• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 #include <trace/hooks/mm.h>
132 
133 #include "internal.h"
134 
135 /*
136  * Initialise a struct file's readahead state.  Assumes that the caller has
137  * memset *ra to zero.
138  */
139 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141 {
142 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143 	ra->prev_pos = -1;
144 }
145 EXPORT_SYMBOL_GPL(file_ra_state_init);
146 
readahead_gfp_mask(struct address_space * x)147 gfp_t readahead_gfp_mask(struct address_space *x)
148 {
149 	gfp_t mask = __readahead_gfp_mask(x);
150 
151 	trace_android_rvh_set_readahead_gfp_mask(&mask);
152 	return mask;
153 }
154 EXPORT_SYMBOL_GPL(readahead_gfp_mask);
155 
read_pages(struct readahead_control * rac)156 static void read_pages(struct readahead_control *rac)
157 {
158 	const struct address_space_operations *aops = rac->mapping->a_ops;
159 	struct folio *folio;
160 	struct blk_plug plug;
161 
162 	if (!readahead_count(rac))
163 		return;
164 
165 	if (unlikely(rac->_workingset))
166 		psi_memstall_enter(&rac->_pflags);
167 	blk_start_plug(&plug);
168 
169 	if (aops->readahead) {
170 		aops->readahead(rac);
171 		/*
172 		 * Clean up the remaining folios.  The sizes in ->ra
173 		 * may be used to size the next readahead, so make sure
174 		 * they accurately reflect what happened.
175 		 */
176 		while ((folio = readahead_folio(rac)) != NULL) {
177 			unsigned long nr = folio_nr_pages(folio);
178 
179 			folio_get(folio);
180 			rac->ra->size -= nr;
181 			if (rac->ra->async_size >= nr) {
182 				rac->ra->async_size -= nr;
183 				filemap_remove_folio(folio);
184 			}
185 			folio_unlock(folio);
186 			folio_put(folio);
187 		}
188 	} else {
189 		while ((folio = readahead_folio(rac)) != NULL)
190 			aops->read_folio(rac->file, folio);
191 	}
192 
193 	blk_finish_plug(&plug);
194 	if (unlikely(rac->_workingset))
195 		psi_memstall_leave(&rac->_pflags);
196 	rac->_workingset = false;
197 
198 	BUG_ON(readahead_count(rac));
199 }
200 
ractl_alloc_folio(struct readahead_control * ractl,gfp_t gfp_mask,unsigned int order)201 static struct folio *ractl_alloc_folio(struct readahead_control *ractl,
202 				       gfp_t gfp_mask, unsigned int order)
203 {
204 	struct folio *folio;
205 
206 	folio = filemap_alloc_folio(gfp_mask, order);
207 	if (folio && ractl->dropbehind)
208 		__folio_set_dropbehind(folio);
209 
210 	return folio;
211 }
212 
213 /**
214  * page_cache_ra_unbounded - Start unchecked readahead.
215  * @ractl: Readahead control.
216  * @nr_to_read: The number of pages to read.
217  * @lookahead_size: Where to start the next readahead.
218  *
219  * This function is for filesystems to call when they want to start
220  * readahead beyond a file's stated i_size.  This is almost certainly
221  * not the function you want to call.  Use page_cache_async_readahead()
222  * or page_cache_sync_readahead() instead.
223  *
224  * Context: File is referenced by caller.  Mutexes may be held by caller.
225  * May sleep, but will not reenter filesystem to reclaim memory.
226  */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)227 void page_cache_ra_unbounded(struct readahead_control *ractl,
228 		unsigned long nr_to_read, unsigned long lookahead_size)
229 {
230 	struct address_space *mapping = ractl->mapping;
231 	unsigned long ra_folio_index, index = readahead_index(ractl);
232 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
233 	unsigned long mark, i = 0;
234 	unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
235 
236 	/*
237 	 * Partway through the readahead operation, we will have added
238 	 * locked pages to the page cache, but will not yet have submitted
239 	 * them for I/O.  Adding another page may need to allocate memory,
240 	 * which can trigger memory reclaim.  Telling the VM we're in
241 	 * the middle of a filesystem operation will cause it to not
242 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
243 	 * filesystems already specify __GFP_NOFS in their mapping's
244 	 * gfp_mask, but let's be explicit here.
