1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/cfi_types.h>
5 #include <linux/module.h>
6 #include <linux/sched.h>
7 #include <linux/perf_event.h>
8 #include <linux/mutex.h>
9 #include <linux/list.h>
10 #include <linux/stringify.h>
11 #include <linux/highmem.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/memory.h>
15 #include <linux/stop_machine.h>
16 #include <linux/slab.h>
17 #include <linux/kdebug.h>
18 #include <linux/kprobes.h>
19 #include <linux/mmu_context.h>
20 #include <linux/bsearch.h>
21 #include <linux/sync_core.h>
22 #include <linux/execmem.h>
23 #include <asm/text-patching.h>
24 #include <asm/alternative.h>
25 #include <asm/sections.h>
26 #include <asm/mce.h>
27 #include <asm/nmi.h>
28 #include <asm/cacheflush.h>
29 #include <asm/tlbflush.h>
30 #include <asm/insn.h>
31 #include <asm/io.h>
32 #include <asm/fixmap.h>
33 #include <asm/paravirt.h>
34 #include <asm/asm-prototypes.h>
35 #include <asm/cfi.h>
36 #include <asm/ibt.h>
37 #include <asm/set_memory.h>
38
39 int __read_mostly alternatives_patched;
40
41 EXPORT_SYMBOL_GPL(alternatives_patched);
42
43 #define MAX_PATCH_LEN (255-1)
44
45 #define DA_ALL (~0)
46 #define DA_ALT 0x01
47 #define DA_RET 0x02
48 #define DA_RETPOLINE 0x04
49 #define DA_ENDBR 0x08
50 #define DA_SMP 0x10
51
52 static unsigned int debug_alternative;
53
debug_alt(char * str)54 static int __init debug_alt(char *str)
55 {
56 if (str && *str == '=')
57 str++;
58
59 if (!str || kstrtouint(str, 0, &debug_alternative))
60 debug_alternative = DA_ALL;
61
62 return 1;
63 }
64 __setup("debug-alternative", debug_alt);
65
66 static int noreplace_smp;
67
setup_noreplace_smp(char * str)68 static int __init setup_noreplace_smp(char *str)
69 {
70 noreplace_smp = 1;
71 return 1;
72 }
73 __setup("noreplace-smp", setup_noreplace_smp);
74
75 #define DPRINTK(type, fmt, args...) \
76 do { \
77 if (debug_alternative & DA_##type) \
78 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
79 } while (0)
80
81 #define DUMP_BYTES(type, buf, len, fmt, args...) \
82 do { \
83 if (unlikely(debug_alternative & DA_##type)) { \
84 int j; \
85 \
86 if (!(len)) \
87 break; \
88 \
89 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
90 for (j = 0; j < (len) - 1; j++) \
91 printk(KERN_CONT "%02hhx ", buf[j]); \
92 printk(KERN_CONT "%02hhx\n", buf[j]); \
93 } \
94 } while (0)
95
96 static const unsigned char x86nops[] =
97 {
98 BYTES_NOP1,
99 BYTES_NOP2,
100 BYTES_NOP3,
101 BYTES_NOP4,
102 BYTES_NOP5,
103 BYTES_NOP6,
104 BYTES_NOP7,
105 BYTES_NOP8,
106 #ifdef CONFIG_64BIT
107 BYTES_NOP9,
108 BYTES_NOP10,
109 BYTES_NOP11,
110 #endif
111 };
112
113 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
114 {
115 NULL,
116 x86nops,
117 x86nops + 1,
118 x86nops + 1 + 2,
119 x86nops + 1 + 2 + 3,
120 x86nops + 1 + 2 + 3 + 4,
121 x86nops + 1 + 2 + 3 + 4 + 5,
122 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
123 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
124 #ifdef CONFIG_64BIT
125 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
126 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
127 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
128 #endif
129 };
130
131 #ifdef CONFIG_MITIGATION_ITS
132
133 #ifdef CONFIG_MODULES
134 static struct module *its_mod;
135 #endif
136 static void *its_page;
137 static unsigned int its_offset;
138
139 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)140 static void *its_init_thunk(void *thunk, int reg)
141 {
142 u8 *bytes = thunk;
143 int i = 0;
144
145 if (reg >= 8) {
146 bytes[i++] = 0x41; /* REX.B prefix */
147 reg -= 8;
148 }
149 bytes[i++] = 0xff;
150 bytes[i++] = 0xe0 + reg; /* jmp *reg */
151 bytes[i++] = 0xcc;
152
153 return thunk;
154 }
155
156 #ifdef CONFIG_MODULES
its_init_mod(struct module * mod)157 void its_init_mod(struct module *mod)
158 {
159 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
160 return;
161
162 mutex_lock(&text_mutex);
163 its_mod = mod;
164 its_page = NULL;
165 }
166
its_fini_mod(struct module * mod)167 void its_fini_mod(struct module *mod)
168 {
169 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
170 return;
171
172 WARN_ON_ONCE(its_mod != mod);
173
174 its_mod = NULL;
175 its_page = NULL;
176 mutex_unlock(&text_mutex);
177
178 for (int i = 0; i < mod->its_num_pages; i++) {
179 void *page = mod->its_page_array[i];
180 set_memory_rox((unsigned long)page, 1);
181 }
182 }
183
its_free_mod(struct module * mod)184 void its_free_mod(struct module *mod)
185 {
186 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
187 return;
188
189 for (int i = 0; i < mod->its_num_pages; i++) {
190 void *page = mod->its_page_array[i];
191 execmem_free(page);
192 }
193 kfree(mod->its_page_array);
194 }
195 #endif /* CONFIG_MODULES */
196
its_alloc(void)197 static void *its_alloc(void)
198 {
199 void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE);
200
201 if (!page)
202 return NULL;
203
204 #ifdef CONFIG_MODULES
205 if (its_mod) {
206 void *tmp = krealloc(its_mod->its_page_array,
207 (its_mod->its_num_pages+1) * sizeof(void *),
208 GFP_KERNEL);
209 if (!tmp)
210 return NULL;
211
212 its_mod->its_page_array = tmp;
213 its_mod->its_page_array[its_mod->its_num_pages++] = page;
214 }
215 #endif /* CONFIG_MODULES */
216
217 return no_free_ptr(page);
218 }
219
its_allocate_thunk(int reg)220 static void *its_allocate_thunk(int reg)
221 {
222 int size = 3 + (reg / 8);
223 void *thunk;
224
225 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
226 its_page = its_alloc();
227 if (!its_page) {
228 pr_err("ITS page allocation failed\n");
229 return NULL;
230 }
231 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
232 its_offset = 32;
233 }
234
235 /*
236 * If the indirect branch instruction will be in the lower half
237 * of a cacheline, then update the offset to reach the upper half.
238 */
239 if ((its_offset + size - 1) % 64 < 32)
240 its_offset = ((its_offset - 1) | 0x3F) + 33;
241
242 thunk = its_page + its_offset;
243 its_offset += size;
244
245 set_memory_rw((unsigned long)its_page, 1);
246 thunk = its_init_thunk(thunk, reg);
247 set_memory_rox((unsigned long)its_page, 1);
248
249 return thunk;
250 }
251
its_static_thunk(int reg)252 u8 *its_static_thunk(int reg)
253 {
254 u8 *thunk = __x86_indirect_its_thunk_array[reg];
255
256 return thunk;
257 }
258
259 #endif
260
261 /*
262 * Nomenclature for variable names to simplify and clarify this code and ease
263 * any potential staring at it:
264 *
265 * @instr: source address of the original instructions in the kernel text as
266 * generated by the compiler.
267 *
268 * @buf: temporary buffer on which the patching operates. This buffer is
269 * eventually text-poked into the kernel image.
270 *
271 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
272 * in the .altinstr_replacement section.
273 */
274
275 /*
276 * Fill the buffer with a single effective instruction of size @len.
277 *
278 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
279 * for every single-byte NOP, try to generate the maximally available NOP of
280 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
281 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
282 * *jump* over instead of executing long and daft NOPs.
283 */
add_nop(u8 * buf,unsigned int len)284 static void add_nop(u8 *buf, unsigned int len)
285 {
286 u8 *target = buf + len;
287
288 if (!len)
289 return;
290
291 if (len <= ASM_NOP_MAX) {
292 memcpy(buf, x86_nops[len], len);
293 return;
294 }
295
296 if (len < 128) {
297 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
298 buf += JMP8_INSN_SIZE;
299 } else {
300 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
301 buf += JMP32_INSN_SIZE;
302 }
303
304 for (;buf < target; buf++)
305 *buf = INT3_INSN_OPCODE;
306 }
307
308 extern s32 __retpoline_sites[], __retpoline_sites_end[];
309 extern s32 __return_sites[], __return_sites_end[];
310 extern s32 __cfi_sites[], __cfi_sites_end[];
311 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
312 extern s32 __smp_locks[], __smp_locks_end[];
313 void text_poke_early(void *addr, const void *opcode, size_t len);
314
315 /*
316 * Matches NOP and NOPL, not any of the other possible NOPs.
317 */
insn_is_nop(struct insn * insn)318 static bool insn_is_nop(struct insn *insn)
319 {
320 /* Anything NOP, but no REP NOP */
321 if (insn->opcode.bytes[0] == 0x90 &&
322 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
323 return true;
324
325 /* NOPL */
326 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
327 return true;
328
329 /* TODO: more nops */
330
331 return false;
332 }
333
334 /*
335 * Find the offset of the first non-NOP instruction starting at @offset
336 * but no further than @len.
337 */
skip_nops(u8 * buf,int offset,int len)338 static int skip_nops(u8 *buf, int offset, int len)
339 {
340 struct insn insn;
341
342 for (; offset < len; offset += insn.length) {
343 if (insn_decode_kernel(&insn, &buf[offset]))
344 break;
345
346 if (!insn_is_nop(&insn))
347 break;
348 }
349
350 return offset;
351 }
352
353 /*
354 * "noinline" to cause control flow change and thus invalidate I$ and
355 * cause refetch after modification.
