1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 /**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 #include <trace/hooks/mm.h>
132
133 #include "internal.h"
134
135 /*
136 * Initialise a struct file's readahead state. Assumes that the caller has
137 * memset *ra to zero.
138 */
139 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141 {
142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143 ra->prev_pos = -1;
144 }
145 EXPORT_SYMBOL_GPL(file_ra_state_init);
146
readahead_gfp_mask(struct address_space * x)147 gfp_t readahead_gfp_mask(struct address_space *x)
148 {
149 gfp_t mask = __readahead_gfp_mask(x);
150
151 trace_android_rvh_set_readahead_gfp_mask(&mask);
152 return mask;
153 }
154 EXPORT_SYMBOL_GPL(readahead_gfp_mask);
155
read_pages(struct readahead_control * rac)156 static void read_pages(struct readahead_control *rac)
157 {
158 const struct address_space_operations *aops = rac->mapping->a_ops;
159 struct folio *folio;
160 struct blk_plug plug;
161
162 if (!readahead_count(rac))
163 return;
164
165 if (unlikely(rac->_workingset))
166 psi_memstall_enter(&rac->_pflags);
167 blk_start_plug(&plug);
168
169 if (aops->readahead) {
170 aops->readahead(rac);
171 /*
172 * Clean up the remaining folios. The sizes in ->ra
173 * may be used to size the next readahead, so make sure
174 * they accurately reflect what happened.
175 */
176 while ((folio = readahead_folio(rac)) != NULL) {
177 unsigned long nr = folio_nr_pages(folio);
178
179 folio_get(folio);
180 rac->ra->size -= nr;
181 if (rac->ra->async_size >= nr) {
182 rac->ra->async_size -= nr;
183 filemap_remove_folio(folio);
184 }
185 folio_unlock(folio);
186 folio_put(folio);
187 }
188 } else {
189 while ((folio = readahead_folio(rac)) != NULL)
190 aops->read_folio(rac->file, folio);
191 }
192
193 blk_finish_plug(&plug);
194 if (unlikely(rac->_workingset))
195 psi_memstall_leave(&rac->_pflags);
196 rac->_workingset = false;
197
198 BUG_ON(readahead_count(rac));
199 }
200
ractl_alloc_folio(struct readahead_control * ractl,gfp_t gfp_mask,unsigned int order)201 static struct folio *ractl_alloc_folio(struct readahead_control *ractl,
202 gfp_t gfp_mask, unsigned int order)
203 {
204 struct folio *folio;
205
206 folio = filemap_alloc_folio(gfp_mask, order);
207 if (folio && ractl->dropbehind)
208 __folio_set_dropbehind(folio);
209
210 return folio;
211 }
212
213 /**
214 * page_cache_ra_unbounded - Start unchecked readahead.
215 * @ractl: Readahead control.
216 * @nr_to_read: The number of pages to read.
217 * @lookahead_size: Where to start the next readahead.
218 *
219 * This function is for filesystems to call when they want to start
220 * readahead beyond a file's stated i_size. This is almost certainly
221 * not the function you want to call. Use page_cache_async_readahead()
222 * or page_cache_sync_readahead() instead.
223 *
224 * Context: File is referenced by caller. Mutexes may be held by caller.
225 * May sleep, but will not reenter filesystem to reclaim memory.
226 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)227 void page_cache_ra_unbounded(struct readahead_control *ractl,
228 unsigned long nr_to_read, unsigned long lookahead_size)
229 {
230 struct address_space *mapping = ractl->mapping;
231 unsigned long ra_folio_index, index = readahead_index(ractl);
232 gfp_t gfp_mask = readahead_gfp_mask(mapping);
233 unsigned long mark, i = 0;
234 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
235
236 /*
237 * Partway through the readahead operation, we will have added
238 * locked pages to the page cache, but will not yet have submitted
239 * them for I/O. Adding another page may need to allocate memory,
240 * which can trigger memory reclaim. Telling the VM we're in
241 * the middle of a filesystem operation will cause it to not
242 * touch file-backed pages, preventing a deadlock. Most (all?)
