1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44
45 #include <trace/events/ipi.h>
46
47 #include "trace.h"
48
49 #include "svm.h"
50 #include "svm_ops.h"
51
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
57 MODULE_LICENSE("GPL");
58
59 #ifdef MODULE
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
62 {}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #endif
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 static bool erratum_383_found __read_mostly;
71
72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
73
74 /*
75 * Set osvw_len to higher value when updated Revision Guides
76 * are published and we know what the new status bits are
77 */
78 static uint64_t osvw_len = 4, osvw_status;
79
80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
81
82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
83
84 static const struct svm_direct_access_msrs {
85 u32 index; /* Index of the MSR */
86 bool always; /* True if intercept is initially cleared */
87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
88 { .index = MSR_STAR, .always = true },
89 { .index = MSR_IA32_SYSENTER_CS, .always = true },
90 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
91 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
92 #ifdef CONFIG_X86_64
93 { .index = MSR_GS_BASE, .always = true },
94 { .index = MSR_FS_BASE, .always = true },
95 { .index = MSR_KERNEL_GS_BASE, .always = true },
96 { .index = MSR_LSTAR, .always = true },
97 { .index = MSR_CSTAR, .always = true },
98 { .index = MSR_SYSCALL_MASK, .always = true },
99 #endif
100 { .index = MSR_IA32_SPEC_CTRL, .always = false },
101 { .index = MSR_IA32_PRED_CMD, .always = false },
102 { .index = MSR_IA32_FLUSH_CMD, .always = false },
103 { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
104 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
105 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
106 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
107 { .index = MSR_IA32_LASTINTTOIP, .always = false },
108 { .index = MSR_IA32_XSS, .always = false },
109 { .index = MSR_EFER, .always = false },
110 { .index = MSR_IA32_CR_PAT, .always = false },
111 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
112 { .index = MSR_TSC_AUX, .always = false },
113 { .index = X2APIC_MSR(APIC_ID), .always = false },
114 { .index = X2APIC_MSR(APIC_LVR), .always = false },
115 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
116 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
117 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
118 { .index = X2APIC_MSR(APIC_EOI), .always = false },
119 { .index = X2APIC_MSR(APIC_RRR), .always = false },
120 { .index = X2APIC_MSR(APIC_LDR), .always = false },
121 { .index = X2APIC_MSR(APIC_DFR), .always = false },
122 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
123 { .index = X2APIC_MSR(APIC_ISR), .always = false },
124 { .index = X2APIC_MSR(APIC_TMR), .always = false },
125 { .index = X2APIC_MSR(APIC_IRR), .always = false },
126 { .index = X2APIC_MSR(APIC_ESR), .always = false },
127 { .index = X2APIC_MSR(APIC_ICR), .always = false },
128 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
129
130 /*
131 * Note:
132 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
133 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
134 * the AVIC hardware would generate GP fault. Therefore, always
135 * intercept the MSR 0x832, and do not setup direct_access_msr.
136 */
137 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
138 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
139 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
140 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
141 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
142 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
143 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
144 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
145 { .index = MSR_INVALID, .always = false },
146 };
147
148 /*
149 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
150 * pause_filter_count: On processors that support Pause filtering(indicated
151 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
152 * count value. On VMRUN this value is loaded into an internal counter.
153 * Each time a pause instruction is executed, this counter is decremented
154 * until it reaches zero at which time a #VMEXIT is generated if pause
155 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
156 * Intercept Filtering for more details.
157 * This also indicate if ple logic enabled.
158 *
159 * pause_filter_thresh: In addition, some processor families support advanced
160 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
161 * the amount of time a guest is allowed to execute in a pause loop.
162 * In this mode, a 16-bit pause filter threshold field is added in the
163 * VMCB. The threshold value is a cycle count that is used to reset the
164 * pause counter. As with simple pause filtering, VMRUN loads the pause
165 * count value from VMCB into an internal counter. Then, on each pause
166 * instruction the hardware checks the elapsed number of cycles since
167 * the most recent pause instruction against the pause filter threshold.
168 * If the elapsed cycle count is greater than the pause filter threshold,
169 * then the internal pause count is reloaded from the VMCB and execution
170 * continues. If the elapsed cycle count is less than the pause filter
171 * threshold, then the internal pause count is decremented. If the count
172 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
173 * triggered. If advanced pause filtering is supported and pause filter
174 * threshold field is set to zero, the filter will operate in the simpler,
175 * count only mode.
176 */
177
178 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
179 module_param(pause_filter_thresh, ushort, 0444);
180
181 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
182 module_param(pause_filter_count, ushort, 0444);
183
184 /* Default doubles per-vcpu window every exit. */
185 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
186 module_param(pause_filter_count_grow, ushort, 0444);
187
188 /* Default resets per-vcpu window every exit to pause_filter_count. */
189 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
190 module_param(pause_filter_count_shrink, ushort, 0444);
191
192 /* Default is to compute the maximum so we can never overflow. */
193 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
194 module_param(pause_filter_count_max, ushort, 0444);
195
196 /*
197 * Use nested page tables by default. Note, NPT may get forced off by
198 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
199 */
200 bool npt_enabled = true;
201 module_param_named(npt, npt_enabled, bool, 0444);
202
203 /* allow nested virtualization in KVM/SVM */
204 static int nested = true;
205 module_param(nested, int, 0444);
206
207 /* enable/disable Next RIP Save */
208 int nrips = true;
209 module_param(nrips, int, 0444);
210
211 /* enable/disable Virtual VMLOAD VMSAVE */
212 static int vls = true;
213 module_param(vls, int, 0444);
214
215 /* enable/disable Virtual GIF */
216 int vgif = true;
217 module_param(vgif, int, 0444);
218
219 /* enable/disable LBR virtualization */
220 int lbrv = true;
221 module_param(lbrv, int, 0444);
222
223 static int tsc_scaling = true;
224 module_param(tsc_scaling, int, 0444);
225
226 /*
227 * enable / disable AVIC. Because the defaults differ for APICv
228 * support between VMX and SVM we cannot use module_param_named.
229 */
230 static bool avic;
231 module_param(avic, bool, 0444);
232
233 bool __read_mostly dump_invalid_vmcb;
234 module_param(dump_invalid_vmcb, bool, 0644);
235
236
237 bool intercept_smi = true;
238 module_param(intercept_smi, bool, 0444);
239
240 bool vnmi = true;
241 module_param(vnmi, bool, 0444);
242
243 static bool svm_gp_erratum_intercept = true;
244
245 static u8 rsm_ins_bytes[] = "\x0f\xaa";
246
247 static unsigned long iopm_base;
248
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250
251 /*
252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254 *
255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256 * defer the restoration of TSC_AUX until the CPU returns to userspace.
257 */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265
svm_msrpm_offset(u32 msr)266 u32 svm_msrpm_offset(u32 msr)
267 {
268 u32 offset;
269 int i;
270
271 for (i = 0; i < NUM_MSR_MAPS; i++) {
272 if (msr < msrpm_ranges[i] ||
273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274 continue;
275
276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
278
279 /* Now we have the u8 offset - but need the u32 offset */
280 return offset / 4;
281 }
282
283 /* MSR not in any range */
284 return MSR_INVALID;
285 }
286
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288
get_npt_level(void)289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294 return PT32E_ROOT_LEVEL;
295 #endif
296 }
297
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300 struct vcpu_svm *svm = to_svm(vcpu);
301 u64 old_efer = vcpu->arch.efer;
302 vcpu->arch.efer = efer;
303
304 if (!npt_enabled) {
305 /* Shadow paging assumes NX to be available. */
306 efer |= EFER_NX;
307
308 if (!(efer & EFER_LMA))
309 efer &= ~EFER_LME;
310 }
311
312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313 if (!(efer & EFER_SVME)) {
314 svm_leave_nested(vcpu);
315 svm_set_gif(svm, true);
316 /* #GP intercept is still needed for vmware backdoor */
317 if (!enable_vmware_backdoor)
318 clr_exception_intercept(svm, GP_VECTOR);
319
320 /*
321 * Free the nested guest state, unless we are in SMM.
322 * In this case we will return to the nested guest
323 * as soon as we leave SMM.
324 */
325 if (!is_smm(vcpu))
326 svm_free_nested(svm);
327
328 } else {
329 int ret = svm_allocate_nested(svm);
330
331 if (ret) {
332 vcpu->arch.efer = old_efer;
333 return ret;
334 }
335
336 /*
337 * Never intercept #GP for SEV guests, KVM can't
338 * decrypt guest memory to workaround the erratum.
339 */
340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341 set_exception_intercept(svm, GP_VECTOR);
342 }
343 }
344
345 svm->vmcb->save.efer = efer | EFER_SVME;
346 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347 return 0;
348 }
349
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352 struct vcpu_svm *svm = to_svm(vcpu);
353 u32 ret = 0;
354
355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357 return ret;
358 }
359
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362 struct vcpu_svm *svm = to_svm(vcpu);
363
364 if (mask == 0)
365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366 else
367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368
369 }
370
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372 bool commit_side_effects)
373 {
374 struct vcpu_svm *svm = to_svm(vcpu);
375 unsigned long old_rflags;
376
377 /*
378 * SEV-ES does not expose the next RIP. The RIP update is controlled by
379 * the type of exit and the #VC handler in the guest.
380 */
381 if (sev_es_guest(vcpu->kvm))
382 goto done;
383
384 if (nrips && svm->vmcb->control.next_rip != 0) {
385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386 svm->next_rip = svm->vmcb->control.next_rip;
387 }
388
389 if (!svm->next_rip) {
390 if (unlikely(!commit_side_effects))
391 old_rflags = svm->vmcb->save.rflags;
392
393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394 return 0;
395
396 if (unlikely(!commit_side_effects))
397 svm->vmcb->save.rflags = old_rflags;
398 } else {
399 kvm_rip_write(vcpu, svm->next_rip);
400 }
401
402 done:
403 if (likely(commit_side_effects))
404 svm_set_interrupt_shadow(vcpu, 0);
405
406 return 1;
407 }
408
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411 return __svm_skip_emulated_instruction(vcpu, true);
412 }
413
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416 unsigned long rip, old_rip = kvm_rip_read(vcpu);
417 struct vcpu_svm *svm = to_svm(vcpu);
418
419 /*
420 * Due to architectural shortcomings, the CPU doesn't always provide
421 * NextRIP, e.g. if KVM intercepted an exception that occurred while
422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
423 * the instruction even if NextRIP is supported to acquire the next
424 * RIP so that it can be shoved into the NextRIP field, otherwise
425 * hardware will fail to advance guest RIP during event injection.
426 * Drop the exception/interrupt if emulation fails and effectively
427 * retry the instruction, it's the least awful option. If NRIPS is
428 * in use, the skip must not commit any side effects such as clearing
429 * the interrupt shadow or RFLAGS.RF.
430 */
431 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432 return -EIO;
433
434 rip = kvm_rip_read(vcpu);
435
436 /*
437 * Save the injection information, even when using next_rip, as the
438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439 * doesn't complete due to a VM-Exit occurring while the CPU is
440 * vectoring the event. Decoding the instruction isn't guaranteed to
441 * work as there may be no backing instruction, e.g. if the event is
442 * being injected by L1 for L2, or if the guest is patching INT3 into
443 * a different instruction.
444 */
445 svm->soft_int_injected = true;
446 svm->soft_int_csbase = svm->vmcb->save.cs.base;
447 svm->soft_int_old_rip = old_rip;
448 svm->soft_int_next_rip = rip;
449
450 if (nrips)
451 kvm_rip_write(vcpu, old_rip);
452
453 if (static_cpu_has(X86_FEATURE_NRIPS))
454 svm->vmcb->control.next_rip = rip;
455
456 return 0;
457 }
458
svm_inject_exception(struct kvm_vcpu * vcpu)459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461 struct kvm_queued_exception *ex = &vcpu->arch.exception;
462 struct vcpu_svm *svm = to_svm(vcpu);
463
464 kvm_deliver_exception_payload(vcpu, ex);
465
466 if (kvm_exception_is_soft(ex->vector) &&
467 svm_update_soft_interrupt_rip(vcpu))
468 return;
469
470 svm->vmcb->control.event_inj = ex->vector
471 | SVM_EVTINJ_VALID
472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473 | SVM_EVTINJ_TYPE_EXEPT;
474 svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476
svm_init_erratum_383(void)477 static void svm_init_erratum_383(void)
478 {
479 u32 low, high;
480 int err;
481 u64 val;
482
483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484 return;
485
486 /* Use _safe variants to not break nested virtualization */
487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488 if (err)
489 return;
490
491 val |= (1ULL << 47);
492
493 low = lower_32_bits(val);
494 high = upper_32_bits(val);
495
496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497
498 erratum_383_found = true;
499 }
500
svm_init_osvw(struct kvm_vcpu * vcpu)501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503 /*
504 * Guests should see errata 400 and 415 as fixed (assuming that
505 * HLT and IO instructions are intercepted).
506 */
507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509
510 /*
511 * By increasing VCPU's osvw.length to 3 we are telling the guest that
512 * all osvw.status bits inside that length, including bit 0 (which is
513 * reserved for erratum 298), are valid. However, if host processor's
514 * osvw_len is 0 then osvw_status[0] carries no information. We need to
515 * be conservative here and therefore we tell the guest that erratum 298
516 * is present (because we really don't know).
517 */
518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519 vcpu->arch.osvw.status |= 1;
520 }
521
__kvm_is_svm_supported(void)522 static bool __kvm_is_svm_supported(void)
523 {
524 int cpu = smp_processor_id();
525 struct cpuinfo_x86 *c = &cpu_data(cpu);
526
527 if (c->x86_vendor != X86_VENDOR_AMD &&
528 c->x86_vendor != X86_VENDOR_HYGON) {
529 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
530 return false;
531 }
532
533 if (!cpu_has(c, X86_FEATURE_SVM)) {
534 pr_err("SVM not supported by CPU %d\n", cpu);
535 return false;
536 }
537
538 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
539 pr_info("KVM is unsupported when running as an SEV guest\n");
540 return false;
541 }
542
543 return true;
544 }
545
kvm_is_svm_supported(void)546 static bool kvm_is_svm_supported(void)
547 {
548 bool supported;
549
550 migrate_disable();
551 supported = __kvm_is_svm_supported();
552 migrate_enable();
553
554 return supported;
555 }
556
svm_check_processor_compat(void)557 static int svm_check_processor_compat(void)
558 {
559 if (!__kvm_is_svm_supported())
560 return -EIO;
561
562 return 0;
563 }
564
__svm_write_tsc_multiplier(u64 multiplier)565 static void __svm_write_tsc_multiplier(u64 multiplier)
566 {
567 if (multiplier == __this_cpu_read(current_tsc_ratio))
568 return;
569
570 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
571 __this_cpu_write(current_tsc_ratio, multiplier);
572 }
573
sev_es_host_save_area(struct svm_cpu_data * sd)574 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
575 {
576 return &sd->save_area->host_sev_es_save;
577 }
578
kvm_cpu_svm_disable(void)579 static inline void kvm_cpu_svm_disable(void)
580 {
581 uint64_t efer;
582
583 wrmsrl(MSR_VM_HSAVE_PA, 0);
584 rdmsrl(MSR_EFER, efer);
585 if (efer & EFER_SVME) {
586 /*
587 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
588 * NMI aren't blocked.
589 */
590 stgi();
591 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
592 }
593 }
594
svm_emergency_disable_virtualization_cpu(void)595 static void svm_emergency_disable_virtualization_cpu(void)
596 {
597 kvm_rebooting = true;
598
599 kvm_cpu_svm_disable();
600 }
601
svm_disable_virtualization_cpu(void)602 static void svm_disable_virtualization_cpu(void)
603 {
604 /* Make sure we clean up behind us */
605 if (tsc_scaling)
606 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
607
608 kvm_cpu_svm_disable();
609
610 amd_pmu_disable_virt();
611 }
612
svm_enable_virtualization_cpu(void)613 static int svm_enable_virtualization_cpu(void)
614 {
615
616 struct svm_cpu_data *sd;
617 uint64_t efer;
618 int me = raw_smp_processor_id();
619
620 rdmsrl(MSR_EFER, efer);
621 if (efer & EFER_SVME)
622 return -EBUSY;
623
624 sd = per_cpu_ptr(&svm_data, me);
625 sd->asid_generation = 1;
626 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
627 sd->next_asid = sd->max_asid + 1;
628 sd->min_asid = max_sev_asid + 1;
629
630 wrmsrl(MSR_EFER, efer | EFER_SVME);
631
632 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
633
634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
635 /*
636 * Set the default value, even if we don't use TSC scaling
637 * to avoid having stale value in the msr
638 */
639 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
640 }
641
642
643 /*
644 * Get OSVW bits.
645 *
646 * Note that it is possible to have a system with mixed processor
647 * revisions and therefore different OSVW bits. If bits are not the same
648 * on different processors then choose the worst case (i.e. if erratum
649 * is present on one processor and not on another then assume that the
650 * erratum is present everywhere).
651 */
652 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
653 uint64_t len, status = 0;
654 int err;
655
656 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
657 if (!err)
658 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
659 &err);
660
661 if (err)
662 osvw_status = osvw_len = 0;
663 else {
664 if (len < osvw_len)
665 osvw_len = len;
666 osvw_status |= status;
667 osvw_status &= (1ULL << osvw_len) - 1;
668 }
669 } else
670 osvw_status = osvw_len = 0;
671
672 svm_init_erratum_383();
673
674 amd_pmu_enable_virt();
675
676 /*
677 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
678 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
679 * Since Linux does not change the value of TSC_AUX once set, prime the
680 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
681 */
682 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
683 u32 __maybe_unused msr_hi;
684
685 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
686 }
687
688 return 0;
689 }
690
svm_cpu_uninit(int cpu)691 static void svm_cpu_uninit(int cpu)
692 {
693 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
694
695 if (!sd->save_area)
696 return;
697
698 kfree(sd->sev_vmcbs);
699 __free_page(__sme_pa_to_page(sd->save_area_pa));
700 sd->save_area_pa = 0;
701 sd->save_area = NULL;
702 }
703
svm_cpu_init(int cpu)704 static int svm_cpu_init(int cpu)
705 {
706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
707 struct page *save_area_page;
708 int ret = -ENOMEM;
709
710 memset(sd, 0, sizeof(struct svm_cpu_data));
711 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
712 if (!save_area_page)
713 return ret;
714
715 ret = sev_cpu_init(sd);
716 if (ret)
717 goto free_save_area;
718
719 sd->save_area = page_address(save_area_page);
720 sd->save_area_pa = __sme_page_pa(save_area_page);
721 return 0;
722
723 free_save_area:
724 __free_page(save_area_page);
725 return ret;
726
727 }
728
set_dr_intercepts(struct vcpu_svm * svm)729 static void set_dr_intercepts(struct vcpu_svm *svm)
730 {
731 struct vmcb *vmcb = svm->vmcb01.ptr;
732
733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
749
750 recalc_intercepts(svm);
751 }
752
clr_dr_intercepts(struct vcpu_svm * svm)753 static void clr_dr_intercepts(struct vcpu_svm *svm)
754 {
755 struct vmcb *vmcb = svm->vmcb01.ptr;
756
757 vmcb->control.intercepts[INTERCEPT_DR] = 0;
758
759 recalc_intercepts(svm);
760 }
761
direct_access_msr_slot(u32 msr)762 static int direct_access_msr_slot(u32 msr)
763 {
764 u32 i;
765
766 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
767 if (direct_access_msrs[i].index == msr)
768 return i;
769
770 return -ENOENT;
771 }
772
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)773 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
774 int write)
775 {
776 struct vcpu_svm *svm = to_svm(vcpu);
777 int slot = direct_access_msr_slot(msr);
778
779 if (slot == -ENOENT)
780 return;
781
782 /* Set the shadow bitmaps to the desired intercept states */
783 if (read)
784 set_bit(slot, svm->shadow_msr_intercept.read);
785 else
786 clear_bit(slot, svm->shadow_msr_intercept.read);
787
788 if (write)
789 set_bit(slot, svm->shadow_msr_intercept.write);
790 else
791 clear_bit(slot, svm->shadow_msr_intercept.write);
792 }
793
valid_msr_intercept(u32 index)794 static bool valid_msr_intercept(u32 index)
795 {
796 return direct_access_msr_slot(index) != -ENOENT;
797 }
798
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)799 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
800 {
801 u8 bit_write;
802 unsigned long tmp;
803 u32 offset;
804 u32 *msrpm;
805
806 /*
807 * For non-nested case:
808 * If the L01 MSR bitmap does not intercept the MSR, then we need to
809 * save it.