356 */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)357 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
358 {
359 for (int next, i = 0; i < len; i = next) {
360 struct insn insn;
361
362 if (insn_decode_kernel(&insn, &buf[i]))
363 return;
364
365 next = i + insn.length;
366
367 if (insn_is_nop(&insn)) {
368 int nop = i;
369
370 /* Has the NOP already been optimized? */
371 if (i + insn.length == len)
372 return;
373
374 next = skip_nops(buf, next, len);
375
376 add_nop(buf + nop, next - nop);
377 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
378 }
379 }
380 }
381
382 /*
383 * In this context, "source" is where the instructions are placed in the
384 * section .altinstr_replacement, for example during kernel build by the
385 * toolchain.
386 * "Destination" is where the instructions are being patched in by this
387 * machinery.
388 *
389 * The source offset is:
390 *
391 * src_imm = target - src_next_ip (1)
392 *
393 * and the target offset is:
394 *
395 * dst_imm = target - dst_next_ip (2)
396 *
397 * so rework (1) as an expression for target like:
398 *
399 * target = src_imm + src_next_ip (1a)
400 *
401 * and substitute in (2) to get:
402 *
403 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
404 *
405 * Now, since the instruction stream is 'identical' at src and dst (it
406 * is being copied after all) it can be stated that:
407 *
408 * src_next_ip = src + ip_offset
409 * dst_next_ip = dst + ip_offset (4)
410 *
411 * Substitute (4) in (3) and observe ip_offset being cancelled out to
412 * obtain:
413 *
414 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
415 * = src_imm + src - dst + ip_offset - ip_offset
416 * = src_imm + src - dst (5)
417 *
418 * IOW, only the relative displacement of the code block matters.
419 */
420
421 #define apply_reloc_n(n_, p_, d_) \
422 do { \
423 s32 v = *(s##n_ *)(p_); \
424 v += (d_); \
425 BUG_ON((v >> 31) != (v >> (n_-1))); \
426 *(s##n_ *)(p_) = (s##n_)v; \
427 } while (0)
428
429
430 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)431 void apply_reloc(int n, void *ptr, uintptr_t diff)
432 {
433 switch (n) {
434 case 1: apply_reloc_n(8, ptr, diff); break;
435 case 2: apply_reloc_n(16, ptr, diff); break;
436 case 4: apply_reloc_n(32, ptr, diff); break;
437 default: BUG();
438 }
439 }
440
441 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)442 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
443 {
444 u8 *target = src + offset;
445 /*
446 * If the target is inside the patched block, it's relative to the
447 * block itself and does not need relocation.
448 */
449 return (target < src || target > src + src_len);
450 }
451
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)452 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
453 {
454 for (int next, i = 0; i < instrlen; i = next) {
455 struct insn insn;
456
457 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
458 return;
459
460 next = i + insn.length;
461
462 switch (insn.opcode.bytes[0]) {
463 case 0x0f:
464 if (insn.opcode.bytes[1] < 0x80 ||
465 insn.opcode.bytes[1] > 0x8f)
466 break;
467
468 fallthrough; /* Jcc.d32 */
469 case 0x70 ... 0x7f: /* Jcc.d8 */
470 case JMP8_INSN_OPCODE:
471 case JMP32_INSN_OPCODE:
472 case CALL_INSN_OPCODE:
473 if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
474 apply_reloc(insn.immediate.nbytes,
475 buf + i + insn_offset_immediate(&insn),
476 repl - instr);
477 }
478
479 /*
480 * Where possible, convert JMP.d32 into JMP.d8.
481 */
482 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
483 s32 imm = insn.immediate.value;
484 imm += repl - instr;
485 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
486 if ((imm >> 31) == (imm >> 7)) {
487 buf[i+0] = JMP8_INSN_OPCODE;
488 buf[i+1] = (s8)imm;
489
490 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
491 }
492 }
493 break;
494 }
495
496 if (insn_rip_relative(&insn)) {
497 if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
498 apply_reloc(insn.displacement.nbytes,
499 buf + i + insn_offset_displacement(&insn),
500 repl - instr);
501 }
502 }
503 }
504 }
505
apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)506 void apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
507 {
508 __apply_relocation(buf, instr, instrlen, repl, repl_len);
509 optimize_nops(instr, buf, instrlen);
510 }
511
512 /* Low-level backend functions usable from alternative code replacements. */
513 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
514 EXPORT_SYMBOL_GPL(nop_func);
515
BUG_func(void)516 noinstr void BUG_func(void)
517 {
518 BUG();
519 }
520 EXPORT_SYMBOL(BUG_func);
521
522 #define CALL_RIP_REL_OPCODE 0xff
523 #define CALL_RIP_REL_MODRM 0x15
524
525 /*
526 * Rewrite the "call BUG_func" replacement to point to the target of the
527 * indirect pv_ops call "call *disp(%ip)".
528 */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)529 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
530 {
531 void *target, *bug = &BUG_func;
532 s32 disp;
533
534 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
535 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
536 BUG();
537 }
538
539 if (a->instrlen != 6 ||
540 instr[0] != CALL_RIP_REL_OPCODE ||
541 instr[1] != CALL_RIP_REL_MODRM) {
542 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
543 BUG();
544 }
545
546 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
547 disp = *(s32 *)(instr + 2);
548 #ifdef CONFIG_X86_64
549 /* ff 15 00 00 00 00 call *0x0(%rip) */
550 /* target address is stored at "next instruction + disp". */
551 target = *(void **)(instr + a->instrlen + disp);
552 #else
553 /* ff 15 00 00 00 00 call *0x0 */
554 /* target address is stored at disp. */
555 target = *(void **)disp;
556 #endif
557 if (!target)
558 target = bug;
559
560 /* (BUG_func - .) + (target - BUG_func) := target - . */
561 *(s32 *)(insn_buff + 1) += target - bug;
562
563 if (target == &nop_func)
564 return 0;
565
566 return 5;
567 }
568
instr_va(struct alt_instr * i)569 static inline u8 * instr_va(struct alt_instr *i)
570 {
571 return (u8 *)&i->instr_offset + i->instr_offset;
572 }
573
574 /*
575 * Replace instructions with better alternatives for this CPU type. This runs
576 * before SMP is initialized to avoid SMP problems with self modifying code.
577 * This implies that asymmetric systems where APs have less capabilities than
578 * the boot processor are not handled. Tough. Make sure you disable such
579 * features by hand.
580 *
581 * Marked "noinline" to cause control flow change and thus insn cache
582 * to refetch changed I$ lines.
583 */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)584 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
585 struct alt_instr *end)
586 {
587 u8 insn_buff[MAX_PATCH_LEN];
588 u8 *instr, *replacement;
589 struct alt_instr *a, *b;
590
591 DPRINTK(ALT, "alt table %px, -> %px", start, end);
592
593 /*
594 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
595 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
596 * During the process, KASAN becomes confused seeing partial LA57
597 * conversion and triggers a false-positive out-of-bound report.
598 *
599 * Disable KASAN until the patching is complete.
600 */
601 kasan_disable_current();
602
603 /*
604 * The scan order should be from start to end. A later scanned
605 * alternative code can overwrite previously scanned alternative code.
606 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
607 * patch code.
608 *
609 * So be careful if you want to change the scan order to any other
610 * order.
611 */
612 for (a = start; a < end; a++) {
613 int insn_buff_sz = 0;
614
615 /*
616 * In case of nested ALTERNATIVE()s the outer alternative might
617 * add more padding. To ensure consistent patching find the max
618 * padding for all alt_instr entries for this site (nested
619 * alternatives result in consecutive entries).
620 */
621 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
622 u8 len = max(a->instrlen, b->instrlen);
623 a->instrlen = b->instrlen = len;
624 }
625
626 instr = instr_va(a);
627 replacement = (u8 *)&a->repl_offset + a->repl_offset;
628 BUG_ON(a->instrlen > sizeof(insn_buff));
629 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
630
631 /*
632 * Patch if either:
633 * - feature is present
634 * - feature not present but ALT_FLAG_NOT is set to mean,
635 * patch if feature is *NOT* present.
636 */
637 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
638 memcpy(insn_buff, instr, a->instrlen);
639 optimize_nops(instr, insn_buff, a->instrlen);
640 text_poke_early(instr, insn_buff, a->instrlen);
641 continue;
642 }
643
644 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
645 a->cpuid >> 5,
646 a->cpuid & 0x1f,
647 instr, instr, a->instrlen,
648 replacement, a->replacementlen, a->flags);
649
650 memcpy(insn_buff, replacement, a->replacementlen);
651 insn_buff_sz = a->replacementlen;
652
653 if (a->flags & ALT_FLAG_DIRECT_CALL) {
654 insn_buff_sz = alt_replace_call(instr, insn_buff, a);
655 if (insn_buff_sz < 0)
656 continue;
657 }
658
659 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
660 insn_buff[insn_buff_sz] = 0x90;
661
662 apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
663
664 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
665 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
666 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
667
668 text_poke_early(instr, insn_buff, insn_buff_sz);
669 }
670
671 kasan_enable_current();
672 }
673
is_jcc32(struct insn * insn)674 static inline bool is_jcc32(struct insn *insn)
675 {
676 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
677 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
678 }
679
680 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
681
682 /*
683 * CALL/JMP *%\reg
684 */
emit_indirect(int op,int reg,u8 * bytes)685 static int emit_indirect(int op, int reg, u8 *bytes)
686 {
687 int i = 0;
688 u8 modrm;
689
690 switch (op) {
691 case CALL_INSN_OPCODE:
692 modrm = 0x10; /* Reg = 2; CALL r/m */
693 break;
694
695 case JMP32_INSN_OPCODE:
696 modrm = 0x20; /* Reg = 4; JMP r/m */
697 break;
698
699 default:
700 WARN_ON_ONCE(1);
701 return -1;
702 }
703
704 if (reg >= 8) {
705 bytes[i++] = 0x41; /* REX.B prefix */
706 reg -= 8;
707 }
708
709 modrm |= 0xc0; /* Mod = 3 */
710 modrm += reg;
711
712 bytes[i++] = 0xff; /* opcode */
713 bytes[i++] = modrm;
714
715 return i;
716 }
717
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)718 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
719 void *call_dest, void *jmp_dest)
720 {
721 u8 op = insn->opcode.bytes[0];
722 int i = 0;
723
724 /*
725 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
726 * tail-calls. Deal with them.
