1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
123
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
125
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
127
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
130
131 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132 static void process_nmi(struct kvm_vcpu *vcpu);
133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134 static void store_regs(struct kvm_vcpu *vcpu);
135 static int sync_regs(struct kvm_vcpu *vcpu);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
137
138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
140
141 static DEFINE_MUTEX(vendor_module_lock);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
143
144 #define KVM_X86_OP(func) \
145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
146 *(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
155
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs);
159
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
162
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
165
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
169
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, 0444);
172
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176
177 /*
178 * Flags to manipulate forced emulation behavior (any non-zero value will
179 * enable forced emulation).
180 */
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, 0644);
187
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199
200 /*
201 * Restoring the host value for MSRs that are only consumed when running in
202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203 * returns to userspace, i.e. the kernel can run with the guest's value.
204 */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206
207 struct kvm_user_return_msrs {
208 struct user_return_notifier urn;
209 bool registered;
210 struct kvm_user_return_msr_values {
211 u64 host;
212 u64 curr;
213 } values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220
221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 KVM_GENERIC_VM_STATS(),
234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 STATS_DESC_COUNTER(VM, mmu_pte_write),
236 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 STATS_DESC_COUNTER(VM, mmu_flooded),
238 STATS_DESC_COUNTER(VM, mmu_recycled),
239 STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 STATS_DESC_ICOUNTER(VM, pages_4k),
242 STATS_DESC_ICOUNTER(VM, pages_2m),
243 STATS_DESC_ICOUNTER(VM, pages_1g),
244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 .name_size = KVM_STATS_NAME_SIZE,
251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 .id_offset = sizeof(struct kvm_stats_header),
253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 sizeof(kvm_vm_stats_desc),
256 };
257
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 KVM_GENERIC_VCPU_STATS(),
260 STATS_DESC_COUNTER(VCPU, pf_taken),
261 STATS_DESC_COUNTER(VCPU, pf_fixed),
262 STATS_DESC_COUNTER(VCPU, pf_emulate),
263 STATS_DESC_COUNTER(VCPU, pf_spurious),
264 STATS_DESC_COUNTER(VCPU, pf_fast),
265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 STATS_DESC_COUNTER(VCPU, pf_guest),
267 STATS_DESC_COUNTER(VCPU, tlb_flush),
268 STATS_DESC_COUNTER(VCPU, invlpg),
269 STATS_DESC_COUNTER(VCPU, exits),
270 STATS_DESC_COUNTER(VCPU, io_exits),
271 STATS_DESC_COUNTER(VCPU, mmio_exits),
272 STATS_DESC_COUNTER(VCPU, signal_exits),
273 STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 STATS_DESC_COUNTER(VCPU, l1d_flush),
276 STATS_DESC_COUNTER(VCPU, halt_exits),
277 STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 STATS_DESC_COUNTER(VCPU, irq_exits),
279 STATS_DESC_COUNTER(VCPU, host_state_reload),
280 STATS_DESC_COUNTER(VCPU, fpu_reload),
281 STATS_DESC_COUNTER(VCPU, insn_emulation),
282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 STATS_DESC_COUNTER(VCPU, hypercalls),
284 STATS_DESC_COUNTER(VCPU, irq_injections),
285 STATS_DESC_COUNTER(VCPU, nmi_injections),
286 STATS_DESC_COUNTER(VCPU, req_event),
287 STATS_DESC_COUNTER(VCPU, nested_run),
288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 STATS_DESC_COUNTER(VCPU, preemption_reported),
291 STATS_DESC_COUNTER(VCPU, preemption_other),
292 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 .name_size = KVM_STATS_NAME_SIZE,
298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 .id_offset = sizeof(struct kvm_stats_header),
300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 sizeof(kvm_vcpu_stats_desc),
303 };
304
305 static struct kmem_cache *x86_emulator_cache;
306
307 /*
308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
312 * MSRs that KVM emulates without strictly requiring host support.
313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
315 * msrs_to_save and emulated_msrs.
316 */
317
318 static const u32 msrs_to_save_base[] = {
319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 MSR_STAR,
321 #ifdef CONFIG_X86_64
322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 MSR_IA32_UMWAIT_CONTROL,
334
335 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336 };
337
338 static const u32 msrs_to_save_pmu[] = {
339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 MSR_CORE_PERF_GLOBAL_CTRL,
343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344
345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354
355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357
358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363
364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367 };
368
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
372
373 static const u32 emulated_msrs_all[] = {
374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376
377 #ifdef CONFIG_KVM_HYPERV
378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 HV_X64_MSR_RESET,
384 HV_X64_MSR_VP_INDEX,
385 HV_X64_MSR_VP_RUNTIME,
386 HV_X64_MSR_SCONTROL,
387 HV_X64_MSR_STIMER0_CONFIG,
388 HV_X64_MSR_VP_ASSIST_PAGE,
389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 HV_X64_MSR_SYNDBG_OPTIONS,
392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
396
397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399
400 MSR_IA32_TSC_ADJUST,
401 MSR_IA32_TSC_DEADLINE,
402 MSR_IA32_ARCH_CAPABILITIES,
403 MSR_IA32_PERF_CAPABILITIES,
404 MSR_IA32_MISC_ENABLE,
405 MSR_IA32_MCG_STATUS,
406 MSR_IA32_MCG_CTL,
407 MSR_IA32_MCG_EXT_CTL,
408 MSR_IA32_SMBASE,
409 MSR_SMI_COUNT,
410 MSR_PLATFORM_INFO,
411 MSR_MISC_FEATURES_ENABLES,
412 MSR_AMD64_VIRT_SPEC_CTRL,
413 MSR_AMD64_TSC_RATIO,
414 MSR_IA32_POWER_CTL,
415 MSR_IA32_UCODE_REV,
416
417 /*
418 * KVM always supports the "true" VMX control MSRs, even if the host
419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
420 * doesn't strictly require them to exist in the host (ignoring that
421 * KVM would refuse to load in the first place if the core set of MSRs
422 * aren't supported).
423 */
424 MSR_IA32_VMX_BASIC,
425 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 MSR_IA32_VMX_MISC,
430 MSR_IA32_VMX_CR0_FIXED0,
431 MSR_IA32_VMX_CR4_FIXED0,
432 MSR_IA32_VMX_VMCS_ENUM,
433 MSR_IA32_VMX_PROCBASED_CTLS2,
434 MSR_IA32_VMX_EPT_VPID_CAP,
435 MSR_IA32_VMX_VMFUNC,
436
437 MSR_K7_HWCR,
438 MSR_KVM_POLL_CONTROL,
439 };
440
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
443
444 /*
445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
447 * feature MSRs, but are handled separately to allow expedited lookups.
448 */
449 static const u32 msr_based_features_all_except_vmx[] = {
450 MSR_AMD64_DE_CFG,
451 MSR_IA32_UCODE_REV,
452 MSR_IA32_ARCH_CAPABILITIES,
453 MSR_IA32_PERF_CAPABILITIES,
454 };
455
456 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
457 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
458 static unsigned int num_msr_based_features;
459
460 /*
461 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
462 * patch, are immutable once the vCPU model is defined.
463 */
kvm_is_immutable_feature_msr(u32 msr)464 static bool kvm_is_immutable_feature_msr(u32 msr)
465 {
466 int i;
467
468 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
469 return true;
470
471 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
472 if (msr == msr_based_features_all_except_vmx[i])
473 return msr != MSR_IA32_UCODE_REV;
474 }
475
476 return false;
477 }
478
kvm_is_advertised_msr(u32 msr_index)479 static bool kvm_is_advertised_msr(u32 msr_index)
480 {
481 unsigned int i;
482
483 for (i = 0; i < num_msrs_to_save; i++) {
484 if (msrs_to_save[i] == msr_index)
485 return true;
486 }
487
488 for (i = 0; i < num_emulated_msrs; i++) {
489 if (emulated_msrs[i] == msr_index)
490 return true;
491 }
492
493 return false;
494 }
495
496 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
497 bool host_initiated);
498
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)499 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
500 u64 *data, bool host_initiated,
501 enum kvm_msr_access rw,
502 msr_access_t msr_access_fn)
503 {
504 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
505 int ret;
506
507 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
508
509 /*
510 * Zero the data on read failures to avoid leaking stack data to the
511 * guest and/or userspace, e.g. if the failure is ignored below.
512 */
513 ret = msr_access_fn(vcpu, msr, data, host_initiated);
514 if (ret && rw == MSR_TYPE_R)
515 *data = 0;
516
517 if (ret != KVM_MSR_RET_UNSUPPORTED)
518 return ret;
519
520 /*
521 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
522 * advertises to userspace, even if an MSR isn't fully supported.
523 * Simply check that @data is '0', which covers both the write '0' case
524 * and all reads (in which case @data is zeroed on failure; see above).
525 */
526 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
527 return 0;
528
529 if (!ignore_msrs) {
530 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
531 op, msr, *data);
532 return ret;
533 }
534
535 if (report_ignored_msrs)
536 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
537
538 return 0;
539 }
540
kvm_alloc_emulator_cache(void)541 static struct kmem_cache *kvm_alloc_emulator_cache(void)
542 {
543 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
544 unsigned int size = sizeof(struct x86_emulate_ctxt);
545
546 return kmem_cache_create_usercopy("x86_emulator", size,
547 __alignof__(struct x86_emulate_ctxt),
548 SLAB_ACCOUNT, useroffset,
549 size - useroffset, NULL);
550 }
551
552 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
553
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)554 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
555 {
556 int i;
557 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
558 vcpu->arch.apf.gfns[i] = ~0;
559 }
560
kvm_on_user_return(struct user_return_notifier * urn)561 static void kvm_on_user_return(struct user_return_notifier *urn)
562 {
563 unsigned slot;
564 struct kvm_user_return_msrs *msrs
565 = container_of(urn, struct kvm_user_return_msrs, urn);
566 struct kvm_user_return_msr_values *values;
567 unsigned long flags;
568
569 /*
570 * Disabling irqs at this point since the following code could be
571 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
572 */
573 local_irq_save(flags);
574 if (msrs->registered) {
575 msrs->registered = false;
576 user_return_notifier_unregister(urn);
577 }
578 local_irq_restore(flags);
579 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
580 values = &msrs->values[slot];
581 if (values->host != values->curr) {
582 wrmsrl(kvm_uret_msrs_list[slot], values->host);
583 values->curr = values->host;
584 }
585 }
586 }
587
kvm_probe_user_return_msr(u32 msr)588 static int kvm_probe_user_return_msr(u32 msr)
589 {
590 u64 val;
591 int ret;
592
593 preempt_disable();
594 ret = rdmsrl_safe(msr, &val);
595 if (ret)
596 goto out;
597 ret = wrmsrl_safe(msr, val);
598 out:
599 preempt_enable();
600 return ret;
601 }
602
kvm_add_user_return_msr(u32 msr)603 int kvm_add_user_return_msr(u32 msr)
604 {
605 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
606
607 if (kvm_probe_user_return_msr(msr))
608 return -1;
609
610 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
611 return kvm_nr_uret_msrs++;
612 }
613 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
614
kvm_find_user_return_msr(u32 msr)615 int kvm_find_user_return_msr(u32 msr)
616 {
617 int i;
618
619 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
620 if (kvm_uret_msrs_list[i] == msr)
621 return i;
622 }
623 return -1;
624 }
625 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
626
kvm_user_return_msr_cpu_online(void)627 static void kvm_user_return_msr_cpu_online(void)
628 {
629 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
630 u64 value;
631 int i;
632
633 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
634 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
635 msrs->values[i].host = value;
636 msrs->values[i].curr = value;
637 }
638 }
639
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)640 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
641 {
642 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
643 int err;
644
645 value = (value & mask) | (msrs->values[slot].host & ~mask);
646 if (value == msrs->values[slot].curr)
647 return 0;
648 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
649 if (err)
650 return 1;
651
652 msrs->values[slot].curr = value;
653 if (!msrs->registered) {
654 msrs->urn.on_user_return = kvm_on_user_return;
655 user_return_notifier_register(&msrs->urn);
656 msrs->registered = true;
657 }
658 return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
661
drop_user_return_notifiers(void)662 static void drop_user_return_notifiers(void)
663 {
664 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
665
666 if (msrs->registered)
667 kvm_on_user_return(&msrs->urn);
668 }
669
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)670 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
671 {
672 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
673 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
674 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
675 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
676
677 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
678 return 1;
679 if (!msr_info->host_initiated) {
680 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
681 return 1;
682 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
683 return 1;
684 }
685
686 kvm_lapic_set_base(vcpu, msr_info->data);
687 kvm_recalculate_apic_map(vcpu->kvm);
688 return 0;
689 }
690
691 /*
692 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
693 *
694 * Hardware virtualization extension instructions may fault if a reboot turns
695 * off virtualization while processes are running. Usually after catching the
696 * fault we just panic; during reboot instead the instruction is ignored.
697 */
kvm_spurious_fault(void)698 noinstr void kvm_spurious_fault(void)
699 {
700 /* Fault while not rebooting. We want the trace. */
701 BUG_ON(!kvm_rebooting);
702 }
703 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
704
705 #define EXCPT_BENIGN 0
706 #define EXCPT_CONTRIBUTORY 1
707 #define EXCPT_PF 2
708
exception_class(int vector)709 static int exception_class(int vector)
710 {
711 switch (vector) {
712 case PF_VECTOR:
713 return EXCPT_PF;
714 case DE_VECTOR:
715 case TS_VECTOR:
716 case NP_VECTOR:
717 case SS_VECTOR:
718 case GP_VECTOR:
719 return EXCPT_CONTRIBUTORY;
720 default:
721 break;
722 }
723 return EXCPT_BENIGN;
724 }
725
726 #define EXCPT_FAULT 0
727 #define EXCPT_TRAP 1
728 #define EXCPT_ABORT 2
729 #define EXCPT_INTERRUPT 3
730 #define EXCPT_DB 4
731
exception_type(int vector)732 static int exception_type(int vector)
733 {
734 unsigned int mask;
735
736 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
737 return EXCPT_INTERRUPT;
738
739 mask = 1 << vector;
740
741 /*
742 * #DBs can be trap-like or fault-like, the caller must check other CPU
743 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
744 */
745 if (mask & (1 << DB_VECTOR))
746 return EXCPT_DB;
747
748 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
749 return EXCPT_TRAP;
750
751 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
752 return EXCPT_ABORT;
753
754 /* Reserved exceptions will result in fault */
755 return EXCPT_FAULT;
756 }
757
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)758 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
759 struct kvm_queued_exception *ex)
760 {
761 if (!ex->has_payload)
762 return;
763
764 switch (ex->vector) {
765 case DB_VECTOR:
766 /*
767 * "Certain debug exceptions may clear bit 0-3. The
768 * remaining contents of the DR6 register are never
769 * cleared by the processor".
770 */
771 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
772 /*
773 * In order to reflect the #DB exception payload in guest
774 * dr6, three components need to be considered: active low
775 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
776 * DR6_BS and DR6_BT)
777 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
778 * In the target guest dr6:
779 * FIXED_1 bits should always be set.
780 * Active low bits should be cleared if 1-setting in payload.
781 * Active high bits should be set if 1-setting in payload.
782 *
783 * Note, the payload is compatible with the pending debug
784 * exceptions/exit qualification under VMX, that active_low bits
785 * are active high in payload.
786 * So they need to be flipped for DR6.
787 */
788 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
789 vcpu->arch.dr6 |= ex->payload;
790 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
791
792 /*
793 * The #DB payload is defined as compatible with the 'pending
794 * debug exceptions' field under VMX, not DR6. While bit 12 is
795 * defined in the 'pending debug exceptions' field (enabled
796 * breakpoint), it is reserved and must be zero in DR6.
797 */
798 vcpu->arch.dr6 &= ~BIT(12);
799 break;
800 case PF_VECTOR:
801 vcpu->arch.cr2 = ex->payload;
802 break;
803 }
804
805 ex->has_payload = false;
806 ex->payload = 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
809
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)810 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
811 bool has_error_code, u32 error_code,
812 bool has_payload, unsigned long payload)
813 {
814 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
815
816 ex->vector = vector;
817 ex->injected = false;
818 ex->pending = true;
819 ex->has_error_code = has_error_code;
820 ex->error_code = error_code;
821 ex->has_payload = has_payload;
822 ex->payload = payload;
823 }
824
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)825 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
826 unsigned nr, bool has_error, u32 error_code,
827 bool has_payload, unsigned long payload, bool reinject)
828 {
829 u32 prev_nr;
830 int class1, class2;
831
832 kvm_make_request(KVM_REQ_EVENT, vcpu);
833
834 /*
835 * If the exception is destined for L2 and isn't being reinjected,
836 * morph it to a VM-Exit if L1 wants to intercept the exception. A
837 * previously injected exception is not checked because it was checked
838 * when it was original queued, and re-checking is incorrect if _L1_
839 * injected the exception, in which case it's exempt from interception.
840 */
841 if (!reinject && is_guest_mode(vcpu) &&
842 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
843 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
844 has_payload, payload);
845 return;
846 }
847
848 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
849 queue:
850 if (reinject) {
851 /*
852 * On VM-Entry, an exception can be pending if and only
853 * if event injection was blocked by nested_run_pending.
854 * In that case, however, vcpu_enter_guest() requests an
855 * immediate exit, and the guest shouldn't proceed far
856 * enough to need reinjection.
857 */
858 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
859 vcpu->arch.exception.injected = true;
860 if (WARN_ON_ONCE(has_payload)) {
861 /*
862 * A reinjected event has already
863 * delivered its payload.
864 */
865 has_payload = false;
866 payload = 0;
867 }
868 } else {
869 vcpu->arch.exception.pending = true;
870 vcpu->arch.exception.injected = false;
871 }
872 vcpu->arch.exception.has_error_code = has_error;
873 vcpu->arch.exception.vector = nr;
874 vcpu->arch.exception.error_code = error_code;
875 vcpu->arch.exception.has_payload = has_payload;
876 vcpu->arch.exception.payload = payload;
877 if (!is_guest_mode(vcpu))
878 kvm_deliver_exception_payload(vcpu,
879 &vcpu->arch.exception);
880 return;
881 }
882
883 /* to check exception */
884 prev_nr = vcpu->arch.exception.vector;
885 if (prev_nr == DF_VECTOR) {
886 /* triple fault -> shutdown */
887 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
888 return;
889 }
890 class1 = exception_class(prev_nr);
891 class2 = exception_class(nr);
892 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
893 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
894 /*
895 * Synthesize #DF. Clear the previously injected or pending
896 * exception so as not to incorrectly trigger shutdown.