245 	 */
246 	unsigned int nofs = memalloc_nofs_save();
247 
248 	filemap_invalidate_lock_shared(mapping);
249 	index = mapping_align_index(mapping, index);
250 
251 	/*
252 	 * As iterator `i` is aligned to min_nrpages, round_up the
253 	 * difference between nr_to_read and lookahead_size to mark the
254 	 * index that only has lookahead or "async_region" to set the
255 	 * readahead flag.
256 	 */
257 	ra_folio_index = round_up(readahead_index(ractl) + nr_to_read - lookahead_size,
258 				  min_nrpages);
259 	mark = ra_folio_index - index;
260 	nr_to_read += readahead_index(ractl) - index;
261 	ractl->_index = index;
262 
263 	/*
264 	 * Preallocate as many pages as we will need.
265 	 */
266 	while (i < nr_to_read) {
267 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
268 		int ret;
269 
270 		if (folio && !xa_is_value(folio)) {
271 			/*
272 			 * Page already present?  Kick off the current batch
273 			 * of contiguous pages before continuing with the
274 			 * next batch.  This page may be the one we would
275 			 * have intended to mark as Readahead, but we don't
276 			 * have a stable reference to this page, and it's
277 			 * not worth getting one just for that.
278 			 */
279 			read_pages(ractl);
280 			ractl->_index += min_nrpages;
281 			i = ractl->_index + ractl->_nr_pages - index;
282 			continue;
283 		}
284 
285 		trace_android_vh_io_statistics(mapping, index + i, 1, true, false);
286 		folio = ractl_alloc_folio(ractl, gfp_mask,
287 					mapping_min_folio_order(mapping));
288 		if (!folio)
289 			break;
290 
291 		ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
292 		if (ret < 0) {
293 			folio_put(folio);
294 			if (ret == -ENOMEM)
295 				break;
296 			read_pages(ractl);
297 			ractl->_index += min_nrpages;
298 			i = ractl->_index + ractl->_nr_pages - index;
299 			continue;
300 		}
301 		if (i == mark)
302 			folio_set_readahead(folio);
303 		ractl->_workingset |= folio_test_workingset(folio);
304 		ractl->_nr_pages += min_nrpages;
305 		i += min_nrpages;
306 	}
307 
308 	/*
309 	 * Now start the IO.  We ignore I/O errors - if the folio is not
310 	 * uptodate then the caller will launch read_folio again, and
311 	 * will then handle the error.
312 	 */
313 	read_pages(ractl);
314 	filemap_invalidate_unlock_shared(mapping);
315 	memalloc_nofs_restore(nofs);
316 }
317 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
318 
319 /*
320  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
321  * the pages first, then submits them for I/O. This avoids the very bad
322  * behaviour which would occur if page allocations are causing VM writeback.
323  * We really don't want to intermingle reads and writes like that.
324  */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)325 static void do_page_cache_ra(struct readahead_control *ractl,
326 		unsigned long nr_to_read, unsigned long lookahead_size)
327 {
328 	struct inode *inode = ractl->mapping->host;
329 	unsigned long index = readahead_index(ractl);
330 	loff_t isize = i_size_read(inode);
331 	pgoff_t end_index;	/* The last page we want to read */
332 
333 	if (isize == 0)
334 		return;
335 
336 	end_index = (isize - 1) >> PAGE_SHIFT;
337 	if (index > end_index)
338 		return;
339 	/* Don't read past the page containing the last byte of the file */
340 	if (nr_to_read > end_index - index)
341 		nr_to_read = end_index - index + 1;
342 
343 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
344 }
345 
346 /*
347  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
348  * memory at once.