810 *
811 * For nested case:
812 * If the L02 MSR bitmap does not intercept the MSR, then we need to
813 * save it.
814 */
815 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
816 to_svm(vcpu)->msrpm;
817
818 offset = svm_msrpm_offset(msr);
819 bit_write = 2 * (msr & 0x0f) + 1;
820 tmp = msrpm[offset];
821
822 BUG_ON(offset == MSR_INVALID);
823
824 return test_bit(bit_write, &tmp);
825 }
826
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)827 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
828 u32 msr, int read, int write)
829 {
830 struct vcpu_svm *svm = to_svm(vcpu);
831 u8 bit_read, bit_write;
832 unsigned long tmp;
833 u32 offset;
834
835 /*
836 * If this warning triggers extend the direct_access_msrs list at the
837 * beginning of the file
838 */
839 WARN_ON(!valid_msr_intercept(msr));
840
841 /* Enforce non allowed MSRs to trap */
842 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
843 read = 0;
844
845 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
846 write = 0;
847
848 offset = svm_msrpm_offset(msr);
849 bit_read = 2 * (msr & 0x0f);
850 bit_write = 2 * (msr & 0x0f) + 1;
851 tmp = msrpm[offset];
852
853 BUG_ON(offset == MSR_INVALID);
854
855 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
856 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
857
858 msrpm[offset] = tmp;
859
860 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
861 svm->nested.force_msr_bitmap_recalc = true;
862 }
863
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)864 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
865 int read, int write)
866 {
867 set_shadow_msr_intercept(vcpu, msr, read, write);
868 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
869 }
870
svm_vcpu_alloc_msrpm(void)871 u32 *svm_vcpu_alloc_msrpm(void)
872 {
873 unsigned int order = get_order(MSRPM_SIZE);
874 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
875 u32 *msrpm;
876
877 if (!pages)
878 return NULL;
879
880 msrpm = page_address(pages);
881 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
882
883 return msrpm;
884 }
885
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)886 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
887 {
888 int i;
889
890 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
891 if (!direct_access_msrs[i].always)
892 continue;
893 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
894 }
895 }
896
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)897 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
898 {
899 int i;
900
901 if (intercept == svm->x2avic_msrs_intercepted)
902 return;
903
904 if (!x2avic_enabled)
905 return;
906
907 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
908 int index = direct_access_msrs[i].index;
909
910 if ((index < APIC_BASE_MSR) ||
911 (index > APIC_BASE_MSR + 0xff))
912 continue;
913 set_msr_interception(&svm->vcpu, svm->msrpm, index,
914 !intercept, !intercept);
915 }
916
917 svm->x2avic_msrs_intercepted = intercept;
918 }
919
svm_vcpu_free_msrpm(u32 * msrpm)920 void svm_vcpu_free_msrpm(u32 *msrpm)
921 {
922 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
923 }
924
svm_msr_filter_changed(struct kvm_vcpu * vcpu)925 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
926 {
927 struct vcpu_svm *svm = to_svm(vcpu);
928 u32 i;
929
930 /*
931 * Set intercept permissions for all direct access MSRs again. They
932 * will automatically get filtered through the MSR filter, so we are
933 * back in sync after this.
934 */
935 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
936 u32 msr = direct_access_msrs[i].index;
937 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
938 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
939
940 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
941 }
942 }
943
add_msr_offset(u32 offset)944 static void add_msr_offset(u32 offset)
945 {
946 int i;
947
948 for (i = 0; i < MSRPM_OFFSETS; ++i) {
949
950 /* Offset already in list? */
951 if (msrpm_offsets[i] == offset)
952 return;
953
954 /* Slot used by another offset? */
955 if (msrpm_offsets[i] != MSR_INVALID)
956 continue;
957
958 /* Add offset to list */
959 msrpm_offsets[i] = offset;
960
961 return;
962 }
963
964 /*
965 * If this BUG triggers the msrpm_offsets table has an overflow. Just
966 * increase MSRPM_OFFSETS in this case.
967 */
968 BUG();
969 }
970
init_msrpm_offsets(void)971 static void init_msrpm_offsets(void)
972 {
973 int i;
974
975 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
976
977 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
978 u32 offset;
979
980 offset = svm_msrpm_offset(direct_access_msrs[i].index);
981 BUG_ON(offset == MSR_INVALID);
982
983 add_msr_offset(offset);
984 }
985 }
986
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)987 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
988 {
989 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
990 to_vmcb->save.br_from = from_vmcb->save.br_from;
991 to_vmcb->save.br_to = from_vmcb->save.br_to;
992 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
993 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
994
995 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
996 }
997
svm_enable_lbrv(struct kvm_vcpu * vcpu)998 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
999 {
1000 struct vcpu_svm *svm = to_svm(vcpu);
1001
1002 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1006 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1007
1008 if (sev_es_guest(vcpu->kvm))
1009 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1010
1011 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1012 if (is_guest_mode(vcpu))
1013 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1014 }
1015
svm_disable_lbrv(struct kvm_vcpu * vcpu)1016 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1017 {
1018 struct vcpu_svm *svm = to_svm(vcpu);
1019
1020 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1021
1022 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1026 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1027
1028 /*
1029 * Move the LBR msrs back to the vmcb01 to avoid copying them
1030 * on nested guest entries.
1031 */
1032 if (is_guest_mode(vcpu))
1033 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1034 }
1035
svm_get_lbr_vmcb(struct vcpu_svm * svm)1036 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1037 {
1038 /*
1039 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1040 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1041 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1042 */
1043 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1044 svm->vmcb01.ptr;
1045 }
1046
svm_update_lbrv(struct kvm_vcpu * vcpu)1047 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1048 {
1049 struct vcpu_svm *svm = to_svm(vcpu);
1050 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1051 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1052 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1053 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1054
1055 if (enable_lbrv == current_enable_lbrv)
1056 return;
1057
1058 if (enable_lbrv)
1059 svm_enable_lbrv(vcpu);
1060 else
1061 svm_disable_lbrv(vcpu);
1062 }
1063
disable_nmi_singlestep(struct vcpu_svm * svm)1064 void disable_nmi_singlestep(struct vcpu_svm *svm)
1065 {
1066 svm->nmi_singlestep = false;
1067
1068 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1069 /* Clear our flags if they were not set by the guest */
1070 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1071 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1072 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1073 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1074 }
1075 }
1076
grow_ple_window(struct kvm_vcpu * vcpu)1077 static void grow_ple_window(struct kvm_vcpu *vcpu)
1078 {
1079 struct vcpu_svm *svm = to_svm(vcpu);
1080 struct vmcb_control_area *control = &svm->vmcb->control;
1081 int old = control->pause_filter_count;
1082
1083 if (kvm_pause_in_guest(vcpu->kvm))
1084 return;
1085
1086 control->pause_filter_count = __grow_ple_window(old,
1087 pause_filter_count,
1088 pause_filter_count_grow,
1089 pause_filter_count_max);
1090
1091 if (control->pause_filter_count != old) {
1092 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1093 trace_kvm_ple_window_update(vcpu->vcpu_id,
1094 control->pause_filter_count, old);
1095 }
1096 }
1097
shrink_ple_window(struct kvm_vcpu * vcpu)1098 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1099 {
1100 struct vcpu_svm *svm = to_svm(vcpu);
1101 struct vmcb_control_area *control = &svm->vmcb->control;
1102 int old = control->pause_filter_count;
1103
1104 if (kvm_pause_in_guest(vcpu->kvm))
1105 return;
1106
1107 control->pause_filter_count =
1108 __shrink_ple_window(old,
1109 pause_filter_count,
1110 pause_filter_count_shrink,
1111 pause_filter_count);
1112 if (control->pause_filter_count != old) {
1113 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1114 trace_kvm_ple_window_update(vcpu->vcpu_id,
1115 control->pause_filter_count, old);
1116 }
1117 }
1118
svm_hardware_unsetup(void)1119 static void svm_hardware_unsetup(void)
1120 {
1121 int cpu;
1122
1123 sev_hardware_unsetup();
1124
1125 for_each_possible_cpu(cpu)
1126 svm_cpu_uninit(cpu);
1127
1128 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1129 iopm_base = 0;
1130 }
1131
init_seg(struct vmcb_seg * seg)1132 static void init_seg(struct vmcb_seg *seg)
1133 {
1134 seg->selector = 0;
1135 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1136 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1137 seg->limit = 0xffff;
1138 seg->base = 0;
1139 }
1140
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1141 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1142 {
1143 seg->selector = 0;
1144 seg->attrib = SVM_SELECTOR_P_MASK | type;
1145 seg->limit = 0xffff;
1146 seg->base = 0;
1147 }
1148
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1149 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1150 {
1151 struct vcpu_svm *svm = to_svm(vcpu);
1152
1153 return svm->nested.ctl.tsc_offset;
1154 }
1155
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1156 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1157 {
1158 struct vcpu_svm *svm = to_svm(vcpu);
1159
1160 return svm->tsc_ratio_msr;
1161 }
1162
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1163 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1164 {
1165 struct vcpu_svm *svm = to_svm(vcpu);
1166
1167 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1168 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1169 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1170 }
1171
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1172 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1173 {
1174 preempt_disable();
1175 if (to_svm(vcpu)->guest_state_loaded)
1176 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1177 preempt_enable();
1178 }
1179
1180 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1181 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1182 struct vcpu_svm *svm)
1183 {
1184 /*
1185 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1186 * roots, or if INVPCID is disabled in the guest to inject #UD.
1187 */
1188 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1189 if (!npt_enabled ||
1190 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1191 svm_set_intercept(svm, INTERCEPT_INVPCID);
1192 else
1193 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1194 }
1195
1196 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1197 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1198 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1199 else
1200 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1201 }
1202 }
1203
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1204 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1205 {
1206 struct vcpu_svm *svm = to_svm(vcpu);
1207
1208 if (guest_cpuid_is_intel_compatible(vcpu)) {
1209 /*
1210 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1211 * accesses because the processor only stores 32 bits.
1212 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1213 */
1214 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1215 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1216 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1217
1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1219 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1220 } else {
1221 /*
1222 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1223 * in VMCB and clear intercepts to avoid #VMEXIT.
1224 */
1225 if (vls) {
1226 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1227 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1228 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1229 }
1230 /* No need to intercept these MSRs */
1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1232 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1233 }
1234 }
1235
init_vmcb(struct kvm_vcpu * vcpu)1236 static void init_vmcb(struct kvm_vcpu *vcpu)
1237 {
1238 struct vcpu_svm *svm = to_svm(vcpu);
1239 struct vmcb *vmcb = svm->vmcb01.ptr;
1240 struct vmcb_control_area *control = &vmcb->control;
1241 struct vmcb_save_area *save = &vmcb->save;
1242
1243 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1244 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1245 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1246 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1247 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1248 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1249 if (!kvm_vcpu_apicv_active(vcpu))
1250 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1251
1252 set_dr_intercepts(svm);
1253
1254 set_exception_intercept(svm, PF_VECTOR);
1255 set_exception_intercept(svm, UD_VECTOR);
1256 set_exception_intercept(svm, MC_VECTOR);
1257 set_exception_intercept(svm, AC_VECTOR);
1258 set_exception_intercept(svm, DB_VECTOR);
1259 /*
1260 * Guest access to VMware backdoor ports could legitimately
1261 * trigger #GP because of TSS I/O permission bitmap.
1262 * We intercept those #GP and allow access to them anyway
1263 * as VMware does.
1264 */
1265 if (enable_vmware_backdoor)
1266 set_exception_intercept(svm, GP_VECTOR);
1267
1268 svm_set_intercept(svm, INTERCEPT_INTR);
1269 svm_set_intercept(svm, INTERCEPT_NMI);
1270
1271 if (intercept_smi)
1272 svm_set_intercept(svm, INTERCEPT_SMI);
1273
1274 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1275 svm_set_intercept(svm, INTERCEPT_RDPMC);
1276 svm_set_intercept(svm, INTERCEPT_CPUID);
1277 svm_set_intercept(svm, INTERCEPT_INVD);
1278 svm_set_intercept(svm, INTERCEPT_INVLPG);
1279 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1280 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1281 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1282 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1283 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1284 svm_set_intercept(svm, INTERCEPT_VMRUN);
1285 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1286 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1287 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1288 svm_set_intercept(svm, INTERCEPT_STGI);
1289 svm_set_intercept(svm, INTERCEPT_CLGI);
1290 svm_set_intercept(svm, INTERCEPT_SKINIT);
1291 svm_set_intercept(svm, INTERCEPT_WBINVD);
1292 svm_set_intercept(svm, INTERCEPT_XSETBV);
1293 svm_set_intercept(svm, INTERCEPT_RDPRU);
1294 svm_set_intercept(svm, INTERCEPT_RSM);
1295
1296 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1297 svm_set_intercept(svm, INTERCEPT_MONITOR);
1298 svm_set_intercept(svm, INTERCEPT_MWAIT);
1299 }
1300
1301 if (!kvm_hlt_in_guest(vcpu->kvm))
1302 svm_set_intercept(svm, INTERCEPT_HLT);
1303
1304 control->iopm_base_pa = iopm_base;
1305 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1306 control->int_ctl = V_INTR_MASKING_MASK;
1307
1308 init_seg(&save->es);
1309 init_seg(&save->ss);
1310 init_seg(&save->ds);
1311 init_seg(&save->fs);
1312 init_seg(&save->gs);
1313
1314 save->cs.selector = 0xf000;
1315 save->cs.base = 0xffff0000;
1316 /* Executable/Readable Code Segment */
1317 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1318 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1319 save->cs.limit = 0xffff;
1320
1321 save->gdtr.base = 0;
1322 save->gdtr.limit = 0xffff;
1323 save->idtr.base = 0;
1324 save->idtr.limit = 0xffff;
1325
1326 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1327 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1328
1329 if (npt_enabled) {
1330 /* Setup VMCB for Nested Paging */
1331 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1332 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1333 clr_exception_intercept(svm, PF_VECTOR);
1334 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1335 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1336 save->g_pat = vcpu->arch.pat;
1337 save->cr3 = 0;
1338 }
1339 svm->current_vmcb->asid_generation = 0;
1340 svm->asid = 0;
1341
1342 svm->nested.vmcb12_gpa = INVALID_GPA;
1343 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1344
1345 if (!kvm_pause_in_guest(vcpu->kvm)) {
1346 control->pause_filter_count = pause_filter_count;
1347 if (pause_filter_thresh)
1348 control->pause_filter_thresh = pause_filter_thresh;
1349 svm_set_intercept(svm, INTERCEPT_PAUSE);
1350 } else {
1351 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1352 }
1353
1354 svm_recalc_instruction_intercepts(vcpu, svm);
1355
1356 /*
1357 * If the host supports V_SPEC_CTRL then disable the interception
1358 * of MSR_IA32_SPEC_CTRL.
1359 */
1360 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1361 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1362
1363 if (kvm_vcpu_apicv_active(vcpu))
1364 avic_init_vmcb(svm, vmcb);
1365
1366 if (vnmi)
1367 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1368
1369 if (vgif) {
1370 svm_clr_intercept(svm, INTERCEPT_STGI);
1371 svm_clr_intercept(svm, INTERCEPT_CLGI);
1372 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1373 }
1374
1375 if (sev_guest(vcpu->kvm))
1376 sev_init_vmcb(svm);
1377
1378 svm_hv_init_vmcb(vmcb);
1379 init_vmcb_after_set_cpuid(vcpu);
1380
1381 vmcb_mark_all_dirty(vmcb);
1382
1383 enable_gif(svm);
1384 }
1385
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1386 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1387 {
1388 struct vcpu_svm *svm = to_svm(vcpu);
1389
1390 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1391
1392 svm_init_osvw(vcpu);
1393 vcpu->arch.microcode_version = 0x01000065;
1394 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1395
1396 svm->nmi_masked = false;
1397 svm->awaiting_iret_completion = false;
1398
1399 if (sev_es_guest(vcpu->kvm))
1400 sev_es_vcpu_reset(svm);
1401 }
1402
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1403 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1404 {
1405 struct vcpu_svm *svm = to_svm(vcpu);
1406
1407 svm->spec_ctrl = 0;
1408 svm->virt_spec_ctrl = 0;
1409
1410 if (init_event)
1411 sev_snp_init_protected_guest_state(vcpu);
1412
1413 init_vmcb(vcpu);
1414
1415 if (!init_event)
1416 __svm_vcpu_reset(vcpu);
1417 }
1418
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1419 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1420 {
1421 svm->current_vmcb = target_vmcb;
1422 svm->vmcb = target_vmcb->ptr;
1423 }
1424
svm_vcpu_create(struct kvm_vcpu * vcpu)1425 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1426 {
1427 struct vcpu_svm *svm;
1428 struct page *vmcb01_page;
1429 struct page *vmsa_page = NULL;
1430 int err;
1431
1432 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1433 svm = to_svm(vcpu);
1434
1435 err = -ENOMEM;
1436 vmcb01_page = snp_safe_alloc_page();
1437 if (!vmcb01_page)
1438 goto out;
1439
1440 if (sev_es_guest(vcpu->kvm)) {
1441 /*
1442 * SEV-ES guests require a separate VMSA page used to contain
1443 * the encrypted register state of the guest.
1444 */
1445 vmsa_page = snp_safe_alloc_page();
1446 if (!vmsa_page)
1447 goto error_free_vmcb_page;
1448 }
1449
1450 err = avic_init_vcpu(svm);
1451 if (err)
1452 goto error_free_vmsa_page;
1453
1454 svm->msrpm = svm_vcpu_alloc_msrpm();
1455 if (!svm->msrpm) {
1456 err = -ENOMEM;
1457 goto error_free_vmsa_page;
1458 }
1459
1460 svm->x2avic_msrs_intercepted = true;
1461
1462 svm->vmcb01.ptr = page_address(vmcb01_page);
1463 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1464 svm_switch_vmcb(svm, &svm->vmcb01);
1465
1466 if (vmsa_page)
1467 svm->sev_es.vmsa = page_address(vmsa_page);
1468
1469 svm->guest_state_loaded = false;
1470
1471 return 0;
1472
1473 error_free_vmsa_page:
1474 if (vmsa_page)
1475 __free_page(vmsa_page);
1476 error_free_vmcb_page:
1477 __free_page(vmcb01_page);
1478 out:
1479 return err;
1480 }
1481
svm_clear_current_vmcb(struct vmcb * vmcb)1482 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1483 {
1484 int i;
1485
1486 for_each_possible_cpu(i)
1487 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1488 }
1489
svm_vcpu_free(struct kvm_vcpu * vcpu)1490 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1491 {
1492 struct vcpu_svm *svm = to_svm(vcpu);
1493
1494 /*
1495 * The vmcb page can be recycled, causing a false negative in
1496 * svm_vcpu_load(). So, ensure that no logical CPU has this
1497 * vmcb page recorded as its current vmcb.
1498 */
1499 svm_clear_current_vmcb(svm->vmcb);
1500
1501 svm_leave_nested(vcpu);
1502 svm_free_nested(svm);
1503
1504 sev_free_vcpu(vcpu);
1505
1506 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1507 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1508 }
1509
1510 #ifdef CONFIG_CPU_MITIGATIONS
1511 static DEFINE_SPINLOCK(srso_lock);
1512 static atomic_t srso_nr_vms;
1513
svm_srso_clear_bp_spec_reduce(void * ign)1514 static void svm_srso_clear_bp_spec_reduce(void *ign)
1515 {
1516 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1517
1518 if (!sd->bp_spec_reduce_set)
1519 return;
1520
1521 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1522 sd->bp_spec_reduce_set = false;
1523 }
1524
svm_srso_vm_destroy(void)1525 static void svm_srso_vm_destroy(void)
1526 {
1527 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1528 return;
1529
1530 if (atomic_dec_return(&srso_nr_vms))
1531 return;
1532
1533 guard(spinlock)(&srso_lock);
1534
1535 /*
1536 * Verify a new VM didn't come along, acquire the lock, and increment
1537 * the count before this task acquired the lock.
