• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 #define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
19 
20 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
21 
22 static LIST_HEAD(arm_pmus);
23 static DEFINE_MUTEX(arm_pmus_lock);
24 
25 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
26 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
27 
kvm_pmc_to_vcpu(const struct kvm_pmc * pmc)28 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
29 {
30 	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
31 }
32 
kvm_vcpu_idx_to_pmc(struct kvm_vcpu * vcpu,int cnt_idx)33 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
34 {
35 	return &vcpu->arch.pmu.pmc[cnt_idx];
36 }
37 
__kvm_pmu_event_mask(unsigned int pmuver)38 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
39 {
40 	switch (pmuver) {
41 	case ID_AA64DFR0_EL1_PMUVer_IMP:
42 		return GENMASK(9, 0);
43 	case ID_AA64DFR0_EL1_PMUVer_V3P1:
44 	case ID_AA64DFR0_EL1_PMUVer_V3P4:
45 	case ID_AA64DFR0_EL1_PMUVer_V3P5:
46 	case ID_AA64DFR0_EL1_PMUVer_V3P7:
47 		return GENMASK(15, 0);
48 	default:		/* Shouldn't be here, just for sanity */
49 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
50 		return 0;
51 	}
52 }
53 
kvm_pmu_event_mask(struct kvm * kvm)54 static u32 kvm_pmu_event_mask(struct kvm *kvm)
55 {
56 	u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
57 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
58 
59 	return __kvm_pmu_event_mask(pmuver);
60 }
61 
kvm_pmu_evtyper_mask(struct kvm * kvm)62 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
63 {
64 	u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
65 		   kvm_pmu_event_mask(kvm);
66 
67 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
68 		mask |= ARMV8_PMU_INCLUDE_EL2;
69 
70 	if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
71 		mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
72 			ARMV8_PMU_EXCLUDE_NS_EL1 |
73 			ARMV8_PMU_EXCLUDE_EL3;
74 
75 	return mask;
76 }
77 
78 /**
79  * kvm_pmc_is_64bit - determine if counter is 64bit
80  * @pmc: counter context
81  */
kvm_pmc_is_64bit(struct kvm_pmc * pmc)82 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
83 {
84 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
85 
86 	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
87 		kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
88 }
89 
kvm_pmc_has_64bit_overflow(struct kvm_pmc * pmc)90 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
91 {
92 	u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
93 
94 	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
95 	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
96 }
97 
kvm_pmu_counter_can_chain(struct kvm_pmc * pmc)98 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
99 {
100 	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
101 		!kvm_pmc_has_64bit_overflow(pmc));
102 }
103 
counter_index_to_reg(u64 idx)104 static u32 counter_index_to_reg(u64 idx)
105 {
106 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
107 }
108 
counter_index_to_evtreg(u64 idx)109 static u32 counter_index_to_evtreg(u64 idx)
110 {
111 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
112 }
113 
kvm_pmu_get_pmc_value(struct kvm_pmc * pmc)114 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
115 {
116 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
117 	u64 counter, reg, enabled, running;
118 
119 	reg = counter_index_to_reg(pmc->idx);
120 	counter = __vcpu_sys_reg(vcpu, reg);
121 
122 	/*
123 	 * The real counter value is equal to the value of counter register plus
124 	 * the value perf event counts.
125 	 */
126 	if (pmc->perf_event)
127 		counter += perf_event_read_value(pmc->perf_event, &enabled,
128 						 &running);
129 
130 	if (!kvm_pmc_is_64bit(pmc))
131 		counter = lower_32_bits(counter);
132 
133 	return counter;
134 }
135 
136 /**
137  * kvm_pmu_get_counter_value - get PMU counter value
138  * @vcpu: The vcpu pointer
139  * @select_idx: The counter index
140  */
kvm_pmu_get_counter_value(struct kvm_vcpu * vcpu,u64 select_idx)141 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
142 {
143 	if (!kvm_vcpu_has_pmu(vcpu))
144 		return 0;
145 
146 	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
147 }
148 
kvm_pmu_set_pmc_value(struct kvm_pmc * pmc,u64 val,bool force)149 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
150 {
151 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
152 	u64 reg;
153 
154 	kvm_pmu_release_perf_event(pmc);
155 
156 	reg = counter_index_to_reg(pmc->idx);
157 
158 	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
159 	    !force) {
160 		/*
161 		 * Even with PMUv3p5, AArch32 cannot write to the top
162 		 * 32bit of the counters. The only possible course of
163 		 * action is to use PMCR.P, which will reset them to
164 		 * 0 (the only use of the 'force' parameter).