349  */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)350 void force_page_cache_ra(struct readahead_control *ractl,
351 		unsigned long nr_to_read)
352 {
353 	struct address_space *mapping = ractl->mapping;
354 	struct file_ra_state *ra = ractl->ra;
355 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
356 	unsigned long max_pages;
357 
358 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
359 		return;
360 
361 	/*
362 	 * If the request exceeds the readahead window, allow the read to
363 	 * be up to the optimal hardware IO size
364 	 */
365 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
366 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
367 	while (nr_to_read) {
368 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
369 
370 		if (this_chunk > nr_to_read)
371 			this_chunk = nr_to_read;
372 		do_page_cache_ra(ractl, this_chunk, 0);
373 
374 		nr_to_read -= this_chunk;
375 	}
376 }
377 
378 /*
379  * Set the initial window size, round to next power of 2 and square
380  * for small size, x 4 for medium, and x 2 for large
381  * for 128k (32 page) max ra
382  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
383  */
get_init_ra_size(unsigned long size,unsigned long max)384 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
385 {
386 	unsigned long newsize = roundup_pow_of_two(size);
387 
388 	if (newsize <= max / 32)
389 		newsize = newsize * 4;
390 	else if (newsize <= max / 4)
391 		newsize = newsize * 2;
392 	else
393 		newsize = max;
394 
395 	return newsize;
396 }
397 
398 /*
399  *  Get the previous window size, ramp it up, and
400  *  return it as the new window size.
401  */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)402 static unsigned long get_next_ra_size(struct file_ra_state *ra,
403 				      unsigned long max)
404 {
405 	unsigned long cur = ra->size;
406 
407 	if (cur < max / 16)
408 		return 4 * cur;
409 	if (cur <= max / 2)
410 		return 2 * cur;
411 	return max;
412 }
413 
414 /*
415  * On-demand readahead design.
416  *
417  * The fields in struct file_ra_state represent the most-recently-executed
418  * readahead attempt:
419  *
420  *                        |<----- async_size ---------|
421  *     |------------------- size -------------------->|
422  *     |==================#===========================|
423  *     ^start             ^page marked with PG_readahead
424  *
425  * To overlap application thinking time and disk I/O time, we do
426  * `readahead pipelining': Do not wait until the application consumed all
427  * readahead pages and stalled on the missing page at readahead_index;
428  * Instead, submit an asynchronous readahead I/O as soon as there are
429  * only async_size pages left in the readahead window. Normally async_size
430  * will be equal to size, for maximum pipelining.
431  *
432  * In interleaved sequential reads, concurrent streams on the same fd can
433  * be invalidating each other's readahead state. So we flag the new readahead
434  * page at (start+size-async_size) with PG_readahead, and use it as readahead
435  * indicator. The flag won't be set on already cached pages, to avoid the
436  * readahead-for-nothing fuss, saving pointless page cache lookups.
437  *
438  * prev_pos tracks the last visited byte in the _previous_ read request.
439  * It should be maintained by the caller, and will be used for detecting
440  * small random reads. Note that the readahead algorithm checks loosely
441  * for sequential patterns. Hence interleaved reads might be served as
442  * sequential ones.
443  *
444  * There is a special-case: if the first page which the application tries to
445  * read happens to be the first page of the file, it is assumed that a linear
446  * read is about to happen and the window is immediately set to the initial size
447  * based on I/O request size and the max_readahead.
448  *
449  * The code ramps up the readahead size aggressively at first, but slow down as
450  * it approaches max_readhead.
451  */
452 
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)453 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
454 		pgoff_t mark, unsigned int order, gfp_t gfp)
455 {
456 	int err;
457 	struct folio *folio = ractl_alloc_folio(ractl, gfp, order);
458 
459 	if (!folio)
460 		return -ENOMEM;
461 	mark = round_down(mark, 1UL << order);
462 	if (index == mark)
463 		folio_set_readahead(folio);
464 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
465 	if (err) {
466 		folio_put(folio);
467 		return err;
468 	}
469 
470 	ractl->_nr_pages += 1UL << order;
471 	ractl->_workingset |= folio_test_workingset(folio);
472 	return 0;
473 }
474 
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra,unsigned int new_order)475 void page_cache_ra_order(struct readahead_control *ractl,
476 		struct file_ra_state *ra, unsigned int new_order)
477 {
478 	struct address_space *mapping = ractl->mapping;
479 	pgoff_t index = readahead_index(ractl);
480 	unsigned int min_order = mapping_min_folio_order(mapping);
481 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
482 	pgoff_t mark = index + ra->size - ra->async_size;
483 	unsigned int nofs;
484 	int err = 0;
485 	gfp_t gfp = readahead_gfp_mask(mapping);
486 	unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
487 	bool bypass = false;
488 
489 	/*
490 	 * Fallback when size < min_nrpages as each folio should be
491 	 * at least min_nrpages anyway.
