EPERM;
3084 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3085 			err = reconfigure_super(fc);
3086 			if (!err) {
3087 				lock_mount_hash();
3088 				set_mount_attributes(mnt, mnt_flags);
3089 				unlock_mount_hash();
3090 			}
3091 		}
3092 		up_write(&sb->s_umount);
3093 	}
3094 
3095 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3096 
3097 	put_fs_context(fc);
3098 	return err;
3099 }
3100 
tree_contains_unbindable(struct mount * mnt)3101 static inline int tree_contains_unbindable(struct mount *mnt)
3102 {
3103 	struct mount *p;
3104 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3105 		if (IS_MNT_UNBINDABLE(p))
3106 			return 1;
3107 	}
3108 	return 0;
3109 }
3110 
3111 /*
3112  * Check that there aren't references to earlier/same mount namespaces in the
3113  * specified subtree.  Such references can act as pins for mount namespaces
3114  * that aren't checked by the mount-cycle checking code, thereby allowing
3115  * cycles to be made.
3116  */
check_for_nsfs_mounts(struct mount * subtree)3117 static bool check_for_nsfs_mounts(struct mount *subtree)
3118 {
3119 	struct mount *p;
3120 	bool ret = false;
3121 
3122 	lock_mount_hash();
3123 	for (p = subtree; p; p = next_mnt(p, subtree))
3124 		if (mnt_ns_loop(p->mnt.mnt_root))
3125 			goto out;
3126 
3127 	ret = true;
3128 out:
3129 	unlock_mount_hash();
3130 	return ret;
3131 }
3132 
do_set_group(struct path * from_path,struct path * to_path)3133 static int do_set_group(struct path *from_path, struct path *to_path)
3134 {
3135 	struct mount *from, *to;
3136 	int err;
3137 
3138 	from = real_mount(from_path->mnt);
3139 	to = real_mount(to_path->mnt);
3140 
3141 	namespace_lock();
3142 
3143 	err = may_change_propagation(from);
3144 	if (err)
3145 		goto out;
3146 	err = may_change_propagation(to);
3147 	if (err)
3148 		goto out;
3149 
3150 	err = -EINVAL;
3151 	/* To and From paths should be mount roots */
3152 	if (!path_mounted(from_path))
3153 		goto out;
3154 	if (!path_mounted(to_path))
3155 		goto out;
3156 
3157 	/* Setting sharing groups is only allowed across same superblock */
3158 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3159 		goto out;
3160 
3161 	/* From mount root should be wider than To mount root */
3162 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3163 		goto out;
3164 
3165 	/* From mount should not have locked children in place of To's root */
3166 	if (__has_locked_children(from, to->mnt.mnt_root))
3167 		goto out;
3168 
3169 	/* Setting sharing groups is only allowed on private mounts */
3170 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3171 		goto out;
3172 
3173 	/* From should not be private */
3174 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3175 		goto out;
3176 
3177 	if (IS_MNT_SLAVE(from)) {
3178 		struct mount *m = from->mnt_master;
3179 
3180 		list_add(&to->mnt_slave, &from->mnt_slave);
3181 		to->mnt_master = m;
3182 	}
3183 
3184 	if (IS_MNT_SHARED(from)) {
3185 		to->mnt_group_id = from->mnt_group_id;
3186 		list_add(&to->mnt_share, &from->mnt_share);
3187 		lock_mount_hash();
3188 		set_mnt_shared(to);
3189 		unlock_mount_hash();
3190 	}
3191 
3192 	err = 0;
3193 out:
3194 	namespace_unlock();
3195 	return err;
3196 }
3197 
3198 /**
3199  * path_overmounted - check if path is overmounted
3200  * @path: path to check
3201  *
3202  * Check if path is overmounted, i.e., if there's a mount on top of
3203  * @path->mnt with @path->dentry as mountpoint.
3204  *
3205  * Context: namespace_sem must be held at least shared.
3206  * MUST NOT be called under lock_mount_hash() (there one should just
3207  * call __lookup_mnt() and check if it returns NULL).
3208  * Return: If path is overmounted true is returned, false if not.
3209  */
path_overmounted(const struct path * path)3210 static inline bool path_overmounted(const struct path *path)
3211 {
3212 	unsigned seq = read_seqbegin(&mount_lock);
3213 	bool no_child;
3214 
3215 	rcu_read_lock();
3216 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3217 	rcu_read_unlock();
3218 	if (need_seqretry(&mount_lock, seq)) {
3219 		read_seqlock_excl(&mount_lock);
3220 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3221 		read_sequnlock_excl(&mount_lock);
3222 	}
3223 	return unlikely(!no_child);
3224 }
3225 
3226 /**
3227  * can_move_mount_beneath - check that we can mount beneath the top mount
3228  * @from: mount to mount beneath
3229  * @to:   mount under which to mount
3230  * @mp:   mountpoint of @to
3231  *
3232  * - Make sure that @to->dentry is actually the root of a mount under
3233  *   which we can mount another mount.
3234  * - Make sure that nothing can be mounted beneath the caller's current
3235  *   root or the rootfs of the namespace.
3236  * - Make sure that the caller can unmount the topmost mount ensuring
3237  *   that the caller could reveal the underlying mountpoint.
3238  * - Ensure that nothing has been mounted on top of @from before we
3239  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3240  * - Prevent mounting beneath a mount if the propagation relationship
3241  *   between the source mount, parent mount, and top mount would lead to
3242  *   nonsensical mount trees.
3243  *
3244  * Context: This function expects namespace_lock() to be held.
3245  * Return: On success 0, and on error a negative error code is returned.
3246  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3247 static int can_move_mount_beneath(const struct path *from,
3248 				  const struct path *to,
3249 				  const struct mountpoint *mp)
3250 {
3251 	struct mount *mnt_from = real_mount(from->mnt),
3252 		     *mnt_to = real_mount(to->mnt),
3253 		     *parent_mnt_to = mnt_to->mnt_parent;
3254 
3255 	if (!mnt_has_parent(mnt_to))
3256 		return -EINVAL;
3257 
3258 	if (!path_mounted(to))
3259 		return -EINVAL;
3260 
3261 	if (IS_MNT_LOCKED(mnt_to))
3262 		return -EINVAL;
3263 
3264 	/* Avoid creating shadow mounts during mount propagation. */
3265 	if (path_overmounted(from))
3266 		return -EINVAL;
3267 
3268 	/*
3269 	 * Mounting beneath the rootfs only makes sense when the
3270 	 * semantics of pivot_root(".", ".") are used.
3271 	 */
3272 	if (&mnt_to->mnt == current->fs->root.mnt)
3273 		return -EINVAL;
3274 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3275 		return -EINVAL;
3276 
3277 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3278 		if (p == mnt_to)
3279 			return -EINVAL;
3280 
3281 	/*
3282 	 * If the parent mount propagates to the child mount this would
3283 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3284 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3285 	 * defeats the whole purpose of mounting beneath another mount.
3286 	 */
3287 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3288 		return -EINVAL;
3289 
3290 	/*
3291 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3292 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3293 	 * Afterwards @mnt_from would be mounted on top of
3294 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3295 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3296 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3297 	 * remounted on top of @c. Afterwards, @mnt_from would be
3298 	 * covered by a copy @c of @mnt_from and @c would be covered by
3299 	 * @mnt_from itself. This defeats the whole purpose of mounting
3300 	 * @mnt_from beneath @mnt_to.
3301 	 */
3302 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3303 		return -EINVAL;
3304 
3305 	return 0;
3306 }
3307 
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3308 static int do_move_mount(struct path *old_path, struct path *new_path,
3309 			 bool beneath)
3310 {
3311 	struct mnt_namespace *ns;
3312 	struct mount *p;
3313 	struct mount *old;
3314 	struct mount *parent;
3315 	struct mountpoint *mp, *old_mp;
3316 	int err;
3317 	bool attached;
3318 	enum mnt_tree_flags_t flags = 0;
3319 
3320 	mp = do_lock_mount(new_path, beneath);
3321 	if (IS_ERR(mp))
3322 		return PTR_ERR(mp);
3323 
3324 	old = real_mount(old_path->mnt);
3325 	p = real_mount(new_path->mnt);
3326 	parent = old->mnt_parent;
3327 	attached = mnt_has_parent(old);
3328 	if (attached)
3329 		flags |= MNT_TREE_MOVE;
3330 	old_mp = old->mnt_mp;
3331 	ns = old->mnt_ns;
3332 
3333 	err = -EINVAL;
3334 	/* The mountpoint must be in our namespace. */
3335 	if (!check_mnt(p))
3336 		goto out;
3337 
3338 	/* The thing moved must be mounted... */
3339 	if (!is_mounted(&old->mnt))
3340 		goto out;
3341 
3342 	/* ... and either ours or the root of anon namespace */
3343 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3344 		goto out;
3345 
3346 	if (old->mnt.mnt_flags & MNT_LOCKED)
3347 		goto out;
3348 
3349 	if (!path_mounted(old_path))
3350 		goto out;
3351 
3352 	if (d_is_dir(new_path->dentry) !=
3353 	    d_is_dir(old_path->dentry))
3354 		goto out;
3355 	/*
3356 	 * Don't move a mount residing in a shared parent.
3357 	 */
3358 	if (attached && IS_MNT_SHARED(parent))
3359 		goto out;
3360 
3361 	if (beneath) {
3362 		err = can_move_mount_beneath(old_path, new_path, mp);
3363 		if (err)
3364 			goto out;
3365 
3366 		err = -EINVAL;
3367 		p = p->mnt_parent;
3368 		flags |= MNT_TREE_BENEATH;
3369 	}
3370 
3371 	/*
3372 	 * Don't move a mount tree containing unbindable mounts to a destination
3373 	 * mount which is shared.