165 		 */
166 		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
167 		val |= lower_32_bits(val);
168 	}
169 
170 	__vcpu_sys_reg(vcpu, reg) = val;
171 
172 	/* Recreate the perf event to reflect the updated sample_period */
173 	kvm_pmu_create_perf_event(pmc);
174 }
175 
176 /**
177  * kvm_pmu_set_counter_value - set PMU counter value
178  * @vcpu: The vcpu pointer
179  * @select_idx: The counter index
180  * @val: The counter value
181  */
kvm_pmu_set_counter_value(struct kvm_vcpu * vcpu,u64 select_idx,u64 val)182 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
183 {
184 	if (!kvm_vcpu_has_pmu(vcpu))
185 		return;
186 
187 	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
188 }
189 
190 /**
191  * kvm_pmu_release_perf_event - remove the perf event
192  * @pmc: The PMU counter pointer
193  */
kvm_pmu_release_perf_event(struct kvm_pmc * pmc)194 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
195 {
196 	if (pmc->perf_event) {
197 		perf_event_disable(pmc->perf_event);
198 		perf_event_release_kernel(pmc->perf_event);
199 		pmc->perf_event = NULL;
200 	}
201 }
202 
203 /**
204  * kvm_pmu_stop_counter - stop PMU counter
205  * @pmc: The PMU counter pointer
206  *
207  * If this counter has been configured to monitor some event, release it here.
208  */
kvm_pmu_stop_counter(struct kvm_pmc * pmc)209 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
210 {
211 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
212 	u64 reg, val;
213 
214 	if (!pmc->perf_event)
215 		return;
216 
217 	val = kvm_pmu_get_pmc_value(pmc);
218 
219 	reg = counter_index_to_reg(pmc->idx);
220 
221 	__vcpu_sys_reg(vcpu, reg) = val;
222 
223 	kvm_pmu_release_perf_event(pmc);
224 }
225 
226 /**
227  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
228  * @vcpu: The vcpu pointer
229  *
230  */
kvm_pmu_vcpu_init(struct kvm_vcpu * vcpu)231 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
232 {
233 	int i;
234 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
235 
236 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
237 		pmu->pmc[i].idx = i;
238 }
239 
240 /**
241  * kvm_pmu_vcpu_reset - reset pmu state for cpu
242  * @vcpu: The vcpu pointer
243  *
244  */
kvm_pmu_vcpu_reset(struct kvm_vcpu * vcpu)245 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
246 {
247 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
248 	int i;
249 
250 	for_each_set_bit(i, &mask, 32)
251 		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
252 }
253 
254 /**
255  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
256  * @vcpu: The vcpu pointer
257  *
258  */
kvm_pmu_vcpu_destroy(struct kvm_vcpu * vcpu)259 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
260 {
261 	int i;
262 
263 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
264 		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
265 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
266 }
267 
kvm_pmu_valid_counter_mask(struct kvm_vcpu * vcpu)268 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
269 {
270 	u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
271 
272 	if (val == 0)
273 		return BIT(ARMV8_PMU_CYCLE_IDX);
274 	else
275 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
276 }
277 
278 /**
279  * kvm_pmu_enable_counter_mask - enable selected PMU counters
280  * @vcpu: The vcpu pointer
281  * @val: the value guest writes to PMCNTENSET register
282  *
283  * Call perf_event_enable to start counting the perf event
284  */
kvm_pmu_enable_counter_mask(struct kvm_vcpu * vcpu,u64 val)285 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
286 {
287 	int i;
288 	if (!kvm_vcpu_has_pmu(vcpu))
289 		return;
290 
291 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
292 		return;
293 
294 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
295 		struct kvm_pmc *pmc;
296 
297 		if (!(val & BIT(i)))
298 			continue;
299 
300 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
301 
302 		if (!pmc->perf_event) {
303 			kvm_pmu_create_perf_event(pmc);
304 		} else {
305 			perf_event_enable(pmc->perf_event);