492 	 */
493 	if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
494 		goto fallback;
495 
496 	trace_android_vh_page_cache_ra_order_bypass(ractl, ra, new_order, &gfp,
497 						    &bypass);
498 	if (bypass)
499 		goto fallback;
500 
501 	limit = min(limit, index + ra->size - 1);
502 
503 	if (new_order < mapping_max_folio_order(mapping))
504 		new_order += 2;
505 
506 	new_order = min(mapping_max_folio_order(mapping), new_order);
507 	new_order = min_t(unsigned int, new_order, ilog2(ra->size));
508 	new_order = max(new_order, min_order);
509 
510 	/* See comment in page_cache_ra_unbounded() */
511 	nofs = memalloc_nofs_save();
512 	filemap_invalidate_lock_shared(mapping);
513 	/*
514 	 * If the new_order is greater than min_order and index is
515 	 * already aligned to new_order, then this will be noop as index
516 	 * aligned to new_order should also be aligned to min_order.
517 	 */
518 	ractl->_index = mapping_align_index(mapping, index);
519 	index = readahead_index(ractl);
520 
521 	while (index <= limit) {
522 		unsigned int order = new_order;
523 
524 		/* Align with smaller pages if needed */
525 		if (index & ((1UL << order) - 1))
526 			order = __ffs(index);
527 		/* Don't allocate pages past EOF */
528 		while (order > min_order && index + (1UL << order) - 1 > limit)
529 			order--;
530 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
531 		if (err)
532 			break;
533 		index += 1UL << order;
534 	}
535 
536 	read_pages(ractl);
537 	filemap_invalidate_unlock_shared(mapping);
538 	memalloc_nofs_restore(nofs);
539 
540 	/*
541 	 * If there were already pages in the page cache, then we may have
542 	 * left some gaps.  Let the regular readahead code take care of this
543 	 * situation.
544 	 */
545 	if (!err)
546 		return;
547 fallback:
548 	do_page_cache_ra(ractl, ra->size, ra->async_size);
549 }
550 
ractl_max_pages(struct readahead_control * ractl,unsigned long req_size)551 static unsigned long ractl_max_pages(struct readahead_control *ractl,
552 		unsigned long req_size)
553 {
554 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
555 	unsigned long max_pages = ractl->ra->ra_pages;
556 
557 	/*
558 	 * If the request exceeds the readahead window, allow the read to
559 	 * be up to the optimal hardware IO size
560 	 */
561 	if (req_size > max_pages && bdi->io_pages > max_pages)
562 		max_pages = min(req_size, bdi->io_pages);
563 
564 	trace_android_vh_ra_tuning_max_page(ractl, &max_pages);
565 
566 	return max_pages;
567 }
568 
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)569 void page_cache_sync_ra(struct readahead_control *ractl,
570 		unsigned long req_count)
571 {
572 	pgoff_t index = readahead_index(ractl);
573 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
574 	struct file_ra_state *ra = ractl->ra;
575 	unsigned long max_pages, contig_count;
576 	pgoff_t prev_index, miss;
577 
578 	/*
579 	 * Even if readahead is disabled, issue this request as readahead
580 	 * as we'll need it to satisfy the requested range. The forced
581 	 * readahead will do the right thing and limit the read to just the
582 	 * requested range, which we'll set to 1 page for this case.