3374 	 */
3375 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3376 		goto out;
3377 	err = -ELOOP;
3378 	if (!check_for_nsfs_mounts(old))
3379 		goto out;
3380 	for (; mnt_has_parent(p); p = p->mnt_parent)
3381 		if (p == old)
3382 			goto out;
3383 
3384 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3385 	if (err)
3386 		goto out;
3387 
3388 	/* if the mount is moved, it should no longer be expire
3389 	 * automatically */
3390 	list_del_init(&old->mnt_expire);
3391 	if (attached)
3392 		put_mountpoint(old_mp);
3393 out:
3394 	unlock_mount(mp);
3395 	if (!err) {
3396 		if (attached)
3397 			mntput_no_expire(parent);
3398 		else
3399 			free_mnt_ns(ns);
3400 	}
3401 	return err;
3402 }
3403 
do_move_mount_old(struct path * path,const char * old_name)3404 static int do_move_mount_old(struct path *path, const char *old_name)
3405 {
3406 	struct path old_path;
3407 	int err;
3408 
3409 	if (!old_name || !*old_name)
3410 		return -EINVAL;
3411 
3412 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3413 	if (err)
3414 		return err;
3415 
3416 	err = do_move_mount(&old_path, path, false);
3417 	path_put(&old_path);
3418 	return err;
3419 }
3420 
3421 /*
3422  * add a mount into a namespace's mount tree
3423  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3424 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3425 			const struct path *path, int mnt_flags)
3426 {
3427 	struct mount *parent = real_mount(path->mnt);
3428 
3429 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3430 
3431 	if (unlikely(!check_mnt(parent))) {
3432 		/* that's acceptable only for automounts done in private ns */
3433 		if (!(mnt_flags & MNT_SHRINKABLE))
3434 			return -EINVAL;
3435 		/* ... and for those we'd better have mountpoint still alive */
3436 		if (!parent->mnt_ns)
3437 			return -EINVAL;
3438 	}
3439 
3440 	/* Refuse the same filesystem on the same mount point */
3441 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3442 		return -EBUSY;
3443 
3444 	if (d_is_symlink(newmnt->mnt.mnt_root))
3445 		return -EINVAL;
3446 
3447 	newmnt->mnt.mnt_flags = mnt_flags;
3448 	return graft_tree(newmnt, parent, mp);
3449 }
3450 
3451 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3452 
3453 /*
3454  * Create a new mount using a superblock configuration and request it
3455  * be added to the namespace tree.
3456  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3457 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3458 			   unsigned int mnt_flags)
3459 {
3460 	struct vfsmount *mnt;
3461 	struct mountpoint *mp;
3462 	struct super_block *sb = fc->root->d_sb;
3463 	int error;
3464 
3465 	error = security_sb_kern_mount(sb);
3466 	if (!error && mount_too_revealing(sb, &mnt_flags))
3467 		error = -EPERM;
3468 
3469 	if (unlikely(error)) {
3470 		fc_drop_locked(fc);
3471 		return error;
3472 	}
3473 
3474 	up_write(&sb->s_umount);
3475 
3476 	mnt = vfs_create_mount(fc);
3477 	if (IS_ERR(mnt))
3478 		return PTR_ERR(mnt);
3479 
3480 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3481 
3482 	mp = lock_mount(mountpoint);
3483 	if (IS_ERR(mp)) {
3484 		mntput(mnt);
3485 		return PTR_ERR(mp);
3486 	}
3487 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3488 	unlock_mount(mp);
3489 	if (error < 0)
3490 		mntput(mnt);
3491 	else
3492 		trace_android_vh_do_new_mount_fc(mountpoint, mnt);
3493 	return error;
3494 }
3495 
3496 /*
3497  * create a new mount for userspace and request it to be added into the
3498  * namespace's tree
3499  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3500 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3501 			int mnt_flags, const char *name, void *data)
3502 {
3503 	struct file_system_type *type;
3504 	struct fs_context *fc;
3505 	const char *subtype = NULL;
3506 	int err = 0;
3507 
3508 	if (!fstype)
3509 		return -EINVAL;
3510 
3511 	type = get_fs_type(fstype);
3512 	if (!type)
3513 		return -ENODEV;
3514 
3515 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3516 		subtype = strchr(fstype, '.');
3517 		if (subtype) {
3518 			subtype++;
3519 			if (!*subtype) {
3520 				put_filesystem(type);
3521 				return -EINVAL;
3522 			}
3523 		}
3524 	}
3525 
3526 	fc = fs_context_for_mount(type, sb_flags);
3527 	put_filesystem(type);
3528 	if (IS_ERR(fc))
3529 		return PTR_ERR(fc);
3530 
3531 	/*
3532 	 * Indicate to the filesystem that the mount request is coming
3533 	 * from the legacy mount system call.
3534 	 */
3535 	fc->oldapi = true;
3536 
3537 	if (subtype)
3538 		err = vfs_parse_fs_string(fc, "subtype",
3539 					  subtype, strlen(subtype));
3540 	if (!err && name)
3541 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3542 	if (!err)
3543 		err = parse_monolithic_mount_data(fc, data);
3544 	if (!err && !mount_capable(fc))
3545 		err = -EPERM;
3546 	if (!err)
3547 		err = vfs_get_tree(fc);
3548 	if (!err)
3549 		err = do_new_mount_fc(fc, path, mnt_flags);
3550 
3551 	put_fs_context(fc);
3552 	return err;
3553 }
3554 
finish_automount(struct vfsmount * m,const struct path * path)3555 int finish_automount(struct vfsmount *m, const struct path *path)
3556 {
3557 	struct dentry *dentry = path->dentry;
3558 	struct mountpoint *mp;
3559 	struct mount *mnt;
3560 	int err;
3561 
3562 	if (!m)
3563 		return 0;
3564 	if (IS_ERR(m))
3565 		return PTR_ERR(m);
3566 
3567 	mnt = real_mount(m);
3568 	/* The new mount record should have at least 2 refs to prevent it being
3569 	 * expired before we get a chance to add it
3570 	 */
3571 	BUG_ON(mnt_get_count(mnt) < 2);
3572 
3573 	if (m->mnt_sb == path->mnt->mnt_sb &&
3574 	    m->mnt_root == dentry) {
3575 		err = -ELOOP;
3576 		goto discard;
3577 	}
3578 
3579 	/*
3580 	 * we don't want to use lock_mount() - in this case finding something
3581 	 * that overmounts our mountpoint to be means "quitely drop what we've
3582 	 * got", not "try to mount it on top".
3583 	 */
3584 	inode_lock(dentry->d_inode);
3585 	namespace_lock();
3586 	if (unlikely(cant_mount(dentry))) {
3587 		err = -ENOENT;
3588 		goto discard_locked;
3589 	}
3590 	if (path_overmounted(path)) {
3591 		err = 0;
3592 		goto discard_locked;
3593 	}
3594 	mp = get_mountpoint(dentry);
3595 	if (IS_ERR(mp)) {
3596 		err = PTR_ERR(mp);
3597 		goto discard_locked;
3598 	}
3599 
3600 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3601 	unlock_mount(mp);
3602 	if (unlikely(err))
3603 		goto discard;
3604 	mntput(m);
3605 	return 0;
3606 
3607 discard_locked:
3608 	namespace_unlock();
3609 	inode_unlock(dentry->d_inode);
3610 discard:
3611 	/* remove m from any expiration list it may be on */
3612 	if (!list_empty(&mnt->mnt_expire)) {
3613 		namespace_lock();
3614 		list_del_init(&mnt->mnt_expire);
3615 		namespace_unlock();
3616 	}
3617 	mntput(m);
3618 	mntput(m);
3619 	return err;
3620 }
3621 
3622 /**
3623  * mnt_set_expiry - Put a mount on an expiration list
3624  * @mnt: The mount to list.
3625  * @expiry_list: The list to add the mount to.
3626  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3627 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3628 {
3629 	namespace_lock();
3630 
3631 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3632 
3633 	namespace_unlock();
3634 }
3635 EXPORT_SYMBOL(mnt_set_expiry);
3636 
3637 /*
3638  * process a list of expirable mountpoints with the intent of discarding any
3639  * mountpoints that aren't in use and haven't been touched since last we came
3640  * here
3641  */
mark_mounts_for_expiry(struct list_head * mounts)3642 void mark_mounts_for_expiry(struct list_head *mounts)
3643 {
3644 	struct mount *mnt, *next;
3645 	LIST_HEAD(graveyard);
3646 
3647 	if (list_empty(mounts))
3648 		return;
3649 
3650 	namespace_lock();
3651 	lock_mount_hash();
3652 
3653 	/* extract from the expiration list every vfsmount that matches the
3654 	 * following criteria:
3655 	 * - only referenced by its parent vfsmount
3656 	 * - still marked for expiry (marked on the last call here; marks are
3657 	 *   cleared by mntput())
3658 	 */
3659 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3660 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3661 			propagate_mount_busy(mnt, 1))
3662 			continue;
3663 		list_move(&mnt->mnt_expire, &graveyard);
3664 	}
3665 	while (!list_empty(&graveyard)) {
3666 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3667 		touch_mnt_namespace(mnt->mnt_ns);
3668 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3669 	}
3670 	unlock_mount_hash();
3671 	namespace_unlock();
3672 }
3673 
3674 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3675 
3676 /*
3677  * Ripoff of 'select_parent()'
3678  *
3679  * search the list of submounts for a given mountpoint, and move any
3680  * shrinkable submounts to the 'graveyard' list.
3681  */
select_submounts(struct mount * parent,struct list_head * graveyard)3682 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3683 {
3684 	struct mount *this_parent = parent;
3685 	struct list_head *next;
3686 	int found = 0;
3687 
3688 repeat:
3689 	next = this_parent->mnt_mounts.next;
3690 resume:
3691 	while (next != &this_parent->mnt_mounts) {
3692 		struct list_head *tmp = next;
3693 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3694 
3695 		next = tmp->next;
3696 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3697 			continue;
3698 		/*
3699 		 * Descend a level if the d_mounts list is non-empty.
3700 		 */
3701 		if (!list_empty(&mnt->mnt_mounts)) {
3702 			this_parent = mnt;
3703 			goto repeat;
3704 		}
3705 
3706 		if (!propagate_mount_busy(mnt, 1)) {
3707 			list_move_tail(&mnt->mnt_expire, graveyard);
3708 			found++;
3709 		}
3710 	}
3711 	/*
3712 	 * All done at this level ... ascend and resume the search
3713 	 */
3714 	if (this_parent != parent) {
3715 		next = this_parent->mnt_child.next;
3716 		this_parent = this_parent->mnt_parent;
3717 		goto resume;
3718 	}
3719 	return found;
3720 }
3721 
3722 /*
3723  * process a list of expirable mountpoints with the intent of discarding any
3724  * submounts of a specific parent mountpoint
3725  *
3726  * mount_lock must be held for write
3727  */
shrink_submounts(struct mount * mnt)3728 static void shrink_submounts(struct mount *mnt)
3729 {
3730 	LIST_HEAD(graveyard);
3731 	struct mount *m;
3732 
3733 	/* extract submounts of 'mountpoint' from the expiration list */
3734 	while (select_submounts(mnt, &graveyard)) {
3735 		while (!list_empty(&graveyard)) {
3736 			m = list_first_entry(&graveyard, struct mount,
3737 						mnt_expire);
3738 			touch_mnt_namespace(m->mnt_ns);
3739 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3740 		}
3741 	}
3742 }
3743 
copy_mount_options(const void __user * data)3744 static void *copy_mount_options(const void __user * data)
3745 {
3746 	char *copy;
3747 	unsigned left, offset;
3748 
3749 	if (!data)
3750 		return NULL;
3751 
3752 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3753 	if (!copy)
3754 		return ERR_PTR(-ENOMEM);
3755 
3756 	left = copy_from_user(copy, data, PAGE_SIZE);
3757 
3758 	/*
3759 	 * Not all architectures have an exact copy_from_user(). Resort to
3760 	 * byte at a time.