1538 */
1539 if (atomic_read(&srso_nr_vms))
1540 return;
1541
1542 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1543 }
1544
svm_srso_vm_init(void)1545 static void svm_srso_vm_init(void)
1546 {
1547 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1548 return;
1549
1550 /*
1551 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1552 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1553 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1554 */
1555 if (atomic_inc_not_zero(&srso_nr_vms))
1556 return;
1557
1558 guard(spinlock)(&srso_lock);
1559
1560 atomic_inc(&srso_nr_vms);
1561 }
1562 #else
svm_srso_vm_init(void)1563 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1564 static void svm_srso_vm_destroy(void) { }
1565 #endif
1566
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1567 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1568 {
1569 struct vcpu_svm *svm = to_svm(vcpu);
1570 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1571
1572 if (sev_es_guest(vcpu->kvm))
1573 sev_es_unmap_ghcb(svm);
1574
1575 if (svm->guest_state_loaded)
1576 return;
1577
1578 /*
1579 * Save additional host state that will be restored on VMEXIT (sev-es)
1580 * or subsequent vmload of host save area.
1581 */
1582 vmsave(sd->save_area_pa);
1583 if (sev_es_guest(vcpu->kvm))
1584 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1585
1586 if (tsc_scaling)
1587 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1588
1589 /*
1590 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1591 * available. The user return MSR support is not required in this case
1592 * because TSC_AUX is restored on #VMEXIT from the host save area
1593 * (which has been initialized in svm_enable_virtualization_cpu()).
1594 */
1595 if (likely(tsc_aux_uret_slot >= 0) &&
1596 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1597 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1598
1599 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1600 !sd->bp_spec_reduce_set) {
1601 sd->bp_spec_reduce_set = true;
1602 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1603 }
1604 svm->guest_state_loaded = true;
1605 }
1606
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1607 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1608 {
1609 to_svm(vcpu)->guest_state_loaded = false;
1610 }
1611
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1612 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1613 {
1614 struct vcpu_svm *svm = to_svm(vcpu);
1615 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1616
1617 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1618 shrink_ple_window(vcpu);
1619
1620 if (sd->current_vmcb != svm->vmcb) {
1621 sd->current_vmcb = svm->vmcb;
1622
1623 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1624 indirect_branch_prediction_barrier();
1625 }
1626 if (kvm_vcpu_apicv_active(vcpu))
1627 avic_vcpu_load(vcpu, cpu);
1628 }
1629
svm_vcpu_put(struct kvm_vcpu * vcpu)1630 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1631 {
1632 if (kvm_vcpu_apicv_active(vcpu))
1633 avic_vcpu_put(vcpu);
1634
1635 svm_prepare_host_switch(vcpu);
1636
1637 ++vcpu->stat.host_state_reload;
1638 }
1639
svm_get_rflags(struct kvm_vcpu * vcpu)1640 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1641 {
1642 struct vcpu_svm *svm = to_svm(vcpu);
1643 unsigned long rflags = svm->vmcb->save.rflags;
1644
1645 if (svm->nmi_singlestep) {
1646 /* Hide our flags if they were not set by the guest */
1647 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1648 rflags &= ~X86_EFLAGS_TF;
1649 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1650 rflags &= ~X86_EFLAGS_RF;
1651 }
1652 return rflags;
1653 }
1654
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1655 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1656 {
1657 if (to_svm(vcpu)->nmi_singlestep)
1658 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1659
1660 /*
1661 * Any change of EFLAGS.VM is accompanied by a reload of SS
1662 * (caused by either a task switch or an inter-privilege IRET),
1663 * so we do not need to update the CPL here.
1664 */
1665 to_svm(vcpu)->vmcb->save.rflags = rflags;
1666 }
1667
svm_get_if_flag(struct kvm_vcpu * vcpu)1668 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1669 {
1670 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1671
1672 return sev_es_guest(vcpu->kvm)
1673 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1674 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1675 }
1676
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1677 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1678 {
1679 kvm_register_mark_available(vcpu, reg);
1680
1681 switch (reg) {
1682 case VCPU_EXREG_PDPTR:
1683 /*
1684 * When !npt_enabled, mmu->pdptrs[] is already available since
1685 * it is always updated per SDM when moving to CRs.
1686 */
1687 if (npt_enabled)
1688 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1689 break;
1690 default:
1691 KVM_BUG_ON(1, vcpu->kvm);
1692 }
1693 }
1694
svm_set_vintr(struct vcpu_svm * svm)1695 static void svm_set_vintr(struct vcpu_svm *svm)
1696 {
1697 struct vmcb_control_area *control;
1698
1699 /*
1700 * The following fields are ignored when AVIC is enabled
1701 */
1702 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1703
1704 svm_set_intercept(svm, INTERCEPT_VINTR);
1705
1706 /*
1707 * Recalculating intercepts may have cleared the VINTR intercept. If
1708 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1709 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1710 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1711 * interrupts will never be unblocked while L2 is running.
1712 */
1713 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1714 return;
1715
1716 /*
1717 * This is just a dummy VINTR to actually cause a vmexit to happen.
1718 * Actual injection of virtual interrupts happens through EVENTINJ.
1719 */
1720 control = &svm->vmcb->control;
1721 control->int_vector = 0x0;
1722 control->int_ctl &= ~V_INTR_PRIO_MASK;
1723 control->int_ctl |= V_IRQ_MASK |
1724 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1725 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1726 }
1727
svm_clear_vintr(struct vcpu_svm * svm)1728 static void svm_clear_vintr(struct vcpu_svm *svm)
1729 {
1730 svm_clr_intercept(svm, INTERCEPT_VINTR);
1731
1732 /* Drop int_ctl fields related to VINTR injection. */
1733 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1734 if (is_guest_mode(&svm->vcpu)) {
1735 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1736
1737 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1738 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1739
1740 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1741 V_IRQ_INJECTION_BITS_MASK;
1742
1743 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1744 }
1745
1746 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1747 }
1748
svm_seg(struct kvm_vcpu * vcpu,int seg)1749 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1750 {
1751 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1752 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1753
1754 switch (seg) {
1755 case VCPU_SREG_CS: return &save->cs;
1756 case VCPU_SREG_DS: return &save->ds;
1757 case VCPU_SREG_ES: return &save->es;
1758 case VCPU_SREG_FS: return &save01->fs;
1759 case VCPU_SREG_GS: return &save01->gs;
1760 case VCPU_SREG_SS: return &save->ss;
1761 case VCPU_SREG_TR: return &save01->tr;
1762 case VCPU_SREG_LDTR: return &save01->ldtr;
1763 }
1764 BUG();
1765 return NULL;
1766 }
1767
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1768 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1769 {
1770 struct vmcb_seg *s = svm_seg(vcpu, seg);
1771
1772 return s->base;
1773 }
1774
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1775 static void svm_get_segment(struct kvm_vcpu *vcpu,
1776 struct kvm_segment *var, int seg)
1777 {
1778 struct vmcb_seg *s = svm_seg(vcpu, seg);
1779
1780 var->base = s->base;
1781 var->limit = s->limit;
1782 var->selector = s->selector;
1783 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1784 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1785 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1786 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1787 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1788 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1789 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1790
1791 /*
1792 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1793 * However, the SVM spec states that the G bit is not observed by the
1794 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1795 * So let's synthesize a legal G bit for all segments, this helps
1796 * running KVM nested. It also helps cross-vendor migration, because
1797 * Intel's vmentry has a check on the 'G' bit.
1798 */
1799 var->g = s->limit > 0xfffff;
1800
1801 /*
1802 * AMD's VMCB does not have an explicit unusable field, so emulate it
1803 * for cross vendor migration purposes by "not present"
1804 */
1805 var->unusable = !var->present;
1806
1807 switch (seg) {
1808 case VCPU_SREG_TR:
1809 /*
1810 * Work around a bug where the busy flag in the tr selector
1811 * isn't exposed
1812 */
1813 var->type |= 0x2;
1814 break;
1815 case VCPU_SREG_DS:
1816 case VCPU_SREG_ES:
1817 case VCPU_SREG_FS:
1818 case VCPU_SREG_GS:
1819 /*
1820 * The accessed bit must always be set in the segment
1821 * descriptor cache, although it can be cleared in the
1822 * descriptor, the cached bit always remains at 1. Since
1823 * Intel has a check on this, set it here to support
1824 * cross-vendor migration.
1825 */
1826 if (!var->unusable)
1827 var->type |= 0x1;
1828 break;
1829 case VCPU_SREG_SS:
1830 /*
1831 * On AMD CPUs sometimes the DB bit in the segment
1832 * descriptor is left as 1, although the whole segment has
1833 * been made unusable. Clear it here to pass an Intel VMX
1834 * entry check when cross vendor migrating.
1835 */
1836 if (var->unusable)
1837 var->db = 0;
1838 /* This is symmetric with svm_set_segment() */
1839 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1840 break;
1841 }
1842 }
1843
svm_get_cpl(struct kvm_vcpu * vcpu)1844 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1845 {
1846 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1847
1848 return save->cpl;
1849 }
1850
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1851 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1852 {
1853 struct kvm_segment cs;
1854
1855 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1856 *db = cs.db;
1857 *l = cs.l;
1858 }
1859
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1860 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1861 {
1862 struct vcpu_svm *svm = to_svm(vcpu);
1863
1864 dt->size = svm->vmcb->save.idtr.limit;
1865 dt->address = svm->vmcb->save.idtr.base;
1866 }
1867
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1868 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1869 {
1870 struct vcpu_svm *svm = to_svm(vcpu);
1871
1872 svm->vmcb->save.idtr.limit = dt->size;
1873 svm->vmcb->save.idtr.base = dt->address ;
1874 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1875 }
1876
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1877 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1878 {
1879 struct vcpu_svm *svm = to_svm(vcpu);
1880
1881 dt->size = svm->vmcb->save.gdtr.limit;
1882 dt->address = svm->vmcb->save.gdtr.base;
1883 }
1884
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1885 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1886 {
1887 struct vcpu_svm *svm = to_svm(vcpu);
1888
1889 svm->vmcb->save.gdtr.limit = dt->size;
1890 svm->vmcb->save.gdtr.base = dt->address ;
1891 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1892 }
1893
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1894 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1895 {
1896 struct vcpu_svm *svm = to_svm(vcpu);
1897
1898 /*
1899 * For guests that don't set guest_state_protected, the cr3 update is
1900 * handled via kvm_mmu_load() while entering the guest. For guests
1901 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1902 * VMCB save area now, since the save area will become the initial
1903 * contents of the VMSA, and future VMCB save area updates won't be
1904 * seen.
1905 */
1906 if (sev_es_guest(vcpu->kvm)) {
1907 svm->vmcb->save.cr3 = cr3;
1908 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1909 }
1910 }
1911
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1912 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1913 {
1914 return true;
1915 }
1916
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1917 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1918 {
1919 struct vcpu_svm *svm = to_svm(vcpu);
1920 u64 hcr0 = cr0;
1921 bool old_paging = is_paging(vcpu);
1922
1923 #ifdef CONFIG_X86_64
1924 if (vcpu->arch.efer & EFER_LME) {
1925 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1926 vcpu->arch.efer |= EFER_LMA;
1927 if (!vcpu->arch.guest_state_protected)
1928 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1929 }
1930
1931 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1932 vcpu->arch.efer &= ~EFER_LMA;
1933 if (!vcpu->arch.guest_state_protected)
1934 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1935 }
1936 }
1937 #endif
1938 vcpu->arch.cr0 = cr0;
1939
1940 if (!npt_enabled) {
1941 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1942 if (old_paging != is_paging(vcpu))
1943 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1944 }
1945
1946 /*
1947 * re-enable caching here because the QEMU bios
1948 * does not do it - this results in some delay at
1949 * reboot
1950 */
1951 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1952 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1953
1954 svm->vmcb->save.cr0 = hcr0;
1955 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1956
1957 /*
1958 * SEV-ES guests must always keep the CR intercepts cleared. CR
1959 * tracking is done using the CR write traps.
1960 */
1961 if (sev_es_guest(vcpu->kvm))
1962 return;
1963
1964 if (hcr0 == cr0) {
1965 /* Selective CR0 write remains on. */
1966 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1967 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1968 } else {
1969 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1970 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1971 }
1972 }
1973
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1974 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1975 {
1976 return true;
1977 }
1978
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1979 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1980 {
1981 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1982 unsigned long old_cr4 = vcpu->arch.cr4;
1983
1984 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1985 svm_flush_tlb_current(vcpu);
1986
1987 vcpu->arch.cr4 = cr4;
1988 if (!npt_enabled) {
1989 cr4 |= X86_CR4_PAE;
1990
1991 if (!is_paging(vcpu))
1992 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1993 }
1994 cr4 |= host_cr4_mce;
1995 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1996 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1997
1998 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1999 kvm_update_cpuid_runtime(vcpu);
2000 }
2001
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2002 static void svm_set_segment(struct kvm_vcpu *vcpu,
2003 struct kvm_segment *var, int seg)
2004 {
2005 struct vcpu_svm *svm = to_svm(vcpu);
2006 struct vmcb_seg *s = svm_seg(vcpu, seg);
2007
2008 s->base = var->base;
2009 s->limit = var->limit;
2010 s->selector = var->selector;
2011 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2012 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2013 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2014 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2015 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2016 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2017 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2018 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2019
2020 /*
2021 * This is always accurate, except if SYSRET returned to a segment
2022 * with SS.DPL != 3. Intel does not have this quirk, and always
2023 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2024 * would entail passing the CPL to userspace and back.
2025 */
2026 if (seg == VCPU_SREG_SS)
2027 /* This is symmetric with svm_get_segment() */
2028 svm->vmcb->save.cpl = (var->dpl & 3);
2029
2030 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
2031 }
2032
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)2033 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
2034 {
2035 struct vcpu_svm *svm = to_svm(vcpu);
2036
2037 clr_exception_intercept(svm, BP_VECTOR);
2038
2039 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2040 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2041 set_exception_intercept(svm, BP_VECTOR);
2042 }
2043 }
2044
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2045 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2046 {
2047 if (sd->next_asid > sd->max_asid) {
2048 ++sd->asid_generation;
2049 sd->next_asid = sd->min_asid;
2050 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2051 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2052 }
2053
2054 svm->current_vmcb->asid_generation = sd->asid_generation;
2055 svm->asid = sd->next_asid++;
2056 }
2057
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2058 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2059 {
2060 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
2061
2062 if (vcpu->arch.guest_state_protected)
2063 return;
2064
2065 if (unlikely(value != vmcb->save.dr6)) {
2066 vmcb->save.dr6 = value;
2067 vmcb_mark_dirty(vmcb, VMCB_DR);
2068 }
2069 }
2070
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2071 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2072 {
2073 struct vcpu_svm *svm = to_svm(vcpu);
2074
2075 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2076 return;
2077
2078 get_debugreg(vcpu->arch.db[0], 0);
2079 get_debugreg(vcpu->arch.db[1], 1);
2080 get_debugreg(vcpu->arch.db[2], 2);
2081 get_debugreg(vcpu->arch.db[3], 3);
2082 /*
2083 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2084 * because db_interception might need it. We can do it before vmentry.
2085 */
2086 vcpu->arch.dr6 = svm->vmcb->save.dr6;
2087 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2088 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2089 set_dr_intercepts(svm);
2090 }
2091
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2092 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2093 {
2094 struct vcpu_svm *svm = to_svm(vcpu);
2095
2096 if (vcpu->arch.guest_state_protected)
2097 return;
2098
2099 svm->vmcb->save.dr7 = value;
2100 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2101 }
2102
pf_interception(struct kvm_vcpu * vcpu)2103 static int pf_interception(struct kvm_vcpu *vcpu)
2104 {
2105 struct vcpu_svm *svm = to_svm(vcpu);
2106
2107 u64 fault_address = svm->vmcb->control.exit_info_2;
2108 u64 error_code = svm->vmcb->control.exit_info_1;
2109
2110 return kvm_handle_page_fault(vcpu, error_code, fault_address,
2111 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2112 svm->vmcb->control.insn_bytes : NULL,
2113 svm->vmcb->control.insn_len);
2114 }
2115
npf_interception(struct kvm_vcpu * vcpu)2116 static int npf_interception(struct kvm_vcpu *vcpu)
2117 {
2118 struct vcpu_svm *svm = to_svm(vcpu);
2119 int rc;
2120
2121 u64 fault_address = svm->vmcb->control.exit_info_2;
2122 u64 error_code = svm->vmcb->control.exit_info_1;
2123
2124 /*
2125 * WARN if hardware generates a fault with an error code that collides
2126 * with KVM-defined sythentic flags. Clear the flags and continue on,
2127 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2128 * flag that KVM doesn't know about.
2129 */
2130 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2131 error_code &= ~PFERR_SYNTHETIC_MASK;
2132
2133 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2134 error_code |= PFERR_PRIVATE_ACCESS;
2135
2136 trace_kvm_page_fault(vcpu, fault_address, error_code);
2137 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2138 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2139 svm->vmcb->control.insn_bytes : NULL,
2140 svm->vmcb->control.insn_len);
2141
2142 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2143 sev_handle_rmp_fault(vcpu, fault_address, error_code);
2144
2145 return rc;
2146 }
2147
db_interception(struct kvm_vcpu * vcpu)2148 static int db_interception(struct kvm_vcpu *vcpu)
2149 {
2150 struct kvm_run *kvm_run = vcpu->run;
2151 struct vcpu_svm *svm = to_svm(vcpu);
2152
2153 if (!(vcpu->guest_debug &
2154 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2155 !svm->nmi_singlestep) {
2156 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2157 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2158 return 1;
2159 }
2160
2161 if (svm->nmi_singlestep) {
2162 disable_nmi_singlestep(svm);
2163 /* Make sure we check for pending NMIs upon entry */
2164 kvm_make_request(KVM_REQ_EVENT, vcpu);
2165 }
2166
2167 if (vcpu->guest_debug &
2168 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2169 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2170 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2171 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2172 kvm_run->debug.arch.pc =
2173 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2174 kvm_run->debug.arch.exception = DB_VECTOR;
2175 return 0;
2176 }
2177
2178 return 1;
2179 }
2180
bp_interception(struct kvm_vcpu * vcpu)2181 static int bp_interception(struct kvm_vcpu *vcpu)
2182 {
2183 struct vcpu_svm *svm = to_svm(vcpu);
2184 struct kvm_run *kvm_run = vcpu->run;
2185
2186 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2187 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2188 kvm_run->debug.arch.exception = BP_VECTOR;
2189 return 0;
2190 }
2191
ud_interception(struct kvm_vcpu * vcpu)2192 static int ud_interception(struct kvm_vcpu *vcpu)
2193 {
2194 return handle_ud(vcpu);
2195 }
2196
ac_interception(struct kvm_vcpu * vcpu)2197 static int ac_interception(struct kvm_vcpu *vcpu)
2198 {
2199 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2200 return 1;
2201 }
2202
is_erratum_383(void)2203 static bool is_erratum_383(void)
2204 {
2205 int err, i;
2206 u64 value;
2207
2208 if (!erratum_383_found)
2209 return false;
2210
2211 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2212 if (err)
2213 return false;
2214
2215 /* Bit 62 may or may not be set for this mce */
2216 value &= ~(1ULL << 62);
2217
2218 if (value != 0xb600000000010015ULL)
2219 return false;
2220
2221 /* Clear MCi_STATUS registers */
2222 for (i = 0; i < 6; ++i)
2223 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2224
2225 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2226 if (!err) {
2227 u32 low, high;
2228
2229 value &= ~(1ULL << 2);
2230 low = lower_32_bits(value);
2231 high = upper_32_bits(value);
2232
2233 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2234 }
2235
2236 /* Flush tlb to evict multi-match entries */
2237 __flush_tlb_all();
2238
2239 return true;
2240 }
2241
svm_handle_mce(struct kvm_vcpu * vcpu)2242 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2243 {
2244 if (is_erratum_383()) {
2245 /*
2246 * Erratum 383 triggered. Guest state is corrupt so kill the
2247 * guest.
