• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/android_kabi.h>
15 #include <linux/arm-smccc.h>
16 #include <linux/bitmap.h>
17 #include <linux/types.h>
18 #include <linux/jump_label.h>
19 #include <linux/kvm_types.h>
20 #include <linux/maple_tree.h>
21 #include <linux/percpu.h>
22 #include <linux/psci.h>
23 #include <asm/arch_gicv3.h>
24 #include <asm/barrier.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cputype.h>
27 #include <asm/daifflags.h>
28 #include <asm/fpsimd.h>
29 #include <asm/kvm.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/vncr_mapping.h>
32 
33 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
34 
35 #define KVM_HALT_POLL_NS_DEFAULT 500000
36 
37 #include <kvm/arm_vgic.h>
38 #include <kvm/arm_arch_timer.h>
39 #include <kvm/arm_pmu.h>
40 
41 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
42 
43 #define KVM_VCPU_MAX_FEATURES 7
44 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
45 
46 #define KVM_REQ_SLEEP \
47 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
48 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
49 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
50 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
51 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
52 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
53 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
54 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
55 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
56 
57 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
58 				     KVM_DIRTY_LOG_INITIALLY_SET)
59 
60 #define KVM_HAVE_MMU_RWLOCK
61 
62 /*
63  * Mode of operation configurable with kvm-arm.mode early param.
64  * See Documentation/admin-guide/kernel-parameters.txt for more information.
65  */
66 enum kvm_mode {
67 	KVM_MODE_DEFAULT,
68 	KVM_MODE_PROTECTED,
69 	KVM_MODE_NV,
70 	KVM_MODE_NONE,
71 };
72 #ifdef CONFIG_KVM
73 enum kvm_mode kvm_get_mode(void);
74 #else
kvm_get_mode(void)75 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
76 #endif
77 
78 extern unsigned int __ro_after_init kvm_sve_max_vl;
79 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
80 int __init kvm_arm_init_sve(void);
81 
82 u32 __attribute_const__ kvm_target_cpu(void);
83 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
84 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
85 
86 /* Head holds page head and it's order. */
87 struct kvm_hyp_memcache {
88 	phys_addr_t head;
89 	unsigned long nr_pages;
90 	unsigned long flags;
91 	void *mapping; /* struct pkvm_mapping *, only used from EL1 */
92 	ANDROID_KABI_RESERVE(1);
93 	ANDROID_KABI_RESERVE(2);
94 };
95 
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt),unsigned long order)96 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
97 				     phys_addr_t *p,
98 				     phys_addr_t (*to_pa)(void *virt),
99 				     unsigned long order)
100 {
101 	*p = mc->head;
102 	mc->head = (to_pa(p) & PAGE_MASK) |
103 		   FIELD_PREP(~PAGE_MASK, order);
104 	mc->nr_pages++;
105 }
106 
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys),unsigned long * order)107 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
108 				     void *(*to_va)(phys_addr_t phys),
109 				     unsigned long *order)
110 {
111 	phys_addr_t *p = to_va(mc->head & PAGE_MASK);
112 
113 	if (!mc->nr_pages)
114 		return NULL;
115 
116 	*order = FIELD_GET(~PAGE_MASK, mc->head);
117 
118 	mc->head = *p;
119 	mc->nr_pages--;
120 
121 	return p;
122 }
123 
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg,unsigned long order),phys_addr_t (* to_pa)(void * virt),void * arg,unsigned long order)124 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
125 				       unsigned long min_pages,
126 				       void *(*alloc_fn)(void *arg, unsigned long order),
127 				       phys_addr_t (*to_pa)(void *virt),
128 				       void *arg,
129 				       unsigned long order)
130 {
131 	while (mc->nr_pages < min_pages) {
132 		phys_addr_t *p = alloc_fn(arg, order);
133 
134 		if (!p)
135 			return -ENOMEM;
136 		push_hyp_memcache(mc, p, to_pa, order);
137 	}
138 
139 	return 0;
140 }
141 
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg,unsigned long order),void * (* to_va)(phys_addr_t phys),void * arg)142 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
143 				       void (*free_fn)(void *virt, void *arg, unsigned long order),
144 				       void *(*to_va)(phys_addr_t phys),
145 				       void *arg)
146 {
147 	unsigned long order;
148 	void *p;
149 
150 	while (mc->nr_pages) {
151 		p = pop_hyp_memcache(mc, to_va, &order);
152 		free_fn(p, arg, order);
153 	}
154 }
155 
156 #define HYP_MEMCACHE_ACCOUNT_KMEMCG BIT(1)
157 #define HYP_MEMCACHE_ACCOUNT_STAGE2 BIT(2)
158 
159 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
160 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, unsigned long order);
161 int topup_hyp_memcache_gfp(struct kvm_hyp_memcache *mc, unsigned long min_pages,
162 			   unsigned long order, gfp_t gfp);
163 
init_hyp_memcache(struct kvm_hyp_memcache * mc)164 static inline void init_hyp_memcache(struct kvm_hyp_memcache *mc)
165 {
166 	memset(mc, 0, sizeof(*mc));
167 }
168 
init_hyp_stage2_memcache(struct kvm_hyp_memcache * mc)169 static inline void init_hyp_stage2_memcache(struct kvm_hyp_memcache *mc)
170 {
171 	init_hyp_memcache(mc);
172 	mc->flags = HYP_MEMCACHE_ACCOUNT_KMEMCG | HYP_MEMCACHE_ACCOUNT_STAGE2;
173 }
174 
175 struct kvm_vmid {
176 	atomic64_t id;
177 };
178 
179 struct kvm_s2_mmu {
180 	struct kvm_vmid vmid;
181 
182 	/*
183 	 * stage2 entry level table
184 	 *
185 	 * Two kvm_s2_mmu structures in the same VM can point to the same
186 	 * pgd here.  This happens when running a guest using a
187 	 * translation regime that isn't affected by its own stage-2
188 	 * translation, such as a non-VHE hypervisor running at vEL2, or
189 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
190 	 * canonical stage-2 page tables.
191 	 */
192 	phys_addr_t	pgd_phys;
193 	struct kvm_pgtable *pgt;
194 
195 	/*
196 	 * VTCR value used on the host. For a non-NV guest (or a NV
197 	 * guest that runs in a context where its own S2 doesn't
198 	 * apply), its T0SZ value reflects that of the IPA size.
199 	 *
200 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
201 	 * the guest.
202 	 */
203 	u64	vtcr;
204 
205 	/* The last vcpu id that ran on each physical CPU */
206 	int __percpu *last_vcpu_ran;
207 
208 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
209 	/*
210 	 * Memory cache used to split
211 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
212 	 * is used to allocate stage2 page tables while splitting huge
213 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
214 	 * influences both the capacity of the split page cache, and
215 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
216 	 * too high.
217 	 *
218 	 * Protected by kvm->slots_lock.
219 	 */
220 	struct kvm_mmu_memory_cache split_page_cache;
221 	uint64_t split_page_chunk_size;
222 
223 	struct kvm_arch *arch;
224 
225 	/*
226 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
227 	 * host to parse the guest S2.
228 	 * This either contains:
229 	 * - the virtual VTTBR programmed by the guest hypervisor with
230          *   CnP cleared
231 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
232 	 *
233 	 * We also cache the full VTCR which gets used for TLB invalidation,
234 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
235 	 * to be cached in a TLB" to the letter.