897 */
898 vcpu->arch.exception.injected = false;
899 vcpu->arch.exception.pending = false;
900
901 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
902 } else {
903 /* replace previous exception with a new one in a hope
904 that instruction re-execution will regenerate lost
905 exception */
906 goto queue;
907 }
908 }
909
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)910 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
911 {
912 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
913 }
914 EXPORT_SYMBOL_GPL(kvm_queue_exception);
915
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)916 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
917 {
918 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
919 }
920 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
921
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)922 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
923 unsigned long payload)
924 {
925 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
926 }
927 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
928
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)929 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
930 u32 error_code, unsigned long payload)
931 {
932 kvm_multiple_exception(vcpu, nr, true, error_code,
933 true, payload, false);
934 }
935
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)936 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
937 {
938 if (err)
939 kvm_inject_gp(vcpu, 0);
940 else
941 return kvm_skip_emulated_instruction(vcpu);
942
943 return 1;
944 }
945 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
946
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)947 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
948 {
949 if (err) {
950 kvm_inject_gp(vcpu, 0);
951 return 1;
952 }
953
954 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
955 EMULTYPE_COMPLETE_USER_EXIT);
956 }
957
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)958 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
959 {
960 ++vcpu->stat.pf_guest;
961
962 /*
963 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
964 * whether or not L1 wants to intercept "regular" #PF.
965 */
966 if (is_guest_mode(vcpu) && fault->async_page_fault)
967 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
968 true, fault->error_code,
969 true, fault->address);
970 else
971 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
972 fault->address);
973 }
974
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)975 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
976 struct x86_exception *fault)
977 {
978 struct kvm_mmu *fault_mmu;
979 WARN_ON_ONCE(fault->vector != PF_VECTOR);
980
981 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
982 vcpu->arch.walk_mmu;
983
984 /*
985 * Invalidate the TLB entry for the faulting address, if it exists,
986 * else the access will fault indefinitely (and to emulate hardware).
987 */
988 if ((fault->error_code & PFERR_PRESENT_MASK) &&
989 !(fault->error_code & PFERR_RSVD_MASK))
990 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
991 KVM_MMU_ROOT_CURRENT);
992
993 fault_mmu->inject_page_fault(vcpu, fault);
994 }
995 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
996
kvm_inject_nmi(struct kvm_vcpu * vcpu)997 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
998 {
999 atomic_inc(&vcpu->arch.nmi_queued);
1000 kvm_make_request(KVM_REQ_NMI, vcpu);
1001 }
1002
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1003 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1004 {
1005 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
1008
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1009 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1010 {
1011 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
1014
1015 /*
1016 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1017 * a #GP and return false.
1018 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1019 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1020 {
1021 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1022 return true;
1023 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1024 return false;
1025 }
1026
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1027 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1028 {
1029 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1030 return true;
1031
1032 kvm_queue_exception(vcpu, UD_VECTOR);
1033 return false;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_require_dr);
1036
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1037 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1038 {
1039 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1040 }
1041
1042 /*
1043 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1044 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1045 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1046 {
1047 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1048 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1049 gpa_t real_gpa;
1050 int i;
1051 int ret;
1052 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1053
1054 /*
1055 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1056 * to an L1 GPA.
1057 */
1058 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1059 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1060 if (real_gpa == INVALID_GPA)
1061 return 0;
1062
1063 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1064 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1065 cr3 & GENMASK(11, 5), sizeof(pdpte));
1066 if (ret < 0)
1067 return 0;
1068
1069 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1070 if ((pdpte[i] & PT_PRESENT_MASK) &&
1071 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1072 return 0;
1073 }
1074 }
1075
1076 /*
1077 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1078 * Shadow page roots need to be reconstructed instead.
1079 */
1080 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1081 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1082
1083 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1084 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1085 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1086 vcpu->arch.pdptrs_from_userspace = false;
1087
1088 return 1;
1089 }
1090 EXPORT_SYMBOL_GPL(load_pdptrs);
1091
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1092 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1093 {
1094 #ifdef CONFIG_X86_64
1095 if (cr0 & 0xffffffff00000000UL)
1096 return false;
1097 #endif
1098
1099 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1100 return false;
1101
1102 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1103 return false;
1104
1105 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1106 }
1107
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1108 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1109 {
1110 /*
1111 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1112 * indirect shadow MMUs. If paging is disabled, no updates are needed
1113 * as there are no permission bits to emulate. If TDP is enabled, the
1114 * MMU's metadata needs to be updated, e.g. so that emulating guest
1115 * translations does the right thing, but there's no need to unload the
1116 * root as CR0.WP doesn't affect SPTEs.
1117 */
1118 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1119 if (!(cr0 & X86_CR0_PG))
1120 return;
1121
1122 if (tdp_enabled) {
1123 kvm_init_mmu(vcpu);
1124 return;
1125 }
1126 }
1127
1128 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1129 kvm_clear_async_pf_completion_queue(vcpu);
1130 kvm_async_pf_hash_reset(vcpu);
1131
1132 /*
1133 * Clearing CR0.PG is defined to flush the TLB from the guest's
1134 * perspective.
1135 */
1136 if (!(cr0 & X86_CR0_PG))
1137 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1138 }
1139
1140 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1141 kvm_mmu_reset_context(vcpu);
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1144
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1145 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1146 {
1147 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1148
1149 if (!kvm_is_valid_cr0(vcpu, cr0))
1150 return 1;
1151
1152 cr0 |= X86_CR0_ET;
1153
1154 /* Write to CR0 reserved bits are ignored, even on Intel. */
1155 cr0 &= ~CR0_RESERVED_BITS;
1156
1157 #ifdef CONFIG_X86_64
1158 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1159 (cr0 & X86_CR0_PG)) {
1160 int cs_db, cs_l;
1161
1162 if (!is_pae(vcpu))
1163 return 1;
1164 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1165 if (cs_l)
1166 return 1;
1167 }
1168 #endif
1169 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1170 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1171 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172 return 1;
1173
1174 if (!(cr0 & X86_CR0_PG) &&
1175 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1176 return 1;
1177
1178 kvm_x86_call(set_cr0)(vcpu, cr0);
1179
1180 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1181
1182 return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1185
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1186 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1187 {
1188 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_lmsw);
1191
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1192 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1193 {
1194 if (vcpu->arch.guest_state_protected)
1195 return;
1196
1197 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1198
1199 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1200 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1201
1202 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1203 vcpu->arch.ia32_xss != kvm_host.xss)
1204 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1205 }
1206
1207 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1208 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1209 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1210 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1211 write_pkru(vcpu->arch.pkru);
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1214
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1215 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1216 {
1217 if (vcpu->arch.guest_state_protected)
1218 return;
1219
1220 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1221 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1222 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1223 vcpu->arch.pkru = rdpkru();
1224 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1225 write_pkru(vcpu->arch.host_pkru);
1226 }
1227
1228 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1229
1230 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1231 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1232
1233 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1234 vcpu->arch.ia32_xss != kvm_host.xss)
1235 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1236 }
1237
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1240
1241 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1242 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1243 {
1244 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1245 }
1246 #endif
1247
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1248 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1249 {
1250 u64 xcr0 = xcr;
1251 u64 old_xcr0 = vcpu->arch.xcr0;
1252 u64 valid_bits;
1253
1254 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1255 if (index != XCR_XFEATURE_ENABLED_MASK)
1256 return 1;
1257 if (!(xcr0 & XFEATURE_MASK_FP))
1258 return 1;
1259 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1260 return 1;
1261
1262 /*
1263 * Do not allow the guest to set bits that we do not support
1264 * saving. However, xcr0 bit 0 is always set, even if the
1265 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1266 */
1267 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1268 if (xcr0 & ~valid_bits)
1269 return 1;
1270
1271 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1272 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1273 return 1;
1274
1275 if (xcr0 & XFEATURE_MASK_AVX512) {
1276 if (!(xcr0 & XFEATURE_MASK_YMM))
1277 return 1;
1278 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1279 return 1;
1280 }
1281
1282 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1283 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1284 return 1;
1285
1286 vcpu->arch.xcr0 = xcr0;
1287
1288 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1289 kvm_update_cpuid_runtime(vcpu);
1290 return 0;
1291 }
1292
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1293 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1294 {
1295 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1296 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1297 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1298 kvm_inject_gp(vcpu, 0);
1299 return 1;
1300 }
1301
1302 return kvm_skip_emulated_instruction(vcpu);
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1305
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1306 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1307 {
1308 if (cr4 & cr4_reserved_bits)
1309 return false;
1310
1311 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1312 return false;
1313
1314 return true;
1315 }
1316 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1317
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1318 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1319 {
1320 return __kvm_is_valid_cr4(vcpu, cr4) &&
1321 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1322 }
1323
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1324 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1325 {
1326 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1327 kvm_mmu_reset_context(vcpu);
1328
1329 /*
1330 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1331 * according to the SDM; however, stale prev_roots could be reused
1332 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1333 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1334 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1335 * so fall through.
1336 */
1337 if (!tdp_enabled &&
1338 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1339 kvm_mmu_unload(vcpu);
1340
1341 /*
1342 * The TLB has to be flushed for all PCIDs if any of the following
1343 * (architecturally required) changes happen:
1344 * - CR4.PCIDE is changed from 1 to 0
1345 * - CR4.PGE is toggled
1346 *
1347 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1348 */
1349 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1350 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1351 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1352
1353 /*
1354 * The TLB has to be flushed for the current PCID if any of the
1355 * following (architecturally required) changes happen:
1356 * - CR4.SMEP is changed from 0 to 1
1357 * - CR4.PAE is toggled
1358 */
1359 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1360 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1361 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1362
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1365
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1366 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1367 {
1368 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1369
1370 if (!kvm_is_valid_cr4(vcpu, cr4))
1371 return 1;
1372
1373 if (is_long_mode(vcpu)) {
1374 if (!(cr4 & X86_CR4_PAE))
1375 return 1;
1376 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1377 return 1;
1378 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1379 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1380 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1381 return 1;
1382
1383 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1384 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1385 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1386 return 1;
1387 }
1388
1389 kvm_x86_call(set_cr4)(vcpu, cr4);
1390
1391 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1392
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1396
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1397 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1398 {
1399 struct kvm_mmu *mmu = vcpu->arch.mmu;
1400 unsigned long roots_to_free = 0;
1401 int i;
1402
1403 /*
1404 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1405 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1406 * also via the emulator. KVM's TDP page tables are not in the scope of
1407 * the invalidation, but the guest's TLB entries need to be flushed as
1408 * the CPU may have cached entries in its TLB for the target PCID.
1409 */
1410 if (unlikely(tdp_enabled)) {
1411 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1412 return;
1413 }
1414
1415 /*
1416 * If neither the current CR3 nor any of the prev_roots use the given
1417 * PCID, then nothing needs to be done here because a resync will
1418 * happen anyway before switching to any other CR3.
1419 */
1420 if (kvm_get_active_pcid(vcpu) == pcid) {
1421 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1422 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1423 }
1424
1425 /*
1426 * If PCID is disabled, there is no need to free prev_roots even if the
1427 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1428 * with PCIDE=0.
1429 */
1430 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1431 return;
1432
1433 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1434 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1435 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1436
1437 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1438 }
1439
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1440 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1441 {
1442 bool skip_tlb_flush = false;
1443 unsigned long pcid = 0;
1444 #ifdef CONFIG_X86_64
1445 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1446 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1447 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1448 pcid = cr3 & X86_CR3_PCID_MASK;
1449 }
1450 #endif
1451
1452 /* PDPTRs are always reloaded for PAE paging. */
1453 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1454 goto handle_tlb_flush;
1455
1456 /*
1457 * Do not condition the GPA check on long mode, this helper is used to
1458 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1459 * the current vCPU mode is accurate.
1460 */
1461 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1462 return 1;
1463
1464 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1465 return 1;
1466
1467 if (cr3 != kvm_read_cr3(vcpu))
1468 kvm_mmu_new_pgd(vcpu, cr3);
1469
1470 vcpu->arch.cr3 = cr3;
1471 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1472 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1473
1474 handle_tlb_flush:
1475 /*
1476 * A load of CR3 that flushes the TLB flushes only the current PCID,
1477 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1478 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1479 * and it's impossible to use a non-zero PCID when PCID is disabled,
1480 * i.e. only PCID=0 can be relevant.
1481 */
1482 if (!skip_tlb_flush)
1483 kvm_invalidate_pcid(vcpu, pcid);
1484
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1488
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1489 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1490 {
1491 if (cr8 & CR8_RESERVED_BITS)
1492 return 1;
1493 if (lapic_in_kernel(vcpu))
1494 kvm_lapic_set_tpr(vcpu, cr8);
1495 else
1496 vcpu->arch.cr8 = cr8;
1497 return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1500
kvm_get_cr8(struct kvm_vcpu * vcpu)1501 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1502 {
1503 if (lapic_in_kernel(vcpu))
1504 return kvm_lapic_get_cr8(vcpu);
1505 else
1506 return vcpu->arch.cr8;
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1509
kvm_update_dr0123(struct kvm_vcpu * vcpu)1510 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1511 {
1512 int i;
1513
1514 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1515 for (i = 0; i < KVM_NR_DB_REGS; i++)
1516 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1517 }
1518 }
1519
kvm_update_dr7(struct kvm_vcpu * vcpu)1520 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1521 {
1522 unsigned long dr7;
1523
1524 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1525 dr7 = vcpu->arch.guest_debug_dr7;
1526 else
1527 dr7 = vcpu->arch.dr7;
1528 kvm_x86_call(set_dr7)(vcpu, dr7);
1529 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1530 if (dr7 & DR7_BP_EN_MASK)
1531 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1534
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1535 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1536 {
1537 u64 fixed = DR6_FIXED_1;
1538
1539 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1540 fixed |= DR6_RTM;
1541
1542 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1543 fixed |= DR6_BUS_LOCK;
1544 return fixed;
1545 }
1546
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1547 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1548 {
1549 size_t size = ARRAY_SIZE(vcpu->arch.db);
1550
1551 switch (dr) {
1552 case 0 ... 3:
1553 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1554 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1555 vcpu->arch.eff_db[dr] = val;
1556 break;
1557 case 4:
1558 case 6:
1559 if (!kvm_dr6_valid(val))
1560 return 1; /* #GP */
1561 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1562 break;
1563 case 5:
1564 default: /* 7 */
1565 if (!kvm_dr7_valid(val))
1566 return 1; /* #GP */
1567 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1568 kvm_update_dr7(vcpu);
1569 break;
1570 }
1571
1572 return 0;
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_set_dr);
1575
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1576 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1577 {
1578 size_t size = ARRAY_SIZE(vcpu->arch.db);
1579
1580 switch (dr) {
1581 case 0 ... 3:
1582 return vcpu->arch.db[array_index_nospec(dr, size)];
1583 case 4:
1584 case 6:
1585 return vcpu->arch.dr6;
1586 case 5:
1587 default: /* 7 */
1588 return vcpu->arch.dr7;
1589 }
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_get_dr);
1592
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1593 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1594 {
1595 u32 ecx = kvm_rcx_read(vcpu);
1596 u64 data;
1597
1598 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1599 kvm_inject_gp(vcpu, 0);
1600 return 1;
1601 }
1602
1603 kvm_rax_write(vcpu, (u32)data);
1604 kvm_rdx_write(vcpu, data >> 32);
1605 return kvm_skip_emulated_instruction(vcpu);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1608
1609 /*
1610 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1611 * does not yet virtualize. These include:
1612 * 10 - MISC_PACKAGE_CTRLS
1613 * 11 - ENERGY_FILTERING_CTL
1614 * 12 - DOITM
1615 * 18 - FB_CLEAR_CTRL
1616 * 21 - XAPIC_DISABLE_STATUS
1617 * 23 - OVERCLOCKING_STATUS
1618 */
1619
1620 #define KVM_SUPPORTED_ARCH_CAP \
1621 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1622 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1623 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1624 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1625 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1626 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1627
kvm_get_arch_capabilities(void)1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631
1632 /*
1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 * the nested hypervisor runs with NX huge pages. If it is not,
1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 * L1 guests, so it need not worry about its own (L2) guests.
1637 */
1638 data |= ARCH_CAP_PSCHANGE_MC_NO;
1639
1640 /*
1641 * If we're doing cache flushes (either "always" or "cond")
1642 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 * If an outer hypervisor is doing the cache flush for us
1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 * capability to the guest too, and if EPT is disabled we're not
1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 * require a nested hypervisor to do a flush of its own.
1648 */
1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651
1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 data |= ARCH_CAP_RDCL_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 data |= ARCH_CAP_SSB_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 data |= ARCH_CAP_MDS_NO;
1658 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1659 data |= ARCH_CAP_RFDS_NO;
1660 if (!boot_cpu_has_bug(X86_BUG_ITS))
1661 data |= ARCH_CAP_ITS_NO;
1662
1663 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1664 /*
1665 * If RTM=0 because the kernel has disabled TSX, the host might
1666 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1667 * and therefore knows that there cannot be TAA) but keep
1668 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1669 * and we want to allow migrating those guests to tsx=off hosts.
1670 */
1671 data &= ~ARCH_CAP_TAA_NO;
1672 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1673 data |= ARCH_CAP_TAA_NO;
1674 } else {
1675 /*
1676 * Nothing to do here; we emulate TSX_CTRL if present on the
1677 * host so the guest can choose between disabling TSX or
1678 * using VERW to clear CPU buffers.
