1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/shrinker.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29 #include "hyp_trace.h"
30
31 #include <linux/uaccess.h>
32 #include <asm/archrandom.h>
33 #include <asm/ptrace.h>
34 #include <asm/mman.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpufeature.h>
38 #include <asm/virt.h>
39 #include <asm/kvm_arm.h>
40 #include <asm/kvm_asm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_nested.h>
44 #include <asm/kvm_pkvm.h>
45 #include <asm/kvm_ptrauth.h>
46 #include <asm/sections.h>
47
48 #include <kvm/arm_hypercalls.h>
49 #include <kvm/arm_pmu.h>
50 #include <kvm/arm_psci.h>
51
52 #include "sys_regs.h"
53
54 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
55
56 enum kvm_wfx_trap_policy {
57 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
58 KVM_WFX_NOTRAP,
59 KVM_WFX_TRAP,
60 };
61
62 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
63 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
64
65 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
66
67 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
68 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
69 DECLARE_KVM_NVHE_PER_CPU(int, hyp_cpu_number);
70
71 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
72
73 static bool vgic_present, kvm_arm_initialised;
74
75 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
76
is_kvm_arm_initialised(void)77 bool is_kvm_arm_initialised(void)
78 {
79 return kvm_arm_initialised;
80 }
81
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)82 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
83 {
84 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
85 }
86
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)87 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
88 struct kvm_enable_cap *cap)
89 {
90 int r = -EINVAL;
91
92 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
93 return -EINVAL;
94
95 /* Capabilities with flags */
96 switch (cap->cap) {
97 case KVM_CAP_ARM_PROTECTED_VM:
98 return pkvm_vm_ioctl_enable_cap(kvm, cap);
99 default:
100 if (cap->flags)
101 return -EINVAL;
102 }
103
104 /* Capabilities without flags */
105 switch (cap->cap) {
106 case KVM_CAP_ARM_NISV_TO_USER:
107 r = 0;
108 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
109 &kvm->arch.flags);
110 break;
111 case KVM_CAP_ARM_MTE:
112 mutex_lock(&kvm->lock);
113 if (system_supports_mte() && !kvm->created_vcpus) {
114 r = 0;
115 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
116 }
117 mutex_unlock(&kvm->lock);
118 break;
119 case KVM_CAP_ARM_SYSTEM_SUSPEND:
120 r = 0;
121 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
122 break;
123 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
124 mutex_lock(&kvm->slots_lock);
125 /*
126 * To keep things simple, allow changing the chunk
127 * size only when no memory slots have been created.
128 */
129 if (kvm_are_all_memslots_empty(kvm)) {
130 u64 new_cap = cap->args[0];
131
132 if (!new_cap || kvm_is_block_size_supported(new_cap)) {
133 r = 0;
134 kvm->arch.mmu.split_page_chunk_size = new_cap;
135 }
136 }
137 mutex_unlock(&kvm->slots_lock);
138 break;
139 default:
140 break;
141 }
142
143 return r;
144 }
145
kvm_arm_default_max_vcpus(void)146 static int kvm_arm_default_max_vcpus(void)
147 {
148 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149 }
150
151 /**
152 * kvm_arch_init_vm - initializes a VM data structure
153 * @kvm: pointer to the KVM struct
154 * @type: kvm device type
155 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
157 {
158 int ret;
159
160 if (type & ~KVM_VM_TYPE_MASK)
161 return -EINVAL;
162
163 mutex_init(&kvm->arch.config_lock);
164
165 #ifdef CONFIG_LOCKDEP
166 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
167 mutex_lock(&kvm->lock);
168 mutex_lock(&kvm->arch.config_lock);
169 mutex_unlock(&kvm->arch.config_lock);
170 mutex_unlock(&kvm->lock);
171 #endif
172
173 kvm_init_nested(kvm);
174
175 ret = kvm_share_hyp(kvm, kvm + 1);
176 if (ret)
177 return ret;
178
179 ret = pkvm_init_host_vm(kvm, type);
180 if (ret)
181 goto err_unshare_kvm;
182
183 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
184 ret = -ENOMEM;
185 goto err_unshare_kvm;
186 }
187 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
188
189 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
190 if (ret)
191 goto err_free_cpumask;
192
193 kvm_vgic_early_init(kvm);
194
195 kvm_timer_init_vm(kvm);
196
197 /* The maximum number of VCPUs is limited by the host's GIC model */
198 kvm->max_vcpus = kvm_arm_default_max_vcpus();
199
200 kvm_arm_init_hypercalls(kvm);
201
202 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
203
204 return 0;
205
206 err_free_cpumask:
207 free_cpumask_var(kvm->arch.supported_cpus);
208 err_unshare_kvm:
209 kvm_unshare_hyp(kvm, kvm + 1);
210 return ret;
211 }
212
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)213 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
214 {
215 return VM_FAULT_SIGBUS;
216 }
217
kvm_arch_create_vm_debugfs(struct kvm * kvm)218 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
219 {
220 kvm_sys_regs_create_debugfs(kvm);
221 kvm_s2_ptdump_create_debugfs(kvm);
222 }
223
kvm_destroy_mpidr_data(struct kvm * kvm)224 static void kvm_destroy_mpidr_data(struct kvm *kvm)
225 {
226 struct kvm_mpidr_data *data;
227
228 mutex_lock(&kvm->arch.config_lock);
229
230 data = rcu_dereference_protected(kvm->arch.mpidr_data,
231 lockdep_is_held(&kvm->arch.config_lock));
232 if (data) {
233 rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
234 synchronize_rcu();
235 kfree(data);
236 }
237
238 mutex_unlock(&kvm->arch.config_lock);
239 }
240
241 /**
242 * kvm_arch_destroy_vm - destroy the VM data structure
243 * @kvm: pointer to the KVM struct
244 */
kvm_arch_destroy_vm(struct kvm * kvm)245 void kvm_arch_destroy_vm(struct kvm *kvm)
246 {
247 kvm_free_stage2_pgd(&kvm->arch.mmu);
248 bitmap_free(kvm->arch.pmu_filter);
249 free_cpumask_var(kvm->arch.supported_cpus);
250
251 kvm_vgic_destroy(kvm);
252
253 if (is_protected_kvm_enabled())
254 pkvm_destroy_hyp_vm(kvm);
255
256 kvm_destroy_mpidr_data(kvm);
257
258 kfree(kvm->arch.sysreg_masks);
259 kvm_destroy_vcpus(kvm);
260
261 kvm_unshare_hyp(kvm, kvm + 1);
262
263 kvm_arm_teardown_hypercalls(kvm);
264
265 if (atomic64_read(&kvm->stat.protected_hyp_mem))
266 kvm_err("%lluB of donations to the nVHE hyp are missing\n",
267 atomic64_read(&kvm->stat.protected_hyp_mem));
268 }
269
kvm_has_full_ptr_auth(void)270 static bool kvm_has_full_ptr_auth(void)
271 {
272 bool apa, gpa, api, gpi, apa3, gpa3;
273 u64 isar1, isar2, val;
274
275 /*
276 * Check that:
277 *
278 * - both Address and Generic auth are implemented for a given
279 * algorithm (Q5, IMPDEF or Q3)
280 * - only a single algorithm is implemented.
281 */
282 if (!system_has_full_ptr_auth())
283 return false;
284
285 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
286 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
287
288 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
289 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
290 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
291
292 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
293 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
294 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
295
296 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
297 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
298 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
299
300 return (apa == gpa && api == gpi && apa3 == gpa3 &&
301 (apa + api + apa3) == 1);
302 }
303
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)304 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
305 {
306 int r;
307
308 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
309 return 0;
310
311 switch (ext) {
312 case KVM_CAP_IRQCHIP:
313 r = vgic_present;
314 break;
315 case KVM_CAP_IOEVENTFD:
316 case KVM_CAP_USER_MEMORY:
317 case KVM_CAP_SYNC_MMU:
318 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
319 case KVM_CAP_ONE_REG:
320 case KVM_CAP_ARM_PSCI:
321 case KVM_CAP_ARM_PSCI_0_2:
322 case KVM_CAP_READONLY_MEM:
323 case KVM_CAP_MP_STATE:
324 case KVM_CAP_IMMEDIATE_EXIT:
325 case KVM_CAP_VCPU_EVENTS:
326 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
327 case KVM_CAP_ARM_NISV_TO_USER:
328 case KVM_CAP_ARM_INJECT_EXT_DABT:
329 case KVM_CAP_SET_GUEST_DEBUG:
330 case KVM_CAP_VCPU_ATTRIBUTES:
331 case KVM_CAP_PTP_KVM:
332 case KVM_CAP_ARM_SYSTEM_SUSPEND:
333 case KVM_CAP_IRQFD_RESAMPLE:
334 case KVM_CAP_COUNTER_OFFSET:
335 r = 1;
336 break;
337 case KVM_CAP_SET_GUEST_DEBUG2:
338 return KVM_GUESTDBG_VALID_MASK;
339 case KVM_CAP_ARM_SET_DEVICE_ADDR:
340 r = 1;
341 break;
342 case KVM_CAP_NR_VCPUS:
343 /*
344 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
345 * architectures, as it does not always bound it to
346 * KVM_CAP_MAX_VCPUS. It should not matter much because
347 * this is just an advisory value.