236 	 */
237 	u64	tlb_vttbr;
238 	u64	tlb_vtcr;
239 
240 	/*
241 	 * true when this represents a nested context where virtual
242 	 * HCR_EL2.VM == 1
243 	 */
244 	bool	nested_stage2_enabled;
245 
246 	/*
247 	 * true when this MMU needs to be unmapped before being used for a new
248 	 * purpose.
249 	 */
250 	bool	pending_unmap;
251 
252 	/*
253 	 *  0: Nobody is currently using this, check vttbr for validity
254 	 * >0: Somebody is actively using this.
255 	 */
256 	atomic_t refcnt;
257 };
258 
259 struct kvm_arch_memory_slot {
260 };
261 
262 /**
263  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
264  *
265  * @std_bmap: Bitmap of standard secure service calls
266  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
267  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
268  */
269 struct kvm_smccc_features {
270 	unsigned long std_bmap;
271 	unsigned long std_hyp_bmap;
272 	unsigned long vendor_hyp_bmap;
273 };
274 
275 struct kvm_pinned_page {
276 	union {
277 		struct rb_node	 	node;
278 		struct list_head 	list_node;
279 	};
280 	struct page		*page;
281 	u64			ipa;
282 	u64			__subtree_last;
283 	u8			order;
284 };
285 
286 struct kvm_pinned_page
287 *kvm_pinned_pages_iter_first(struct rb_root_cached *root, u64 start, u64 end);
288 struct kvm_pinned_page
289 *kvm_pinned_pages_iter_next(struct kvm_pinned_page *ppage, u64 start, u64 end);
290 void kvm_pinned_pages_remove(struct kvm_pinned_page *ppage,
291 			     struct rb_root_cached *root);
292 
293 typedef unsigned int pkvm_handle_t;
294 
295 struct kvm_protected_vm {
296 	pkvm_handle_t handle;
297 	struct kvm_hyp_memcache stage2_teardown_mc;
298 	struct rb_root_cached pinned_pages;
299 	struct kvm_hyp_memcache teardown_iommu_mc;
300 	gpa_t pvmfw_load_addr;
301 	bool enabled;
302 	u32 ffa_support;
303 	bool smc_forwarded;
304 };
305 
306 struct kvm_mpidr_data {
307 	u64			mpidr_mask;
308 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
309 };
310 
kvm_mpidr_index(struct kvm_mpidr_data * data,u64 mpidr)311 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
312 {
313 	unsigned long index = 0, mask = data->mpidr_mask;
314 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
315 
316 	bitmap_gather(&index, &aff, &mask, fls(mask));
317 
318 	return index;
319 }
320 
321 struct kvm_sysreg_masks;
322 
323 enum fgt_group_id {
324 	__NO_FGT_GROUP__,
325 	HFGxTR_GROUP,
326 	HDFGRTR_GROUP,
327 	HDFGWTR_GROUP = HDFGRTR_GROUP,
328 	HFGITR_GROUP,
329 	HAFGRTR_GROUP,
330 
331 	/* Must be last */
332 	__NR_FGT_GROUP_IDS__
333 };
334 
335 struct kvm_arch {
336 	struct kvm_s2_mmu mmu;
337 
338 	/*
339 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
340 	 * architecture. We track them globally, as we present the
341 	 * same feature-set to all vcpus.
342 	 *
343 	 * Index 0 is currently spare.
344 	 */
345 	u64 fgu[__NR_FGT_GROUP_IDS__];
346 
347 	/*
348 	 * Stage 2 paging state for VMs with nested S2 using a virtual
349 	 * VMID.
350 	 */
351 	struct kvm_s2_mmu *nested_mmus;
352 	size_t nested_mmus_size;
353 	int nested_mmus_next;
354 
355 	/* Interrupt controller */
356 	struct vgic_dist	vgic;
357 
358 	/* Timers */
359 	struct arch_timer_vm_data timer_data;
360 
361 	/* Mandated version of PSCI */
362 	u32 psci_version;
363 
364 	/* Protects VM-scoped configuration data */
365 	struct mutex config_lock;
366 
367 	/*
368 	 * If we encounter a data abort without valid instruction syndrome
369 	 * information, report this to user space.  User space can (and
370 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
371 	 * supported.
372 	 */
373 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
374 	/* Memory Tagging Extension enabled for the guest */
375 #define KVM_ARCH_FLAG_MTE_ENABLED			1
376 	/* At least one vCPU has ran in the VM */
377 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
378 	/* The vCPU feature set for the VM is configured */
379 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
380 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
381 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
382 	/* VM counter offset */
383 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
384 	/* Timer PPIs made immutable */
385 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
386 	/* Initial ID reg values loaded */
387 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
388 	/* Fine-Grained UNDEF initialised */
389 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
390 	/* SVE exposed to guest */
391 #define KVM_ARCH_FLAG_GUEST_HAS_SVE			9
392 	/* Guest has bought into the MMIO guard extension */
393 #define KVM_ARCH_FLAG_MMIO_GUARD			10
394 	unsigned long flags;
395 
396 	/* VM-wide vCPU feature set */
397 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
398 
399 	/* MPIDR to vcpu index mapping, optional */
400 	struct kvm_mpidr_data *mpidr_data;
401 
402 	/*
403 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
404 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
405 	 */
406 	unsigned long *pmu_filter;
407 	struct arm_pmu *arm_pmu;
408 
409 	cpumask_var_t supported_cpus;
410 
411 	/* PMCR_EL0.N value for the guest */
412 	u8 pmcr_n;
413 
414 	/* Iterator for idreg debugfs */
415 	u8	idreg_debugfs_iter;
416 
417 	/* Hypercall features firmware registers' descriptor */
418 	struct kvm_smccc_features smccc_feat;
419 	struct maple_tree smccc_filter;
420 
421 	/*
422 	 * Emulated CPU ID registers per VM
423 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
424 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
425 	 *
426 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
427 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
428 	 */
429 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
430 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
431 	u64 id_regs[KVM_ARM_ID_REG_NUM];
432 
433 	u64 ctr_el0;
434 
435 	/* Masks for VNCR-baked sysregs */
436 	struct kvm_sysreg_masks	*sysreg_masks;
437 
438 	/*
439 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
440 	 * the associated pKVM instance in the hypervisor.
441 	 */
442 	struct kvm_protected_vm pkvm;
443 };
444 
445 struct kvm_vcpu_fault_info {
446 	u64 esr_el2;		/* Hyp Syndrom Register */
447 	u64 far_el2;		/* Hyp Fault Address Register */
448 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
449 	u64 disr_el1;		/* Deferred [SError] Status Register */
450 };
451 
452 /*
453  * VNCR() just places the VNCR_capable registers in the enum after
454  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
455  * from the VNCR base. As we don't require the enum to be otherwise ordered,
456  * we need the terrible hack below to ensure that we correctly size the
457  * sys_regs array, no matter what.