583 	 */
584 	if (!ra->ra_pages || blk_cgroup_congested()) {
585 		if (!ractl->file)
586 			return;
587 		req_count = 1;
588 		do_forced_ra = true;
589 	}
590 
591 	/* be dumb */
592 	if (do_forced_ra) {
593 		force_page_cache_ra(ractl, req_count);
594 		return;
595 	}
596 
597 	max_pages = ractl_max_pages(ractl, req_count);
598 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
599 	/*
600 	 * A start of file, oversized read, or sequential cache miss:
601 	 * trivial case: (index - prev_index) == 1
602 	 * unaligned reads: (index - prev_index) == 0
603 	 */
604 	if (!index || req_count > max_pages || index - prev_index <= 1UL) {
605 		ra->start = index;
606 		ra->size = get_init_ra_size(req_count, max_pages);
607 		ra->async_size = ra->size > req_count ? ra->size - req_count :
608 							ra->size >> 1;
609 		goto readit;
610 	}
611 
612 	/*
613 	 * Query the page cache and look for the traces(cached history pages)
614 	 * that a sequential stream would leave behind.
615 	 */
616 	rcu_read_lock();
617 	miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
618 	rcu_read_unlock();
619 	contig_count = index - miss - 1;
620 	/*
621 	 * Standalone, small random read. Read as is, and do not pollute the
622 	 * readahead state.
623 	 */
624 	if (contig_count <= req_count) {
625 		do_page_cache_ra(ractl, req_count, 0);
626 		return;
627 	}
628 	/*
629 	 * File cached from the beginning:
630 	 * it is a strong indication of long-run stream (or whole-file-read)
631 	 */
632 	if (miss == ULONG_MAX)
633 		contig_count *= 2;
634 	ra->start = index;
635 	ra->size = min(contig_count + req_count, max_pages);
636 	ra->async_size = 1;
637 readit:
638 	ractl->_index = ra->start;
639 	page_cache_ra_order(ractl, ra, 0);
640 }
641 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
642 
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)643 void page_cache_async_ra(struct readahead_control *ractl,
644 		struct folio *folio, unsigned long req_count)
645 {
646 	unsigned long max_pages;
647 	struct file_ra_state *ra = ractl->ra;
648 	pgoff_t index = readahead_index(ractl);
649 	pgoff_t expected, start;
650 	unsigned int order = folio_order(folio);
651 
652 	/* no readahead */
653 	if (!ra->ra_pages)
654 		return;
655 
656 	/*
657 	 * Same bit is used for PG_readahead and PG_reclaim.
658 	 */
659 	if (folio_test_writeback(folio))
660 		return;
661 
662 	folio_clear_readahead(folio);
663 
664 	if (blk_cgroup_congested())
665 		return;
666 
667 	max_pages = ractl_max_pages(ractl, req_count);
668 	/*
669 	 * It's the expected callback index, assume sequential access.
670 	 * Ramp up sizes, and push forward the readahead window.
671 	 */
672 	expected = round_down(ra->start + ra->size - ra->async_size,
673 			1UL << order);
674 	if (index == expected) {
675 		ra->start += ra->size;
676 		/*
677 		 * In the case of MADV_HUGEPAGE, the actual size might exceed
678 		 * the readahead window.
679 		 */
680 		ra->size = max(ra->size, get_next_ra_size(ra, max_pages));
681 		ra->async_size = ra->size;
682 		goto readit;
683 	}
684 
685 	/*
686 	 * Hit a marked folio without valid readahead state.
687 	 * E.g. interleaved reads.
688 	 * Query the pagecache for async_size, which normally equals to
689 	 * readahead size. Ramp it up and use it as the new readahead size.
690 	 */
691 	rcu_read_lock();
692 	start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
693 	rcu_read_unlock();
694 
695 	if (!start || start - index > max_pages)
696 		return;
697 
698 	ra->start = start;
699 	ra->size = start - index;	/* old async_size */
700 	ra->size += req_count;
701 	ra->size = get_next_ra_size(ra, max_pages);
702 	ra->async_size = ra->size;
703 readit:
704 	ractl->_index = ra->start;
705 	page_cache_ra_order(ractl, ra, order);
706 }
707 EXPORT_SYMBOL_GPL(page_cache_async_ra);
708 
ksys_readahead(int fd,loff_t offset,size_t count)709 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
710 {
711 	ssize_t ret;
712 	struct fd f;
713 
714 	ret = -EBADF;
715 	f = fdget(fd);
716 	if (!fd_file(f) || !(fd_file(f)->f_mode & FMODE_READ))
717 		goto out;
718 
719 	/*
720 	 * The readahead() syscall is intended to run only on files
721 	 * that can execute readahead. If readahead is not possible
722 	 * on this file, then we must return -EINVAL.
