• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 #include <linux/sched/vhost_task.h>
30 #include <linux/call_once.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/asm.h>
39 #include <asm/kvm_page_track.h>
40 #include <asm/kvm_vcpu_regs.h>
41 #include <asm/hyperv-tlfs.h>
42 #include <asm/reboot.h>
43 
44 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
45 
46 /*
47  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
48  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
49  */
50 #ifdef CONFIG_KVM_MAX_NR_VCPUS
51 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
52 #else
53 #define KVM_MAX_VCPUS 1024
54 #endif
55 
56 /*
57  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
58  * might be larger than the actual number of VCPUs because the
59  * APIC ID encodes CPU topology information.
60  *
61  * In the worst case, we'll need less than one extra bit for the
62  * Core ID, and less than one extra bit for the Package (Die) ID,
63  * so ratio of 4 should be enough.
64  */
65 #define KVM_VCPU_ID_RATIO 4
66 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
67 
68 /* memory slots that are not exposed to userspace */
69 #define KVM_INTERNAL_MEM_SLOTS 3
70 
71 #define KVM_HALT_POLL_NS_DEFAULT 200000
72 
73 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
74 
75 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
76 					KVM_DIRTY_LOG_INITIALLY_SET)
77 
78 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
79 						 KVM_BUS_LOCK_DETECTION_EXIT)
80 
81 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
82 						 KVM_X86_NOTIFY_VMEXIT_USER)
83 
84 /* x86-specific vcpu->requests bit members */
85 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
86 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
87 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
88 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
89 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
90 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
91 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
92 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
93 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
94 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
95 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
96 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
97 #ifdef CONFIG_KVM_SMM
98 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
99 #endif
100 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
101 #define KVM_REQ_MCLOCK_INPROGRESS \
102 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
103 #define KVM_REQ_SCAN_IOAPIC \
104 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
106 #define KVM_REQ_APIC_PAGE_RELOAD \
107 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
109 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
110 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
111 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
112 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
113 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
114 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
115 #define KVM_REQ_APICV_UPDATE \
116 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
118 #define KVM_REQ_TLB_FLUSH_GUEST \
119 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
121 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
122 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
123 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
125 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_HV_TLB_FLUSH \
127 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
129 
130 #define CR0_RESERVED_BITS                                               \
131 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
132 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
133 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
134 
135 #define CR4_RESERVED_BITS                                               \
136 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
137 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
138 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
139 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
140 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
141 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
142 			  | X86_CR4_LAM_SUP))
143 
144 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
145 
146 
147 
148 #define INVALID_PAGE (~(hpa_t)0)
149 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
150 
151 /* KVM Hugepage definitions for x86 */
152 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
153 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
154 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
155 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
156 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
157 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
158 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
159 
160 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
161 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
162 #define KVM_MMU_HASH_SHIFT 12
163 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
164 #define KVM_MIN_FREE_MMU_PAGES 5
165 #define KVM_REFILL_PAGES 25
166 #define KVM_MAX_CPUID_ENTRIES 256
167 #define KVM_NR_VAR_MTRR 8
168 
169 #define ASYNC_PF_PER_VCPU 64
170 
171 enum kvm_reg {
172 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
173 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
174 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
175 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
176 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
177 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
178 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
179 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
180 #ifdef CONFIG_X86_64
181 	VCPU_REGS_R8  = __VCPU_REGS_R8,
182 	VCPU_REGS_R9  = __VCPU_REGS_R9,
183 	VCPU_REGS_R10 = __VCPU_REGS_R10,
184 	VCPU_REGS_R11 = __VCPU_REGS_R11,
185 	VCPU_REGS_R12 = __VCPU_REGS_R12,
186 	VCPU_REGS_R13 = __VCPU_REGS_R13,
187 	VCPU_REGS_R14 = __VCPU_REGS_R14,
188 	VCPU_REGS_R15 = __VCPU_REGS_R15,
189 #endif
190 	VCPU_REGS_RIP,
191 	NR_VCPU_REGS,
192 
193 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
194 	VCPU_EXREG_CR0,
195 	VCPU_EXREG_CR3,
196 	VCPU_EXREG_CR4,
197 	VCPU_EXREG_RFLAGS,
198 	VCPU_EXREG_SEGMENTS,
199 	VCPU_EXREG_EXIT_INFO_1,
200 	VCPU_EXREG_EXIT_INFO_2,
201 };
202 
203 enum {
204 	VCPU_SREG_ES,
205 	VCPU_SREG_CS,
206 	VCPU_SREG_SS,
207 	VCPU_SREG_DS,
208 	VCPU_SREG_FS,
209 	VCPU_SREG_GS,
210 	VCPU_SREG_TR,
211 	VCPU_SREG_LDTR,
212 };
213 
214 enum exit_fastpath_completion {
215 	EXIT_FASTPATH_NONE,
216 	EXIT_FASTPATH_REENTER_GUEST,
217 	EXIT_FASTPATH_EXIT_HANDLED,
218 	EXIT_FASTPATH_EXIT_USERSPACE,
219 };
220 typedef enum exit_fastpath_completion fastpath_t;
221 
222 struct x86_emulate_ctxt;
223 struct x86_exception;
224 union kvm_smram;
225 enum x86_intercept;
226 enum x86_intercept_stage;
227 
228 #define KVM_NR_DB_REGS	4
229 
230 #define DR6_BUS_LOCK   (1 << 11)
231 #define DR6_BD		(1 << 13)
232 #define DR6_BS		(1 << 14)
233 #define DR6_BT		(1 << 15)
234 #define DR6_RTM		(1 << 16)
235 /*
236  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
237  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
238  * they will never be 0 for now, but when they are defined
239  * in the future it will require no code change.
240  *
241  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
242  */
243 #define DR6_ACTIVE_LOW	0xffff0ff0
244 #define DR6_VOLATILE	0x0001e80f
245 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
246 
247 #define DR7_BP_EN_MASK	0x000000ff
248 #define DR7_GE		(1 << 9)
249 #define DR7_GD		(1 << 13)
250 #define DR7_VOLATILE	0xffff2bff
251 
252 #define KVM_GUESTDBG_VALID_MASK \
253 	(KVM_GUESTDBG_ENABLE | \
254 	KVM_GUESTDBG_SINGLESTEP | \
255 	KVM_GUESTDBG_USE_HW_BP | \
256 	KVM_GUESTDBG_USE_SW_BP | \
257 	KVM_GUESTDBG_INJECT_BP | \
258 	KVM_GUESTDBG_INJECT_DB | \
259 	KVM_GUESTDBG_BLOCKIRQ)
260 
261 #define PFERR_PRESENT_MASK	BIT(0)
262 #define PFERR_WRITE_MASK	BIT(1)
263 #define PFERR_USER_MASK		BIT(2)
264 #define PFERR_RSVD_MASK		BIT(3)
265 #define PFERR_FETCH_MASK	BIT(4)
266 #define PFERR_PK_MASK		BIT(5)
267 #define PFERR_SGX_MASK		BIT(15)
268 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
269 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
270 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
271 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
272 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
273 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
274 
275 /*
276  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
277  * when emulating instructions that triggers implicit access.
278  */
279 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
280 /*
281  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
282  * when the guest was accessing private memory.
283  */
284 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
285 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
286 
287 /* apic attention bits */
288 #define KVM_APIC_CHECK_VAPIC	0
289 /*
290  * The following bit is set with PV-EOI, unset on EOI.
291  * We detect PV-EOI changes by guest by comparing
292  * this bit with PV-EOI in guest memory.
293  * See the implementation in apic_update_pv_eoi.
294  */
295 #define KVM_APIC_PV_EOI_PENDING	1
296 
297 struct kvm_kernel_irq_routing_entry;
298 
299 /*
300  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
301  * also includes TDP pages) to determine whether or not a page can be used in
302  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
303  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
304  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
305  *
306  * Upper-level shadow pages having gptes are tracked for write-protection via
307  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
308  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
309  * otherwise gfn_write_track will overflow and explosions will ensue.
310  *
311  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
312  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
313  * incorporates various mode bits and properties of the SP.  Roughly speaking,
314  * the number of unique SPs that can theoretically be created is 2^n, where n
315  * is the number of bits that are used to compute the role.
316  *
317  * But, even though there are 19 bits in the mask below, not all combinations
318  * of modes and flags are possible:
319  *
320  *   - invalid shadow pages are not accounted, so the bits are effectively 18
321  *
322  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
323  *     execonly and ad_disabled are only used for nested EPT which has
324  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
325  *
326  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
327  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
328  *     paging has exactly one upper level, making level completely redundant
329  *     when has_4_byte_gpte=1.
330  *
331  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
332  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
333  *
334  * Therefore, the maximum number of possible upper-level shadow pages for a
335  * single gfn is a bit less than 2^13.