348 */
349 r = min_t(unsigned int, num_online_cpus(),
350 kvm_arm_default_max_vcpus());
351 break;
352 case KVM_CAP_MAX_VCPUS:
353 case KVM_CAP_MAX_VCPU_ID:
354 if (kvm)
355 r = kvm->max_vcpus;
356 else
357 r = kvm_arm_default_max_vcpus();
358 break;
359 case KVM_CAP_MSI_DEVID:
360 if (!kvm)
361 r = -EINVAL;
362 else
363 r = kvm->arch.vgic.msis_require_devid;
364 break;
365 case KVM_CAP_ARM_USER_IRQ:
366 /*
367 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
368 * (bump this number if adding more devices)
369 */
370 r = 1;
371 break;
372 case KVM_CAP_ARM_MTE:
373 r = system_supports_mte();
374 break;
375 case KVM_CAP_STEAL_TIME:
376 r = kvm_arm_pvtime_supported();
377 break;
378 case KVM_CAP_ARM_EL1_32BIT:
379 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
380 break;
381 case KVM_CAP_GUEST_DEBUG_HW_BPS:
382 r = get_num_brps();
383 break;
384 case KVM_CAP_GUEST_DEBUG_HW_WPS:
385 r = get_num_wrps();
386 break;
387 case KVM_CAP_ARM_PMU_V3:
388 r = kvm_arm_support_pmu_v3();
389 break;
390 case KVM_CAP_ARM_INJECT_SERROR_ESR:
391 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
392 break;
393 case KVM_CAP_ARM_VM_IPA_SIZE:
394 r = get_kvm_ipa_limit();
395 break;
396 case KVM_CAP_ARM_SVE:
397 r = system_supports_sve();
398 break;
399 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
400 case KVM_CAP_ARM_PTRAUTH_GENERIC:
401 r = kvm_has_full_ptr_auth();
402 break;
403 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
404 if (kvm)
405 r = kvm->arch.mmu.split_page_chunk_size;
406 else
407 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
408 break;
409 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
410 r = kvm_supported_block_sizes();
411 break;
412 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
413 r = BIT(0);
414 break;
415 case KVM_CAP_ARM_PROTECTED_VM:
416 if (kvm)
417 r = kvm_vm_is_protected(kvm);
418 else
419 r = is_protected_kvm_enabled();
420 break;
421 default:
422 r = 0;
423 }
424
425 return r;
426 }
427
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)428 long kvm_arch_dev_ioctl(struct file *filp,
429 unsigned int ioctl, unsigned long arg)
430 {
431 return -EINVAL;
432 }
433
kvm_arch_alloc_vm(void)434 struct kvm *kvm_arch_alloc_vm(void)
435 {
436 size_t sz = sizeof(struct kvm);
437
438 if (!has_vhe())
439 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
440
441 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
442 }
443
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)444 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
445 {
446 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
447 return -EBUSY;
448
449 if (id >= kvm->max_vcpus)
450 return -EINVAL;
451
452 return 0;
453 }
454
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)455 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
456 {
457 int err;
458
459 spin_lock_init(&vcpu->arch.mp_state_lock);
460
461 #ifdef CONFIG_LOCKDEP
462 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
463 mutex_lock(&vcpu->mutex);
464 mutex_lock(&vcpu->kvm->arch.config_lock);
465 mutex_unlock(&vcpu->kvm->arch.config_lock);
466 mutex_unlock(&vcpu->mutex);
467 #endif
468
469 /* Force users to call KVM_ARM_VCPU_INIT */
470 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
471
472 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
473
474 /* Set up the timer */
475 kvm_timer_vcpu_init(vcpu);
476
477 kvm_pmu_vcpu_init(vcpu);
478
479 kvm_arm_reset_debug_ptr(vcpu);
480
481 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
482
483 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
484
485 /*
486 * This vCPU may have been created after mpidr_data was initialized.
487 * Throw out the pre-computed mappings if that is the case which forces
488 * KVM to fall back to iteratively searching the vCPUs.
489 */
490 kvm_destroy_mpidr_data(vcpu->kvm);
491
492 err = kvm_vgic_vcpu_init(vcpu);
493 if (err)
494 return err;
495
496 err = kvm_share_hyp(vcpu, vcpu + 1);
497 if (err)
498 kvm_vgic_vcpu_destroy(vcpu);
499
500 return err;
501 }
502
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)503 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
504 {
505 }
506
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)507 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
508 {
509 if (is_protected_kvm_enabled()) {
510 atomic64_sub(vcpu->arch.stage2_mc.nr_pages << PAGE_SHIFT,
511 &vcpu->kvm->stat.protected_hyp_mem);
512 free_hyp_memcache(&vcpu->arch.stage2_mc);
513 } else {
514 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
515 }
516
517 kvm_timer_vcpu_terminate(vcpu);
518 kvm_pmu_vcpu_destroy(vcpu);
519 kvm_vgic_vcpu_destroy(vcpu);
520 kvm_arm_vcpu_destroy(vcpu);
521 }
522
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)523 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
524 {
525
526 }
527
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)528 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
529 {
530
531 }
532
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)533 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
534 {
535 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
536 /*
537 * Either we're running an L2 guest, and the API/APK bits come
538 * from L1's HCR_EL2, or API/APK are both set.
539 */
540 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
541 u64 val;
542
543 val = __vcpu_sys_reg(vcpu, HCR_EL2);
544 val &= (HCR_API | HCR_APK);
545 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
546 vcpu->arch.hcr_el2 |= val;
547 } else {
548 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
549 }
550
551 /*
552 * Save the host keys if there is any chance for the guest
553 * to use pauth, as the entry code will reload the guest
554 * keys in that case.
555 */
556 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
557 struct kvm_cpu_context *ctxt;
558
559 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
560 ptrauth_save_keys(ctxt);
561 }
562 }
563 }
564
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)565 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
566 {
567 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
568 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
569
570 return single_task_running() &&
571 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
572 vcpu->kvm->arch.vgic.nassgireq);
573 }
574
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)575 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
576 {
577 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
578 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
579
580 return single_task_running();
581 }
582
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)583 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
584 {
585 struct kvm_s2_mmu *mmu;
586 int *last_ran;
587
588 if (is_protected_kvm_enabled())
589 goto nommu;
590
591 if (vcpu_has_nv(vcpu))
592 kvm_vcpu_load_hw_mmu(vcpu);
593
594 mmu = vcpu->arch.hw_mmu;
595 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
596
597 /*
598 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
599 * which happens eagerly in VHE.
600 *
601 * Also, the VMID allocator only preserves VMIDs that are active at the
602 * time of rollover, so KVM might need to grab a new VMID for the MMU if
603 * this is called from kvm_sched_in().
604 */
605 kvm_arm_vmid_update(&mmu->vmid);
606
607 /*
608 * We guarantee that both TLBs and I-cache are private to each
609 * vcpu. If detecting that a vcpu from the same VM has
610 * previously run on the same physical CPU, call into the
611 * hypervisor code to nuke the relevant contexts.
612 *
613 * We might get preempted before the vCPU actually runs, but
614 * over-invalidation doesn't affect correctness.
615 */
616 if (*last_ran != vcpu->vcpu_idx) {
617 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
618 *last_ran = vcpu->vcpu_idx;
619 }
620
621 nommu:
622 vcpu->cpu = cpu;
623
624 kvm_vgic_load(vcpu);
625 kvm_timer_vcpu_load(vcpu);
626 if (has_vhe())
627 kvm_vcpu_load_vhe(vcpu);
628 kvm_arch_vcpu_load_fp(vcpu);
629 kvm_vcpu_pmu_restore_guest(vcpu);
630 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
631 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
632
633 if (kvm_vcpu_should_clear_twe(vcpu))
634 vcpu->arch.hcr_el2 &= ~HCR_TWE;
635 else
636 vcpu->arch.hcr_el2 |= HCR_TWE;
637
638 if (kvm_vcpu_should_clear_twi(vcpu))
639 vcpu->arch.hcr_el2 &= ~HCR_TWI;
640 else
641 vcpu->arch.hcr_el2 |= HCR_TWI;
642
643 vcpu_set_pauth_traps(vcpu);
644
645 kvm_arch_vcpu_load_debug_state_flags(vcpu);
646
647 if (is_protected_kvm_enabled()) {
648 kvm_call_hyp_nvhe(__pkvm_vcpu_load,
649 vcpu->kvm->arch.pkvm.handle,
650 vcpu->vcpu_idx, vcpu->arch.hcr_el2);
651 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
652 &vcpu->arch.vgic_cpu.vgic_v3);
653 }
654
655 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
656 vcpu_set_on_unsupported_cpu(vcpu);
657 }
658
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)659 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
660 {
661 if (is_protected_kvm_enabled()) {
662 kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
663 &vcpu->arch.vgic_cpu.vgic_v3);
664 kvm_call_hyp_nvhe(__pkvm_vcpu_put);
665
666 /* __pkvm_vcpu_put implies a sync of the state */
667 if (!kvm_vm_is_protected(vcpu->kvm))
668 vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY);
669 }
670
671 kvm_arch_vcpu_put_debug_state_flags(vcpu);
672 kvm_arch_vcpu_put_fp(vcpu);
673 if (has_vhe())
674 kvm_vcpu_put_vhe(vcpu);
675 kvm_timer_vcpu_put(vcpu);
676 kvm_vgic_put(vcpu);
677 kvm_vcpu_pmu_restore_host(vcpu);
678 if (vcpu_has_nv(vcpu))
679 kvm_vcpu_put_hw_mmu(vcpu);
680 kvm_arm_vmid_clear_active();
681
682 vcpu_clear_on_unsupported_cpu(vcpu);
683 vcpu->cpu = -1;
684 }
685
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)686 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
687 {
688 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
689 kvm_make_request(KVM_REQ_SLEEP, vcpu);
690 kvm_vcpu_kick(vcpu);
691 }
692
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)693 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
694 {
695 spin_lock(&vcpu->arch.mp_state_lock);
696 __kvm_arm_vcpu_power_off(vcpu);
697 spin_unlock(&vcpu->arch.mp_state_lock);
698 }
699
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)700 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
701 {
702 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
703 }
704
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)705 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
706 {
707 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
708 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
709 kvm_vcpu_kick(vcpu);
710 }
711
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)712 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
713 {
714 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
715 }
716
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)717 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
718 struct kvm_mp_state *mp_state)
719 {
720 *mp_state = READ_ONCE(vcpu->arch.mp_state);
721
722 return 0;
723 }
724
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)725 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
726 struct kvm_mp_state *mp_state)
727 {
728 int ret = 0;
729
730 spin_lock(&vcpu->arch.mp_state_lock);
731
732 switch (mp_state->mp_state) {
733 case KVM_MP_STATE_RUNNABLE:
734 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
735 break;
736 case KVM_MP_STATE_STOPPED:
737 __kvm_arm_vcpu_power_off(vcpu);
738 break;
739 case KVM_MP_STATE_SUSPENDED:
740 kvm_arm_vcpu_suspend(vcpu);
741 break;
742 default:
743 ret = -EINVAL;
744 }
745
746 spin_unlock(&vcpu->arch.mp_state_lock);
747
748 return ret;
749 }
750
751 /**
752 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
753 * @v: The VCPU pointer
754 *
755 * If the guest CPU is not waiting for interrupts or an interrupt line is
756 * asserted, the CPU is by definition runnable.