1679 */
1680 }
1681
1682 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1683 data |= ARCH_CAP_GDS_NO;
1684
1685 return data;
1686 }
1687
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1688 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1689 bool host_initiated)
1690 {
1691 WARN_ON_ONCE(!host_initiated);
1692
1693 switch (index) {
1694 case MSR_IA32_ARCH_CAPABILITIES:
1695 *data = kvm_get_arch_capabilities();
1696 break;
1697 case MSR_IA32_PERF_CAPABILITIES:
1698 *data = kvm_caps.supported_perf_cap;
1699 break;
1700 case MSR_IA32_UCODE_REV:
1701 rdmsrl_safe(index, data);
1702 break;
1703 default:
1704 return kvm_x86_call(get_feature_msr)(index, data);
1705 }
1706 return 0;
1707 }
1708
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1709 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1710 {
1711 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1712 kvm_get_feature_msr);
1713 }
1714
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1715 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1716 {
1717 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1718 return false;
1719
1720 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1721 return false;
1722
1723 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1724 return false;
1725
1726 if (efer & (EFER_LME | EFER_LMA) &&
1727 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1728 return false;
1729
1730 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1731 return false;
1732
1733 return true;
1734
1735 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1736 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1737 {
1738 if (efer & efer_reserved_bits)
1739 return false;
1740
1741 return __kvm_valid_efer(vcpu, efer);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1744
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1745 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1746 {
1747 u64 old_efer = vcpu->arch.efer;
1748 u64 efer = msr_info->data;
1749 int r;
1750
1751 if (efer & efer_reserved_bits)
1752 return 1;
1753
1754 if (!msr_info->host_initiated) {
1755 if (!__kvm_valid_efer(vcpu, efer))
1756 return 1;
1757
1758 if (is_paging(vcpu) &&
1759 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1760 return 1;
1761 }
1762
1763 efer &= ~EFER_LMA;
1764 efer |= vcpu->arch.efer & EFER_LMA;
1765
1766 r = kvm_x86_call(set_efer)(vcpu, efer);
1767 if (r) {
1768 WARN_ON(r > 0);
1769 return r;
1770 }
1771
1772 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1773 kvm_mmu_reset_context(vcpu);
1774
1775 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1776 (efer & EFER_SVME))
1777 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1778
1779 return 0;
1780 }
1781
kvm_enable_efer_bits(u64 mask)1782 void kvm_enable_efer_bits(u64 mask)
1783 {
1784 efer_reserved_bits &= ~mask;
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1787
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1788 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1789 {
1790 struct kvm_x86_msr_filter *msr_filter;
1791 struct msr_bitmap_range *ranges;
1792 struct kvm *kvm = vcpu->kvm;
1793 bool allowed;
1794 int idx;
1795 u32 i;
1796
1797 /* x2APIC MSRs do not support filtering. */
1798 if (index >= 0x800 && index <= 0x8ff)
1799 return true;
1800
1801 idx = srcu_read_lock(&kvm->srcu);
1802
1803 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1804 if (!msr_filter) {
1805 allowed = true;
1806 goto out;
1807 }
1808
1809 allowed = msr_filter->default_allow;
1810 ranges = msr_filter->ranges;
1811
1812 for (i = 0; i < msr_filter->count; i++) {
1813 u32 start = ranges[i].base;
1814 u32 end = start + ranges[i].nmsrs;
1815 u32 flags = ranges[i].flags;
1816 unsigned long *bitmap = ranges[i].bitmap;
1817
1818 if ((index >= start) && (index < end) && (flags & type)) {
1819 allowed = test_bit(index - start, bitmap);
1820 break;
1821 }
1822 }
1823
1824 out:
1825 srcu_read_unlock(&kvm->srcu, idx);
1826
1827 return allowed;
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1830
1831 /*
1832 * Write @data into the MSR specified by @index. Select MSR specific fault
1833 * checks are bypassed if @host_initiated is %true.
1834 * Returns 0 on success, non-0 otherwise.
1835 * Assumes vcpu_load() was already called.
1836 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1837 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1838 bool host_initiated)
1839 {
1840 struct msr_data msr;
1841
1842 switch (index) {
1843 case MSR_FS_BASE:
1844 case MSR_GS_BASE:
1845 case MSR_KERNEL_GS_BASE:
1846 case MSR_CSTAR:
1847 case MSR_LSTAR:
1848 if (is_noncanonical_msr_address(data, vcpu))
1849 return 1;
1850 break;
1851 case MSR_IA32_SYSENTER_EIP:
1852 case MSR_IA32_SYSENTER_ESP:
1853 /*
1854 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1855 * non-canonical address is written on Intel but not on
1856 * AMD (which ignores the top 32-bits, because it does
1857 * not implement 64-bit SYSENTER).
1858 *
1859 * 64-bit code should hence be able to write a non-canonical
1860 * value on AMD. Making the address canonical ensures that
1861 * vmentry does not fail on Intel after writing a non-canonical
1862 * value, and that something deterministic happens if the guest
1863 * invokes 64-bit SYSENTER.
1864 */
1865 data = __canonical_address(data, max_host_virt_addr_bits());
1866 break;
1867 case MSR_TSC_AUX:
1868 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1869 return 1;
1870
1871 if (!host_initiated &&
1872 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1873 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1874 return 1;
1875
1876 /*
1877 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1878 * incomplete and conflicting architectural behavior. Current
1879 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1880 * reserved and always read as zeros. Enforce Intel's reserved
1881 * bits check if the guest CPU is Intel compatible, otherwise
1882 * clear the bits. This ensures cross-vendor migration will
1883 * provide consistent behavior for the guest.
1884 */
1885 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1886 return 1;
1887
1888 data = (u32)data;
1889 break;
1890 }
1891
1892 msr.data = data;
1893 msr.index = index;
1894 msr.host_initiated = host_initiated;
1895
1896 return kvm_x86_call(set_msr)(vcpu, &msr);
1897 }
1898
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1899 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1900 bool host_initiated)
1901 {
1902 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1903 }
1904
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 u32 index, u64 data, bool host_initiated)
1907 {
1908 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1909 _kvm_set_msr);
1910 }
1911
1912 /*
1913 * Read the MSR specified by @index into @data. Select MSR specific fault
1914 * checks are bypassed if @host_initiated is %true.
1915 * Returns 0 on success, non-0 otherwise.
1916 * Assumes vcpu_load() was already called.
1917 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1918 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1919 bool host_initiated)
1920 {
1921 struct msr_data msr;
1922 int ret;
1923
1924 switch (index) {
1925 case MSR_TSC_AUX:
1926 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1927 return 1;
1928
1929 if (!host_initiated &&
1930 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1931 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1932 return 1;
1933 break;
1934 }
1935
1936 msr.index = index;
1937 msr.host_initiated = host_initiated;
1938
1939 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1940 if (!ret)
1941 *data = msr.data;
1942 return ret;
1943 }
1944
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1945 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1946 u32 index, u64 *data, bool host_initiated)
1947 {
1948 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1949 __kvm_get_msr);
1950 }
1951
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1952 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1953 {
1954 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1955 return KVM_MSR_RET_FILTERED;
1956 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1959
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1960 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1961 {
1962 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1963 return KVM_MSR_RET_FILTERED;
1964 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1967
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1968 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1969 {
1970 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_get_msr);
1973
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1974 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_set_msr);
1979
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1980 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1981 {
1982 if (!vcpu->run->msr.error) {
1983 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1984 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1985 }
1986 }
1987
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1988 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1989 {
1990 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1991 }
1992
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1993 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995 complete_userspace_rdmsr(vcpu);
1996 return complete_emulated_msr_access(vcpu);
1997 }
1998
complete_fast_msr_access(struct kvm_vcpu * vcpu)1999 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2002 }
2003
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2004 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006 complete_userspace_rdmsr(vcpu);
2007 return complete_fast_msr_access(vcpu);
2008 }
2009
kvm_msr_reason(int r)2010 static u64 kvm_msr_reason(int r)
2011 {
2012 switch (r) {
2013 case KVM_MSR_RET_UNSUPPORTED:
2014 return KVM_MSR_EXIT_REASON_UNKNOWN;
2015 case KVM_MSR_RET_FILTERED:
2016 return KVM_MSR_EXIT_REASON_FILTER;
2017 default:
2018 return KVM_MSR_EXIT_REASON_INVAL;
2019 }
2020 }
2021
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2022 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2023 u32 exit_reason, u64 data,
2024 int (*completion)(struct kvm_vcpu *vcpu),
2025 int r)
2026 {
2027 u64 msr_reason = kvm_msr_reason(r);
2028
2029 /* Check if the user wanted to know about this MSR fault */
2030 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2031 return 0;
2032
2033 vcpu->run->exit_reason = exit_reason;
2034 vcpu->run->msr.error = 0;
2035 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2036 vcpu->run->msr.reason = msr_reason;
2037 vcpu->run->msr.index = index;
2038 vcpu->run->msr.data = data;
2039 vcpu->arch.complete_userspace_io = completion;
2040
2041 return 1;
2042 }
2043
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2044 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2045 {
2046 u32 ecx = kvm_rcx_read(vcpu);
2047 u64 data;
2048 int r;
2049
2050 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2051
2052 if (!r) {
2053 trace_kvm_msr_read(ecx, data);
2054
2055 kvm_rax_write(vcpu, data & -1u);
2056 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2057 } else {
2058 /* MSR read failed? See if we should ask user space */
2059 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2060 complete_fast_rdmsr, r))
2061 return 0;
2062 trace_kvm_msr_read_ex(ecx);
2063 }
2064
2065 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2066 }
2067 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2068
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2069 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2070 {
2071 u32 ecx = kvm_rcx_read(vcpu);
2072 u64 data = kvm_read_edx_eax(vcpu);
2073 int r;
2074
2075 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2076
2077 if (!r) {
2078 trace_kvm_msr_write(ecx, data);
2079 } else {
2080 /* MSR write failed? See if we should ask user space */
2081 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2082 complete_fast_msr_access, r))
2083 return 0;
2084 /* Signal all other negative errors to userspace */
2085 if (r < 0)
2086 return r;
2087 trace_kvm_msr_write_ex(ecx, data);
2088 }
2089
2090 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2093
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2094 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2095 {
2096 return kvm_skip_emulated_instruction(vcpu);
2097 }
2098
kvm_emulate_invd(struct kvm_vcpu * vcpu)2099 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2100 {
2101 /* Treat an INVD instruction as a NOP and just skip it. */
2102 return kvm_emulate_as_nop(vcpu);
2103 }
2104 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2105
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2106 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2107 {
2108 kvm_queue_exception(vcpu, UD_VECTOR);
2109 return 1;
2110 }
2111 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2112
2113
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2114 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2115 {
2116 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2117 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2118 return kvm_handle_invalid_op(vcpu);
2119
2120 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2121 return kvm_emulate_as_nop(vcpu);
2122 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2123 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2124 {
2125 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2126 }
2127 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2128
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2129 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2130 {
2131 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2134
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2135 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2136 {
2137 xfer_to_guest_mode_prepare();
2138 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2139 xfer_to_guest_mode_work_pending();
2140 }
2141
2142 /*
2143 * The fast path for frequent and performance sensitive wrmsr emulation,
2144 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2145 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2146 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2147 * other cases which must be called after interrupts are enabled on the host.
2148 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2149 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2150 {
2151 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2152 return 1;
2153
2154 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2155 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2156 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2157 ((u32)(data >> 32) != X2APIC_BROADCAST))
2158 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2159
2160 return 1;
2161 }
2162
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2163 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2164 {
2165 if (!kvm_can_use_hv_timer(vcpu))
2166 return 1;
2167
2168 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169 return 0;
2170 }
2171
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2172 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2173 {
2174 u32 msr = kvm_rcx_read(vcpu);
2175 u64 data;
2176 fastpath_t ret;
2177 bool handled;
2178
2179 kvm_vcpu_srcu_read_lock(vcpu);
2180
2181 switch (msr) {
2182 case APIC_BASE_MSR + (APIC_ICR >> 4):
2183 data = kvm_read_edx_eax(vcpu);
2184 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2185 break;
2186 case MSR_IA32_TSC_DEADLINE:
2187 data = kvm_read_edx_eax(vcpu);
2188 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2189 break;
2190 default:
2191 handled = false;
2192 break;
2193 }
2194
2195 if (handled) {
2196 if (!kvm_skip_emulated_instruction(vcpu))
2197 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2198 else
2199 ret = EXIT_FASTPATH_REENTER_GUEST;
2200 trace_kvm_msr_write(msr, data);
2201 } else {
2202 ret = EXIT_FASTPATH_NONE;
2203 }
2204
2205 kvm_vcpu_srcu_read_unlock(vcpu);
2206
2207 return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2210
2211 /*
2212 * Adapt set_msr() to msr_io()'s calling convention
2213 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2214 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2215 {
2216 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2217 }
2218
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2219 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221 u64 val;
2222
2223 /*
2224 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2225 * not support modifying the guest vCPU model on the fly, e.g. changing
2226 * the nVMX capabilities while L2 is running is nonsensical. Allow
2227 * writes of the same value, e.g. to allow userspace to blindly stuff
2228 * all MSRs when emulating RESET.
2229 */
2230 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2231 (do_get_msr(vcpu, index, &val) || *data != val))
2232 return -EINVAL;
2233
2234 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2235 }
2236
2237 #ifdef CONFIG_X86_64
2238 struct pvclock_clock {
2239 int vclock_mode;
2240 u64 cycle_last;
2241 u64 mask;
2242 u32 mult;
2243 u32 shift;
2244 u64 base_cycles;
2245 u64 offset;
2246 };
2247
2248 struct pvclock_gtod_data {
2249 seqcount_t seq;
2250
2251 struct pvclock_clock clock; /* extract of a clocksource struct */
2252 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2253
2254 ktime_t offs_boot;
2255 u64 wall_time_sec;
2256 };
2257
2258 static struct pvclock_gtod_data pvclock_gtod_data;
2259
update_pvclock_gtod(struct timekeeper * tk)2260 static void update_pvclock_gtod(struct timekeeper *tk)
2261 {
2262 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2263
2264 write_seqcount_begin(&vdata->seq);
2265
2266 /* copy pvclock gtod data */
2267 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2268 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2269 vdata->clock.mask = tk->tkr_mono.mask;
2270 vdata->clock.mult = tk->tkr_mono.mult;
2271 vdata->clock.shift = tk->tkr_mono.shift;
2272 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2273 vdata->clock.offset = tk->tkr_mono.base;
2274
2275 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2276 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2277 vdata->raw_clock.mask = tk->tkr_raw.mask;
2278 vdata->raw_clock.mult = tk->tkr_raw.mult;
2279 vdata->raw_clock.shift = tk->tkr_raw.shift;
2280 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2281 vdata->raw_clock.offset = tk->tkr_raw.base;
2282
2283 vdata->wall_time_sec = tk->xtime_sec;
2284
2285 vdata->offs_boot = tk->offs_boot;
2286
2287 write_seqcount_end(&vdata->seq);
2288 }
2289
get_kvmclock_base_ns(void)2290 static s64 get_kvmclock_base_ns(void)
2291 {
2292 /* Count up from boot time, but with the frequency of the raw clock. */
2293 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2294 }
2295 #else
get_kvmclock_base_ns(void)2296 static s64 get_kvmclock_base_ns(void)
2297 {
2298 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2299 return ktime_get_boottime_ns();
2300 }
2301 #endif
2302
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2303 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2304 {
2305 int version;
2306 int r;
2307 struct pvclock_wall_clock wc;
2308 u32 wc_sec_hi;
2309 u64 wall_nsec;
2310
2311 if (!wall_clock)
2312 return;
2313
2314 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2315 if (r)
2316 return;
2317
2318 if (version & 1)
2319 ++version; /* first time write, random junk */
2320
2321 ++version;
2322
2323 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2324 return;
2325
2326 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2327
2328 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2329 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2330 wc.version = version;
2331
2332 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2333
2334 if (sec_hi_ofs) {
2335 wc_sec_hi = wall_nsec >> 32;
2336 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2337 &wc_sec_hi, sizeof(wc_sec_hi));
2338 }
2339
2340 version++;
2341 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2342 }
2343
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2344 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2345 bool old_msr, bool host_initiated)
2346 {
2347 struct kvm_arch *ka = &vcpu->kvm->arch;
2348
2349 if (vcpu->vcpu_id == 0 && !host_initiated) {
2350 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2351 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2352
2353 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2354 }
2355
2356 vcpu->arch.time = system_time;
2357 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2358
2359 /* we verify if the enable bit is set... */
2360 if (system_time & 1)
2361 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2362 sizeof(struct pvclock_vcpu_time_info));
2363 else
2364 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2365
2366 return;
2367 }
2368
div_frac(uint32_t dividend,uint32_t divisor)2369 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2370 {
2371 do_shl32_div32(dividend, divisor);
2372 return dividend;
2373 }
2374
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2375 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2376 s8 *pshift, u32 *pmultiplier)
2377 {
2378 uint64_t scaled64;
2379 int32_t shift = 0;
2380 uint64_t tps64;
2381 uint32_t tps32;
2382
2383 tps64 = base_hz;
2384 scaled64 = scaled_hz;
2385 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2386 tps64 >>= 1;
2387 shift--;
2388 }
2389
2390 tps32 = (uint32_t)tps64;
2391 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2392 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2393 scaled64 >>= 1;
2394 else
2395 tps32 <<= 1;
2396 shift++;
2397 }
2398
2399 *pshift = shift;
2400 *pmultiplier = div_frac(scaled64, tps32);
2401 }
2402
2403 #ifdef CONFIG_X86_64
2404 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2405 #endif
2406
2407 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2408 static unsigned long max_tsc_khz;
2409
adjust_tsc_khz(u32 khz,s32 ppm)2410 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2411 {
2412 u64 v = (u64)khz * (1000000 + ppm);
2413 do_div(v, 1000000);
2414 return v;
2415 }
2416
2417 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2418
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2419 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2420 {
2421 u64 ratio;
2422
2423 /* Guest TSC same frequency as host TSC? */
2424 if (!scale) {
2425 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2426 return 0;
2427 }
2428
2429 /* TSC scaling supported? */
2430 if (!kvm_caps.has_tsc_control) {
2431 if (user_tsc_khz > tsc_khz) {
2432 vcpu->arch.tsc_catchup = 1;
2433 vcpu->arch.tsc_always_catchup = 1;
2434 return 0;
2435 } else {
2436 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2437 return -1;
2438 }
2439 }
2440
2441 /* TSC scaling required - calculate ratio */
2442 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2443 user_tsc_khz, tsc_khz);
2444
2445 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2446 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2447 user_tsc_khz);
2448 return -1;
2449 }
2450
2451 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2452 return 0;
2453 }
2454
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2455 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2456 {
2457 u32 thresh_lo, thresh_hi;
2458 int use_scaling = 0;
2459
2460 /* tsc_khz can be zero if TSC calibration fails */
2461 if (user_tsc_khz == 0) {
2462 /* set tsc_scaling_ratio to a safe value */
2463 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2464 return -1;
2465 }
2466
2467 /* Compute a scale to convert nanoseconds in TSC cycles */
2468 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2469 &vcpu->arch.virtual_tsc_shift,
2470 &vcpu->arch.virtual_tsc_mult);
2471 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2472
2473 /*
2474 * Compute the variation in TSC rate which is acceptable
2475 * within the range of tolerance and decide if the
2476 * rate being applied is within that bounds of the hardware
2477 * rate. If so, no scaling or compensation need be done.