727 */
728 if (is_jcc32(insn)) {
729 bytes[i++] = op;
730 op = insn->opcode.bytes[1];
731 goto clang_jcc;
732 }
733
734 if (insn->length == 6)
735 bytes[i++] = 0x2e; /* CS-prefix */
736
737 switch (op) {
738 case CALL_INSN_OPCODE:
739 __text_gen_insn(bytes+i, op, addr+i,
740 call_dest,
741 CALL_INSN_SIZE);
742 i += CALL_INSN_SIZE;
743 break;
744
745 case JMP32_INSN_OPCODE:
746 clang_jcc:
747 __text_gen_insn(bytes+i, op, addr+i,
748 jmp_dest,
749 JMP32_INSN_SIZE);
750 i += JMP32_INSN_SIZE;
751 break;
752
753 default:
754 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
755 return -1;
756 }
757
758 WARN_ON_ONCE(i != insn->length);
759
760 return i;
761 }
762
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)763 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
764 {
765 return __emit_trampoline(addr, insn, bytes,
766 __x86_indirect_call_thunk_array[reg],
767 __x86_indirect_jump_thunk_array[reg]);
768 }
769
770 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)771 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
772 {
773 u8 *thunk = __x86_indirect_its_thunk_array[reg];
774 u8 *tmp = its_allocate_thunk(reg);
775
776 if (tmp)
777 thunk = tmp;
778
779 return __emit_trampoline(addr, insn, bytes, thunk, thunk);
780 }
781
782 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)783 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
784 {
785 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
786 return false;
787
788 /* Indirect branch opcode is 2 or 3 bytes depending on reg */
789 addr += 1 + reg / 8;
790
791 /* Lower-half of the cacheline? */
792 return !(addr & 0x20);
793 }
794 #endif
795
796 /*
797 * Rewrite the compiler generated retpoline thunk calls.
798 *
799 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
800 * indirect instructions, avoiding the extra indirection.
801 *
802 * For example, convert:
803 *
804 * CALL __x86_indirect_thunk_\reg
805 *
806 * into:
807 *
808 * CALL *%\reg
809 *
810 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
811 */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)812 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
813 {
814 retpoline_thunk_t *target;
815 int reg, ret, i = 0;
816 u8 op, cc;
817
818 target = addr + insn->length + insn->immediate.value;
819 reg = target - __x86_indirect_thunk_array;
820
821 if (WARN_ON_ONCE(reg & ~0xf))
822 return -1;
823
824 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
825 BUG_ON(reg == 4);
826
827 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
828 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
829 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
830 return emit_call_track_retpoline(addr, insn, reg, bytes);
831
832 return -1;
833 }
834
835 op = insn->opcode.bytes[0];
836
837 /*
838 * Convert:
839 *
840 * Jcc.d32 __x86_indirect_thunk_\reg
841 *
842 * into:
843 *
844 * Jncc.d8 1f
845 * [ LFENCE ]
846 * JMP *%\reg
847 * [ NOP ]
848 * 1:
849 */
850 if (is_jcc32(insn)) {
851 cc = insn->opcode.bytes[1] & 0xf;
852 cc ^= 1; /* invert condition */
853
854 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
855 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
856
857 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
858 op = JMP32_INSN_OPCODE;
859 }
860
861 /*
862 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
863 */
864 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
865 bytes[i++] = 0x0f;
866 bytes[i++] = 0xae;
867 bytes[i++] = 0xe8; /* LFENCE */
868 }
869
870 #ifdef CONFIG_MITIGATION_ITS
871 /*
872 * Check if the address of last byte of emitted-indirect is in
873 * lower-half of the cacheline. Such branches need ITS mitigation.
874 */
875 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
876 return emit_its_trampoline(addr, insn, reg, bytes);
877 #endif
878
879 ret = emit_indirect(op, reg, bytes + i);
880 if (ret < 0)
881 return ret;
882 i += ret;
883
884 /*
885 * The compiler is supposed to EMIT an INT3 after every unconditional
886 * JMP instruction due to AMD BTC. However, if the compiler is too old
887 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
888 * indirect JMPs even on Intel.
889 */
890 if (op == JMP32_INSN_OPCODE && i < insn->length)
891 bytes[i++] = INT3_INSN_OPCODE;
892
893 for (; i < insn->length;)
894 bytes[i++] = BYTES_NOP1;
895
896 return i;
897 }
898
899 /*
900 * Generated by 'objtool --retpoline'.
901 */
apply_retpolines(s32 * start,s32 * end)902 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
903 {
904 s32 *s;
905
906 for (s = start; s < end; s++) {
907 void *addr = (void *)s + *s;
908 struct insn insn;
909 int len, ret;
910 u8 bytes[16];
911 u8 op1, op2;
912
913 ret = insn_decode_kernel(&insn, addr);
914 if (WARN_ON_ONCE(ret < 0))
915 continue;
916
917 op1 = insn.opcode.bytes[0];
918 op2 = insn.opcode.bytes[1];
919
920 switch (op1) {
921 case CALL_INSN_OPCODE:
922 case JMP32_INSN_OPCODE:
923 break;
924
925 case 0x0f: /* escape */
926 if (op2 >= 0x80 && op2 <= 0x8f)
927 break;
928 fallthrough;
929 default:
930 WARN_ON_ONCE(1);
931 continue;
932 }
933
934 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
935 addr, addr, insn.length,
936 addr + insn.length + insn.immediate.value);
937
938 len = patch_retpoline(addr, &insn, bytes);
939 if (len == insn.length) {
940 optimize_nops(addr, bytes, len);
941 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
942 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
943 text_poke_early(addr, bytes, len);
944 }
945 }
946 }
947
948 #ifdef CONFIG_MITIGATION_RETHUNK
949
cpu_wants_rethunk(void)950 bool cpu_wants_rethunk(void)
951 {
952 return cpu_feature_enabled(X86_FEATURE_RETHUNK);
953 }
954
cpu_wants_rethunk_at(void * addr)955 bool cpu_wants_rethunk_at(void *addr)
956 {
957 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
958 return false;
959 if (x86_return_thunk != its_return_thunk)
960 return true;
961
962 return !((unsigned long)addr & 0x20);
963 }
964
965 /*
966 * Rewrite the compiler generated return thunk tail-calls.
967 *
968 * For example, convert:
969 *
970 * JMP __x86_return_thunk
971 *
972 * into:
973 *
974 * RET
975 */
patch_return(void * addr,struct insn * insn,u8 * bytes)976 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
977 {
978 int i = 0;
979
980 /* Patch the custom return thunks... */
981 if (cpu_wants_rethunk_at(addr)) {
982 i = JMP32_INSN_SIZE;
983 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
984 } else {
985 /* ... or patch them out if not needed. */
986 bytes[i++] = RET_INSN_OPCODE;
987 }
988
989 for (; i < insn->length;)
990 bytes[i++] = INT3_INSN_OPCODE;
991 return i;
992 }
993
apply_returns(s32 * start,s32 * end)994 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
995 {
996 s32 *s;
997
998 if (cpu_wants_rethunk())
999 static_call_force_reinit();
1000
1001 for (s = start; s < end; s++) {
1002 void *dest = NULL, *addr = (void *)s + *s;
1003 struct insn insn;
1004 int len, ret;
1005 u8 bytes[16];
1006 u8 op;
1007
1008 ret = insn_decode_kernel(&insn, addr);
1009 if (WARN_ON_ONCE(ret < 0))
1010 continue;
1011
1012 op = insn.opcode.bytes[0];
1013 if (op == JMP32_INSN_OPCODE)
1014 dest = addr + insn.length + insn.immediate.value;
1015
1016 if (__static_call_fixup(addr, op, dest) ||
1017 WARN_ONCE(dest != &__x86_return_thunk,
1018 "missing return thunk: %pS-%pS: %*ph",
1019 addr, dest, 5, addr))
1020 continue;
1021
1022 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1023 addr, addr, insn.length,
1024 addr + insn.length + insn.immediate.value);
1025
1026 len = patch_return(addr, &insn, bytes);
1027 if (len == insn.length) {
1028 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
1029 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1030 text_poke_early(addr, bytes, len);
1031 }
1032 }
1033 }
1034 #else
apply_returns(s32 * start,s32 * end)1035 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1036 #endif /* CONFIG_MITIGATION_RETHUNK */
1037
1038 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1039
apply_retpolines(s32 * start,s32 * end)1040 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)1041 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1042
1043 #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
1044
1045 #ifdef CONFIG_X86_KERNEL_IBT
1046
1047 static void poison_cfi(void *addr);
1048
poison_endbr(void * addr,bool warn)1049 static void __init_or_module poison_endbr(void *addr, bool warn)
1050 {
1051 u32 endbr, poison = gen_endbr_poison();
1052
1053 if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
1054 return;
1055
1056 if (!is_endbr(endbr)) {
1057 WARN_ON_ONCE(warn);
1058 return;
1059 }
1060
1061 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1062
1063 /*
1064 * When we have IBT, the lack of ENDBR will trigger #CP
1065 */
1066 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1067 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1068 text_poke_early(addr, &poison, 4);
1069 }
1070
1071 /*
1072 * Generated by: objtool --ibt
1073 *
1074 * Seal the functions for indirect calls by clobbering the ENDBR instructions
1075 * and the kCFI hash value.