757 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)758 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
759 {
760 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
761 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
762 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
763 }
764
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)765 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
766 {
767 return vcpu_mode_priv(vcpu);
768 }
769
770 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)771 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
772 {
773 return *vcpu_pc(vcpu);
774 }
775 #endif
776
kvm_init_mpidr_data(struct kvm * kvm)777 static void kvm_init_mpidr_data(struct kvm *kvm)
778 {
779 struct kvm_mpidr_data *data = NULL;
780 unsigned long c, mask, nr_entries;
781 u64 aff_set = 0, aff_clr = ~0UL;
782 struct kvm_vcpu *vcpu;
783
784 mutex_lock(&kvm->arch.config_lock);
785
786 if (rcu_access_pointer(kvm->arch.mpidr_data) ||
787 atomic_read(&kvm->online_vcpus) == 1)
788 goto out;
789
790 kvm_for_each_vcpu(c, vcpu, kvm) {
791 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
792 aff_set |= aff;
793 aff_clr &= aff;
794 }
795
796 /*
797 * A significant bit can be either 0 or 1, and will only appear in
798 * aff_set. Use aff_clr to weed out the useless stuff.
799 */
800 mask = aff_set ^ aff_clr;
801 nr_entries = BIT_ULL(hweight_long(mask));
802
803 /*
804 * Don't let userspace fool us. If we need more than a single page
805 * to describe the compressed MPIDR array, just fall back to the
806 * iterative method. Single vcpu VMs do not need this either.
807 */
808 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
809 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
810 GFP_KERNEL_ACCOUNT);
811
812 if (!data)
813 goto out;
814
815 data->mpidr_mask = mask;
816
817 kvm_for_each_vcpu(c, vcpu, kvm) {
818 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
819 u16 index = kvm_mpidr_index(data, aff);
820
821 data->cmpidr_to_idx[index] = c;
822 }
823
824 rcu_assign_pointer(kvm->arch.mpidr_data, data);
825 out:
826 mutex_unlock(&kvm->arch.config_lock);
827 }
828
829 /*
830 * Handle both the initialisation that is being done when the vcpu is
831 * run for the first time, as well as the updates that must be
832 * performed each time we get a new thread dealing with this vcpu.
833 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)834 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
835 {
836 struct kvm *kvm = vcpu->kvm;
837 int ret;
838
839 if (!kvm_vcpu_initialized(vcpu))
840 return -ENOEXEC;
841
842 if (!kvm_arm_vcpu_is_finalized(vcpu))
843 return -EPERM;
844
845 ret = kvm_arch_vcpu_run_map_fp(vcpu);
846 if (ret)
847 return ret;
848
849 if (likely(vcpu_has_run_once(vcpu)))
850 return 0;
851
852 kvm_init_mpidr_data(kvm);
853
854 kvm_arm_vcpu_init_debug(vcpu);
855
856 if (likely(irqchip_in_kernel(kvm))) {
857 /*
858 * Map the VGIC hardware resources before running a vcpu the
859 * first time on this VM.
860 */
861 ret = kvm_vgic_map_resources(kvm);
862 if (ret)
863 return ret;
864 }
865
866 ret = kvm_finalize_sys_regs(vcpu);
867 if (ret)
868 return ret;
869
870 /*
871 * This needs to happen after any restriction has been applied
872 * to the feature set.
873 */
874 kvm_calculate_traps(vcpu);
875
876 ret = kvm_timer_enable(vcpu);
877 if (ret)
878 return ret;
879
880 ret = kvm_arm_pmu_v3_enable(vcpu);
881 if (ret)
882 return ret;
883
884 if (is_protected_kvm_enabled()) {
885 /* Start with the vcpu in a dirty state */
886 if (!kvm_vm_is_protected(vcpu->kvm))
887 vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY);
888
889 ret = pkvm_create_hyp_vm(kvm);
890 if (ret)
891 return ret;
892
893 ret = pkvm_create_hyp_vcpu(vcpu);
894 if (ret)
895 return ret;
896 }
897
898 mutex_lock(&kvm->arch.config_lock);
899 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
900 mutex_unlock(&kvm->arch.config_lock);
901
902 return ret;
903 }
904
kvm_arch_intc_initialized(struct kvm * kvm)905 bool kvm_arch_intc_initialized(struct kvm *kvm)
906 {
907 return vgic_initialized(kvm);
908 }
909
kvm_arm_halt_guest(struct kvm * kvm)910 void kvm_arm_halt_guest(struct kvm *kvm)
911 {
912 unsigned long i;
913 struct kvm_vcpu *vcpu;
914
915 kvm_for_each_vcpu(i, vcpu, kvm)
916 vcpu->arch.pause = true;
917 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
918 }
919
kvm_arm_resume_guest(struct kvm * kvm)920 void kvm_arm_resume_guest(struct kvm *kvm)
921 {
922 unsigned long i;
923 struct kvm_vcpu *vcpu;
924
925 kvm_for_each_vcpu(i, vcpu, kvm) {
926 vcpu->arch.pause = false;
927 __kvm_vcpu_wake_up(vcpu);
928 }
929 }
930
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)931 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
932 {
933 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
934
935 rcuwait_wait_event(wait,
936 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
937 TASK_INTERRUPTIBLE);
938
939 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
940 /* Awaken to handle a signal, request we sleep again later. */
941 kvm_make_request(KVM_REQ_SLEEP, vcpu);
942 }
943
944 /*
945 * Make sure we will observe a potential reset request if we've
946 * observed a change to the power state. Pairs with the smp_wmb() in
947 * kvm_psci_vcpu_on().
948 */
949 smp_rmb();
950 }
951
952 /**
953 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
954 * @vcpu: The VCPU pointer
955 *
956 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
957 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
958 * on when a wake event arrives, e.g. there may already be a pending wake event.
959 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)960 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
961 {
962 /*
963 * Sync back the state of the GIC CPU interface so that we have
964 * the latest PMR and group enables. This ensures that
965 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
966 * we have pending interrupts, e.g. when determining if the
967 * vCPU should block.
968 *
969 * For the same reason, we want to tell GICv4 that we need
970 * doorbells to be signalled, should an interrupt become pending.
971 */
972 preempt_disable();
973 vcpu_set_flag(vcpu, IN_WFI);
974 kvm_vgic_put(vcpu);
975 preempt_enable();
976
977 kvm_vcpu_halt(vcpu);
978 vcpu_clear_flag(vcpu, IN_WFIT);
979
980 preempt_disable();
981 vcpu_clear_flag(vcpu, IN_WFI);
982 kvm_vgic_load(vcpu);
983 preempt_enable();
984 }
985
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)986 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
987 {
988 if (!kvm_arm_vcpu_suspended(vcpu))
989 return 1;
990
991 kvm_vcpu_wfi(vcpu);
992
993 /*
994 * The suspend state is sticky; we do not leave it until userspace
995 * explicitly marks the vCPU as runnable. Request that we suspend again
996 * later.
997 */
998 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
999
1000 /*
1001 * Check to make sure the vCPU is actually runnable. If so, exit to
1002 * userspace informing it of the wakeup condition.
1003 */
1004 if (kvm_arch_vcpu_runnable(vcpu)) {
1005 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1006 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1007 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1008 return 0;
1009 }
1010
1011 /*
1012 * Otherwise, we were unblocked to process a different event, such as a
1013 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1014 * process the event.
1015 */
1016 return 1;
1017 }
1018
1019 /**
1020 * check_vcpu_requests - check and handle pending vCPU requests
1021 * @vcpu: the VCPU pointer
1022 *
1023 * Return: 1 if we should enter the guest
1024 * 0 if we should exit to userspace
1025 * < 0 if we should exit to userspace, where the return value indicates
1026 * an error
1027 */
check_vcpu_requests(struct kvm_vcpu * vcpu)1028 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1029 {
1030 if (kvm_request_pending(vcpu)) {
1031 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1032 return -EIO;
1033
1034 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1035 kvm_vcpu_sleep(vcpu);
1036
1037 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1038 kvm_reset_vcpu(vcpu);
1039
1040 /*
1041 * Clear IRQ_PENDING requests that were made to guarantee
1042 * that a VCPU sees new virtual interrupts.
1043 */
1044 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1045
1046 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1047 kvm_update_stolen_time(vcpu);
1048
1049 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1050 /* The distributor enable bits were changed */
1051 preempt_disable();
1052 vgic_v4_put(vcpu);
1053 vgic_v4_load(vcpu);
1054 preempt_enable();
1055 }
1056
1057 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1058 kvm_vcpu_reload_pmu(vcpu);
1059
1060 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1061 kvm_vcpu_pmu_restore_guest(vcpu);
1062
1063 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1064 return kvm_vcpu_suspend(vcpu);
1065
1066 if (kvm_dirty_ring_check_request(vcpu))
1067 return 0;
1068
1069 check_nested_vcpu_requests(vcpu);
1070 }
1071
1072 return 1;
1073 }
1074
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1075 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1076 {
1077 if (likely(!vcpu_mode_is_32bit(vcpu)))
1078 return false;
1079
1080 if (vcpu_has_nv(vcpu))
1081 return true;
1082
1083 return !kvm_supports_32bit_el0();
1084 }
1085
1086 /**
1087 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1088 * @vcpu: The VCPU pointer
1089 * @ret: Pointer to write optional return code
1090 *
1091 * Returns: true if the VCPU needs to return to a preemptible + interruptible
1092 * and skip guest entry.
1093 *
1094 * This function disambiguates between two different types of exits: exits to a
1095 * preemptible + interruptible kernel context and exits to userspace. For an
1096 * exit to userspace, this function will write the return code to ret and return
1097 * true. For an exit to preemptible + interruptible kernel context (i.e. check
1098 * for pending work and re-enter), return true without writing to ret.
1099 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1100 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1101 {
1102 struct kvm_run *run = vcpu->run;
1103
1104 /*
1105 * If we're using a userspace irqchip, then check if we need
1106 * to tell a userspace irqchip about timer or PMU level
1107 * changes and if so, exit to userspace (the actual level
1108 * state gets updated in kvm_timer_update_run and
1109 * kvm_pmu_update_run below).
1110 */
1111 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1112 if (kvm_timer_should_notify_user(vcpu) ||
1113 kvm_pmu_should_notify_user(vcpu)) {
1114 *ret = -EINTR;
1115 run->exit_reason = KVM_EXIT_INTR;
1116 return true;
1117 }
1118 }
1119
1120 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1121 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1122 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1123 run->fail_entry.cpu = smp_processor_id();
1124 *ret = 0;
1125 return true;
1126 }
1127
1128 return kvm_request_pending(vcpu) ||
1129 xfer_to_guest_mode_work_pending();
1130 }
1131
1132 /*
1133 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1134 * the vCPU is running.