2248 */
2249 pr_err("Guest triggered AMD Erratum 383\n");
2250
2251 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2252
2253 return;
2254 }
2255
2256 /*
2257 * On an #MC intercept the MCE handler is not called automatically in
2258 * the host. So do it by hand here.
2259 */
2260 kvm_machine_check();
2261 }
2262
mc_interception(struct kvm_vcpu * vcpu)2263 static int mc_interception(struct kvm_vcpu *vcpu)
2264 {
2265 return 1;
2266 }
2267
shutdown_interception(struct kvm_vcpu * vcpu)2268 static int shutdown_interception(struct kvm_vcpu *vcpu)
2269 {
2270 struct kvm_run *kvm_run = vcpu->run;
2271 struct vcpu_svm *svm = to_svm(vcpu);
2272
2273
2274 /*
2275 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2276 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2277 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2278 * userspace. At a platform view, INIT is acceptable behavior as
2279 * there exist bare metal platforms that automatically INIT the CPU
2280 * in response to shutdown.
2281 *
2282 * The VM save area for SEV-ES guests has already been encrypted so it
2283 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2284 */
2285 if (!sev_es_guest(vcpu->kvm)) {
2286 clear_page(svm->vmcb);
2287 #ifdef CONFIG_KVM_SMM
2288 if (is_smm(vcpu))
2289 kvm_smm_changed(vcpu, false);
2290 #endif
2291 kvm_vcpu_reset(vcpu, true);
2292 }
2293
2294 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2295 return 0;
2296 }
2297
io_interception(struct kvm_vcpu * vcpu)2298 static int io_interception(struct kvm_vcpu *vcpu)
2299 {
2300 struct vcpu_svm *svm = to_svm(vcpu);
2301 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2302 int size, in, string;
2303 unsigned port;
2304
2305 ++vcpu->stat.io_exits;
2306 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2307 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2308 port = io_info >> 16;
2309 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2310
2311 if (string) {
2312 if (sev_es_guest(vcpu->kvm))
2313 return sev_es_string_io(svm, size, port, in);
2314 else
2315 return kvm_emulate_instruction(vcpu, 0);
2316 }
2317
2318 svm->next_rip = svm->vmcb->control.exit_info_2;
2319
2320 return kvm_fast_pio(vcpu, size, port, in);
2321 }
2322
nmi_interception(struct kvm_vcpu * vcpu)2323 static int nmi_interception(struct kvm_vcpu *vcpu)
2324 {
2325 return 1;
2326 }
2327
smi_interception(struct kvm_vcpu * vcpu)2328 static int smi_interception(struct kvm_vcpu *vcpu)
2329 {
2330 return 1;
2331 }
2332
intr_interception(struct kvm_vcpu * vcpu)2333 static int intr_interception(struct kvm_vcpu *vcpu)
2334 {
2335 ++vcpu->stat.irq_exits;
2336 return 1;
2337 }
2338
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2339 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2340 {
2341 struct vcpu_svm *svm = to_svm(vcpu);
2342 struct vmcb *vmcb12;
2343 struct kvm_host_map map;
2344 int ret;
2345
2346 if (nested_svm_check_permissions(vcpu))
2347 return 1;
2348
2349 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2350 if (ret) {
2351 if (ret == -EINVAL)
2352 kvm_inject_gp(vcpu, 0);
2353 return 1;
2354 }
2355
2356 vmcb12 = map.hva;
2357
2358 ret = kvm_skip_emulated_instruction(vcpu);
2359
2360 if (vmload) {
2361 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2362 svm->sysenter_eip_hi = 0;
2363 svm->sysenter_esp_hi = 0;
2364 } else {
2365 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2366 }
2367
2368 kvm_vcpu_unmap(vcpu, &map, true);
2369
2370 return ret;
2371 }
2372
vmload_interception(struct kvm_vcpu * vcpu)2373 static int vmload_interception(struct kvm_vcpu *vcpu)
2374 {
2375 return vmload_vmsave_interception(vcpu, true);
2376 }
2377
vmsave_interception(struct kvm_vcpu * vcpu)2378 static int vmsave_interception(struct kvm_vcpu *vcpu)
2379 {
2380 return vmload_vmsave_interception(vcpu, false);
2381 }
2382
vmrun_interception(struct kvm_vcpu * vcpu)2383 static int vmrun_interception(struct kvm_vcpu *vcpu)
2384 {
2385 if (nested_svm_check_permissions(vcpu))
2386 return 1;
2387
2388 return nested_svm_vmrun(vcpu);
2389 }
2390
2391 enum {
2392 NONE_SVM_INSTR,
2393 SVM_INSTR_VMRUN,
2394 SVM_INSTR_VMLOAD,
2395 SVM_INSTR_VMSAVE,
2396 };
2397
2398 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2399 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2400 {
2401 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2402
2403 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2404 return NONE_SVM_INSTR;
2405
2406 switch (ctxt->modrm) {
2407 case 0xd8: /* VMRUN */
2408 return SVM_INSTR_VMRUN;
2409 case 0xda: /* VMLOAD */
2410 return SVM_INSTR_VMLOAD;
2411 case 0xdb: /* VMSAVE */
2412 return SVM_INSTR_VMSAVE;
2413 default:
2414 break;
2415 }
2416
2417 return NONE_SVM_INSTR;
2418 }
2419
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2420 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2421 {
2422 const int guest_mode_exit_codes[] = {
2423 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2424 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2425 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2426 };
2427 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2428 [SVM_INSTR_VMRUN] = vmrun_interception,
2429 [SVM_INSTR_VMLOAD] = vmload_interception,
2430 [SVM_INSTR_VMSAVE] = vmsave_interception,
2431 };
2432 struct vcpu_svm *svm = to_svm(vcpu);
2433 int ret;
2434
2435 if (is_guest_mode(vcpu)) {
2436 /* Returns '1' or -errno on failure, '0' on success. */
2437 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2438 if (ret)
2439 return ret;
2440 return 1;
2441 }
2442 return svm_instr_handlers[opcode](vcpu);
2443 }
2444
2445 /*
2446 * #GP handling code. Note that #GP can be triggered under the following two
2447 * cases:
2448 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2449 * some AMD CPUs when EAX of these instructions are in the reserved memory
2450 * regions (e.g. SMM memory on host).
2451 * 2) VMware backdoor
2452 */
gp_interception(struct kvm_vcpu * vcpu)2453 static int gp_interception(struct kvm_vcpu *vcpu)
2454 {
2455 struct vcpu_svm *svm = to_svm(vcpu);
2456 u32 error_code = svm->vmcb->control.exit_info_1;
2457 int opcode;
2458
2459 /* Both #GP cases have zero error_code */
2460 if (error_code)
2461 goto reinject;
2462
2463 /* Decode the instruction for usage later */
2464 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2465 goto reinject;
2466
2467 opcode = svm_instr_opcode(vcpu);
2468
2469 if (opcode == NONE_SVM_INSTR) {
2470 if (!enable_vmware_backdoor)
2471 goto reinject;
2472
2473 /*
2474 * VMware backdoor emulation on #GP interception only handles
2475 * IN{S}, OUT{S}, and RDPMC.
2476 */
2477 if (!is_guest_mode(vcpu))
2478 return kvm_emulate_instruction(vcpu,
2479 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2480 } else {
2481 /* All SVM instructions expect page aligned RAX */
2482 if (svm->vmcb->save.rax & ~PAGE_MASK)
2483 goto reinject;
2484
2485 return emulate_svm_instr(vcpu, opcode);
2486 }
2487
2488 reinject:
2489 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2490 return 1;
2491 }
2492
svm_set_gif(struct vcpu_svm * svm,bool value)2493 void svm_set_gif(struct vcpu_svm *svm, bool value)
2494 {
2495 if (value) {
2496 /*
2497 * If VGIF is enabled, the STGI intercept is only added to
2498 * detect the opening of the SMI/NMI window; remove it now.
2499 * Likewise, clear the VINTR intercept, we will set it
2500 * again while processing KVM_REQ_EVENT if needed.
2501 */
2502 if (vgif)
2503 svm_clr_intercept(svm, INTERCEPT_STGI);
2504 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2505 svm_clear_vintr(svm);
2506
2507 enable_gif(svm);
2508 if (svm->vcpu.arch.smi_pending ||
2509 svm->vcpu.arch.nmi_pending ||
2510 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2511 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2512 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2513 } else {
2514 disable_gif(svm);
2515
2516 /*
2517 * After a CLGI no interrupts should come. But if vGIF is
2518 * in use, we still rely on the VINTR intercept (rather than
2519 * STGI) to detect an open interrupt window.
2520 */
2521 if (!vgif)
2522 svm_clear_vintr(svm);
2523 }
2524 }
2525
stgi_interception(struct kvm_vcpu * vcpu)2526 static int stgi_interception(struct kvm_vcpu *vcpu)
2527 {
2528 int ret;
2529
2530 if (nested_svm_check_permissions(vcpu))
2531 return 1;
2532
2533 ret = kvm_skip_emulated_instruction(vcpu);
2534 svm_set_gif(to_svm(vcpu), true);
2535 return ret;
2536 }
2537
clgi_interception(struct kvm_vcpu * vcpu)2538 static int clgi_interception(struct kvm_vcpu *vcpu)
2539 {
2540 int ret;
2541
2542 if (nested_svm_check_permissions(vcpu))
2543 return 1;
2544
2545 ret = kvm_skip_emulated_instruction(vcpu);
2546 svm_set_gif(to_svm(vcpu), false);
2547 return ret;
2548 }
2549
invlpga_interception(struct kvm_vcpu * vcpu)2550 static int invlpga_interception(struct kvm_vcpu *vcpu)
2551 {
2552 gva_t gva = kvm_rax_read(vcpu);
2553 u32 asid = kvm_rcx_read(vcpu);
2554
2555 /* FIXME: Handle an address size prefix. */
2556 if (!is_long_mode(vcpu))
2557 gva = (u32)gva;
2558
2559 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2560
2561 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2562 kvm_mmu_invlpg(vcpu, gva);
2563
2564 return kvm_skip_emulated_instruction(vcpu);
2565 }
2566
skinit_interception(struct kvm_vcpu * vcpu)2567 static int skinit_interception(struct kvm_vcpu *vcpu)
2568 {
2569 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2570
2571 kvm_queue_exception(vcpu, UD_VECTOR);
2572 return 1;
2573 }
2574
task_switch_interception(struct kvm_vcpu * vcpu)2575 static int task_switch_interception(struct kvm_vcpu *vcpu)
2576 {
2577 struct vcpu_svm *svm = to_svm(vcpu);
2578 u16 tss_selector;
2579 int reason;
2580 int int_type = svm->vmcb->control.exit_int_info &
2581 SVM_EXITINTINFO_TYPE_MASK;
2582 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2583 uint32_t type =
2584 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2585 uint32_t idt_v =
2586 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2587 bool has_error_code = false;
2588 u32 error_code = 0;
2589
2590 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2591
2592 if (svm->vmcb->control.exit_info_2 &
2593 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2594 reason = TASK_SWITCH_IRET;
2595 else if (svm->vmcb->control.exit_info_2 &
2596 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2597 reason = TASK_SWITCH_JMP;
2598 else if (idt_v)
2599 reason = TASK_SWITCH_GATE;
2600 else
2601 reason = TASK_SWITCH_CALL;
2602
2603 if (reason == TASK_SWITCH_GATE) {
2604 switch (type) {
2605 case SVM_EXITINTINFO_TYPE_NMI:
2606 vcpu->arch.nmi_injected = false;
2607 break;
2608 case SVM_EXITINTINFO_TYPE_EXEPT:
2609 if (svm->vmcb->control.exit_info_2 &
2610 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2611 has_error_code = true;
2612 error_code =
2613 (u32)svm->vmcb->control.exit_info_2;
2614 }
2615 kvm_clear_exception_queue(vcpu);
2616 break;
2617 case SVM_EXITINTINFO_TYPE_INTR:
2618 case SVM_EXITINTINFO_TYPE_SOFT:
2619 kvm_clear_interrupt_queue(vcpu);
2620 break;
2621 default:
2622 break;
2623 }
2624 }
2625
2626 if (reason != TASK_SWITCH_GATE ||
2627 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2628 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2629 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2630 if (!svm_skip_emulated_instruction(vcpu))
2631 return 0;
2632 }
2633
2634 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2635 int_vec = -1;
2636
2637 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2638 has_error_code, error_code);
2639 }
2640
svm_clr_iret_intercept(struct vcpu_svm * svm)2641 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2642 {
2643 if (!sev_es_guest(svm->vcpu.kvm))
2644 svm_clr_intercept(svm, INTERCEPT_IRET);
2645 }
2646
svm_set_iret_intercept(struct vcpu_svm * svm)2647 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2648 {
2649 if (!sev_es_guest(svm->vcpu.kvm))
2650 svm_set_intercept(svm, INTERCEPT_IRET);
2651 }
2652
iret_interception(struct kvm_vcpu * vcpu)2653 static int iret_interception(struct kvm_vcpu *vcpu)
2654 {
2655 struct vcpu_svm *svm = to_svm(vcpu);
2656
2657 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2658
2659 ++vcpu->stat.nmi_window_exits;
2660 svm->awaiting_iret_completion = true;
2661
2662 svm_clr_iret_intercept(svm);
2663 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2664
2665 kvm_make_request(KVM_REQ_EVENT, vcpu);
2666 return 1;
2667 }
2668
invlpg_interception(struct kvm_vcpu * vcpu)2669 static int invlpg_interception(struct kvm_vcpu *vcpu)
2670 {
2671 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2672 return kvm_emulate_instruction(vcpu, 0);
2673
2674 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2675 return kvm_skip_emulated_instruction(vcpu);
2676 }
2677
emulate_on_interception(struct kvm_vcpu * vcpu)2678 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2679 {
2680 return kvm_emulate_instruction(vcpu, 0);
2681 }
2682
rsm_interception(struct kvm_vcpu * vcpu)2683 static int rsm_interception(struct kvm_vcpu *vcpu)
2684 {
2685 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2686 }
2687
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2688 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2689 unsigned long val)
2690 {
2691 struct vcpu_svm *svm = to_svm(vcpu);
2692 unsigned long cr0 = vcpu->arch.cr0;
2693 bool ret = false;
2694
2695 if (!is_guest_mode(vcpu) ||
2696 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2697 return false;
2698
2699 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2700 val &= ~SVM_CR0_SELECTIVE_MASK;
2701
2702 if (cr0 ^ val) {
2703 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2704 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2705 }
2706
2707 return ret;
2708 }
2709
2710 #define CR_VALID (1ULL << 63)
2711
cr_interception(struct kvm_vcpu * vcpu)2712 static int cr_interception(struct kvm_vcpu *vcpu)
2713 {
2714 struct vcpu_svm *svm = to_svm(vcpu);
2715 int reg, cr;
2716 unsigned long val;
2717 int err;
2718
2719 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2720 return emulate_on_interception(vcpu);
2721
2722 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2723 return emulate_on_interception(vcpu);
2724
2725 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2726 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2727 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2728 else
2729 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2730
2731 err = 0;
2732 if (cr >= 16) { /* mov to cr */
2733 cr -= 16;
2734 val = kvm_register_read(vcpu, reg);
2735 trace_kvm_cr_write(cr, val);
2736 switch (cr) {
2737 case 0:
2738 if (!check_selective_cr0_intercepted(vcpu, val))
2739 err = kvm_set_cr0(vcpu, val);
2740 else
2741 return 1;
2742
2743 break;
2744 case 3:
2745 err = kvm_set_cr3(vcpu, val);
2746 break;
2747 case 4:
2748 err = kvm_set_cr4(vcpu, val);
2749 break;
2750 case 8:
2751 err = kvm_set_cr8(vcpu, val);
2752 break;
2753 default:
2754 WARN(1, "unhandled write to CR%d", cr);
2755 kvm_queue_exception(vcpu, UD_VECTOR);
2756 return 1;
2757 }
2758 } else { /* mov from cr */
2759 switch (cr) {
2760 case 0:
2761 val = kvm_read_cr0(vcpu);
2762 break;
2763 case 2:
2764 val = vcpu->arch.cr2;
2765 break;
2766 case 3:
2767 val = kvm_read_cr3(vcpu);
2768 break;
2769 case 4:
2770 val = kvm_read_cr4(vcpu);
2771 break;
2772 case 8:
2773 val = kvm_get_cr8(vcpu);
2774 break;
2775 default:
2776 WARN(1, "unhandled read from CR%d", cr);
2777 kvm_queue_exception(vcpu, UD_VECTOR);
2778 return 1;
2779 }
2780 kvm_register_write(vcpu, reg, val);
2781 trace_kvm_cr_read(cr, val);
2782 }
2783 return kvm_complete_insn_gp(vcpu, err);
2784 }
2785
cr_trap(struct kvm_vcpu * vcpu)2786 static int cr_trap(struct kvm_vcpu *vcpu)
2787 {
2788 struct vcpu_svm *svm = to_svm(vcpu);
2789 unsigned long old_value, new_value;
2790 unsigned int cr;
2791 int ret = 0;
2792
2793 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2794
2795 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2796 switch (cr) {
2797 case 0:
2798 old_value = kvm_read_cr0(vcpu);
2799 svm_set_cr0(vcpu, new_value);
2800
2801 kvm_post_set_cr0(vcpu, old_value, new_value);
2802 break;
2803 case 4:
2804 old_value = kvm_read_cr4(vcpu);
2805 svm_set_cr4(vcpu, new_value);
2806
2807 kvm_post_set_cr4(vcpu, old_value, new_value);
2808 break;
2809 case 8:
2810 ret = kvm_set_cr8(vcpu, new_value);
2811 break;
2812 default:
2813 WARN(1, "unhandled CR%d write trap", cr);
2814 kvm_queue_exception(vcpu, UD_VECTOR);
2815 return 1;
2816 }
2817
2818 return kvm_complete_insn_gp(vcpu, ret);
2819 }
2820
dr_interception(struct kvm_vcpu * vcpu)2821 static int dr_interception(struct kvm_vcpu *vcpu)
2822 {
2823 struct vcpu_svm *svm = to_svm(vcpu);
2824 int reg, dr;
2825 int err = 0;
2826
2827 /*
2828 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2829 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2830 */
2831 if (sev_es_guest(vcpu->kvm))
2832 return 1;
2833
2834 if (vcpu->guest_debug == 0) {
2835 /*
2836 * No more DR vmexits; force a reload of the debug registers
2837 * and reenter on this instruction. The next vmexit will
2838 * retrieve the full state of the debug registers.
2839 */
2840 clr_dr_intercepts(svm);
2841 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2842 return 1;
2843 }
2844
2845 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2846 return emulate_on_interception(vcpu);
2847
2848 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2849 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2850 if (dr >= 16) { /* mov to DRn */
2851 dr -= 16;
2852 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2853 } else {
2854 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2855 }
2856
2857 return kvm_complete_insn_gp(vcpu, err);
2858 }
2859
cr8_write_interception(struct kvm_vcpu * vcpu)2860 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2861 {
2862 int r;
2863
2864 u8 cr8_prev = kvm_get_cr8(vcpu);
2865 /* instruction emulation calls kvm_set_cr8() */
2866 r = cr_interception(vcpu);
2867 if (lapic_in_kernel(vcpu))
2868 return r;
2869 if (cr8_prev <= kvm_get_cr8(vcpu))
2870 return r;
2871 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2872 return 0;
2873 }
2874
efer_trap(struct kvm_vcpu * vcpu)2875 static int efer_trap(struct kvm_vcpu *vcpu)
2876 {
2877 struct msr_data msr_info;
2878 int ret;
2879
2880 /*
2881 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2882 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2883 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2884 * the guest doesn't have X86_FEATURE_SVM.