458  *
459  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
460  * treasure trove of bit hacks:
461  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
462  */
463 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
464 #define VNCR(r)						\
465 	__before_##r,					\
466 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
467 	__after_##r = __MAX__(__before_##r - 1, r)
468 
469 enum vcpu_sysreg {
470 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
471 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
472 	CLIDR_EL1,	/* Cache Level ID Register */
473 	CSSELR_EL1,	/* Cache Size Selection Register */
474 	TPIDR_EL0,	/* Thread ID, User R/W */
475 	TPIDRRO_EL0,	/* Thread ID, User R/O */
476 	TPIDR_EL1,	/* Thread ID, Privileged */
477 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
478 	PAR_EL1,	/* Physical Address Register */
479 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
480 	OSLSR_EL1,	/* OS Lock Status Register */
481 	DISR_EL1,	/* Deferred Interrupt Status Register */
482 
483 	/* Performance Monitors Registers */
484 	PMCR_EL0,	/* Control Register */
485 	PMSELR_EL0,	/* Event Counter Selection Register */
486 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
487 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
488 	PMCCNTR_EL0,	/* Cycle Counter Register */
489 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
490 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
491 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
492 	PMCNTENSET_EL0,	/* Count Enable Set Register */
493 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
494 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
495 	PMUSERENR_EL0,	/* User Enable Register */
496 
497 	/* Pointer Authentication Registers in a strict increasing order. */
498 	APIAKEYLO_EL1,
499 	APIAKEYHI_EL1,
500 	APIBKEYLO_EL1,
501 	APIBKEYHI_EL1,
502 	APDAKEYLO_EL1,
503 	APDAKEYHI_EL1,
504 	APDBKEYLO_EL1,
505 	APDBKEYHI_EL1,
506 	APGAKEYLO_EL1,
507 	APGAKEYHI_EL1,
508 
509 	/* Memory Tagging Extension registers */
510 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
511 	GCR_EL1,	/* Tag Control Register */
512 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
513 
514 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
515 
516 	/* FP/SIMD/SVE */
517 	SVCR,
518 	FPMR,
519 
520 	/* 32bit specific registers. */
521 	DACR32_EL2,	/* Domain Access Control Register */
522 	IFSR32_EL2,	/* Instruction Fault Status Register */
523 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
524 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
525 
526 	/* EL2 registers */
527 	SCTLR_EL2,	/* System Control Register (EL2) */
528 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
529 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
530 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
531 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
532 	ZCR_EL2,	/* SVE Control Register (EL2) */
533 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
534 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
535 	TCR_EL2,	/* Translation Control Register (EL2) */
536 	SPSR_EL2,	/* EL2 saved program status register */
537 	ELR_EL2,	/* EL2 exception link register */
538 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
539 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
540 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
541 	FAR_EL2,	/* Fault Address Register (EL2) */
542 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
543 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
544 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
545 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
546 	RVBAR_EL2,	/* Reset Vector Base Address Register */
547 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
548 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
549 	SP_EL2,		/* EL2 Stack Pointer */
550 	CNTHP_CTL_EL2,
551 	CNTHP_CVAL_EL2,
552 	CNTHV_CTL_EL2,
553 	CNTHV_CVAL_EL2,
554 
555 	__VNCR_START__,	/* Any VNCR-capable reg goes after this point */
556 
557 	VNCR(SCTLR_EL1),/* System Control Register */
558 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
559 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
560 	VNCR(ZCR_EL1),	/* SVE Control */
561 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
562 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
563 	VNCR(TCR_EL1),	/* Translation Control Register */
564 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
565 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
566 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
567 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
568 	VNCR(FAR_EL1),	/* Fault Address Register */
569 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
570 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
571 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
572 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
573 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
574 	VNCR(ELR_EL1),
575 	VNCR(SP_EL1),
576 	VNCR(SPSR_EL1),
577 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
578 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
579 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
580 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
581 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
582 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
583 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
584 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
585 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
586 
587 	/* Permission Indirection Extension registers */
588 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
589 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
590 
591 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
592 
593 	VNCR(HFGRTR_EL2),
594 	VNCR(HFGWTR_EL2),
595 	VNCR(HFGITR_EL2),
596 	VNCR(HDFGRTR_EL2),
597 	VNCR(HDFGWTR_EL2),
598 	VNCR(HAFGRTR_EL2),
599 
600 	VNCR(CNTVOFF_EL2),
601 	VNCR(CNTV_CVAL_EL0),
602 	VNCR(CNTV_CTL_EL0),
603 	VNCR(CNTP_CVAL_EL0),
604 	VNCR(CNTP_CTL_EL0),
605 
606 	VNCR(ICH_HCR_EL2),
607 
608 	NR_SYS_REGS	/* Nothing after this line! */
609 };
610 
611 struct kvm_sysreg_masks {
612 	struct {
613 		u64	res0;
614 		u64	res1;
615 	} mask[NR_SYS_REGS - __VNCR_START__];
616 };
617 
618 struct kvm_cpu_context {
619 	struct user_pt_regs regs;	/* sp = sp_el0 */
620 
621 	u64	spsr_abt;
622 	u64	spsr_und;
623 	u64	spsr_irq;
624 	u64	spsr_fiq;
625 
626 	struct user_fpsimd_state fp_regs;
627 
628 	u64 sys_regs[NR_SYS_REGS];
629 
630 	struct kvm_vcpu *__hyp_running_vcpu;
631 
632 	/* This pointer has to be 4kB aligned. */
633 	u64 *vncr_array;
634 };
635 
636 struct cpu_sve_state {
637 	__u64 zcr_el1;
638 
639 	/*
640 	 * Ordering is important since __sve_save_state/__sve_restore_state
641 	 * relies on it.
642 	 */
643 	__u32 fpsr;
644 	__u32 fpcr;
645 
646 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
647 	__u8 sve_regs[];
648 };
649 
650 /*
651  * This structure is instantiated on a per-CPU basis, and contains
652  * data that is:
653  *
654  * - tied to a single physical CPU, and
655  * - either have a lifetime that does not extend past vcpu_put()
656  * - or is an invariant for the lifetime of the system
657  *
658  * Use host_data_ptr(field) as a way to access a pointer to such a
659  * field.
660  */
661 struct kvm_host_data {
662 	struct kvm_cpu_context host_ctxt;
663 
664 	/*
665 	 * Hyp VA.
666 	 * sve_state is only used in pKVM and if system_supports_sve().
667 	 */
668 	struct cpu_sve_state *sve_state;
669 
670 	/* Used by pKVM only. */
671 	u64	fpmr;
672 
673 	/* Ownership of the FP regs */
674 	enum {
675 		FP_STATE_FREE,
676 		FP_STATE_HOST_OWNED,
677 		FP_STATE_GUEST_OWNED,
678 	} fp_owner;
679 
680 	/*
681 	 * host_debug_state contains the host registers which are
682 	 * saved and restored during world switches.