1135 *
1136 * This must be noinstr as instrumentation may make use of RCU, and this is not
1137 * safe during the EQS.
1138 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1139 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1140 {
1141 int ret;
1142
1143 guest_state_enter_irqoff();
1144 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1145 guest_state_exit_irqoff();
1146
1147 return ret;
1148 }
1149
1150 /**
1151 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1152 * @vcpu: The VCPU pointer
1153 *
1154 * This function is called through the VCPU_RUN ioctl called from user space. It
1155 * will execute VM code in a loop until the time slice for the process is used
1156 * or some emulation is needed from user space in which case the function will
1157 * return with return value 0 and with the kvm_run structure filled in with the
1158 * required data for the requested emulation.
1159 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1160 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1161 {
1162 struct kvm_run *run = vcpu->run;
1163 int ret;
1164
1165 if (run->exit_reason == KVM_EXIT_MMIO) {
1166 ret = kvm_handle_mmio_return(vcpu);
1167 if (ret <= 0)
1168 return ret;
1169 }
1170
1171 vcpu_load(vcpu);
1172
1173 if (!vcpu->wants_to_run) {
1174 ret = -EINTR;
1175 goto out;
1176 }
1177
1178 kvm_sigset_activate(vcpu);
1179
1180 ret = 1;
1181 run->exit_reason = KVM_EXIT_UNKNOWN;
1182 run->flags = 0;
1183 while (ret > 0) {
1184 /*
1185 * Check conditions before entering the guest
1186 */
1187 ret = xfer_to_guest_mode_handle_work(vcpu);
1188 if (!ret)
1189 ret = 1;
1190
1191 if (ret > 0)
1192 ret = check_vcpu_requests(vcpu);
1193
1194 /*
1195 * Preparing the interrupts to be injected also
1196 * involves poking the GIC, which must be done in a
1197 * non-preemptible context.
1198 */
1199 preempt_disable();
1200
1201 kvm_pmu_flush_hwstate(vcpu);
1202
1203 local_irq_disable();
1204
1205 kvm_vgic_flush_hwstate(vcpu);
1206
1207 kvm_pmu_update_vcpu_events(vcpu);
1208
1209 /*
1210 * Ensure we set mode to IN_GUEST_MODE after we disable
1211 * interrupts and before the final VCPU requests check.
1212 * See the comment in kvm_vcpu_exiting_guest_mode() and
1213 * Documentation/virt/kvm/vcpu-requests.rst
1214 */
1215 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1216
1217 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1218 vcpu->mode = OUTSIDE_GUEST_MODE;
1219 isb(); /* Ensure work in x_flush_hwstate is committed */
1220 kvm_pmu_sync_hwstate(vcpu);
1221 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1222 kvm_timer_sync_user(vcpu);
1223 kvm_vgic_sync_hwstate(vcpu);
1224 local_irq_enable();
1225 preempt_enable();
1226 continue;
1227 }
1228
1229 kvm_arm_setup_debug(vcpu);
1230 kvm_arch_vcpu_ctxflush_fp(vcpu);
1231
1232 /**************************************************************
1233 * Enter the guest
1234 */
1235 trace_kvm_entry(*vcpu_pc(vcpu));
1236 guest_timing_enter_irqoff();
1237
1238 ret = kvm_arm_vcpu_enter_exit(vcpu);
1239
1240 vcpu->mode = OUTSIDE_GUEST_MODE;
1241 vcpu->stat.exits++;
1242 /*
1243 * Back from guest
1244 *************************************************************/
1245
1246 kvm_arm_clear_debug(vcpu);
1247
1248 /*
1249 * We must sync the PMU state before the vgic state so
1250 * that the vgic can properly sample the updated state of the
1251 * interrupt line.
1252 */
1253 kvm_pmu_sync_hwstate(vcpu);
1254
1255 /*
1256 * Sync the vgic state before syncing the timer state because
1257 * the timer code needs to know if the virtual timer
1258 * interrupts are active.
1259 */
1260 kvm_vgic_sync_hwstate(vcpu);
1261
1262 /*
1263 * Sync the timer hardware state before enabling interrupts as
1264 * we don't want vtimer interrupts to race with syncing the
1265 * timer virtual interrupt state.
1266 */
1267 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1268 kvm_timer_sync_user(vcpu);
1269
1270 kvm_arch_vcpu_ctxsync_fp(vcpu);
1271
1272 /*
1273 * We must ensure that any pending interrupts are taken before
1274 * we exit guest timing so that timer ticks are accounted as
1275 * guest time. Transiently unmask interrupts so that any
1276 * pending interrupts are taken.
1277 *
1278 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1279 * context synchronization event) is necessary to ensure that
1280 * pending interrupts are taken.
1281 */
1282 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1283 local_irq_enable();
1284 isb();
1285 local_irq_disable();
1286 }
1287
1288 guest_timing_exit_irqoff();
1289
1290 local_irq_enable();
1291
1292 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1293
1294 /* Exit types that need handling before we can be preempted */
1295 handle_exit_early(vcpu, ret);
1296
1297 preempt_enable();
1298
1299 /*
1300 * The ARMv8 architecture doesn't give the hypervisor
1301 * a mechanism to prevent a guest from dropping to AArch32 EL0
1302 * if implemented by the CPU. If we spot the guest in such
1303 * state and that we decided it wasn't supposed to do so (like
1304 * with the asymmetric AArch32 case), return to userspace with
1305 * a fatal error.
1306 */
1307 if (vcpu_mode_is_bad_32bit(vcpu)) {
1308 /*
1309 * As we have caught the guest red-handed, decide that
1310 * it isn't fit for purpose anymore by making the vcpu
1311 * invalid. The VMM can try and fix it by issuing a
1312 * KVM_ARM_VCPU_INIT if it really wants to.
1313 */
1314 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1315 ret = ARM_EXCEPTION_IL;
1316 }
1317
1318 ret = handle_exit(vcpu, ret);
1319 }
1320
1321 /* Tell userspace about in-kernel device output levels */
1322 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1323 kvm_timer_update_run(vcpu);
1324 kvm_pmu_update_run(vcpu);
1325 }
1326
1327 kvm_sigset_deactivate(vcpu);
1328
1329 out:
1330 /*
1331 * In the unlikely event that we are returning to userspace
1332 * with pending exceptions or PC adjustment, commit these
1333 * adjustments in order to give userspace a consistent view of
1334 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1335 * being preempt-safe on VHE.
1336 */
1337 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1338 vcpu_get_flag(vcpu, INCREMENT_PC)))
1339 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1340
1341 vcpu_put(vcpu);
1342 return ret;
1343 }
1344
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1345 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1346 {
1347 int bit_index;
1348 bool set;
1349 unsigned long *hcr;
1350
1351 if (number == KVM_ARM_IRQ_CPU_IRQ)
1352 bit_index = __ffs(HCR_VI);
1353 else /* KVM_ARM_IRQ_CPU_FIQ */
1354 bit_index = __ffs(HCR_VF);
1355
1356 hcr = vcpu_hcr(vcpu);
1357 if (level)
1358 set = test_and_set_bit(bit_index, hcr);
1359 else
1360 set = test_and_clear_bit(bit_index, hcr);
1361
1362 /*
1363 * If we didn't change anything, no need to wake up or kick other CPUs
1364 */
1365 if (set == level)
1366 return 0;
1367
1368 /*
1369 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1370 * trigger a world-switch round on the running physical CPU to set the
1371 * virtual IRQ/FIQ fields in the HCR appropriately.
1372 */
1373 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1374 kvm_vcpu_kick(vcpu);
1375
1376 return 0;
1377 }
1378
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1379 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1380 bool line_status)
1381 {
1382 u32 irq = irq_level->irq;
1383 unsigned int irq_type, vcpu_id, irq_num;
1384 struct kvm_vcpu *vcpu = NULL;
1385 bool level = irq_level->level;
1386
1387 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1388 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1389 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1390 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1391
1392 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1393
1394 switch (irq_type) {
1395 case KVM_ARM_IRQ_TYPE_CPU:
1396 if (irqchip_in_kernel(kvm))
1397 return -ENXIO;
1398
1399 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1400 if (!vcpu)
1401 return -EINVAL;
1402
1403 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1404 return -EINVAL;
1405
1406 return vcpu_interrupt_line(vcpu, irq_num, level);
1407 case KVM_ARM_IRQ_TYPE_PPI:
1408 if (!irqchip_in_kernel(kvm))
1409 return -ENXIO;
1410
1411 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1412 if (!vcpu)
1413 return -EINVAL;
1414
1415 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1416 return -EINVAL;
1417
1418 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1419 case KVM_ARM_IRQ_TYPE_SPI:
1420 if (!irqchip_in_kernel(kvm))
1421 return -ENXIO;
1422
1423 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1424 return -EINVAL;
1425
1426 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1427 }
1428
1429 return -EINVAL;
1430 }
1431
system_supported_vcpu_features(void)1432 static unsigned long system_supported_vcpu_features(void)
1433 {
1434 unsigned long features = KVM_VCPU_VALID_FEATURES;
1435
1436 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1437 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1438
1439 if (!kvm_arm_support_pmu_v3())
1440 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1441
1442 if (!system_supports_sve())
1443 clear_bit(KVM_ARM_VCPU_SVE, &features);
1444
1445 if (!kvm_has_full_ptr_auth()) {
1446 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1447 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1448 }
1449
1450 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1451 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1452
1453 return features;
1454 }
1455
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1456 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1457 const struct kvm_vcpu_init *init)
1458 {
1459 unsigned long features = init->features[0];
1460 int i;
1461
1462 if (features & ~KVM_VCPU_VALID_FEATURES)
1463 return -ENOENT;
1464
1465 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1466 if (init->features[i])
1467 return -ENOENT;
1468 }
1469
1470 if (features & ~system_supported_vcpu_features())
1471 return -EINVAL;
1472
1473 if (vcpu_is_protected(vcpu) && (features & ~pvm_supported_vcpu_features()))
1474 return -EINVAL;
1475
1476 /*
1477 * For now make sure that both address/generic pointer authentication
1478 * features are requested by the userspace together.