243 * filesystems already specify __GFP_NOFS in their mapping's
244 * gfp_mask, but let's be explicit here.
245 */
246 unsigned int nofs = memalloc_nofs_save();
247
248 filemap_invalidate_lock_shared(mapping);
249 index = mapping_align_index(mapping, index);
250
251 /*
252 * As iterator `i` is aligned to min_nrpages, round_up the
253 * difference between nr_to_read and lookahead_size to mark the
254 * index that only has lookahead or "async_region" to set the
255 * readahead flag.
256 */
257 ra_folio_index = round_up(readahead_index(ractl) + nr_to_read - lookahead_size,
258 min_nrpages);
259 mark = ra_folio_index - index;
260 nr_to_read += readahead_index(ractl) - index;
261 ractl->_index = index;
262
263 /*
264 * Preallocate as many pages as we will need.
265 */
266 while (i < nr_to_read) {
267 struct folio *folio = xa_load(&mapping->i_pages, index + i);
268 int ret;
269
270 if (folio && !xa_is_value(folio)) {
271 /*
272 * Page already present? Kick off the current batch
273 * of contiguous pages before continuing with the
274 * next batch. This page may be the one we would
275 * have intended to mark as Readahead, but we don't
276 * have a stable reference to this page, and it's
277 * not worth getting one just for that.
278 */
279 read_pages(ractl);
280 ractl->_index += min_nrpages;
281 i = ractl->_index + ractl->_nr_pages - index;
282 continue;
283 }
284
285 trace_android_vh_io_statistics(mapping, index + i, 1, true, false);
286 folio = ractl_alloc_folio(ractl, gfp_mask,
287 mapping_min_folio_order(mapping));
288 if (!folio)
289 break;
290
291 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
292 if (ret < 0) {
293 folio_put(folio);
294 if (ret == -ENOMEM)
295 break;
296 read_pages(ractl);
297 ractl->_index += min_nrpages;
298 i = ractl->_index + ractl->_nr_pages - index;
299 continue;
300 }
301 if (i == mark)
302 folio_set_readahead(folio);
303 ractl->_workingset |= folio_test_workingset(folio);
304 ractl->_nr_pages += min_nrpages;
305 i += min_nrpages;
306 }
307
308 /*
309 * Now start the IO. We ignore I/O errors - if the folio is not
310 * uptodate then the caller will launch read_folio again, and
311 * will then handle the error.
312 */
313 read_pages(ractl);
314 filemap_invalidate_unlock_shared(mapping);
315 memalloc_nofs_restore(nofs);
316 }
317 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
318
319 /*
320 * do_page_cache_ra() actually reads a chunk of disk. It allocates
321 * the pages first, then submits them for I/O. This avoids the very bad
322 * behaviour which would occur if page allocations are causing VM writeback.
323 * We really don't want to intermingle reads and writes like that.
324 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)325 static void do_page_cache_ra(struct readahead_control *ractl,
326 unsigned long nr_to_read, unsigned long lookahead_size)
327 {
328 struct inode *inode = ractl->mapping->host;
329 unsigned long index = readahead_index(ractl);
330 loff_t isize = i_size_read(inode);
331 pgoff_t end_index; /* The last page we want to read */
332
333 if (isize == 0)
334 return;
335
336 end_index = (isize - 1) >> PAGE_SHIFT;
337 if (index > end_index)
338 return;
339 /* Don't read past the page containing the last byte of the file */
340 if (nr_to_read > end_index - index)
341 nr_to_read = end_index - index + 1;
342
343 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
344 }
345
346 /*
347 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
348 * memory at once.