3761 	 */
3762 	offset = PAGE_SIZE - left;
3763 	while (left) {
3764 		char c;
3765 		if (get_user(c, (const char __user *)data + offset))
3766 			break;
3767 		copy[offset] = c;
3768 		left--;
3769 		offset++;
3770 	}
3771 
3772 	if (left == PAGE_SIZE) {
3773 		kfree(copy);
3774 		return ERR_PTR(-EFAULT);
3775 	}
3776 
3777 	return copy;
3778 }
3779 
copy_mount_string(const void __user * data)3780 static char *copy_mount_string(const void __user *data)
3781 {
3782 	return data ? strndup_user(data, PATH_MAX) : NULL;
3783 }
3784 
3785 /*
3786  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3787  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3788  *
3789  * data is a (void *) that can point to any structure up to
3790  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3791  * information (or be NULL).
3792  *
3793  * Pre-0.97 versions of mount() didn't have a flags word.
3794  * When the flags word was introduced its top half was required
3795  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3796  * Therefore, if this magic number is present, it carries no information
3797  * and must be discarded.
3798  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3799 int path_mount(const char *dev_name, struct path *path,
3800 		const char *type_page, unsigned long flags, void *data_page)
3801 {
3802 	unsigned int mnt_flags = 0, sb_flags;
3803 	int ret;
3804 
3805 	/* Discard magic */
3806 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3807 		flags &= ~MS_MGC_MSK;
3808 
3809 	/* Basic sanity checks */
3810 	if (data_page)
3811 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3812 
3813 	if (flags & MS_NOUSER)
3814 		return -EINVAL;
3815 
3816 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3817 	if (ret)
3818 		return ret;
3819 	if (!may_mount())
3820 		return -EPERM;
3821 	if (flags & SB_MANDLOCK)
3822 		warn_mandlock();
3823 
3824 	/* Default to relatime unless overriden */
3825 	if (!(flags & MS_NOATIME))
3826 		mnt_flags |= MNT_RELATIME;
3827 
3828 	/* Separate the per-mountpoint flags */
3829 	if (flags & MS_NOSUID)
3830 		mnt_flags |= MNT_NOSUID;
3831 	if (flags & MS_NODEV)
3832 		mnt_flags |= MNT_NODEV;
3833 	if (flags & MS_NOEXEC)
3834 		mnt_flags |= MNT_NOEXEC;
3835 	if (flags & MS_NOATIME)
3836 		mnt_flags |= MNT_NOATIME;
3837 	if (flags & MS_NODIRATIME)
3838 		mnt_flags |= MNT_NODIRATIME;
3839 	if (flags & MS_STRICTATIME)
3840 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3841 	if (flags & MS_RDONLY)
3842 		mnt_flags |= MNT_READONLY;
3843 	if (flags & MS_NOSYMFOLLOW)
3844 		mnt_flags |= MNT_NOSYMFOLLOW;
3845 
3846 	/* The default atime for remount is preservation */
3847 	if ((flags & MS_REMOUNT) &&
3848 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3849 		       MS_STRICTATIME)) == 0)) {
3850 		mnt_flags &= ~MNT_ATIME_MASK;
3851 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3852 	}
3853 
3854 	sb_flags = flags & (SB_RDONLY |
3855 			    SB_SYNCHRONOUS |
3856 			    SB_MANDLOCK |
3857 			    SB_DIRSYNC |
3858 			    SB_SILENT |
3859 			    SB_POSIXACL |
3860 			    SB_LAZYTIME |
3861 			    SB_I_VERSION);
3862 
3863 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3864 		return do_reconfigure_mnt(path, mnt_flags);
3865 	if (flags & MS_REMOUNT)
3866 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3867 	if (flags & MS_BIND)
3868 		return do_loopback(path, dev_name, flags & MS_REC);
3869 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3870 		return do_change_type(path, flags);
3871 	if (flags & MS_MOVE)
3872 		return do_move_mount_old(path, dev_name);
3873 
3874 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3875 			    data_page);
3876 }
3877 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3878 long do_mount(const char *dev_name, const char __user *dir_name,
3879 		const char *type_page, unsigned long flags, void *data_page)
3880 {
3881 	struct path path;
3882 	int ret;
3883 
3884 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3885 	if (ret)
3886 		return ret;
3887 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3888 	path_put(&path);
3889 	return ret;
3890 }
3891 
inc_mnt_namespaces(struct user_namespace * ns)3892 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3893 {
3894 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3895 }
3896 
dec_mnt_namespaces(struct ucounts * ucounts)3897 static void dec_mnt_namespaces(struct ucounts *ucounts)
3898 {
3899 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3900 }
3901 
free_mnt_ns(struct mnt_namespace * ns)3902 static void free_mnt_ns(struct mnt_namespace *ns)
3903 {
3904 	if (!is_anon_ns(ns))
3905 		ns_free_inum(&ns->ns);
3906 	dec_mnt_namespaces(ns->ucounts);
3907 	mnt_ns_tree_remove(ns);
3908 }
3909 
3910 /*
3911  * Assign a sequence number so we can detect when we attempt to bind
3912  * mount a reference to an older mount namespace into the current
3913  * mount namespace, preventing reference counting loops.  A 64bit
3914  * number incrementing at 10Ghz will take 12,427 years to wrap which
3915  * is effectively never, so we can ignore the possibility.
3916  */
3917 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3918 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3919 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3920 {
3921 	struct mnt_namespace *new_ns;
3922 	struct ucounts *ucounts;
3923 	int ret;
3924 
3925 	ucounts = inc_mnt_namespaces(user_ns);
3926 	if (!ucounts)
3927 		return ERR_PTR(-ENOSPC);
3928 
3929 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3930 	if (!new_ns) {
3931 		dec_mnt_namespaces(ucounts);
3932 		return ERR_PTR(-ENOMEM);
3933 	}
3934 	if (!anon) {
3935 		ret = ns_alloc_inum(&new_ns->ns);
3936 		if (ret) {
3937 			kfree(new_ns);
3938 			dec_mnt_namespaces(ucounts);
3939 			return ERR_PTR(ret);
3940 		}
3941 	}
3942 	new_ns->ns.ops = &mntns_operations;
3943 	if (!anon)
3944 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3945 	refcount_set(&new_ns->ns.count, 1);
3946 	refcount_set(&new_ns->passive, 1);
3947 	new_ns->mounts = RB_ROOT;
3948 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3949 	init_waitqueue_head(&new_ns->poll);
3950 	new_ns->user_ns = get_user_ns(user_ns);
3951 	new_ns->ucounts = ucounts;
3952 	return new_ns;
3953 }
3954 
3955 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3956 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3957 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3958 {
3959 	struct mnt_namespace *new_ns;
3960 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3961 	struct mount *p, *q;
3962 	struct mount *old;
3963 	struct mount *new;
3964 	int copy_flags;
3965 
3966 	BUG_ON(!ns);
3967 
3968 	if (likely(!(flags & CLONE_NEWNS))) {
3969 		get_mnt_ns(ns);
3970 		return ns;
3971 	}
3972 
3973 	old = ns->root;
3974 
3975 	new_ns = alloc_mnt_ns(user_ns, false);
3976 	if (IS_ERR(new_ns))
3977 		return new_ns;
3978 
3979 	namespace_lock();
3980 	/* First pass: copy the tree topology */
3981 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3982 	if (user_ns != ns->user_ns)
3983 		copy_flags |= CL_SHARED_TO_SLAVE;
3984 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3985 	if (IS_ERR(new)) {
3986 		namespace_unlock();
3987 		ns_free_inum(&new_ns->ns);
3988 		dec_mnt_namespaces(new_ns->ucounts);
3989 		mnt_ns_release(new_ns);
3990 		return ERR_CAST(new);
3991 	}
3992 	if (user_ns != ns->user_ns) {
3993 		lock_mount_hash();
3994 		lock_mnt_tree(new);
3995 		unlock_mount_hash();
3996 	}
3997 	new_ns->root = new;
3998 
3999 	/*
4000 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4001 	 * as belonging to new namespace.  We have already acquired a private
4002 	 * fs_struct, so tsk->fs->lock is not needed.
4003 	 */
4004 	p = old;
4005 	q = new;
4006 	while (p) {
4007 		mnt_add_to_ns(new_ns, q);
4008 		new_ns->nr_mounts++;
4009 		if (new_fs) {
4010 			if (&p->mnt == new_fs->root.mnt) {
4011 				new_fs->root.mnt = mntget(&q->mnt);
4012 				rootmnt = &p->mnt;
4013 			}
4014 			if (&p->mnt == new_fs->pwd.mnt) {
4015 				new_fs->pwd.mnt = mntget(&q->mnt);
4016 				pwdmnt = &p->mnt;
4017 			}
4018 		}
4019 		p = next_mnt(p, old);
4020 		q = next_mnt(q, new);
4021 		if (!q)
4022 			break;
4023 		// an mntns binding we'd skipped?