1076 */
apply_seal_endbr(s32 * start,s32 * end)1077 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1078 {
1079 s32 *s;
1080
1081 for (s = start; s < end; s++) {
1082 void *addr = (void *)s + *s;
1083
1084 poison_endbr(addr, true);
1085 if (IS_ENABLED(CONFIG_FINEIBT))
1086 poison_cfi(addr - 16);
1087 }
1088 }
1089
1090 #else
1091
apply_seal_endbr(s32 * start,s32 * end)1092 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1093
1094 #endif /* CONFIG_X86_KERNEL_IBT */
1095
1096 #ifdef CONFIG_CFI_AUTO_DEFAULT
1097 #define __CFI_DEFAULT CFI_AUTO
1098 #elif defined(CONFIG_CFI_CLANG)
1099 #define __CFI_DEFAULT CFI_KCFI
1100 #else
1101 #define __CFI_DEFAULT CFI_OFF
1102 #endif
1103
1104 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1105
1106 #ifdef CONFIG_CFI_CLANG
1107 struct bpf_insn;
1108
1109 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
1110 extern unsigned int __bpf_prog_runX(const void *ctx,
1111 const struct bpf_insn *insn);
1112 DEFINE_CFI_TYPE(cfi_bpf_hash, __bpf_prog_runX);
1113
1114 /* Must match bpf_callback_t */
1115 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
1116 DEFINE_CFI_TYPE(cfi_bpf_subprog_hash, __bpf_callback_fn);
1117
cfi_get_func_hash(void * func)1118 u32 cfi_get_func_hash(void *func)
1119 {
1120 u32 hash;
1121
1122 func -= cfi_get_offset();
1123 switch (cfi_mode) {
1124 case CFI_FINEIBT:
1125 func += 7;
1126 break;
1127 case CFI_KCFI:
1128 func += 1;
1129 break;
1130 default:
1131 return 0;
1132 }
1133
1134 if (get_kernel_nofault(hash, func))
1135 return 0;
1136
1137 return hash;
1138 }
1139 #endif
1140
1141 #ifdef CONFIG_FINEIBT
1142
1143 static bool cfi_rand __ro_after_init = true;
1144 static u32 cfi_seed __ro_after_init;
1145
1146 /*
1147 * Re-hash the CFI hash with a boot-time seed while making sure the result is
1148 * not a valid ENDBR instruction.
1149 */
cfi_rehash(u32 hash)1150 static u32 cfi_rehash(u32 hash)
1151 {
1152 hash ^= cfi_seed;
1153 while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
1154 bool lsb = hash & 1;
1155 hash >>= 1;
1156 if (lsb)
1157 hash ^= 0x80200003;
1158 }
1159 return hash;
1160 }
1161
cfi_parse_cmdline(char * str)1162 static __init int cfi_parse_cmdline(char *str)
1163 {
1164 if (!str)
1165 return -EINVAL;
1166
1167 while (str) {
1168 char *next = strchr(str, ',');
1169 if (next) {
1170 *next = 0;
1171 next++;
1172 }
1173
1174 if (!strcmp(str, "auto")) {
1175 cfi_mode = CFI_AUTO;
1176 } else if (!strcmp(str, "off")) {
1177 cfi_mode = CFI_OFF;
1178 cfi_rand = false;
1179 } else if (!strcmp(str, "kcfi")) {
1180 cfi_mode = CFI_KCFI;
1181 } else if (!strcmp(str, "fineibt")) {
1182 cfi_mode = CFI_FINEIBT;
1183 } else if (!strcmp(str, "norand")) {
1184 cfi_rand = false;
1185 } else {
1186 pr_err("Ignoring unknown cfi option (%s).", str);
1187 }
1188
1189 str = next;
1190 }
1191
1192 return 0;
1193 }
1194 early_param("cfi", cfi_parse_cmdline);
1195
1196 /*
1197 * kCFI FineIBT
1198 *
1199 * __cfi_\func: __cfi_\func:
1200 * movl $0x12345678,%eax // 5 endbr64 // 4
1201 * nop subl $0x12345678,%r10d // 7
1202 * nop jz 1f // 2
1203 * nop ud2 // 2
1204 * nop 1: nop // 1
1205 * nop
1206 * nop
1207 * nop
1208 * nop
1209 * nop
1210 * nop
1211 * nop
1212 *
1213 *
1214 * caller: caller:
1215 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
1216 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
1217 * je 1f // 2 nop4 // 4
1218 * ud2 // 2
1219 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
1220 *
1221 */
1222
1223 asm( ".pushsection .rodata \n"
1224 "fineibt_preamble_start: \n"
1225 " endbr64 \n"
1226 " subl $0x12345678, %r10d \n"
1227 " je fineibt_preamble_end \n"
1228 "fineibt_preamble_ud2: \n"
1229 " ud2 \n"
1230 " nop \n"
1231 "fineibt_preamble_end: \n"
1232 ".popsection\n"
1233 );
1234
1235 extern u8 fineibt_preamble_start[];
1236 extern u8 fineibt_preamble_ud2[];
1237 extern u8 fineibt_preamble_end[];
1238
1239 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1240 #define fineibt_preamble_ud2 (fineibt_preamble_ud2 - fineibt_preamble_start)
1241 #define fineibt_preamble_hash 7
1242
1243 asm( ".pushsection .rodata \n"
1244 "fineibt_caller_start: \n"
1245 " movl $0x12345678, %r10d \n"
1246 " sub $16, %r11 \n"
1247 ASM_NOP4
1248 "fineibt_caller_end: \n"
1249 ".popsection \n"
1250 );
1251
1252 extern u8 fineibt_caller_start[];
1253 extern u8 fineibt_caller_end[];
1254
1255 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1256 #define fineibt_caller_hash 2
1257
1258 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1259
decode_preamble_hash(void * addr)1260 static u32 decode_preamble_hash(void *addr)
1261 {
1262 u8 *p = addr;
1263
1264 /* b8 78 56 34 12 mov $0x12345678,%eax */
1265 if (p[0] == 0xb8)
1266 return *(u32 *)(addr + 1);
1267
1268 return 0; /* invalid hash value */
1269 }
1270
decode_caller_hash(void * addr)1271 static u32 decode_caller_hash(void *addr)
1272 {
1273 u8 *p = addr;
1274
1275 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
1276 if (p[0] == 0x41 && p[1] == 0xba)
1277 return -*(u32 *)(addr + 2);
1278
1279 /* e8 0c 78 56 34 12 jmp.d8 +12 */
1280 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1281 return -*(u32 *)(addr + 2);
1282
1283 return 0; /* invalid hash value */
1284 }
1285
1286 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1287 static int cfi_disable_callers(s32 *start, s32 *end)
1288 {
1289 /*
1290 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1291 * in tact for later usage. Also see decode_caller_hash() and
1292 * cfi_rewrite_callers().
1293 */
1294 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1295 s32 *s;
1296
1297 for (s = start; s < end; s++) {
1298 void *addr = (void *)s + *s;
1299 u32 hash;
1300
1301 addr -= fineibt_caller_size;
1302 hash = decode_caller_hash(addr);
1303 if (!hash) /* nocfi callers */
1304 continue;
1305
1306 text_poke_early(addr, jmp, 2);
1307 }
1308
1309 return 0;
1310 }
1311
cfi_enable_callers(s32 * start,s32 * end)1312 static int cfi_enable_callers(s32 *start, s32 *end)
1313 {
1314 /*
1315 * Re-enable kCFI, undo what cfi_disable_callers() did.
1316 */
1317 const u8 mov[] = { 0x41, 0xba };
1318 s32 *s;
1319
1320 for (s = start; s < end; s++) {
1321 void *addr = (void *)s + *s;
1322 u32 hash;
1323
1324 addr -= fineibt_caller_size;
1325 hash = decode_caller_hash(addr);
1326 if (!hash) /* nocfi callers */
1327 continue;
1328
1329 text_poke_early(addr, mov, 2);
1330 }
1331
1332 return 0;
1333 }
1334
1335 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1336 static int cfi_rand_preamble(s32 *start, s32 *end)
1337 {
1338 s32 *s;
1339
1340 for (s = start; s < end; s++) {
1341 void *addr = (void *)s + *s;
1342 u32 hash;
1343
1344 hash = decode_preamble_hash(addr);
1345 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1346 addr, addr, 5, addr))
1347 return -EINVAL;
1348
1349 hash = cfi_rehash(hash);
1350 text_poke_early(addr + 1, &hash, 4);
1351 }
1352
1353 return 0;
1354 }
1355
cfi_rewrite_preamble(s32 * start,s32 * end)1356 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1357 {
1358 s32 *s;
1359
1360 for (s = start; s < end; s++) {
1361 void *addr = (void *)s + *s;
1362 u32 hash;
1363
1364 hash = decode_preamble_hash(addr);
1365 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1366 addr, addr, 5, addr))
1367 return -EINVAL;
1368
1369 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1370 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1371 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1372 }
1373
1374 return 0;
1375 }
1376
cfi_rewrite_endbr(s32 * start,s32 * end)1377 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1378 {
1379 s32 *s;
1380
1381 for (s = start; s < end; s++) {
1382 void *addr = (void *)s + *s;
1383
1384 poison_endbr(addr+16, false);
1385 }
1386 }
1387
1388 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1389 static int cfi_rand_callers(s32 *start, s32 *end)
1390 {
1391 s32 *s;
1392
1393 for (s = start; s < end; s++) {
1394 void *addr = (void *)s + *s;
1395 u32 hash;
1396
1397 addr -= fineibt_caller_size;
1398 hash = decode_caller_hash(addr);
1399 if (hash) {
1400 hash = -cfi_rehash(hash);
1401 text_poke_early(addr + 2, &hash, 4);
1402 }
1403 }
1404
1405 return 0;
1406 }
1407
cfi_rewrite_callers(s32 * start,s32 * end)1408 static int cfi_rewrite_callers(s32 *start, s32 *end)
1409 {
1410 s32 *s;
1411
1412 for (s = start; s < end; s++) {
1413 void *addr = (void *)s + *s;
1414 u32 hash;
1415
1416 addr -= fineibt_caller_size;
1417 hash = decode_caller_hash(addr);
1418 if (hash) {
1419 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1420 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1421 text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1422 }
1423 /* rely on apply_retpolines() */
1424 }
1425
1426 return 0;
1427 }
1428
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1429 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1430 s32 *start_cfi, s32 *end_cfi, bool builtin)
1431 {
1432 int ret;
1433
1434 if (WARN_ONCE(fineibt_preamble_size != 16,
1435 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1436 return;
1437
1438 if (cfi_mode == CFI_AUTO) {
1439 cfi_mode = CFI_KCFI;
1440 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1441 cfi_mode = CFI_FINEIBT;
1442 }
1443
1444 /*
1445 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1446 * rewrite them. This disables all CFI. If this succeeds but any of the
1447 * later stages fails, we're without CFI.