2478 */
2479 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2480 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2481 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2482 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2483 user_tsc_khz, thresh_lo, thresh_hi);
2484 use_scaling = 1;
2485 }
2486 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2487 }
2488
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2489 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2490 {
2491 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2492 vcpu->arch.virtual_tsc_mult,
2493 vcpu->arch.virtual_tsc_shift);
2494 tsc += vcpu->arch.this_tsc_write;
2495 return tsc;
2496 }
2497
2498 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2499 static inline bool gtod_is_based_on_tsc(int mode)
2500 {
2501 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2502 }
2503 #endif
2504
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2506 {
2507 #ifdef CONFIG_X86_64
2508 struct kvm_arch *ka = &vcpu->kvm->arch;
2509 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2510
2511 /*
2512 * To use the masterclock, the host clocksource must be based on TSC
2513 * and all vCPUs must have matching TSCs. Note, the count for matching
2514 * vCPUs doesn't include the reference vCPU, hence "+1".
2515 */
2516 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2517 atomic_read(&vcpu->kvm->online_vcpus)) &&
2518 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2519
2520 /*
2521 * Request a masterclock update if the masterclock needs to be toggled
2522 * on/off, or when starting a new generation and the masterclock is
2523 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2524 * taken _after_ the new generation is created).
2525 */
2526 if ((ka->use_master_clock && new_generation) ||
2527 (ka->use_master_clock != use_master_clock))
2528 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2529
2530 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2531 atomic_read(&vcpu->kvm->online_vcpus),
2532 ka->use_master_clock, gtod->clock.vclock_mode);
2533 #endif
2534 }
2535
2536 /*
2537 * Multiply tsc by a fixed point number represented by ratio.
2538 *
2539 * The most significant 64-N bits (mult) of ratio represent the
2540 * integral part of the fixed point number; the remaining N bits
2541 * (frac) represent the fractional part, ie. ratio represents a fixed
2542 * point number (mult + frac * 2^(-N)).
2543 *
2544 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2545 */
__scale_tsc(u64 ratio,u64 tsc)2546 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2547 {
2548 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2549 }
2550
kvm_scale_tsc(u64 tsc,u64 ratio)2551 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2552 {
2553 u64 _tsc = tsc;
2554
2555 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2556 _tsc = __scale_tsc(ratio, tsc);
2557
2558 return _tsc;
2559 }
2560
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2561 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2562 {
2563 u64 tsc;
2564
2565 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2566
2567 return target_tsc - tsc;
2568 }
2569
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2570 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2571 {
2572 return vcpu->arch.l1_tsc_offset +
2573 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2574 }
2575 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2576
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2577 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2578 {
2579 u64 nested_offset;
2580
2581 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2582 nested_offset = l1_offset;
2583 else
2584 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2585 kvm_caps.tsc_scaling_ratio_frac_bits);
2586
2587 nested_offset += l2_offset;
2588 return nested_offset;
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2591
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2592 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2593 {
2594 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2595 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2596 kvm_caps.tsc_scaling_ratio_frac_bits);
2597
2598 return l1_multiplier;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2601
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2602 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2603 {
2604 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2605 vcpu->arch.l1_tsc_offset,
2606 l1_offset);
2607
2608 vcpu->arch.l1_tsc_offset = l1_offset;
2609
2610 /*
2611 * If we are here because L1 chose not to trap WRMSR to TSC then
2612 * according to the spec this should set L1's TSC (as opposed to
2613 * setting L1's offset for L2).
2614 */
2615 if (is_guest_mode(vcpu))
2616 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2617 l1_offset,
2618 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2619 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2620 else
2621 vcpu->arch.tsc_offset = l1_offset;
2622
2623 kvm_x86_call(write_tsc_offset)(vcpu);
2624 }
2625
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2626 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2627 {
2628 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2629
2630 /* Userspace is changing the multiplier while L2 is active */
2631 if (is_guest_mode(vcpu))
2632 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2633 l1_multiplier,
2634 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2635 else
2636 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2637
2638 if (kvm_caps.has_tsc_control)
2639 kvm_x86_call(write_tsc_multiplier)(vcpu);
2640 }
2641
kvm_check_tsc_unstable(void)2642 static inline bool kvm_check_tsc_unstable(void)
2643 {
2644 #ifdef CONFIG_X86_64
2645 /*
2646 * TSC is marked unstable when we're running on Hyper-V,
2647 * 'TSC page' clocksource is good.
2648 */
2649 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2650 return false;
2651 #endif
2652 return check_tsc_unstable();
2653 }
2654
2655 /*
2656 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2657 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2658 * participates in.
2659 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2660 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2661 u64 ns, bool matched)
2662 {
2663 struct kvm *kvm = vcpu->kvm;
2664
2665 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2666
2667 /*
2668 * We also track th most recent recorded KHZ, write and time to
2669 * allow the matching interval to be extended at each write.
2670 */
2671 kvm->arch.last_tsc_nsec = ns;
2672 kvm->arch.last_tsc_write = tsc;
2673 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2674 kvm->arch.last_tsc_offset = offset;
2675
2676 vcpu->arch.last_guest_tsc = tsc;
2677
2678 kvm_vcpu_write_tsc_offset(vcpu, offset);
2679
2680 if (!matched) {
2681 /*
2682 * We split periods of matched TSC writes into generations.
2683 * For each generation, we track the original measured
2684 * nanosecond time, offset, and write, so if TSCs are in
2685 * sync, we can match exact offset, and if not, we can match
2686 * exact software computation in compute_guest_tsc()
2687 *
2688 * These values are tracked in kvm->arch.cur_xxx variables.
2689 */
2690 kvm->arch.cur_tsc_generation++;
2691 kvm->arch.cur_tsc_nsec = ns;
2692 kvm->arch.cur_tsc_write = tsc;
2693 kvm->arch.cur_tsc_offset = offset;
2694 kvm->arch.nr_vcpus_matched_tsc = 0;
2695 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2696 kvm->arch.nr_vcpus_matched_tsc++;
2697 }
2698
2699 /* Keep track of which generation this VCPU has synchronized to */
2700 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2701 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2702 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2703
2704 kvm_track_tsc_matching(vcpu, !matched);
2705 }
2706
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2707 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2708 {
2709 u64 data = user_value ? *user_value : 0;
2710 struct kvm *kvm = vcpu->kvm;
2711 u64 offset, ns, elapsed;
2712 unsigned long flags;
2713 bool matched = false;
2714 bool synchronizing = false;
2715
2716 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2717 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2718 ns = get_kvmclock_base_ns();
2719 elapsed = ns - kvm->arch.last_tsc_nsec;
2720
2721 if (vcpu->arch.virtual_tsc_khz) {
2722 if (data == 0) {
2723 /*
2724 * Force synchronization when creating a vCPU, or when
2725 * userspace explicitly writes a zero value.
2726 */
2727 synchronizing = true;
2728 } else if (kvm->arch.user_set_tsc) {
2729 u64 tsc_exp = kvm->arch.last_tsc_write +
2730 nsec_to_cycles(vcpu, elapsed);
2731 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2732 /*
2733 * Here lies UAPI baggage: when a user-initiated TSC write has
2734 * a small delta (1 second) of virtual cycle time against the
2735 * previously set vCPU, we assume that they were intended to be
2736 * in sync and the delta was only due to the racy nature of the
2737 * legacy API.
2738 *
2739 * This trick falls down when restoring a guest which genuinely
2740 * has been running for less time than the 1 second of imprecision
2741 * which we allow for in the legacy API. In this case, the first
2742 * value written by userspace (on any vCPU) should not be subject
2743 * to this 'correction' to make it sync up with values that only
2744 * come from the kernel's default vCPU creation. Make the 1-second
2745 * slop hack only trigger if the user_set_tsc flag is already set.
2746 */
2747 synchronizing = data < tsc_exp + tsc_hz &&
2748 data + tsc_hz > tsc_exp;
2749 }
2750 }
2751
2752 if (user_value)
2753 kvm->arch.user_set_tsc = true;
2754
2755 /*
2756 * For a reliable TSC, we can match TSC offsets, and for an unstable
2757 * TSC, we add elapsed time in this computation. We could let the
2758 * compensation code attempt to catch up if we fall behind, but
2759 * it's better to try to match offsets from the beginning.
2760 */
2761 if (synchronizing &&
2762 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2763 if (!kvm_check_tsc_unstable()) {
2764 offset = kvm->arch.cur_tsc_offset;
2765 } else {
2766 u64 delta = nsec_to_cycles(vcpu, elapsed);
2767 data += delta;
2768 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2769 }
2770 matched = true;
2771 }
2772
2773 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2774 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2775 }
2776
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2777 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2778 s64 adjustment)
2779 {
2780 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2781 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2782 }
2783
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2784 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2785 {
2786 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2787 WARN_ON(adjustment < 0);
2788 adjustment = kvm_scale_tsc((u64) adjustment,
2789 vcpu->arch.l1_tsc_scaling_ratio);
2790 adjust_tsc_offset_guest(vcpu, adjustment);
2791 }
2792
2793 #ifdef CONFIG_X86_64
2794
read_tsc(void)2795 static u64 read_tsc(void)
2796 {
2797 u64 ret = (u64)rdtsc_ordered();
2798 u64 last = pvclock_gtod_data.clock.cycle_last;
2799
2800 if (likely(ret >= last))
2801 return ret;
2802
2803 /*
2804 * GCC likes to generate cmov here, but this branch is extremely
2805 * predictable (it's just a function of time and the likely is
2806 * very likely) and there's a data dependence, so force GCC
2807 * to generate a branch instead. I don't barrier() because
2808 * we don't actually need a barrier, and if this function
2809 * ever gets inlined it will generate worse code.
2810 */
2811 asm volatile ("");
2812 return last;
2813 }
2814
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2815 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2816 int *mode)
2817 {
2818 u64 tsc_pg_val;
2819 long v;
2820
2821 switch (clock->vclock_mode) {
2822 case VDSO_CLOCKMODE_HVCLOCK:
2823 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2824 tsc_timestamp, &tsc_pg_val)) {
2825 /* TSC page valid */
2826 *mode = VDSO_CLOCKMODE_HVCLOCK;
2827 v = (tsc_pg_val - clock->cycle_last) &
2828 clock->mask;
2829 } else {
2830 /* TSC page invalid */
2831 *mode = VDSO_CLOCKMODE_NONE;
2832 }
2833 break;
2834 case VDSO_CLOCKMODE_TSC:
2835 *mode = VDSO_CLOCKMODE_TSC;
2836 *tsc_timestamp = read_tsc();
2837 v = (*tsc_timestamp - clock->cycle_last) &
2838 clock->mask;
2839 break;
2840 default:
2841 *mode = VDSO_CLOCKMODE_NONE;
2842 }
2843
2844 if (*mode == VDSO_CLOCKMODE_NONE)
2845 *tsc_timestamp = v = 0;
2846
2847 return v * clock->mult;
2848 }
2849
2850 /*
2851 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2852 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2853 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2854 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2855 {
2856 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2857 unsigned long seq;
2858 int mode;
2859 u64 ns;
2860
2861 do {
2862 seq = read_seqcount_begin(>od->seq);
2863 ns = gtod->raw_clock.base_cycles;
2864 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2865 ns >>= gtod->raw_clock.shift;
2866 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2867 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2868 *t = ns;
2869
2870 return mode;
2871 }
2872
2873 /*
2874 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2875 * no boot time offset.
2876 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2877 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2878 {
2879 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2880 unsigned long seq;
2881 int mode;
2882 u64 ns;
2883
2884 do {
2885 seq = read_seqcount_begin(>od->seq);
2886 ns = gtod->clock.base_cycles;
2887 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2888 ns >>= gtod->clock.shift;
2889 ns += ktime_to_ns(gtod->clock.offset);
2890 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2891 *t = ns;
2892
2893 return mode;
2894 }
2895
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2896 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2897 {
2898 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2899 unsigned long seq;
2900 int mode;
2901 u64 ns;
2902
2903 do {
2904 seq = read_seqcount_begin(>od->seq);
2905 ts->tv_sec = gtod->wall_time_sec;
2906 ns = gtod->clock.base_cycles;
2907 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2908 ns >>= gtod->clock.shift;
2909 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2910
2911 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2912 ts->tv_nsec = ns;
2913
2914 return mode;
2915 }
2916
2917 /*
2918 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2919 * reports the TSC value from which it do so. Returns true if host is
2920 * using TSC based clocksource.
2921 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2922 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2923 {
2924 /* checked again under seqlock below */
2925 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926 return false;
2927
2928 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2929 tsc_timestamp));
2930 }
2931
2932 /*
2933 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2934 * so. Returns true if host is using TSC based clocksource.
2935 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2936 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2937 {
2938 /* checked again under seqlock below */
2939 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2940 return false;
2941
2942 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2943 tsc_timestamp));
2944 }
2945
2946 /*
2947 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2948 * so. Returns true if host is using TSC based clocksource.
2949 *
2950 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2951 * for that.
2952 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2953 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2954 u64 *tsc_timestamp)
2955 {
2956 /* checked again under seqlock below */
2957 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2958 return false;
2959
2960 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2961 }
2962 #endif
2963
2964 /*
2965 *
2966 * Assuming a stable TSC across physical CPUS, and a stable TSC
2967 * across virtual CPUs, the following condition is possible.
2968 * Each numbered line represents an event visible to both
2969 * CPUs at the next numbered event.
2970 *
2971 * "timespecX" represents host monotonic time. "tscX" represents
2972 * RDTSC value.
2973 *
2974 * VCPU0 on CPU0 | VCPU1 on CPU1
2975 *
2976 * 1. read timespec0,tsc0
2977 * 2. | timespec1 = timespec0 + N
2978 * | tsc1 = tsc0 + M
2979 * 3. transition to guest | transition to guest
2980 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2981 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2982 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2983 *
2984 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2985 *
2986 * - ret0 < ret1
2987 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2988 * ...
2989 * - 0 < N - M => M < N
2990 *
2991 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2992 * always the case (the difference between two distinct xtime instances
2993 * might be smaller then the difference between corresponding TSC reads,
2994 * when updating guest vcpus pvclock areas).
2995 *
2996 * To avoid that problem, do not allow visibility of distinct
2997 * system_timestamp/tsc_timestamp values simultaneously: use a master
2998 * copy of host monotonic time values. Update that master copy
2999 * in lockstep.
3000 *
3001 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3002 *
3003 */
3004
pvclock_update_vm_gtod_copy(struct kvm * kvm)3005 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3006 {
3007 #ifdef CONFIG_X86_64
3008 struct kvm_arch *ka = &kvm->arch;
3009 int vclock_mode;
3010 bool host_tsc_clocksource, vcpus_matched;
3011
3012 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3013 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3014 atomic_read(&kvm->online_vcpus));
3015
3016 /*
3017 * If the host uses TSC clock, then passthrough TSC as stable
3018 * to the guest.
3019 */
3020 host_tsc_clocksource = kvm_get_time_and_clockread(
3021 &ka->master_kernel_ns,
3022 &ka->master_cycle_now);
3023
3024 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3025 && !ka->backwards_tsc_observed
3026 && !ka->boot_vcpu_runs_old_kvmclock;
3027
3028 if (ka->use_master_clock)
3029 atomic_set(&kvm_guest_has_master_clock, 1);
3030
3031 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3032 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3033 vcpus_matched);
3034 #endif
3035 }
3036
kvm_make_mclock_inprogress_request(struct kvm * kvm)3037 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3038 {
3039 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3040 }
3041
__kvm_start_pvclock_update(struct kvm * kvm)3042 static void __kvm_start_pvclock_update(struct kvm *kvm)
3043 {
3044 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3045 write_seqcount_begin(&kvm->arch.pvclock_sc);
3046 }
3047
kvm_start_pvclock_update(struct kvm * kvm)3048 static void kvm_start_pvclock_update(struct kvm *kvm)
3049 {
3050 kvm_make_mclock_inprogress_request(kvm);
3051
3052 /* no guest entries from this point */
3053 __kvm_start_pvclock_update(kvm);
3054 }
3055
kvm_end_pvclock_update(struct kvm * kvm)3056 static void kvm_end_pvclock_update(struct kvm *kvm)
3057 {
3058 struct kvm_arch *ka = &kvm->arch;
3059 struct kvm_vcpu *vcpu;
3060 unsigned long i;
3061
3062 write_seqcount_end(&ka->pvclock_sc);
3063 raw_spin_unlock_irq(&ka->tsc_write_lock);
3064 kvm_for_each_vcpu(i, vcpu, kvm)
3065 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3066
3067 /* guest entries allowed */
3068 kvm_for_each_vcpu(i, vcpu, kvm)
3069 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3070 }
3071
kvm_update_masterclock(struct kvm * kvm)3072 static void kvm_update_masterclock(struct kvm *kvm)
3073 {
3074 kvm_hv_request_tsc_page_update(kvm);
3075 kvm_start_pvclock_update(kvm);
3076 pvclock_update_vm_gtod_copy(kvm);
3077 kvm_end_pvclock_update(kvm);
3078 }
3079
3080 /*
3081 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3082 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3083 * can change during boot even if the TSC is constant, as it's possible for KVM
3084 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3085 * notification when calibration completes, but practically speaking calibration
3086 * will complete before userspace is alive enough to create VMs.
3087 */
get_cpu_tsc_khz(void)3088 static unsigned long get_cpu_tsc_khz(void)
3089 {
3090 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3091 return tsc_khz;
3092 else
3093 return __this_cpu_read(cpu_tsc_khz);
3094 }
3095
3096 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3097 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3098 {
3099 struct kvm_arch *ka = &kvm->arch;
3100 struct pvclock_vcpu_time_info hv_clock;
3101
3102 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3103 get_cpu();
3104
3105 data->flags = 0;
3106 if (ka->use_master_clock &&
3107 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3108 #ifdef CONFIG_X86_64
3109 struct timespec64 ts;
3110
3111 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3112 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3113 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3114 } else
3115 #endif
3116 data->host_tsc = rdtsc();
3117
3118 data->flags |= KVM_CLOCK_TSC_STABLE;
3119 hv_clock.tsc_timestamp = ka->master_cycle_now;
3120 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3121 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3122 &hv_clock.tsc_shift,
3123 &hv_clock.tsc_to_system_mul);
3124 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3125 } else {
3126 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3127 }
3128
3129 put_cpu();
3130 }
3131
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3132 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3133 {
3134 struct kvm_arch *ka = &kvm->arch;
3135 unsigned seq;
3136
3137 do {
3138 seq = read_seqcount_begin(&ka->pvclock_sc);
3139 __get_kvmclock(kvm, data);
3140 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3141 }
3142
get_kvmclock_ns(struct kvm * kvm)3143 u64 get_kvmclock_ns(struct kvm *kvm)
3144 {
3145 struct kvm_clock_data data;
3146
3147 get_kvmclock(kvm, &data);
3148 return data.clock;
3149 }
3150
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3151 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3152 struct gfn_to_pfn_cache *gpc,
3153 unsigned int offset,
3154 bool force_tsc_unstable)
3155 {
3156 struct kvm_vcpu_arch *vcpu = &v->arch;
3157 struct pvclock_vcpu_time_info *guest_hv_clock;
3158 unsigned long flags;
3159
3160 read_lock_irqsave(&gpc->lock, flags);
3161 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3162 read_unlock_irqrestore(&gpc->lock, flags);
3163
3164 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3165 return;
3166
3167 read_lock_irqsave(&gpc->lock, flags);
3168 }
3169
3170 guest_hv_clock = (void *)(gpc->khva + offset);
3171
3172 /*
3173 * This VCPU is paused, but it's legal for a guest to read another
3174 * VCPU's kvmclock, so we really have to follow the specification where
3175 * it says that version is odd if data is being modified, and even after
3176 * it is consistent.