306 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
307 				kvm_debug("fail to enable perf event\n");
308 		}
309 	}
310 }
311 
312 /**
313  * kvm_pmu_disable_counter_mask - disable selected PMU counters
314  * @vcpu: The vcpu pointer
315  * @val: the value guest writes to PMCNTENCLR register
316  *
317  * Call perf_event_disable to stop counting the perf event
318  */
kvm_pmu_disable_counter_mask(struct kvm_vcpu * vcpu,u64 val)319 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
320 {
321 	int i;
322 
323 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
324 		return;
325 
326 	for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
327 		struct kvm_pmc *pmc;
328 
329 		if (!(val & BIT(i)))
330 			continue;
331 
332 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
333 
334 		if (pmc->perf_event)
335 			perf_event_disable(pmc->perf_event);
336 	}
337 }
338 
kvm_pmu_overflow_status(struct kvm_vcpu * vcpu)339 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
340 {
341 	u64 reg = 0;
342 
343 	if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
344 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
345 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
346 	}
347 
348 	return reg;
349 }
350 
kvm_pmu_update_state(struct kvm_vcpu * vcpu)351 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
352 {
353 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
354 	bool overflow;
355 
356 	if (!kvm_vcpu_has_pmu(vcpu))
357 		return;
358 
359 	overflow = !!kvm_pmu_overflow_status(vcpu);
360 	if (pmu->irq_level == overflow)
361 		return;
362 
363 	pmu->irq_level = overflow;
364 
365 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
366 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
367 					      pmu->irq_num, overflow, pmu);
368 		WARN_ON(ret);
369 	}
370 }
371 
kvm_pmu_should_notify_user(struct kvm_vcpu * vcpu)372 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
373 {
374 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
375 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
376 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
377 
378 	if (likely(irqchip_in_kernel(vcpu->kvm)))
379 		return false;
380 
381 	return pmu->irq_level != run_level;
382 }
383 
384 /*
385  * Reflect the PMU overflow interrupt output level into the kvm_run structure
386  */
kvm_pmu_update_run(struct kvm_vcpu * vcpu)387 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
388 {
389 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
390 
391 	/* Populate the timer bitmap for user space */
392 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
393 	if (vcpu->arch.pmu.irq_level)
394 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
395 }
396 
397 /**
398  * kvm_pmu_flush_hwstate - flush pmu state to cpu
399  * @vcpu: The vcpu pointer
400  *
401  * Check if the PMU has overflowed while we were running in the host, and inject
402  * an interrupt if that was the case.
403  */
kvm_pmu_flush_hwstate(struct kvm_vcpu * vcpu)404 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
405 {
406 	kvm_pmu_update_state(vcpu);
407 }
408 
409 /**
410  * kvm_pmu_sync_hwstate - sync pmu state from cpu
411  * @vcpu: The vcpu pointer
412  *
413  * Check if the PMU has overflowed while we were running in the guest, and
414  * inject an interrupt if that was the case.
415  */
kvm_pmu_sync_hwstate(struct kvm_vcpu * vcpu)416 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
417 {
418 	kvm_pmu_update_state(vcpu);
419 }
420 
421 /*
422  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
423  * to the event.
424  * This is why we need a callback to do it once outside of the NMI context.
425  */
kvm_pmu_perf_overflow_notify_vcpu(struct irq_work * work)426 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
427 {
428 	struct kvm_vcpu *vcpu;
429 
430 	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
431 	kvm_vcpu_kick(vcpu);
432 }
433 
434 /*
435  * Perform an increment on any of the counters described in @mask,
436  * generating the overflow if required, and propagate it as a chained
437  * event if possible.