4024 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4025 			p = next_mnt(skip_mnt_tree(p), old);
4026 	}
4027 	mnt_ns_tree_add(new_ns);
4028 	namespace_unlock();
4029 
4030 	if (rootmnt)
4031 		mntput(rootmnt);
4032 	if (pwdmnt)
4033 		mntput(pwdmnt);
4034 
4035 	return new_ns;
4036 }
4037 
mount_subtree(struct vfsmount * m,const char * name)4038 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4039 {
4040 	struct mount *mnt = real_mount(m);
4041 	struct mnt_namespace *ns;
4042 	struct super_block *s;
4043 	struct path path;
4044 	int err;
4045 
4046 	ns = alloc_mnt_ns(&init_user_ns, true);
4047 	if (IS_ERR(ns)) {
4048 		mntput(m);
4049 		return ERR_CAST(ns);
4050 	}
4051 	ns->root = mnt;
4052 	ns->nr_mounts++;
4053 	mnt_add_to_ns(ns, mnt);
4054 
4055 	err = vfs_path_lookup(m->mnt_root, m,
4056 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4057 
4058 	put_mnt_ns(ns);
4059 
4060 	if (err)
4061 		return ERR_PTR(err);
4062 
4063 	/* trade a vfsmount reference for active sb one */
4064 	s = path.mnt->mnt_sb;
4065 	atomic_inc(&s->s_active);
4066 	mntput(path.mnt);
4067 	/* lock the sucker */
4068 	down_write(&s->s_umount);
4069 	/* ... and return the root of (sub)tree on it */
4070 	return path.dentry;
4071 }
4072 EXPORT_SYMBOL(mount_subtree);
4073 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4074 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4075 		char __user *, type, unsigned long, flags, void __user *, data)
4076 {
4077 	int ret;
4078 	char *kernel_type;
4079 	char *kernel_dev;
4080 	void *options;
4081 
4082 	kernel_type = copy_mount_string(type);
4083 	ret = PTR_ERR(kernel_type);
4084 	if (IS_ERR(kernel_type))
4085 		goto out_type;
4086 
4087 	kernel_dev = copy_mount_string(dev_name);
4088 	ret = PTR_ERR(kernel_dev);
4089 	if (IS_ERR(kernel_dev))
4090 		goto out_dev;
4091 
4092 	options = copy_mount_options(data);
4093 	ret = PTR_ERR(options);
4094 	if (IS_ERR(options))
4095 		goto out_data;
4096 
4097 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4098 
4099 	kfree(options);
4100 out_data:
4101 	kfree(kernel_dev);
4102 out_dev:
4103 	kfree(kernel_type);
4104 out_type:
4105 	return ret;
4106 }
4107 
4108 #define FSMOUNT_VALID_FLAGS                                                    \
4109 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4110 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4111 	 MOUNT_ATTR_NOSYMFOLLOW)
4112 
4113 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4114 
4115 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4116 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4117 
attr_flags_to_mnt_flags(u64 attr_flags)4118 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4119 {
4120 	unsigned int mnt_flags = 0;
4121 
4122 	if (attr_flags & MOUNT_ATTR_RDONLY)
4123 		mnt_flags |= MNT_READONLY;
4124 	if (attr_flags & MOUNT_ATTR_NOSUID)
4125 		mnt_flags |= MNT_NOSUID;
4126 	if (attr_flags & MOUNT_ATTR_NODEV)
4127 		mnt_flags |= MNT_NODEV;
4128 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4129 		mnt_flags |= MNT_NOEXEC;
4130 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4131 		mnt_flags |= MNT_NODIRATIME;
4132 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4133 		mnt_flags |= MNT_NOSYMFOLLOW;
4134 
4135 	return mnt_flags;
4136 }
4137 
4138 /*
4139  * Create a kernel mount representation for a new, prepared superblock
4140  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4141  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4142 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4143 		unsigned int, attr_flags)
4144 {
4145 	struct mnt_namespace *ns;
4146 	struct fs_context *fc;
4147 	struct file *file;
4148 	struct path newmount;
4149 	struct mount *mnt;
4150 	struct fd f;
4151 	unsigned int mnt_flags = 0;
4152 	long ret;
4153 
4154 	if (!may_mount())
4155 		return -EPERM;
4156 
4157 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4158 		return -EINVAL;
4159 
4160 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4161 		return -EINVAL;
4162 
4163 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4164 
4165 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4166 	case MOUNT_ATTR_STRICTATIME:
4167 		break;
4168 	case MOUNT_ATTR_NOATIME:
4169 		mnt_flags |= MNT_NOATIME;
4170 		break;
4171 	case MOUNT_ATTR_RELATIME:
4172 		mnt_flags |= MNT_RELATIME;
4173 		break;
4174 	default:
4175 		return -EINVAL;
4176 	}
4177 
4178 	f = fdget(fs_fd);
4179 	if (!fd_file(f))
4180 		return -EBADF;
4181 
4182 	ret = -EINVAL;
4183 	if (fd_file(f)->f_op != &fscontext_fops)
4184 		goto err_fsfd;
4185 
4186 	fc = fd_file(f)->private_data;
4187 
4188 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4189 	if (ret < 0)
4190 		goto err_fsfd;
4191 
4192 	/* There must be a valid superblock or we can't mount it */
4193 	ret = -EINVAL;
4194 	if (!fc->root)
4195 		goto err_unlock;
4196 
4197 	ret = -EPERM;
4198 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4199 		pr_warn("VFS: Mount too revealing\n");
4200 		goto err_unlock;
4201 	}
4202 
4203 	ret = -EBUSY;
4204 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4205 		goto err_unlock;
4206 
4207 	if (fc->sb_flags & SB_MANDLOCK)
4208 		warn_mandlock();
4209 
4210 	newmount.mnt = vfs_create_mount(fc);
4211 	if (IS_ERR(newmount.mnt)) {
4212 		ret = PTR_ERR(newmount.mnt);
4213 		goto err_unlock;
4214 	}
4215 	newmount.dentry = dget(fc->root);
4216 	newmount.mnt->mnt_flags = mnt_flags;
4217 
4218 	/* We've done the mount bit - now move the file context into more or
4219 	 * less the same state as if we'd done an fspick().  We don't want to
4220 	 * do any memory allocation or anything like that at this point as we
4221 	 * don't want to have to handle any errors incurred.
4222 	 */
4223 	vfs_clean_context(fc);
4224 
4225 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4226 	if (IS_ERR(ns)) {
4227 		ret = PTR_ERR(ns);
4228 		goto err_path;
4229 	}
4230 	mnt = real_mount(newmount.mnt);
4231 	ns->root = mnt;
4232 	ns->nr_mounts = 1;
4233 	mnt_add_to_ns(ns, mnt);
4234 	mntget(newmount.mnt);
4235 
4236 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4237 	 * it, not just simply put it.
4238 	 */
4239 	file = dentry_open(&newmount, O_PATH, fc->cred);
4240 	if (IS_ERR(file)) {
4241 		dissolve_on_fput(newmount.mnt);
4242 		ret = PTR_ERR(file);
4243 		goto err_path;
4244 	}
4245 	file->f_mode |= FMODE_NEED_UNMOUNT;
4246 
4247 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4248 	if (ret >= 0)
4249 		fd_install(ret, file);
4250 	else
4251 		fput(file);
4252 
4253 err_path:
4254 	path_put(&newmount);
4255 err_unlock:
4256 	mutex_unlock(&fc->uapi_mutex);
4257 err_fsfd:
4258 	fdput(f);
4259 	return ret;
4260 }
4261 
4262 /*
4263  * Move a mount from one place to another.  In combination with
4264  * fsopen()/fsmount() this is used to install a new mount and in combination
4265  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4266  * a mount subtree.
4267  *
4268  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4269  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4270 SYSCALL_DEFINE5(move_mount,
4271 		int, from_dfd, const char __user *, from_pathname,
4272 		int, to_dfd, const char __user *, to_pathname,
4273 		unsigned int, flags)
4274 {
4275 	struct path from_path, to_path;
4276 	unsigned int lflags;
4277 	int ret = 0;
4278 
4279 	if (!may_mount())
4280 		return -EPERM;
4281 
4282 	if (flags & ~MOVE_MOUNT__MASK)
4283 		return -EINVAL;
4284 
4285 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4286 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4287 		return -EINVAL;
4288 
4289 	/* If someone gives a pathname, they aren't permitted to move
4290 	 * from an fd that requires unmount as we can't get at the flag
4291 	 * to clear it afterwards.
4292 	 */
4293 	lflags = 0;
4294 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4295 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4296 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4297 
4298 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4299 	if (ret < 0)
4300 		return ret;
4301 
4302 	lflags = 0;
4303 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4304 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4305 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4306 
4307 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4308 	if (ret < 0)
4309 		goto out_from;
4310 
4311 	ret = security_move_mount(&from_path, &to_path);
4312 	if (ret < 0)
4313 		goto out_to;
4314 
4315 	if (flags & MOVE_MOUNT_SET_GROUP)
4316 		ret = do_set_group(&from_path, &to_path);
4317 	else
4318 		ret = do_move_mount(&from_path, &to_path,
4319 				    (flags & MOVE_MOUNT_BENEATH));
4320 
4321 out_to:
4322 	path_put(&to_path);
4323 out_from:
4324 	path_put(&from_path);
4325 	return ret;
4326 }
4327 
4328 /*
4329  * Return true if path is reachable from root
4330  *
4331  * namespace_sem or mount_lock is held
4332  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4333 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4334 			 const struct path *root)
4335 {
4336 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4337 		dentry = mnt->mnt_mountpoint;
4338 		mnt = mnt->mnt_parent;
4339 	}
4340 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4341 }
4342 
path_is_under(const struct path * path1,const struct path * path2)4343 bool path_is_under(const struct path *path1, const struct path *path2)
4344 {
4345 	bool res;
4346 	read_seqlock_excl(&mount_lock);
4347 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4348 	read_sequnlock_excl(&mount_lock);
4349 	return res;
4350 }
4351 EXPORT_SYMBOL(path_is_under);
4352 
4353 /*
4354  * pivot_root Semantics:
4355  * Moves the root file system of the current process to the directory put_old,
4356  * makes new_root as the new root file system of the current process, and sets
4357  * root/cwd of all processes which had them on the current root to new_root.
4358  *
4359  * Restrictions:
4360  * The new_root and put_old must be directories, and  must not be on the
4361  * same file  system as the current process root. The put_old  must  be
4362  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4363  * pointed to by put_old must yield the same directory as new_root. No other
4364  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4365  *
4366  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4367  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4368  * in this situation.
4369  *
4370  * Notes:
4371  *  - we don't move root/cwd if they are not at the root (reason: if something
4372  *    cared enough to change them, it's probably wrong to force them elsewhere)
4373  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4374  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4375  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4376  *    first.
4377  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4378 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4379 		const char __user *, put_old)
4380 {
4381 	struct path new, old, root;
4382 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4383 	struct mountpoint *old_mp, *root_mp;
4384 	int error;
4385 
4386 	if (!may_mount())
4387 		return -EPERM;
4388 
4389 	error = user_path_at(AT_FDCWD, new_root,
4390 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4391 	if (error)
4392 		goto out0;
4393 
4394 	error = user_path_at(AT_FDCWD, put_old,
4395 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4396 	if (error)
4397 		goto out1;
4398 
4399 	error = security_sb_pivotroot(&old, &new);
4400 	if (error)
4401 		goto out2;
4402 
4403 	get_fs_root(current->fs, &root);
4404 	old_mp = lock_mount(&old);
4405 	error = PTR_ERR(old_mp);
4406 	if (IS_ERR(old_mp))
4407 		goto out3;
4408 
4409 	error = -EINVAL;
4410 	new_mnt = real_mount(new.mnt);
4411 	root_mnt = real_mount(root.mnt);
4412 	old_mnt = real_mount(old.mnt);
4413 	ex_parent = new_mnt->mnt_parent;
4414 	root_parent = root_mnt->mnt_parent;
4415 	if (IS_MNT_SHARED(old_mnt) ||
4416 		IS_MNT_SHARED(ex_parent) ||
4417 		IS_MNT_SHARED(root_parent))
4418 		goto out4;
4419 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4420 		goto out4;
4421 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4422 		goto out4;
4423 	error = -ENOENT;
4424 	if (d_unlinked(new.dentry))
4425 		goto out4;
4426 	error = -EBUSY;
4427 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4428 		goto out4; /* loop, on the same file system  */
4429 	error = -EINVAL;
4430 	if (!path_mounted(&root))
4431 		goto out4; /* not a mountpoint */
4432 	if (!mnt_has_parent(root_mnt))
4433 		goto out4; /* not attached */
4434 	if (!path_mounted(&new))
4435 		goto out4; /* not a mountpoint */
4436 	if (!mnt_has_parent(new_mnt))
4437 		goto out4; /* not attached */
4438 	/* make sure we can reach put_old from new_root */
4439 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4440 		goto out4;
4441 	/* make certain new is below the root */
4442 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4443 		goto out4;
4444 	lock_mount_hash();
4445 	umount_mnt(new_mnt);
4446 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4447 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4448 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4449 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4450 	}
4451 	/* mount old root on put_old */
4452 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4453 	/* mount new_root on / */
4454 	attach_mnt(new_mnt, root_parent, root_mp, false);
4455 	mnt_add_count(root_parent, -1);
4456 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4457 	/* A moved mount should not expire automatically */
4458 	list_del_init(&new_mnt->mnt_expire);
4459 	put_mountpoint(root_mp);
4460 	unlock_mount_hash();
4461 	chroot_fs_refs(&root, &new);
4462 	error = 0;
4463 out4:
4464 	unlock_mount(old_mp);
4465 	if (!error)
4466 		mntput_no_expire(ex_parent);
4467 out3:
4468 	path_put(&root);
4469 out2:
4470 	path_put(&old);
4471 out1:
4472 	path_put(&new);
4473 out0:
4474 	return error;
4475 }
4476 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4477 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4478 {
4479 	unsigned int flags = mnt->mnt.mnt_flags;
4480 
4481 	/*  flags to clear */
4482 	flags &= ~kattr->attr_clr;
4483 	/* flags to raise */
4484 	flags |= kattr->attr_set;
4485 
4486 	return flags;
4487 }
4488 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4489 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4490 {
4491 	struct vfsmount *m = &mnt->mnt;
4492 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4493 
4494 	if (!kattr->mnt_idmap)
4495 		return 0;
4496 
4497 	/*
4498 	 * Creating an idmapped mount with the filesystem wide idmapping
4499 	 * doesn't make sense so block that. We don't allow mushy semantics.