3177 */
3178
3179 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3180 smp_wmb();
3181
3182 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3183 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3184
3185 if (vcpu->pvclock_set_guest_stopped_request) {
3186 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3187 vcpu->pvclock_set_guest_stopped_request = false;
3188 }
3189
3190 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3191
3192 if (force_tsc_unstable)
3193 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3194
3195 smp_wmb();
3196
3197 guest_hv_clock->version = ++vcpu->hv_clock.version;
3198
3199 kvm_gpc_mark_dirty_in_slot(gpc);
3200 read_unlock_irqrestore(&gpc->lock, flags);
3201
3202 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3203 }
3204
kvm_guest_time_update(struct kvm_vcpu * v)3205 static int kvm_guest_time_update(struct kvm_vcpu *v)
3206 {
3207 unsigned long flags, tgt_tsc_khz;
3208 unsigned seq;
3209 struct kvm_vcpu_arch *vcpu = &v->arch;
3210 struct kvm_arch *ka = &v->kvm->arch;
3211 s64 kernel_ns;
3212 u64 tsc_timestamp, host_tsc;
3213 u8 pvclock_flags;
3214 bool use_master_clock;
3215 #ifdef CONFIG_KVM_XEN
3216 /*
3217 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3218 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3219 * This default behaviour led to bugs in some guest kernels which cause
3220 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3221 */
3222 bool xen_pvclock_tsc_unstable =
3223 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3224 #endif
3225
3226 kernel_ns = 0;
3227 host_tsc = 0;
3228
3229 /*
3230 * If the host uses TSC clock, then passthrough TSC as stable
3231 * to the guest.
3232 */
3233 do {
3234 seq = read_seqcount_begin(&ka->pvclock_sc);
3235 use_master_clock = ka->use_master_clock;
3236 if (use_master_clock) {
3237 host_tsc = ka->master_cycle_now;
3238 kernel_ns = ka->master_kernel_ns;
3239 }
3240 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3241
3242 /* Keep irq disabled to prevent changes to the clock */
3243 local_irq_save(flags);
3244 tgt_tsc_khz = get_cpu_tsc_khz();
3245 if (unlikely(tgt_tsc_khz == 0)) {
3246 local_irq_restore(flags);
3247 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3248 return 1;
3249 }
3250 if (!use_master_clock) {
3251 host_tsc = rdtsc();
3252 kernel_ns = get_kvmclock_base_ns();
3253 }
3254
3255 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3256
3257 /*
3258 * We may have to catch up the TSC to match elapsed wall clock
3259 * time for two reasons, even if kvmclock is used.
3260 * 1) CPU could have been running below the maximum TSC rate
3261 * 2) Broken TSC compensation resets the base at each VCPU
3262 * entry to avoid unknown leaps of TSC even when running
3263 * again on the same CPU. This may cause apparent elapsed
3264 * time to disappear, and the guest to stand still or run
3265 * very slowly.
3266 */
3267 if (vcpu->tsc_catchup) {
3268 u64 tsc = compute_guest_tsc(v, kernel_ns);
3269 if (tsc > tsc_timestamp) {
3270 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3271 tsc_timestamp = tsc;
3272 }
3273 }
3274
3275 local_irq_restore(flags);
3276
3277 /* With all the info we got, fill in the values */
3278
3279 if (kvm_caps.has_tsc_control)
3280 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3281 v->arch.l1_tsc_scaling_ratio);
3282
3283 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3284 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3285 &vcpu->hv_clock.tsc_shift,
3286 &vcpu->hv_clock.tsc_to_system_mul);
3287 vcpu->hw_tsc_khz = tgt_tsc_khz;
3288 kvm_xen_update_tsc_info(v);
3289 }
3290
3291 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3292 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3293 vcpu->last_guest_tsc = tsc_timestamp;
3294
3295 /* If the host uses TSC clocksource, then it is stable */
3296 pvclock_flags = 0;
3297 if (use_master_clock)
3298 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3299
3300 vcpu->hv_clock.flags = pvclock_flags;
3301
3302 if (vcpu->pv_time.active)
3303 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3304 #ifdef CONFIG_KVM_XEN
3305 if (vcpu->xen.vcpu_info_cache.active)
3306 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3307 offsetof(struct compat_vcpu_info, time),
3308 xen_pvclock_tsc_unstable);
3309 if (vcpu->xen.vcpu_time_info_cache.active)
3310 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3311 xen_pvclock_tsc_unstable);
3312 #endif
3313 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3314 return 0;
3315 }
3316
3317 /*
3318 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3319 * which it started (i.e. its epoch, when its kvmclock was zero).
3320 *
3321 * In fact those clocks are subtly different; wall clock frequency is
3322 * adjusted by NTP and has leap seconds, while the kvmclock is a
3323 * simple function of the TSC without any such adjustment.
3324 *
3325 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3326 * that and kvmclock, but even that would be subject to change over
3327 * time.
3328 *
3329 * Attempt to calculate the epoch at a given moment using the *same*
3330 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3331 * wallclock and kvmclock times, and subtracting one from the other.
3332 *
3333 * Fall back to using their values at slightly different moments by
3334 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3335 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3336 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3337 {
3338 #ifdef CONFIG_X86_64
3339 struct pvclock_vcpu_time_info hv_clock;
3340 struct kvm_arch *ka = &kvm->arch;
3341 unsigned long seq, local_tsc_khz;
3342 struct timespec64 ts;
3343 uint64_t host_tsc;
3344
3345 do {
3346 seq = read_seqcount_begin(&ka->pvclock_sc);
3347
3348 local_tsc_khz = 0;
3349 if (!ka->use_master_clock)
3350 break;
3351
3352 /*
3353 * The TSC read and the call to get_cpu_tsc_khz() must happen
3354 * on the same CPU.
3355 */
3356 get_cpu();
3357
3358 local_tsc_khz = get_cpu_tsc_khz();
3359
3360 if (local_tsc_khz &&
3361 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3362 local_tsc_khz = 0; /* Fall back to old method */
3363
3364 put_cpu();
3365
3366 /*
3367 * These values must be snapshotted within the seqcount loop.
3368 * After that, it's just mathematics which can happen on any
3369 * CPU at any time.
3370 */
3371 hv_clock.tsc_timestamp = ka->master_cycle_now;
3372 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3373
3374 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3375
3376 /*
3377 * If the conditions were right, and obtaining the wallclock+TSC was
3378 * successful, calculate the KVM clock at the corresponding time and
3379 * subtract one from the other to get the guest's epoch in nanoseconds
3380 * since 1970-01-01.
3381 */
3382 if (local_tsc_khz) {
3383 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3384 &hv_clock.tsc_shift,
3385 &hv_clock.tsc_to_system_mul);
3386 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3387 __pvclock_read_cycles(&hv_clock, host_tsc);
3388 }
3389 #endif
3390 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3391 }
3392
3393 /*
3394 * kvmclock updates which are isolated to a given vcpu, such as
3395 * vcpu->cpu migration, should not allow system_timestamp from
3396 * the rest of the vcpus to remain static. Otherwise ntp frequency
3397 * correction applies to one vcpu's system_timestamp but not
3398 * the others.
3399 *
3400 * So in those cases, request a kvmclock update for all vcpus.
3401 * We need to rate-limit these requests though, as they can
3402 * considerably slow guests that have a large number of vcpus.
3403 * The time for a remote vcpu to update its kvmclock is bound
3404 * by the delay we use to rate-limit the updates.
3405 */
3406
3407 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3408
kvmclock_update_fn(struct work_struct * work)3409 static void kvmclock_update_fn(struct work_struct *work)
3410 {
3411 unsigned long i;
3412 struct delayed_work *dwork = to_delayed_work(work);
3413 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3414 kvmclock_update_work);
3415 struct kvm *kvm = container_of(ka, struct kvm, arch);
3416 struct kvm_vcpu *vcpu;
3417
3418 kvm_for_each_vcpu(i, vcpu, kvm) {
3419 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3420 kvm_vcpu_kick(vcpu);
3421 }
3422 }
3423
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3424 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3425 {
3426 struct kvm *kvm = v->kvm;
3427
3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3429 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3430 KVMCLOCK_UPDATE_DELAY);
3431 }
3432
3433 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3434
kvmclock_sync_fn(struct work_struct * work)3435 static void kvmclock_sync_fn(struct work_struct *work)
3436 {
3437 struct delayed_work *dwork = to_delayed_work(work);
3438 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3439 kvmclock_sync_work);
3440 struct kvm *kvm = container_of(ka, struct kvm, arch);
3441
3442 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3443 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3444 KVMCLOCK_SYNC_PERIOD);
3445 }
3446
3447 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3448 static bool is_mci_control_msr(u32 msr)
3449 {
3450 return (msr & 3) == 0;
3451 }
is_mci_status_msr(u32 msr)3452 static bool is_mci_status_msr(u32 msr)
3453 {
3454 return (msr & 3) == 1;
3455 }
3456
3457 /*
3458 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3459 */
can_set_mci_status(struct kvm_vcpu * vcpu)3460 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3461 {
3462 /* McStatusWrEn enabled? */
3463 if (guest_cpuid_is_amd_compatible(vcpu))
3464 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3465
3466 return false;
3467 }
3468
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3469 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3470 {
3471 u64 mcg_cap = vcpu->arch.mcg_cap;
3472 unsigned bank_num = mcg_cap & 0xff;
3473 u32 msr = msr_info->index;
3474 u64 data = msr_info->data;
3475 u32 offset, last_msr;
3476
3477 switch (msr) {
3478 case MSR_IA32_MCG_STATUS:
3479 vcpu->arch.mcg_status = data;
3480 break;
3481 case MSR_IA32_MCG_CTL:
3482 if (!(mcg_cap & MCG_CTL_P) &&
3483 (data || !msr_info->host_initiated))
3484 return 1;
3485 if (data != 0 && data != ~(u64)0)
3486 return 1;
3487 vcpu->arch.mcg_ctl = data;
3488 break;
3489 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3490 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3491 if (msr > last_msr)
3492 return 1;
3493
3494 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3495 return 1;
3496 /* An attempt to write a 1 to a reserved bit raises #GP */
3497 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3498 return 1;
3499 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3500 last_msr + 1 - MSR_IA32_MC0_CTL2);
3501 vcpu->arch.mci_ctl2_banks[offset] = data;
3502 break;
3503 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3504 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3505 if (msr > last_msr)
3506 return 1;
3507
3508 /*
3509 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3510 * values are architecturally undefined. But, some Linux
3511 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3512 * issue on AMD K8s, allow bit 10 to be clear when setting all
3513 * other bits in order to avoid an uncaught #GP in the guest.
3514 *
3515 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3516 * single-bit ECC data errors.
3517 */
3518 if (is_mci_control_msr(msr) &&
3519 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3520 return 1;
3521
3522 /*
3523 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3524 * AMD-based CPUs allow non-zero values, but if and only if
3525 * HWCR[McStatusWrEn] is set.
3526 */
3527 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3528 data != 0 && !can_set_mci_status(vcpu))
3529 return 1;
3530
3531 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3532 last_msr + 1 - MSR_IA32_MC0_CTL);
3533 vcpu->arch.mce_banks[offset] = data;
3534 break;
3535 default:
3536 return 1;
3537 }
3538 return 0;
3539 }
3540
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3541 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3542 {
3543 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3544
3545 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3546 }
3547
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3548 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3549 {
3550 gpa_t gpa = data & ~0x3f;
3551
3552 /* Bits 4:5 are reserved, Should be zero */
3553 if (data & 0x30)
3554 return 1;
3555
3556 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3557 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3558 return 1;
3559
3560 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3561 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3562 return 1;
3563
3564 if (!lapic_in_kernel(vcpu))
3565 return data ? 1 : 0;
3566
3567 vcpu->arch.apf.msr_en_val = data;
3568
3569 if (!kvm_pv_async_pf_enabled(vcpu)) {
3570 kvm_clear_async_pf_completion_queue(vcpu);
3571 kvm_async_pf_hash_reset(vcpu);
3572 return 0;
3573 }
3574
3575 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3576 sizeof(u64)))
3577 return 1;
3578
3579 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3580 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3581
3582 kvm_async_pf_wakeup_all(vcpu);
3583
3584 return 0;
3585 }
3586
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3587 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3588 {
3589 /* Bits 8-63 are reserved */
3590 if (data >> 8)
3591 return 1;
3592
3593 if (!lapic_in_kernel(vcpu))
3594 return 1;
3595
3596 vcpu->arch.apf.msr_int_val = data;
3597
3598 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3599
3600 return 0;
3601 }
3602
kvmclock_reset(struct kvm_vcpu * vcpu)3603 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3604 {
3605 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3606 vcpu->arch.time = 0;
3607 }
3608
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3609 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3610 {
3611 ++vcpu->stat.tlb_flush;
3612 kvm_x86_call(flush_tlb_all)(vcpu);
3613
3614 /* Flushing all ASIDs flushes the current ASID... */
3615 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3616 }
3617
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3618 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3619 {
3620 ++vcpu->stat.tlb_flush;
3621
3622 if (!tdp_enabled) {
3623 /*
3624 * A TLB flush on behalf of the guest is equivalent to
3625 * INVPCID(all), toggling CR4.PGE, etc., which requires
3626 * a forced sync of the shadow page tables. Ensure all the
3627 * roots are synced and the guest TLB in hardware is clean.
3628 */
3629 kvm_mmu_sync_roots(vcpu);
3630 kvm_mmu_sync_prev_roots(vcpu);
3631 }
3632
3633 kvm_x86_call(flush_tlb_guest)(vcpu);
3634
3635 /*
3636 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3637 * grained flushing.
3638 */
3639 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3640 }
3641
3642
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3643 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3644 {
3645 ++vcpu->stat.tlb_flush;
3646 kvm_x86_call(flush_tlb_current)(vcpu);
3647 }
3648
3649 /*
3650 * Service "local" TLB flush requests, which are specific to the current MMU
3651 * context. In addition to the generic event handling in vcpu_enter_guest(),
3652 * TLB flushes that are targeted at an MMU context also need to be serviced
3653 * prior before nested VM-Enter/VM-Exit.
3654 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3655 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3656 {
3657 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3658 kvm_vcpu_flush_tlb_current(vcpu);
3659
3660 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3661 kvm_vcpu_flush_tlb_guest(vcpu);
3662 }
3663 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3664
record_steal_time(struct kvm_vcpu * vcpu)3665 static void record_steal_time(struct kvm_vcpu *vcpu)
3666 {
3667 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3668 struct kvm_steal_time __user *st;
3669 struct kvm_memslots *slots;
3670 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3671 u64 steal;
3672 u32 version;
3673
3674 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3675 kvm_xen_runstate_set_running(vcpu);
3676 return;
3677 }
3678
3679 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3680 return;
3681
3682 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3683 return;
3684
3685 slots = kvm_memslots(vcpu->kvm);
3686
3687 if (unlikely(slots->generation != ghc->generation ||
3688 gpa != ghc->gpa ||
3689 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3690 /* We rely on the fact that it fits in a single page. */
3691 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3692
3693 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3694 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3695 return;
3696 }
3697
3698 st = (struct kvm_steal_time __user *)ghc->hva;
3699 /*
3700 * Doing a TLB flush here, on the guest's behalf, can avoid
3701 * expensive IPIs.
3702 */
3703 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3704 u8 st_preempted = 0;
3705 int err = -EFAULT;
3706
3707 if (!user_access_begin(st, sizeof(*st)))
3708 return;
3709
3710 asm volatile("1: xchgb %0, %2\n"
3711 "xor %1, %1\n"
3712 "2:\n"
3713 _ASM_EXTABLE_UA(1b, 2b)
3714 : "+q" (st_preempted),
3715 "+&r" (err),
3716 "+m" (st->preempted));
3717 if (err)
3718 goto out;
3719
3720 user_access_end();
3721
3722 vcpu->arch.st.preempted = 0;
3723
3724 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3725 st_preempted & KVM_VCPU_FLUSH_TLB);
3726 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3727 kvm_vcpu_flush_tlb_guest(vcpu);
3728
3729 if (!user_access_begin(st, sizeof(*st)))
3730 goto dirty;
3731 } else {
3732 if (!user_access_begin(st, sizeof(*st)))
3733 return;
3734
3735 unsafe_put_user(0, &st->preempted, out);
3736 vcpu->arch.st.preempted = 0;
3737 }
3738
3739 unsafe_get_user(version, &st->version, out);
3740 if (version & 1)
3741 version += 1; /* first time write, random junk */
3742
3743 version += 1;
3744 unsafe_put_user(version, &st->version, out);
3745
3746 smp_wmb();
3747
3748 unsafe_get_user(steal, &st->steal, out);
3749 steal += current->sched_info.run_delay -
3750 vcpu->arch.st.last_steal;
3751 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3752 unsafe_put_user(steal, &st->steal, out);
3753
3754 version += 1;
3755 unsafe_put_user(version, &st->version, out);
3756
3757 out:
3758 user_access_end();
3759 dirty:
3760 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3761 }
3762
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3763 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3764 {
3765 u32 msr = msr_info->index;
3766 u64 data = msr_info->data;
3767
3768 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3769 return kvm_xen_write_hypercall_page(vcpu, data);
3770
3771 switch (msr) {
3772 case MSR_AMD64_NB_CFG:
3773 case MSR_IA32_UCODE_WRITE:
3774 case MSR_VM_HSAVE_PA:
3775 case MSR_AMD64_PATCH_LOADER:
3776 case MSR_AMD64_BU_CFG2:
3777 case MSR_AMD64_DC_CFG:
3778 case MSR_AMD64_TW_CFG:
3779 case MSR_F15H_EX_CFG:
3780 break;
3781
3782 case MSR_IA32_UCODE_REV:
3783 if (msr_info->host_initiated)
3784 vcpu->arch.microcode_version = data;
3785 break;
3786 case MSR_IA32_ARCH_CAPABILITIES:
3787 if (!msr_info->host_initiated)
3788 return 1;
3789 vcpu->arch.arch_capabilities = data;
3790 break;
3791 case MSR_IA32_PERF_CAPABILITIES:
3792 if (!msr_info->host_initiated)
3793 return 1;
3794 if (data & ~kvm_caps.supported_perf_cap)
3795 return 1;
3796
3797 /*
3798 * Note, this is not just a performance optimization! KVM
3799 * disallows changing feature MSRs after the vCPU has run; PMU
3800 * refresh will bug the VM if called after the vCPU has run.