438  */
kvm_pmu_counter_increment(struct kvm_vcpu * vcpu,unsigned long mask,u32 event)439 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
440 				      unsigned long mask, u32 event)
441 {
442 	int i;
443 
444 	if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
445 		return;
446 
447 	/* Weed out disabled counters */
448 	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
449 
450 	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
451 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
452 		u64 type, reg;
453 
454 		/* Filter on event type */
455 		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
456 		type &= kvm_pmu_event_mask(vcpu->kvm);
457 		if (type != event)
458 			continue;
459 
460 		/* Increment this counter */
461 		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
462 		if (!kvm_pmc_is_64bit(pmc))
463 			reg = lower_32_bits(reg);
464 		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
465 
466 		/* No overflow? move on */
467 		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
468 			continue;
469 
470 		/* Mark overflow */
471 		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
472 
473 		if (kvm_pmu_counter_can_chain(pmc))
474 			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
475 						  ARMV8_PMUV3_PERFCTR_CHAIN);
476 	}
477 }
478 
479 /* Compute the sample period for a given counter value */
compute_period(struct kvm_pmc * pmc,u64 counter)480 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
481 {
482 	u64 val;
483 
484 	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
485 		val = (-counter) & GENMASK(63, 0);
486 	else
487 		val = (-counter) & GENMASK(31, 0);
488 
489 	return val;
490 }
491 
492 /*
493  * When the perf event overflows, set the overflow status and inform the vcpu.
494  */
kvm_pmu_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)495 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
496 				  struct perf_sample_data *data,
497 				  struct pt_regs *regs)
498 {
499 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
500 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
501 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
502 	int idx = pmc->idx;
503 	u64 period;
504 
505 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
506 
507 	/*
508 	 * Reset the sample period to the architectural limit,
509 	 * i.e. the point where the counter overflows.
510 	 */
511 	period = compute_period(pmc, local64_read(&perf_event->count));
512 
513 	local64_set(&perf_event->hw.period_left, 0);
514 	perf_event->attr.sample_period = period;
515 	perf_event->hw.sample_period = period;
516 
517 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
518 
519 	if (kvm_pmu_counter_can_chain(pmc))
520 		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
521 					  ARMV8_PMUV3_PERFCTR_CHAIN);
522 
523 	if (kvm_pmu_overflow_status(vcpu)) {
524 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
525 
526 		if (!in_nmi())
527 			kvm_vcpu_kick(vcpu);
528 		else
529 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
530 	}
531 
532 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
533 }
534 
535 /**
536  * kvm_pmu_software_increment - do software increment
537  * @vcpu: The vcpu pointer
538  * @val: the value guest writes to PMSWINC register
539  */
kvm_pmu_software_increment(struct kvm_vcpu * vcpu,u64 val)540 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
541 {
542 	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
543 }
544 
545 /**
546  * kvm_pmu_handle_pmcr - handle PMCR register
547  * @vcpu: The vcpu pointer
548  * @val: the value guest writes to PMCR register
549  */
kvm_pmu_handle_pmcr(struct kvm_vcpu * vcpu,u64 val)550 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
551 {
552 	int i;
553 
554 	if (!kvm_vcpu_has_pmu(vcpu))
555 		return;
556 
557 	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
558 	if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
559 		val &= ~ARMV8_PMU_PMCR_LP;
560 
561 	/* The reset bits don't indicate any state, and shouldn't be saved. */
562 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
563 
564 	if (val & ARMV8_PMU_PMCR_E) {
565 		kvm_pmu_enable_counter_mask(vcpu,
566 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
567 	} else {
568 		kvm_pmu_disable_counter_mask(vcpu,
569 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
570 	}
571 
572 	if (val & ARMV8_PMU_PMCR_C)
573 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
574 
575 	if (val & ARMV8_PMU_PMCR_P) {
576 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
577 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
578 		for_each_set_bit(i, &mask, 32)
579 			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
580 	}
581 	kvm_vcpu_pmu_restore_guest(vcpu);
582 }
583 
kvm_pmu_counter_is_enabled(struct kvm_pmc * pmc)584 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
585 {
586 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
587 	return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
588 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
589 }
590 
591 /**
592  * kvm_pmu_create_perf_event - create a perf event for a counter
593  * @pmc: Counter context
594  */
kvm_pmu_create_perf_event(struct kvm_pmc * pmc)595 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
596 {
597 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
598 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
599 	struct perf_event *event;
600 	struct perf_event_attr attr;
601 	u64 eventsel, reg, data;
602 	bool p, u, nsk, nsu;
603 
604 	reg = counter_index_to_evtreg(pmc->idx);
605 	data = __vcpu_sys_reg(vcpu, reg);
606 
607 	kvm_pmu_stop_counter(pmc);
608 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
609 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
610 	else
611 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
612 
613 	/*
614 	 * Neither SW increment nor chained events need to be backed
615 	 * by a perf event.