336  */
337 union kvm_mmu_page_role {
338 	u32 word;
339 	struct {
340 		unsigned level:4;
341 		unsigned has_4_byte_gpte:1;
342 		unsigned quadrant:2;
343 		unsigned direct:1;
344 		unsigned access:3;
345 		unsigned invalid:1;
346 		unsigned efer_nx:1;
347 		unsigned cr0_wp:1;
348 		unsigned smep_andnot_wp:1;
349 		unsigned smap_andnot_wp:1;
350 		unsigned ad_disabled:1;
351 		unsigned guest_mode:1;
352 		unsigned passthrough:1;
353 		unsigned :5;
354 
355 		/*
356 		 * This is left at the top of the word so that
357 		 * kvm_memslots_for_spte_role can extract it with a
358 		 * simple shift.  While there is room, give it a whole
359 		 * byte so it is also faster to load it from memory.
360 		 */
361 		unsigned smm:8;
362 	};
363 };
364 
365 /*
366  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
367  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
368  * including on nested transitions, if nothing in the full role changes then
369  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
370  * don't treat all-zero structure as valid data.
371  *
372  * The properties that are tracked in the extended role but not the page role
373  * are for things that either (a) do not affect the validity of the shadow page
374  * or (b) are indirectly reflected in the shadow page's role.  For example,
375  * CR4.PKE only affects permission checks for software walks of the guest page
376  * tables (because KVM doesn't support Protection Keys with shadow paging), and
377  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
378  *
379  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
380  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
381  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
382  * SMAP aware regardless of CR0.WP.
383  */
384 union kvm_mmu_extended_role {
385 	u32 word;
386 	struct {
387 		unsigned int valid:1;
388 		unsigned int execonly:1;
389 		unsigned int cr4_pse:1;
390 		unsigned int cr4_pke:1;
391 		unsigned int cr4_smap:1;
392 		unsigned int cr4_smep:1;
393 		unsigned int cr4_la57:1;
394 		unsigned int efer_lma:1;
395 	};
396 };
397 
398 union kvm_cpu_role {
399 	u64 as_u64;
400 	struct {
401 		union kvm_mmu_page_role base;
402 		union kvm_mmu_extended_role ext;
403 	};
404 };
405 
406 struct kvm_rmap_head {
407 	unsigned long val;
408 };
409 
410 struct kvm_pio_request {
411 	unsigned long linear_rip;
412 	unsigned long count;
413 	int in;
414 	int port;
415 	int size;
416 };
417 
418 #define PT64_ROOT_MAX_LEVEL 5
419 
420 struct rsvd_bits_validate {
421 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
422 	u64 bad_mt_xwr;
423 };
424 
425 struct kvm_mmu_root_info {
426 	gpa_t pgd;
427 	hpa_t hpa;
428 };
429 
430 #define KVM_MMU_ROOT_INFO_INVALID \
431 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
432 
433 #define KVM_MMU_NUM_PREV_ROOTS 3
434 
435 #define KVM_MMU_ROOT_CURRENT		BIT(0)
436 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
437 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
438 
439 #define KVM_HAVE_MMU_RWLOCK
440 
441 struct kvm_mmu_page;
442 struct kvm_page_fault;
443 
444 /*
445  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
446  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
447  * current mmu mode.
448  */
449 struct kvm_mmu {
450 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
451 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
452 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
453 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
454 				  struct x86_exception *fault);
455 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
456 			    gpa_t gva_or_gpa, u64 access,
457 			    struct x86_exception *exception);
458 	int (*sync_spte)(struct kvm_vcpu *vcpu,
459 			 struct kvm_mmu_page *sp, int i);
460 	struct kvm_mmu_root_info root;
461 	union kvm_cpu_role cpu_role;
462 	union kvm_mmu_page_role root_role;
463 
464 	/*
465 	* The pkru_mask indicates if protection key checks are needed.  It
466 	* consists of 16 domains indexed by page fault error code bits [4:1],
467 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
468 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
469 	*/
470 	u32 pkru_mask;
471 
472 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
473 
474 	/*
475 	 * Bitmap; bit set = permission fault
476 	 * Byte index: page fault error code [4:1]
477 	 * Bit index: pte permissions in ACC_* format
478 	 */
479 	u8 permissions[16];
480 
481 	u64 *pae_root;
482 	u64 *pml4_root;
483 	u64 *pml5_root;
484 
485 	/*
486 	 * check zero bits on shadow page table entries, these
487 	 * bits include not only hardware reserved bits but also
488 	 * the bits spte never used.
489 	 */
490 	struct rsvd_bits_validate shadow_zero_check;
491 
492 	struct rsvd_bits_validate guest_rsvd_check;
493 
494 	u64 pdptrs[4]; /* pae */
495 };
496 
497 enum pmc_type {
498 	KVM_PMC_GP = 0,
499 	KVM_PMC_FIXED,
500 };
501 
502 struct kvm_pmc {
503 	enum pmc_type type;
504 	u8 idx;
505 	bool is_paused;
506 	bool intr;
507 	/*
508 	 * Base value of the PMC counter, relative to the *consumed* count in
509 	 * the associated perf_event.  This value includes counter updates from
510 	 * the perf_event and emulated_count since the last time the counter
511 	 * was reprogrammed, but it is *not* the current value as seen by the
512 	 * guest or userspace.
513 	 *
514 	 * The count is relative to the associated perf_event so that KVM
515 	 * doesn't need to reprogram the perf_event every time the guest writes
516 	 * to the counter.
517 	 */
518 	u64 counter;
519 	/*
520 	 * PMC events triggered by KVM emulation that haven't been fully
521 	 * processed, i.e. haven't undergone overflow detection.
522 	 */
523 	u64 emulated_counter;
524 	u64 eventsel;
525 	struct perf_event *perf_event;
526 	struct kvm_vcpu *vcpu;
527 	/*
528 	 * only for creating or reusing perf_event,
529 	 * eventsel value for general purpose counters,
530 	 * ctrl value for fixed counters.
531 	 */
532 	u64 current_config;
533 };
534 
535 /* More counters may conflict with other existing Architectural MSRs */
536 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
537 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
538 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
539 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
540 						KVM_MAX_NR_AMD_GP_COUNTERS)
541 
542 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
543 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
544 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
545 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
546 
547 struct kvm_pmu {
548 	u8 version;
549 	unsigned nr_arch_gp_counters;
550 	unsigned nr_arch_fixed_counters;
551 	unsigned available_event_types;
552 	u64 fixed_ctr_ctrl;
553 	u64 fixed_ctr_ctrl_rsvd;
554 	u64 global_ctrl;
555 	u64 global_status;
556 	u64 counter_bitmask[2];
557 	u64 global_ctrl_rsvd;
558 	u64 global_status_rsvd;
559 	u64 reserved_bits;
560 	u64 raw_event_mask;
561 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
562 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
563 
564 	/*
565 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
566 	 * set in a single access, e.g. to reprogram all counters when the PMU
567 	 * filter changes.
568 	 */
569 	union {
570 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
571 		atomic64_t __reprogram_pmi;
572 	};
573 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
574 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
575 
576 	u64 ds_area;
577 	u64 pebs_enable;
578 	u64 pebs_enable_rsvd;
579 	u64 pebs_data_cfg;
580 	u64 pebs_data_cfg_rsvd;
581 
582 	/*
583 	 * If a guest counter is cross-mapped to host counter with different
584 	 * index, its PEBS capability will be temporarily disabled.
585 	 *
586 	 * The user should make sure that this mask is updated
587 	 * after disabling interrupts and before perf_guest_get_msrs();
588 	 */
589 	u64 host_cross_mapped_mask;
590 
591 	/*
592 	 * The gate to release perf_events not marked in
593 	 * pmc_in_use only once in a vcpu time slice.
594 	 */
595 	bool need_cleanup;
596 
597 	/*
598 	 * The total number of programmed perf_events and it helps to avoid
599 	 * redundant check before cleanup if guest don't use vPMU at all.