1479 */
1480 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1481 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1482 return -EINVAL;
1483
1484 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1485 return 0;
1486
1487 /* MTE is incompatible with AArch32 */
1488 if (kvm_has_mte(vcpu->kvm))
1489 return -EINVAL;
1490
1491 /* NV is incompatible with AArch32 */
1492 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1493 return -EINVAL;
1494
1495 return 0;
1496 }
1497
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1498 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1499 const struct kvm_vcpu_init *init)
1500 {
1501 unsigned long features = init->features[0];
1502
1503 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1504 KVM_VCPU_MAX_FEATURES);
1505 }
1506
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1507 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1508 {
1509 struct kvm *kvm = vcpu->kvm;
1510 int ret = 0;
1511
1512 /*
1513 * When the vCPU has a PMU, but no PMU is set for the guest
1514 * yet, set the default one.
1515 */
1516 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1517 ret = kvm_arm_set_default_pmu(kvm);
1518
1519 /* Prepare for nested if required */
1520 if (!ret && vcpu_has_nv(vcpu))
1521 ret = kvm_vcpu_init_nested(vcpu);
1522
1523 return ret;
1524 }
1525
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1526 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1527 const struct kvm_vcpu_init *init)
1528 {
1529 unsigned long features = init->features[0];
1530 struct kvm *kvm = vcpu->kvm;
1531 int ret = -EINVAL;
1532
1533 mutex_lock(&kvm->arch.config_lock);
1534
1535 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1536 kvm_vcpu_init_changed(vcpu, init))
1537 goto out_unlock;
1538
1539 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1540
1541 ret = kvm_setup_vcpu(vcpu);
1542 if (ret)
1543 goto out_unlock;
1544
1545 /* Now we know what it is, we can reset it. */
1546 kvm_reset_vcpu(vcpu);
1547
1548 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1549 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1550 ret = 0;
1551 out_unlock:
1552 mutex_unlock(&kvm->arch.config_lock);
1553 return ret;
1554 }
1555
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1556 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1557 const struct kvm_vcpu_init *init)
1558 {
1559 int ret;
1560
1561 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1562 init->target != kvm_target_cpu())
1563 return -EINVAL;
1564
1565 ret = kvm_vcpu_init_check_features(vcpu, init);
1566 if (ret)
1567 return ret;
1568
1569 if (!kvm_vcpu_initialized(vcpu))
1570 return __kvm_vcpu_set_target(vcpu, init);
1571
1572 if (kvm_vcpu_init_changed(vcpu, init))
1573 return -EINVAL;
1574
1575 kvm_reset_vcpu(vcpu);
1576 return 0;
1577 }
1578
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1579 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1580 struct kvm_vcpu_init *init)
1581 {
1582 bool power_off = false;
1583 int ret;
1584
1585 /*
1586 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1587 * reflecting it in the finalized feature set, thus limiting its scope
1588 * to a single KVM_ARM_VCPU_INIT call.
1589 */
1590 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1591 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1592 power_off = true;
1593 }
1594
1595 ret = kvm_vcpu_set_target(vcpu, init);
1596 if (ret)
1597 return ret;
1598
1599 /*
1600 * Ensure a rebooted VM will fault in RAM pages and detect if the
1601 * guest MMU is turned off and flush the caches as needed.
1602 *
1603 * S2FWB enforces all memory accesses to RAM being cacheable,
1604 * ensuring that the data side is always coherent. We still
1605 * need to invalidate the I-cache though, as FWB does *not*
1606 * imply CTR_EL0.DIC.
1607 */
1608 if (vcpu_has_run_once(vcpu)) {
1609 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1610 stage2_unmap_vm(vcpu->kvm);
1611 else
1612 icache_inval_all_pou();
1613 }
1614
1615 vcpu_reset_hcr(vcpu);
1616
1617 /*
1618 * Handle the "start in power-off" case.
1619 */
1620 spin_lock(&vcpu->arch.mp_state_lock);
1621
1622 if (power_off)
1623 __kvm_arm_vcpu_power_off(vcpu);
1624 else
1625 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1626
1627 spin_unlock(&vcpu->arch.mp_state_lock);
1628
1629 return 0;
1630 }
1631
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1632 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1633 struct kvm_device_attr *attr)
1634 {
1635 int ret = -ENXIO;
1636
1637 switch (attr->group) {
1638 default:
1639 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1640 break;
1641 }
1642
1643 return ret;
1644 }
1645
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1646 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1647 struct kvm_device_attr *attr)
1648 {
1649 int ret = -ENXIO;
1650
1651 switch (attr->group) {
1652 default:
1653 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1654 break;
1655 }
1656
1657 return ret;
1658 }
1659
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1660 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1661 struct kvm_device_attr *attr)
1662 {
1663 int ret = -ENXIO;
1664
1665 switch (attr->group) {
1666 default:
1667 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1668 break;
1669 }
1670
1671 return ret;
1672 }
1673
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1674 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1675 struct kvm_vcpu_events *events)
1676 {
1677 memset(events, 0, sizeof(*events));
1678
1679 return __kvm_arm_vcpu_get_events(vcpu, events);
1680 }
1681
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1682 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1683 struct kvm_vcpu_events *events)
1684 {
1685 int i;
1686
1687 /* check whether the reserved field is zero */
1688 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1689 if (events->reserved[i])
1690 return -EINVAL;
1691
1692 /* check whether the pad field is zero */
1693 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1694 if (events->exception.pad[i])
1695 return -EINVAL;
1696
1697 return __kvm_arm_vcpu_set_events(vcpu, events);
1698 }
1699
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1700 long kvm_arch_vcpu_ioctl(struct file *filp,
1701 unsigned int ioctl, unsigned long arg)
1702 {
1703 struct kvm_vcpu *vcpu = filp->private_data;
1704 void __user *argp = (void __user *)arg;
1705 struct kvm_device_attr attr;
1706 long r;
1707
1708 switch (ioctl) {
1709 case KVM_ARM_VCPU_INIT: {
1710 struct kvm_vcpu_init init;
1711
1712 r = -EFAULT;
1713 if (copy_from_user(&init, argp, sizeof(init)))
1714 break;
1715
1716 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1717 break;
1718 }
1719 case KVM_SET_ONE_REG:
1720 case KVM_GET_ONE_REG: {
1721 struct kvm_one_reg reg;
1722
1723 r = -ENOEXEC;
1724 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1725 break;
1726
1727 r = -EPERM;
1728 if (unlikely(vcpu_is_protected(vcpu) && vcpu_get_flag(vcpu, VCPU_PKVM_FINALIZED)))
1729 break;
1730
1731 r = -EFAULT;
1732 if (copy_from_user(®, argp, sizeof(reg)))
1733 break;
1734
1735 /*
1736 * We could owe a reset due to PSCI. Handle the pending reset
1737 * here to ensure userspace register accesses are ordered after
1738 * the reset.
1739 */
1740 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1741 kvm_reset_vcpu(vcpu);
1742
1743 if (ioctl == KVM_SET_ONE_REG)
1744 r = kvm_arm_set_reg(vcpu, ®);
1745 else
1746 r = kvm_arm_get_reg(vcpu, ®);
1747 break;
1748 }
1749 case KVM_GET_REG_LIST: {
1750 struct kvm_reg_list __user *user_list = argp;
1751 struct kvm_reg_list reg_list;
1752 unsigned n;
1753
1754 r = -ENOEXEC;
1755 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1756 break;
1757
1758 r = -EPERM;
1759 if (!kvm_arm_vcpu_is_finalized(vcpu))
1760 break;
1761
1762 r = -EFAULT;
1763 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1764 break;
1765 n = reg_list.n;
1766 reg_list.n = kvm_arm_num_regs(vcpu);
1767 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1768 break;
1769 r = -E2BIG;
1770 if (n < reg_list.n)
1771 break;
1772 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1773 break;
1774 }
1775 case KVM_SET_DEVICE_ATTR: {
1776 r = -EFAULT;
1777 if (copy_from_user(&attr, argp, sizeof(attr)))
1778 break;
1779 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1780 break;
1781 }
1782 case KVM_GET_DEVICE_ATTR: {
1783 r = -EFAULT;
1784 if (copy_from_user(&attr, argp, sizeof(attr)))
1785 break;
1786 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1787 break;
1788 }
1789 case KVM_HAS_DEVICE_ATTR: {
1790 r = -EFAULT;
1791 if (copy_from_user(&attr, argp, sizeof(attr)))
1792 break;
1793 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1794 break;
1795 }
1796 case KVM_GET_VCPU_EVENTS: {
1797 struct kvm_vcpu_events events;
1798
1799 if (kvm_arm_vcpu_get_events(vcpu, &events))
1800 return -EINVAL;
1801
1802 if (copy_to_user(argp, &events, sizeof(events)))
1803 return -EFAULT;
1804
1805 return 0;
1806 }
1807 case KVM_SET_VCPU_EVENTS: {
1808 struct kvm_vcpu_events events;
1809
1810 if (copy_from_user(&events, argp, sizeof(events)))
1811 return -EFAULT;
1812
1813 return kvm_arm_vcpu_set_events(vcpu, &events);
1814 }
1815 case KVM_ARM_VCPU_FINALIZE: {
1816 int what;
1817
1818 if (!kvm_vcpu_initialized(vcpu))
1819 return -ENOEXEC;
1820
1821 if (get_user(what, (const int __user *)argp))
1822 return -EFAULT;
1823
1824 return kvm_arm_vcpu_finalize(vcpu, what);
1825 }
1826 default:
1827 r = -EINVAL;
1828 }
1829
1830 return r;
1831 }
1832
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1833 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1834 {
1835
1836 }
1837
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1838 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1839 struct kvm_arm_device_addr *dev_addr)
1840 {
1841 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1842 case KVM_ARM_DEVICE_VGIC_V2:
1843 if (!vgic_present)
1844 return -ENXIO;
1845 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1846 default:
1847 return -ENODEV;
1848 }
1849 }
1850
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1851 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1852 {
1853 switch (attr->group) {
1854 case KVM_ARM_VM_SMCCC_CTRL:
1855 return kvm_vm_smccc_has_attr(kvm, attr);
1856 default:
1857 return -ENXIO;
1858 }
1859 }
1860
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1861 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1862 {
1863 switch (attr->group) {
1864 case KVM_ARM_VM_SMCCC_CTRL:
1865 return kvm_vm_smccc_set_attr(kvm, attr);
1866 default:
1867 return -ENXIO;
1868 }
1869 }
1870
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1871 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1872 {
1873 struct kvm *kvm = filp->private_data;
1874 void __user *argp = (void __user *)arg;
1875 struct kvm_device_attr attr;
1876
1877 switch (ioctl) {
1878 case KVM_CREATE_IRQCHIP: {
1879 int ret;
1880 if (!vgic_present)
1881 return -ENXIO;
1882 mutex_lock(&kvm->lock);
1883 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1884 mutex_unlock(&kvm->lock);
1885 return ret;
1886 }
1887 case KVM_ARM_SET_DEVICE_ADDR: {
1888 struct kvm_arm_device_addr dev_addr;
1889
1890 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1891 return -EFAULT;
1892 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1893 }
1894 case KVM_ARM_PREFERRED_TARGET: {
1895 struct kvm_vcpu_init init = {
1896 .target = KVM_ARM_TARGET_GENERIC_V8,
1897 };
1898
1899 if (copy_to_user(argp, &init, sizeof(init)))
1900 return -EFAULT;
1901
1902 return 0;
1903 }
1904 case KVM_ARM_MTE_COPY_TAGS: {
1905 struct kvm_arm_copy_mte_tags copy_tags;
1906
1907 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1908 return -EFAULT;
1909 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1910 }
1911 case KVM_ARM_SET_COUNTER_OFFSET: {
1912 struct kvm_arm_counter_offset offset;
1913
1914 if (copy_from_user(&offset, argp, sizeof(offset)))
1915 return -EFAULT;
1916 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1917 }
1918 case KVM_HAS_DEVICE_ATTR: {
1919 if (copy_from_user(&attr, argp, sizeof(attr)))
1920 return -EFAULT;
1921
1922 return kvm_vm_has_attr(kvm, &attr);
1923 }
1924 case KVM_SET_DEVICE_ATTR: {
1925 if (copy_from_user(&attr, argp, sizeof(attr)))
1926 return -EFAULT;
1927
1928 return kvm_vm_set_attr(kvm, &attr);
1929 }
1930 case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1931 struct reg_mask_range range;
1932
1933 if (copy_from_user(&range, argp, sizeof(range)))
1934 return -EFAULT;
1935 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1936 }
1937 default:
1938 return -EINVAL;
1939 }
1940 }
1941
1942 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1943 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1944 {
1945 struct kvm_vcpu *tmp_vcpu;
1946
1947 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1948 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1949 mutex_unlock(&tmp_vcpu->mutex);
1950 }
1951 }
1952
unlock_all_vcpus(struct kvm * kvm)1953 void unlock_all_vcpus(struct kvm *kvm)
1954 {
1955 lockdep_assert_held(&kvm->lock);
1956
1957 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1958 }
1959
1960 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1961 bool lock_all_vcpus(struct kvm *kvm)
1962 {
1963 struct kvm_vcpu *tmp_vcpu;
1964 unsigned long c;
1965
1966 lockdep_assert_held(&kvm->lock);
1967
1968 /*
1969 * Any time a vcpu is in an ioctl (including running), the
1970 * core KVM code tries to grab the vcpu->mutex.