616 	 */
617 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
618 	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
619 		return;
620 
621 	/*
622 	 * If we have a filter in place and that the event isn't allowed, do
623 	 * not install a perf event either.
624 	 */
625 	if (vcpu->kvm->arch.pmu_filter &&
626 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
627 		return;
628 
629 	p = data & ARMV8_PMU_EXCLUDE_EL1;
630 	u = data & ARMV8_PMU_EXCLUDE_EL0;
631 	nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1;
632 	nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0;
633 
634 	memset(&attr, 0, sizeof(struct perf_event_attr));
635 	attr.type = arm_pmu->pmu.type;
636 	attr.size = sizeof(attr);
637 	attr.pinned = 1;
638 	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
639 	attr.exclude_user = (u != nsu);
640 	attr.exclude_kernel = (p != nsk);
641 	attr.exclude_hv = 1; /* Don't count EL2 events */
642 	attr.exclude_host = 1; /* Don't count host events */
643 	attr.config = eventsel;
644 
645 	/*
646 	 * If counting with a 64bit counter, advertise it to the perf
647 	 * code, carefully dealing with the initial sample period
648 	 * which also depends on the overflow.
649 	 */
650 	if (kvm_pmc_is_64bit(pmc))
651 		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
652 
653 	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
654 
655 	event = perf_event_create_kernel_counter(&attr, -1, current,
656 						 kvm_pmu_perf_overflow, pmc);
657 
658 	if (IS_ERR(event)) {
659 		pr_err_once("kvm: pmu event creation failed %ld\n",
660 			    PTR_ERR(event));
661 		return;
662 	}
663 
664 	pmc->perf_event = event;
665 }
666 
667 /**
668  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
669  * @vcpu: The vcpu pointer
670  * @data: The data guest writes to PMXEVTYPER_EL0
671  * @select_idx: The number of selected counter
672  *
673  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
674  * event with given hardware event number. Here we call perf_event API to
675  * emulate this action and create a kernel perf event for it.
676  */
kvm_pmu_set_counter_event_type(struct kvm_vcpu * vcpu,u64 data,u64 select_idx)677 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
678 				    u64 select_idx)
679 {
680 	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
681 	u64 reg;
682 
683 	if (!kvm_vcpu_has_pmu(vcpu))
684 		return;
685 
686 	reg = counter_index_to_evtreg(pmc->idx);
687 	__vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
688 
689 	kvm_pmu_create_perf_event(pmc);
690 }
691 
kvm_host_pmu_init(struct arm_pmu * pmu)692 void kvm_host_pmu_init(struct arm_pmu *pmu)
693 {
694 	struct arm_pmu_entry *entry;
695 
696 	/*
697 	 * Check the sanitised PMU version for the system, as KVM does not
698 	 * support implementations where PMUv3 exists on a subset of CPUs.
699 	 */
700 	if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
701 		return;
702 
703 	mutex_lock(&arm_pmus_lock);
704 
705 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
706 	if (!entry)
707 		goto out_unlock;
708 
709 	entry->arm_pmu = pmu;
710 	list_add_tail(&entry->entry, &arm_pmus);
711 
712 	if (list_is_singular(&arm_pmus))
713 		static_branch_enable(&kvm_arm_pmu_available);
714 
715 out_unlock:
716 	mutex_unlock(&arm_pmus_lock);
717 }
718 
kvm_pmu_probe_armpmu(void)719 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
720 {
721 	struct arm_pmu *tmp, *pmu = NULL;
722 	struct arm_pmu_entry *entry;
723 	int cpu;
724 
725 	mutex_lock(&arm_pmus_lock);
726 
727 	/*
728 	 * It is safe to use a stale cpu to iterate the list of PMUs so long as
729 	 * the same value is used for the entirety of the loop. Given this, and
730 	 * the fact that no percpu data is used for the lookup there is no need
731 	 * to disable preemption.