600 	 */
601 	u8 event_count;
602 };
603 
604 struct kvm_pmu_ops;
605 
606 enum {
607 	KVM_DEBUGREG_BP_ENABLED = 1,
608 	KVM_DEBUGREG_WONT_EXIT = 2,
609 };
610 
611 struct kvm_mtrr {
612 	u64 var[KVM_NR_VAR_MTRR * 2];
613 	u64 fixed_64k;
614 	u64 fixed_16k[2];
615 	u64 fixed_4k[8];
616 	u64 deftype;
617 };
618 
619 /* Hyper-V SynIC timer */
620 struct kvm_vcpu_hv_stimer {
621 	struct hrtimer timer;
622 	int index;
623 	union hv_stimer_config config;
624 	u64 count;
625 	u64 exp_time;
626 	struct hv_message msg;
627 	bool msg_pending;
628 };
629 
630 /* Hyper-V synthetic interrupt controller (SynIC)*/
631 struct kvm_vcpu_hv_synic {
632 	u64 version;
633 	u64 control;
634 	u64 msg_page;
635 	u64 evt_page;
636 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
637 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
638 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
639 	DECLARE_BITMAP(vec_bitmap, 256);
640 	bool active;
641 	bool dont_zero_synic_pages;
642 };
643 
644 /* The maximum number of entries on the TLB flush fifo. */
645 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
646 /*
647  * Note: the following 'magic' entry is made up by KVM to avoid putting
648  * anything besides GVA on the TLB flush fifo. It is theoretically possible
649  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
650  * which will look identical. KVM's action to 'flush everything' instead of
651  * flushing these particular addresses is, however, fully legitimate as
652  * flushing more than requested is always OK.
653  */
654 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
655 
656 enum hv_tlb_flush_fifos {
657 	HV_L1_TLB_FLUSH_FIFO,
658 	HV_L2_TLB_FLUSH_FIFO,
659 	HV_NR_TLB_FLUSH_FIFOS,
660 };
661 
662 struct kvm_vcpu_hv_tlb_flush_fifo {
663 	spinlock_t write_lock;
664 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
665 };
666 
667 /* Hyper-V per vcpu emulation context */
668 struct kvm_vcpu_hv {
669 	struct kvm_vcpu *vcpu;
670 	u32 vp_index;
671 	u64 hv_vapic;
672 	s64 runtime_offset;
673 	struct kvm_vcpu_hv_synic synic;
674 	struct kvm_hyperv_exit exit;
675 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
676 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
677 	bool enforce_cpuid;
678 	struct {
679 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
680 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
681 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
682 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
683 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
684 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
685 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
686 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
687 	} cpuid_cache;
688 
689 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
690 
691 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
692 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
693 
694 	struct hv_vp_assist_page vp_assist_page;
695 
696 	struct {
697 		u64 pa_page_gpa;
698 		u64 vm_id;
699 		u32 vp_id;
700 	} nested;
701 };
702 
703 struct kvm_hypervisor_cpuid {
704 	u32 base;
705 	u32 limit;
706 };
707 
708 #ifdef CONFIG_KVM_XEN
709 /* Xen HVM per vcpu emulation context */
710 struct kvm_vcpu_xen {
711 	u64 hypercall_rip;
712 	u32 current_runstate;
713 	u8 upcall_vector;
714 	struct gfn_to_pfn_cache vcpu_info_cache;
715 	struct gfn_to_pfn_cache vcpu_time_info_cache;
716 	struct gfn_to_pfn_cache runstate_cache;
717 	struct gfn_to_pfn_cache runstate2_cache;
718 	u64 last_steal;
719 	u64 runstate_entry_time;
720 	u64 runstate_times[4];
721 	unsigned long evtchn_pending_sel;
722 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
723 	u32 timer_virq;
724 	u64 timer_expires; /* In guest epoch */
725 	atomic_t timer_pending;
726 	struct hrtimer timer;
727 	int poll_evtchn;
728 	struct timer_list poll_timer;
729 	struct kvm_hypervisor_cpuid cpuid;
730 };
731 #endif
732 
733 struct kvm_queued_exception {
734 	bool pending;
735 	bool injected;
736 	bool has_error_code;
737 	u8 vector;
738 	u32 error_code;
739 	unsigned long payload;
740 	bool has_payload;
741 };
742 
743 struct kvm_vcpu_arch {
744 	/*
745 	 * rip and regs accesses must go through
746 	 * kvm_{register,rip}_{read,write} functions.
747 	 */
748 	unsigned long regs[NR_VCPU_REGS];
749 	u32 regs_avail;
750 	u32 regs_dirty;
751 
752 	unsigned long cr0;
753 	unsigned long cr0_guest_owned_bits;
754 	unsigned long cr2;
755 	unsigned long cr3;
756 	unsigned long cr4;
757 	unsigned long cr4_guest_owned_bits;
758 	unsigned long cr4_guest_rsvd_bits;
759 	unsigned long cr8;
760 	u32 host_pkru;
761 	u32 pkru;
762 	u32 hflags;
763 	u64 efer;
764 	u64 host_debugctl;
765 	u64 apic_base;
766 	struct kvm_lapic *apic;    /* kernel irqchip context */
767 	bool load_eoi_exitmap_pending;
768 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
769 	unsigned long apic_attention;
770 	int32_t apic_arb_prio;
771 	int mp_state;
772 	u64 ia32_misc_enable_msr;
773 	u64 smbase;
774 	u64 smi_count;
775 	bool at_instruction_boundary;
776 	bool tpr_access_reporting;
777 	bool xfd_no_write_intercept;
778 	u64 ia32_xss;
779 	u64 microcode_version;
780 	u64 arch_capabilities;
781 	u64 perf_capabilities;
782 
783 	/*
784 	 * Paging state of the vcpu
785 	 *
786 	 * If the vcpu runs in guest mode with two level paging this still saves
787 	 * the paging mode of the l1 guest. This context is always used to
788 	 * handle faults.
789 	 */
790 	struct kvm_mmu *mmu;
791 
792 	/* Non-nested MMU for L1 */
793 	struct kvm_mmu root_mmu;
794 
795 	/* L1 MMU when running nested */
796 	struct kvm_mmu guest_mmu;
797 
798 	/*
799 	 * Paging state of an L2 guest (used for nested npt)
800 	 *
801 	 * This context will save all necessary information to walk page tables
802 	 * of an L2 guest. This context is only initialized for page table
803 	 * walking and not for faulting since we never handle l2 page faults on
804 	 * the host.
805 	 */
806 	struct kvm_mmu nested_mmu;
807 
808 	/*
809 	 * Pointer to the mmu context currently used for
810 	 * gva_to_gpa translations.
811 	 */
812 	struct kvm_mmu *walk_mmu;
813 
814 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
815 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
816 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
817 	struct kvm_mmu_memory_cache mmu_page_header_cache;
818 
819 	/*
820 	 * QEMU userspace and the guest each have their own FPU state.
821 	 * In vcpu_run, we switch between the user and guest FPU contexts.
822 	 * While running a VCPU, the VCPU thread will have the guest FPU
823 	 * context.
824 	 *
825 	 * Note that while the PKRU state lives inside the fpu registers,
826 	 * it is switched out separately at VMENTER and VMEXIT time. The
827 	 * "guest_fpstate" state here contains the guest FPU context, with the
828 	 * host PRKU bits.
829 	 */
830 	struct fpu_guest guest_fpu;
831 
832 	u64 xcr0;
833 	u64 guest_supported_xcr0;
834 
835 	struct kvm_pio_request pio;
836 	void *pio_data;
837 	void *sev_pio_data;
838 	unsigned sev_pio_count;
839 
840 	u8 event_exit_inst_len;
841 
842 	bool exception_from_userspace;
843 
844 	/* Exceptions to be injected to the guest. */
845 	struct kvm_queued_exception exception;
846 	/* Exception VM-Exits to be synthesized to L1. */
847 	struct kvm_queued_exception exception_vmexit;
848 
849 	struct kvm_queued_interrupt {
850 		bool injected;
851 		bool soft;
852 		u8 nr;
853 	} interrupt;
854 
855 	int halt_request; /* real mode on Intel only */
856 
857 	int cpuid_nent;
858 	struct kvm_cpuid_entry2 *cpuid_entries;
859 	struct kvm_hypervisor_cpuid kvm_cpuid;
860 	bool is_amd_compatible;
861 
862 	/*
863 	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
864 	 * when "struct kvm_vcpu_arch" is no longer defined in an
865 	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
866 	 * can be increased as necessary.
867 	 */
868 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
869 
870 	/*
871 	 * Track whether or not the guest is allowed to use features that are
872 	 * governed by KVM, where "governed" means KVM needs to manage state
873 	 * and/or explicitly enable the feature in hardware.  Typically, but
874 	 * not always, governed features can be used by the guest if and only
875 	 * if both KVM and userspace want to expose the feature to the guest.