1448 */
1449 ret = cfi_disable_callers(start_retpoline, end_retpoline);
1450 if (ret)
1451 goto err;
1452
1453 if (cfi_rand) {
1454 if (builtin) {
1455 cfi_seed = get_random_u32();
1456 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1457 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1458 }
1459
1460 ret = cfi_rand_preamble(start_cfi, end_cfi);
1461 if (ret)
1462 goto err;
1463
1464 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1465 if (ret)
1466 goto err;
1467 }
1468
1469 switch (cfi_mode) {
1470 case CFI_OFF:
1471 if (builtin)
1472 pr_info("Disabling CFI\n");
1473 return;
1474
1475 case CFI_KCFI:
1476 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1477 if (ret)
1478 goto err;
1479
1480 if (builtin)
1481 pr_info("Using kCFI\n");
1482 return;
1483
1484 case CFI_FINEIBT:
1485 /* place the FineIBT preamble at func()-16 */
1486 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1487 if (ret)
1488 goto err;
1489
1490 /* rewrite the callers to target func()-16 */
1491 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1492 if (ret)
1493 goto err;
1494
1495 /* now that nobody targets func()+0, remove ENDBR there */
1496 cfi_rewrite_endbr(start_cfi, end_cfi);
1497
1498 if (builtin)
1499 pr_info("Using FineIBT CFI\n");
1500 return;
1501
1502 default:
1503 break;
1504 }
1505
1506 err:
1507 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1508 }
1509
poison_hash(void * addr)1510 static inline void poison_hash(void *addr)
1511 {
1512 *(u32 *)addr = 0;
1513 }
1514
poison_cfi(void * addr)1515 static void poison_cfi(void *addr)
1516 {
1517 switch (cfi_mode) {
1518 case CFI_FINEIBT:
1519 /*
1520 * __cfi_\func:
1521 * osp nopl (%rax)
1522 * subl $0, %r10d
1523 * jz 1f
1524 * ud2
1525 * 1: nop
1526 */
1527 poison_endbr(addr, false);
1528 poison_hash(addr + fineibt_preamble_hash);
1529 break;
1530
1531 case CFI_KCFI:
1532 /*
1533 * __cfi_\func:
1534 * movl $0, %eax
1535 * .skip 11, 0x90
1536 */
1537 poison_hash(addr + 1);
1538 break;
1539
1540 default:
1541 break;
1542 }
1543 }
1544
1545 /*
1546 * regs->ip points to a UD2 instruction, return true and fill out target and
1547 * type when this UD2 is from a FineIBT preamble.
1548 *
1549 * We check the preamble by checking for the ENDBR instruction relative to the
1550 * UD2 instruction.
1551 */
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)1552 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
1553 {
1554 unsigned long addr = regs->ip - fineibt_preamble_ud2;
1555 u32 endbr, hash;
1556
1557 __get_kernel_nofault(&endbr, addr, u32, Efault);
1558 if (endbr != gen_endbr())
1559 return false;
1560
1561 *target = addr + fineibt_preamble_size;
1562
1563 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1564 *type = (u32)regs->r10 + hash;
1565
1566 return true;
1567
1568 Efault:
1569 return false;
1570 }
1571
1572 #else
1573
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1574 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1575 s32 *start_cfi, s32 *end_cfi, bool builtin)
1576 {
1577 }
1578
1579 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)1580 static void poison_cfi(void *addr) { }
1581 #endif
1582
1583 #endif
1584
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)1585 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1586 s32 *start_cfi, s32 *end_cfi)
1587 {
1588 return __apply_fineibt(start_retpoline, end_retpoline,
1589 start_cfi, end_cfi,
1590 /* .builtin = */ false);
1591 }
1592
1593 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1594 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1595 u8 *text, u8 *text_end)
1596 {
1597 const s32 *poff;
1598
1599 for (poff = start; poff < end; poff++) {
1600 u8 *ptr = (u8 *)poff + *poff;
1601
1602 if (!*poff || ptr < text || ptr >= text_end)
1603 continue;
1604 /* turn DS segment override prefix into lock prefix */
1605 if (*ptr == 0x3e)
1606 text_poke(ptr, ((unsigned char []){0xf0}), 1);
1607 }
1608 }
1609
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1610 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1611 u8 *text, u8 *text_end)
1612 {
1613 const s32 *poff;
1614
1615 for (poff = start; poff < end; poff++) {
1616 u8 *ptr = (u8 *)poff + *poff;
1617
1618 if (!*poff || ptr < text || ptr >= text_end)
1619 continue;
1620 /* turn lock prefix into DS segment override prefix */
1621 if (*ptr == 0xf0)
1622 text_poke(ptr, ((unsigned char []){0x3E}), 1);
1623 }
1624 }
1625
1626 struct smp_alt_module {
1627 /* what is this ??? */
1628 struct module *mod;
1629 char *name;
1630
1631 /* ptrs to lock prefixes */
1632 const s32 *locks;
1633 const s32 *locks_end;
1634
1635 /* .text segment, needed to avoid patching init code ;) */
1636 u8 *text;
1637 u8 *text_end;
1638
1639 struct list_head next;
1640 };
1641 static LIST_HEAD(smp_alt_modules);
1642 static bool uniproc_patched = false; /* protected by text_mutex */
1643
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)1644 void __init_or_module alternatives_smp_module_add(struct module *mod,
1645 char *name,
1646 void *locks, void *locks_end,
1647 void *text, void *text_end)
1648 {
1649 struct smp_alt_module *smp;
1650
1651 mutex_lock(&text_mutex);
1652 if (!uniproc_patched)
1653 goto unlock;
1654
1655 if (num_possible_cpus() == 1)
1656 /* Don't bother remembering, we'll never have to undo it. */
1657 goto smp_unlock;
1658
1659 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1660 if (NULL == smp)
1661 /* we'll run the (safe but slow) SMP code then ... */
1662 goto unlock;
1663
1664 smp->mod = mod;
1665 smp->name = name;
1666 smp->locks = locks;
1667 smp->locks_end = locks_end;
1668 smp->text = text;
1669 smp->text_end = text_end;
1670 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1671 smp->locks, smp->locks_end,
1672 smp->text, smp->text_end, smp->name);
1673
1674 list_add_tail(&smp->next, &smp_alt_modules);
1675 smp_unlock:
1676 alternatives_smp_unlock(locks, locks_end, text, text_end);
1677 unlock:
1678 mutex_unlock(&text_mutex);
1679 }
1680
alternatives_smp_module_del(struct module * mod)1681 void __init_or_module alternatives_smp_module_del(struct module *mod)
1682 {
1683 struct smp_alt_module *item;
1684
1685 mutex_lock(&text_mutex);
1686 list_for_each_entry(item, &smp_alt_modules, next) {
1687 if (mod != item->mod)
1688 continue;
1689 list_del(&item->next);
1690 kfree(item);
1691 break;
1692 }
1693 mutex_unlock(&text_mutex);
1694 }
1695
alternatives_enable_smp(void)1696 void alternatives_enable_smp(void)
1697 {
1698 struct smp_alt_module *mod;
1699
1700 /* Why bother if there are no other CPUs? */
1701 BUG_ON(num_possible_cpus() == 1);
1702
1703 mutex_lock(&text_mutex);
1704
1705 if (uniproc_patched) {
1706 pr_info("switching to SMP code\n");
1707 BUG_ON(num_online_cpus() != 1);
1708 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1709 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1710 list_for_each_entry(mod, &smp_alt_modules, next)
1711 alternatives_smp_lock(mod->locks, mod->locks_end,
1712 mod->text, mod->text_end);
1713 uniproc_patched = false;
1714 }
1715 mutex_unlock(&text_mutex);
1716 }
1717
1718 /*
1719 * Return 1 if the address range is reserved for SMP-alternatives.
1720 * Must hold text_mutex.
1721 */
alternatives_text_reserved(void * start,void * end)1722 int alternatives_text_reserved(void *start, void *end)
1723 {
1724 struct smp_alt_module *mod;
1725 const s32 *poff;
1726 u8 *text_start = start;
1727 u8 *text_end = end;
1728
1729 lockdep_assert_held(&text_mutex);
1730
1731 list_for_each_entry(mod, &smp_alt_modules, next) {
1732 if (mod->text > text_end || mod->text_end < text_start)
1733 continue;
1734 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1735 const u8 *ptr = (const u8 *)poff + *poff;
1736
1737 if (text_start <= ptr && text_end > ptr)
1738 return 1;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744 #endif /* CONFIG_SMP */
1745
1746 /*
1747 * Self-test for the INT3 based CALL emulation code.
1748 *
1749 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1750 * properly and that there is a stack gap between the INT3 frame and the
1751 * previous context. Without this gap doing a virtual PUSH on the interrupted
1752 * stack would corrupt the INT3 IRET frame.
1753 *
1754 * See entry_{32,64}.S for more details.
1755 */
1756
1757 /*
1758 * We define the int3_magic() function in assembly to control the calling
1759 * convention such that we can 'call' it from assembly.