4500 	 */
4501 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4502 		return -EINVAL;
4503 
4504 	/*
4505 	 * Once a mount has been idmapped we don't allow it to change its
4506 	 * mapping. It makes things simpler and callers can just create
4507 	 * another bind-mount they can idmap if they want to.
4508 	 */
4509 	if (is_idmapped_mnt(m))
4510 		return -EPERM;
4511 
4512 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4513 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4514 		return -EINVAL;
4515 
4516 	/* The filesystem has turned off idmapped mounts. */
4517 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4518 		return -EINVAL;
4519 
4520 	/* We're not controlling the superblock. */
4521 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4522 		return -EPERM;
4523 
4524 	/* Mount has already been visible in the filesystem hierarchy. */
4525 	if (!is_anon_ns(mnt->mnt_ns))
4526 		return -EINVAL;
4527 
4528 	return 0;
4529 }
4530 
4531 /**
4532  * mnt_allow_writers() - check whether the attribute change allows writers
4533  * @kattr: the new mount attributes
4534  * @mnt: the mount to which @kattr will be applied
4535  *
4536  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4537  *
4538  * Return: true if writers need to be held, false if not
4539  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4540 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4541 				     const struct mount *mnt)
4542 {
4543 	return (!(kattr->attr_set & MNT_READONLY) ||
4544 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4545 	       !kattr->mnt_idmap;
4546 }
4547 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4548 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4549 {
4550 	struct mount *m;
4551 	int err;
4552 
4553 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4554 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4555 			err = -EPERM;
4556 			break;
4557 		}
4558 
4559 		err = can_idmap_mount(kattr, m);
4560 		if (err)
4561 			break;
4562 
4563 		if (!mnt_allow_writers(kattr, m)) {
4564 			err = mnt_hold_writers(m);
4565 			if (err)
4566 				break;
4567 		}
4568 
4569 		if (!kattr->recurse)
4570 			return 0;
4571 	}
4572 
4573 	if (err) {
4574 		struct mount *p;
4575 
4576 		/*
4577 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4578 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4579 		 * mounts and needs to take care to include the first mount.
4580 		 */
4581 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4582 			/* If we had to hold writers unblock them. */
4583 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4584 				mnt_unhold_writers(p);
4585 
4586 			/*
4587 			 * We're done once the first mount we changed got
4588 			 * MNT_WRITE_HOLD unset.
4589 			 */
4590 			if (p == m)
4591 				break;
4592 		}
4593 	}
4594 	return err;
4595 }
4596 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4597 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4598 {
4599 	if (!kattr->mnt_idmap)
4600 		return;
4601 
4602 	/*
4603 	 * Pairs with smp_load_acquire() in mnt_idmap().
4604 	 *
4605 	 * Since we only allow a mount to change the idmapping once and
4606 	 * verified this in can_idmap_mount() we know that the mount has
4607 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4608 	 * references.
4609 	 */
4610 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4611 }
4612 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4613 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4614 {
4615 	struct mount *m;
4616 
4617 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4618 		unsigned int flags;
4619 
4620 		do_idmap_mount(kattr, m);
4621 		flags = recalc_flags(kattr, m);
4622 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4623 
4624 		/* If we had to hold writers unblock them. */
4625 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4626 			mnt_unhold_writers(m);
4627 
4628 		if (kattr->propagation)
4629 			change_mnt_propagation(m, kattr->propagation);
4630 		if (!kattr->recurse)
4631 			break;
4632 	}
4633 	touch_mnt_namespace(mnt->mnt_ns);
4634 }
4635 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4636 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4637 {
4638 	struct mount *mnt = real_mount(path->mnt);
4639 	int err = 0;
4640 
4641 	if (!path_mounted(path))
4642 		return -EINVAL;
4643 
4644 	if (kattr->mnt_userns) {
4645 		struct mnt_idmap *mnt_idmap;
4646 
4647 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4648 		if (IS_ERR(mnt_idmap))
4649 			return PTR_ERR(mnt_idmap);
4650 		kattr->mnt_idmap = mnt_idmap;
4651 	}
4652 
4653 	if (kattr->propagation) {
4654 		/*
4655 		 * Only take namespace_lock() if we're actually changing
4656 		 * propagation.
4657 		 */
4658 		namespace_lock();
4659 		if (kattr->propagation == MS_SHARED) {
4660 			err = invent_group_ids(mnt, kattr->recurse);
4661 			if (err) {
4662 				namespace_unlock();
4663 				return err;
4664 			}
4665 		}
4666 	}
4667 
4668 	err = -EINVAL;
4669 	lock_mount_hash();
4670 
4671 	/* Ensure that this isn't anything purely vfs internal. */
4672 	if (!is_mounted(&mnt->mnt))
4673 		goto out;
4674 
4675 	/*
4676 	 * If this is an attached mount make sure it's located in the callers
4677 	 * mount namespace. If it's not don't let the caller interact with it.
4678 	 *
4679 	 * If this mount doesn't have a parent it's most often simply a
4680 	 * detached mount with an anonymous mount namespace. IOW, something
4681 	 * that's simply not attached yet. But there are apparently also users
4682 	 * that do change mount properties on the rootfs itself. That obviously
4683 	 * neither has a parent nor is it a detached mount so we cannot
4684 	 * unconditionally check for detached mounts.
4685 	 */
4686 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4687 		goto out;
4688 
4689 	/*
4690 	 * First, we get the mount tree in a shape where we can change mount
4691 	 * properties without failure. If we succeeded to do so we commit all
4692 	 * changes and if we failed we clean up.
4693 	 */
4694 	err = mount_setattr_prepare(kattr, mnt);
4695 	if (!err)
4696 		mount_setattr_commit(kattr, mnt);
4697 
4698 out:
4699 	unlock_mount_hash();
4700 
4701 	if (kattr->propagation) {
4702 		if (err)
4703 			cleanup_group_ids(mnt, NULL);
4704 		namespace_unlock();
4705 	}
4706 
4707 	return err;
4708 }
4709 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4710 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4711 				struct mount_kattr *kattr, unsigned int flags)
4712 {
4713 	int err = 0;
4714 	struct ns_common *ns;
4715 	struct user_namespace *mnt_userns;
4716 	struct fd f;
4717 
4718 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4719 		return 0;
4720 
4721 	/*
4722 	 * We currently do not support clearing an idmapped mount. If this ever
4723 	 * is a use-case we can revisit this but for now let's keep it simple
4724 	 * and not allow it.
4725 	 */
4726 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4727 		return -EINVAL;
4728 
4729 	if (attr->userns_fd > INT_MAX)
4730 		return -EINVAL;
4731 
4732 	f = fdget(attr->userns_fd);
4733 	if (!fd_file(f))
4734 		return -EBADF;
4735 
4736 	if (!proc_ns_file(fd_file(f))) {
4737 		err = -EINVAL;
4738 		goto out_fput;
4739 	}
4740 
4741 	ns = get_proc_ns(file_inode(fd_file(f)));
4742 	if (ns->ops->type != CLONE_NEWUSER) {
4743 		err = -EINVAL;
4744 		goto out_fput;
4745 	}
4746 
4747 	/*
4748 	 * The initial idmapping cannot be used to create an idmapped
4749 	 * mount. We use the initial idmapping as an indicator of a mount
4750 	 * that is not idmapped. It can simply be passed into helpers that
4751 	 * are aware of idmapped mounts as a convenient shortcut. A user
4752 	 * can just create a dedicated identity mapping to achieve the same
4753 	 * result.
4754 	 */
4755 	mnt_userns = container_of(ns, struct user_namespace, ns);
4756 	if (mnt_userns == &init_user_ns) {
4757 		err = -EPERM;
4758 		goto out_fput;
4759 	}
4760 
4761 	/* We're not controlling the target namespace. */
4762 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4763 		err = -EPERM;
4764 		goto out_fput;
4765 	}
4766 
4767 	kattr->mnt_userns = get_user_ns(mnt_userns);
4768 
4769 out_fput:
4770 	fdput(f);
4771 	return err;
4772 }
4773 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4774 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4775 			     struct mount_kattr *kattr, unsigned int flags)
4776 {
4777 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4778 
4779 	if (flags & AT_NO_AUTOMOUNT)
4780 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4781 	if (flags & AT_SYMLINK_NOFOLLOW)
4782 		lookup_flags &= ~LOOKUP_FOLLOW;
4783 	if (flags & AT_EMPTY_PATH)
4784 		lookup_flags |= LOOKUP_EMPTY;
4785 
4786 	*kattr = (struct mount_kattr) {
4787 		.lookup_flags	= lookup_flags,
4788 		.recurse	= !!(flags & AT_RECURSIVE),
4789 	};
4790 
4791 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4792 		return -EINVAL;
4793 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4794 		return -EINVAL;
4795 	kattr->propagation = attr->propagation;
4796 
4797 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4798 		return -EINVAL;
4799 
4800 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4801 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4802 
4803 	/*
4804 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4805 	 * users wanting to transition to a different atime setting cannot
4806 	 * simply specify the atime setting in @attr_set, but must also
4807 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4808 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4809 	 * @attr_clr and that @attr_set can't have any atime bits set if
4810 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4811 	 */
4812 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4813 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4814 			return -EINVAL;
4815 
4816 		/*
4817 		 * Clear all previous time settings as they are mutually
4818 		 * exclusive.