876 	 */
877 	struct {
878 		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
879 	} governed_features;
880 
881 	u64 reserved_gpa_bits;
882 	int maxphyaddr;
883 
884 	/* emulate context */
885 
886 	struct x86_emulate_ctxt *emulate_ctxt;
887 	bool emulate_regs_need_sync_to_vcpu;
888 	bool emulate_regs_need_sync_from_vcpu;
889 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
890 
891 	gpa_t time;
892 	struct pvclock_vcpu_time_info hv_clock;
893 	unsigned int hw_tsc_khz;
894 	struct gfn_to_pfn_cache pv_time;
895 	/* set guest stopped flag in pvclock flags field */
896 	bool pvclock_set_guest_stopped_request;
897 
898 	struct {
899 		u8 preempted;
900 		u64 msr_val;
901 		u64 last_steal;
902 		struct gfn_to_hva_cache cache;
903 	} st;
904 
905 	u64 l1_tsc_offset;
906 	u64 tsc_offset; /* current tsc offset */
907 	u64 last_guest_tsc;
908 	u64 last_host_tsc;
909 	u64 tsc_offset_adjustment;
910 	u64 this_tsc_nsec;
911 	u64 this_tsc_write;
912 	u64 this_tsc_generation;
913 	bool tsc_catchup;
914 	bool tsc_always_catchup;
915 	s8 virtual_tsc_shift;
916 	u32 virtual_tsc_mult;
917 	u32 virtual_tsc_khz;
918 	s64 ia32_tsc_adjust_msr;
919 	u64 msr_ia32_power_ctl;
920 	u64 l1_tsc_scaling_ratio;
921 	u64 tsc_scaling_ratio; /* current scaling ratio */
922 
923 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
924 	/* Number of NMIs pending injection, not including hardware vNMIs. */
925 	unsigned int nmi_pending;
926 	bool nmi_injected;    /* Trying to inject an NMI this entry */
927 	bool smi_pending;    /* SMI queued after currently running handler */
928 	u8 handling_intr_from_guest;
929 
930 	struct kvm_mtrr mtrr_state;
931 	u64 pat;
932 
933 	unsigned switch_db_regs;
934 	unsigned long db[KVM_NR_DB_REGS];
935 	unsigned long dr6;
936 	unsigned long dr7;
937 	unsigned long eff_db[KVM_NR_DB_REGS];
938 	unsigned long guest_debug_dr7;
939 	u64 msr_platform_info;
940 	u64 msr_misc_features_enables;
941 
942 	u64 mcg_cap;
943 	u64 mcg_status;
944 	u64 mcg_ctl;
945 	u64 mcg_ext_ctl;
946 	u64 *mce_banks;
947 	u64 *mci_ctl2_banks;
948 
949 	/* Cache MMIO info */
950 	u64 mmio_gva;
951 	unsigned mmio_access;
952 	gfn_t mmio_gfn;
953 	u64 mmio_gen;
954 
955 	struct kvm_pmu pmu;
956 
957 	/* used for guest single stepping over the given code position */
958 	unsigned long singlestep_rip;
959 
960 #ifdef CONFIG_KVM_HYPERV
961 	bool hyperv_enabled;
962 	struct kvm_vcpu_hv *hyperv;
963 #endif
964 #ifdef CONFIG_KVM_XEN
965 	struct kvm_vcpu_xen xen;
966 #endif
967 	cpumask_var_t wbinvd_dirty_mask;
968 
969 	unsigned long last_retry_eip;
970 	unsigned long last_retry_addr;
971 
972 	struct {
973 		bool halted;
974 		gfn_t gfns[ASYNC_PF_PER_VCPU];
975 		struct gfn_to_hva_cache data;
976 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
977 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
978 		u16 vec;
979 		u32 id;
980 		bool send_user_only;
981 		u32 host_apf_flags;
982 		bool delivery_as_pf_vmexit;
983 		bool pageready_pending;
984 	} apf;
985 
986 	/* OSVW MSRs (AMD only) */
987 	struct {
988 		u64 length;
989 		u64 status;
990 	} osvw;
991 
992 	struct {
993 		u64 msr_val;
994 		struct gfn_to_hva_cache data;
995 	} pv_eoi;
996 
997 	u64 msr_kvm_poll_control;
998 
999 	/* pv related host specific info */
1000 	struct {
1001 		bool pv_unhalted;
1002 	} pv;
1003 
1004 	int pending_ioapic_eoi;
1005 	int pending_external_vector;
1006 
1007 	/* be preempted when it's in kernel-mode(cpl=0) */
1008 	bool preempted_in_kernel;
1009 
1010 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1011 	bool l1tf_flush_l1d;
1012 
1013 	/* Host CPU on which VM-entry was most recently attempted */
1014 	int last_vmentry_cpu;
1015 
1016 	/* AMD MSRC001_0015 Hardware Configuration */
1017 	u64 msr_hwcr;
1018 
1019 	/* pv related cpuid info */
1020 	struct {
1021 		/*
1022 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1023 		 * leaf.
1024 		 */
1025 		u32 features;
1026 
1027 		/*
1028 		 * indicates whether pv emulation should be disabled if features
1029 		 * are not present in the guest's cpuid
1030 		 */
1031 		bool enforce;
1032 	} pv_cpuid;
1033 
1034 	/* Protected Guests */
1035 	bool guest_state_protected;
1036 
1037 	/*
1038 	 * Set when PDPTS were loaded directly by the userspace without
1039 	 * reading the guest memory
1040 	 */
1041 	bool pdptrs_from_userspace;
1042 
1043 #if IS_ENABLED(CONFIG_HYPERV)
1044 	hpa_t hv_root_tdp;
1045 #endif
1046 };
1047 
1048 struct kvm_lpage_info {
1049 	int disallow_lpage;
1050 };
1051 
1052 struct kvm_arch_memory_slot {
1053 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1054 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1055 	unsigned short *gfn_write_track;
1056 };
1057 
1058 /*
1059  * Track the mode of the optimized logical map, as the rules for decoding the
1060  * destination vary per mode.  Enabling the optimized logical map requires all
1061  * software-enabled local APIs to be in the same mode, each addressable APIC to
1062  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1063  */
1064 enum kvm_apic_logical_mode {
1065 	/* All local APICs are software disabled. */
1066 	KVM_APIC_MODE_SW_DISABLED,
1067 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1068 	KVM_APIC_MODE_XAPIC_CLUSTER,
1069 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1070 	KVM_APIC_MODE_XAPIC_FLAT,
1071 	/* All software enabled local APICs in x2APIC mode. */
1072 	KVM_APIC_MODE_X2APIC,
1073 	/*
1074 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1075 	 * mode, same logical ID assigned to multiple APICs, etc.
1076 	 */
1077 	KVM_APIC_MODE_MAP_DISABLED,
1078 };
1079 
1080 struct kvm_apic_map {
1081 	struct rcu_head rcu;
1082 	enum kvm_apic_logical_mode logical_mode;
1083 	u32 max_apic_id;
1084 	union {
1085 		struct kvm_lapic *xapic_flat_map[8];
1086 		struct kvm_lapic *xapic_cluster_map[16][4];
1087 	};
1088 	struct kvm_lapic *phys_map[];
1089 };
1090 
1091 /* Hyper-V synthetic debugger (SynDbg)*/
1092 struct kvm_hv_syndbg {
1093 	struct {
1094 		u64 control;
1095 		u64 status;
1096 		u64 send_page;
1097 		u64 recv_page;
1098 		u64 pending_page;
1099 	} control;
1100 	u64 options;
1101 };
1102 
1103 /* Current state of Hyper-V TSC page clocksource */
1104 enum hv_tsc_page_status {
1105 	/* TSC page was not set up or disabled */
1106 	HV_TSC_PAGE_UNSET = 0,
1107 	/* TSC page MSR was written by the guest, update pending */
1108 	HV_TSC_PAGE_GUEST_CHANGED,
1109 	/* TSC page update was triggered from the host side */
1110 	HV_TSC_PAGE_HOST_CHANGED,
1111 	/* TSC page was properly set up and is currently active  */
1112 	HV_TSC_PAGE_SET,
1113 	/* TSC page was set up with an inaccessible GPA */
1114 	HV_TSC_PAGE_BROKEN,
1115 };
1116 
1117 #ifdef CONFIG_KVM_HYPERV
1118 /* Hyper-V emulation context */
1119 struct kvm_hv {
1120 	struct mutex hv_lock;
1121 	u64 hv_guest_os_id;
1122 	u64 hv_hypercall;
1123 	u64 hv_tsc_page;
1124 	enum hv_tsc_page_status hv_tsc_page_status;
1125 
1126 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1127 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1128 	u64 hv_crash_ctl;
1129 
1130 	struct ms_hyperv_tsc_page tsc_ref;
1131 
1132 	struct idr conn_to_evt;
1133 
1134 	u64 hv_reenlightenment_control;
1135 	u64 hv_tsc_emulation_control;
1136 	u64 hv_tsc_emulation_status;
1137 	u64 hv_invtsc_control;
1138 
1139 	/* How many vCPUs have VP index != vCPU index */
1140 	atomic_t num_mismatched_vp_indexes;
1141 
1142 	/*
1143 	 * How many SynICs use 'AutoEOI' feature
1144 	 * (protected by arch.apicv_update_lock)
1145 	 */
1146 	unsigned int synic_auto_eoi_used;
1147 
1148 	struct kvm_hv_syndbg hv_syndbg;
1149 
1150 	bool xsaves_xsavec_checked;
1151 };
1152 #endif
1153 
1154 struct msr_bitmap_range {
1155 	u32 flags;
1156 	u32 nmsrs;
1157 	u32 base;
1158 	unsigned long *bitmap;
1159 };
1160 
1161 #ifdef CONFIG_KVM_XEN
1162 /* Xen emulation context */
1163 struct kvm_xen {
1164 	struct mutex xen_lock;
1165 	u32 xen_version;
1166 	bool long_mode;
1167 	bool runstate_update_flag;
1168 	u8 upcall_vector;
1169 	struct gfn_to_pfn_cache shinfo_cache;
1170 	struct idr evtchn_ports;
1171 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1172 };
1173 #endif
1174 
1175 enum kvm_irqchip_mode {
1176 	KVM_IRQCHIP_NONE,
1177 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1178 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1179 };
1180 
1181 struct kvm_x86_msr_filter {
1182 	u8 count;
1183 	bool default_allow:1;
1184 	struct msr_bitmap_range ranges[16];
1185 };
1186 
1187 struct kvm_x86_pmu_event_filter {
1188 	__u32 action;
1189 	__u32 nevents;
1190 	__u32 fixed_counter_bitmap;
1191 	__u32 flags;
1192 	__u32 nr_includes;
1193 	__u32 nr_excludes;
1194 	__u64 *includes;
1195 	__u64 *excludes;
1196 	__u64 events[];
1197 };
1198 
1199 enum kvm_apicv_inhibit {
1200 
1201 	/********************************************************************/
1202 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1203 	/********************************************************************/
1204 
1205 	/*
1206 	 * APIC acceleration is disabled by a module parameter
1207 	 * and/or not supported in hardware.