1971 *
1972 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1973 * other VCPUs can fiddle with the state while we access it.
1974 */
1975 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1976 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1977 unlock_vcpus(kvm, c - 1);
1978 return false;
1979 }
1980 }
1981
1982 return true;
1983 }
1984
nvhe_percpu_size(void)1985 static unsigned long nvhe_percpu_size(void)
1986 {
1987 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1988 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1989 }
1990
nvhe_percpu_order(void)1991 static unsigned long nvhe_percpu_order(void)
1992 {
1993 unsigned long size = nvhe_percpu_size();
1994
1995 return size ? get_order(size) : 0;
1996 }
1997
pkvm_host_sve_state_order(void)1998 static size_t pkvm_host_sve_state_order(void)
1999 {
2000 return get_order(pkvm_host_sve_state_size());
2001 }
2002
2003 /* A lookup table holding the hypervisor VA for each vector slot */
2004 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
2005
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)2006 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
2007 {
2008 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
2009 }
2010
kvm_init_vector_slots(void)2011 static int kvm_init_vector_slots(void)
2012 {
2013 int err;
2014 void *base;
2015
2016 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
2017 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
2018
2019 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
2020 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
2021
2022 if (kvm_system_needs_idmapped_vectors() &&
2023 !is_protected_kvm_enabled()) {
2024 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2025 __BP_HARDEN_HYP_VECS_SZ, &base);
2026 if (err)
2027 return err;
2028 }
2029
2030 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2031 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2032 return 0;
2033 }
2034
cpu_prepare_hyp_mode(int cpu)2035 static void __init cpu_prepare_hyp_mode(int cpu)
2036 {
2037 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2038 unsigned long tcr, ips;
2039 int *hyp_cpu_number_ptr = per_cpu_ptr_nvhe_sym(hyp_cpu_number, cpu);
2040
2041 *hyp_cpu_number_ptr = cpu;
2042
2043 /*
2044 * Calculate the raw per-cpu offset without a translation from the
2045 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2046 * so that we can use adr_l to access per-cpu variables in EL2.
2047 * Also drop the KASAN tag which gets in the way...
2048 */
2049 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2050 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2051
2052 params->mair_el2 = read_sysreg(mair_el1);
2053
2054 tcr = read_sysreg(tcr_el1);
2055 ips = FIELD_GET(TCR_IPS_MASK, tcr);
2056 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2057 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2058 tcr |= TCR_EPD1_MASK;
2059 } else {
2060 tcr &= TCR_EL2_MASK;
2061 tcr |= TCR_EL2_RES1 |
2062 FIELD_PREP(TCR_EL2_PS_MASK, ips);
2063 if (lpa2_is_enabled())
2064 tcr |= TCR_EL2_DS;
2065 }
2066 tcr |= TCR_T0SZ(hyp_va_bits);
2067 params->tcr_el2 = tcr;
2068
2069 params->pgd_pa = kvm_mmu_get_httbr();
2070 if (is_protected_kvm_enabled())
2071 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2072 else
2073 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2074 if (cpus_have_final_cap(ARM64_KVM_HVHE))
2075 params->hcr_el2 |= HCR_E2H;
2076 params->vttbr = params->vtcr = 0;
2077 params->hfgwtr_el2 = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
2078
2079 /*
2080 * Flush the init params from the data cache because the struct will
2081 * be read while the MMU is off.
2082 */
2083 kvm_flush_dcache_to_poc(params, sizeof(*params));
2084 }
2085
hyp_install_host_vector(void)2086 static void hyp_install_host_vector(void)
2087 {
2088 struct kvm_nvhe_init_params *params;
2089 struct arm_smccc_res res;
2090
2091 /* Switch from the HYP stub to our own HYP init vector */
2092 __hyp_set_vectors(kvm_get_idmap_vector());
2093
2094 /*
2095 * Call initialization code, and switch to the full blown HYP code.
2096 * If the cpucaps haven't been finalized yet, something has gone very
2097 * wrong, and hyp will crash and burn when it uses any
2098 * cpus_have_*_cap() wrapper.
2099 */
2100 BUG_ON(!system_capabilities_finalized());
2101 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2102 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2103 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2104 }
2105
cpu_init_hyp_mode(void)2106 static void cpu_init_hyp_mode(void)
2107 {
2108 hyp_install_host_vector();
2109
2110 /*
2111 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2112 * at EL2.
2113 */
2114 if (this_cpu_has_cap(ARM64_SSBS) &&
2115 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2116 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2117 }
2118 }
2119
cpu_hyp_reset(void)2120 static void cpu_hyp_reset(void)
2121 {
2122 if (!is_kernel_in_hyp_mode())
2123 __hyp_reset_vectors();
2124 }
2125
2126 /*
2127 * EL2 vectors can be mapped and rerouted in a number of ways,
2128 * depending on the kernel configuration and CPU present:
2129 *
2130 * - If the CPU is affected by Spectre-v2, the hardening sequence is
2131 * placed in one of the vector slots, which is executed before jumping
2132 * to the real vectors.
2133 *
2134 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2135 * containing the hardening sequence is mapped next to the idmap page,
2136 * and executed before jumping to the real vectors.
2137 *
2138 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2139 * empty slot is selected, mapped next to the idmap page, and
2140 * executed before jumping to the real vectors.
2141 *
2142 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2143 * VHE, as we don't have hypervisor-specific mappings. If the system
2144 * is VHE and yet selects this capability, it will be ignored.
2145 */
cpu_set_hyp_vector(void)2146 static void cpu_set_hyp_vector(void)
2147 {
2148 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2149 void *vector = hyp_spectre_vector_selector[data->slot];
2150
2151 if (!is_protected_kvm_enabled())
2152 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2153 else
2154 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2155 }
2156
cpu_hyp_init_context(void)2157 static void cpu_hyp_init_context(void)
2158 {
2159 kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2160
2161 if (!is_kernel_in_hyp_mode())
2162 cpu_init_hyp_mode();
2163 }
2164
cpu_hyp_init_features(void)2165 static void cpu_hyp_init_features(void)
2166 {
2167 cpu_set_hyp_vector();
2168 kvm_arm_init_debug();
2169
2170 if (is_kernel_in_hyp_mode())
2171 kvm_timer_init_vhe();
2172
2173 if (vgic_present)
2174 kvm_vgic_init_cpu_hardware();
2175 }
2176
cpu_hyp_reinit(void)2177 static void cpu_hyp_reinit(void)
2178 {
2179 cpu_hyp_reset();
2180 cpu_hyp_init_context();
2181 cpu_hyp_init_features();
2182 }
2183
cpu_hyp_init(void * discard)2184 static void cpu_hyp_init(void *discard)
2185 {
2186 if (!__this_cpu_read(kvm_hyp_initialized)) {
2187 cpu_hyp_reinit();
2188 __this_cpu_write(kvm_hyp_initialized, 1);
2189 }
2190 }
2191
cpu_hyp_uninit(void * discard)2192 static void cpu_hyp_uninit(void *discard)
2193 {
2194 if (__this_cpu_read(kvm_hyp_initialized)) {
2195 cpu_hyp_reset();
2196 __this_cpu_write(kvm_hyp_initialized, 0);
2197 }
2198 }
2199
kvm_arch_enable_virtualization_cpu(void)2200 int kvm_arch_enable_virtualization_cpu(void)
2201 {
2202 /*
2203 * Most calls to this function are made with migration
2204 * disabled, but not with preemption disabled. The former is
2205 * enough to ensure correctness, but most of the helpers
2206 * expect the later and will throw a tantrum otherwise.