3801 */
3802 if (vcpu->arch.perf_capabilities == data)
3803 break;
3804
3805 vcpu->arch.perf_capabilities = data;
3806 kvm_pmu_refresh(vcpu);
3807 break;
3808 case MSR_IA32_PRED_CMD: {
3809 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3810
3811 if (!msr_info->host_initiated) {
3812 if ((!guest_has_pred_cmd_msr(vcpu)))
3813 return 1;
3814
3815 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3816 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3817 reserved_bits |= PRED_CMD_IBPB;
3818
3819 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3820 reserved_bits |= PRED_CMD_SBPB;
3821 }
3822
3823 if (!boot_cpu_has(X86_FEATURE_IBPB))
3824 reserved_bits |= PRED_CMD_IBPB;
3825
3826 if (!boot_cpu_has(X86_FEATURE_SBPB))
3827 reserved_bits |= PRED_CMD_SBPB;
3828
3829 if (data & reserved_bits)
3830 return 1;
3831
3832 if (!data)
3833 break;
3834
3835 wrmsrl(MSR_IA32_PRED_CMD, data);
3836 break;
3837 }
3838 case MSR_IA32_FLUSH_CMD:
3839 if (!msr_info->host_initiated &&
3840 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3841 return 1;
3842
3843 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3844 return 1;
3845 if (!data)
3846 break;
3847
3848 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3849 break;
3850 case MSR_EFER:
3851 return set_efer(vcpu, msr_info);
3852 case MSR_K7_HWCR:
3853 data &= ~(u64)0x40; /* ignore flush filter disable */
3854 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3855 data &= ~(u64)0x8; /* ignore TLB cache disable */
3856
3857 /*
3858 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3859 * through at least v6.6 whine if TscFreqSel is clear,
3860 * depending on F/M/S.
3861 */
3862 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3863 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3864 return 1;
3865 }
3866 vcpu->arch.msr_hwcr = data;
3867 break;
3868 case MSR_FAM10H_MMIO_CONF_BASE:
3869 if (data != 0) {
3870 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3871 return 1;
3872 }
3873 break;
3874 case MSR_IA32_CR_PAT:
3875 if (!kvm_pat_valid(data))
3876 return 1;
3877
3878 vcpu->arch.pat = data;
3879 break;
3880 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3881 case MSR_MTRRdefType:
3882 return kvm_mtrr_set_msr(vcpu, msr, data);
3883 case MSR_IA32_APICBASE:
3884 return kvm_set_apic_base(vcpu, msr_info);
3885 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3886 return kvm_x2apic_msr_write(vcpu, msr, data);
3887 case MSR_IA32_TSC_DEADLINE:
3888 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3889 break;
3890 case MSR_IA32_TSC_ADJUST:
3891 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3892 if (!msr_info->host_initiated) {
3893 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3894 adjust_tsc_offset_guest(vcpu, adj);
3895 /* Before back to guest, tsc_timestamp must be adjusted
3896 * as well, otherwise guest's percpu pvclock time could jump.
3897 */
3898 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3899 }
3900 vcpu->arch.ia32_tsc_adjust_msr = data;
3901 }
3902 break;
3903 case MSR_IA32_MISC_ENABLE: {
3904 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3905
3906 if (!msr_info->host_initiated) {
3907 /* RO bits */
3908 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3909 return 1;
3910
3911 /* R bits, i.e. writes are ignored, but don't fault. */
3912 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3913 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3914 }
3915
3916 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3917 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3918 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3919 return 1;
3920 vcpu->arch.ia32_misc_enable_msr = data;
3921 kvm_update_cpuid_runtime(vcpu);
3922 } else {
3923 vcpu->arch.ia32_misc_enable_msr = data;
3924 }
3925 break;
3926 }
3927 case MSR_IA32_SMBASE:
3928 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3929 return 1;
3930 vcpu->arch.smbase = data;
3931 break;
3932 case MSR_IA32_POWER_CTL:
3933 vcpu->arch.msr_ia32_power_ctl = data;
3934 break;
3935 case MSR_IA32_TSC:
3936 if (msr_info->host_initiated) {
3937 kvm_synchronize_tsc(vcpu, &data);
3938 } else {
3939 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3940 adjust_tsc_offset_guest(vcpu, adj);
3941 vcpu->arch.ia32_tsc_adjust_msr += adj;
3942 }
3943 break;
3944 case MSR_IA32_XSS:
3945 if (!msr_info->host_initiated &&
3946 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3947 return 1;
3948 /*
3949 * KVM supports exposing PT to the guest, but does not support
3950 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3951 * XSAVES/XRSTORS to save/restore PT MSRs.
3952 */
3953 if (data & ~kvm_caps.supported_xss)
3954 return 1;
3955 vcpu->arch.ia32_xss = data;
3956 kvm_update_cpuid_runtime(vcpu);
3957 break;
3958 case MSR_SMI_COUNT:
3959 if (!msr_info->host_initiated)
3960 return 1;
3961 vcpu->arch.smi_count = data;
3962 break;
3963 case MSR_KVM_WALL_CLOCK_NEW:
3964 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3965 return 1;
3966
3967 vcpu->kvm->arch.wall_clock = data;
3968 kvm_write_wall_clock(vcpu->kvm, data, 0);
3969 break;
3970 case MSR_KVM_WALL_CLOCK:
3971 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3972 return 1;
3973
3974 vcpu->kvm->arch.wall_clock = data;
3975 kvm_write_wall_clock(vcpu->kvm, data, 0);
3976 break;
3977 case MSR_KVM_SYSTEM_TIME_NEW:
3978 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3979 return 1;
3980
3981 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3982 break;
3983 case MSR_KVM_SYSTEM_TIME:
3984 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3985 return 1;
3986
3987 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3988 break;
3989 case MSR_KVM_ASYNC_PF_EN:
3990 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3991 return 1;
3992
3993 if (kvm_pv_enable_async_pf(vcpu, data))
3994 return 1;
3995 break;
3996 case MSR_KVM_ASYNC_PF_INT:
3997 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3998 return 1;
3999
4000 if (kvm_pv_enable_async_pf_int(vcpu, data))
4001 return 1;
4002 break;
4003 case MSR_KVM_ASYNC_PF_ACK:
4004 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4005 return 1;
4006 if (data & 0x1) {
4007 vcpu->arch.apf.pageready_pending = false;
4008 kvm_check_async_pf_completion(vcpu);
4009 }
4010 break;
4011 case MSR_KVM_STEAL_TIME:
4012 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4013 return 1;
4014
4015 if (unlikely(!sched_info_on()))
4016 return 1;
4017
4018 if (data & KVM_STEAL_RESERVED_MASK)
4019 return 1;
4020
4021 vcpu->arch.st.msr_val = data;
4022
4023 if (!(data & KVM_MSR_ENABLED))
4024 break;
4025
4026 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4027
4028 break;
4029 case MSR_KVM_PV_EOI_EN:
4030 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4031 return 1;
4032
4033 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4034 return 1;
4035 break;
4036
4037 case MSR_KVM_POLL_CONTROL:
4038 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4039 return 1;
4040
4041 /* only enable bit supported */
4042 if (data & (-1ULL << 1))
4043 return 1;
4044
4045 vcpu->arch.msr_kvm_poll_control = data;
4046 break;
4047
4048 case MSR_IA32_MCG_CTL:
4049 case MSR_IA32_MCG_STATUS:
4050 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4051 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4052 return set_msr_mce(vcpu, msr_info);
4053
4054 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4055 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4056 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4057 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4058 if (kvm_pmu_is_valid_msr(vcpu, msr))
4059 return kvm_pmu_set_msr(vcpu, msr_info);
4060
4061 if (data)
4062 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4063 break;
4064 case MSR_K7_CLK_CTL:
4065 /*
4066 * Ignore all writes to this no longer documented MSR.
4067 * Writes are only relevant for old K7 processors,
4068 * all pre-dating SVM, but a recommended workaround from
4069 * AMD for these chips. It is possible to specify the
4070 * affected processor models on the command line, hence
4071 * the need to ignore the workaround.
4072 */
4073 break;
4074 #ifdef CONFIG_KVM_HYPERV
4075 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4076 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4077 case HV_X64_MSR_SYNDBG_OPTIONS:
4078 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4079 case HV_X64_MSR_CRASH_CTL:
4080 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4081 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4082 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4083 case HV_X64_MSR_TSC_EMULATION_STATUS:
4084 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4085 return kvm_hv_set_msr_common(vcpu, msr, data,
4086 msr_info->host_initiated);
4087 #endif
4088 case MSR_IA32_BBL_CR_CTL3:
4089 /* Drop writes to this legacy MSR -- see rdmsr
4090 * counterpart for further detail.
4091 */
4092 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4093 break;
4094 case MSR_AMD64_OSVW_ID_LENGTH:
4095 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4096 return 1;
4097 vcpu->arch.osvw.length = data;
4098 break;
4099 case MSR_AMD64_OSVW_STATUS:
4100 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4101 return 1;
4102 vcpu->arch.osvw.status = data;
4103 break;
4104 case MSR_PLATFORM_INFO:
4105 if (!msr_info->host_initiated ||
4106 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4107 cpuid_fault_enabled(vcpu)))
4108 return 1;
4109 vcpu->arch.msr_platform_info = data;
4110 break;
4111 case MSR_MISC_FEATURES_ENABLES:
4112 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4113 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4114 !supports_cpuid_fault(vcpu)))
4115 return 1;
4116 vcpu->arch.msr_misc_features_enables = data;
4117 break;
4118 #ifdef CONFIG_X86_64
4119 case MSR_IA32_XFD:
4120 if (!msr_info->host_initiated &&
4121 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4122 return 1;
4123
4124 if (data & ~kvm_guest_supported_xfd(vcpu))
4125 return 1;
4126
4127 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4128 break;
4129 case MSR_IA32_XFD_ERR:
4130 if (!msr_info->host_initiated &&
4131 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4132 return 1;
4133
4134 if (data & ~kvm_guest_supported_xfd(vcpu))
4135 return 1;
4136
4137 vcpu->arch.guest_fpu.xfd_err = data;
4138 break;
4139 #endif
4140 default:
4141 if (kvm_pmu_is_valid_msr(vcpu, msr))
4142 return kvm_pmu_set_msr(vcpu, msr_info);
4143
4144 return KVM_MSR_RET_UNSUPPORTED;
4145 }
4146 return 0;
4147 }
4148 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4149
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4150 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4151 {
4152 u64 data;
4153 u64 mcg_cap = vcpu->arch.mcg_cap;
4154 unsigned bank_num = mcg_cap & 0xff;
4155 u32 offset, last_msr;
4156
4157 switch (msr) {
4158 case MSR_IA32_P5_MC_ADDR:
4159 case MSR_IA32_P5_MC_TYPE:
4160 data = 0;
4161 break;
4162 case MSR_IA32_MCG_CAP:
4163 data = vcpu->arch.mcg_cap;
4164 break;
4165 case MSR_IA32_MCG_CTL:
4166 if (!(mcg_cap & MCG_CTL_P) && !host)
4167 return 1;
4168 data = vcpu->arch.mcg_ctl;
4169 break;
4170 case MSR_IA32_MCG_STATUS:
4171 data = vcpu->arch.mcg_status;
4172 break;
4173 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4174 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4175 if (msr > last_msr)
4176 return 1;
4177
4178 if (!(mcg_cap & MCG_CMCI_P) && !host)
4179 return 1;
4180 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4181 last_msr + 1 - MSR_IA32_MC0_CTL2);
4182 data = vcpu->arch.mci_ctl2_banks[offset];
4183 break;
4184 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4185 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4186 if (msr > last_msr)
4187 return 1;
4188
4189 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4190 last_msr + 1 - MSR_IA32_MC0_CTL);
4191 data = vcpu->arch.mce_banks[offset];
4192 break;
4193 default:
4194 return 1;
4195 }
4196 *pdata = data;
4197 return 0;
4198 }
4199
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4200 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4201 {
4202 switch (msr_info->index) {
4203 case MSR_IA32_PLATFORM_ID:
4204 case MSR_IA32_EBL_CR_POWERON:
4205 case MSR_IA32_LASTBRANCHFROMIP:
4206 case MSR_IA32_LASTBRANCHTOIP:
4207 case MSR_IA32_LASTINTFROMIP:
4208 case MSR_IA32_LASTINTTOIP:
4209 case MSR_AMD64_SYSCFG:
4210 case MSR_K8_TSEG_ADDR:
4211 case MSR_K8_TSEG_MASK:
4212 case MSR_VM_HSAVE_PA:
4213 case MSR_K8_INT_PENDING_MSG:
4214 case MSR_AMD64_NB_CFG:
4215 case MSR_FAM10H_MMIO_CONF_BASE:
4216 case MSR_AMD64_BU_CFG2:
4217 case MSR_IA32_PERF_CTL:
4218 case MSR_AMD64_DC_CFG:
4219 case MSR_AMD64_TW_CFG:
4220 case MSR_F15H_EX_CFG:
4221 /*
4222 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4223 * limit) MSRs. Just return 0, as we do not want to expose the host
4224 * data here. Do not conditionalize this on CPUID, as KVM does not do
4225 * so for existing CPU-specific MSRs.
4226 */
4227 case MSR_RAPL_POWER_UNIT:
4228 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4229 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4230 case MSR_PKG_ENERGY_STATUS: /* Total package */
4231 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4232 msr_info->data = 0;
4233 break;
4234 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4235 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4236 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4237 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4238 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4239 return kvm_pmu_get_msr(vcpu, msr_info);
4240 msr_info->data = 0;
4241 break;
4242 case MSR_IA32_UCODE_REV:
4243 msr_info->data = vcpu->arch.microcode_version;
4244 break;
4245 case MSR_IA32_ARCH_CAPABILITIES:
4246 if (!msr_info->host_initiated &&
4247 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4248 return 1;
4249 msr_info->data = vcpu->arch.arch_capabilities;
4250 break;
4251 case MSR_IA32_PERF_CAPABILITIES:
4252 if (!msr_info->host_initiated &&
4253 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4254 return 1;
4255 msr_info->data = vcpu->arch.perf_capabilities;
4256 break;
4257 case MSR_IA32_POWER_CTL:
4258 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4259 break;
4260 case MSR_IA32_TSC: {
4261 /*
4262 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4263 * even when not intercepted. AMD manual doesn't explicitly
4264 * state this but appears to behave the same.
4265 *
4266 * On userspace reads and writes, however, we unconditionally
4267 * return L1's TSC value to ensure backwards-compatible
4268 * behavior for migration.
4269 */
4270 u64 offset, ratio;
4271
4272 if (msr_info->host_initiated) {
4273 offset = vcpu->arch.l1_tsc_offset;
4274 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4275 } else {
4276 offset = vcpu->arch.tsc_offset;
4277 ratio = vcpu->arch.tsc_scaling_ratio;
4278 }
4279
4280 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4281 break;
4282 }
4283 case MSR_IA32_CR_PAT:
4284 msr_info->data = vcpu->arch.pat;
4285 break;
4286 case MSR_MTRRcap:
4287 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4288 case MSR_MTRRdefType:
4289 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4290 case 0xcd: /* fsb frequency */
4291 msr_info->data = 3;
4292 break;
4293 /*
4294 * MSR_EBC_FREQUENCY_ID
4295 * Conservative value valid for even the basic CPU models.
4296 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4297 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4298 * and 266MHz for model 3, or 4. Set Core Clock
4299 * Frequency to System Bus Frequency Ratio to 1 (bits
4300 * 31:24) even though these are only valid for CPU
4301 * models > 2, however guests may end up dividing or
4302 * multiplying by zero otherwise.
4303 */
4304 case MSR_EBC_FREQUENCY_ID:
4305 msr_info->data = 1 << 24;
4306 break;
4307 case MSR_IA32_APICBASE:
4308 msr_info->data = vcpu->arch.apic_base;
4309 break;
4310 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4311 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4312 case MSR_IA32_TSC_DEADLINE:
4313 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4314 break;
4315 case MSR_IA32_TSC_ADJUST:
4316 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4317 break;
4318 case MSR_IA32_MISC_ENABLE:
4319 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4320 break;
4321 case MSR_IA32_SMBASE:
4322 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4323 return 1;
4324 msr_info->data = vcpu->arch.smbase;
4325 break;
4326 case MSR_SMI_COUNT:
4327 msr_info->data = vcpu->arch.smi_count;
4328 break;
4329 case MSR_IA32_PERF_STATUS:
4330 /* TSC increment by tick */
4331 msr_info->data = 1000ULL;
4332 /* CPU multiplier */
4333 msr_info->data |= (((uint64_t)4ULL) << 40);
4334 break;
4335 case MSR_EFER:
4336 msr_info->data = vcpu->arch.efer;
4337 break;
4338 case MSR_KVM_WALL_CLOCK:
4339 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4340 return 1;
4341
4342 msr_info->data = vcpu->kvm->arch.wall_clock;
4343 break;
4344 case MSR_KVM_WALL_CLOCK_NEW:
4345 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4346 return 1;
4347
4348 msr_info->data = vcpu->kvm->arch.wall_clock;
4349 break;
4350 case MSR_KVM_SYSTEM_TIME:
4351 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4352 return 1;
4353
4354 msr_info->data = vcpu->arch.time;
4355 break;
4356 case MSR_KVM_SYSTEM_TIME_NEW:
4357 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4358 return 1;
4359
4360 msr_info->data = vcpu->arch.time;
4361 break;
4362 case MSR_KVM_ASYNC_PF_EN:
4363 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4364 return 1;
4365
4366 msr_info->data = vcpu->arch.apf.msr_en_val;
4367 break;
4368 case MSR_KVM_ASYNC_PF_INT:
4369 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4370 return 1;
4371
4372 msr_info->data = vcpu->arch.apf.msr_int_val;
4373 break;
4374 case MSR_KVM_ASYNC_PF_ACK:
4375 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4376 return 1;
4377
4378 msr_info->data = 0;
4379 break;
4380 case MSR_KVM_STEAL_TIME:
4381 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4382 return 1;
4383
4384 msr_info->data = vcpu->arch.st.msr_val;
4385 break;
4386 case MSR_KVM_PV_EOI_EN:
4387 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4388 return 1;
4389
4390 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4391 break;
4392 case MSR_KVM_POLL_CONTROL:
4393 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4394 return 1;
4395
4396 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4397 break;
4398 case MSR_IA32_P5_MC_ADDR:
4399 case MSR_IA32_P5_MC_TYPE:
4400 case MSR_IA32_MCG_CAP:
4401 case MSR_IA32_MCG_CTL:
4402 case MSR_IA32_MCG_STATUS:
4403 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4404 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4405 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4406 msr_info->host_initiated);
4407 case MSR_IA32_XSS:
4408 if (!msr_info->host_initiated &&
4409 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4410 return 1;
4411 msr_info->data = vcpu->arch.ia32_xss;
4412 break;
4413 case MSR_K7_CLK_CTL:
4414 /*
4415 * Provide expected ramp-up count for K7. All other
4416 * are set to zero, indicating minimum divisors for
4417 * every field.