2885 */
2886 msr_info.host_initiated = false;
2887 msr_info.index = MSR_EFER;
2888 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2889 ret = kvm_set_msr_common(vcpu, &msr_info);
2890
2891 return kvm_complete_insn_gp(vcpu, ret);
2892 }
2893
svm_get_feature_msr(u32 msr,u64 * data)2894 static int svm_get_feature_msr(u32 msr, u64 *data)
2895 {
2896 *data = 0;
2897
2898 switch (msr) {
2899 case MSR_AMD64_DE_CFG:
2900 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2901 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2902 break;
2903 default:
2904 return KVM_MSR_RET_UNSUPPORTED;
2905 }
2906
2907 return 0;
2908 }
2909
2910 static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2911 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2912 {
2913 return sev_es_guest(vcpu->kvm) &&
2914 vcpu->arch.guest_state_protected &&
2915 svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2916 !msr_write_intercepted(vcpu, msr_info->index);
2917 }
2918
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2919 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2920 {
2921 struct vcpu_svm *svm = to_svm(vcpu);
2922
2923 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2924 msr_info->data = 0;
2925 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2926 }
2927
2928 switch (msr_info->index) {
2929 case MSR_AMD64_TSC_RATIO:
2930 if (!msr_info->host_initiated &&
2931 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2932 return 1;
2933 msr_info->data = svm->tsc_ratio_msr;
2934 break;
2935 case MSR_STAR:
2936 msr_info->data = svm->vmcb01.ptr->save.star;
2937 break;
2938 #ifdef CONFIG_X86_64
2939 case MSR_LSTAR:
2940 msr_info->data = svm->vmcb01.ptr->save.lstar;
2941 break;
2942 case MSR_CSTAR:
2943 msr_info->data = svm->vmcb01.ptr->save.cstar;
2944 break;
2945 case MSR_GS_BASE:
2946 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2947 break;
2948 case MSR_FS_BASE:
2949 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2950 break;
2951 case MSR_KERNEL_GS_BASE:
2952 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2953 break;
2954 case MSR_SYSCALL_MASK:
2955 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2956 break;
2957 #endif
2958 case MSR_IA32_SYSENTER_CS:
2959 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2960 break;
2961 case MSR_IA32_SYSENTER_EIP:
2962 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2963 if (guest_cpuid_is_intel_compatible(vcpu))
2964 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2965 break;
2966 case MSR_IA32_SYSENTER_ESP:
2967 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2968 if (guest_cpuid_is_intel_compatible(vcpu))
2969 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2970 break;
2971 case MSR_TSC_AUX:
2972 msr_info->data = svm->tsc_aux;
2973 break;
2974 case MSR_IA32_DEBUGCTLMSR:
2975 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2976 break;
2977 case MSR_IA32_LASTBRANCHFROMIP:
2978 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2979 break;
2980 case MSR_IA32_LASTBRANCHTOIP:
2981 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2982 break;
2983 case MSR_IA32_LASTINTFROMIP:
2984 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2985 break;
2986 case MSR_IA32_LASTINTTOIP:
2987 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2988 break;
2989 case MSR_VM_HSAVE_PA:
2990 msr_info->data = svm->nested.hsave_msr;
2991 break;
2992 case MSR_VM_CR:
2993 msr_info->data = svm->nested.vm_cr_msr;
2994 break;
2995 case MSR_IA32_SPEC_CTRL:
2996 if (!msr_info->host_initiated &&
2997 !guest_has_spec_ctrl_msr(vcpu))
2998 return 1;
2999
3000 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3001 msr_info->data = svm->vmcb->save.spec_ctrl;
3002 else
3003 msr_info->data = svm->spec_ctrl;
3004 break;
3005 case MSR_AMD64_VIRT_SPEC_CTRL:
3006 if (!msr_info->host_initiated &&
3007 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3008 return 1;
3009
3010 msr_info->data = svm->virt_spec_ctrl;
3011 break;
3012 case MSR_F15H_IC_CFG: {
3013
3014 int family, model;
3015
3016 family = guest_cpuid_family(vcpu);
3017 model = guest_cpuid_model(vcpu);
3018
3019 if (family < 0 || model < 0)
3020 return kvm_get_msr_common(vcpu, msr_info);
3021
3022 msr_info->data = 0;
3023
3024 if (family == 0x15 &&
3025 (model >= 0x2 && model < 0x20))
3026 msr_info->data = 0x1E;
3027 }
3028 break;
3029 case MSR_AMD64_DE_CFG:
3030 msr_info->data = svm->msr_decfg;
3031 break;
3032 default:
3033 return kvm_get_msr_common(vcpu, msr_info);
3034 }
3035 return 0;
3036 }
3037
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)3038 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
3039 {
3040 struct vcpu_svm *svm = to_svm(vcpu);
3041 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
3042 return kvm_complete_insn_gp(vcpu, err);
3043
3044 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
3045 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
3046 X86_TRAP_GP |
3047 SVM_EVTINJ_TYPE_EXEPT |
3048 SVM_EVTINJ_VALID);
3049 return 1;
3050 }
3051
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)3052 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3053 {
3054 struct vcpu_svm *svm = to_svm(vcpu);
3055 int svm_dis, chg_mask;
3056
3057 if (data & ~SVM_VM_CR_VALID_MASK)
3058 return 1;
3059
3060 chg_mask = SVM_VM_CR_VALID_MASK;
3061
3062 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3063 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3064
3065 svm->nested.vm_cr_msr &= ~chg_mask;
3066 svm->nested.vm_cr_msr |= (data & chg_mask);
3067
3068 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3069
3070 /* check for svm_disable while efer.svme is set */
3071 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3072 return 1;
3073
3074 return 0;
3075 }
3076
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3077 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3078 {
3079 struct vcpu_svm *svm = to_svm(vcpu);
3080 int ret = 0;
3081
3082 u32 ecx = msr->index;
3083 u64 data = msr->data;
3084
3085 if (sev_es_prevent_msr_access(vcpu, msr))
3086 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3087
3088 switch (ecx) {
3089 case MSR_AMD64_TSC_RATIO:
3090
3091 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3092
3093 if (!msr->host_initiated)
3094 return 1;
3095 /*
3096 * In case TSC scaling is not enabled, always
3097 * leave this MSR at the default value.
3098 *
3099 * Due to bug in qemu 6.2.0, it would try to set
3100 * this msr to 0 if tsc scaling is not enabled.
3101 * Ignore this value as well.
3102 */
3103 if (data != 0 && data != svm->tsc_ratio_msr)
3104 return 1;
3105 break;
3106 }
3107
3108 if (data & SVM_TSC_RATIO_RSVD)
3109 return 1;
3110
3111 svm->tsc_ratio_msr = data;
3112
3113 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3114 is_guest_mode(vcpu))
3115 nested_svm_update_tsc_ratio_msr(vcpu);
3116
3117 break;
3118 case MSR_IA32_CR_PAT:
3119 ret = kvm_set_msr_common(vcpu, msr);
3120 if (ret)
3121 break;
3122
3123 svm->vmcb01.ptr->save.g_pat = data;
3124 if (is_guest_mode(vcpu))
3125 nested_vmcb02_compute_g_pat(svm);
3126 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3127 break;
3128 case MSR_IA32_SPEC_CTRL:
3129 if (!msr->host_initiated &&
3130 !guest_has_spec_ctrl_msr(vcpu))
3131 return 1;
3132
3133 if (kvm_spec_ctrl_test_value(data))
3134 return 1;
3135
3136 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3137 svm->vmcb->save.spec_ctrl = data;
3138 else
3139 svm->spec_ctrl = data;
3140 if (!data)
3141 break;
3142
3143 /*
3144 * For non-nested:
3145 * When it's written (to non-zero) for the first time, pass
3146 * it through.
3147 *
3148 * For nested:
3149 * The handling of the MSR bitmap for L2 guests is done in
3150 * nested_svm_vmrun_msrpm.
3151 * We update the L1 MSR bit as well since it will end up
3152 * touching the MSR anyway now.
3153 */
3154 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3155 break;
3156 case MSR_AMD64_VIRT_SPEC_CTRL:
3157 if (!msr->host_initiated &&
3158 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3159 return 1;
3160
3161 if (data & ~SPEC_CTRL_SSBD)
3162 return 1;
3163
3164 svm->virt_spec_ctrl = data;
3165 break;
3166 case MSR_STAR:
3167 svm->vmcb01.ptr->save.star = data;
3168 break;
3169 #ifdef CONFIG_X86_64
3170 case MSR_LSTAR:
3171 svm->vmcb01.ptr->save.lstar = data;
3172 break;
3173 case MSR_CSTAR:
3174 svm->vmcb01.ptr->save.cstar = data;
3175 break;
3176 case MSR_GS_BASE:
3177 svm->vmcb01.ptr->save.gs.base = data;
3178 break;
3179 case MSR_FS_BASE:
3180 svm->vmcb01.ptr->save.fs.base = data;
3181 break;
3182 case MSR_KERNEL_GS_BASE:
3183 svm->vmcb01.ptr->save.kernel_gs_base = data;
3184 break;
3185 case MSR_SYSCALL_MASK:
3186 svm->vmcb01.ptr->save.sfmask = data;
3187 break;
3188 #endif
3189 case MSR_IA32_SYSENTER_CS:
3190 svm->vmcb01.ptr->save.sysenter_cs = data;
3191 break;
3192 case MSR_IA32_SYSENTER_EIP:
3193 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3194 /*
3195 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3196 * when we spoof an Intel vendor ID (for cross vendor migration).
3197 * In this case we use this intercept to track the high
3198 * 32 bit part of these msrs to support Intel's
3199 * implementation of SYSENTER/SYSEXIT.
3200 */
3201 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3202 break;
3203 case MSR_IA32_SYSENTER_ESP:
3204 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3205 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3206 break;
3207 case MSR_TSC_AUX:
3208 /*
3209 * TSC_AUX is always virtualized for SEV-ES guests when the
3210 * feature is available. The user return MSR support is not
3211 * required in this case because TSC_AUX is restored on #VMEXIT
3212 * from the host save area (which has been initialized in
3213 * svm_enable_virtualization_cpu()).
3214 */
3215 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3216 break;
3217
3218 /*
3219 * TSC_AUX is usually changed only during boot and never read
3220 * directly. Intercept TSC_AUX instead of exposing it to the
3221 * guest via direct_access_msrs, and switch it via user return.
3222 */
3223 preempt_disable();
3224 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3225 preempt_enable();
3226 if (ret)
3227 break;
3228
3229 svm->tsc_aux = data;
3230 break;
3231 case MSR_IA32_DEBUGCTLMSR:
3232 if (!lbrv) {
3233 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3234 break;
3235 }
3236
3237 /*
3238 * AMD changed the architectural behavior of bits 5:2. On CPUs
3239 * without BusLockTrap, bits 5:2 control "external pins", but
3240 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap
3241 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed
3242 * the guest to set bits 5:2 despite not actually virtualizing
3243 * Performance-Monitoring/Breakpoint external pins. Drop bits
3244 * 5:2 for backwards compatibility.
3245 */
3246 data &= ~GENMASK(5, 2);
3247
3248 /*
3249 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3250 * way to communicate lack of support to the guest.
3251 */
3252 if (data & DEBUGCTLMSR_BTF) {
3253 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3254 data &= ~DEBUGCTLMSR_BTF;
3255 }
3256
3257 if (data & DEBUGCTL_RESERVED_BITS)
3258 return 1;
3259
3260 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3261 svm_update_lbrv(vcpu);
3262 break;
3263 case MSR_VM_HSAVE_PA:
3264 /*
3265 * Old kernels did not validate the value written to
3266 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3267 * value to allow live migrating buggy or malicious guests
3268 * originating from those kernels.
3269 */
3270 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3271 return 1;
3272
3273 svm->nested.hsave_msr = data & PAGE_MASK;
3274 break;
3275 case MSR_VM_CR:
3276 return svm_set_vm_cr(vcpu, data);
3277 case MSR_VM_IGNNE:
3278 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3279 break;
3280 case MSR_AMD64_DE_CFG: {
3281 u64 supported_de_cfg;
3282
3283 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3284 return 1;
3285
3286 if (data & ~supported_de_cfg)
3287 return 1;
3288
3289 svm->msr_decfg = data;
3290 break;
3291 }
3292 default:
3293 return kvm_set_msr_common(vcpu, msr);
3294 }
3295 return ret;
3296 }
3297
msr_interception(struct kvm_vcpu * vcpu)3298 static int msr_interception(struct kvm_vcpu *vcpu)
3299 {
3300 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3301 return kvm_emulate_wrmsr(vcpu);
3302 else
3303 return kvm_emulate_rdmsr(vcpu);
3304 }
3305
interrupt_window_interception(struct kvm_vcpu * vcpu)3306 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3307 {
3308 kvm_make_request(KVM_REQ_EVENT, vcpu);
3309 svm_clear_vintr(to_svm(vcpu));
3310
3311 /*
3312 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3313 * In this case AVIC was temporarily disabled for
3314 * requesting the IRQ window and we have to re-enable it.
3315 *
3316 * If running nested, still remove the VM wide AVIC inhibit to
3317 * support case in which the interrupt window was requested when the
3318 * vCPU was not running nested.
3319
3320 * All vCPUs which run still run nested, will remain to have their
3321 * AVIC still inhibited due to per-cpu AVIC inhibition.
3322 */
3323 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3324
3325 ++vcpu->stat.irq_window_exits;
3326 return 1;
3327 }
3328
pause_interception(struct kvm_vcpu * vcpu)3329 static int pause_interception(struct kvm_vcpu *vcpu)
3330 {
3331 bool in_kernel;
3332 /*
3333 * CPL is not made available for an SEV-ES guest, therefore
3334 * vcpu->arch.preempted_in_kernel can never be true. Just
3335 * set in_kernel to false as well.
3336 */
3337 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3338
3339 grow_ple_window(vcpu);
3340
3341 kvm_vcpu_on_spin(vcpu, in_kernel);
3342 return kvm_skip_emulated_instruction(vcpu);
3343 }
3344
invpcid_interception(struct kvm_vcpu * vcpu)3345 static int invpcid_interception(struct kvm_vcpu *vcpu)
3346 {
3347 struct vcpu_svm *svm = to_svm(vcpu);
3348 unsigned long type;
3349 gva_t gva;
3350
3351 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3352 kvm_queue_exception(vcpu, UD_VECTOR);
3353 return 1;
3354 }
3355
3356 /*
3357 * For an INVPCID intercept:
3358 * EXITINFO1 provides the linear address of the memory operand.
3359 * EXITINFO2 provides the contents of the register operand.