683 	 */
684 	 struct {
685 		/* {Break,watch}point registers */
686 		struct kvm_guest_debug_arch regs;
687 		/* Statistical profiling extension */
688 		u64 pmscr_el1;
689 		/* Self-hosted trace */
690 		u64 trfcr_el1;
691 		/* Values of trap registers for the host before guest entry. */
692 		u64 mdcr_el2;
693 	} host_debug_state;
694 };
695 
696 struct kvm_host_psci_config {
697 	/* PSCI version used by host. */
698 	u32 version;
699 	u32 smccc_version;
700 
701 	/* Function IDs used by host if version is v0.1. */
702 	struct psci_0_1_function_ids function_ids_0_1;
703 
704 	bool psci_0_1_cpu_suspend_implemented;
705 	bool psci_0_1_cpu_on_implemented;
706 	bool psci_0_1_cpu_off_implemented;
707 	bool psci_0_1_migrate_implemented;
708 };
709 
710 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
711 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
712 
713 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
714 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
715 
716 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
717 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
718 
719 struct vcpu_reset_state {
720 	unsigned long	pc;
721 	unsigned long	r0;
722 	bool		be;
723 	bool		reset;
724 };
725 
726 struct kvm_hyp_req {
727 #define KVM_HYP_LAST_REQ	0
728 #define KVM_HYP_REQ_TYPE_MEM	1
729 #define KVM_HYP_REQ_TYPE_MAP	2
730 #define KVM_HYP_REQ_TYPE_SPLIT	3
731 	u8 type;
732 	union {
733 		struct {
734 #define REQ_MEM_DEST_HYP_ALLOC		1
735 #define REQ_MEM_DEST_VCPU_MEMCACHE	2
736 #define REQ_MEM_DEST_HYP_IOMMU		3
737 			u8	dest;
738 			int	nr_pages;
739 			int	sz_alloc; /* Size of the page. */
740 		} mem;
741 		struct {
742 			unsigned long	guest_ipa;
743 			size_t		size;
744 		} map;
745 		struct {
746 			unsigned long	guest_ipa;
747 			size_t		size;
748 		} split;
749 	};
750 };
751 
752 #define KVM_HYP_REQ_MAX ((PAGE_SIZE >> 4) / sizeof(struct kvm_hyp_req))
753 
754 /*
755  * Hypervisor version of kvm_pinned_page. Typically stored in per-vCPU hyp_req
756  * page. Packed to allow the biggest possible sglist. 40-bits PFN being the
757  * biggest PA_BITS value (52) - minimum PAGE_SHIFT (12).
758  */
759 struct kvm_hyp_pinned_page {
760 	u64	pfn : 40;
761 	u64	gfn : 40;
762 	u8	order;
763 } __packed;
764 
765 /*
766  * Get the kvm_hyp_pinned_page after @ppage for the array found in the shared page kvm_hyp_req.
767  * Also check the entry when @valid is set (useful to read the array).
768  */
769 static inline struct kvm_hyp_pinned_page *
next_kvm_hyp_pinned_page(struct kvm_hyp_req * page,struct kvm_hyp_pinned_page * ppage,bool valid)770 next_kvm_hyp_pinned_page(struct kvm_hyp_req *page, struct kvm_hyp_pinned_page *ppage, bool valid)
771 {
772 	void *start = (void *)(page + KVM_HYP_REQ_MAX);
773 	void *end = (void *)page + PAGE_SIZE;
774 
775 	if (WARN_ON(!PAGE_ALIGNED(page)))
776 		return NULL;
777 
778 	if (!ppage)
779 		ppage = (struct kvm_hyp_pinned_page *)start;
780 	else
781 		ppage++;
782 
783 	if (((void *)ppage + sizeof(*ppage)) >= end)
784 		return NULL;
785 
786 	if (valid && (ppage->order == 0xFF))
787 		return NULL;
788 
789 	return ppage;
790 }
791 
792 /*
793  * De-serialize request from SMCCC return.
794  * See hyp-main.c for serialization.
795  */
796 /* Register a2. */
797 #define	SMCCC_REQ_TYPE_MASK		GENMASK_ULL(7, 0)
798 #define SMCCC_REQ_DEST_MASK		GENMASK_ULL(15, 8)
799 /* Register a3. */
800 #define SMCCC_REQ_NR_PAGES_MASK		GENMASK_ULL(31, 0)
801 #define SMCCC_REQ_SZ_ALLOC_MASK		GENMASK_ULL(63, 32)
802 
hyp_reqs_smccc_decode(struct arm_smccc_res * res,struct kvm_hyp_req * req)803 static inline void hyp_reqs_smccc_decode(struct arm_smccc_res *res,
804 					 struct kvm_hyp_req *req)
805 {
806 	req->type = FIELD_GET(SMCCC_REQ_TYPE_MASK, res->a2);
807 	req->mem.dest = FIELD_GET(SMCCC_REQ_DEST_MASK, res->a2);
808 	req->mem.nr_pages = FIELD_GET(SMCCC_REQ_NR_PAGES_MASK, res->a3);
809 	req->mem.sz_alloc = FIELD_GET(SMCCC_REQ_SZ_ALLOC_MASK, res->a3);
810 }
811 
812 struct kvm_vcpu_arch {
813 	struct kvm_cpu_context ctxt;
814 
815 	/*
816 	 * Guest floating point state
817 	 *
818 	 * The architecture has two main floating point extensions,
819 	 * the original FPSIMD and SVE.  These have overlapping
820 	 * register views, with the FPSIMD V registers occupying the
821 	 * low 128 bits of the SVE Z registers.  When the core
822 	 * floating point code saves the register state of a task it
823 	 * records which view it saved in fp_type.
824 	 */
825 	void *sve_state;
826 	enum fp_type fp_type;
827 	unsigned int sve_max_vl;
828 
829 	/* Stage 2 paging state used by the hardware on next switch */
830 	struct kvm_s2_mmu *hw_mmu;
831 
832 	/* Values of trap registers for the guest. */
833 	u64 hcr_el2;
834 	u64 hcrx_el2;
835 	u64 mdcr_el2;
836 
837 	/* Exception Information */
838 	struct kvm_vcpu_fault_info fault;
839 
840 	/* Configuration flags, set once and for all before the vcpu can run */
841 	u8 cflags;
842 
843 	/* Input flags to the hypervisor code, potentially cleared after use */
844 	u8 iflags;
845 
846 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
847 	u8 sflags;
848 
849 	/*
850 	 * Don't run the guest (internal implementation need).
851 	 *
852 	 * Contrary to the flags above, this is set/cleared outside of
853 	 * a vcpu context, and thus cannot be mixed with the flags
854 	 * themselves (or the flag accesses need to be made atomic).
855 	 */
856 	bool pause;
857 
858 	/*
859 	 * We maintain more than a single set of debug registers to support
860 	 * debugging the guest from the host and to maintain separate host and
861 	 * guest state during world switches. vcpu_debug_state are the debug
862 	 * registers of the vcpu as the guest sees them.
863 	 *
864 	 * external_debug_state contains the debug values we want to debug the
865 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
866 	 *
867 	 * debug_ptr points to the set of debug registers that should be loaded
868 	 * onto the hardware when running the guest.
869 	 */
870 	struct kvm_guest_debug_arch *debug_ptr;
871 	struct kvm_guest_debug_arch vcpu_debug_state;
872 	struct kvm_guest_debug_arch external_debug_state;
873 
874 	/* VGIC state */
875 	struct vgic_cpu vgic_cpu;
876 	struct arch_timer_cpu timer_cpu;
877 	struct kvm_pmu pmu;
878 
879 	/*
880 	 * Guest registers we preserve during guest debugging.
881 	 *
882 	 * These shadow registers are updated by the kvm_handle_sys_reg
883 	 * trap handler if the guest accesses or updates them while we
884 	 * are using guest debug.