1208 	 */
1209 	APICV_INHIBIT_REASON_DISABLED,
1210 
1211 	/*
1212 	 * APIC acceleration is inhibited because AutoEOI feature is
1213 	 * being used by a HyperV guest.
1214 	 */
1215 	APICV_INHIBIT_REASON_HYPERV,
1216 
1217 	/*
1218 	 * APIC acceleration is inhibited because the userspace didn't yet
1219 	 * enable the kernel/split irqchip.
1220 	 */
1221 	APICV_INHIBIT_REASON_ABSENT,
1222 
1223 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1224 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1225 	 * was enabled, to avoid AVIC/APICv bypassing it.
1226 	 */
1227 	APICV_INHIBIT_REASON_BLOCKIRQ,
1228 
1229 	/*
1230 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1231 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1232 	 */
1233 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1234 
1235 	/*
1236 	 * For simplicity, the APIC acceleration is inhibited
1237 	 * first time either APIC ID or APIC base are changed by the guest
1238 	 * from their reset values.
1239 	 */
1240 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1241 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1242 
1243 	/******************************************************/
1244 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1245 	/******************************************************/
1246 
1247 	/*
1248 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1249 	 *
1250 	 * This is needed because unlike APICv, the peers of this vCPU
1251 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1252 	 * a vCPU runs nested.
1253 	 */
1254 	APICV_INHIBIT_REASON_NESTED,
1255 
1256 	/*
1257 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1258 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1259 	 * is inhibited while KVM waits for IRQ window.
1260 	 */
1261 	APICV_INHIBIT_REASON_IRQWIN,
1262 
1263 	/*
1264 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1265 	 * which AVIC doesn't support for edge triggered interrupts.
1266 	 */
1267 	APICV_INHIBIT_REASON_PIT_REINJ,
1268 
1269 	/*
1270 	 * AVIC is disabled because SEV doesn't support it.
1271 	 */
1272 	APICV_INHIBIT_REASON_SEV,
1273 
1274 	/*
1275 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1276 	 * mapping between logical ID and vCPU.
1277 	 */
1278 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1279 
1280 	NR_APICV_INHIBIT_REASONS,
1281 };
1282 
1283 #define __APICV_INHIBIT_REASON(reason)			\
1284 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1285 
1286 #define APICV_INHIBIT_REASONS				\
1287 	__APICV_INHIBIT_REASON(DISABLED),		\
1288 	__APICV_INHIBIT_REASON(HYPERV),			\
1289 	__APICV_INHIBIT_REASON(ABSENT),			\
1290 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1291 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1292 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1293 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1294 	__APICV_INHIBIT_REASON(NESTED),			\
1295 	__APICV_INHIBIT_REASON(IRQWIN),			\
1296 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1297 	__APICV_INHIBIT_REASON(SEV),			\
1298 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1299 
1300 struct kvm_arch {
1301 	unsigned long n_used_mmu_pages;
1302 	unsigned long n_requested_mmu_pages;
1303 	unsigned long n_max_mmu_pages;
1304 	unsigned int indirect_shadow_pages;
1305 	u8 mmu_valid_gen;
1306 	u8 vm_type;
1307 	bool has_private_mem;
1308 	bool has_protected_state;
1309 	bool pre_fault_allowed;
1310 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1311 	struct list_head active_mmu_pages;
1312 	struct list_head zapped_obsolete_pages;
1313 	/*
1314 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1315 	 * replaced by an NX huge page.  A shadow page is on this list if its
1316 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1317 	 * and there are no other conditions that prevent a huge page, e.g.
1318 	 * the backing host page is huge, dirtly logging is not enabled for its
1319 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1320 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1321 	 * guest attempts to execute from the region then KVM obviously can't
1322 	 * create an NX huge page (without hanging the guest).
1323 	 */
1324 	struct list_head possible_nx_huge_pages;
1325 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1326 	struct kvm_page_track_notifier_head track_notifier_head;
1327 #endif
1328 	/*
1329 	 * Protects marking pages unsync during page faults, as TDP MMU page
1330 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1331 	 * pages lock is always taken when marking pages unsync regardless of
1332 	 * whether mmu_lock is held for read or write.
1333 	 */
1334 	spinlock_t mmu_unsync_pages_lock;
1335 
1336 	u64 shadow_mmio_value;
1337 
1338 	struct iommu_domain *iommu_domain;
1339 	bool iommu_noncoherent;
1340 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1341 	atomic_t noncoherent_dma_count;
1342 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1343 	atomic_t assigned_device_count;
1344 	struct kvm_pic *vpic;
1345 	struct kvm_ioapic *vioapic;
1346 	struct kvm_pit *vpit;
1347 	atomic_t vapics_in_nmi_mode;
1348 	struct mutex apic_map_lock;
1349 	struct kvm_apic_map __rcu *apic_map;
1350 	atomic_t apic_map_dirty;
1351 
1352 	bool apic_access_memslot_enabled;
1353 	bool apic_access_memslot_inhibited;
1354 
1355 	/* Protects apicv_inhibit_reasons */
1356 	struct rw_semaphore apicv_update_lock;
1357 	unsigned long apicv_inhibit_reasons;
1358 
1359 	gpa_t wall_clock;
1360 
1361 	bool mwait_in_guest;
1362 	bool hlt_in_guest;
1363 	bool pause_in_guest;
1364 	bool cstate_in_guest;
1365 
1366 	unsigned long irq_sources_bitmap;
1367 	s64 kvmclock_offset;
1368 
1369 	/*
1370 	 * This also protects nr_vcpus_matched_tsc which is read from a
1371 	 * preemption-disabled region, so it must be a raw spinlock.
1372 	 */
1373 	raw_spinlock_t tsc_write_lock;
1374 	u64 last_tsc_nsec;
1375 	u64 last_tsc_write;
1376 	u32 last_tsc_khz;
1377 	u64 last_tsc_offset;
1378 	u64 cur_tsc_nsec;
1379 	u64 cur_tsc_write;
1380 	u64 cur_tsc_offset;
1381 	u64 cur_tsc_generation;
1382 	int nr_vcpus_matched_tsc;
1383 
1384 	u32 default_tsc_khz;
1385 	bool user_set_tsc;
1386 	u64 apic_bus_cycle_ns;
1387 
1388 	seqcount_raw_spinlock_t pvclock_sc;
1389 	bool use_master_clock;
1390 	u64 master_kernel_ns;
1391 	u64 master_cycle_now;
1392 	struct delayed_work kvmclock_update_work;
1393 	struct delayed_work kvmclock_sync_work;
1394 
1395 	struct kvm_xen_hvm_config xen_hvm_config;
1396 
1397 	/* reads protected by irq_srcu, writes by irq_lock */
1398 	struct hlist_head mask_notifier_list;
1399 
1400 #ifdef CONFIG_KVM_HYPERV
1401 	struct kvm_hv hyperv;
1402 #endif
1403 
1404 #ifdef CONFIG_KVM_XEN
1405 	struct kvm_xen xen;
1406 #endif
1407 
1408 	bool backwards_tsc_observed;
1409 	bool boot_vcpu_runs_old_kvmclock;
1410 	u32 bsp_vcpu_id;
1411 
1412 	u64 disabled_quirks;
1413 
1414 	enum kvm_irqchip_mode irqchip_mode;
1415 	u8 nr_reserved_ioapic_pins;
1416 
1417 	bool disabled_lapic_found;
1418 
1419 	bool x2apic_format;
1420 	bool x2apic_broadcast_quirk_disabled;
1421 
1422 	bool guest_can_read_msr_platform_info;
1423 	bool exception_payload_enabled;
1424 
1425 	bool triple_fault_event;
1426 
1427 	bool bus_lock_detection_enabled;
1428 	bool enable_pmu;
1429 
1430 	u32 notify_window;
1431 	u32 notify_vmexit_flags;
1432 	/*
1433 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1434 	 * emulator fails to emulate an instruction, allow userspace
1435 	 * the opportunity to look at it.