732 	 *
733 	 * It is still necessary to get a valid cpu, though, to probe for the
734 	 * default PMU instance as userspace is not required to specify a PMU
735 	 * type. In order to uphold the preexisting behavior KVM selects the
736 	 * PMU instance for the core during vcpu init. A dependent use
737 	 * case would be a user with disdain of all things big.LITTLE that
738 	 * affines the VMM to a particular cluster of cores.
739 	 *
740 	 * In any case, userspace should just do the sane thing and use the UAPI
741 	 * to select a PMU type directly. But, be wary of the baggage being
742 	 * carried here.
743 	 */
744 	cpu = raw_smp_processor_id();
745 	list_for_each_entry(entry, &arm_pmus, entry) {
746 		tmp = entry->arm_pmu;
747 
748 		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
749 			pmu = tmp;
750 			break;
751 		}
752 	}
753 
754 	mutex_unlock(&arm_pmus_lock);
755 
756 	return pmu;
757 }
758 
kvm_pmu_get_pmceid(struct kvm_vcpu * vcpu,bool pmceid1)759 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
760 {
761 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
762 	u64 val, mask = 0;
763 	int base, i, nr_events;
764 
765 	if (!kvm_vcpu_has_pmu(vcpu))
766 		return 0;
767 
768 	if (!pmceid1) {
769 		val = read_sysreg(pmceid0_el0);
770 		/* always support CHAIN */
771 		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
772 		base = 0;
773 	} else {
774 		val = read_sysreg(pmceid1_el0);
775 		/*
776 		 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
777 		 * as RAZ
778 		 */
779 		val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
780 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
781 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
782 		base = 32;
783 	}
784 
785 	if (!bmap)
786 		return val;
787 
788 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
789 
790 	for (i = 0; i < 32; i += 8) {
791 		u64 byte;
792 
793 		byte = bitmap_get_value8(bmap, base + i);
794 		mask |= byte << i;
795 		if (nr_events >= (0x4000 + base + 32)) {
796 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
797 			mask |= byte << (32 + i);
798 		}
799 	}
800 
801 	return val & mask;
802 }
803 
kvm_vcpu_reload_pmu(struct kvm_vcpu * vcpu)804 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
805 {
806 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
807 
808 	kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
809 
810 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
811 	__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
812 	__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
813 }
814 
kvm_arm_pmu_v3_enable(struct kvm_vcpu * vcpu)815 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
816 {
817 	if (!kvm_vcpu_has_pmu(vcpu))
818 		return 0;
819 
820 	if (!vcpu->arch.pmu.created)
821 		return -EINVAL;
822 
823 	/*
824 	 * A valid interrupt configuration for the PMU is either to have a
825 	 * properly configured interrupt number and using an in-kernel
826 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
827 	 */
828 	if (irqchip_in_kernel(vcpu->kvm)) {
829 		int irq = vcpu->arch.pmu.irq_num;
830 		/*
831 		 * If we are using an in-kernel vgic, at this point we know
832 		 * the vgic will be initialized, so we can check the PMU irq
833 		 * number against the dimensions of the vgic and make sure
834 		 * it's valid.
835 		 */
836 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
837 			return -EINVAL;
838 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
839 		   return -EINVAL;
840 	}
841 
842 	/* One-off reload of the PMU on first run */
843 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
844 
845 	return 0;
846 }
847 
kvm_arm_pmu_v3_init(struct kvm_vcpu * vcpu)848 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
849 {
850 	if (irqchip_in_kernel(vcpu->kvm)) {
851 		int ret;
852 
853 		/*
854 		 * If using the PMU with an in-kernel virtual GIC
855 		 * implementation, we require the GIC to be already
856 		 * initialized when initializing the PMU.