885 	 */
886 	struct {
887 		u32	mdscr_el1;
888 		bool	pstate_ss;
889 	} guest_debug_preserved;
890 
891 	/* vcpu power state */
892 	struct kvm_mp_state mp_state;
893 	spinlock_t mp_state_lock;
894 
895 	union {
896 		/* Cache some mmu pages needed inside spinlock regions */
897 		struct kvm_mmu_memory_cache mmu_page_cache;
898 		/* Pages to be donated to pkvm/EL2 if it runs out */
899 		struct kvm_hyp_memcache stage2_mc;
900 	};
901 
902 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
903 	u64 vsesr_el2;
904 
905 	/* Additional reset state */
906 	struct vcpu_reset_state	reset_state;
907 
908 	/* Guest PV state */
909 	struct {
910 		u64 last_steal;
911 		gpa_t base;
912 	} steal;
913 
914 	/* Per-vcpu CCSIDR override or NULL */
915 	u32 *ccsidr;
916 
917 	/* mem cache for pvIOMMU usage in guests. */
918 	struct kvm_hyp_memcache iommu_mc;
919 
920 	/* PAGE_SIZE bound list of requests from the hypervisor to the host. */
921 	struct kvm_hyp_req *hyp_reqs;
922 };
923 
924 /*
925  * Each 'flag' is composed of a comma-separated triplet:
926  *
927  * - the flag-set it belongs to in the vcpu->arch structure
928  * - the value for that flag
929  * - the mask for that flag
930  *
931  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
932  * unpack_vcpu_flag() extract the flag value from the triplet for
933  * direct use outside of the flag accessors.
934  */
935 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
936 
937 #define __unpack_flag(_set, _f, _m)	_f
938 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
939 
940 #define __build_check_flag(v, flagset, f, m)			\
941 	do {							\
942 		typeof(v->arch.flagset) *_fset;			\
943 								\
944 		/* Check that the flags fit in the mask */	\
945 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
946 		/* Check that the flags fit in the type */	\
947 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
948 	} while (0)
949 
950 #define __vcpu_get_flag(v, flagset, f, m)			\
951 	({							\
952 		__build_check_flag(v, flagset, f, m);		\
953 								\
954 		READ_ONCE(v->arch.flagset) & (m);		\
955 	})
956 
957 /*
958  * Note that the set/clear accessors must be preempt-safe in order to
959  * avoid nesting them with load/put which also manipulate flags...
960  */
961 #ifdef __KVM_NVHE_HYPERVISOR__
962 /* the nVHE hypervisor is always non-preemptible */
963 #define __vcpu_flags_preempt_disable()
964 #define __vcpu_flags_preempt_enable()
965 #else
966 #define __vcpu_flags_preempt_disable()	preempt_disable()
967 #define __vcpu_flags_preempt_enable()	preempt_enable()
968 #endif
969 
970 #define __vcpu_set_flag(v, flagset, f, m)			\
971 	do {							\
972 		typeof(v->arch.flagset) *fset;			\
973 								\
974 		__build_check_flag(v, flagset, f, m);		\
975 								\
976 		fset = &v->arch.flagset;			\
977 		__vcpu_flags_preempt_disable();			\
978 		if (HWEIGHT(m) > 1)				\
979 			*fset &= ~(m);				\
980 		*fset |= (f);					\
981 		__vcpu_flags_preempt_enable();			\
982 	} while (0)
983 
984 #define __vcpu_clear_flag(v, flagset, f, m)			\
985 	do {							\
986 		typeof(v->arch.flagset) *fset;			\
987 								\
988 		__build_check_flag(v, flagset, f, m);		\
989 								\
990 		fset = &v->arch.flagset;			\
991 		__vcpu_flags_preempt_disable();			\
992 		*fset &= ~(m);					\
993 		__vcpu_flags_preempt_enable();			\
994 	} while (0)
995 
996 #define __vcpu_copy_flag(vt, vs, flagset, f, m)			\
997 	do {							\
998 		typeof(vs->arch.flagset) tmp, val;		\
999 								\
1000 		__build_check_flag(vs, flagset, f, m);		\
1001 								\
1002 		val = READ_ONCE(vs->arch.flagset);		\
1003 		val &= (m);					\
1004 		tmp = READ_ONCE(vt->arch.flagset);		\
1005 		tmp &= ~(m);					\
1006 		tmp |= val;					\
1007 		WRITE_ONCE(vt->arch.flagset, tmp);		\
1008 	} while (0)
1009 
1010 
1011 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
1012 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
1013 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
1014 #define vcpu_copy_flag(vt, vs, ...) __vcpu_copy_flag((vt), (vs), __VA_ARGS__)
1015 
1016 /* KVM_ARM_VCPU_INIT completed */
1017 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(0))
1018 /* SVE config completed */
1019 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
1020 /* pKVM VCPU setup completed */
1021 #define VCPU_PKVM_FINALIZED	__vcpu_single_flag(cflags, BIT(2))
1022 
1023 /* Exception pending */
1024 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
1025 /*
1026  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
1027  * be set together with an exception...
1028  */
1029 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
1030 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
1031 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
1032 /* Cover both PENDING_EXCEPTION and EXCEPT_MASK for global operations */
1033 #define PC_UPDATE_REQ		__vcpu_single_flag(iflags, GENMASK(3, 0))
1034 
1035 /* Helpers to encode exceptions with minimum fuss */
1036 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
1037 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
1038 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
1039 
1040 /*
1041  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
1042  * values:
1043  *
1044  * For AArch32 EL1:
1045  */
1046 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
1047 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
1048 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
1049 /* For AArch64: */
1050 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
1051 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
1052 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
1053 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
1054 /* For AArch64 with NV: */
1055 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
1056 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
1057 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
1058 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
1059 /* Guest debug is live */
1060 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
1061 /* Save SPE context if active  */
1062 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
1063 /* Save TRBE context if active  */
1064 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
1065 /* vcpu running in HYP context (VHE-only) */
1066 #define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
1067 /* pKVM host vcpu state is dirty, needs resync (nVHE-only) */
1068 #define PKVM_HOST_STATE_DIRTY	__vcpu_single_flag(iflags, BIT(7))
1069 
1070 /* Physical CPU not in supported_cpus */
1071 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
1072 /* WFIT instruction trapped */
1073 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
1074 /* vcpu system registers loaded on physical CPU */
1075 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
1076 /* Software step state is Active-pending */
1077 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
1078 /* PMUSERENR for the guest EL0 is on physical CPU */
1079 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
1080 /* WFI instruction trapped */
1081 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
1082 
1083 
1084 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
1085 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
1086 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
1087 
1088 #define vcpu_sve_zcr_elx(vcpu)						\
1089 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
1090 
1091 #define sve_state_size(sve_max_vl) ({					\
1092 	size_t __size_ret;						\
1093 	unsigned int __vq;						\
1094 									\
1095 	if (WARN_ON(!sve_vl_valid(sve_max_vl))) {			\
1096 		__size_ret = 0;						\
1097 	} else {							\
1098 		__vq = sve_vq_from_vl(sve_max_vl);			\
1099 		__size_ret = SVE_SIG_REGS_SIZE(__vq);			\
1100 	}								\
1101 									\
1102 	__size_ret;							\
1103 })
1104 
1105 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
1106 
1107 #define vcpu_sve_state_size(vcpu) sve_state_size((vcpu)->arch.sve_max_vl)
1108 
1109 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
1110 				 KVM_GUESTDBG_USE_SW_BP | \
1111 				 KVM_GUESTDBG_USE_HW | \
1112 				 KVM_GUESTDBG_SINGLESTEP)
1113 
1114 #define kvm_has_sve(kvm)	(system_supports_sve() &&		\
1115 				 test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
1116 
1117 #ifdef __KVM_NVHE_HYPERVISOR__
1118 #define vcpu_has_sve(vcpu)	kvm_has_sve(kern_hyp_va((vcpu)->kvm))
1119 #else
1120 #define vcpu_has_sve(vcpu)	kvm_has_sve((vcpu)->kvm)
1121 #endif
1122 
1123 #ifdef CONFIG_ARM64_PTR_AUTH
1124 #define vcpu_has_ptrauth(vcpu)						\
1125 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
1126 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
1127 	 (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||       \
1128 	  vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1129 #else
1130 #define vcpu_has_ptrauth(vcpu)		false
1131 #endif
1132 
1133 #define vcpu_on_unsupported_cpu(vcpu)					\
1134 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
1135 
1136 #define vcpu_set_on_unsupported_cpu(vcpu)				\
1137 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
1138 
1139 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
1140 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
1141 
1142 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
1143 
1144 /*
1145  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
1146  * memory backed version of a register, and not the one most recently
1147  * accessed by a running VCPU.  For example, for userspace access or
1148  * for system registers that are never context switched, but only
1149  * emulated.