1436 	 */
1437 	bool exit_on_emulation_error;
1438 
1439 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1440 	u32 user_space_msr_mask;
1441 	struct kvm_x86_msr_filter __rcu *msr_filter;
1442 
1443 	u32 hypercall_exit_enabled;
1444 
1445 	/* Guest can access the SGX PROVISIONKEY. */
1446 	bool sgx_provisioning_allowed;
1447 
1448 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1449 	struct vhost_task *nx_huge_page_recovery_thread;
1450 	u64 nx_huge_page_last;
1451 	struct once nx_once;
1452 
1453 #ifdef CONFIG_X86_64
1454 	/* The number of TDP MMU pages across all roots. */
1455 	atomic64_t tdp_mmu_pages;
1456 
1457 	/*
1458 	 * List of struct kvm_mmu_pages being used as roots.
1459 	 * All struct kvm_mmu_pages in the list should have
1460 	 * tdp_mmu_page set.
1461 	 *
1462 	 * For reads, this list is protected by:
1463 	 *	the MMU lock in read mode + RCU or
1464 	 *	the MMU lock in write mode
1465 	 *
1466 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1467 	 * below for the details.
1468 	 *
1469 	 * Roots will remain in the list until their tdp_mmu_root_count
1470 	 * drops to zero, at which point the thread that decremented the
1471 	 * count to zero should removed the root from the list and clean
1472 	 * it up, freeing the root after an RCU grace period.
1473 	 */
1474 	struct list_head tdp_mmu_roots;
1475 
1476 	/*
1477 	 * Protects accesses to the following fields when the MMU lock
1478 	 * is held in read mode:
1479 	 *  - tdp_mmu_roots (above)
1480 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1481 	 *  - possible_nx_huge_pages;
1482 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1483 	 *    by the TDP MMU
1484 	 * Because the lock is only taken within the MMU lock, strictly
1485 	 * speaking it is redundant to acquire this lock when the thread
1486 	 * holds the MMU lock in write mode.  However it often simplifies
1487 	 * the code to do so.
1488 	 */
1489 	spinlock_t tdp_mmu_pages_lock;
1490 #endif /* CONFIG_X86_64 */
1491 
1492 	/*
1493 	 * If set, at least one shadow root has been allocated. This flag
1494 	 * is used as one input when determining whether certain memslot
1495 	 * related allocations are necessary.
1496 	 */
1497 	bool shadow_root_allocated;
1498 
1499 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1500 	/*
1501 	 * If set, the VM has (or had) an external write tracking user, and
1502 	 * thus all write tracking metadata has been allocated, even if KVM
1503 	 * itself isn't using write tracking.
1504 	 */
1505 	bool external_write_tracking_enabled;
1506 #endif
1507 
1508 #if IS_ENABLED(CONFIG_HYPERV)
1509 	hpa_t	hv_root_tdp;
1510 	spinlock_t hv_root_tdp_lock;
1511 	struct hv_partition_assist_pg *hv_pa_pg;
1512 #endif
1513 	/*
1514 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1515 	 * that increase along with the maximum vCPU ID, in which case, using
1516 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1517 	 */
1518 	u32 max_vcpu_ids;
1519 
1520 	bool disable_nx_huge_pages;
1521 
1522 	/*
1523 	 * Memory caches used to allocate shadow pages when performing eager
1524 	 * page splitting. No need for a shadowed_info_cache since eager page
1525 	 * splitting only allocates direct shadow pages.
1526 	 *
1527 	 * Protected by kvm->slots_lock.
1528 	 */
1529 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1530 	struct kvm_mmu_memory_cache split_page_header_cache;
1531 
1532 	/*
1533 	 * Memory cache used to allocate pte_list_desc structs while splitting
1534 	 * huge pages. In the worst case, to split one huge page, 512
1535 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1536 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1537 	 * page table.
1538 	 *
1539 	 * Protected by kvm->slots_lock.
1540 	 */
1541 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1542 	struct kvm_mmu_memory_cache split_desc_cache;
1543 };
1544 
1545 struct kvm_vm_stat {
1546 	struct kvm_vm_stat_generic generic;
1547 	u64 mmu_shadow_zapped;
1548 	u64 mmu_pte_write;
1549 	u64 mmu_pde_zapped;
1550 	u64 mmu_flooded;
1551 	u64 mmu_recycled;
1552 	u64 mmu_cache_miss;
1553 	u64 mmu_unsync;
1554 	union {
1555 		struct {
1556 			atomic64_t pages_4k;
1557 			atomic64_t pages_2m;
1558 			atomic64_t pages_1g;
1559 		};
1560 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1561 	};
1562 	u64 nx_lpage_splits;
1563 	u64 max_mmu_page_hash_collisions;
1564 	u64 max_mmu_rmap_size;
1565 };
1566 
1567 struct kvm_vcpu_stat {
1568 	struct kvm_vcpu_stat_generic generic;
1569 	u64 pf_taken;
1570 	u64 pf_fixed;
1571 	u64 pf_emulate;
1572 	u64 pf_spurious;
1573 	u64 pf_fast;
1574 	u64 pf_mmio_spte_created;
1575 	u64 pf_guest;
1576 	u64 tlb_flush;
1577 	u64 invlpg;
1578 
1579 	u64 exits;
1580 	u64 io_exits;
1581 	u64 mmio_exits;
1582 	u64 signal_exits;
1583 	u64 irq_window_exits;
1584 	u64 nmi_window_exits;
1585 	u64 l1d_flush;
1586 	u64 halt_exits;
1587 	u64 request_irq_exits;
1588 	u64 irq_exits;
1589 	u64 host_state_reload;
1590 	u64 fpu_reload;
1591 	u64 insn_emulation;
1592 	u64 insn_emulation_fail;
1593 	u64 hypercalls;
1594 	u64 irq_injections;
1595 	u64 nmi_injections;
1596 	u64 req_event;
1597 	u64 nested_run;
1598 	u64 directed_yield_attempted;
1599 	u64 directed_yield_successful;
1600 	u64 preemption_reported;
1601 	u64 preemption_other;
1602 	u64 guest_mode;
1603 	u64 notify_window_exits;
1604 };
1605 
1606 struct x86_instruction_info;
1607 
1608 struct msr_data {
1609 	bool host_initiated;
1610 	u32 index;
1611 	u64 data;
1612 };
1613 
1614 struct kvm_lapic_irq {
1615 	u32 vector;
1616 	u16 delivery_mode;
1617 	u16 dest_mode;
1618 	bool level;
1619 	u16 trig_mode;
1620 	u32 shorthand;
1621 	u32 dest_id;
1622 	bool msi_redir_hint;
1623 };
1624 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1625 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1626 {
1627 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1628 }
1629 
1630 enum kvm_x86_run_flags {
1631 	KVM_RUN_FORCE_IMMEDIATE_EXIT	= BIT(0),
1632 	KVM_RUN_LOAD_GUEST_DR6		= BIT(1),
1633 	KVM_RUN_LOAD_DEBUGCTL		= BIT(2),
1634 };
1635 
1636 struct kvm_x86_ops {
1637 	const char *name;
1638 
1639 	int (*check_processor_compatibility)(void);
1640 
1641 	int (*enable_virtualization_cpu)(void);
1642 	void (*disable_virtualization_cpu)(void);
1643 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1644 
1645 	void (*hardware_unsetup)(void);
1646 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1647 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1648 
1649 	unsigned int vm_size;
1650 	int (*vm_init)(struct kvm *kvm);
1651 	void (*vm_destroy)(struct kvm *kvm);
1652 
1653 	/* Create, but do not attach this VCPU */
1654 	int (*vcpu_precreate)(struct kvm *kvm);
1655 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1656 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1657 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1658 
1659 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1660 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1661 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1662 
1663 	/*
1664 	 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1665 	 * match the host's value even while the guest is active.