4418 *
4419 * This prevents guest kernels on AMD host with CPU
4420 * type 6, model 8 and higher from exploding due to
4421 * the rdmsr failing.
4422 */
4423 msr_info->data = 0x20000000;
4424 break;
4425 #ifdef CONFIG_KVM_HYPERV
4426 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4427 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4428 case HV_X64_MSR_SYNDBG_OPTIONS:
4429 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4430 case HV_X64_MSR_CRASH_CTL:
4431 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4432 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4433 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4434 case HV_X64_MSR_TSC_EMULATION_STATUS:
4435 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4436 return kvm_hv_get_msr_common(vcpu,
4437 msr_info->index, &msr_info->data,
4438 msr_info->host_initiated);
4439 #endif
4440 case MSR_IA32_BBL_CR_CTL3:
4441 /* This legacy MSR exists but isn't fully documented in current
4442 * silicon. It is however accessed by winxp in very narrow
4443 * scenarios where it sets bit #19, itself documented as
4444 * a "reserved" bit. Best effort attempt to source coherent
4445 * read data here should the balance of the register be
4446 * interpreted by the guest:
4447 *
4448 * L2 cache control register 3: 64GB range, 256KB size,
4449 * enabled, latency 0x1, configured
4450 */
4451 msr_info->data = 0xbe702111;
4452 break;
4453 case MSR_AMD64_OSVW_ID_LENGTH:
4454 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4455 return 1;
4456 msr_info->data = vcpu->arch.osvw.length;
4457 break;
4458 case MSR_AMD64_OSVW_STATUS:
4459 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4460 return 1;
4461 msr_info->data = vcpu->arch.osvw.status;
4462 break;
4463 case MSR_PLATFORM_INFO:
4464 if (!msr_info->host_initiated &&
4465 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4466 return 1;
4467 msr_info->data = vcpu->arch.msr_platform_info;
4468 break;
4469 case MSR_MISC_FEATURES_ENABLES:
4470 msr_info->data = vcpu->arch.msr_misc_features_enables;
4471 break;
4472 case MSR_K7_HWCR:
4473 msr_info->data = vcpu->arch.msr_hwcr;
4474 break;
4475 #ifdef CONFIG_X86_64
4476 case MSR_IA32_XFD:
4477 if (!msr_info->host_initiated &&
4478 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4479 return 1;
4480
4481 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4482 break;
4483 case MSR_IA32_XFD_ERR:
4484 if (!msr_info->host_initiated &&
4485 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4486 return 1;
4487
4488 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4489 break;
4490 #endif
4491 default:
4492 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4493 return kvm_pmu_get_msr(vcpu, msr_info);
4494
4495 return KVM_MSR_RET_UNSUPPORTED;
4496 }
4497 return 0;
4498 }
4499 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4500
4501 /*
4502 * Read or write a bunch of msrs. All parameters are kernel addresses.
4503 *
4504 * @return number of msrs set successfully.
4505 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4506 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4507 struct kvm_msr_entry *entries,
4508 int (*do_msr)(struct kvm_vcpu *vcpu,
4509 unsigned index, u64 *data))
4510 {
4511 int i;
4512
4513 for (i = 0; i < msrs->nmsrs; ++i)
4514 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4515 break;
4516
4517 return i;
4518 }
4519
4520 /*
4521 * Read or write a bunch of msrs. Parameters are user addresses.
4522 *
4523 * @return number of msrs set successfully.
4524 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4525 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4526 int (*do_msr)(struct kvm_vcpu *vcpu,
4527 unsigned index, u64 *data),
4528 int writeback)
4529 {
4530 struct kvm_msrs msrs;
4531 struct kvm_msr_entry *entries;
4532 unsigned size;
4533 int r;
4534
4535 r = -EFAULT;
4536 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4537 goto out;
4538
4539 r = -E2BIG;
4540 if (msrs.nmsrs >= MAX_IO_MSRS)
4541 goto out;
4542
4543 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4544 entries = memdup_user(user_msrs->entries, size);
4545 if (IS_ERR(entries)) {
4546 r = PTR_ERR(entries);
4547 goto out;
4548 }
4549
4550 r = __msr_io(vcpu, &msrs, entries, do_msr);
4551
4552 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4553 r = -EFAULT;
4554
4555 kfree(entries);
4556 out:
4557 return r;
4558 }
4559
kvm_can_mwait_in_guest(void)4560 static inline bool kvm_can_mwait_in_guest(void)
4561 {
4562 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4563 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4564 boot_cpu_has(X86_FEATURE_ARAT);
4565 }
4566
4567 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4568 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4569 struct kvm_cpuid2 __user *cpuid_arg)
4570 {
4571 struct kvm_cpuid2 cpuid;
4572 int r;
4573
4574 r = -EFAULT;
4575 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4576 return r;
4577
4578 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4579 if (r)
4580 return r;
4581
4582 r = -EFAULT;
4583 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4584 return r;
4585
4586 return 0;
4587 }
4588 #endif
4589
kvm_is_vm_type_supported(unsigned long type)4590 static bool kvm_is_vm_type_supported(unsigned long type)
4591 {
4592 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4593 }
4594
kvm_sync_valid_fields(struct kvm * kvm)4595 static inline u32 kvm_sync_valid_fields(struct kvm *kvm)
4596 {
4597 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4598 }
4599
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4600 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4601 {
4602 int r = 0;
4603
4604 switch (ext) {
4605 case KVM_CAP_IRQCHIP:
4606 case KVM_CAP_HLT:
4607 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4608 case KVM_CAP_SET_TSS_ADDR:
4609 case KVM_CAP_EXT_CPUID:
4610 case KVM_CAP_EXT_EMUL_CPUID:
4611 case KVM_CAP_CLOCKSOURCE:
4612 case KVM_CAP_PIT:
4613 case KVM_CAP_NOP_IO_DELAY:
4614 case KVM_CAP_MP_STATE:
4615 case KVM_CAP_SYNC_MMU:
4616 case KVM_CAP_USER_NMI:
4617 case KVM_CAP_REINJECT_CONTROL:
4618 case KVM_CAP_IRQ_INJECT_STATUS:
4619 case KVM_CAP_IOEVENTFD:
4620 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4621 case KVM_CAP_PIT2:
4622 case KVM_CAP_PIT_STATE2:
4623 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4624 case KVM_CAP_VCPU_EVENTS:
4625 #ifdef CONFIG_KVM_HYPERV
4626 case KVM_CAP_HYPERV:
4627 case KVM_CAP_HYPERV_VAPIC:
4628 case KVM_CAP_HYPERV_SPIN:
4629 case KVM_CAP_HYPERV_TIME:
4630 case KVM_CAP_HYPERV_SYNIC:
4631 case KVM_CAP_HYPERV_SYNIC2:
4632 case KVM_CAP_HYPERV_VP_INDEX:
4633 case KVM_CAP_HYPERV_EVENTFD:
4634 case KVM_CAP_HYPERV_TLBFLUSH:
4635 case KVM_CAP_HYPERV_SEND_IPI:
4636 case KVM_CAP_HYPERV_CPUID:
4637 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4638 case KVM_CAP_SYS_HYPERV_CPUID:
4639 #endif
4640 case KVM_CAP_PCI_SEGMENT:
4641 case KVM_CAP_DEBUGREGS:
4642 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4643 case KVM_CAP_XSAVE:
4644 case KVM_CAP_ASYNC_PF:
4645 case KVM_CAP_ASYNC_PF_INT:
4646 case KVM_CAP_GET_TSC_KHZ:
4647 case KVM_CAP_KVMCLOCK_CTRL:
4648 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4649 case KVM_CAP_TSC_DEADLINE_TIMER:
4650 case KVM_CAP_DISABLE_QUIRKS:
4651 case KVM_CAP_SET_BOOT_CPU_ID:
4652 case KVM_CAP_SPLIT_IRQCHIP:
4653 case KVM_CAP_IMMEDIATE_EXIT:
4654 case KVM_CAP_PMU_EVENT_FILTER:
4655 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4656 case KVM_CAP_GET_MSR_FEATURES:
4657 case KVM_CAP_MSR_PLATFORM_INFO:
4658 case KVM_CAP_EXCEPTION_PAYLOAD:
4659 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4660 case KVM_CAP_SET_GUEST_DEBUG:
4661 case KVM_CAP_LAST_CPU:
4662 case KVM_CAP_X86_USER_SPACE_MSR:
4663 case KVM_CAP_X86_MSR_FILTER:
4664 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4665 #ifdef CONFIG_X86_SGX_KVM
4666 case KVM_CAP_SGX_ATTRIBUTE:
4667 #endif
4668 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4669 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4670 case KVM_CAP_SREGS2:
4671 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4672 case KVM_CAP_VCPU_ATTRIBUTES:
4673 case KVM_CAP_SYS_ATTRIBUTES:
4674 case KVM_CAP_VAPIC:
4675 case KVM_CAP_ENABLE_CAP:
4676 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4677 case KVM_CAP_IRQFD_RESAMPLE:
4678 case KVM_CAP_MEMORY_FAULT_INFO:
4679 case KVM_CAP_X86_GUEST_MODE:
4680 r = 1;
4681 break;
4682 case KVM_CAP_PRE_FAULT_MEMORY:
4683 r = tdp_enabled;
4684 break;
4685 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4686 r = APIC_BUS_CYCLE_NS_DEFAULT;
4687 break;
4688 case KVM_CAP_EXIT_HYPERCALL:
4689 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4690 break;
4691 case KVM_CAP_SET_GUEST_DEBUG2:
4692 return KVM_GUESTDBG_VALID_MASK;
4693 #ifdef CONFIG_KVM_XEN
4694 case KVM_CAP_XEN_HVM:
4695 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4696 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4697 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4698 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4699 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4700 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4701 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4702 if (sched_info_on())
4703 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4704 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4705 break;
4706 #endif
4707 case KVM_CAP_SYNC_REGS:
4708 r = kvm_sync_valid_fields(kvm);
4709 break;
4710 case KVM_CAP_ADJUST_CLOCK:
4711 r = KVM_CLOCK_VALID_FLAGS;
4712 break;
4713 case KVM_CAP_X86_DISABLE_EXITS:
4714 r = KVM_X86_DISABLE_EXITS_PAUSE;
4715
4716 if (!mitigate_smt_rsb) {
4717 r |= KVM_X86_DISABLE_EXITS_HLT |
4718 KVM_X86_DISABLE_EXITS_CSTATE;
4719
4720 if (kvm_can_mwait_in_guest())
4721 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4722 }
4723 break;
4724 case KVM_CAP_X86_SMM:
4725 if (!IS_ENABLED(CONFIG_KVM_SMM))
4726 break;
4727
4728 /* SMBASE is usually relocated above 1M on modern chipsets,
4729 * and SMM handlers might indeed rely on 4G segment limits,
4730 * so do not report SMM to be available if real mode is
4731 * emulated via vm86 mode. Still, do not go to great lengths
4732 * to avoid userspace's usage of the feature, because it is a
4733 * fringe case that is not enabled except via specific settings
4734 * of the module parameters.
4735 */
4736 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4737 break;
4738 case KVM_CAP_NR_VCPUS:
4739 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4740 break;
4741 case KVM_CAP_MAX_VCPUS:
4742 r = KVM_MAX_VCPUS;
4743 break;
4744 case KVM_CAP_MAX_VCPU_ID:
4745 r = KVM_MAX_VCPU_IDS;
4746 break;
4747 case KVM_CAP_PV_MMU: /* obsolete */
4748 r = 0;
4749 break;
4750 case KVM_CAP_MCE:
4751 r = KVM_MAX_MCE_BANKS;
4752 break;
4753 case KVM_CAP_XCRS:
4754 r = boot_cpu_has(X86_FEATURE_XSAVE);
4755 break;
4756 case KVM_CAP_TSC_CONTROL:
4757 case KVM_CAP_VM_TSC_CONTROL:
4758 r = kvm_caps.has_tsc_control;
4759 break;
4760 case KVM_CAP_X2APIC_API:
4761 r = KVM_X2APIC_API_VALID_FLAGS;
4762 break;
4763 case KVM_CAP_NESTED_STATE:
4764 r = kvm_x86_ops.nested_ops->get_state ?
4765 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4766 break;
4767 #ifdef CONFIG_KVM_HYPERV
4768 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4769 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4770 break;
4771 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4772 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4773 break;
4774 #endif
4775 case KVM_CAP_SMALLER_MAXPHYADDR:
4776 r = (int) allow_smaller_maxphyaddr;
4777 break;
4778 case KVM_CAP_STEAL_TIME:
4779 r = sched_info_on();
4780 break;
4781 case KVM_CAP_X86_BUS_LOCK_EXIT:
4782 if (kvm_caps.has_bus_lock_exit)
4783 r = KVM_BUS_LOCK_DETECTION_OFF |
4784 KVM_BUS_LOCK_DETECTION_EXIT;
4785 else
4786 r = 0;
4787 break;
4788 case KVM_CAP_XSAVE2: {
4789 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4790 if (r < sizeof(struct kvm_xsave))
4791 r = sizeof(struct kvm_xsave);
4792 break;
4793 }
4794 case KVM_CAP_PMU_CAPABILITY:
4795 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4796 break;
4797 case KVM_CAP_DISABLE_QUIRKS2:
4798 r = KVM_X86_VALID_QUIRKS;
4799 break;
4800 case KVM_CAP_X86_NOTIFY_VMEXIT:
4801 r = kvm_caps.has_notify_vmexit;
4802 break;
4803 case KVM_CAP_VM_TYPES:
4804 r = kvm_caps.supported_vm_types;
4805 break;
4806 case KVM_CAP_READONLY_MEM:
4807 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4808 break;
4809 default:
4810 break;
4811 }
4812 return r;
4813 }
4814
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4815 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4816 {
4817 if (attr->group) {
4818 if (kvm_x86_ops.dev_get_attr)
4819 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4820 return -ENXIO;
4821 }
4822
4823 switch (attr->attr) {
4824 case KVM_X86_XCOMP_GUEST_SUPP:
4825 *val = kvm_caps.supported_xcr0;
4826 return 0;
4827 default:
4828 return -ENXIO;
4829 }
4830 }
4831
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4832 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4833 {
4834 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4835 int r;
4836 u64 val;
4837
4838 r = __kvm_x86_dev_get_attr(attr, &val);
4839 if (r < 0)
4840 return r;
4841
4842 if (put_user(val, uaddr))
4843 return -EFAULT;
4844
4845 return 0;
4846 }
4847
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4848 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4849 {
4850 u64 val;
4851
4852 return __kvm_x86_dev_get_attr(attr, &val);
4853 }
4854
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4855 long kvm_arch_dev_ioctl(struct file *filp,
4856 unsigned int ioctl, unsigned long arg)
4857 {
4858 void __user *argp = (void __user *)arg;
4859 long r;
4860
4861 switch (ioctl) {
4862 case KVM_GET_MSR_INDEX_LIST: {
4863 struct kvm_msr_list __user *user_msr_list = argp;
4864 struct kvm_msr_list msr_list;
4865 unsigned n;
4866
4867 r = -EFAULT;
4868 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4869 goto out;
4870 n = msr_list.nmsrs;
4871 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4872 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4873 goto out;
4874 r = -E2BIG;
4875 if (n < msr_list.nmsrs)
4876 goto out;
4877 r = -EFAULT;
4878 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4879 num_msrs_to_save * sizeof(u32)))
4880 goto out;
4881 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4882 &emulated_msrs,
4883 num_emulated_msrs * sizeof(u32)))
4884 goto out;
4885 r = 0;
4886 break;
4887 }
4888 case KVM_GET_SUPPORTED_CPUID:
4889 case KVM_GET_EMULATED_CPUID: {
4890 struct kvm_cpuid2 __user *cpuid_arg = argp;
4891 struct kvm_cpuid2 cpuid;
4892
4893 r = -EFAULT;
4894 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4895 goto out;
4896
4897 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4898 ioctl);
4899 if (r)
4900 goto out;
4901
4902 r = -EFAULT;
4903 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4904 goto out;
4905 r = 0;
4906 break;
4907 }
4908 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4909 r = -EFAULT;
4910 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4911 sizeof(kvm_caps.supported_mce_cap)))
4912 goto out;
4913 r = 0;
4914 break;
4915 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4916 struct kvm_msr_list __user *user_msr_list = argp;
4917 struct kvm_msr_list msr_list;
4918 unsigned int n;
4919
4920 r = -EFAULT;
4921 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4922 goto out;
4923 n = msr_list.nmsrs;
4924 msr_list.nmsrs = num_msr_based_features;
4925 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4926 goto out;
4927 r = -E2BIG;
4928 if (n < msr_list.nmsrs)
4929 goto out;
4930 r = -EFAULT;
4931 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4932 num_msr_based_features * sizeof(u32)))
4933 goto out;
4934 r = 0;
4935 break;
4936 }
4937 case KVM_GET_MSRS:
4938 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4939 break;
4940 #ifdef CONFIG_KVM_HYPERV
4941 case KVM_GET_SUPPORTED_HV_CPUID:
4942 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4943 break;
4944 #endif
4945 case KVM_GET_DEVICE_ATTR: {
4946 struct kvm_device_attr attr;
4947 r = -EFAULT;
4948 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4949 break;
4950 r = kvm_x86_dev_get_attr(&attr);
4951 break;
4952 }
4953 case KVM_HAS_DEVICE_ATTR: {
4954 struct kvm_device_attr attr;
4955 r = -EFAULT;
4956 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4957 break;
4958 r = kvm_x86_dev_has_attr(&attr);
4959 break;
4960 }
4961 default:
4962 r = -EINVAL;
4963 break;
4964 }
4965 out:
4966 return r;
4967 }
4968
wbinvd_ipi(void * garbage)4969 static void wbinvd_ipi(void *garbage)
4970 {
4971 wbinvd();
4972 }
4973
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4974 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4975 {
4976 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4977 }
4978
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4979 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4980 {
4981 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4982
4983 vcpu->arch.l1tf_flush_l1d = true;
4984
4985 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4986 pmu->need_cleanup = true;
4987 kvm_make_request(KVM_REQ_PMU, vcpu);
4988 }
4989
4990 /* Address WBINVD may be executed by guest */
4991 if (need_emulate_wbinvd(vcpu)) {
4992 if (kvm_x86_call(has_wbinvd_exit)())
4993 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4994 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4995 smp_call_function_single(vcpu->cpu,
4996 wbinvd_ipi, NULL, 1);
4997 }
4998
4999 kvm_x86_call(vcpu_load)(vcpu, cpu);
5000
5001 /* Save host pkru register if supported */
5002 vcpu->arch.host_pkru = read_pkru();
5003
5004 /* Apply any externally detected TSC adjustments (due to suspend) */
5005 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5006 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5007 vcpu->arch.tsc_offset_adjustment = 0;
5008 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5009 }
5010
5011 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5012 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5013 rdtsc() - vcpu->arch.last_host_tsc;
5014 if (tsc_delta < 0)
5015 mark_tsc_unstable("KVM discovered backwards TSC");
5016
5017 if (kvm_check_tsc_unstable()) {
5018 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5019 vcpu->arch.last_guest_tsc);
5020 kvm_vcpu_write_tsc_offset(vcpu, offset);
5021 vcpu->arch.tsc_catchup = 1;
5022 }
5023
5024 if (kvm_lapic_hv_timer_in_use(vcpu))
5025 kvm_lapic_restart_hv_timer(vcpu);
5026
5027 /*
5028 * On a host with synchronized TSC, there is no need to update
5029 * kvmclock on vcpu->cpu migration
5030 */
5031 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5032 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5033 if (vcpu->cpu != cpu)
5034 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5035 vcpu->cpu = cpu;
5036 }
5037
5038 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5039 }
5040
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5041 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5042 {
5043 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5044 struct kvm_steal_time __user *st;
5045 struct kvm_memslots *slots;
5046 static const u8 preempted = KVM_VCPU_PREEMPTED;
5047 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5048
5049 /*
5050 * The vCPU can be marked preempted if and only if the VM-Exit was on
5051 * an instruction boundary and will not trigger guest emulation of any
5052 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5053 * when this is true, for example allowing the vCPU to be marked
5054 * preempted if and only if the VM-Exit was due to a host interrupt.