349 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)350 void force_page_cache_ra(struct readahead_control *ractl,
351 unsigned long nr_to_read)
352 {
353 struct address_space *mapping = ractl->mapping;
354 struct file_ra_state *ra = ractl->ra;
355 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
356 unsigned long max_pages;
357
358 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
359 return;
360
361 /*
362 * If the request exceeds the readahead window, allow the read to
363 * be up to the optimal hardware IO size
364 */
365 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
366 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
367 while (nr_to_read) {
368 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
369
370 if (this_chunk > nr_to_read)
371 this_chunk = nr_to_read;
372 do_page_cache_ra(ractl, this_chunk, 0);
373
374 nr_to_read -= this_chunk;
375 }
376 }
377
378 /*
379 * Set the initial window size, round to next power of 2 and square
380 * for small size, x 4 for medium, and x 2 for large
381 * for 128k (32 page) max ra
382 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
383 */
get_init_ra_size(unsigned long size,unsigned long max)384 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
385 {
386 unsigned long newsize = roundup_pow_of_two(size);
387
388 if (newsize <= max / 32)
389 newsize = newsize * 4;
390 else if (newsize <= max / 4)
391 newsize = newsize * 2;
392 else
393 newsize = max;
394
395 return newsize;
396 }
397
398 /*
399 * Get the previous window size, ramp it up, and
400 * return it as the new window size.
401 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)402 static unsigned long get_next_ra_size(struct file_ra_state *ra,
403 unsigned long max)
404 {
405 unsigned long cur = ra->size;
406
407 if (cur < max / 16)
408 return 4 * cur;
409 if (cur <= max / 2)
410 return 2 * cur;
411 return max;
412 }
413
414 /*
415 * On-demand readahead design.
416 *
417 * The fields in struct file_ra_state represent the most-recently-executed
418 * readahead attempt:
419 *
420 * |<----- async_size ---------|
421 * |------------------- size -------------------->|
422 * |==================#===========================|
423 * ^start ^page marked with PG_readahead
424 *
425 * To overlap application thinking time and disk I/O time, we do
426 * `readahead pipelining': Do not wait until the application consumed all
427 * readahead pages and stalled on the missing page at readahead_index;
428 * Instead, submit an asynchronous readahead I/O as soon as there are
429 * only async_size pages left in the readahead window. Normally async_size
430 * will be equal to size, for maximum pipelining.
431 *
432 * In interleaved sequential reads, concurrent streams on the same fd can
433 * be invalidating each other's readahead state. So we flag the new readahead
434 * page at (start+size-async_size) with PG_readahead, and use it as readahead
435 * indicator. The flag won't be set on already cached pages, to avoid the
436 * readahead-for-nothing fuss, saving pointless page cache lookups.
437 *
438 * prev_pos tracks the last visited byte in the _previous_ read request.
439 * It should be maintained by the caller, and will be used for detecting
440 * small random reads. Note that the readahead algorithm checks loosely
441 * for sequential patterns. Hence interleaved reads might be served as
442 * sequential ones.
443 *
444 * There is a special-case: if the first page which the application tries to
445 * read happens to be the first page of the file, it is assumed that a linear
446 * read is about to happen and the window is immediately set to the initial size
447 * based on I/O request size and the max_readahead.
448 *
449 * The code ramps up the readahead size aggressively at first, but slow down as
450 * it approaches max_readhead.
451 */
452
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)453 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
454 pgoff_t mark, unsigned int order, gfp_t gfp)
455 {
456 int err;
457 struct folio *folio = ractl_alloc_folio(ractl, gfp, order);
458
459 if (!folio)
460 return -ENOMEM;
461 mark = round_down(mark, 1UL << order);
462 if (index == mark)
463 folio_set_readahead(folio);
464 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
465 if (err) {
466 folio_put(folio);
467 return err;
468 }
469
470 ractl->_nr_pages += 1UL << order;
471 ractl->_workingset |= folio_test_workingset(folio);
472 return 0;
473 }
474
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra,unsigned int new_order)475 void page_cache_ra_order(struct readahead_control *ractl,
476 struct file_ra_state *ra, unsigned int new_order)
477 {
478 struct address_space *mapping = ractl->mapping;
479 pgoff_t index = readahead_index(ractl);
480 unsigned int min_order = mapping_min_folio_order(mapping);
481 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
482 pgoff_t mark = index + ra->size - ra->async_size;
483 unsigned int nofs;
484 int err = 0;
485 gfp_t gfp = readahead_gfp_mask(mapping);
486 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
487 bool bypass = false;
488
489 /*
490 * Fallback when size < min_nrpages as each folio should be
491 * at least min_nrpages anyway.