3360 */
3361 type = svm->vmcb->control.exit_info_2;
3362 gva = svm->vmcb->control.exit_info_1;
3363
3364 return kvm_handle_invpcid(vcpu, type, gva);
3365 }
3366
3367 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3368 [SVM_EXIT_READ_CR0] = cr_interception,
3369 [SVM_EXIT_READ_CR3] = cr_interception,
3370 [SVM_EXIT_READ_CR4] = cr_interception,
3371 [SVM_EXIT_READ_CR8] = cr_interception,
3372 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3373 [SVM_EXIT_WRITE_CR0] = cr_interception,
3374 [SVM_EXIT_WRITE_CR3] = cr_interception,
3375 [SVM_EXIT_WRITE_CR4] = cr_interception,
3376 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3377 [SVM_EXIT_READ_DR0] = dr_interception,
3378 [SVM_EXIT_READ_DR1] = dr_interception,
3379 [SVM_EXIT_READ_DR2] = dr_interception,
3380 [SVM_EXIT_READ_DR3] = dr_interception,
3381 [SVM_EXIT_READ_DR4] = dr_interception,
3382 [SVM_EXIT_READ_DR5] = dr_interception,
3383 [SVM_EXIT_READ_DR6] = dr_interception,
3384 [SVM_EXIT_READ_DR7] = dr_interception,
3385 [SVM_EXIT_WRITE_DR0] = dr_interception,
3386 [SVM_EXIT_WRITE_DR1] = dr_interception,
3387 [SVM_EXIT_WRITE_DR2] = dr_interception,
3388 [SVM_EXIT_WRITE_DR3] = dr_interception,
3389 [SVM_EXIT_WRITE_DR4] = dr_interception,
3390 [SVM_EXIT_WRITE_DR5] = dr_interception,
3391 [SVM_EXIT_WRITE_DR6] = dr_interception,
3392 [SVM_EXIT_WRITE_DR7] = dr_interception,
3393 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3394 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3395 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3396 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3397 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3398 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3399 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3400 [SVM_EXIT_INTR] = intr_interception,
3401 [SVM_EXIT_NMI] = nmi_interception,
3402 [SVM_EXIT_SMI] = smi_interception,
3403 [SVM_EXIT_VINTR] = interrupt_window_interception,
3404 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3405 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3406 [SVM_EXIT_IRET] = iret_interception,
3407 [SVM_EXIT_INVD] = kvm_emulate_invd,
3408 [SVM_EXIT_PAUSE] = pause_interception,
3409 [SVM_EXIT_HLT] = kvm_emulate_halt,
3410 [SVM_EXIT_INVLPG] = invlpg_interception,
3411 [SVM_EXIT_INVLPGA] = invlpga_interception,
3412 [SVM_EXIT_IOIO] = io_interception,
3413 [SVM_EXIT_MSR] = msr_interception,
3414 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3415 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3416 [SVM_EXIT_VMRUN] = vmrun_interception,
3417 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3418 [SVM_EXIT_VMLOAD] = vmload_interception,
3419 [SVM_EXIT_VMSAVE] = vmsave_interception,
3420 [SVM_EXIT_STGI] = stgi_interception,
3421 [SVM_EXIT_CLGI] = clgi_interception,
3422 [SVM_EXIT_SKINIT] = skinit_interception,
3423 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3424 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3425 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3426 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3427 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3428 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3429 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3430 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3431 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3432 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3433 [SVM_EXIT_INVPCID] = invpcid_interception,
3434 [SVM_EXIT_NPF] = npf_interception,
3435 [SVM_EXIT_RSM] = rsm_interception,
3436 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3437 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3438 #ifdef CONFIG_KVM_AMD_SEV
3439 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3440 #endif
3441 };
3442
dump_vmcb(struct kvm_vcpu * vcpu)3443 static void dump_vmcb(struct kvm_vcpu *vcpu)
3444 {
3445 struct vcpu_svm *svm = to_svm(vcpu);
3446 struct vmcb_control_area *control = &svm->vmcb->control;
3447 struct vmcb_save_area *save = &svm->vmcb->save;
3448 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3449
3450 if (!dump_invalid_vmcb) {
3451 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3452 return;
3453 }
3454
3455 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3456 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3457 pr_err("VMCB Control Area:\n");
3458 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3459 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3460 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3461 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3462 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3463 pr_err("%-20s%08x %08x\n", "intercepts:",
3464 control->intercepts[INTERCEPT_WORD3],
3465 control->intercepts[INTERCEPT_WORD4]);
3466 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3467 pr_err("%-20s%d\n", "pause filter threshold:",
3468 control->pause_filter_thresh);
3469 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3470 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3471 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3472 pr_err("%-20s%d\n", "asid:", control->asid);
3473 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3474 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3475 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3476 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3477 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3478 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3479 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3480 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3481 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3482 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3483 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3484 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3485 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3486 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3487 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3488 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3489 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3490 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3491 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3492 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3493 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3494 pr_err("VMCB State Save Area:\n");
3495 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3496 "es:",
3497 save->es.selector, save->es.attrib,
3498 save->es.limit, save->es.base);
3499 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3500 "cs:",
3501 save->cs.selector, save->cs.attrib,
3502 save->cs.limit, save->cs.base);
3503 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3504 "ss:",
3505 save->ss.selector, save->ss.attrib,
3506 save->ss.limit, save->ss.base);
3507 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3508 "ds:",
3509 save->ds.selector, save->ds.attrib,
3510 save->ds.limit, save->ds.base);
3511 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3512 "fs:",
3513 save01->fs.selector, save01->fs.attrib,
3514 save01->fs.limit, save01->fs.base);
3515 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3516 "gs:",
3517 save01->gs.selector, save01->gs.attrib,
3518 save01->gs.limit, save01->gs.base);
3519 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3520 "gdtr:",
3521 save->gdtr.selector, save->gdtr.attrib,
3522 save->gdtr.limit, save->gdtr.base);
3523 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3524 "ldtr:",
3525 save01->ldtr.selector, save01->ldtr.attrib,
3526 save01->ldtr.limit, save01->ldtr.base);
3527 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3528 "idtr:",
3529 save->idtr.selector, save->idtr.attrib,
3530 save->idtr.limit, save->idtr.base);
3531 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3532 "tr:",
3533 save01->tr.selector, save01->tr.attrib,
3534 save01->tr.limit, save01->tr.base);
3535 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3536 save->vmpl, save->cpl, save->efer);
3537 pr_err("%-15s %016llx %-13s %016llx\n",
3538 "cr0:", save->cr0, "cr2:", save->cr2);
3539 pr_err("%-15s %016llx %-13s %016llx\n",
3540 "cr3:", save->cr3, "cr4:", save->cr4);
3541 pr_err("%-15s %016llx %-13s %016llx\n",
3542 "dr6:", save->dr6, "dr7:", save->dr7);
3543 pr_err("%-15s %016llx %-13s %016llx\n",
3544 "rip:", save->rip, "rflags:", save->rflags);
3545 pr_err("%-15s %016llx %-13s %016llx\n",
3546 "rsp:", save->rsp, "rax:", save->rax);
3547 pr_err("%-15s %016llx %-13s %016llx\n",
3548 "star:", save01->star, "lstar:", save01->lstar);
3549 pr_err("%-15s %016llx %-13s %016llx\n",
3550 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3551 pr_err("%-15s %016llx %-13s %016llx\n",
3552 "kernel_gs_base:", save01->kernel_gs_base,
3553 "sysenter_cs:", save01->sysenter_cs);
3554 pr_err("%-15s %016llx %-13s %016llx\n",
3555 "sysenter_esp:", save01->sysenter_esp,
3556 "sysenter_eip:", save01->sysenter_eip);
3557 pr_err("%-15s %016llx %-13s %016llx\n",
3558 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3559 pr_err("%-15s %016llx %-13s %016llx\n",
3560 "br_from:", save->br_from, "br_to:", save->br_to);
3561 pr_err("%-15s %016llx %-13s %016llx\n",
3562 "excp_from:", save->last_excp_from,
3563 "excp_to:", save->last_excp_to);
3564 }
3565
svm_check_exit_valid(u64 exit_code)3566 static bool svm_check_exit_valid(u64 exit_code)
3567 {
3568 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3569 svm_exit_handlers[exit_code]);
3570 }
3571
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3572 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3573 {
3574 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3575 dump_vmcb(vcpu);
3576 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3577 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3578 vcpu->run->internal.ndata = 2;
3579 vcpu->run->internal.data[0] = exit_code;
3580 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3581 return 0;
3582 }
3583
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3584 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3585 {
3586 if (!svm_check_exit_valid(exit_code))
3587 return svm_handle_invalid_exit(vcpu, exit_code);
3588
3589 #ifdef CONFIG_MITIGATION_RETPOLINE
3590 if (exit_code == SVM_EXIT_MSR)
3591 return msr_interception(vcpu);
3592 else if (exit_code == SVM_EXIT_VINTR)
3593 return interrupt_window_interception(vcpu);
3594 else if (exit_code == SVM_EXIT_INTR)
3595 return intr_interception(vcpu);
3596 else if (exit_code == SVM_EXIT_HLT)
3597 return kvm_emulate_halt(vcpu);
3598 else if (exit_code == SVM_EXIT_NPF)
3599 return npf_interception(vcpu);
3600 #endif
3601 return svm_exit_handlers[exit_code](vcpu);
3602 }
3603
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3604 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3605 u64 *info1, u64 *info2,
3606 u32 *intr_info, u32 *error_code)
3607 {
3608 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3609
3610 *reason = control->exit_code;
3611 *info1 = control->exit_info_1;
3612 *info2 = control->exit_info_2;
3613 *intr_info = control->exit_int_info;
3614 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3615 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3616 *error_code = control->exit_int_info_err;
3617 else
3618 *error_code = 0;
3619 }
3620
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3621 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3622 {
3623 struct vcpu_svm *svm = to_svm(vcpu);
3624 struct kvm_run *kvm_run = vcpu->run;
3625 u32 exit_code = svm->vmcb->control.exit_code;
3626
3627 /* SEV-ES guests must use the CR write traps to track CR registers. */
3628 if (!sev_es_guest(vcpu->kvm)) {
3629 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3630 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3631 if (npt_enabled)
3632 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3633 }
3634
3635 if (is_guest_mode(vcpu)) {
3636 int vmexit;
3637
3638 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3639
3640 vmexit = nested_svm_exit_special(svm);
3641
3642 if (vmexit == NESTED_EXIT_CONTINUE)
3643 vmexit = nested_svm_exit_handled(svm);
3644
3645 if (vmexit == NESTED_EXIT_DONE)
3646 return 1;
3647 }
3648
3649 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3650 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3651 kvm_run->fail_entry.hardware_entry_failure_reason
3652 = svm->vmcb->control.exit_code;
3653 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3654 dump_vmcb(vcpu);
3655 return 0;
3656 }
3657
3658 if (exit_fastpath != EXIT_FASTPATH_NONE)
3659 return 1;
3660
3661 return svm_invoke_exit_handler(vcpu, exit_code);
3662 }
3663
pre_svm_run(struct kvm_vcpu * vcpu)3664 static void pre_svm_run(struct kvm_vcpu *vcpu)
3665 {
3666 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3667 struct vcpu_svm *svm = to_svm(vcpu);
3668
3669 /*
3670 * If the previous vmrun of the vmcb occurred on a different physical
3671 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3672 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3673 */
3674 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3675 svm->current_vmcb->asid_generation = 0;
3676 vmcb_mark_all_dirty(svm->vmcb);
3677 svm->current_vmcb->cpu = vcpu->cpu;
3678 }
3679
3680 if (sev_guest(vcpu->kvm))
3681 return pre_sev_run(svm, vcpu->cpu);
3682
3683 /* FIXME: handle wraparound of asid_generation */
3684 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3685 new_asid(svm, sd);
3686 }
3687
svm_inject_nmi(struct kvm_vcpu * vcpu)3688 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3689 {
3690 struct vcpu_svm *svm = to_svm(vcpu);
3691
3692 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3693
3694 if (svm->nmi_l1_to_l2)
3695 return;
3696
3697 /*
3698 * No need to manually track NMI masking when vNMI is enabled, hardware
3699 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3700 * case where software directly injects an NMI.
3701 */
3702 if (!is_vnmi_enabled(svm)) {
3703 svm->nmi_masked = true;
3704 svm_set_iret_intercept(svm);
3705 }
3706 ++vcpu->stat.nmi_injections;
3707 }
3708
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3709 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3710 {
3711 struct vcpu_svm *svm = to_svm(vcpu);
3712
3713 if (!is_vnmi_enabled(svm))
3714 return false;
3715
3716 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3717 }
3718
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3719 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3720 {
3721 struct vcpu_svm *svm = to_svm(vcpu);
3722
3723 if (!is_vnmi_enabled(svm))
3724 return false;
3725
3726 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3727 return false;
3728
3729 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3730 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3731
3732 /*
3733 * Because the pending NMI is serviced by hardware, KVM can't know when
3734 * the NMI is "injected", but for all intents and purposes, passing the
3735 * NMI off to hardware counts as injection.
3736 */
3737 ++vcpu->stat.nmi_injections;
3738
3739 return true;
3740 }
3741
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3742 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3743 {
3744 struct vcpu_svm *svm = to_svm(vcpu);
3745 u32 type;
3746
3747 if (vcpu->arch.interrupt.soft) {
3748 if (svm_update_soft_interrupt_rip(vcpu))
3749 return;
3750
3751 type = SVM_EVTINJ_TYPE_SOFT;
3752 } else {
3753 type = SVM_EVTINJ_TYPE_INTR;
3754 }
3755
3756 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3757 vcpu->arch.interrupt.soft, reinjected);
3758 ++vcpu->stat.irq_injections;
3759
3760 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3761 SVM_EVTINJ_VALID | type;
3762 }
3763
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3764 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3765 int trig_mode, int vector)
3766 {
3767 /*
3768 * apic->apicv_active must be read after vcpu->mode.
3769 * Pairs with smp_store_release in vcpu_enter_guest.
3770 */
3771 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3772
3773 /* Note, this is called iff the local APIC is in-kernel. */
3774 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3775 /* Process the interrupt via kvm_check_and_inject_events(). */
3776 kvm_make_request(KVM_REQ_EVENT, vcpu);
3777 kvm_vcpu_kick(vcpu);
3778 return;
3779 }
3780
3781 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3782 if (in_guest_mode) {
3783 /*
3784 * Signal the doorbell to tell hardware to inject the IRQ. If
3785 * the vCPU exits the guest before the doorbell chimes, hardware
3786 * will automatically process AVIC interrupts at the next VMRUN.
3787 */
3788 avic_ring_doorbell(vcpu);
3789 } else {
3790 /*
3791 * Wake the vCPU if it was blocking. KVM will then detect the
3792 * pending IRQ when checking if the vCPU has a wake event.
3793 */
3794 kvm_vcpu_wake_up(vcpu);
3795 }
3796 }
3797
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3798 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3799 int trig_mode, int vector)
3800 {
3801 kvm_lapic_set_irr(vector, apic);
3802
3803 /*
3804 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3805 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3806 * the read of guest_mode. This guarantees that either VMRUN will see
3807 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3808 * will signal the doorbell if the CPU has already entered the guest.
3809 */
3810 smp_mb__after_atomic();
3811 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3812 }
3813
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3814 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3815 {
3816 struct vcpu_svm *svm = to_svm(vcpu);
3817
3818 /*
3819 * SEV-ES guests must always keep the CR intercepts cleared. CR
3820 * tracking is done using the CR write traps.
3821 */
3822 if (sev_es_guest(vcpu->kvm))
3823 return;
3824
3825 if (nested_svm_virtualize_tpr(vcpu))
3826 return;
3827
3828 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3829
3830 if (irr == -1)
3831 return;
3832
3833 if (tpr >= irr)
3834 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3835 }
3836
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3837 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3838 {
3839 struct vcpu_svm *svm = to_svm(vcpu);
3840
3841 if (is_vnmi_enabled(svm))
3842 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3843 else
3844 return svm->nmi_masked;
3845 }
3846
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3847 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3848 {
3849 struct vcpu_svm *svm = to_svm(vcpu);
3850
3851 if (is_vnmi_enabled(svm)) {
3852 if (masked)
3853 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3854 else
3855 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3856
3857 } else {
3858 svm->nmi_masked = masked;
3859 if (masked)
3860 svm_set_iret_intercept(svm);
3861 else
3862 svm_clr_iret_intercept(svm);
3863 }
3864 }
3865
svm_nmi_blocked(struct kvm_vcpu * vcpu)3866 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3867 {
3868 struct vcpu_svm *svm = to_svm(vcpu);
3869 struct vmcb *vmcb = svm->vmcb;
3870
3871 if (!gif_set(svm))
3872 return true;
3873
3874 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3875 return false;
3876
3877 if (svm_get_nmi_mask(vcpu))
3878 return true;
3879
3880 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3881 }
3882
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3883 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3884 {
3885 struct vcpu_svm *svm = to_svm(vcpu);
3886 if (svm->nested.nested_run_pending)
3887 return -EBUSY;
3888
3889 if (svm_nmi_blocked(vcpu))
3890 return 0;
3891
3892 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3893 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3894 return -EBUSY;
3895 return 1;
3896 }
3897
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3898 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3899 {
3900 struct vcpu_svm *svm = to_svm(vcpu);
3901 struct vmcb *vmcb = svm->vmcb;
3902
3903 if (!gif_set(svm))
3904 return true;
3905
3906 if (is_guest_mode(vcpu)) {
3907 /* As long as interrupts are being delivered... */
3908 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3909 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3910 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3911 return true;
3912
3913 /* ... vmexits aren't blocked by the interrupt shadow */
3914 if (nested_exit_on_intr(svm))
3915 return false;
3916 } else {
3917 if (!svm_get_if_flag(vcpu))
3918 return true;
3919 }
3920
3921 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3922 }
3923
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3924 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3925 {
3926 struct vcpu_svm *svm = to_svm(vcpu);
3927
3928 if (svm->nested.nested_run_pending)
3929 return -EBUSY;
3930
3931 if (svm_interrupt_blocked(vcpu))
3932 return 0;
3933
3934 /*
3935 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3936 * e.g. if the IRQ arrived asynchronously after checking nested events.
3937 */
3938 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3939 return -EBUSY;
3940
3941 return 1;
3942 }
3943
svm_enable_irq_window(struct kvm_vcpu * vcpu)3944 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3945 {
3946 struct vcpu_svm *svm = to_svm(vcpu);
3947
3948 /*
3949 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3950 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3951 * get that intercept, this function will be called again though and
3952 * we'll get the vintr intercept. However, if the vGIF feature is
3953 * enabled, the STGI interception will not occur. Enable the irq
3954 * window under the assumption that the hardware will set the GIF.
3955 */
3956 if (vgif || gif_set(svm)) {
3957 /*
3958 * IRQ window is not needed when AVIC is enabled,
3959 * unless we have pending ExtINT since it cannot be injected
3960 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3961 * and fallback to injecting IRQ via V_IRQ.
3962 *
3963 * If running nested, AVIC is already locally inhibited
3964 * on this vCPU, therefore there is no need to request
3965 * the VM wide AVIC inhibition.
3966 */
3967 if (!is_guest_mode(vcpu))
3968 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3969
3970 svm_set_vintr(svm);
3971 }
3972 }
3973
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3974 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3975 {
3976 struct vcpu_svm *svm = to_svm(vcpu);
3977
3978 /*
3979 * If NMIs are outright masked, i.e. the vCPU is already handling an
3980 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3981 * more to do at this time as KVM has already enabled IRET intercepts.
3982 * If KVM has already intercepted IRET, then single-step over the IRET,
3983 * as NMIs aren't architecturally unmasked until the IRET completes.
3984 *
3985 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3986 * are masked, as KVM allows at most one to-be-injected NMI and one
3987 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3988 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3989 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3990 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3991 * inject the NMI. In those situations, KVM needs to single-step over
3992 * the STI shadow or intercept STGI.
3993 */
3994 if (svm_get_nmi_mask(vcpu)) {
3995 WARN_ON_ONCE(is_vnmi_enabled(svm));
3996
3997 if (!svm->awaiting_iret_completion)
3998 return; /* IRET will cause a vm exit */
3999 }
4000
4001 /*
4002 * SEV-ES guests are responsible for signaling when a vCPU is ready to
4003 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
4004 * KVM can't intercept and single-step IRET to detect when NMIs are
4005 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
4006 *
4007 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
4008 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
4009 * supported NAEs in the GHCB protocol.
4010 */
4011 if (sev_es_guest(vcpu->kvm))
4012 return;
4013
4014 if (!gif_set(svm)) {
4015 if (vgif)
4016 svm_set_intercept(svm, INTERCEPT_STGI);
4017 return; /* STGI will cause a vm exit */
4018 }
4019
4020 /*
4021 * Something prevents NMI from been injected. Single step over possible
4022 * problem (IRET or exception injection or interrupt shadow)
4023 */
4024 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4025 svm->nmi_singlestep = true;
4026 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4027 }
4028
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)4029 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
4030 {
4031 struct vcpu_svm *svm = to_svm(vcpu);
4032
4033 /*
4034 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
4035 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
4036 * entries, and thus is a superset of Hyper-V's fine grained flushing.
4037 */
4038 kvm_hv_vcpu_purge_flush_tlb(vcpu);
4039
4040 /*
4041 * Flush only the current ASID even if the TLB flush was invoked via
4042 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
4043 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
4044 * unconditionally does a TLB flush on both nested VM-Enter and nested
4045 * VM-Exit (via kvm_mmu_reset_context()).
4046 */
4047 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4048 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4049 else
4050 svm->current_vmcb->asid_generation--;
4051 }
4052
svm_flush_tlb_current(struct kvm_vcpu * vcpu)4053 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4054 {
4055 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4056
4057 /*
4058 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4059 * flush the NPT mappings via hypercall as flushing the ASID only
4060 * affects virtual to physical mappings, it does not invalidate guest
4061 * physical to host physical mappings.
4062 */
4063 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4064 hyperv_flush_guest_mapping(root_tdp);
4065
4066 svm_flush_tlb_asid(vcpu);
4067 }
4068
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4069 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4070 {
4071 /*
4072 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4073 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4074 * a "regular" remote flush. Reaching this point means either there's
4075 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4076 * which might be fatal to the guest. Yell, but try to recover.
4077 */
4078 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4079 hv_flush_remote_tlbs(vcpu->kvm);
4080
4081 svm_flush_tlb_asid(vcpu);
4082 }
4083
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4084 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4085 {
4086 struct vcpu_svm *svm = to_svm(vcpu);
4087
4088 invlpga(gva, svm->vmcb->control.asid);
4089 }
4090
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4091 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4092 {
4093 struct vcpu_svm *svm = to_svm(vcpu);
4094
4095 if (nested_svm_virtualize_tpr(vcpu))
4096 return;
4097
4098 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4099 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4100 kvm_set_cr8(vcpu, cr8);
4101 }
4102 }
4103
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4104 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4105 {
4106 struct vcpu_svm *svm = to_svm(vcpu);
4107 u64 cr8;
4108
4109 if (nested_svm_virtualize_tpr(vcpu))
4110 return;
4111
4112 cr8 = kvm_get_cr8(vcpu);
4113 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4114 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4115 }
4116
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4117 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4118 int type)
4119 {
4120 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4121 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4122 struct vcpu_svm *svm = to_svm(vcpu);
4123
4124 /*
4125 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4126 * associated with the original soft exception/interrupt. next_rip is
4127 * cleared on all exits that can occur while vectoring an event, so KVM
4128 * needs to manually set next_rip for re-injection. Unlike the !nrips
4129 * case below, this needs to be done if and only if KVM is re-injecting
4130 * the same event, i.e. if the event is a soft exception/interrupt,
4131 * otherwise next_rip is unused on VMRUN.
4132 */
4133 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4134 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4135 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4136 /*
4137 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4138 * injecting the soft exception/interrupt. That advancement needs to
4139 * be unwound if vectoring didn't complete. Note, the new event may
4140 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4141 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4142 * be the reported vectored event, but RIP still needs to be unwound.
4143 */
4144 else if (!nrips && (is_soft || is_exception) &&
4145 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4146 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4147 }
4148
svm_complete_interrupts(struct kvm_vcpu * vcpu)4149 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4150 {
4151 struct vcpu_svm *svm = to_svm(vcpu);
4152 u8 vector;
4153 int type;
4154 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4155 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4156 bool soft_int_injected = svm->soft_int_injected;
4157
4158 svm->nmi_l1_to_l2 = false;
4159 svm->soft_int_injected = false;
4160
4161 /*
4162 * If we've made progress since setting awaiting_iret_completion, we've
4163 * executed an IRET and can allow NMI injection.
4164 */
4165 if (svm->awaiting_iret_completion &&
4166 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4167 svm->awaiting_iret_completion = false;
4168 svm->nmi_masked = false;
4169 kvm_make_request(KVM_REQ_EVENT, vcpu);
4170 }
4171
4172 vcpu->arch.nmi_injected = false;
4173 kvm_clear_exception_queue(vcpu);
4174 kvm_clear_interrupt_queue(vcpu);
4175
4176 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4177 return;
4178
4179 kvm_make_request(KVM_REQ_EVENT, vcpu);
4180
4181 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4182 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4183
4184 if (soft_int_injected)
4185 svm_complete_soft_interrupt(vcpu, vector, type);
4186
4187 switch (type) {
4188 case SVM_EXITINTINFO_TYPE_NMI:
4189 vcpu->arch.nmi_injected = true;
4190 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4191 break;
4192 case SVM_EXITINTINFO_TYPE_EXEPT:
4193 /*
4194 * Never re-inject a #VC exception.