4819 		 */
4820 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4821 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4822 		case MOUNT_ATTR_RELATIME:
4823 			kattr->attr_set |= MNT_RELATIME;
4824 			break;
4825 		case MOUNT_ATTR_NOATIME:
4826 			kattr->attr_set |= MNT_NOATIME;
4827 			break;
4828 		case MOUNT_ATTR_STRICTATIME:
4829 			break;
4830 		default:
4831 			return -EINVAL;
4832 		}
4833 	} else {
4834 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4835 			return -EINVAL;
4836 	}
4837 
4838 	return build_mount_idmapped(attr, usize, kattr, flags);
4839 }
4840 
finish_mount_kattr(struct mount_kattr * kattr)4841 static void finish_mount_kattr(struct mount_kattr *kattr)
4842 {
4843 	put_user_ns(kattr->mnt_userns);
4844 	kattr->mnt_userns = NULL;
4845 
4846 	if (kattr->mnt_idmap)
4847 		mnt_idmap_put(kattr->mnt_idmap);
4848 }
4849 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4850 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4851 		unsigned int, flags, struct mount_attr __user *, uattr,
4852 		size_t, usize)
4853 {
4854 	int err;
4855 	struct path target;
4856 	struct mount_attr attr;
4857 	struct mount_kattr kattr;
4858 
4859 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4860 
4861 	if (flags & ~(AT_EMPTY_PATH |
4862 		      AT_RECURSIVE |
4863 		      AT_SYMLINK_NOFOLLOW |
4864 		      AT_NO_AUTOMOUNT))
4865 		return -EINVAL;
4866 
4867 	if (unlikely(usize > PAGE_SIZE))
4868 		return -E2BIG;
4869 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4870 		return -EINVAL;
4871 
4872 	if (!may_mount())
4873 		return -EPERM;
4874 
4875 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4876 	if (err)
4877 		return err;
4878 
4879 	/* Don't bother walking through the mounts if this is a nop. */
4880 	if (attr.attr_set == 0 &&
4881 	    attr.attr_clr == 0 &&
4882 	    attr.propagation == 0)
4883 		return 0;
4884 
4885 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4886 	if (err)
4887 		return err;
4888 
4889 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4890 	if (!err) {
4891 		err = do_mount_setattr(&target, &kattr);
4892 		path_put(&target);
4893 	}
4894 	finish_mount_kattr(&kattr);
4895 	return err;
4896 }
4897 
show_path(struct seq_file * m,struct dentry * root)4898 int show_path(struct seq_file *m, struct dentry *root)
4899 {
4900 	if (root->d_sb->s_op->show_path)
4901 		return root->d_sb->s_op->show_path(m, root);
4902 
4903 	seq_dentry(m, root, " \t\n\\");
4904 	return 0;
4905 }
4906 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)4907 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4908 {
4909 	struct mount *mnt = mnt_find_id_at(ns, id);
4910 
4911 	if (!mnt || mnt->mnt_id_unique != id)
4912 		return NULL;
4913 
4914 	return &mnt->mnt;
4915 }
4916 
4917 struct kstatmount {
4918 	struct statmount __user *buf;
4919 	size_t bufsize;
4920 	struct vfsmount *mnt;
4921 	u64 mask;
4922 	struct path root;
4923 	struct statmount sm;
4924 	struct seq_file seq;
4925 };
4926 
mnt_to_attr_flags(struct vfsmount * mnt)4927 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4928 {
4929 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4930 	u64 attr_flags = 0;
4931 
4932 	if (mnt_flags & MNT_READONLY)
4933 		attr_flags |= MOUNT_ATTR_RDONLY;
4934 	if (mnt_flags & MNT_NOSUID)
4935 		attr_flags |= MOUNT_ATTR_NOSUID;
4936 	if (mnt_flags & MNT_NODEV)
4937 		attr_flags |= MOUNT_ATTR_NODEV;
4938 	if (mnt_flags & MNT_NOEXEC)
4939 		attr_flags |= MOUNT_ATTR_NOEXEC;
4940 	if (mnt_flags & MNT_NODIRATIME)
4941 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4942 	if (mnt_flags & MNT_NOSYMFOLLOW)
4943 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4944 
4945 	if (mnt_flags & MNT_NOATIME)
4946 		attr_flags |= MOUNT_ATTR_NOATIME;
4947 	else if (mnt_flags & MNT_RELATIME)
4948 		attr_flags |= MOUNT_ATTR_RELATIME;
4949 	else
4950 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4951 
4952 	if (is_idmapped_mnt(mnt))
4953 		attr_flags |= MOUNT_ATTR_IDMAP;
4954 
4955 	return attr_flags;
4956 }
4957 
mnt_to_propagation_flags(struct mount * m)4958 static u64 mnt_to_propagation_flags(struct mount *m)
4959 {
4960 	u64 propagation = 0;
4961 
4962 	if (IS_MNT_SHARED(m))
4963 		propagation |= MS_SHARED;
4964 	if (IS_MNT_SLAVE(m))
4965 		propagation |= MS_SLAVE;
4966 	if (IS_MNT_UNBINDABLE(m))
4967 		propagation |= MS_UNBINDABLE;
4968 	if (!propagation)
4969 		propagation |= MS_PRIVATE;
4970 
4971 	return propagation;
4972 }
4973 
statmount_sb_basic(struct kstatmount * s)4974 static void statmount_sb_basic(struct kstatmount *s)
4975 {
4976 	struct super_block *sb = s->mnt->mnt_sb;
4977 
4978 	s->sm.mask |= STATMOUNT_SB_BASIC;
4979 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4980 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4981 	s->sm.sb_magic = sb->s_magic;
4982 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4983 }
4984 
statmount_mnt_basic(struct kstatmount * s)4985 static void statmount_mnt_basic(struct kstatmount *s)
4986 {
4987 	struct mount *m = real_mount(s->mnt);
4988 
4989 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4990 	s->sm.mnt_id = m->mnt_id_unique;
4991 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4992 	s->sm.mnt_id_old = m->mnt_id;
4993 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4994 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4995 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4996 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4997 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4998 }
4999 
statmount_propagate_from(struct kstatmount * s)5000 static void statmount_propagate_from(struct kstatmount *s)
5001 {
5002 	struct mount *m = real_mount(s->mnt);
5003 
5004 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5005 	if (IS_MNT_SLAVE(m))
5006 		s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5007 }
5008 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5009 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5010 {
5011 	int ret;
5012 	size_t start = seq->count;
5013 
5014 	ret = show_path(seq, s->mnt->mnt_root);
5015 	if (ret)
5016 		return ret;
5017 
5018 	if (unlikely(seq_has_overflowed(seq)))
5019 		return -EAGAIN;
5020 
5021 	/*
5022          * Unescape the result. It would be better if supplied string was not
5023          * escaped in the first place, but that's a pretty invasive change.
5024          */
5025 	seq->buf[seq->count] = '\0';
5026 	seq->count = start;
5027 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5028 	return 0;
5029 }
5030 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5031 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5032 {
5033 	struct vfsmount *mnt = s->mnt;
5034 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5035 	int err;
5036 
5037 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5038 	return err == SEQ_SKIP ? 0 : err;
5039 }
5040 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5041 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5042 {
5043 	struct super_block *sb = s->mnt->mnt_sb;
5044 
5045 	seq_puts(seq, sb->s_type->name);
5046 	return 0;
5047 }
5048 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5049 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5050 {
5051 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5052 	s->sm.mnt_ns_id = ns->seq;
5053 }
5054 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5055 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5056 {
5057 	struct vfsmount *mnt = s->mnt;
5058 	struct super_block *sb = mnt->mnt_sb;
5059 	size_t start = seq->count;
5060 	int err;
5061 
5062 	err = security_sb_show_options(seq, sb);
5063 	if (err)
5064 		return err;
5065 
5066 	if (sb->s_op->show_options) {
5067 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5068 		if (err)
5069 			return err;
5070 	}
5071 
5072 	if (unlikely(seq_has_overflowed(seq)))
5073 		return -EAGAIN;
5074 
5075 	if (seq->count == start)
5076 		return 0;
5077 
5078 	/* skip leading comma */
5079 	memmove(seq->buf + start, seq->buf + start + 1,
5080 		seq->count - start - 1);
5081 	seq->count--;
5082 
5083 	return 0;
5084 }
5085 
statmount_string(struct kstatmount * s,u64 flag)5086 static int statmount_string(struct kstatmount *s, u64 flag)
5087 {
5088 	int ret;
5089 	size_t kbufsize;
5090 	struct seq_file *seq = &s->seq;
5091 	struct statmount *sm = &s->sm;
5092 	u32 start, *offp;
5093 
5094 	/* Reserve an empty string at the beginning for any unset offsets */
5095 	if (!seq->count)
5096 		seq_putc(seq, 0);
5097 
5098 	start = seq->count;
5099 
5100 	switch (flag) {
5101 	case STATMOUNT_FS_TYPE:
5102 		offp = &sm->fs_type;
5103 		ret = statmount_fs_type(s, seq);
5104 		break;
5105 	case STATMOUNT_MNT_ROOT:
5106 		offp = &sm->mnt_root;
5107 		ret = statmount_mnt_root(s, seq);
5108 		break;
5109 	case STATMOUNT_MNT_POINT:
5110 		offp = &sm->mnt_point;
5111 		ret = statmount_mnt_point(s, seq);
5112 		break;
5113 	case STATMOUNT_MNT_OPTS:
5114 		offp = &sm->mnt_opts;
5115 		ret = statmount_mnt_opts(s, seq);
5116 		break;
5117 	default:
5118 		WARN_ON_ONCE(true);
5119 		return -EINVAL;
5120 	}
5121 
5122 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5123 		return -EOVERFLOW;
5124 	if (kbufsize >= s->bufsize)
5125 		return -EOVERFLOW;
5126 
5127 	/* signal a retry */
5128 	if (unlikely(seq_has_overflowed(seq)))
5129 		return -EAGAIN;
5130 
5131 	if (ret)
5132 		return ret;
5133 
5134 	seq->buf[seq->count++] = '\0';
5135 	sm->mask |= flag;
5136 	*offp = start;
5137 	return 0;
5138 }
5139 
copy_statmount_to_user(struct kstatmount * s)5140 static int copy_statmount_to_user(struct kstatmount *s)
5141 {
5142 	struct statmount *sm = &s->sm;
5143 	struct seq_file *seq = &s->seq;
5144 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5145 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5146 
5147 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5148 		return -EFAULT;
5149 
5150 	/* Return the number of bytes copied to the buffer */
5151 	sm->size = copysize + seq->count;
5152 	if (copy_to_user(s->buf, sm, copysize))
5153 		return -EFAULT;
5154 
5155 	return 0;
5156 }
5157 
listmnt_next(struct mount * curr,bool reverse)5158 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5159 {
5160 	struct rb_node *node;
5161 
5162 	if (reverse)
5163 		node = rb_prev(&curr->mnt_node);
5164 	else
5165 		node = rb_next(&curr->mnt_node);
5166 
5167 	return node_to_mount(node);
5168 }
5169 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5170 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5171 {
5172 	struct mount *first, *child;
5173 
5174 	rwsem_assert_held(&namespace_sem);
5175 
5176 	/* We're looking at our own ns, just use get_fs_root. */
5177 	if (ns == current->nsproxy->mnt_ns) {
5178 		get_fs_root(current->fs, root);
5179 		return 0;
5180 	}
5181 
5182 	/*
5183 	 * We have to find the first mount in our ns and use that, however it
5184 	 * may not exist, so handle that properly.