723 	 */
724 	ret = -EINVAL;
725 	if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
726 	    (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
727 	    !S_ISBLK(file_inode(fd_file(f))->i_mode)))
728 		goto out;
729 
730 	ret = vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
731 out:
732 	fdput(f);
733 	return ret;
734 }
735 
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)736 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
737 {
738 	return ksys_readahead(fd, offset, count);
739 }
740 
741 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)742 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
743 {
744 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
745 }
746 #endif
747 
748 /**
749  * readahead_expand - Expand a readahead request
750  * @ractl: The request to be expanded
751  * @new_start: The revised start
752  * @new_len: The revised size of the request
753  *
754  * Attempt to expand a readahead request outwards from the current size to the
755  * specified size by inserting locked pages before and after the current window
756  * to increase the size to the new window.  This may involve the insertion of
757  * THPs, in which case the window may get expanded even beyond what was
758  * requested.
759  *
760  * The algorithm will stop if it encounters a conflicting page already in the
761  * pagecache and leave a smaller expansion than requested.
762  *
763  * The caller must check for this by examining the revised @ractl object for a
764  * different expansion than was requested.
765  */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)766 void readahead_expand(struct readahead_control *ractl,
767 		      loff_t new_start, size_t new_len)
768 {
769 	struct address_space *mapping = ractl->mapping;
770 	struct file_ra_state *ra = ractl->ra;
771 	pgoff_t new_index, new_nr_pages;
772 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
773 	unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
774 	unsigned int min_order = mapping_min_folio_order(mapping);
775 
776 	new_index = new_start / PAGE_SIZE;
777 	/*
778 	 * Readahead code should have aligned the ractl->_index to
779 	 * min_nrpages before calling readahead aops.
780 	 */
781 	VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
782 
783 	/* Expand the leading edge downwards */
784 	while (ractl->_index > new_index) {
785 		unsigned long index = ractl->_index - 1;
786 		struct folio *folio = xa_load(&mapping->i_pages, index);
787 
788 		if (folio && !xa_is_value(folio))
789 			return; /* Folio apparently present */
790 
791 		folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
792 		if (!folio)
793 			return;
794 
795 		index = mapping_align_index(mapping, index);
796 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
797 			folio_put(folio);
798 			return;
799 		}
800 		if (unlikely(folio_test_workingset(folio)) &&
801 				!ractl->_workingset) {
802 			ractl->_workingset = true;
803 			psi_memstall_enter(&ractl->_pflags);
804 		}
805 		ractl->_nr_pages += min_nrpages;
806 		ractl->_index = folio->index;
807 	}
808 
809 	new_len += new_start - readahead_pos(ractl);
810 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
811 
812 	/* Expand the trailing edge upwards */
813 	while (ractl->_nr_pages < new_nr_pages) {
814 		unsigned long index = ractl->_index + ractl->_nr_pages;
815 		struct folio *folio = xa_load(&mapping->i_pages, index);
816 
817 		if (folio && !xa_is_value(folio))
818 			return; /* Folio apparently present */
819 
820 		folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
821 		if (!folio)
822 			return;
823 
824 		index = mapping_align_index(mapping, index);
825 		if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
826 			folio_put(folio);
827 			return;
828 		}
829 		if (unlikely(folio_test_workingset(folio)) &&
830 				!ractl->_workingset) {
831 			ractl->_workingset = true;
832 			psi_memstall_enter(&ractl->_pflags);
833 		}
834 		ractl->_nr_pages += min_nrpages;
835 		if (ra) {
836 			ra->size += min_nrpages;
837 			ra->async_size += min_nrpages;
838 		}
839 	}
840 }
841 EXPORT_SYMBOL(readahead_expand);
842