1760 */
1761
1762 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1763
1764 asm (
1765 " .pushsection .init.text, \"ax\", @progbits\n"
1766 " .type int3_magic, @function\n"
1767 "int3_magic:\n"
1768 ANNOTATE_NOENDBR
1769 " movl $1, (%" _ASM_ARG1 ")\n"
1770 ASM_RET
1771 " .size int3_magic, .-int3_magic\n"
1772 " .popsection\n"
1773 );
1774
1775 extern void int3_selftest_ip(void); /* defined in asm below */
1776
1777 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)1778 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1779 {
1780 unsigned long selftest = (unsigned long)&int3_selftest_ip;
1781 struct die_args *args = data;
1782 struct pt_regs *regs = args->regs;
1783
1784 OPTIMIZER_HIDE_VAR(selftest);
1785
1786 if (!regs || user_mode(regs))
1787 return NOTIFY_DONE;
1788
1789 if (val != DIE_INT3)
1790 return NOTIFY_DONE;
1791
1792 if (regs->ip - INT3_INSN_SIZE != selftest)
1793 return NOTIFY_DONE;
1794
1795 int3_emulate_call(regs, (unsigned long)&int3_magic);
1796 return NOTIFY_STOP;
1797 }
1798
1799 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)1800 static noinline void __init int3_selftest(void)
1801 {
1802 static __initdata struct notifier_block int3_exception_nb = {
1803 .notifier_call = int3_exception_notify,
1804 .priority = INT_MAX-1, /* last */
1805 };
1806 unsigned int val = 0;
1807
1808 BUG_ON(register_die_notifier(&int3_exception_nb));
1809
1810 /*
1811 * Basically: int3_magic(&val); but really complicated :-)
1812 *
1813 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1814 * notifier above will emulate CALL for us.
1815 */
1816 asm volatile ("int3_selftest_ip:\n\t"
1817 ANNOTATE_NOENDBR
1818 " int3; nop; nop; nop; nop\n\t"
1819 : ASM_CALL_CONSTRAINT
1820 : __ASM_SEL_RAW(a, D) (&val)
1821 : "memory");
1822
1823 BUG_ON(val != 1);
1824
1825 unregister_die_notifier(&int3_exception_nb);
1826 }
1827
1828 static __initdata int __alt_reloc_selftest_addr;
1829
1830 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)1831 __visible noinline void __init __alt_reloc_selftest(void *arg)
1832 {
1833 WARN_ON(arg != &__alt_reloc_selftest_addr);
1834 }
1835
alt_reloc_selftest(void)1836 static noinline void __init alt_reloc_selftest(void)
1837 {
1838 /*
1839 * Tests apply_relocation().
1840 *
1841 * This has a relative immediate (CALL) in a place other than the first
1842 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1843 *
1844 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
1845 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
1846 *
1847 * Getting this wrong will either crash and burn or tickle the WARN
1848 * above.
1849 */
1850 asm_inline volatile (
1851 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1852 : ASM_CALL_CONSTRAINT
1853 : [mem] "m" (__alt_reloc_selftest_addr)
1854 : _ASM_ARG1
1855 );
1856 }
1857
alternative_instructions(void)1858 void __init alternative_instructions(void)
1859 {
1860 u64 ibt;
1861
1862 int3_selftest();
1863
1864 /*
1865 * The patching is not fully atomic, so try to avoid local
1866 * interruptions that might execute the to be patched code.
1867 * Other CPUs are not running.
1868 */
1869 stop_nmi();
1870
1871 /*
1872 * Don't stop machine check exceptions while patching.
1873 * MCEs only happen when something got corrupted and in this
1874 * case we must do something about the corruption.
1875 * Ignoring it is worse than an unlikely patching race.
1876 * Also machine checks tend to be broadcast and if one CPU
1877 * goes into machine check the others follow quickly, so we don't
1878 * expect a machine check to cause undue problems during to code
1879 * patching.
1880 */
1881
1882 /*
1883 * Make sure to set (artificial) features depending on used paravirt
1884 * functions which can later influence alternative patching.
1885 */
1886 paravirt_set_cap();
1887
1888 /* Keep CET-IBT disabled until caller/callee are patched */
1889 ibt = ibt_save(/*disable*/ true);
1890
1891 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1892 __cfi_sites, __cfi_sites_end, true);
1893
1894 /*
1895 * Rewrite the retpolines, must be done before alternatives since
1896 * those can rewrite the retpoline thunks.
1897 */
1898 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1899 apply_returns(__return_sites, __return_sites_end);
1900
1901 apply_alternatives(__alt_instructions, __alt_instructions_end);
1902
1903 /*
1904 * Now all calls are established. Apply the call thunks if
1905 * required.
1906 */
1907 callthunks_patch_builtin_calls();
1908
1909 /*
1910 * Seal all functions that do not have their address taken.
1911 */
1912 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1913
1914 ibt_restore(ibt);
1915
1916 #ifdef CONFIG_SMP
1917 /* Patch to UP if other cpus not imminent. */
1918 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1919 uniproc_patched = true;
1920 alternatives_smp_module_add(NULL, "core kernel",
1921 __smp_locks, __smp_locks_end,
1922 _text, _etext);
1923 }
1924
1925 if (!uniproc_patched || num_possible_cpus() == 1) {
1926 free_init_pages("SMP alternatives",
1927 (unsigned long)__smp_locks,
1928 (unsigned long)__smp_locks_end);
1929 }
1930 #endif
1931
1932 restart_nmi();
1933 alternatives_patched = 1;
1934
1935 alt_reloc_selftest();
1936 }
1937
1938 /**
1939 * text_poke_early - Update instructions on a live kernel at boot time
1940 * @addr: address to modify
1941 * @opcode: source of the copy
1942 * @len: length to copy
1943 *
1944 * When you use this code to patch more than one byte of an instruction
1945 * you need to make sure that other CPUs cannot execute this code in parallel.
1946 * Also no thread must be currently preempted in the middle of these
1947 * instructions. And on the local CPU you need to be protected against NMI or
1948 * MCE handlers seeing an inconsistent instruction while you patch.
1949 */
text_poke_early(void * addr,const void * opcode,size_t len)1950 void __init_or_module text_poke_early(void *addr, const void *opcode,
1951 size_t len)
1952 {
1953 unsigned long flags;
1954
1955 if (boot_cpu_has(X86_FEATURE_NX) &&
1956 is_module_text_address((unsigned long)addr)) {
1957 /*
1958 * Modules text is marked initially as non-executable, so the
1959 * code cannot be running and speculative code-fetches are
1960 * prevented. Just change the code.
1961 */
1962 memcpy(addr, opcode, len);
1963 } else {
1964 local_irq_save(flags);
1965 memcpy(addr, opcode, len);
1966 sync_core();
1967 local_irq_restore(flags);
1968
1969 /*
1970 * Could also do a CLFLUSH here to speed up CPU recovery; but
1971 * that causes hangs on some VIA CPUs.
1972 */
1973 }
1974 }
1975
1976 typedef struct {
1977 struct mm_struct *mm;
1978 } temp_mm_state_t;
1979
1980 /*
1981 * Using a temporary mm allows to set temporary mappings that are not accessible
1982 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1983 * that override the kernel memory protections (e.g., W^X), without exposing the
1984 * temporary page-table mappings that are required for these write operations to
1985 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1986 * mapping is torn down.
1987 *
1988 * Context: The temporary mm needs to be used exclusively by a single core. To
1989 * harden security IRQs must be disabled while the temporary mm is
1990 * loaded, thereby preventing interrupt handler bugs from overriding
1991 * the kernel memory protection.
1992 */
use_temporary_mm(struct mm_struct * mm)1993 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1994 {
1995 temp_mm_state_t temp_state;
1996
1997 lockdep_assert_irqs_disabled();
1998
1999 /*
2000 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
2001 * with a stale address space WITHOUT being in lazy mode after
2002 * restoring the previous mm.
2003 */
2004 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
2005 leave_mm();
2006
2007 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
2008 switch_mm_irqs_off(NULL, mm, current);
2009
2010 /*
2011 * If breakpoints are enabled, disable them while the temporary mm is
2012 * used. Userspace might set up watchpoints on addresses that are used
2013 * in the temporary mm, which would lead to wrong signals being sent or
2014 * crashes.
2015 *
2016 * Note that breakpoints are not disabled selectively, which also causes
2017 * kernel breakpoints (e.g., perf's) to be disabled. This might be
2018 * undesirable, but still seems reasonable as the code that runs in the
2019 * temporary mm should be short.
2020 */
2021 if (hw_breakpoint_active())
2022 hw_breakpoint_disable();
2023
2024 return temp_state;
2025 }
2026
unuse_temporary_mm(temp_mm_state_t prev_state)2027 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
2028 {
2029 lockdep_assert_irqs_disabled();
2030 switch_mm_irqs_off(NULL, prev_state.mm, current);
2031
2032 /*
2033 * Restore the breakpoints if they were disabled before the temporary mm
2034 * was loaded.
2035 */
2036 if (hw_breakpoint_active())
2037 hw_breakpoint_restore();
2038 }
2039
2040 __ro_after_init struct mm_struct *poking_mm;
2041 __ro_after_init unsigned long poking_addr;
2042
text_poke_memcpy(void * dst,const void * src,size_t len)2043 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2044 {
2045 memcpy(dst, src, len);
2046 }
2047
text_poke_memset(void * dst,const void * src,size_t len)2048 static void text_poke_memset(void *dst, const void *src, size_t len)
2049 {
2050 int c = *(const int *)src;
2051
2052 memset(dst, c, len);
2053 }
2054
2055 typedef void text_poke_f(void *dst, const void *src, size_t len);
2056
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2057 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2058 {
2059 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2060 struct page *pages[2] = {NULL};
2061 temp_mm_state_t prev;
2062 unsigned long flags;
2063 pte_t pte, *ptep;
2064 spinlock_t *ptl;
2065 pgprot_t pgprot;
2066
2067 /*
2068 * While boot memory allocator is running we cannot use struct pages as
2069 * they are not yet initialized. There is no way to recover.