2207 */
2208 preempt_disable();
2209
2210 cpu_hyp_init(NULL);
2211
2212 kvm_vgic_cpu_up();
2213 kvm_timer_cpu_up();
2214
2215 preempt_enable();
2216
2217 return 0;
2218 }
2219
kvm_arch_disable_virtualization_cpu(void)2220 void kvm_arch_disable_virtualization_cpu(void)
2221 {
2222 kvm_timer_cpu_down();
2223 kvm_vgic_cpu_down();
2224
2225 if (!is_protected_kvm_enabled())
2226 cpu_hyp_uninit(NULL);
2227 }
2228
2229 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2230 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2231 unsigned long cmd,
2232 void *v)
2233 {
2234 /*
2235 * kvm_hyp_initialized is left with its old value over
2236 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2237 * re-enable hyp.
2238 */
2239 switch (cmd) {
2240 case CPU_PM_ENTER:
2241 if (__this_cpu_read(kvm_hyp_initialized))
2242 /*
2243 * don't update kvm_hyp_initialized here
2244 * so that the hyp will be re-enabled
2245 * when we resume. See below.
2246 */
2247 cpu_hyp_reset();
2248
2249 return NOTIFY_OK;
2250 case CPU_PM_ENTER_FAILED:
2251 case CPU_PM_EXIT:
2252 if (__this_cpu_read(kvm_hyp_initialized))
2253 /* The hyp was enabled before suspend. */
2254 cpu_hyp_reinit();
2255
2256 return NOTIFY_OK;
2257
2258 default:
2259 return NOTIFY_DONE;
2260 }
2261 }
2262
2263 static struct notifier_block hyp_init_cpu_pm_nb = {
2264 .notifier_call = hyp_init_cpu_pm_notifier,
2265 };
2266
hyp_cpu_pm_init(void)2267 static void __init hyp_cpu_pm_init(void)
2268 {
2269 if (!is_protected_kvm_enabled())
2270 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2271 }
hyp_cpu_pm_exit(void)2272 static void __init hyp_cpu_pm_exit(void)
2273 {
2274 if (!is_protected_kvm_enabled())
2275 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2276 }
2277 #else
hyp_cpu_pm_init(void)2278 static inline void __init hyp_cpu_pm_init(void)
2279 {
2280 }
hyp_cpu_pm_exit(void)2281 static inline void __init hyp_cpu_pm_exit(void)
2282 {
2283 }
2284 #endif
2285
init_cpu_logical_map(void)2286 static void __init init_cpu_logical_map(void)
2287 {
2288 unsigned int cpu;
2289
2290 /*
2291 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2292 * Only copy the set of online CPUs whose features have been checked
2293 * against the finalized system capabilities. The hypervisor will not
2294 * allow any other CPUs from the `possible` set to boot.
2295 */
2296 for_each_online_cpu(cpu)
2297 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2298 }
2299
2300 #define init_psci_0_1_impl_state(config, what) \
2301 config.psci_0_1_ ## what ## _implemented = psci_ops.what
2302
init_psci_relay(void)2303 static bool __init init_psci_relay(void)
2304 {
2305 /*
2306 * If PSCI has not been initialized, protected KVM cannot install
2307 * itself on newly booted CPUs.
2308 */
2309 if (!psci_ops.get_version) {
2310 kvm_err("Cannot initialize protected mode without PSCI\n");
2311 return false;
2312 }
2313
2314 kvm_host_psci_config.version = psci_ops.get_version();
2315 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2316
2317 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2318 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2319 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2320 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2321 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2322 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2323 }
2324 return true;
2325 }
2326
init_subsystems(void)2327 static int __init init_subsystems(void)
2328 {
2329 int err = 0;
2330
2331 /*
2332 * Enable hardware so that subsystem initialisation can access EL2.
2333 */
2334 on_each_cpu(cpu_hyp_init, NULL, 1);
2335
2336 /*
2337 * Register CPU lower-power notifier
2338 */
2339 hyp_cpu_pm_init();
2340
2341 /*
2342 * Init HYP view of VGIC
2343 */
2344 err = kvm_vgic_hyp_init();
2345 switch (err) {
2346 case 0:
2347 vgic_present = true;
2348 break;
2349 case -ENODEV:
2350 case -ENXIO:
2351 vgic_present = false;
2352 err = 0;
2353 break;
2354 default:
2355 goto out;
2356 }
2357
2358 /*
2359 * Init HYP architected timer support
2360 */
2361 err = kvm_timer_hyp_init(vgic_present);
2362 if (err)
2363 goto out;
2364
2365 kvm_register_perf_callbacks(NULL);
2366
2367 err = hyp_trace_init_tracefs();
2368 if (err)
2369 kvm_err("Failed to initialize Hyp tracing\n");
2370 out:
2371 if (err)
2372 hyp_cpu_pm_exit();
2373
2374 if (err || !is_protected_kvm_enabled())
2375 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2376
2377 return err;
2378 }
2379
teardown_subsystems(void)2380 static void __init teardown_subsystems(void)
2381 {
2382 kvm_unregister_perf_callbacks();
2383 hyp_cpu_pm_exit();
2384 }
2385
teardown_hyp_mode(void)2386 static void __init teardown_hyp_mode(void)
2387 {
2388 bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2389 int cpu;
2390
2391 free_hyp_pgds();
2392 for_each_possible_cpu(cpu) {
2393 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2394
2395 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2396 continue;
2397
2398 if (free_sve) {
2399 struct cpu_sve_state *sve_state;
2400
2401 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2402 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2403 }
2404
2405 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2406
2407 }
2408 }
2409
do_pkvm_init(void)2410 static int __init do_pkvm_init(void)
2411 {
2412 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2413 int ret;
2414
2415 preempt_disable();
2416 cpu_hyp_init_context();
2417 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2418 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2419 hyp_va_bits);
2420 cpu_hyp_init_features();
2421
2422 /*
2423 * The stub hypercalls are now disabled, so set our local flag to
2424 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2425 */
2426 __this_cpu_write(kvm_hyp_initialized, 1);
2427 preempt_enable();
2428
2429 return ret;
2430 }
2431
get_hyp_id_aa64pfr0_el1(void)2432 static u64 get_hyp_id_aa64pfr0_el1(void)
2433 {
2434 /*
2435 * Track whether the system isn't affected by spectre/meltdown in the
2436 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2437 * Although this is per-CPU, we make it global for simplicity, e.g., not
2438 * to have to worry about vcpu migration.
2439 *
2440 * Unlike for non-protected VMs, userspace cannot override this for
2441 * protected VMs.
2442 */
2443 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2444
2445 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2446 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2447
2448 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2449 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2450 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2451 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2452
2453 return val;
2454 }
2455
kvm_hyp_init_symbols(void)2456 static void kvm_hyp_init_symbols(void)
2457 {
2458 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2459 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2460 kvm_nvhe_sym(id_aa64zfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
2461 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2462 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2463 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2464 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2465 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2466 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2467 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2468 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2469 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2470 kvm_nvhe_sym(smccc_trng_available) = smccc_trng_available;
2471
2472 /*
2473 * Flush entire BSS since part of its data is read while the MMU is off.
2474 */
2475 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2476 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2477 }
2478
kvm_hyp_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2479 static unsigned long kvm_hyp_shrinker_count(struct shrinker *shrinker,
2480 struct shrink_control *sc)
2481 {
2482 unsigned long reclaimable = kvm_call_hyp_nvhe(__pkvm_hyp_alloc_mgt_reclaimable);
2483
2484 return reclaimable ? reclaimable : SHRINK_EMPTY;
2485 }
2486
kvm_hyp_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2487 static unsigned long kvm_hyp_shrinker_scan(struct shrinker *shrinker,
2488 struct shrink_control *sc)
2489 {
2490 return __pkvm_reclaim_hyp_alloc_mgt(sc->nr_to_scan);
2491 }
2492
kvm_hyp_init_protection(void)2493 static int __init kvm_hyp_init_protection(void)
2494 {
2495 void *addr = phys_to_virt(hyp_mem_base);
2496 struct shrinker *shrinker;
2497 int ret;
2498
2499 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2500 if (ret)
2501 return ret;
2502
2503 ret = do_pkvm_init();
2504 if (ret)
2505 return ret;
2506
2507 free_hyp_pgds();
2508
2509 shrinker = shrinker_alloc(0, "pkvm");
2510 if (!shrinker) {
2511 pr_warn("Failed to register pKVM shrinker");
2512 } else {
2513 shrinker->count_objects = kvm_hyp_shrinker_count;
2514 shrinker->scan_objects = kvm_hyp_shrinker_scan;
2515 shrinker->seeks = DEFAULT_SEEKS;
2516
2517 shrinker_register(shrinker);
2518 }
2519
2520 return 0;
2521 }
2522
init_pkvm_host_sve_state(void)2523 static int init_pkvm_host_sve_state(void)
2524 {
2525 int cpu;
2526
2527 if (!system_supports_sve())
2528 return 0;
2529
2530 /* Allocate pages for host sve state in protected mode. */
2531 for_each_possible_cpu(cpu) {
2532 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2533
2534 if (!page)
2535 return -ENOMEM;
2536
2537 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2538 }
2539
2540 /*
2541 * Don't map the pages in hyp since these are only used in protected
2542 * mode, which will (re)create its own mapping when initialized.
2543 */
2544
2545 return 0;
2546 }
2547
2548 /*
2549 * Finalizes the initialization of hyp mode, once everything else is initialized
2550 * and the initialziation process cannot fail.
2551 */
finalize_init_hyp_mode(void)2552 static void finalize_init_hyp_mode(void)
2553 {
2554 int cpu;
2555
2556 if (system_supports_sve() && is_protected_kvm_enabled()) {
2557 for_each_possible_cpu(cpu) {
2558 struct cpu_sve_state *sve_state;
2559
2560 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2561 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2562 kern_hyp_va(sve_state);
2563 }
2564 }
2565 }
2566
pkvm_hyp_init_ptrauth(void)2567 static void pkvm_hyp_init_ptrauth(void)
2568 {
2569 struct kvm_cpu_context *hyp_ctxt;
2570 int cpu;
2571
2572 for_each_possible_cpu(cpu) {
2573 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2574 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2575 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2576 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2577 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2578 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2579 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2580 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2581 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2582 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2583 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2584 }
2585 }
2586
2587 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2588 static int __init init_hyp_mode(void)
2589 {
2590 int cpu;
2591 int err = -ENOMEM;
2592
2593 /*
2594 * The protected Hyp-mode cannot be initialized if the memory pool
2595 * allocation has failed.