1666 	 */
1667 	const u64 HOST_OWNED_DEBUGCTL;
1668 
1669 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1670 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1671 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1672 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1673 	void (*get_segment)(struct kvm_vcpu *vcpu,
1674 			    struct kvm_segment *var, int seg);
1675 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1676 	void (*set_segment)(struct kvm_vcpu *vcpu,
1677 			    struct kvm_segment *var, int seg);
1678 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1679 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1680 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1681 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1682 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1683 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1684 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1685 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1686 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1687 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1688 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1689 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1690 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1691 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1692 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1693 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1694 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1695 
1696 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1697 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1698 #if IS_ENABLED(CONFIG_HYPERV)
1699 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1700 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1701 					gfn_t nr_pages);
1702 #endif
1703 
1704 	/*
1705 	 * Flush any TLB entries associated with the given GVA.
1706 	 * Does not need to flush GPA->HPA mappings.
1707 	 * Can potentially get non-canonical addresses through INVLPGs, which
1708 	 * the implementation may choose to ignore if appropriate.
1709 	 */
1710 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1711 
1712 	/*
1713 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1714 	 * does not need to flush GPA->HPA mappings.
1715 	 */
1716 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1717 
1718 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1719 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1720 						  u64 run_flags);
1721 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1722 		enum exit_fastpath_completion exit_fastpath);
1723 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1724 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1725 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1726 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1727 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1728 				unsigned char *hypercall_addr);
1729 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1730 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1731 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1732 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1733 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1734 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1735 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1736 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1737 	/* Whether or not a virtual NMI is pending in hardware. */
1738 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1739 	/*
1740 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1741 	 * to allow using static_call_ret0 as the fallback.
1742 	 */
1743 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1744 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1745 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1746 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1747 
1748 	const bool x2apic_icr_is_split;
1749 	const unsigned long required_apicv_inhibits;
1750 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1751 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1752 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1753 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1754 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1755 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1756 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1757 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1758 				  int trig_mode, int vector);
1759 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1760 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1761 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1762 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1763 
1764 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1765 			     int root_level);
1766 
1767 	bool (*has_wbinvd_exit)(void);
1768 
1769 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1770 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1771 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1772 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1773 
1774 	/*
1775 	 * Retrieve somewhat arbitrary exit information.  Intended to
1776 	 * be used only from within tracepoints or error paths.
1777 	 */
1778 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1779 			      u64 *info1, u64 *info2,
1780 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1781 
1782 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1783 			       struct x86_instruction_info *info,
1784 			       enum x86_intercept_stage stage,
1785 			       struct x86_exception *exception);
1786 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1787 
1788 	/*
1789 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1790 	 * value indicates CPU dirty logging is unsupported or disabled.
1791 	 */
1792 	int cpu_dirty_log_size;
1793 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1794 
1795 	const struct kvm_x86_nested_ops *nested_ops;
1796 
1797 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1798 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1799 
1800 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1801 			      uint32_t guest_irq, bool set);
1802 	void (*pi_start_assignment)(struct kvm *kvm);
1803 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1804 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1805 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1806 
1807 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1808 			    bool *expired);
1809 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1810 
1811 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1812 
1813 #ifdef CONFIG_KVM_SMM
1814 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1815 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1816 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1817 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1818 #endif
1819 
1820 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1821 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1822 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1823 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1824 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1825 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1826 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1827 
1828 	int (*get_feature_msr)(u32 msr, u64 *data);
1829 
1830 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1831 					 void *insn, int insn_len);
1832 
1833 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1834 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1835 
1836 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1837 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1838 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1839 
1840 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1841 
1842 	/*
1843 	 * Returns vCPU specific APICv inhibit reasons
1844 	 */
1845 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1846 
1847 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1848 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1849 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1850 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1851 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1852 };
1853 
1854 struct kvm_x86_nested_ops {
1855 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1856 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1857 				    u32 error_code);
1858 	int (*check_events)(struct kvm_vcpu *vcpu);
1859 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1860 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1861 	int (*get_state)(struct kvm_vcpu *vcpu,
1862 			 struct kvm_nested_state __user *user_kvm_nested_state,
1863 			 unsigned user_data_size);
1864 	int (*set_state)(struct kvm_vcpu *vcpu,
1865 			 struct kvm_nested_state __user *user_kvm_nested_state,
1866 			 struct kvm_nested_state *kvm_state);
1867 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1868 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1869 
1870 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1871 			    uint16_t *vmcs_version);
1872 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1873 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1874 };
1875 
1876 struct kvm_x86_init_ops {
1877 	int (*hardware_setup)(void);
1878 	unsigned int (*handle_intel_pt_intr)(void);
1879 
1880 	struct kvm_x86_ops *runtime_ops;
1881 	struct kvm_pmu_ops *pmu_ops;
1882 };
1883 
1884 struct kvm_arch_async_pf {
1885 	u32 token;
1886 	gfn_t gfn;
1887 	unsigned long cr3;
1888 	bool direct_map;
1889 	u64 error_code;
1890 };
1891 
1892 extern u32 __read_mostly kvm_nr_uret_msrs;
1893 extern bool __read_mostly allow_smaller_maxphyaddr;
1894 extern bool __read_mostly enable_apicv;
1895 extern struct kvm_x86_ops kvm_x86_ops;
1896 
1897 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1898 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1899 
1900 #define KVM_X86_OP(func) \
1901 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1902 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1903 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1904 #include <asm/kvm-x86-ops.h>
1905 
1906 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1907 void kvm_x86_vendor_exit(void);
1908 
1909 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1910 static inline struct kvm *kvm_arch_alloc_vm(void)
1911 {
1912 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1913 }
1914 
1915 #define __KVM_HAVE_ARCH_VM_FREE
1916 void kvm_arch_free_vm(struct kvm *kvm);
1917 
1918 #if IS_ENABLED(CONFIG_HYPERV)
1919 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1920 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1921 {
1922 	if (kvm_x86_ops.flush_remote_tlbs &&
1923 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1924 		return 0;
1925 	else
1926 		return -ENOTSUPP;
1927 }
1928 
1929 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1930 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1931 						   u64 nr_pages)
1932 {
1933 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1934 		return -EOPNOTSUPP;
1935 
1936 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1937 }
1938 #endif /* CONFIG_HYPERV */
1939 
1940 enum kvm_intr_type {
1941 	/* Values are arbitrary, but must be non-zero. */
1942 	KVM_HANDLING_IRQ = 1,
1943 	KVM_HANDLING_NMI,
1944 };
1945 
1946 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1947 #define kvm_arch_pmi_in_guest(vcpu) \
1948 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1949 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1950 
1951 void __init kvm_mmu_x86_module_init(void);
1952 int kvm_mmu_vendor_module_init(void);
1953 void kvm_mmu_vendor_module_exit(void);
1954 
1955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1956 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1957 void kvm_mmu_init_vm(struct kvm *kvm);
1958 void kvm_mmu_uninit_vm(struct kvm *kvm);
1959 
1960 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1961 					    struct kvm_memory_slot *slot);
1962 
1963 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1964 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1965 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1966 				      const struct kvm_memory_slot *memslot,
1967 				      int start_level);
1968 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1969 				       const struct kvm_memory_slot *memslot,
1970 				       int target_level);
1971 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1972 				  const struct kvm_memory_slot *memslot,
1973 				  u64 start, u64 end,
1974 				  int target_level);
1975 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1976 				   const struct kvm_memory_slot *memslot);
1977 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1978 				   const struct kvm_memory_slot *memslot);
1979 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1980 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1981 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
1982 
1983 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1984 
1985 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1986 			  const void *val, int bytes);
1987 
1988 struct kvm_irq_mask_notifier {
1989 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1990 	int irq;
1991 	struct hlist_node link;
1992 };
1993 
1994 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1995 				    struct kvm_irq_mask_notifier *kimn);
1996 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1997 				      struct kvm_irq_mask_notifier *kimn);
1998 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1999 			     bool mask);
2000 
2001 extern bool tdp_enabled;
2002 
2003 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2004 
2005 /*
2006  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2007  *			userspace I/O) to indicate that the emulation context
2008  *			should be reused as is, i.e. skip initialization of
2009  *			emulation context, instruction fetch and decode.
2010  *
2011  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2012  *		      Indicates that only select instructions (tagged with
2013  *		      EmulateOnUD) should be emulated (to minimize the emulator
2014  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2015  *
2016  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2017  *		   decode the instruction length.  For use *only* by
2018  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2019  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2020  *
2021  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2022  *			     retry native execution under certain conditions,
2023  *			     Can only be set in conjunction with EMULTYPE_PF.
2024  *
2025  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2026  *			     triggered by KVM's magic "force emulation" prefix,
2027  *			     which is opt in via module param (off by default).
2028  *			     Bypasses EmulateOnUD restriction despite emulating
2029  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2030  *			     Used to test the full emulator from userspace.