1150  *
1151  * Don't bother with VNCR-based accesses in the nVHE code, it has no
1152  * business dealing with NV.
1153  */
___ctxt_sys_reg(const struct kvm_cpu_context * ctxt,int r)1154 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
1155 {
1156 #if !defined (__KVM_NVHE_HYPERVISOR__)
1157 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1158 		     r >= __VNCR_START__ && ctxt->vncr_array))
1159 		return &ctxt->vncr_array[r - __VNCR_START__];
1160 #endif
1161 	return (u64 *)&ctxt->sys_regs[r];
1162 }
1163 
1164 #define __ctxt_sys_reg(c,r)						\
1165 	({								\
1166 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1167 			     (r) >= NR_SYS_REGS);			\
1168 		___ctxt_sys_reg(c, r);					\
1169 	})
1170 
1171 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1172 
1173 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
1174 #define __vcpu_sys_reg(v,r)						\
1175 	(*({								\
1176 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1177 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1178 		if (vcpu_has_nv((v)) && (r) >= __VNCR_START__)		\
1179 			*__r = kvm_vcpu_sanitise_vncr_reg((v), (r));	\
1180 		__r;							\
1181 	}))
1182 
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)1183 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1184 {
1185 	/*
1186 	 * *** VHE ONLY ***
1187 	 *
1188 	 * System registers listed in the switch are not saved on every
1189 	 * exit from the guest but are only saved on vcpu_put.
1190 	 *
1191 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1192 	 * should never be listed below, because the guest cannot modify its
1193 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1194 	 * thread when emulating cross-VCPU communication.
1195 	 */
1196 	if (!has_vhe())
1197 		return false;
1198 
1199 	switch (reg) {
1200 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1201 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1202 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1203 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1204 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1205 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1206 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1207 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1208 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1209 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1210 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1211 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1212 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1213 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1214 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1215 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1216 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1217 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1218 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1219 	case PAR_EL1:		*val = read_sysreg_par();		break;
1220 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1221 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1222 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1223 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1224 	default:		return false;
1225 	}
1226 
1227 	return true;
1228 }
1229 
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)1230 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1231 {
1232 	/*
1233 	 * *** VHE ONLY ***
1234 	 *
1235 	 * System registers listed in the switch are not restored on every
1236 	 * entry to the guest but are only restored on vcpu_load.
1237 	 *
1238 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1239 	 * should never be listed below, because the MPIDR should only be set
1240 	 * once, before running the VCPU, and never changed later.
1241 	 */
1242 	if (!has_vhe())
1243 		return false;
1244 
1245 	switch (reg) {
1246 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1247 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1248 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1249 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1250 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1251 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1252 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1253 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1254 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1255 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1256 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1257 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1258 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1259 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1260 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1261 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1262 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1263 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1264 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1265 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1266 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1267 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1268 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1269 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1270 	default:		return false;
1271 	}
1272 
1273 	return true;
1274 }
1275 
1276 struct kvm_vm_stat {
1277 	struct kvm_vm_stat_generic generic;
1278 	atomic64_t protected_hyp_mem;
1279 	atomic64_t protected_shared_mem;
1280 };
1281 
1282 struct kvm_vcpu_stat {
1283 	struct kvm_vcpu_stat_generic generic;
1284 	u64 hvc_exit_stat;
1285 	u64 wfe_exit_stat;
1286 	u64 wfi_exit_stat;
1287 	u64 mmio_exit_user;
1288 	u64 mmio_exit_kernel;
1289 	u64 signal_exits;
1290 	u64 exits;
1291 };
1292 
1293 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1294 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1295 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1296 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1297 
1298 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1299 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1300 
1301 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1302 			      struct kvm_vcpu_events *events);
1303 
1304 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1305 			      struct kvm_vcpu_events *events);
1306 
1307 void kvm_arm_halt_guest(struct kvm *kvm);
1308 void kvm_arm_resume_guest(struct kvm *kvm);
1309 
1310 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1311 
1312 #ifndef __KVM_NVHE_HYPERVISOR__
1313 #define kvm_call_hyp_nvhe_smccc(f, ...)					\
1314 	({								\
1315 		struct arm_smccc_res res;				\
1316 									\
1317 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1318 				  ##__VA_ARGS__, &res);			\
1319 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1320 									\
1321 		res;							\
1322 	})
1323 
1324 #define kvm_call_hyp_nvhe(f, ...)					\
1325 	({								\
1326 		struct arm_smccc_res res;				\
1327 									\
1328 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1329 				  ##__VA_ARGS__, &res);			\
1330 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1331 									\
1332 		res.a1;							\
1333 	})
1334 
1335 /*
1336  * The couple of isb() below are there to guarantee the same behaviour
1337  * on VHE as on !VHE, where the eret to EL1 acts as a context
1338  * synchronization event.
1339  */
1340 #define kvm_call_hyp(f, ...)						\
1341 	do {								\
1342 		if (has_vhe()) {					\
1343 			f(__VA_ARGS__);					\
1344 			isb();						\
1345 		} else {						\
1346 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1347 		}							\
1348 	} while(0)
1349 
1350 #define kvm_call_hyp_ret(f, ...)					\
1351 	({								\
1352 		typeof(f(__VA_ARGS__)) ret;				\
1353 									\
1354 		if (has_vhe()) {					\
1355 			ret = f(__VA_ARGS__);				\
1356 			isb();						\
1357 		} else {						\
1358 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1359 		}							\
1360 									\
1361 		ret;							\
1362 	})
1363 #else /* __KVM_NVHE_HYPERVISOR__ */
1364 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1365 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1366 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1367 #endif /* __KVM_NVHE_HYPERVISOR__ */
1368 
1369 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1370 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1371 
1372 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1373 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1374 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1375 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1376 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1377 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1378 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1379 
1380 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1381 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1382 
1383 int __init kvm_sys_reg_table_init(void);
1384 struct sys_reg_desc;
1385 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1386 				  unsigned int idx);
1387 int __init populate_nv_trap_config(void);
1388 
1389 bool lock_all_vcpus(struct kvm *kvm);
1390 void unlock_all_vcpus(struct kvm *kvm);
1391 
1392 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1393 
1394 /* MMIO helpers */
1395 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1396 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1397 
1398 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1399 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1400 
1401 /*
1402  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1403  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1404  * loaded is considered to be "in guest".