4195 */
4196 if (vector == X86_TRAP_VC)
4197 break;
4198
4199 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4200 u32 err = svm->vmcb->control.exit_int_info_err;
4201 kvm_requeue_exception_e(vcpu, vector, err);
4202
4203 } else
4204 kvm_requeue_exception(vcpu, vector);
4205 break;
4206 case SVM_EXITINTINFO_TYPE_INTR:
4207 kvm_queue_interrupt(vcpu, vector, false);
4208 break;
4209 case SVM_EXITINTINFO_TYPE_SOFT:
4210 kvm_queue_interrupt(vcpu, vector, true);
4211 break;
4212 default:
4213 break;
4214 }
4215
4216 }
4217
svm_cancel_injection(struct kvm_vcpu * vcpu)4218 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4219 {
4220 struct vcpu_svm *svm = to_svm(vcpu);
4221 struct vmcb_control_area *control = &svm->vmcb->control;
4222
4223 control->exit_int_info = control->event_inj;
4224 control->exit_int_info_err = control->event_inj_err;
4225 control->event_inj = 0;
4226 svm_complete_interrupts(vcpu);
4227 }
4228
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4229 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4230 {
4231 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4232 return -EINVAL;
4233
4234 return 1;
4235 }
4236
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4237 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4238 {
4239 struct vcpu_svm *svm = to_svm(vcpu);
4240
4241 if (is_guest_mode(vcpu))
4242 return EXIT_FASTPATH_NONE;
4243
4244 switch (svm->vmcb->control.exit_code) {
4245 case SVM_EXIT_MSR:
4246 if (!svm->vmcb->control.exit_info_1)
4247 break;
4248 return handle_fastpath_set_msr_irqoff(vcpu);
4249 case SVM_EXIT_HLT:
4250 return handle_fastpath_hlt(vcpu);
4251 default:
4252 break;
4253 }
4254
4255 return EXIT_FASTPATH_NONE;
4256 }
4257
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4258 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4259 {
4260 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4261 struct vcpu_svm *svm = to_svm(vcpu);
4262
4263 guest_state_enter_irqoff();
4264
4265 /*
4266 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4267 * VMRUN controls whether or not physical IRQs are masked (KVM always
4268 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4269 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4270 * into guest state if delivery of an event during VMRUN triggers a
4271 * #VMEXIT, and the guest_state transitions already tell lockdep that
4272 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4273 * this path, so IRQs aren't actually unmasked while running host code.
4274 */
4275 raw_local_irq_enable();
4276
4277 amd_clear_divider();
4278
4279 if (sev_es_guest(vcpu->kvm))
4280 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4281 sev_es_host_save_area(sd));
4282 else
4283 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4284
4285 raw_local_irq_disable();
4286
4287 guest_state_exit_irqoff();
4288 }
4289
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4290 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4291 {
4292 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4293 struct vcpu_svm *svm = to_svm(vcpu);
4294 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4295
4296 trace_kvm_entry(vcpu, force_immediate_exit);
4297
4298 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4299 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4300 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4301
4302 /*
4303 * Disable singlestep if we're injecting an interrupt/exception.
4304 * We don't want our modified rflags to be pushed on the stack where
4305 * we might not be able to easily reset them if we disabled NMI
4306 * singlestep later.
4307 */
4308 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4309 /*
4310 * Event injection happens before external interrupts cause a
4311 * vmexit and interrupts are disabled here, so smp_send_reschedule
4312 * is enough to force an immediate vmexit.
4313 */
4314 disable_nmi_singlestep(svm);
4315 force_immediate_exit = true;
4316 }
4317
4318 if (force_immediate_exit)
4319 smp_send_reschedule(vcpu->cpu);
4320
4321 pre_svm_run(vcpu);
4322
4323 sync_lapic_to_cr8(vcpu);
4324
4325 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4326 svm->vmcb->control.asid = svm->asid;
4327 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4328 }
4329 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4330
4331 svm_hv_update_vp_id(svm->vmcb, vcpu);
4332
4333 /*
4334 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4335 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from
4336 * KVM's snapshot is only necessary when DR accesses won't exit.
4337 */
4338 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4339 svm_set_dr6(vcpu, vcpu->arch.dr6);
4340 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4341 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4342
4343 clgi();
4344 kvm_load_guest_xsave_state(vcpu);
4345
4346 /*
4347 * Hardware only context switches DEBUGCTL if LBR virtualization is
4348 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4349 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4350 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4351 */
4352 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4353 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4354 update_debugctlmsr(svm->vmcb->save.dbgctl);
4355
4356 kvm_wait_lapic_expire(vcpu);
4357
4358 /*
4359 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4360 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4361 * is no need to worry about the conditional branch over the wrmsr
4362 * being speculatively taken.
4363 */
4364 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4365 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4366
4367 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4368
4369 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4370 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4371
4372 if (!sev_es_guest(vcpu->kvm)) {
4373 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4374 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4375 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4376 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4377 }
4378 vcpu->arch.regs_dirty = 0;
4379
4380 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4381 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4382
4383 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4384 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4385 update_debugctlmsr(vcpu->arch.host_debugctl);
4386
4387 kvm_load_host_xsave_state(vcpu);
4388 stgi();
4389
4390 /* Any pending NMI will happen here */
4391
4392 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4393 kvm_after_interrupt(vcpu);
4394
4395 sync_cr8_to_lapic(vcpu);
4396
4397 svm->next_rip = 0;
4398 if (is_guest_mode(vcpu)) {
4399 nested_sync_control_from_vmcb02(svm);
4400
4401 /* Track VMRUNs that have made past consistency checking */
4402 if (svm->nested.nested_run_pending &&
4403 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4404 ++vcpu->stat.nested_run;
4405
4406 svm->nested.nested_run_pending = 0;
4407 }
4408
4409 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4410 vmcb_mark_all_clean(svm->vmcb);
4411
4412 /* if exit due to PF check for async PF */
4413 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4414 vcpu->arch.apf.host_apf_flags =
4415 kvm_read_and_reset_apf_flags();
4416
4417 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4418
4419 /*
4420 * We need to handle MC intercepts here before the vcpu has a chance to
4421 * change the physical cpu
4422 */
4423 if (unlikely(svm->vmcb->control.exit_code ==
4424 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4425 svm_handle_mce(vcpu);
4426
4427 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4428
4429 svm_complete_interrupts(vcpu);
4430
4431 return svm_exit_handlers_fastpath(vcpu);
4432 }
4433
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4434 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4435 int root_level)
4436 {
4437 struct vcpu_svm *svm = to_svm(vcpu);
4438 unsigned long cr3;
4439
4440 if (npt_enabled) {
4441 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4442 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4443
4444 hv_track_root_tdp(vcpu, root_hpa);
4445
4446 cr3 = vcpu->arch.cr3;
4447 } else if (root_level >= PT64_ROOT_4LEVEL) {
4448 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4449 } else {
4450 /* PCID in the guest should be impossible with a 32-bit MMU. */
4451 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4452 cr3 = root_hpa;
4453 }
4454
4455 svm->vmcb->save.cr3 = cr3;
4456 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4457 }
4458
4459 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4460 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4461 {
4462 /*
4463 * Patch in the VMMCALL instruction:
4464 */
4465 hypercall[0] = 0x0f;
4466 hypercall[1] = 0x01;
4467 hypercall[2] = 0xd9;
4468 }
4469
4470 /*
4471 * The kvm parameter can be NULL (module initialization, or invocation before
4472 * VM creation). Be sure to check the kvm parameter before using it.
4473 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4474 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4475 {
4476 switch (index) {
4477 case MSR_IA32_MCG_EXT_CTL:
4478 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4479 return false;
4480 case MSR_IA32_SMBASE:
4481 if (!IS_ENABLED(CONFIG_KVM_SMM))
4482 return false;
4483 /* SEV-ES guests do not support SMM, so report false */
4484 if (kvm && sev_es_guest(kvm))
4485 return false;
4486 break;
4487 default:
4488 break;
4489 }
4490
4491 return true;
4492 }
4493
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4494 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4495 {
4496 struct vcpu_svm *svm = to_svm(vcpu);
4497
4498 /*
4499 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4500 * can only disable all variants of by disallowing CR4.OSXSAVE from
4501 * being set. As a result, if the host has XSAVE and XSAVES, and the
4502 * guest has XSAVE enabled, the guest can execute XSAVES without
4503 * faulting. Treat XSAVES as enabled in this case regardless of
4504 * whether it's advertised to the guest so that KVM context switches
4505 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4506 * the guest read/write access to the host's XSS.
4507 */
4508 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4509 boot_cpu_has(X86_FEATURE_XSAVES) &&
4510 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4511 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4512
4513 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4514 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4515 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4516
4517 /*
4518 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4519 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4520 * SVM on Intel is bonkers and extremely unlikely to work).
4521 */
4522 if (!guest_cpuid_is_intel_compatible(vcpu))
4523 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4524
4525 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4526 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4527 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4528 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4529
4530 svm_recalc_instruction_intercepts(vcpu, svm);
4531
4532 if (boot_cpu_has(X86_FEATURE_IBPB))
4533 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4534 !!guest_has_pred_cmd_msr(vcpu));
4535
4536 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4537 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4538 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4539
4540 if (sev_guest(vcpu->kvm))
4541 sev_vcpu_after_set_cpuid(svm);
4542
4543 init_vmcb_after_set_cpuid(vcpu);
4544 }
4545
svm_has_wbinvd_exit(void)4546 static bool svm_has_wbinvd_exit(void)
4547 {
4548 return true;
4549 }
4550
4551 #define PRE_EX(exit) { .exit_code = (exit), \
4552 .stage = X86_ICPT_PRE_EXCEPT, }
4553 #define POST_EX(exit) { .exit_code = (exit), \
4554 .stage = X86_ICPT_POST_EXCEPT, }
4555 #define POST_MEM(exit) { .exit_code = (exit), \
4556 .stage = X86_ICPT_POST_MEMACCESS, }
4557
4558 static const struct __x86_intercept {
4559 u32 exit_code;
4560 enum x86_intercept_stage stage;
4561 } x86_intercept_map[] = {
4562 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4563 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4564 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4565 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4566 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4567 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4568 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4569 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4570 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4571 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4572 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4573 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4574 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4575 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4576 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4577 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4578 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4579 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4580 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4581 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4582 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4583 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4584 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4585 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4586 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4587 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4588 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4589 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4590 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4591 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4592 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4593 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4594 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4595 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4596 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4597 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4598 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4599 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4600 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4601 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4602 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4603 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4604 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4605 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4606 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4607 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4608 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4609 };
4610
4611 #undef PRE_EX
4612 #undef POST_EX
4613 #undef POST_MEM
4614
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4615 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4616 struct x86_instruction_info *info,
4617 enum x86_intercept_stage stage,
4618 struct x86_exception *exception)
4619 {
4620 struct vcpu_svm *svm = to_svm(vcpu);
4621 int vmexit, ret = X86EMUL_CONTINUE;
4622 struct __x86_intercept icpt_info;
4623 struct vmcb *vmcb = svm->vmcb;
4624
4625 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4626 goto out;
4627
4628 icpt_info = x86_intercept_map[info->intercept];
4629
4630 if (stage != icpt_info.stage)
4631 goto out;
4632
4633 switch (icpt_info.exit_code) {
4634 case SVM_EXIT_READ_CR0:
4635 if (info->intercept == x86_intercept_cr_read)
4636 icpt_info.exit_code += info->modrm_reg;
4637 break;
4638 case SVM_EXIT_WRITE_CR0: {
4639 unsigned long cr0, val;
4640
4641 if (info->intercept == x86_intercept_cr_write)
4642 icpt_info.exit_code += info->modrm_reg;
4643
4644 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4645 info->intercept == x86_intercept_clts)
4646 break;
4647
4648 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4649 INTERCEPT_SELECTIVE_CR0)))
4650 break;
4651
4652 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4653 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4654
4655 if (info->intercept == x86_intercept_lmsw) {
4656 cr0 &= 0xfUL;
4657 val &= 0xfUL;
4658 /* lmsw can't clear PE - catch this here */
4659 if (cr0 & X86_CR0_PE)
4660 val |= X86_CR0_PE;
4661 }
4662
4663 if (cr0 ^ val)
4664 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4665
4666 break;
4667 }
4668 case SVM_EXIT_READ_DR0:
4669 case SVM_EXIT_WRITE_DR0:
4670 icpt_info.exit_code += info->modrm_reg;
4671 break;
4672 case SVM_EXIT_MSR:
4673 if (info->intercept == x86_intercept_wrmsr)
4674 vmcb->control.exit_info_1 = 1;
4675 else
4676 vmcb->control.exit_info_1 = 0;
4677 break;
4678 case SVM_EXIT_PAUSE:
4679 /*
4680 * We get this for NOP only, but pause
4681 * is rep not, check this here
4682 */
4683 if (info->rep_prefix != REPE_PREFIX)
4684 goto out;
4685 break;
4686 case SVM_EXIT_IOIO: {
4687 u64 exit_info;
4688 u32 bytes;
4689
4690 if (info->intercept == x86_intercept_in ||
4691 info->intercept == x86_intercept_ins) {
4692 exit_info = ((info->src_val & 0xffff) << 16) |
4693 SVM_IOIO_TYPE_MASK;
4694 bytes = info->dst_bytes;
4695 } else {
4696 exit_info = (info->dst_val & 0xffff) << 16;
4697 bytes = info->src_bytes;
4698 }
4699
4700 if (info->intercept == x86_intercept_outs ||
4701 info->intercept == x86_intercept_ins)
4702 exit_info |= SVM_IOIO_STR_MASK;
4703
4704 if (info->rep_prefix)
4705 exit_info |= SVM_IOIO_REP_MASK;
4706
4707 bytes = min(bytes, 4u);
4708
4709 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4710
4711 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4712
4713 vmcb->control.exit_info_1 = exit_info;
4714 vmcb->control.exit_info_2 = info->next_rip;
4715
4716 break;
4717 }
4718 default:
4719 break;
4720 }
4721
4722 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4723 if (static_cpu_has(X86_FEATURE_NRIPS))
4724 vmcb->control.next_rip = info->next_rip;
4725 vmcb->control.exit_code = icpt_info.exit_code;
4726 vmexit = nested_svm_exit_handled(svm);
4727
4728 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4729 : X86EMUL_CONTINUE;
4730
4731 out:
4732 return ret;
4733 }
4734
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4735 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4736 {
4737 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4738 vcpu->arch.at_instruction_boundary = true;
4739 }
4740
svm_setup_mce(struct kvm_vcpu * vcpu)4741 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4742 {
4743 /* [63:9] are reserved. */
4744 vcpu->arch.mcg_cap &= 0x1ff;
4745 }
4746
4747 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4748 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4749 {
4750 struct vcpu_svm *svm = to_svm(vcpu);
4751
4752 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4753 if (!gif_set(svm))
4754 return true;
4755
4756 return is_smm(vcpu);
4757 }
4758
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4759 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4760 {
4761 struct vcpu_svm *svm = to_svm(vcpu);
4762 if (svm->nested.nested_run_pending)
4763 return -EBUSY;
4764
4765 if (svm_smi_blocked(vcpu))
4766 return 0;
4767
4768 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4769 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4770 return -EBUSY;
4771
4772 return 1;
4773 }
4774
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4775 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4776 {
4777 struct vcpu_svm *svm = to_svm(vcpu);
4778 struct kvm_host_map map_save;
4779 int ret;
4780
4781 if (!is_guest_mode(vcpu))
4782 return 0;
4783
4784 /*
4785 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4786 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4787 */
4788
4789 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4790 return 1;
4791
4792 smram->smram64.svm_guest_flag = 1;
4793 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4794
4795 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4796 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4797 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4798
4799 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4800 if (ret)
4801 return ret;
4802
4803 /*
4804 * KVM uses VMCB01 to store L1 host state while L2 runs but
4805 * VMCB01 is going to be used during SMM and thus the state will
4806 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4807 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4808 * format of the area is identical to guest save area offsetted
4809 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4810 * within 'struct vmcb'). Note: HSAVE area may also be used by
4811 * L1 hypervisor to save additional host context (e.g. KVM does
4812 * that, see svm_prepare_switch_to_guest()) which must be
4813 * preserved.
4814 */
4815 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4816 return 1;
4817
4818 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4819
4820 svm_copy_vmrun_state(map_save.hva + 0x400,
4821 &svm->vmcb01.ptr->save);
4822
4823 kvm_vcpu_unmap(vcpu, &map_save, true);
4824 return 0;
4825 }
4826
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4827 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4828 {
4829 struct vcpu_svm *svm = to_svm(vcpu);
4830 struct kvm_host_map map, map_save;
4831 struct vmcb *vmcb12;
4832 int ret;
4833
4834 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4835
4836 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4837 return 0;
4838
4839 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4840 if (!smram64->svm_guest_flag)
4841 return 0;
4842
4843 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4844 return 1;
4845
4846 if (!(smram64->efer & EFER_SVME))
4847 return 1;
4848
4849 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4850 return 1;
4851
4852 ret = 1;
4853 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4854 goto unmap_map;
4855
4856 if (svm_allocate_nested(svm))
4857 goto unmap_save;
4858
4859 /*
4860 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4861 * used during SMM (see svm_enter_smm())
4862 */
4863
4864 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4865
4866 /*
4867 * Enter the nested guest now
4868 */
4869
4870 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4871
4872 vmcb12 = map.hva;
4873 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4874 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4875 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4876
4877 if (ret)
4878 goto unmap_save;
4879
4880 svm->nested.nested_run_pending = 1;
4881
4882 unmap_save:
4883 kvm_vcpu_unmap(vcpu, &map_save, true);
4884 unmap_map:
4885 kvm_vcpu_unmap(vcpu, &map, true);
4886 return ret;
4887 }
4888
svm_enable_smi_window(struct kvm_vcpu * vcpu)4889 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4890 {
4891 struct vcpu_svm *svm = to_svm(vcpu);
4892
4893 if (!gif_set(svm)) {
4894 if (vgif)
4895 svm_set_intercept(svm, INTERCEPT_STGI);
4896 /* STGI will cause a vm exit */
4897 } else {
4898 /* We must be in SMM; RSM will cause a vmexit anyway. */
4899 }
4900 }
4901 #endif
4902
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4903 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4904 void *insn, int insn_len)
4905 {
4906 bool smep, smap, is_user;
4907 u64 error_code;
4908
4909 /* Emulation is always possible when KVM has access to all guest state. */
4910 if (!sev_guest(vcpu->kvm))
4911 return X86EMUL_CONTINUE;
4912
4913 /* #UD and #GP should never be intercepted for SEV guests. */
4914 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4915 EMULTYPE_TRAP_UD_FORCED |
4916 EMULTYPE_VMWARE_GP));
4917
4918 /*
4919 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4920 * to guest register state.
4921 */
4922 if (sev_es_guest(vcpu->kvm))
4923 return X86EMUL_RETRY_INSTR;
4924
4925 /*
4926 * Emulation is possible if the instruction is already decoded, e.g.
4927 * when completing I/O after returning from userspace.
4928 */
4929 if (emul_type & EMULTYPE_NO_DECODE)
4930 return X86EMUL_CONTINUE;
4931
4932 /*
4933 * Emulation is possible for SEV guests if and only if a prefilled
4934 * buffer containing the bytes of the intercepted instruction is
4935 * available. SEV guest memory is encrypted with a guest specific key
4936 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4937 * decode garbage.
4938 *
4939 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4940 * KVM reached this point without an instruction buffer. In practice,
4941 * this path should never be hit by a well-behaved guest, e.g. KVM
4942 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4943 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4944 * access, and needs to be handled by KVM to avoid putting the guest
4945 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4946 * its the least awful option given lack of insight into the guest.
4947 *
4948 * If KVM is trying to skip an instruction, simply resume the guest.