2031  *
2032  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2033  *			backdoor emulation, which is opt in via module param.
2034  *			VMware backdoor emulation handles select instructions
2035  *			and reinjects the #GP for all other cases.
2036  *
2037  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
2038  *		 case the CR2/GPA value pass on the stack is valid.
2039  *
2040  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2041  *				 state and inject single-step #DBs after skipping
2042  *				 an instruction (after completing userspace I/O).
2043  *
2044  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2045  *			     is attempting to write a gfn that contains one or
2046  *			     more of the PTEs used to translate the write itself,
2047  *			     and the owning page table is being shadowed by KVM.
2048  *			     If emulation of the faulting instruction fails and
2049  *			     this flag is set, KVM will exit to userspace instead
2050  *			     of retrying emulation as KVM cannot make forward
2051  *			     progress.
2052  *
2053  *			     If emulation fails for a write to guest page tables,
2054  *			     KVM unprotects (zaps) the shadow page for the target
2055  *			     gfn and resumes the guest to retry the non-emulatable
2056  *			     instruction (on hardware).  Unprotecting the gfn
2057  *			     doesn't allow forward progress for a self-changing
2058  *			     access because doing so also zaps the translation for
2059  *			     the gfn, i.e. retrying the instruction will hit a
2060  *			     !PRESENT fault, which results in a new shadow page
2061  *			     and sends KVM back to square one.
2062  */
2063 #define EMULTYPE_NO_DECODE	    (1 << 0)
2064 #define EMULTYPE_TRAP_UD	    (1 << 1)
2065 #define EMULTYPE_SKIP		    (1 << 2)
2066 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2067 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2068 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2069 #define EMULTYPE_PF		    (1 << 6)
2070 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2071 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2072 
2073 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2074 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2075 					void *insn, int insn_len);
2076 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2077 					  u64 *data, u8 ndata);
2078 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2079 
2080 void kvm_enable_efer_bits(u64);
2081 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2082 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2083 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2084 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2085 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2086 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2087 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2088 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2089 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2090 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2091 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2092 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2093 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2094 
2095 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2096 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2097 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2098 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2099 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2100 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2101 
2102 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2103 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2104 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2105 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2106 
2107 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2108 		    int reason, bool has_error_code, u32 error_code);
2109 
2110 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2111 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2112 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2113 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2114 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2115 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2116 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2117 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2118 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2119 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2120 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2121 
2122 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2123 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2124 
2125 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2126 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2127 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2128 
2129 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2130 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2131 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2132 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2133 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2134 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2135 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2136 				    struct x86_exception *fault);
2137 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2138 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2139 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2140 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2141 				       int irq_source_id, int level)
2142 {
2143 	/* Logical OR for level trig interrupt */
2144 	if (level)
2145 		__set_bit(irq_source_id, irq_state);
2146 	else
2147 		__clear_bit(irq_source_id, irq_state);
2148 
2149 	return !!(*irq_state);
2150 }
2151 
2152 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2153 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2154 
2155 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2156 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2157 
2158 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2159 
2160 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2161 				       bool always_retry);
2162 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2163 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2164 						   gpa_t cr2_or_gpa)
2165 {
2166 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2167 }
2168 
2169 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2170 			ulong roots_to_free);
2171 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2172 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2173 			      struct x86_exception *exception);
2174 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2175 			       struct x86_exception *exception);
2176 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2177 				struct x86_exception *exception);
2178 
2179 bool kvm_apicv_activated(struct kvm *kvm);
2180 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2181 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2182 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2183 				      enum kvm_apicv_inhibit reason, bool set);
2184 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2185 				    enum kvm_apicv_inhibit reason, bool set);
2186 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2187 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2188 					 enum kvm_apicv_inhibit reason)
2189 {
2190 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2191 }
2192 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2193 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2194 					   enum kvm_apicv_inhibit reason)
2195 {
2196 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2197 }
2198 
2199 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2200 				      unsigned long a0, unsigned long a1,
2201 				      unsigned long a2, unsigned long a3,
2202 				      int op_64_bit, int cpl);
2203 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2204 
2205 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2206 		       void *insn, int insn_len);
2207 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2208 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2209 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2210 			     u64 addr, unsigned long roots);
2211 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2212 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2213 
2214 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2215 		       int tdp_max_root_level, int tdp_huge_page_level);
2216 
2217 
2218 #ifdef CONFIG_KVM_PRIVATE_MEM
2219 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2220 #else
2221 #define kvm_arch_has_private_mem(kvm) false
2222 #endif
2223 
2224 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2225 
kvm_read_ldt(void)2226 static inline u16 kvm_read_ldt(void)
2227 {
2228 	u16 ldt;
2229 	asm("sldt %0" : "=g"(ldt));
2230 	return ldt;
2231 }
2232 
kvm_load_ldt(u16 sel)2233 static inline void kvm_load_ldt(u16 sel)
2234 {
2235 	asm("lldt %0" : : "rm"(sel));
2236 }
2237 
2238 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2239 static inline unsigned long read_msr(unsigned long msr)
2240 {
2241 	u64 value;
2242 
2243 	rdmsrl(msr, value);
2244 	return value;
2245 }
2246 #endif
2247 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2248 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2249 {
2250 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2251 }
2252 
2253 #define TSS_IOPB_BASE_OFFSET 0x66
2254 #define TSS_BASE_SIZE 0x68
2255 #define TSS_IOPB_SIZE (65536 / 8)
2256 #define TSS_REDIRECTION_SIZE (256 / 8)
2257 #define RMODE_TSS_SIZE							\
2258 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2259 
2260 enum {
2261 	TASK_SWITCH_CALL = 0,
2262 	TASK_SWITCH_IRET = 1,
2263 	TASK_SWITCH_JMP = 2,
2264 	TASK_SWITCH_GATE = 3,
2265 };
2266 
2267 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2268 
2269 #ifdef CONFIG_KVM_SMM
2270 #define HF_SMM_MASK		(1 << 1)
2271 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2272 
2273 # define KVM_MAX_NR_ADDRESS_SPACES	2
2274 /* SMM is currently unsupported for guests with private memory. */
2275 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2276 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2277 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2278 #else
2279 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2280 #endif
2281 
2282 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2283 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2284 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2285 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2286 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2287 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2288 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2289 
2290 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2291 		    unsigned long ipi_bitmap_high, u32 min,
2292 		    unsigned long icr, int op_64_bit);
2293 
2294 int kvm_add_user_return_msr(u32 msr);
2295 int kvm_find_user_return_msr(u32 msr);
2296 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2297 
kvm_is_supported_user_return_msr(u32 msr)2298 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2299 {
2300 	return kvm_find_user_return_msr(msr) >= 0;
2301 }
2302 
2303 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2304 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2305 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2306 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2307 
2308 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2309 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2310 
2311 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2312 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2313 				       unsigned long *vcpu_bitmap);
2314 
2315 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2316 				     struct kvm_async_pf *work);
2317 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2318 				 struct kvm_async_pf *work);
2319 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2320 			       struct kvm_async_pf *work);
2321 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2322 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2323 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2324 
2325 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2326 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2327 
2328 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2329 				     u32 size);
2330 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2331 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2332 
2333 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2334 			     struct kvm_vcpu **dest_vcpu);
2335 
2336 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2337 		     struct kvm_lapic_irq *irq);
2338 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2339 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2340 {
2341 	/* We can only post Fixed and LowPrio IRQs */
2342 	return (irq->delivery_mode == APIC_DM_FIXED ||
2343 		irq->delivery_mode == APIC_DM_LOWEST);
2344 }
2345 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2346 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2347 {
2348 	kvm_x86_call(vcpu_blocking)(vcpu);
2349 }
2350 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2351 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2352 {
2353 	kvm_x86_call(vcpu_unblocking)(vcpu);
2354 }
2355 
kvm_cpu_get_apicid(int mps_cpu)2356 static inline int kvm_cpu_get_apicid(int mps_cpu)
2357 {
2358 #ifdef CONFIG_X86_LOCAL_APIC
2359 	return default_cpu_present_to_apicid(mps_cpu);
2360 #else
2361 	WARN_ON_ONCE(1);
2362 	return BAD_APICID;
2363 #endif
2364 }
2365 
2366 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2367 
2368 #define KVM_CLOCK_VALID_FLAGS						\
2369 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2370 
2371 #define KVM_X86_VALID_QUIRKS			\
2372 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2373 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2374 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2375 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2376 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2377 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2378 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2379 	 KVM_X86_QUIRK_SLOT_ZAP_ALL)
2380 
2381 /*
2382  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2383  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2384  * remaining 31 lower bits must be 0 to preserve ABI.
2385  */
2386 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2387 
2388 #endif /* _ASM_X86_KVM_HOST_H */
2389