2070 */
2071 BUG_ON(!after_bootmem);
2072
2073 if (!core_kernel_text((unsigned long)addr)) {
2074 pages[0] = vmalloc_to_page(addr);
2075 if (cross_page_boundary)
2076 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2077 } else {
2078 pages[0] = virt_to_page(addr);
2079 WARN_ON(!PageReserved(pages[0]));
2080 if (cross_page_boundary)
2081 pages[1] = virt_to_page(addr + PAGE_SIZE);
2082 }
2083 /*
2084 * If something went wrong, crash and burn since recovery paths are not
2085 * implemented.
2086 */
2087 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2088
2089 /*
2090 * Map the page without the global bit, as TLB flushing is done with
2091 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2092 */
2093 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2094
2095 /*
2096 * The lock is not really needed, but this allows to avoid open-coding.
2097 */
2098 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
2099
2100 /*
2101 * This must not fail; preallocated in poking_init().
2102 */
2103 VM_BUG_ON(!ptep);
2104
2105 local_irq_save(flags);
2106
2107 pte = mk_pte(pages[0], pgprot);
2108 set_pte_at(poking_mm, poking_addr, ptep, pte);
2109
2110 if (cross_page_boundary) {
2111 pte = mk_pte(pages[1], pgprot);
2112 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
2113 }
2114
2115 /*
2116 * Loading the temporary mm behaves as a compiler barrier, which
2117 * guarantees that the PTE will be set at the time memcpy() is done.
2118 */
2119 prev = use_temporary_mm(poking_mm);
2120
2121 kasan_disable_current();
2122 func((u8 *)poking_addr + offset_in_page(addr), src, len);
2123 kasan_enable_current();
2124
2125 /*
2126 * Ensure that the PTE is only cleared after the instructions of memcpy
2127 * were issued by using a compiler barrier.
2128 */
2129 barrier();
2130
2131 pte_clear(poking_mm, poking_addr, ptep);
2132 if (cross_page_boundary)
2133 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
2134
2135 /*
2136 * Loading the previous page-table hierarchy requires a serializing
2137 * instruction that already allows the core to see the updated version.
2138 * Xen-PV is assumed to serialize execution in a similar manner.
2139 */
2140 unuse_temporary_mm(prev);
2141
2142 /*
2143 * Flushing the TLB might involve IPIs, which would require enabled
2144 * IRQs, but not if the mm is not used, as it is in this point.
2145 */
2146 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
2147 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2148 PAGE_SHIFT, false);
2149
2150 if (func == text_poke_memcpy) {
2151 /*
2152 * If the text does not match what we just wrote then something is
2153 * fundamentally screwy; there's nothing we can really do about that.
2154 */
2155 BUG_ON(memcmp(addr, src, len));
2156 }
2157
2158 local_irq_restore(flags);
2159 pte_unmap_unlock(ptep, ptl);
2160 return addr;
2161 }
2162
2163 /**
2164 * text_poke - Update instructions on a live kernel
2165 * @addr: address to modify
2166 * @opcode: source of the copy
2167 * @len: length to copy
2168 *
2169 * Only atomic text poke/set should be allowed when not doing early patching.
2170 * It means the size must be writable atomically and the address must be aligned
2171 * in a way that permits an atomic write. It also makes sure we fit on a single
2172 * page.
2173 *
2174 * Note that the caller must ensure that if the modified code is part of a
2175 * module, the module would not be removed during poking. This can be achieved
2176 * by registering a module notifier, and ordering module removal and patching
2177 * through a mutex.
2178 */
text_poke(void * addr,const void * opcode,size_t len)2179 void *text_poke(void *addr, const void *opcode, size_t len)
2180 {
2181 lockdep_assert_held(&text_mutex);
2182
2183 return __text_poke(text_poke_memcpy, addr, opcode, len);
2184 }
2185
2186 /**
2187 * text_poke_kgdb - Update instructions on a live kernel by kgdb
2188 * @addr: address to modify
2189 * @opcode: source of the copy
2190 * @len: length to copy
2191 *
2192 * Only atomic text poke/set should be allowed when not doing early patching.
2193 * It means the size must be writable atomically and the address must be aligned
2194 * in a way that permits an atomic write. It also makes sure we fit on a single
2195 * page.
2196 *
2197 * Context: should only be used by kgdb, which ensures no other core is running,
2198 * despite the fact it does not hold the text_mutex.
2199 */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2200 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2201 {
2202 return __text_poke(text_poke_memcpy, addr, opcode, len);
2203 }
2204
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2205 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2206 bool core_ok)
2207 {
2208 unsigned long start = (unsigned long)addr;
2209 size_t patched = 0;
2210
2211 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2212 return NULL;
2213
2214 while (patched < len) {
2215 unsigned long ptr = start + patched;
2216 size_t s;
2217
2218 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2219
2220 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2221 patched += s;
2222 }
2223 return addr;
2224 }
2225
2226 /**
2227 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2228 * @addr: address to modify
2229 * @opcode: source of the copy
2230 * @len: length to copy, could be more than 2x PAGE_SIZE
2231 *
2232 * Not safe against concurrent execution; useful for JITs to dump
2233 * new code blocks into unused regions of RX memory. Can be used in
2234 * conjunction with synchronize_rcu_tasks() to wait for existing
2235 * execution to quiesce after having made sure no existing functions
2236 * pointers are live.
2237 */
text_poke_copy(void * addr,const void * opcode,size_t len)2238 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2239 {
2240 mutex_lock(&text_mutex);
2241 addr = text_poke_copy_locked(addr, opcode, len, false);
2242 mutex_unlock(&text_mutex);
2243 return addr;
2244 }
2245
2246 /**
2247 * text_poke_set - memset into (an unused part of) RX memory
2248 * @addr: address to modify
2249 * @c: the byte to fill the area with
2250 * @len: length to copy, could be more than 2x PAGE_SIZE
2251 *
2252 * This is useful to overwrite unused regions of RX memory with illegal
2253 * instructions.
2254 */
text_poke_set(void * addr,int c,size_t len)2255 void *text_poke_set(void *addr, int c, size_t len)
2256 {
2257 unsigned long start = (unsigned long)addr;
2258 size_t patched = 0;
2259
2260 if (WARN_ON_ONCE(core_kernel_text(start)))
2261 return NULL;
2262
2263 mutex_lock(&text_mutex);
2264 while (patched < len) {
2265 unsigned long ptr = start + patched;
2266 size_t s;
2267
2268 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2269
2270 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2271 patched += s;
2272 }
2273 mutex_unlock(&text_mutex);
2274 return addr;
2275 }
2276
do_sync_core(void * info)2277 static void do_sync_core(void *info)
2278 {
2279 sync_core();
2280 }
2281
text_poke_sync(void)2282 void text_poke_sync(void)
2283 {
2284 on_each_cpu(do_sync_core, NULL, 1);
2285 }
2286
2287 /*
2288 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2289 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2290 * opcode to Jcc.d8, using len to distinguish.
2291 */
2292 struct text_poke_loc {
2293 /* addr := _stext + rel_addr */
2294 s32 rel_addr;
2295 s32 disp;
2296 u8 len;
2297 u8 opcode;
2298 const u8 text[POKE_MAX_OPCODE_SIZE];
2299 /* see text_poke_bp_batch() */
2300 u8 old;
2301 };
2302
2303 struct bp_patching_desc {
2304 struct text_poke_loc *vec;
2305 int nr_entries;
2306 atomic_t refs;
2307 };
2308
2309 static struct bp_patching_desc bp_desc;
2310
2311 static __always_inline
try_get_desc(void)2312 struct bp_patching_desc *try_get_desc(void)
2313 {
2314 struct bp_patching_desc *desc = &bp_desc;
2315
2316 if (!raw_atomic_inc_not_zero(&desc->refs))
2317 return NULL;
2318
2319 return desc;
2320 }
2321
put_desc(void)2322 static __always_inline void put_desc(void)
2323 {
2324 struct bp_patching_desc *desc = &bp_desc;
2325
2326 smp_mb__before_atomic();
2327 raw_atomic_dec(&desc->refs);
2328 }
2329
text_poke_addr(struct text_poke_loc * tp)2330 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2331 {
2332 return _stext + tp->rel_addr;
2333 }
2334
patch_cmp(const void * key,const void * elt)2335 static __always_inline int patch_cmp(const void *key, const void *elt)
2336 {
2337 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2338
2339 if (key < text_poke_addr(tp))
2340 return -1;
2341 if (key > text_poke_addr(tp))
2342 return 1;
2343 return 0;
2344 }
2345
poke_int3_handler(struct pt_regs * regs)2346 noinstr int poke_int3_handler(struct pt_regs *regs)
2347 {
2348 struct bp_patching_desc *desc;
2349 struct text_poke_loc *tp;
2350 int ret = 0;
2351 void *ip;
2352
2353 if (user_mode(regs))
2354 return 0;
2355
2356 /*
2357 * Having observed our INT3 instruction, we now must observe
2358 * bp_desc with non-zero refcount:
2359 *
2360 * bp_desc.refs = 1 INT3
2361 * WMB RMB
2362 * write INT3 if (bp_desc.refs != 0)
2363 */
2364 smp_rmb();
2365
2366 desc = try_get_desc();
2367 if (!desc)
2368 return 0;
2369
2370 /*
2371 * Discount the INT3. See text_poke_bp_batch().
2372 */
2373 ip = (void *) regs->ip - INT3_INSN_SIZE;
2374
2375 /*
2376 * Skip the binary search if there is a single member in the vector.
2377 */
2378 if (unlikely(desc->nr_entries > 1)) {
2379 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2380 sizeof(struct text_poke_loc),
2381 patch_cmp);
2382 if (!tp)
2383 goto out_put;
2384 } else {
2385 tp = desc->vec;
2386 if (text_poke_addr(tp) != ip)
2387 goto out_put;
2388 }
2389
2390 ip += tp->len;
2391
2392 switch (tp->opcode) {
2393 case INT3_INSN_OPCODE:
2394 /*
2395 * Someone poked an explicit INT3, they'll want to handle it,
2396 * do not consume.