492 */
493 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
494 goto fallback;
495
496 trace_android_vh_page_cache_ra_order_bypass(ractl, ra, new_order, &gfp,
497 &bypass);
498 if (bypass)
499 goto fallback;
500
501 limit = min(limit, index + ra->size - 1);
502
503 if (new_order < mapping_max_folio_order(mapping))
504 new_order += 2;
505
506 new_order = min(mapping_max_folio_order(mapping), new_order);
507 new_order = min_t(unsigned int, new_order, ilog2(ra->size));
508 new_order = max(new_order, min_order);
509
510 /* See comment in page_cache_ra_unbounded() */
511 nofs = memalloc_nofs_save();
512 filemap_invalidate_lock_shared(mapping);
513 /*
514 * If the new_order is greater than min_order and index is
515 * already aligned to new_order, then this will be noop as index
516 * aligned to new_order should also be aligned to min_order.
517 */
518 ractl->_index = mapping_align_index(mapping, index);
519 index = readahead_index(ractl);
520
521 while (index <= limit) {
522 unsigned int order = new_order;
523
524 /* Align with smaller pages if needed */
525 if (index & ((1UL << order) - 1))
526 order = __ffs(index);
527 /* Don't allocate pages past EOF */
528 while (order > min_order && index + (1UL << order) - 1 > limit)
529 order--;
530 err = ra_alloc_folio(ractl, index, mark, order, gfp);
531 if (err)
532 break;
533 index += 1UL << order;
534 }
535
536 read_pages(ractl);
537 filemap_invalidate_unlock_shared(mapping);
538 memalloc_nofs_restore(nofs);
539
540 /*
541 * If there were already pages in the page cache, then we may have
542 * left some gaps. Let the regular readahead code take care of this
543 * situation.
544 */
545 if (!err)
546 return;
547 fallback:
548 do_page_cache_ra(ractl, ra->size, ra->async_size);
549 }
550
ractl_max_pages(struct readahead_control * ractl,unsigned long req_size)551 static unsigned long ractl_max_pages(struct readahead_control *ractl,
552 unsigned long req_size)
553 {
554 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
555 unsigned long max_pages = ractl->ra->ra_pages;
556
557 /*
558 * If the request exceeds the readahead window, allow the read to
559 * be up to the optimal hardware IO size
560 */
561 if (req_size > max_pages && bdi->io_pages > max_pages)
562 max_pages = min(req_size, bdi->io_pages);
563
564 trace_android_vh_ra_tuning_max_page(ractl, &max_pages);
565
566 return max_pages;
567 }
568
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)569 void page_cache_sync_ra(struct readahead_control *ractl,
570 unsigned long req_count)
571 {
572 pgoff_t index = readahead_index(ractl);
573 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
574 struct file_ra_state *ra = ractl->ra;
575 unsigned long max_pages, contig_count;
576 pgoff_t prev_index, miss;
577
578 /*
579 * Even if readahead is disabled, issue this request as readahead
580 * as we'll need it to satisfy the requested range. The forced
581 * readahead will do the right thing and limit the read to just the
582 * requested range, which we'll set to 1 page for this case.