5185 	 */
5186 	if (RB_EMPTY_ROOT(&ns->mounts))
5187 		return -ENOENT;
5188 
5189 	first = child = ns->root;
5190 	for (;;) {
5191 		child = listmnt_next(child, false);
5192 		if (!child)
5193 			return -ENOENT;
5194 		if (child->mnt_parent == first)
5195 			break;
5196 	}
5197 
5198 	root->mnt = mntget(&child->mnt);
5199 	root->dentry = dget(root->mnt->mnt_root);
5200 	return 0;
5201 }
5202 
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5203 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5204 			struct mnt_namespace *ns)
5205 {
5206 	struct path root __free(path_put) = {};
5207 	struct mount *m;
5208 	int err;
5209 
5210 	/* Has the namespace already been emptied? */
5211 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5212 		return -ENOENT;
5213 
5214 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5215 	if (!s->mnt)
5216 		return -ENOENT;
5217 
5218 	err = grab_requested_root(ns, &root);
5219 	if (err)
5220 		return err;
5221 
5222 	/*
5223 	 * Don't trigger audit denials. We just want to determine what
5224 	 * mounts to show users.
5225 	 */
5226 	m = real_mount(s->mnt);
5227 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5228 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5229 		return -EPERM;
5230 
5231 	err = security_sb_statfs(s->mnt->mnt_root);
5232 	if (err)
5233 		return err;
5234 
5235 	s->root = root;
5236 	if (s->mask & STATMOUNT_SB_BASIC)
5237 		statmount_sb_basic(s);
5238 
5239 	if (s->mask & STATMOUNT_MNT_BASIC)
5240 		statmount_mnt_basic(s);
5241 
5242 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5243 		statmount_propagate_from(s);
5244 
5245 	if (s->mask & STATMOUNT_FS_TYPE)
5246 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5247 
5248 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5249 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5250 
5251 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5252 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5253 
5254 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5255 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5256 
5257 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5258 		statmount_mnt_ns_id(s, ns);
5259 
5260 	if (err)
5261 		return err;
5262 
5263 	return 0;
5264 }
5265 
retry_statmount(const long ret,size_t * seq_size)5266 static inline bool retry_statmount(const long ret, size_t *seq_size)
5267 {
5268 	if (likely(ret != -EAGAIN))
5269 		return false;
5270 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5271 		return false;
5272 	if (unlikely(*seq_size > MAX_RW_COUNT))
5273 		return false;
5274 	return true;
5275 }
5276 
5277 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5278 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS)
5279 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5280 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5281 			      struct statmount __user *buf, size_t bufsize,
5282 			      size_t seq_size)
5283 {
5284 	if (!access_ok(buf, bufsize))
5285 		return -EFAULT;
5286 
5287 	memset(ks, 0, sizeof(*ks));
5288 	ks->mask = kreq->param;
5289 	ks->buf = buf;
5290 	ks->bufsize = bufsize;
5291 
5292 	if (ks->mask & STATMOUNT_STRING_REQ) {
5293 		if (bufsize == sizeof(ks->sm))
5294 			return -EOVERFLOW;
5295 
5296 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5297 		if (!ks->seq.buf)
5298 			return -ENOMEM;
5299 
5300 		ks->seq.size = seq_size;
5301 	}
5302 
5303 	return 0;
5304 }
5305 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5306 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5307 			   struct mnt_id_req *kreq)
5308 {
5309 	int ret;
5310 	size_t usize;
5311 
5312 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5313 
5314 	ret = get_user(usize, &req->size);
5315 	if (ret)
5316 		return -EFAULT;
5317 	if (unlikely(usize > PAGE_SIZE))
5318 		return -E2BIG;
5319 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5320 		return -EINVAL;
5321 	memset(kreq, 0, sizeof(*kreq));
5322 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5323 	if (ret)
5324 		return ret;
5325 	if (kreq->spare != 0)
5326 		return -EINVAL;
5327 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5328 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5329 		return -EINVAL;
5330 	return 0;
5331 }
5332 
5333 /*
5334  * If the user requested a specific mount namespace id, look that up and return
5335  * that, or if not simply grab a passive reference on our mount namespace and
5336  * return that.
5337  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5338 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5339 {
5340 	struct mnt_namespace *mnt_ns;
5341 
5342 	if (kreq->mnt_ns_id && kreq->spare)
5343 		return ERR_PTR(-EINVAL);
5344 
5345 	if (kreq->mnt_ns_id)
5346 		return lookup_mnt_ns(kreq->mnt_ns_id);
5347 
5348 	if (kreq->spare) {
5349 		struct ns_common *ns;
5350 
5351 		CLASS(fd, f)(kreq->spare);
5352 		if (fd_empty(f))
5353 			return ERR_PTR(-EBADF);
5354 
5355 		if (!proc_ns_file(fd_file(f)))
5356 			return ERR_PTR(-EINVAL);
5357 
5358 		ns = get_proc_ns(file_inode(fd_file(f)));
5359 		if (ns->ops->type != CLONE_NEWNS)
5360 			return ERR_PTR(-EINVAL);
5361 
5362 		mnt_ns = to_mnt_ns(ns);
5363 	} else {
5364 		mnt_ns = current->nsproxy->mnt_ns;
5365 	}
5366 
5367 	refcount_inc(&mnt_ns->passive);
5368 	return mnt_ns;
5369 }
5370 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5371 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5372 		struct statmount __user *, buf, size_t, bufsize,
5373 		unsigned int, flags)
5374 {
5375 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5376 	struct kstatmount *ks __free(kfree) = NULL;
5377 	struct mnt_id_req kreq;
5378 	/* We currently support retrieval of 3 strings. */
5379 	size_t seq_size = 3 * PATH_MAX;
5380 	int ret;
5381 
5382 	if (flags)
5383 		return -EINVAL;
5384 
5385 	ret = copy_mnt_id_req(req, &kreq);
5386 	if (ret)
5387 		return ret;
5388 
5389 	ns = grab_requested_mnt_ns(&kreq);
5390 	if (!ns)
5391 		return -ENOENT;
5392 
5393 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5394 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5395 		return -ENOENT;
5396 
5397 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5398 	if (!ks)
5399 		return -ENOMEM;
5400 
5401 retry:
5402 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5403 	if (ret)
5404 		return ret;
5405 
5406 	scoped_guard(rwsem_read, &namespace_sem)
5407 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5408 
5409 	if (!ret)
5410 		ret = copy_statmount_to_user(ks);
5411 	kvfree(ks->seq.buf);
5412 	if (retry_statmount(ret, &seq_size))
5413 		goto retry;
5414 	return ret;
5415 }
5416 
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5417 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5418 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5419 			    bool reverse)
5420 {
5421 	struct path root __free(path_put) = {};
5422 	struct path orig;
5423 	struct mount *r, *first;
5424 	ssize_t ret;
5425 
5426 	rwsem_assert_held(&namespace_sem);
5427 
5428 	ret = grab_requested_root(ns, &root);
5429 	if (ret)
5430 		return ret;
5431 
5432 	if (mnt_parent_id == LSMT_ROOT) {
5433 		orig = root;
5434 	} else {
5435 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5436 		if (!orig.mnt)
5437 			return -ENOENT;
5438 		orig.dentry = orig.mnt->mnt_root;
5439 	}
5440 
5441 	/*
5442 	 * Don't trigger audit denials. We just want to determine what
5443 	 * mounts to show users.
5444 	 */
5445 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5446 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5447 		return -EPERM;
5448 
5449 	ret = security_sb_statfs(orig.dentry);
5450 	if (ret)
5451 		return ret;
5452 
5453 	if (!last_mnt_id) {
5454 		if (reverse)
5455 			first = node_to_mount(rb_last(&ns->mounts));
5456 		else
5457 			first = node_to_mount(rb_first(&ns->mounts));
5458 	} else {
5459 		if (reverse)
5460 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5461 		else
5462 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5463 	}
5464 
5465 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5466 		if (r->mnt_id_unique == mnt_parent_id)
5467 			continue;
5468 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5469 			continue;
5470 		*mnt_ids = r->mnt_id_unique;
5471 		mnt_ids++;
5472 		nr_mnt_ids--;
5473 		ret++;
5474 	}
5475 	return ret;
5476 }
5477 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5478 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5479 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5480 {
5481 	u64 *kmnt_ids __free(kvfree) = NULL;
5482 	const size_t maxcount = 1000000;
5483 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5484 	struct mnt_id_req kreq;
5485 	u64 last_mnt_id;
5486 	ssize_t ret;
5487 
5488 	if (flags & ~LISTMOUNT_REVERSE)
5489 		return -EINVAL;
5490 
5491 	/*
5492 	 * If the mount namespace really has more than 1 million mounts the
5493 	 * caller must iterate over the mount namespace (and reconsider their
5494 	 * system design...).