4949 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4950 * will attempt to re-inject the INT3/INTO and skip the instruction.
4951 * In that scenario, retrying the INT3/INTO and hoping the guest will
4952 * make forward progress is the only option that has a chance of
4953 * success (and in practice it will work the vast majority of the time).
4954 */
4955 if (unlikely(!insn)) {
4956 if (emul_type & EMULTYPE_SKIP)
4957 return X86EMUL_UNHANDLEABLE;
4958
4959 kvm_queue_exception(vcpu, UD_VECTOR);
4960 return X86EMUL_PROPAGATE_FAULT;
4961 }
4962
4963 /*
4964 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4965 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4966 * the faulting instruction because the code fetch itself faulted, e.g.
4967 * the guest attempted to fetch from emulated MMIO or a guest page
4968 * table used to translate CS:RIP resides in emulated MMIO.
4969 */
4970 if (likely(insn_len))
4971 return X86EMUL_CONTINUE;
4972
4973 /*
4974 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4975 *
4976 * Errata:
4977 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4978 * possible that CPU microcode implementing DecodeAssist will fail to
4979 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4980 * be '0'. This happens because microcode reads CS:RIP using a _data_
4981 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4982 * gives up and does not fill the instruction bytes buffer.
4983 *
4984 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4985 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4986 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4987 * GuestIntrBytes field of the VMCB.
4988 *
4989 * This does _not_ mean that the erratum has been encountered, as the
4990 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4991 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4992 * encountered a reserved/not-present #PF.
4993 *
4994 * To hit the erratum, the following conditions must be true:
4995 * 1. CR4.SMAP=1 (obviously).
4996 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4997 * have been hit as the guest would have encountered a SMEP
4998 * violation #PF, not a #NPF.
4999 * 3. The #NPF is not due to a code fetch, in which case failure to
5000 * retrieve the instruction bytes is legitimate (see abvoe).
5001 *
5002 * In addition, don't apply the erratum workaround if the #NPF occurred
5003 * while translating guest page tables (see below).
5004 */
5005 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
5006 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
5007 goto resume_guest;
5008
5009 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
5010 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
5011 is_user = svm_get_cpl(vcpu) == 3;
5012 if (smap && (!smep || is_user)) {
5013 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
5014
5015 /*
5016 * If the fault occurred in userspace, arbitrarily inject #GP
5017 * to avoid killing the guest and to hopefully avoid confusing
5018 * the guest kernel too much, e.g. injecting #PF would not be
5019 * coherent with respect to the guest's page tables. Request
5020 * triple fault if the fault occurred in the kernel as there's
5021 * no fault that KVM can inject without confusing the guest.
5022 * In practice, the triple fault is moot as no sane SEV kernel
5023 * will execute from user memory while also running with SMAP=1.
5024 */
5025 if (is_user)
5026 kvm_inject_gp(vcpu, 0);
5027 else
5028 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5029 return X86EMUL_PROPAGATE_FAULT;
5030 }
5031
5032 resume_guest:
5033 /*
5034 * If the erratum was not hit, simply resume the guest and let it fault
5035 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
5036 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
5037 * userspace will kill the guest, and letting the emulator read garbage
5038 * will yield random behavior and potentially corrupt the guest.
5039 *
5040 * Simply resuming the guest is technically not a violation of the SEV
5041 * architecture. AMD's APM states that all code fetches and page table
5042 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
5043 * APM also states that encrypted accesses to MMIO are "ignored", but
5044 * doesn't explicitly define "ignored", i.e. doing nothing and letting
5045 * the guest spin is technically "ignoring" the access.
5046 */
5047 return X86EMUL_RETRY_INSTR;
5048 }
5049
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)5050 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
5051 {
5052 struct vcpu_svm *svm = to_svm(vcpu);
5053
5054 return !gif_set(svm);
5055 }
5056
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)5057 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
5058 {
5059 if (!sev_es_guest(vcpu->kvm))
5060 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5061
5062 sev_vcpu_deliver_sipi_vector(vcpu, vector);
5063 }
5064
svm_vm_destroy(struct kvm * kvm)5065 static void svm_vm_destroy(struct kvm *kvm)
5066 {
5067 avic_vm_destroy(kvm);
5068 sev_vm_destroy(kvm);
5069
5070 svm_srso_vm_destroy();
5071 }
5072
svm_vm_init(struct kvm * kvm)5073 static int svm_vm_init(struct kvm *kvm)
5074 {
5075 int type = kvm->arch.vm_type;
5076
5077 if (type != KVM_X86_DEFAULT_VM &&
5078 type != KVM_X86_SW_PROTECTED_VM) {
5079 kvm->arch.has_protected_state =
5080 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5081 to_kvm_sev_info(kvm)->need_init = true;
5082
5083 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5084 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5085 }
5086
5087 if (!pause_filter_count || !pause_filter_thresh)
5088 kvm->arch.pause_in_guest = true;
5089
5090 if (enable_apicv) {
5091 int ret = avic_vm_init(kvm);
5092 if (ret)
5093 return ret;
5094 }
5095
5096 svm_srso_vm_init();
5097 return 0;
5098 }
5099
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5100 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5101 {
5102 struct page *page = snp_safe_alloc_page();
5103
5104 if (!page)
5105 return NULL;
5106
5107 return page_address(page);
5108 }
5109
5110 static struct kvm_x86_ops svm_x86_ops __initdata = {
5111 .name = KBUILD_MODNAME,
5112
5113 .check_processor_compatibility = svm_check_processor_compat,
5114
5115 .hardware_unsetup = svm_hardware_unsetup,
5116 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5117 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5118 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5119 .has_emulated_msr = svm_has_emulated_msr,
5120
5121 .vcpu_create = svm_vcpu_create,
5122 .vcpu_free = svm_vcpu_free,
5123 .vcpu_reset = svm_vcpu_reset,
5124
5125 .vm_size = sizeof(struct kvm_svm),
5126 .vm_init = svm_vm_init,
5127 .vm_destroy = svm_vm_destroy,
5128
5129 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5130 .vcpu_load = svm_vcpu_load,
5131 .vcpu_put = svm_vcpu_put,
5132 .vcpu_blocking = avic_vcpu_blocking,
5133 .vcpu_unblocking = avic_vcpu_unblocking,
5134
5135 .update_exception_bitmap = svm_update_exception_bitmap,
5136 .get_feature_msr = svm_get_feature_msr,
5137 .get_msr = svm_get_msr,
5138 .set_msr = svm_set_msr,
5139 .get_segment_base = svm_get_segment_base,
5140 .get_segment = svm_get_segment,
5141 .set_segment = svm_set_segment,
5142 .get_cpl = svm_get_cpl,
5143 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5144 .is_valid_cr0 = svm_is_valid_cr0,
5145 .set_cr0 = svm_set_cr0,
5146 .post_set_cr3 = sev_post_set_cr3,
5147 .is_valid_cr4 = svm_is_valid_cr4,
5148 .set_cr4 = svm_set_cr4,
5149 .set_efer = svm_set_efer,
5150 .get_idt = svm_get_idt,
5151 .set_idt = svm_set_idt,
5152 .get_gdt = svm_get_gdt,
5153 .set_gdt = svm_set_gdt,
5154 .set_dr7 = svm_set_dr7,
5155 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5156 .cache_reg = svm_cache_reg,
5157 .get_rflags = svm_get_rflags,
5158 .set_rflags = svm_set_rflags,
5159 .get_if_flag = svm_get_if_flag,
5160
5161 .flush_tlb_all = svm_flush_tlb_all,
5162 .flush_tlb_current = svm_flush_tlb_current,
5163 .flush_tlb_gva = svm_flush_tlb_gva,
5164 .flush_tlb_guest = svm_flush_tlb_asid,
5165
5166 .vcpu_pre_run = svm_vcpu_pre_run,
5167 .vcpu_run = svm_vcpu_run,
5168 .handle_exit = svm_handle_exit,
5169 .skip_emulated_instruction = svm_skip_emulated_instruction,
5170 .update_emulated_instruction = NULL,
5171 .set_interrupt_shadow = svm_set_interrupt_shadow,
5172 .get_interrupt_shadow = svm_get_interrupt_shadow,
5173 .patch_hypercall = svm_patch_hypercall,
5174 .inject_irq = svm_inject_irq,
5175 .inject_nmi = svm_inject_nmi,
5176 .is_vnmi_pending = svm_is_vnmi_pending,
5177 .set_vnmi_pending = svm_set_vnmi_pending,
5178 .inject_exception = svm_inject_exception,
5179 .cancel_injection = svm_cancel_injection,
5180 .interrupt_allowed = svm_interrupt_allowed,
5181 .nmi_allowed = svm_nmi_allowed,
5182 .get_nmi_mask = svm_get_nmi_mask,
5183 .set_nmi_mask = svm_set_nmi_mask,
5184 .enable_nmi_window = svm_enable_nmi_window,
5185 .enable_irq_window = svm_enable_irq_window,
5186 .update_cr8_intercept = svm_update_cr8_intercept,
5187
5188 .x2apic_icr_is_split = true,
5189 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5190 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5191 .apicv_post_state_restore = avic_apicv_post_state_restore,
5192 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5193
5194 .get_exit_info = svm_get_exit_info,
5195
5196 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5197
5198 .has_wbinvd_exit = svm_has_wbinvd_exit,
5199
5200 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5201 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5202 .write_tsc_offset = svm_write_tsc_offset,
5203 .write_tsc_multiplier = svm_write_tsc_multiplier,
5204
5205 .load_mmu_pgd = svm_load_mmu_pgd,
5206
5207 .check_intercept = svm_check_intercept,
5208 .handle_exit_irqoff = svm_handle_exit_irqoff,
5209
5210 .nested_ops = &svm_nested_ops,
5211
5212 .deliver_interrupt = svm_deliver_interrupt,
5213 .pi_update_irte = avic_pi_update_irte,
5214 .setup_mce = svm_setup_mce,
5215
5216 #ifdef CONFIG_KVM_SMM
5217 .smi_allowed = svm_smi_allowed,
5218 .enter_smm = svm_enter_smm,
5219 .leave_smm = svm_leave_smm,
5220 .enable_smi_window = svm_enable_smi_window,
5221 #endif
5222
5223 #ifdef CONFIG_KVM_AMD_SEV
5224 .dev_get_attr = sev_dev_get_attr,
5225 .mem_enc_ioctl = sev_mem_enc_ioctl,
5226 .mem_enc_register_region = sev_mem_enc_register_region,
5227 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5228 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5229
5230 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5231 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5232 #endif
5233 .check_emulate_instruction = svm_check_emulate_instruction,
5234
5235 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5236
5237 .msr_filter_changed = svm_msr_filter_changed,
5238 .complete_emulated_msr = svm_complete_emulated_msr,
5239
5240 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5241 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5242 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5243
5244 .gmem_prepare = sev_gmem_prepare,
5245 .gmem_invalidate = sev_gmem_invalidate,
5246 .private_max_mapping_level = sev_private_max_mapping_level,
5247 };
5248
5249 /*
5250 * The default MMIO mask is a single bit (excluding the present bit),
5251 * which could conflict with the memory encryption bit. Check for
5252 * memory encryption support and override the default MMIO mask if
5253 * memory encryption is enabled.
5254 */
svm_adjust_mmio_mask(void)5255 static __init void svm_adjust_mmio_mask(void)
5256 {
5257 unsigned int enc_bit, mask_bit;
5258 u64 msr, mask;
5259
5260 /* If there is no memory encryption support, use existing mask */
5261 if (cpuid_eax(0x80000000) < 0x8000001f)
5262 return;
5263
5264 /* If memory encryption is not enabled, use existing mask */
5265 rdmsrl(MSR_AMD64_SYSCFG, msr);
5266 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5267 return;
5268
5269 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5270 mask_bit = boot_cpu_data.x86_phys_bits;
5271
5272 /* Increment the mask bit if it is the same as the encryption bit */
5273 if (enc_bit == mask_bit)
5274 mask_bit++;
5275
5276 /*
5277 * If the mask bit location is below 52, then some bits above the
5278 * physical addressing limit will always be reserved, so use the
5279 * rsvd_bits() function to generate the mask. This mask, along with
5280 * the present bit, will be used to generate a page fault with
5281 * PFER.RSV = 1.
5282 *
5283 * If the mask bit location is 52 (or above), then clear the mask.
5284 */
5285 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5286
5287 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5288 }
5289
svm_set_cpu_caps(void)5290 static __init void svm_set_cpu_caps(void)
5291 {
5292 kvm_set_cpu_caps();
5293
5294 kvm_caps.supported_perf_cap = 0;
5295 kvm_caps.supported_xss = 0;
5296
5297 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5298 if (nested) {
5299 kvm_cpu_cap_set(X86_FEATURE_SVM);
5300 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5301
5302 /*
5303 * KVM currently flushes TLBs on *every* nested SVM transition,
5304 * and so for all intents and purposes KVM supports flushing by
5305 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5306 */
5307 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5308
5309 if (nrips)
5310 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5311
5312 if (npt_enabled)
5313 kvm_cpu_cap_set(X86_FEATURE_NPT);
5314
5315 if (tsc_scaling)
5316 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5317
5318 if (vls)
5319 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5320 if (lbrv)
5321 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5322
5323 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5324 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5325
5326 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5327 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5328
5329 if (vgif)
5330 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5331
5332 if (vnmi)
5333 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5334
5335 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5336 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5337 }
5338
5339 /* CPUID 0x80000008 */
5340 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5341 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5342 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5343
5344 if (enable_pmu) {
5345 /*
5346 * Enumerate support for PERFCTR_CORE if and only if KVM has
5347 * access to enough counters to virtualize "core" support,
5348 * otherwise limit vPMU support to the legacy number of counters.
5349 */
5350 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5351 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5352 kvm_pmu_cap.num_counters_gp);
5353 else
5354 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5355
5356 if (kvm_pmu_cap.version != 2 ||
5357 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5358 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5359 }
5360
5361 /* CPUID 0x8000001F (SME/SEV features) */
5362 sev_set_cpu_caps();
5363
5364 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5365 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5366 }
5367
svm_hardware_setup(void)5368 static __init int svm_hardware_setup(void)
5369 {
5370 int cpu;
5371 struct page *iopm_pages;
5372 void *iopm_va;
5373 int r;
5374 unsigned int order = get_order(IOPM_SIZE);
5375
5376 /*
5377 * NX is required for shadow paging and for NPT if the NX huge pages
5378 * mitigation is enabled.
5379 */
5380 if (!boot_cpu_has(X86_FEATURE_NX)) {
5381 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5382 return -EOPNOTSUPP;
5383 }
5384 kvm_enable_efer_bits(EFER_NX);
5385
5386 iopm_pages = alloc_pages(GFP_KERNEL, order);
5387
5388 if (!iopm_pages)
5389 return -ENOMEM;
5390
5391 iopm_va = page_address(iopm_pages);
5392 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5393 iopm_base = __sme_page_pa(iopm_pages);
5394
5395 init_msrpm_offsets();
5396
5397 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5398 XFEATURE_MASK_BNDCSR);
5399
5400 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5401 kvm_enable_efer_bits(EFER_FFXSR);
5402
5403 if (tsc_scaling) {
5404 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5405 tsc_scaling = false;
5406 } else {
5407 pr_info("TSC scaling supported\n");
5408 kvm_caps.has_tsc_control = true;
5409 }
5410 }
5411 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5412 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5413
5414 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5415
5416 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5417 kvm_enable_efer_bits(EFER_AUTOIBRS);
5418
5419 /* Check for pause filtering support */
5420 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5421 pause_filter_count = 0;
5422 pause_filter_thresh = 0;
5423 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5424 pause_filter_thresh = 0;
5425 }
5426
5427 if (nested) {
5428 pr_info("Nested Virtualization enabled\n");
5429 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5430 }
5431
5432 /*
5433 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5434 * NPT isn't supported if the host is using 2-level paging since host
5435 * CR4 is unchanged on VMRUN.
5436 */
5437 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5438 npt_enabled = false;
5439
5440 if (!boot_cpu_has(X86_FEATURE_NPT))
5441 npt_enabled = false;
5442
5443 /* Force VM NPT level equal to the host's paging level */
5444 kvm_configure_mmu(npt_enabled, get_npt_level(),
5445 get_npt_level(), PG_LEVEL_1G);
5446 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5447
5448 /* Setup shadow_me_value and shadow_me_mask */
5449 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5450
5451 svm_adjust_mmio_mask();
5452
5453 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5454
5455 if (lbrv) {
5456 if (!boot_cpu_has(X86_FEATURE_LBRV))
5457 lbrv = false;
5458 else
5459 pr_info("LBR virtualization supported\n");
5460 }
5461 /*
5462 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5463 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5464 */
5465 sev_hardware_setup();
5466
5467 svm_hv_hardware_setup();
5468
5469 for_each_possible_cpu(cpu) {
5470 r = svm_cpu_init(cpu);
5471 if (r)
5472 goto err;
5473 }
5474
5475 enable_apicv = avic = avic && avic_hardware_setup();
5476
5477 if (!enable_apicv) {
5478 svm_x86_ops.vcpu_blocking = NULL;
5479 svm_x86_ops.vcpu_unblocking = NULL;
5480 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5481 } else if (!x2avic_enabled) {
5482 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5483 }
5484
5485 if (vls) {
5486 if (!npt_enabled ||
5487 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5488 !IS_ENABLED(CONFIG_X86_64)) {
5489 vls = false;
5490 } else {
5491 pr_info("Virtual VMLOAD VMSAVE supported\n");
5492 }
5493 }
5494
5495 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5496 svm_gp_erratum_intercept = false;
5497
5498 if (vgif) {
5499 if (!boot_cpu_has(X86_FEATURE_VGIF))
5500 vgif = false;
5501 else
5502 pr_info("Virtual GIF supported\n");
5503 }
5504
5505 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5506 if (vnmi)
5507 pr_info("Virtual NMI enabled\n");
5508
5509 if (!vnmi) {
5510 svm_x86_ops.is_vnmi_pending = NULL;
5511 svm_x86_ops.set_vnmi_pending = NULL;
5512 }
5513
5514 if (!enable_pmu)
5515 pr_info("PMU virtualization is disabled\n");
5516
5517 svm_set_cpu_caps();
5518
5519 /*
5520 * It seems that on AMD processors PTE's accessed bit is
5521 * being set by the CPU hardware before the NPF vmexit.
5522 * This is not expected behaviour and our tests fail because
5523 * of it.
5524 * A workaround here is to disable support for
5525 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5526 * In this case userspace can know if there is support using
5527 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5528 * it
5529 * If future AMD CPU models change the behaviour described above,
5530 * this variable can be changed accordingly
5531 */
5532 allow_smaller_maxphyaddr = !npt_enabled;
5533
5534 return 0;
5535
5536 err:
5537 svm_hardware_unsetup();
5538 return r;
5539 }
5540
5541
5542 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5543 .hardware_setup = svm_hardware_setup,
5544
5545 .runtime_ops = &svm_x86_ops,
5546 .pmu_ops = &amd_pmu_ops,
5547 };
5548
__svm_exit(void)5549 static void __svm_exit(void)
5550 {
5551 kvm_x86_vendor_exit();
5552 }
5553
svm_init(void)5554 static int __init svm_init(void)
5555 {
5556 int r;
5557
5558 __unused_size_checks();
5559
5560 if (!kvm_is_svm_supported())
5561 return -EOPNOTSUPP;
5562
5563 r = kvm_x86_vendor_init(&svm_init_ops);
5564 if (r)
5565 return r;
5566
5567 /*
5568 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5569 * exposed to userspace!
5570 */
5571 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5572 THIS_MODULE);
5573 if (r)
5574 goto err_kvm_init;
5575
5576 return 0;
5577
5578 err_kvm_init:
5579 __svm_exit();
5580 return r;
5581 }
5582
svm_exit(void)5583 static void __exit svm_exit(void)
5584 {
5585 kvm_exit();
5586 __svm_exit();
5587 }
5588
5589 module_init(svm_init)
5590 module_exit(svm_exit)
5591