1405  */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1406 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1407 {
1408 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1409 }
1410 
1411 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1412 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1413 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1414 
1415 bool kvm_arm_pvtime_supported(void);
1416 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1417 			    struct kvm_device_attr *attr);
1418 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1419 			    struct kvm_device_attr *attr);
1420 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1421 			    struct kvm_device_attr *attr);
1422 
1423 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1424 int __init kvm_arm_vmid_alloc_init(void);
1425 void __init kvm_arm_vmid_alloc_free(void);
1426 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1427 void kvm_arm_vmid_clear_active(void);
1428 
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1429 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1430 {
1431 	vcpu_arch->steal.base = INVALID_GPA;
1432 }
1433 
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1434 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1435 {
1436 	return (vcpu_arch->steal.base != INVALID_GPA);
1437 }
1438 
1439 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1440 
1441 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1442 
1443 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1444 
1445 /*
1446  * How we access per-CPU host data depends on the where we access it from,
1447  * and the mode we're in:
1448  *
1449  * - VHE and nVHE hypervisor bits use their locally defined instance
1450  *
1451  * - the rest of the kernel use either the VHE or nVHE one, depending on
1452  *   the mode we're running in.
1453  *
1454  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1455  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1456  *   In this case, the EL1 code uses the *VHE* data as its private state
1457  *   (which makes sense in a way as there shouldn't be any shared state
1458  *   between the host and the hypervisor).
1459  *
1460  * Yes, this is all totally trivial. Shoot me now.
1461  */
1462 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1463 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1464 #else
1465 #define host_data_ptr(f)						\
1466 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1467 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1468 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1469 #endif
1470 
1471 /* Check whether the FP regs are owned by the guest */
guest_owns_fp_regs(void)1472 static inline bool guest_owns_fp_regs(void)
1473 {
1474 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1475 }
1476 
1477 /* Check whether the FP regs are owned by the host */
host_owns_fp_regs(void)1478 static inline bool host_owns_fp_regs(void)
1479 {
1480 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1481 }
1482 
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1483 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1484 {
1485 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1486 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1487 }
1488 
kvm_system_needs_idmapped_vectors(void)1489 static inline bool kvm_system_needs_idmapped_vectors(void)
1490 {
1491 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1492 }
1493 
kvm_arch_sync_events(struct kvm * kvm)1494 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1495 
1496 void kvm_arm_init_debug(void);
1497 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1498 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1499 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1500 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1501 
1502 #define __vcpu_save_guest_debug_regs(vcpu)				\
1503 	do {								\
1504 		u64 val = vcpu_read_sys_reg(vcpu, MDSCR_EL1);		\
1505 									\
1506 		(vcpu)->arch.guest_debug_preserved.mdscr_el1 = val;	\
1507 	} while(0)
1508 
1509 #define __vcpu_restore_guest_debug_regs(vcpu)				\
1510 	do {								\
1511 		u64 val = (vcpu)->arch.guest_debug_preserved.mdscr_el1;	\
1512 									\
1513 		vcpu_write_sys_reg(vcpu, val, MDSCR_EL1);		\
1514 	} while (0)
1515 
1516 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1517 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1518 
1519 #define kvm_vcpu_needs_debug_regs(vcpu)		\
1520 	((vcpu)->guest_debug || kvm_vcpu_os_lock_enabled(vcpu))
1521 
1522 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1523 			       struct kvm_device_attr *attr);
1524 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1525 			       struct kvm_device_attr *attr);
1526 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1527 			       struct kvm_device_attr *attr);
1528 
1529 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1530 			       struct kvm_arm_copy_mte_tags *copy_tags);
1531 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1532 				    struct kvm_arm_counter_offset *offset);
1533 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1534 					struct reg_mask_range *range);
1535 
1536 /* Guest/host FPSIMD coordination helpers */
1537 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1538 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1539 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1540 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1541 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1542 
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1543 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1544 {
1545 	return (!has_vhe() && attr->exclude_host);
1546 }
1547 
1548 /* Flags for host debug state */
1549 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1550 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1551 
1552 #ifdef CONFIG_KVM
1553 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1554 void kvm_clr_pmu_events(u64 clr);
1555 bool kvm_set_pmuserenr(u64 val);
1556 #else
kvm_set_pmu_events(u64 set,struct perf_event_attr * attr)1557 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u64 clr)1558 static inline void kvm_clr_pmu_events(u64 clr) {}
kvm_set_pmuserenr(u64 val)1559 static inline bool kvm_set_pmuserenr(u64 val)
1560 {
1561 	return false;
1562 }
1563 #endif
1564 
1565 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1566 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1567 
1568 int __init kvm_set_ipa_limit(void);
1569 u32 kvm_get_pa_bits(struct kvm *kvm);
1570 
1571 #define __KVM_HAVE_ARCH_VM_ALLOC
1572 struct kvm *kvm_arch_alloc_vm(void);
1573 
1574 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1575 
1576 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1577 
1578 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1579 
1580 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1581 
1582 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1583 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1584 
1585 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1586 
1587 #define kvm_has_mte(kvm)					\
1588 	(system_supports_mte() &&				\
1589 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1590 
1591 #define kvm_supports_32bit_el0()				\
1592 	(system_supports_32bit_el0() &&				\
1593 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1594 
1595 #define kvm_vm_has_ran_once(kvm)					\
1596 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1597 
__vcpu_has_feature(const struct kvm_arch * ka,int feature)1598 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1599 {
1600 	return test_bit(feature, ka->vcpu_features);
1601 }
1602 
1603 #define kvm_vcpu_has_feature(k, f)	__vcpu_has_feature(&(k)->arch, (f))
1604 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1605 
1606 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1607 