5495 	 */
5496 	if (unlikely(nr_mnt_ids > maxcount))
5497 		return -EOVERFLOW;
5498 
5499 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5500 		return -EFAULT;
5501 
5502 	ret = copy_mnt_id_req(req, &kreq);
5503 	if (ret)
5504 		return ret;
5505 
5506 	last_mnt_id = kreq.param;
5507 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5508 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5509 		return -EINVAL;
5510 
5511 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5512 				  GFP_KERNEL_ACCOUNT);
5513 	if (!kmnt_ids)
5514 		return -ENOMEM;
5515 
5516 	ns = grab_requested_mnt_ns(&kreq);
5517 	if (!ns)
5518 		return -ENOENT;
5519 
5520 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5521 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5522 		return -ENOENT;
5523 
5524 	scoped_guard(rwsem_read, &namespace_sem)
5525 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5526 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5527 	if (ret <= 0)
5528 		return ret;
5529 
5530 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5531 		return -EFAULT;
5532 
5533 	return ret;
5534 }
5535 
init_mount_tree(void)5536 static void __init init_mount_tree(void)
5537 {
5538 	struct vfsmount *mnt;
5539 	struct mount *m;
5540 	struct mnt_namespace *ns;
5541 	struct path root;
5542 
5543 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5544 	if (IS_ERR(mnt))
5545 		panic("Can't create rootfs");
5546 
5547 	ns = alloc_mnt_ns(&init_user_ns, false);
5548 	if (IS_ERR(ns))
5549 		panic("Can't allocate initial namespace");
5550 	m = real_mount(mnt);
5551 	ns->root = m;
5552 	ns->nr_mounts = 1;
5553 	mnt_add_to_ns(ns, m);
5554 	init_task.nsproxy->mnt_ns = ns;
5555 	get_mnt_ns(ns);
5556 
5557 	root.mnt = mnt;
5558 	root.dentry = mnt->mnt_root;
5559 	mnt->mnt_flags |= MNT_LOCKED;
5560 
5561 	set_fs_pwd(current->fs, &root);
5562 	set_fs_root(current->fs, &root);
5563 
5564 	mnt_ns_tree_add(ns);
5565 }
5566 
mnt_init(void)5567 void __init mnt_init(void)
5568 {
5569 	int err;
5570 
5571 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5572 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5573 
5574 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5575 				sizeof(struct hlist_head),
5576 				mhash_entries, 19,
5577 				HASH_ZERO,
5578 				&m_hash_shift, &m_hash_mask, 0, 0);
5579 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5580 				sizeof(struct hlist_head),
5581 				mphash_entries, 19,
5582 				HASH_ZERO,
5583 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5584 
5585 	if (!mount_hashtable || !mountpoint_hashtable)
5586 		panic("Failed to allocate mount hash table\n");
5587 
5588 	kernfs_init();
5589 
5590 	err = sysfs_init();
5591 	if (err)
5592 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5593 			__func__, err);
5594 	fs_kobj = kobject_create_and_add("fs", NULL);
5595 	if (!fs_kobj)
5596 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5597 	shmem_init();
5598 	init_rootfs();
5599 	init_mount_tree();
5600 }
5601 
put_mnt_ns(struct mnt_namespace * ns)5602 void put_mnt_ns(struct mnt_namespace *ns)
5603 {
5604 	if (!refcount_dec_and_test(&ns->ns.count))
5605 		return;
5606 	drop_collected_mounts(&ns->root->mnt);
5607 	free_mnt_ns(ns);
5608 }
5609 
kern_mount(struct file_system_type * type)5610 struct vfsmount *kern_mount(struct file_system_type *type)
5611 {
5612 	struct vfsmount *mnt;
5613 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5614 	if (!IS_ERR(mnt)) {
5615 		/*
5616 		 * it is a longterm mount, don't release mnt until
5617 		 * we unmount before file sys is unregistered
5618 		*/
5619 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5620 	}
5621 	return mnt;
5622 }
5623 EXPORT_SYMBOL_GPL(kern_mount);
5624 
kern_unmount(struct vfsmount * mnt)5625 void kern_unmount(struct vfsmount *mnt)
5626 {
5627 	/* release long term mount so mount point can be released */
5628 	if (!IS_ERR(mnt)) {
5629 		mnt_make_shortterm(mnt);
5630 		synchronize_rcu();	/* yecchhh... */
5631 		mntput(mnt);
5632 	}
5633 }
5634 EXPORT_SYMBOL(kern_unmount);
5635 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)5636 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5637 {
5638 	unsigned int i;
5639 
5640 	for (i = 0; i < num; i++)
5641 		mnt_make_shortterm(mnt[i]);
5642 	synchronize_rcu_expedited();
5643 	for (i = 0; i < num; i++)
5644 		mntput(mnt[i]);
5645 }
5646 EXPORT_SYMBOL(kern_unmount_array);
5647 
our_mnt(struct vfsmount * mnt)5648 bool our_mnt(struct vfsmount *mnt)
5649 {
5650 	return check_mnt(real_mount(mnt));
5651 }
5652 
current_chrooted(void)5653 bool current_chrooted(void)
5654 {
5655 	/* Does the current process have a non-standard root */
5656 	struct path ns_root;
5657 	struct path fs_root;
5658 	bool chrooted;
5659 
5660 	/* Find the namespace root */
5661 	ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
5662 	ns_root.dentry = ns_root.mnt->mnt_root;
5663 	path_get(&ns_root);
5664 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5665 		;
5666 
5667 	get_fs_root(current->fs, &fs_root);
5668 
5669 	chrooted = !path_equal(&fs_root, &ns_root);
5670 
5671 	path_put(&fs_root);
5672 	path_put(&ns_root);
5673 
5674 	return chrooted;
5675 }
5676 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)5677 static bool mnt_already_visible(struct mnt_namespace *ns,
5678 				const struct super_block *sb,
5679 				int *new_mnt_flags)
5680 {
5681 	int new_flags = *new_mnt_flags;
5682 	struct mount *mnt, *n;
5683 	bool visible = false;
5684 
5685 	down_read(&namespace_sem);
5686 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5687 		struct mount *child;
5688 		int mnt_flags;
5689 
5690 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5691 			continue;
5692 
5693 		/* This mount is not fully visible if it's root directory
5694 		 * is not the root directory of the filesystem.
5695 		 */
5696 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5697 			continue;
5698 
5699 		/* A local view of the mount flags */
5700 		mnt_flags = mnt->mnt.mnt_flags;
5701 
5702 		/* Don't miss readonly hidden in the superblock flags */
5703 		if (sb_rdonly(mnt->mnt.mnt_sb))
5704 			mnt_flags |= MNT_LOCK_READONLY;
5705 
5706 		/* Verify the mount flags are equal to or more permissive
5707 		 * than the proposed new mount.
5708 		 */
5709 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5710 		    !(new_flags & MNT_READONLY))
5711 			continue;
5712 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5713 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5714 			continue;
5715 
5716 		/* This mount is not fully visible if there are any
5717 		 * locked child mounts that cover anything except for
5718 		 * empty directories.
5719 		 */
5720 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5721 			struct inode *inode = child->mnt_mountpoint->d_inode;
5722 			/* Only worry about locked mounts */
5723 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5724 				continue;
5725 			/* Is the directory permanently empty? */
5726 			if (!is_empty_dir_inode(inode))
5727 				goto next;
5728 		}
5729 		/* Preserve the locked attributes */
5730 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5731 					       MNT_LOCK_ATIME);
5732 		visible = true;
5733 		goto found;
5734 	next:	;
5735 	}
5736 found:
5737 	up_read(&namespace_sem);
5738 	return visible;
5739 }
5740 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)5741 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5742 {
5743 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5744 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5745 	unsigned long s_iflags;
5746 
5747 	if (ns->user_ns == &init_user_ns)
5748 		return false;
5749 
5750 	/* Can this filesystem be too revealing? */
5751 	s_iflags = sb->s_iflags;
5752 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5753 		return false;
5754 
5755 	if ((s_iflags & required_iflags) != required_iflags) {
5756 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5757 			  required_iflags);
5758 		return true;
5759 	}
5760 
5761 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5762 }
5763 
mnt_may_suid(struct vfsmount * mnt)5764 bool mnt_may_suid(struct vfsmount *mnt)
5765 {
5766 	/*
5767 	 * Foreign mounts (accessed via fchdir or through /proc
5768 	 * symlinks) are always treated as if they are nosuid.  This
5769 	 * prevents namespaces from trusting potentially unsafe
5770 	 * suid/sgid bits, file caps, or security labels that originate
5771 	 * in other namespaces.
5772 	 */
5773 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5774 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5775 }
5776 
mntns_get(struct task_struct * task)5777 static struct ns_common *mntns_get(struct task_struct *task)
5778 {
5779 	struct ns_common *ns = NULL;
5780 	struct nsproxy *nsproxy;
5781 
5782 	task_lock(task);
5783 	nsproxy = task->nsproxy;
5784 	if (nsproxy) {
5785 		ns = &nsproxy->mnt_ns->ns;
5786 		get_mnt_ns(to_mnt_ns(ns));
5787 	}
5788 	task_unlock(task);
5789 
5790 	return ns;
5791 }
5792 
mntns_put(struct ns_common * ns)5793 static void mntns_put(struct ns_common *ns)
5794 {
5795 	put_mnt_ns(to_mnt_ns(ns));
5796 }
5797 
mntns_install(struct nsset * nsset,struct ns_common * ns)5798 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5799 {
5800 	struct nsproxy *nsproxy = nsset->nsproxy;
5801 	struct fs_struct *fs = nsset->fs;
5802 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5803 	struct user_namespace *user_ns = nsset->cred->user_ns;
5804 	struct path root;
5805 	int err;
5806 
5807 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5808 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5809 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5810 		return -EPERM;
5811 
5812 	if (is_anon_ns(mnt_ns))
5813 		return -EINVAL;
5814 
5815 	if (fs->users != 1)
5816 		return -EINVAL;
5817 
5818 	get_mnt_ns(mnt_ns);
5819 	old_mnt_ns = nsproxy->mnt_ns;
5820 	nsproxy->mnt_ns = mnt_ns;
5821 
5822 	/* Find the root */
5823 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5824 				"/", LOOKUP_DOWN, &root);
5825 	if (err) {
5826 		/* revert to old namespace */
5827 		nsproxy->mnt_ns = old_mnt_ns;
5828 		put_mnt_ns(mnt_ns);
5829 		return err;
5830 	}
5831 
5832 	put_mnt_ns(old_mnt_ns);
5833 
5834 	/* Update the pwd and root */
5835 	set_fs_pwd(fs, &root);
5836 	set_fs_root(fs, &root);
5837 
5838 	path_put(&root);
5839 	return 0;
5840 }
5841 
mntns_owner(struct ns_common * ns)5842 static struct user_namespace *mntns_owner(struct ns_common *ns)
5843 {
5844 	return to_mnt_ns(ns)->user_ns;
5845 }
5846 
5847 const struct proc_ns_operations mntns_operations = {
5848 	.name		= "mnt",
5849 	.type		= CLONE_NEWNS,
5850 	.get		= mntns_get,
5851 	.put		= mntns_put,
5852 	.install	= mntns_install,
5853 	.owner		= mntns_owner,
5854 };
5855 
5856 #ifdef CONFIG_SYSCTL
5857 static struct ctl_table fs_namespace_sysctls[] = {
5858 	{
5859 		.procname	= "mount-max",
5860 		.data		= &sysctl_mount_max,
5861 		.maxlen		= sizeof(unsigned int),
5862 		.mode		= 0644,
5863 		.proc_handler	= proc_dointvec_minmax,
5864 		.extra1		= SYSCTL_ONE,
5865 	},
5866 };
5867 
init_fs_namespace_sysctls(void)5868 static int __init init_fs_namespace_sysctls(void)
5869 {
5870 	register_sysctl_init("fs", fs_namespace_sysctls);
5871 	return 0;
5872 }
5873 fs_initcall(init_fs_namespace_sysctls);
5874 
5875 #endif /* CONFIG_SYSCTL */
5876