2397 */
2398 goto out_put;
2399
2400 case RET_INSN_OPCODE:
2401 int3_emulate_ret(regs);
2402 break;
2403
2404 case CALL_INSN_OPCODE:
2405 int3_emulate_call(regs, (long)ip + tp->disp);
2406 break;
2407
2408 case JMP32_INSN_OPCODE:
2409 case JMP8_INSN_OPCODE:
2410 int3_emulate_jmp(regs, (long)ip + tp->disp);
2411 break;
2412
2413 case 0x70 ... 0x7f: /* Jcc */
2414 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2415 break;
2416
2417 default:
2418 BUG();
2419 }
2420
2421 ret = 1;
2422
2423 out_put:
2424 put_desc();
2425 return ret;
2426 }
2427
2428 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2429 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2430 static int tp_vec_nr;
2431
2432 /**
2433 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2434 * @tp: vector of instructions to patch
2435 * @nr_entries: number of entries in the vector
2436 *
2437 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2438 * We completely avoid stop_machine() here, and achieve the
2439 * synchronization using int3 breakpoint.
2440 *
2441 * The way it is done:
2442 * - For each entry in the vector:
2443 * - add a int3 trap to the address that will be patched
2444 * - sync cores
2445 * - For each entry in the vector:
2446 * - update all but the first byte of the patched range
2447 * - sync cores
2448 * - For each entry in the vector:
2449 * - replace the first byte (int3) by the first byte of
2450 * replacing opcode
2451 * - sync cores
2452 */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)2453 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2454 {
2455 unsigned char int3 = INT3_INSN_OPCODE;
2456 unsigned int i;
2457 int do_sync;
2458
2459 lockdep_assert_held(&text_mutex);
2460
2461 bp_desc.vec = tp;
2462 bp_desc.nr_entries = nr_entries;
2463
2464 /*
2465 * Corresponds to the implicit memory barrier in try_get_desc() to
2466 * ensure reading a non-zero refcount provides up to date bp_desc data.
2467 */
2468 atomic_set_release(&bp_desc.refs, 1);
2469
2470 /*
2471 * Function tracing can enable thousands of places that need to be
2472 * updated. This can take quite some time, and with full kernel debugging
2473 * enabled, this could cause the softlockup watchdog to trigger.
2474 * This function gets called every 256 entries added to be patched.
2475 * Call cond_resched() here to make sure that other tasks can get scheduled
2476 * while processing all the functions being patched.
2477 */
2478 cond_resched();
2479
2480 /*
2481 * Corresponding read barrier in int3 notifier for making sure the
2482 * nr_entries and handler are correctly ordered wrt. patching.
2483 */
2484 smp_wmb();
2485
2486 /*
2487 * First step: add a int3 trap to the address that will be patched.
2488 */
2489 for (i = 0; i < nr_entries; i++) {
2490 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2491 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2492 }
2493
2494 text_poke_sync();
2495
2496 /*
2497 * Second step: update all but the first byte of the patched range.
2498 */
2499 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2500 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2501 u8 _new[POKE_MAX_OPCODE_SIZE+1];
2502 const u8 *new = tp[i].text;
2503 int len = tp[i].len;
2504
2505 if (len - INT3_INSN_SIZE > 0) {
2506 memcpy(old + INT3_INSN_SIZE,
2507 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2508 len - INT3_INSN_SIZE);
2509
2510 if (len == 6) {
2511 _new[0] = 0x0f;
2512 memcpy(_new + 1, new, 5);
2513 new = _new;
2514 }
2515
2516 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2517 new + INT3_INSN_SIZE,
2518 len - INT3_INSN_SIZE);
2519
2520 do_sync++;
2521 }
2522
2523 /*
2524 * Emit a perf event to record the text poke, primarily to
2525 * support Intel PT decoding which must walk the executable code
2526 * to reconstruct the trace. The flow up to here is:
2527 * - write INT3 byte
2528 * - IPI-SYNC
2529 * - write instruction tail
2530 * At this point the actual control flow will be through the
2531 * INT3 and handler and not hit the old or new instruction.
2532 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2533 * can still be decoded. Subsequently:
2534 * - emit RECORD_TEXT_POKE with the new instruction
2535 * - IPI-SYNC
2536 * - write first byte
2537 * - IPI-SYNC
2538 * So before the text poke event timestamp, the decoder will see
2539 * either the old instruction flow or FUP/TIP of INT3. After the
2540 * text poke event timestamp, the decoder will see either the
2541 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2542 * use the timestamp as the point at which to modify the
2543 * executable code.
2544 * The old instruction is recorded so that the event can be
2545 * processed forwards or backwards.
2546 */
2547 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2548 }
2549
2550 if (do_sync) {
2551 /*
2552 * According to Intel, this core syncing is very likely
2553 * not necessary and we'd be safe even without it. But
2554 * better safe than sorry (plus there's not only Intel).
2555 */
2556 text_poke_sync();
2557 }
2558
2559 /*
2560 * Third step: replace the first byte (int3) by the first byte of
2561 * replacing opcode.
2562 */
2563 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2564 u8 byte = tp[i].text[0];
2565
2566 if (tp[i].len == 6)
2567 byte = 0x0f;
2568
2569 if (byte == INT3_INSN_OPCODE)
2570 continue;
2571
2572 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2573 do_sync++;
2574 }
2575
2576 if (do_sync)
2577 text_poke_sync();
2578
2579 /*
2580 * Remove and wait for refs to be zero.
2581 */
2582 if (!atomic_dec_and_test(&bp_desc.refs))
2583 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2584 }
2585
text_poke_loc_init(struct text_poke_loc * tp,void * addr,const void * opcode,size_t len,const void * emulate)2586 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2587 const void *opcode, size_t len, const void *emulate)
2588 {
2589 struct insn insn;
2590 int ret, i = 0;
2591
2592 if (len == 6)
2593 i = 1;
2594 memcpy((void *)tp->text, opcode+i, len-i);
2595 if (!emulate)
2596 emulate = opcode;
2597
2598 ret = insn_decode_kernel(&insn, emulate);
2599 BUG_ON(ret < 0);
2600
2601 tp->rel_addr = addr - (void *)_stext;
2602 tp->len = len;
2603 tp->opcode = insn.opcode.bytes[0];
2604
2605 if (is_jcc32(&insn)) {
2606 /*
2607 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2608 */
2609 tp->opcode = insn.opcode.bytes[1] - 0x10;
2610 }
2611
2612 switch (tp->opcode) {
2613 case RET_INSN_OPCODE:
2614 case JMP32_INSN_OPCODE:
2615 case JMP8_INSN_OPCODE:
2616 /*
2617 * Control flow instructions without implied execution of the
2618 * next instruction can be padded with INT3.
2619 */
2620 for (i = insn.length; i < len; i++)
2621 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2622 break;
2623
2624 default:
2625 BUG_ON(len != insn.length);
2626 }
2627
2628 switch (tp->opcode) {
2629 case INT3_INSN_OPCODE:
2630 case RET_INSN_OPCODE:
2631 break;
2632
2633 case CALL_INSN_OPCODE:
2634 case JMP32_INSN_OPCODE:
2635 case JMP8_INSN_OPCODE:
2636 case 0x70 ... 0x7f: /* Jcc */
2637 tp->disp = insn.immediate.value;
2638 break;
2639
2640 default: /* assume NOP */
2641 switch (len) {
2642 case 2: /* NOP2 -- emulate as JMP8+0 */
2643 BUG_ON(memcmp(emulate, x86_nops[len], len));
2644 tp->opcode = JMP8_INSN_OPCODE;
2645 tp->disp = 0;
2646 break;
2647
2648 case 5: /* NOP5 -- emulate as JMP32+0 */
2649 BUG_ON(memcmp(emulate, x86_nops[len], len));
2650 tp->opcode = JMP32_INSN_OPCODE;
2651 tp->disp = 0;
2652 break;
2653
2654 default: /* unknown instruction */
2655 BUG();
2656 }
2657 break;
2658 }
2659 }
2660
2661 /*
2662 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2663 * early if needed.
2664 */
tp_order_fail(void * addr)2665 static bool tp_order_fail(void *addr)
2666 {
2667 struct text_poke_loc *tp;
2668
2669 if (!tp_vec_nr)
2670 return false;
2671
2672 if (!addr) /* force */
2673 return true;
2674
2675 tp = &tp_vec[tp_vec_nr - 1];
2676 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2677 return true;
2678
2679 return false;
2680 }
2681
text_poke_flush(void * addr)2682 static void text_poke_flush(void *addr)
2683 {
2684 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2685 text_poke_bp_batch(tp_vec, tp_vec_nr);
2686 tp_vec_nr = 0;
2687 }
2688 }
2689
text_poke_finish(void)2690 void text_poke_finish(void)
2691 {
2692 text_poke_flush(NULL);
2693 }
2694
text_poke_queue(void * addr,const void * opcode,size_t len,const void * emulate)2695 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2696 {
2697 struct text_poke_loc *tp;
2698
2699 text_poke_flush(addr);
2700
2701 tp = &tp_vec[tp_vec_nr++];
2702 text_poke_loc_init(tp, addr, opcode, len, emulate);
2703 }
2704
2705 /**
2706 * text_poke_bp() -- update instructions on live kernel on SMP
2707 * @addr: address to patch
2708 * @opcode: opcode of new instruction
2709 * @len: length to copy
2710 * @emulate: instruction to be emulated
2711 *
2712 * Update a single instruction with the vector in the stack, avoiding
2713 * dynamically allocated memory. This function should be used when it is
2714 * not possible to allocate memory.
2715 */
text_poke_bp(void * addr,const void * opcode,size_t len,const void * emulate)2716 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2717 {
2718 struct text_poke_loc tp;
2719
2720 text_poke_loc_init(&tp, addr, opcode, len, emulate);
2721 text_poke_bp_batch(&tp, 1);
2722 }
2723