857 		 */
858 		if (!vgic_initialized(vcpu->kvm))
859 			return -ENODEV;
860 
861 		if (!kvm_arm_pmu_irq_initialized(vcpu))
862 			return -ENXIO;
863 
864 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
865 					 &vcpu->arch.pmu);
866 		if (ret)
867 			return ret;
868 	}
869 
870 	init_irq_work(&vcpu->arch.pmu.overflow_work,
871 		      kvm_pmu_perf_overflow_notify_vcpu);
872 
873 	vcpu->arch.pmu.created = true;
874 	return 0;
875 }
876 
877 /*
878  * For one VM the interrupt type must be same for each vcpu.
879  * As a PPI, the interrupt number is the same for all vcpus,
880  * while as an SPI it must be a separate number per vcpu.
881  */
pmu_irq_is_valid(struct kvm * kvm,int irq)882 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
883 {
884 	unsigned long i;
885 	struct kvm_vcpu *vcpu;
886 
887 	kvm_for_each_vcpu(i, vcpu, kvm) {
888 		if (!kvm_arm_pmu_irq_initialized(vcpu))
889 			continue;
890 
891 		if (irq_is_ppi(irq)) {
892 			if (vcpu->arch.pmu.irq_num != irq)
893 				return false;
894 		} else {
895 			if (vcpu->arch.pmu.irq_num == irq)
896 				return false;
897 		}
898 	}
899 
900 	return true;
901 }
902 
903 /**
904  * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
905  * @kvm: The kvm pointer
906  */
kvm_arm_pmu_get_max_counters(struct kvm * kvm)907 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
908 {
909 	struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
910 
911 	/*
912 	 * The arm_pmu->cntr_mask considers the fixed counter(s) as well.
913 	 * Ignore those and return only the general-purpose counters.
914 	 */
915 	return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
916 }
917 
kvm_arm_set_pmu(struct kvm * kvm,struct arm_pmu * arm_pmu)918 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
919 {
920 	lockdep_assert_held(&kvm->arch.config_lock);
921 
922 	kvm->arch.arm_pmu = arm_pmu;
923 	kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
924 }
925 
926 /**
927  * kvm_arm_set_default_pmu - No PMU set, get the default one.
928  * @kvm: The kvm pointer
929  *
930  * The observant among you will notice that the supported_cpus
931  * mask does not get updated for the default PMU even though it
932  * is quite possible the selected instance supports only a
933  * subset of cores in the system. This is intentional, and
934  * upholds the preexisting behavior on heterogeneous systems
935  * where vCPUs can be scheduled on any core but the guest
936  * counters could stop working.
937  */
kvm_arm_set_default_pmu(struct kvm * kvm)938 int kvm_arm_set_default_pmu(struct kvm *kvm)
939 {
940 	struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
941 
942 	if (!arm_pmu)
943 		return -ENODEV;
944 
945 	kvm_arm_set_pmu(kvm, arm_pmu);
946 	return 0;
947 }
948 
kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu * vcpu,int pmu_id)949 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
950 {
951 	struct kvm *kvm = vcpu->kvm;
952 	struct arm_pmu_entry *entry;
953 	struct arm_pmu *arm_pmu;
954 	int ret = -ENXIO;
955 
956 	lockdep_assert_held(&kvm->arch.config_lock);
957 	mutex_lock(&arm_pmus_lock);
958 
959 	list_for_each_entry(entry, &arm_pmus, entry) {
960 		arm_pmu = entry->arm_pmu;
961 		if (arm_pmu->pmu.type == pmu_id) {
962 			if (kvm_vm_has_ran_once(kvm) ||
963 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
964 				ret = -EBUSY;
965 				break;
966 			}
967 
968 			kvm_arm_set_pmu(kvm, arm_pmu);
969 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
970 			ret = 0;
971 			break;
972 		}
973 	}
974 
975 	mutex_unlock(&arm_pmus_lock);
976 	return ret;
977 }
978 
kvm_arm_pmu_v3_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)979 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
980 {
981 	struct kvm *kvm = vcpu->kvm;
982 
983 	lockdep_assert_held(&kvm->arch.config_lock);
984 
985 	if (!kvm_vcpu_has_pmu(vcpu))
986 		return -ENODEV;
987 
988 	if (vcpu->arch.pmu.created)
989 		return -EBUSY;
990 
991 	switch (attr->attr) {
992 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
993 		int __user *uaddr = (int __user *)(long)attr->addr;
994 		int irq;
995 
996 		if (!irqchip_in_kernel(kvm))
997 			return -EINVAL;
998 
999 		if (get_user(irq, uaddr))
1000 			return -EFAULT;
1001 
1002 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1003 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1004 			return -EINVAL;
1005 
1006 		if (!pmu_irq_is_valid(kvm, irq))
1007 			return -EINVAL;
1008 
1009 		if (kvm_arm_pmu_irq_initialized(vcpu))
1010 			return -EBUSY;
1011 
1012 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1013 		vcpu->arch.pmu.irq_num = irq;
1014 		return 0;
1015 	}
1016 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
1017 		u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1018 		struct kvm_pmu_event_filter __user *uaddr;
1019 		struct kvm_pmu_event_filter filter;
1020 		int nr_events;
1021 
1022 		/*
1023 		 * Allow userspace to specify an event filter for the entire
1024 		 * event range supported by PMUVer of the hardware, rather
1025 		 * than the guest's PMUVer for KVM backward compatibility.