583 */
584 if (!ra->ra_pages || blk_cgroup_congested()) {
585 if (!ractl->file)
586 return;
587 req_count = 1;
588 do_forced_ra = true;
589 }
590
591 /* be dumb */
592 if (do_forced_ra) {
593 force_page_cache_ra(ractl, req_count);
594 return;
595 }
596
597 max_pages = ractl_max_pages(ractl, req_count);
598 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
599 /*
600 * A start of file, oversized read, or sequential cache miss:
601 * trivial case: (index - prev_index) == 1
602 * unaligned reads: (index - prev_index) == 0
603 */
604 if (!index || req_count > max_pages || index - prev_index <= 1UL) {
605 ra->start = index;
606 ra->size = get_init_ra_size(req_count, max_pages);
607 ra->async_size = ra->size > req_count ? ra->size - req_count :
608 ra->size >> 1;
609 goto readit;
610 }
611
612 /*
613 * Query the page cache and look for the traces(cached history pages)
614 * that a sequential stream would leave behind.
615 */
616 rcu_read_lock();
617 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
618 rcu_read_unlock();
619 contig_count = index - miss - 1;
620 /*
621 * Standalone, small random read. Read as is, and do not pollute the
622 * readahead state.
623 */
624 if (contig_count <= req_count) {
625 do_page_cache_ra(ractl, req_count, 0);
626 return;
627 }
628 /*
629 * File cached from the beginning:
630 * it is a strong indication of long-run stream (or whole-file-read)
631 */
632 if (miss == ULONG_MAX)
633 contig_count *= 2;
634 ra->start = index;
635 ra->size = min(contig_count + req_count, max_pages);
636 ra->async_size = 1;
637 readit:
638 ractl->_index = ra->start;
639 page_cache_ra_order(ractl, ra, 0);
640 }
641 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
642
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)643 void page_cache_async_ra(struct readahead_control *ractl,
644 struct folio *folio, unsigned long req_count)
645 {
646 unsigned long max_pages;
647 struct file_ra_state *ra = ractl->ra;
648 pgoff_t index = readahead_index(ractl);
649 pgoff_t expected, start;
650 unsigned int order = folio_order(folio);
651
652 /* no readahead */
653 if (!ra->ra_pages)
654 return;
655
656 /*
657 * Same bit is used for PG_readahead and PG_reclaim.
658 */
659 if (folio_test_writeback(folio))
660 return;
661
662 folio_clear_readahead(folio);
663
664 if (blk_cgroup_congested())
665 return;
666
667 max_pages = ractl_max_pages(ractl, req_count);
668 /*
669 * It's the expected callback index, assume sequential access.
670 * Ramp up sizes, and push forward the readahead window.
671 */
672 expected = round_down(ra->start + ra->size - ra->async_size,
673 1UL << order);
674 if (index == expected) {
675 ra->start += ra->size;
676 /*
677 * In the case of MADV_HUGEPAGE, the actual size might exceed
678 * the readahead window.
679 */
680 ra->size = max(ra->size, get_next_ra_size(ra, max_pages));
681 ra->async_size = ra->size;
682 goto readit;
683 }
684
685 /*
686 * Hit a marked folio without valid readahead state.
687 * E.g. interleaved reads.
688 * Query the pagecache for async_size, which normally equals to
689 * readahead size. Ramp it up and use it as the new readahead size.
690 */
691 rcu_read_lock();
692 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
693 rcu_read_unlock();
694
695 if (!start || start - index > max_pages)
696 return;
697
698 ra->start = start;
699 ra->size = start - index; /* old async_size */
700 ra->size += req_count;
701 ra->size = get_next_ra_size(ra, max_pages);
702 ra->async_size = ra->size;
703 readit:
704 ractl->_index = ra->start;
705 page_cache_ra_order(ractl, ra, order);
706 }
707 EXPORT_SYMBOL_GPL(page_cache_async_ra);
708
ksys_readahead(int fd,loff_t offset,size_t count)709 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
710 {
711 ssize_t ret;
712 struct fd f;
713
714 ret = -EBADF;
715 f = fdget(fd);
716 if (!fd_file(f) || !(fd_file(f)->f_mode & FMODE_READ))
717 goto out;
718
719 /*
720 * The readahead() syscall is intended to run only on files
721 * that can execute readahead. If readahead is not possible
722 * on this file, then we must return -EINVAL.