1608 int kvm_trng_call(struct kvm_vcpu *vcpu);
1609 #ifdef CONFIG_KVM
1610 extern phys_addr_t hyp_mem_base;
1611 extern phys_addr_t hyp_mem_size;
1612 void __init kvm_hyp_reserve(void);
1613 #else
kvm_hyp_reserve(void)1614 static inline void kvm_hyp_reserve(void) { }
1615 #endif
1616 
1617 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1618 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1619 
__vm_id_reg(struct kvm_arch * ka,u32 reg)1620 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1621 {
1622 	switch (reg) {
1623 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1624 		return &ka->id_regs[IDREG_IDX(reg)];
1625 	case SYS_CTR_EL0:
1626 		return &ka->ctr_el0;
1627 	default:
1628 		WARN_ON_ONCE(1);
1629 		return NULL;
1630 	}
1631 }
1632 
1633 #define kvm_read_vm_id_reg(kvm, reg)					\
1634 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1635 
1636 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1637 
1638 #define __expand_field_sign_unsigned(id, fld, val)			\
1639 	((u64)SYS_FIELD_VALUE(id, fld, val))
1640 
1641 #define __expand_field_sign_signed(id, fld, val)			\
1642 	({								\
1643 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1644 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1645 	})
1646 
1647 #define get_idreg_field_unsigned(kvm, id, fld)				\
1648 	({								\
1649 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1650 		FIELD_GET(id##_##fld##_MASK, __val);			\
1651 	})
1652 
1653 #define get_idreg_field_signed(kvm, id, fld)				\
1654 	({								\
1655 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1656 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1657 	})
1658 
1659 #define get_idreg_field_enum(kvm, id, fld)				\
1660 	get_idreg_field_unsigned(kvm, id, fld)
1661 
1662 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1663 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1664 
1665 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1666 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1667 
1668 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1669 	(id##_##fld##_SIGNED ?						\
1670 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1671 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1672 
1673 #define kvm_has_feat(kvm, id, fld, limit)				\
1674 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1675 
1676 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1677 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1678 
1679 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1680 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1681 	kvm_cmp_feat(kvm, id, fld, <=, max))
1682 
1683 /* Check for a given level of PAuth support */
1684 #define kvm_has_pauth(k, l)						\
1685 	({								\
1686 		bool pa, pi, pa3;					\
1687 									\
1688 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1689 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1690 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1691 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1692 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1693 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1694 									\
1695 		(pa + pi + pa3) == 1;					\
1696 	})
1697 
1698 #define kvm_has_fpmr(k)					\
1699 	(system_supports_fpmr() &&			\
1700 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1701 
1702 /* Allocator interface IDs. */
1703 #define HYP_ALLOC_MGT_HEAP_ID		0
1704 #define HYP_ALLOC_MGT_IOMMU_ID		1
1705 
1706 unsigned long __pkvm_reclaim_hyp_alloc_mgt(unsigned long nr_pages);
1707 int __pkvm_topup_hyp_alloc_mgt_mc(unsigned long id, struct kvm_hyp_memcache *mc);
1708 int __pkvm_topup_hyp_alloc_mgt_gfp(unsigned long id, unsigned long nr_pages,
1709 				   unsigned long sz_alloc, gfp_t gfp);
1710 
1711 struct kvm_iommu_driver {
1712 	int (*init_driver)(void);
1713 	void (*remove_driver)(void);
1714 	pkvm_handle_t (*get_iommu_id_by_of)(struct device_node *np);
1715 	int (*get_device_iommu_num_ids)(struct device *dev);
1716 	int (*get_device_iommu_id)(struct device *dev, u32 id,
1717 				   pkvm_handle_t *out_iommu, u32 *out_sid);
1718 	void *(*guest_alloc)(void *flags, unsigned long order);
1719 	void (*guest_free)(void *addr, void *flags, unsigned long order);
1720 	ANDROID_KABI_RESERVE(1);
1721 	ANDROID_KABI_RESERVE(2);
1722 	ANDROID_KABI_RESERVE(3);
1723 	ANDROID_KABI_RESERVE(4);
1724 	ANDROID_KABI_RESERVE(5);
1725 	ANDROID_KABI_RESERVE(6);
1726 	ANDROID_KABI_RESERVE(7);
1727 	ANDROID_KABI_RESERVE(8);
1728 };
1729 
1730 struct kvm_iommu_ops;
1731 int kvm_iommu_register_driver(struct kvm_iommu_driver *kern_ops);
1732 int kvm_iommu_init_hyp(struct kvm_iommu_ops *hyp_ops,
1733 		       struct kvm_hyp_memcache *atomic_mc);
1734 int kvm_iommu_init_driver(void);
1735 void kvm_iommu_remove_driver(void);
1736 pkvm_handle_t kvm_get_iommu_id_by_of(struct device_node *np);
1737 
1738 struct page *kvm_iommu_cma_alloc(void);
1739 bool kvm_iommu_cma_release(struct page *p);
1740 
1741 int pkvm_iommu_suspend(struct device *dev);
1742 int pkvm_iommu_resume(struct device *dev);
1743 
1744 int kvm_iommu_guest_alloc_mc(struct kvm_hyp_memcache *mc, u32 pgsize, u32 nr_pages);
1745 void kvm_iommu_guest_free_mc(struct kvm_hyp_memcache *mc);
1746 
1747 struct kvm_iommu_sg {
1748 	phys_addr_t phys;
1749 	size_t pgsize;
1750 	unsigned int pgcount;
1751 };
1752 
1753 
1754 #define kvm_iommu_sg_nents_size(n) (PAGE_ALIGN((n) * sizeof(struct kvm_iommu_sg)))
1755 
kvm_iommu_sg_nents_round(unsigned int nents)1756 static inline unsigned int kvm_iommu_sg_nents_round(unsigned int nents)
1757 {
1758 	return kvm_iommu_sg_nents_size(nents) / sizeof(struct kvm_iommu_sg);
1759 }
1760 
kvm_iommu_sg_alloc(unsigned int nents,gfp_t gfp)1761 static inline struct kvm_iommu_sg *kvm_iommu_sg_alloc(unsigned int nents, gfp_t gfp)
1762 {
1763 	return alloc_pages_exact(kvm_iommu_sg_nents_size(nents), gfp);
1764 }
1765 
kvm_iommu_sg_free(struct kvm_iommu_sg * sg,unsigned int nents)1766 static inline void kvm_iommu_sg_free(struct kvm_iommu_sg *sg, unsigned int nents)
1767 {
1768 	free_pages_exact(sg, kvm_iommu_sg_nents_size(nents));
1769 }
1770 
1771 
1772 #ifndef __KVM_NVHE_HYPERVISOR__
1773 int kvm_iommu_attach_dev(pkvm_handle_t iommu_id, pkvm_handle_t domain_id,
1774 			 unsigned int endpoint, unsigned int pasid,
1775 			 unsigned int ssid_bits, unsigned long flags);
1776 int kvm_iommu_detach_dev(pkvm_handle_t iommu_id, pkvm_handle_t domain_id,
1777 			 unsigned int endpoint, unsigned int pasid);
1778 int kvm_iommu_alloc_domain(pkvm_handle_t domain_id, int type);
1779 int kvm_iommu_free_domain(pkvm_handle_t domain_id);
1780 int kvm_iommu_map_pages(pkvm_handle_t domain_id, unsigned long iova,
1781 			phys_addr_t paddr, size_t pgsize, size_t pgcount,
1782 			int prot, gfp_t gfp, size_t *total_mapped);
1783 size_t kvm_iommu_unmap_pages(pkvm_handle_t domain_id, unsigned long iova,
1784 			     size_t pgsize, size_t pgcount);
1785 phys_addr_t kvm_iommu_iova_to_phys(pkvm_handle_t domain_id, unsigned long iova);
1786 size_t kvm_iommu_map_sg(pkvm_handle_t domain_id, struct kvm_iommu_sg *sg,
1787 			unsigned long iova, unsigned int nent,
1788 			unsigned int prot, gfp_t gfp);
1789 #endif
1790 
1791 int kvm_iommu_share_hyp_sg(struct kvm_iommu_sg *sg, unsigned int nents);
1792 int kvm_iommu_unshare_hyp_sg(struct kvm_iommu_sg *sg, unsigned int nents);
1793 int kvm_iommu_device_num_ids(struct device *dev);
1794 int kvm_iommu_device_id(struct device *dev, u32 idx,
1795 			pkvm_handle_t *out_iommu, u32 *out_sid);
1796 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE_GROUP
1797 
kvm_host_pa(void * addr)1798 static inline phys_addr_t kvm_host_pa(void *addr)
1799 {
1800 	return __pa(addr);
1801 }
1802 
kvm_host_va(phys_addr_t phys)1803 static inline void *kvm_host_va(phys_addr_t phys)
1804 {
1805 	return __va(phys);
1806 }
1807 #endif /* __ARM64_KVM_HOST_H__ */
1808