1026 		 */
1027 		nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1028 
1029 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1030 
1031 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
1032 			return -EFAULT;
1033 
1034 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
1035 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
1036 		     filter.action != KVM_PMU_EVENT_DENY))
1037 			return -EINVAL;
1038 
1039 		if (kvm_vm_has_ran_once(kvm))
1040 			return -EBUSY;
1041 
1042 		if (!kvm->arch.pmu_filter) {
1043 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1044 			if (!kvm->arch.pmu_filter)
1045 				return -ENOMEM;
1046 
1047 			/*
1048 			 * The default depends on the first applied filter.
1049 			 * If it allows events, the default is to deny.
1050 			 * Conversely, if the first filter denies a set of
1051 			 * events, the default is to allow.
1052 			 */
1053 			if (filter.action == KVM_PMU_EVENT_ALLOW)
1054 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1055 			else
1056 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1057 		}
1058 
1059 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1060 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1061 		else
1062 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1063 
1064 		return 0;
1065 	}
1066 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1067 		int __user *uaddr = (int __user *)(long)attr->addr;
1068 		int pmu_id;
1069 
1070 		if (get_user(pmu_id, uaddr))
1071 			return -EFAULT;
1072 
1073 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1074 	}
1075 	case KVM_ARM_VCPU_PMU_V3_INIT:
1076 		return kvm_arm_pmu_v3_init(vcpu);
1077 	}
1078 
1079 	return -ENXIO;
1080 }
1081 
kvm_arm_pmu_v3_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1082 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1083 {
1084 	switch (attr->attr) {
1085 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1086 		int __user *uaddr = (int __user *)(long)attr->addr;
1087 		int irq;
1088 
1089 		if (!irqchip_in_kernel(vcpu->kvm))
1090 			return -EINVAL;
1091 
1092 		if (!kvm_vcpu_has_pmu(vcpu))
1093 			return -ENODEV;
1094 
1095 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1096 			return -ENXIO;
1097 
1098 		irq = vcpu->arch.pmu.irq_num;
1099 		return put_user(irq, uaddr);
1100 	}
1101 	}
1102 
1103 	return -ENXIO;
1104 }
1105 
kvm_arm_pmu_v3_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1106 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1107 {
1108 	switch (attr->attr) {
1109 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1110 	case KVM_ARM_VCPU_PMU_V3_INIT:
1111 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1112 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1113 		if (kvm_vcpu_has_pmu(vcpu))
1114 			return 0;
1115 	}
1116 
1117 	return -ENXIO;
1118 }
1119 
kvm_arm_pmu_get_pmuver_limit(void)1120 u8 kvm_arm_pmu_get_pmuver_limit(void)
1121 {
1122 	u64 tmp;
1123 
1124 	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1125 	tmp = cpuid_feature_cap_perfmon_field(tmp,
1126 					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1127 					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1128 	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1129 }
1130 
1131 /**
1132  * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1133  * @vcpu: The vcpu pointer
1134  */
kvm_vcpu_read_pmcr(struct kvm_vcpu * vcpu)1135 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1136 {
1137 	u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1138 
1139 	return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
1140 }
1141