2596 */
2597 if (is_protected_kvm_enabled() && !hyp_mem_base)
2598 goto out_err;
2599
2600 /*
2601 * Allocate Hyp PGD and setup Hyp identity mapping
2602 */
2603 err = kvm_mmu_init();
2604 if (err)
2605 goto out_err;
2606
2607 /*
2608 * Allocate stack pages for Hypervisor-mode
2609 */
2610 for_each_possible_cpu(cpu) {
2611 unsigned long stack_base;
2612
2613 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2614 if (!stack_base) {
2615 err = -ENOMEM;
2616 goto out_err;
2617 }
2618
2619 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2620 }
2621
2622 /*
2623 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2624 */
2625 for_each_possible_cpu(cpu) {
2626 struct page *page;
2627 void *page_addr;
2628
2629 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2630 if (!page) {
2631 err = -ENOMEM;
2632 goto out_err;
2633 }
2634
2635 page_addr = page_address(page);
2636 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2637 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2638 }
2639
2640 /*
2641 * Map the Hyp-code called directly from the host
2642 */
2643 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2644 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2645 if (err) {
2646 kvm_err("Cannot map world-switch code\n");
2647 goto out_err;
2648 }
2649
2650 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2651 kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2652 if (err) {
2653 kvm_err("Cannot map .hyp.data section\n");
2654 goto out_err;
2655 }
2656
2657 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2658 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2659 if (err) {
2660 kvm_err("Cannot map .hyp.rodata section\n");
2661 goto out_err;
2662 }
2663
2664 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2665 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2666 if (err) {
2667 kvm_err("Cannot map rodata section\n");
2668 goto out_err;
2669 }
2670
2671 /*
2672 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2673 * section thanks to an assertion in the linker script. Map it RW and
2674 * the rest of .bss RO.
2675 */
2676 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2677 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2678 if (err) {
2679 kvm_err("Cannot map hyp bss section: %d\n", err);
2680 goto out_err;
2681 }
2682
2683 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2684 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2685 if (err) {
2686 kvm_err("Cannot map bss section\n");
2687 goto out_err;
2688 }
2689
2690 /*
2691 * Map the Hyp stack pages
2692 */
2693 for_each_possible_cpu(cpu) {
2694 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2695 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2696
2697 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va);
2698 if (err) {
2699 kvm_err("Cannot map hyp stack\n");
2700 goto out_err;
2701 }
2702
2703 /*
2704 * Save the stack PA in nvhe_init_params. This will be needed
2705 * to recreate the stack mapping in protected nVHE mode.
2706 * __hyp_pa() won't do the right thing there, since the stack
2707 * has been mapped in the flexible private VA space.
2708 */
2709 params->stack_pa = __pa(stack_base);
2710 }
2711
2712 for_each_possible_cpu(cpu) {
2713 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2714 char *percpu_end = percpu_begin + nvhe_percpu_size();
2715
2716 /* Map Hyp percpu pages */
2717 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2718 if (err) {
2719 kvm_err("Cannot map hyp percpu region\n");
2720 goto out_err;
2721 }
2722
2723 /* Prepare the CPU initialization parameters */
2724 cpu_prepare_hyp_mode(cpu);
2725 }
2726
2727 kvm_hyp_init_symbols();
2728
2729 hyp_trace_init_events();
2730
2731 if (is_protected_kvm_enabled()) {
2732 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2733 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2734 pkvm_hyp_init_ptrauth();
2735
2736 init_cpu_logical_map();
2737
2738 if (!init_psci_relay()) {
2739 err = -ENODEV;
2740 goto out_err;
2741 }
2742
2743 err = init_pkvm_host_sve_state();
2744 if (err)
2745 goto out_err;
2746
2747 err = kvm_hyp_init_protection();
2748 if (err) {
2749 kvm_err("Failed to init hyp memory protection\n");
2750 goto out_err;
2751 }
2752 }
2753
2754 return 0;
2755
2756 out_err:
2757 teardown_hyp_mode();
2758 kvm_err("error initializing Hyp mode: %d\n", err);
2759 return err;
2760 }
2761
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2762 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2763 {
2764 struct kvm_vcpu *vcpu = NULL;
2765 struct kvm_mpidr_data *data;
2766 unsigned long i;
2767
2768 mpidr &= MPIDR_HWID_BITMASK;
2769
2770 rcu_read_lock();
2771 data = rcu_dereference(kvm->arch.mpidr_data);
2772
2773 if (data) {
2774 u16 idx = kvm_mpidr_index(data, mpidr);
2775
2776 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2777 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2778 vcpu = NULL;
2779 }
2780
2781 rcu_read_unlock();
2782
2783 if (vcpu)
2784 return vcpu;
2785
2786 kvm_for_each_vcpu(i, vcpu, kvm) {
2787 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2788 return vcpu;
2789 }
2790 return NULL;
2791 }
2792
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2793 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2794 {
2795 return irqchip_in_kernel(kvm);
2796 }
2797
kvm_arch_has_irq_bypass(void)2798 bool kvm_arch_has_irq_bypass(void)
2799 {
2800 return true;
2801 }
2802
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2803 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2804 struct irq_bypass_producer *prod)
2805 {
2806 struct kvm_kernel_irqfd *irqfd =
2807 container_of(cons, struct kvm_kernel_irqfd, consumer);
2808
2809 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2810 &irqfd->irq_entry);
2811 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2812 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2813 struct irq_bypass_producer *prod)
2814 {
2815 struct kvm_kernel_irqfd *irqfd =
2816 container_of(cons, struct kvm_kernel_irqfd, consumer);
2817
2818 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2819 &irqfd->irq_entry);
2820 }
2821
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2822 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2823 {
2824 struct kvm_kernel_irqfd *irqfd =
2825 container_of(cons, struct kvm_kernel_irqfd, consumer);
2826
2827 kvm_arm_halt_guest(irqfd->kvm);
2828 }
2829
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2830 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2831 {
2832 struct kvm_kernel_irqfd *irqfd =
2833 container_of(cons, struct kvm_kernel_irqfd, consumer);
2834
2835 kvm_arm_resume_guest(irqfd->kvm);
2836 }
2837
2838 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2839 static __init int kvm_arm_init(void)
2840 {
2841 int err;
2842 bool in_hyp_mode;
2843
2844 if (!is_hyp_mode_available()) {
2845 kvm_info("HYP mode not available\n");
2846 return -ENODEV;
2847 }
2848
2849 if (kvm_get_mode() == KVM_MODE_NONE) {
2850 kvm_info("KVM disabled from command line\n");
2851 return -ENODEV;
2852 }
2853
2854 err = kvm_sys_reg_table_init();
2855 if (err) {
2856 kvm_info("Error initializing system register tables");
2857 return err;
2858 }
2859
2860 in_hyp_mode = is_kernel_in_hyp_mode();
2861
2862 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2863 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2864 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2865 "Only trusted guests should be used on this system.\n");
2866
2867 err = kvm_set_ipa_limit();
2868 if (err)
2869 return err;
2870
2871 err = kvm_arm_init_sve();
2872 if (err)
2873 return err;
2874
2875 err = kvm_arm_vmid_alloc_init();
2876 if (err) {
2877 kvm_err("Failed to initialize VMID allocator.\n");
2878 return err;
2879 }
2880
2881 if (!in_hyp_mode) {
2882 err = init_hyp_mode();
2883 if (err)
2884 goto out_err;
2885 }
2886
2887 err = kvm_init_vector_slots();
2888 if (err) {
2889 kvm_err("Cannot initialise vector slots\n");
2890 goto out_hyp;
2891 }
2892
2893 err = init_subsystems();
2894 if (err)
2895 goto out_hyp;
2896
2897 kvm_info("%s%sVHE mode initialized successfully\n",
2898 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2899 "Protected " : "Hyp "),
2900 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2901 "h" : "n"));
2902
2903 /*
2904 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2905 * hypervisor protection is finalized.
2906 */
2907 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2908 if (err)
2909 goto out_subs;
2910
2911 /*
2912 * This should be called after initialization is done and failure isn't
2913 * possible anymore.
2914 */
2915 if (!in_hyp_mode)
2916 finalize_init_hyp_mode();
2917
2918 kvm_arm_initialised = true;
2919
2920 return 0;
2921
2922 out_subs:
2923 teardown_subsystems();
2924 out_hyp:
2925 if (!in_hyp_mode)
2926 teardown_hyp_mode();
2927 out_err:
2928 kvm_arm_vmid_alloc_free();
2929 return err;
2930 }
2931
early_kvm_mode_cfg(char * arg)2932 static int __init early_kvm_mode_cfg(char *arg)
2933 {
2934 if (!arg)
2935 return -EINVAL;
2936
2937 if (strcmp(arg, "none") == 0) {
2938 kvm_mode = KVM_MODE_NONE;
2939 return 0;
2940 }
2941
2942 if (!is_hyp_mode_available()) {
2943 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2944 return 0;
2945 }
2946
2947 if (strcmp(arg, "protected") == 0) {
2948 if (!is_kernel_in_hyp_mode())
2949 kvm_mode = KVM_MODE_PROTECTED;
2950 else
2951 pr_warn_once("Protected KVM not available with VHE\n");
2952
2953 return 0;
2954 }
2955
2956 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2957 kvm_mode = KVM_MODE_DEFAULT;
2958 return 0;
2959 }
2960
2961 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2962 kvm_mode = KVM_MODE_NV;
2963 return 0;
2964 }
2965
2966 return -EINVAL;
2967 }
2968 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2969
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2970 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2971 {
2972 if (!arg)
2973 return -EINVAL;
2974
2975 if (strcmp(arg, "trap") == 0) {
2976 *p = KVM_WFX_TRAP;
2977 return 0;
2978 }
2979
2980 if (strcmp(arg, "notrap") == 0) {
2981 *p = KVM_WFX_NOTRAP;
2982 return 0;
2983 }
2984
2985 return -EINVAL;
2986 }
2987
early_kvm_wfi_trap_policy_cfg(char * arg)2988 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2989 {
2990 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2991 }
2992 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2993
early_kvm_wfe_trap_policy_cfg(char * arg)2994 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2995 {
2996 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2997 }
2998 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2999
kvm_get_mode(void)3000 enum kvm_mode kvm_get_mode(void)
3001 {
3002 return kvm_mode;
3003 }
3004
3005 module_init(kvm_arm_init);
3006