723 */
724 ret = -EINVAL;
725 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
726 (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
727 !S_ISBLK(file_inode(fd_file(f))->i_mode)))
728 goto out;
729
730 ret = vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
731 out:
732 fdput(f);
733 return ret;
734 }
735
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)736 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
737 {
738 return ksys_readahead(fd, offset, count);
739 }
740
741 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)742 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
743 {
744 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
745 }
746 #endif
747
748 /**
749 * readahead_expand - Expand a readahead request
750 * @ractl: The request to be expanded
751 * @new_start: The revised start
752 * @new_len: The revised size of the request
753 *
754 * Attempt to expand a readahead request outwards from the current size to the
755 * specified size by inserting locked pages before and after the current window
756 * to increase the size to the new window. This may involve the insertion of
757 * THPs, in which case the window may get expanded even beyond what was
758 * requested.
759 *
760 * The algorithm will stop if it encounters a conflicting page already in the
761 * pagecache and leave a smaller expansion than requested.
762 *
763 * The caller must check for this by examining the revised @ractl object for a
764 * different expansion than was requested.
765 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)766 void readahead_expand(struct readahead_control *ractl,
767 loff_t new_start, size_t new_len)
768 {
769 struct address_space *mapping = ractl->mapping;
770 struct file_ra_state *ra = ractl->ra;
771 pgoff_t new_index, new_nr_pages;
772 gfp_t gfp_mask = readahead_gfp_mask(mapping);
773 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
774 unsigned int min_order = mapping_min_folio_order(mapping);
775
776 new_index = new_start / PAGE_SIZE;
777 /*
778 * Readahead code should have aligned the ractl->_index to
779 * min_nrpages before calling readahead aops.
780 */
781 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
782
783 /* Expand the leading edge downwards */
784 while (ractl->_index > new_index) {
785 unsigned long index = ractl->_index - 1;
786 struct folio *folio = xa_load(&mapping->i_pages, index);
787
788 if (folio && !xa_is_value(folio))
789 return; /* Folio apparently present */
790
791 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
792 if (!folio)
793 return;
794
795 index = mapping_align_index(mapping, index);
796 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
797 folio_put(folio);
798 return;
799 }
800 if (unlikely(folio_test_workingset(folio)) &&
801 !ractl->_workingset) {
802 ractl->_workingset = true;
803 psi_memstall_enter(&ractl->_pflags);
804 }
805 ractl->_nr_pages += min_nrpages;
806 ractl->_index = folio->index;
807 }
808
809 new_len += new_start - readahead_pos(ractl);
810 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
811
812 /* Expand the trailing edge upwards */
813 while (ractl->_nr_pages < new_nr_pages) {
814 unsigned long index = ractl->_index + ractl->_nr_pages;
815 struct folio *folio = xa_load(&mapping->i_pages, index);
816
817 if (folio && !xa_is_value(folio))
818 return; /* Folio apparently present */
819
820 folio = ractl_alloc_folio(ractl, gfp_mask, min_order);
821 if (!folio)
822 return;
823
824 index = mapping_align_index(mapping, index);
825 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
826 folio_put(folio);
827 return;
828 }
829 if (unlikely(folio_test_workingset(folio)) &&
830 !ractl->_workingset) {
831 ractl->_workingset = true;
832 psi_memstall_enter(&ractl->_pflags);
833 }
834 ractl->_nr_pages += min_nrpages;
835 if (ra) {
836 ra->size += min_nrpages;
837 ra->async_size += min_nrpages;
838 }
839 }
840 }
841 EXPORT_SYMBOL(readahead_expand);
842