5055 */
5056 if (!vcpu->arch.at_instruction_boundary) {
5057 vcpu->stat.preemption_other++;
5058 return;
5059 }
5060
5061 vcpu->stat.preemption_reported++;
5062 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5063 return;
5064
5065 if (vcpu->arch.st.preempted)
5066 return;
5067
5068 /* This happens on process exit */
5069 if (unlikely(current->mm != vcpu->kvm->mm))
5070 return;
5071
5072 slots = kvm_memslots(vcpu->kvm);
5073
5074 if (unlikely(slots->generation != ghc->generation ||
5075 gpa != ghc->gpa ||
5076 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5077 return;
5078
5079 st = (struct kvm_steal_time __user *)ghc->hva;
5080 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5081
5082 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5083 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5084
5085 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5086 }
5087
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5088 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5089 {
5090 int idx;
5091
5092 if (vcpu->preempted) {
5093 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5094
5095 /*
5096 * Take the srcu lock as memslots will be accessed to check the gfn
5097 * cache generation against the memslots generation.
5098 */
5099 idx = srcu_read_lock(&vcpu->kvm->srcu);
5100 if (kvm_xen_msr_enabled(vcpu->kvm))
5101 kvm_xen_runstate_set_preempted(vcpu);
5102 else
5103 kvm_steal_time_set_preempted(vcpu);
5104 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5105 }
5106
5107 kvm_x86_call(vcpu_put)(vcpu);
5108 vcpu->arch.last_host_tsc = rdtsc();
5109 }
5110
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5111 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5112 struct kvm_lapic_state *s)
5113 {
5114 kvm_x86_call(sync_pir_to_irr)(vcpu);
5115
5116 return kvm_apic_get_state(vcpu, s);
5117 }
5118
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5119 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5120 struct kvm_lapic_state *s)
5121 {
5122 int r;
5123
5124 r = kvm_apic_set_state(vcpu, s);
5125 if (r)
5126 return r;
5127 update_cr8_intercept(vcpu);
5128
5129 return 0;
5130 }
5131
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5132 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5133 {
5134 /*
5135 * We can accept userspace's request for interrupt injection
5136 * as long as we have a place to store the interrupt number.
5137 * The actual injection will happen when the CPU is able to
5138 * deliver the interrupt.
5139 */
5140 if (kvm_cpu_has_extint(vcpu))
5141 return false;
5142
5143 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5144 return (!lapic_in_kernel(vcpu) ||
5145 kvm_apic_accept_pic_intr(vcpu));
5146 }
5147
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5148 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5149 {
5150 /*
5151 * Do not cause an interrupt window exit if an exception
5152 * is pending or an event needs reinjection; userspace
5153 * might want to inject the interrupt manually using KVM_SET_REGS
5154 * or KVM_SET_SREGS. For that to work, we must be at an
5155 * instruction boundary and with no events half-injected.
5156 */
5157 return (kvm_arch_interrupt_allowed(vcpu) &&
5158 kvm_cpu_accept_dm_intr(vcpu) &&
5159 !kvm_event_needs_reinjection(vcpu) &&
5160 !kvm_is_exception_pending(vcpu));
5161 }
5162
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5163 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5164 struct kvm_interrupt *irq)
5165 {
5166 if (irq->irq >= KVM_NR_INTERRUPTS)
5167 return -EINVAL;
5168
5169 if (!irqchip_in_kernel(vcpu->kvm)) {
5170 kvm_queue_interrupt(vcpu, irq->irq, false);
5171 kvm_make_request(KVM_REQ_EVENT, vcpu);
5172 return 0;
5173 }
5174
5175 /*
5176 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5177 * fail for in-kernel 8259.
5178 */
5179 if (pic_in_kernel(vcpu->kvm))
5180 return -ENXIO;
5181
5182 if (vcpu->arch.pending_external_vector != -1)
5183 return -EEXIST;
5184
5185 vcpu->arch.pending_external_vector = irq->irq;
5186 kvm_make_request(KVM_REQ_EVENT, vcpu);
5187 return 0;
5188 }
5189
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5190 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5191 {
5192 kvm_inject_nmi(vcpu);
5193
5194 return 0;
5195 }
5196
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5197 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5198 struct kvm_tpr_access_ctl *tac)
5199 {
5200 if (tac->flags)
5201 return -EINVAL;
5202 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5203 return 0;
5204 }
5205
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5206 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5207 u64 mcg_cap)
5208 {
5209 int r;
5210 unsigned bank_num = mcg_cap & 0xff, bank;
5211
5212 r = -EINVAL;
5213 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5214 goto out;
5215 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5216 goto out;
5217 r = 0;
5218 vcpu->arch.mcg_cap = mcg_cap;
5219 /* Init IA32_MCG_CTL to all 1s */
5220 if (mcg_cap & MCG_CTL_P)
5221 vcpu->arch.mcg_ctl = ~(u64)0;
5222 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5223 for (bank = 0; bank < bank_num; bank++) {
5224 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5225 if (mcg_cap & MCG_CMCI_P)
5226 vcpu->arch.mci_ctl2_banks[bank] = 0;
5227 }
5228
5229 kvm_apic_after_set_mcg_cap(vcpu);
5230
5231 kvm_x86_call(setup_mce)(vcpu);
5232 out:
5233 return r;
5234 }
5235
5236 /*
5237 * Validate this is an UCNA (uncorrectable no action) error by checking the
5238 * MCG_STATUS and MCi_STATUS registers:
5239 * - none of the bits for Machine Check Exceptions are set
5240 * - both the VAL (valid) and UC (uncorrectable) bits are set
5241 * MCI_STATUS_PCC - Processor Context Corrupted
5242 * MCI_STATUS_S - Signaled as a Machine Check Exception
5243 * MCI_STATUS_AR - Software recoverable Action Required
5244 */
is_ucna(struct kvm_x86_mce * mce)5245 static bool is_ucna(struct kvm_x86_mce *mce)
5246 {
5247 return !mce->mcg_status &&
5248 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5249 (mce->status & MCI_STATUS_VAL) &&
5250 (mce->status & MCI_STATUS_UC);
5251 }
5252
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5253 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5254 {
5255 u64 mcg_cap = vcpu->arch.mcg_cap;
5256
5257 banks[1] = mce->status;
5258 banks[2] = mce->addr;
5259 banks[3] = mce->misc;
5260 vcpu->arch.mcg_status = mce->mcg_status;
5261
5262 if (!(mcg_cap & MCG_CMCI_P) ||
5263 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5264 return 0;
5265
5266 if (lapic_in_kernel(vcpu))
5267 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5268
5269 return 0;
5270 }
5271
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5272 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5273 struct kvm_x86_mce *mce)
5274 {
5275 u64 mcg_cap = vcpu->arch.mcg_cap;
5276 unsigned bank_num = mcg_cap & 0xff;
5277 u64 *banks = vcpu->arch.mce_banks;
5278
5279 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5280 return -EINVAL;
5281
5282 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5283
5284 if (is_ucna(mce))
5285 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5286
5287 /*
5288 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5289 * reporting is disabled
5290 */
5291 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5292 vcpu->arch.mcg_ctl != ~(u64)0)
5293 return 0;
5294 /*
5295 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5296 * reporting is disabled for the bank
5297 */
5298 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5299 return 0;
5300 if (mce->status & MCI_STATUS_UC) {
5301 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5302 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5303 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5304 return 0;
5305 }
5306 if (banks[1] & MCI_STATUS_VAL)
5307 mce->status |= MCI_STATUS_OVER;
5308 banks[2] = mce->addr;
5309 banks[3] = mce->misc;
5310 vcpu->arch.mcg_status = mce->mcg_status;
5311 banks[1] = mce->status;
5312 kvm_queue_exception(vcpu, MC_VECTOR);
5313 } else if (!(banks[1] & MCI_STATUS_VAL)
5314 || !(banks[1] & MCI_STATUS_UC)) {
5315 if (banks[1] & MCI_STATUS_VAL)
5316 mce->status |= MCI_STATUS_OVER;
5317 banks[2] = mce->addr;
5318 banks[3] = mce->misc;
5319 banks[1] = mce->status;
5320 } else
5321 banks[1] |= MCI_STATUS_OVER;
5322 return 0;
5323 }
5324
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5325 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5326 struct kvm_vcpu_events *events)
5327 {
5328 struct kvm_queued_exception *ex;
5329
5330 process_nmi(vcpu);
5331
5332 #ifdef CONFIG_KVM_SMM
5333 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5334 process_smi(vcpu);
5335 #endif
5336
5337 /*
5338 * KVM's ABI only allows for one exception to be migrated. Luckily,
5339 * the only time there can be two queued exceptions is if there's a
5340 * non-exiting _injected_ exception, and a pending exiting exception.
5341 * In that case, ignore the VM-Exiting exception as it's an extension
5342 * of the injected exception.
5343 */
5344 if (vcpu->arch.exception_vmexit.pending &&
5345 !vcpu->arch.exception.pending &&
5346 !vcpu->arch.exception.injected)
5347 ex = &vcpu->arch.exception_vmexit;
5348 else
5349 ex = &vcpu->arch.exception;
5350
5351 /*
5352 * In guest mode, payload delivery should be deferred if the exception
5353 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5354 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5355 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5356 * propagate the payload and so it cannot be safely deferred. Deliver
5357 * the payload if the capability hasn't been requested.
5358 */
5359 if (!vcpu->kvm->arch.exception_payload_enabled &&
5360 ex->pending && ex->has_payload)
5361 kvm_deliver_exception_payload(vcpu, ex);
5362
5363 memset(events, 0, sizeof(*events));
5364
5365 /*
5366 * The API doesn't provide the instruction length for software
5367 * exceptions, so don't report them. As long as the guest RIP
5368 * isn't advanced, we should expect to encounter the exception
5369 * again.
5370 */
5371 if (!kvm_exception_is_soft(ex->vector)) {
5372 events->exception.injected = ex->injected;
5373 events->exception.pending = ex->pending;
5374 /*
5375 * For ABI compatibility, deliberately conflate
5376 * pending and injected exceptions when
5377 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5378 */
5379 if (!vcpu->kvm->arch.exception_payload_enabled)
5380 events->exception.injected |= ex->pending;
5381 }
5382 events->exception.nr = ex->vector;
5383 events->exception.has_error_code = ex->has_error_code;
5384 events->exception.error_code = ex->error_code;
5385 events->exception_has_payload = ex->has_payload;
5386 events->exception_payload = ex->payload;
5387
5388 events->interrupt.injected =
5389 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5390 events->interrupt.nr = vcpu->arch.interrupt.nr;
5391 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5392
5393 events->nmi.injected = vcpu->arch.nmi_injected;
5394 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5395 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5396
5397 /* events->sipi_vector is never valid when reporting to user space */
5398
5399 #ifdef CONFIG_KVM_SMM
5400 events->smi.smm = is_smm(vcpu);
5401 events->smi.pending = vcpu->arch.smi_pending;
5402 events->smi.smm_inside_nmi =
5403 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5404 #endif
5405 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5406
5407 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5408 | KVM_VCPUEVENT_VALID_SHADOW
5409 | KVM_VCPUEVENT_VALID_SMM);
5410 if (vcpu->kvm->arch.exception_payload_enabled)
5411 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5412 if (vcpu->kvm->arch.triple_fault_event) {
5413 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5414 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5415 }
5416 }
5417
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5418 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5419 struct kvm_vcpu_events *events)
5420 {
5421 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5422 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5423 | KVM_VCPUEVENT_VALID_SHADOW
5424 | KVM_VCPUEVENT_VALID_SMM
5425 | KVM_VCPUEVENT_VALID_PAYLOAD
5426 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5427 return -EINVAL;
5428
5429 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5430 if (!vcpu->kvm->arch.exception_payload_enabled)
5431 return -EINVAL;
5432 if (events->exception.pending)
5433 events->exception.injected = 0;
5434 else
5435 events->exception_has_payload = 0;
5436 } else {
5437 events->exception.pending = 0;
5438 events->exception_has_payload = 0;
5439 }
5440
5441 if ((events->exception.injected || events->exception.pending) &&
5442 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5443 return -EINVAL;
5444
5445 /* INITs are latched while in SMM */
5446 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5447 (events->smi.smm || events->smi.pending) &&
5448 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5449 return -EINVAL;
5450
5451 process_nmi(vcpu);
5452
5453 /*
5454 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5455 * morph the exception to a VM-Exit if appropriate. Do this only for
5456 * pending exceptions, already-injected exceptions are not subject to
5457 * intercpetion. Note, userspace that conflates pending and injected
5458 * is hosed, and will incorrectly convert an injected exception into a
5459 * pending exception, which in turn may cause a spurious VM-Exit.
5460 */
5461 vcpu->arch.exception_from_userspace = events->exception.pending;
5462
5463 vcpu->arch.exception_vmexit.pending = false;
5464
5465 vcpu->arch.exception.injected = events->exception.injected;
5466 vcpu->arch.exception.pending = events->exception.pending;
5467 vcpu->arch.exception.vector = events->exception.nr;
5468 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5469 vcpu->arch.exception.error_code = events->exception.error_code;
5470 vcpu->arch.exception.has_payload = events->exception_has_payload;
5471 vcpu->arch.exception.payload = events->exception_payload;
5472
5473 vcpu->arch.interrupt.injected = events->interrupt.injected;
5474 vcpu->arch.interrupt.nr = events->interrupt.nr;
5475 vcpu->arch.interrupt.soft = events->interrupt.soft;
5476 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5477 kvm_x86_call(set_interrupt_shadow)(vcpu,
5478 events->interrupt.shadow);
5479
5480 vcpu->arch.nmi_injected = events->nmi.injected;
5481 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5482 vcpu->arch.nmi_pending = 0;
5483 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5484 if (events->nmi.pending)
5485 kvm_make_request(KVM_REQ_NMI, vcpu);
5486 }
5487 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5488
5489 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5490 lapic_in_kernel(vcpu))
5491 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5492
5493 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5494 #ifdef CONFIG_KVM_SMM
5495 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5496 kvm_leave_nested(vcpu);
5497 kvm_smm_changed(vcpu, events->smi.smm);
5498 }
5499
5500 vcpu->arch.smi_pending = events->smi.pending;
5501
5502 if (events->smi.smm) {
5503 if (events->smi.smm_inside_nmi)
5504 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5505 else
5506 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5507 }
5508
5509 #else
5510 if (events->smi.smm || events->smi.pending ||
5511 events->smi.smm_inside_nmi)
5512 return -EINVAL;
5513 #endif
5514
5515 if (lapic_in_kernel(vcpu)) {
5516 if (events->smi.latched_init)
5517 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5518 else
5519 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5520 }
5521 }
5522
5523 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5524 if (!vcpu->kvm->arch.triple_fault_event)
5525 return -EINVAL;
5526 if (events->triple_fault.pending)
5527 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5528 else
5529 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5530 }
5531
5532 kvm_make_request(KVM_REQ_EVENT, vcpu);
5533
5534 return 0;
5535 }
5536
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5537 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5538 struct kvm_debugregs *dbgregs)
5539 {
5540 unsigned int i;
5541
5542 if (vcpu->kvm->arch.has_protected_state &&
5543 vcpu->arch.guest_state_protected)
5544 return -EINVAL;
5545
5546 memset(dbgregs, 0, sizeof(*dbgregs));
5547
5548 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5549 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5550 dbgregs->db[i] = vcpu->arch.db[i];
5551
5552 dbgregs->dr6 = vcpu->arch.dr6;
5553 dbgregs->dr7 = vcpu->arch.dr7;
5554 return 0;
5555 }
5556
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5557 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5558 struct kvm_debugregs *dbgregs)
5559 {
5560 unsigned int i;
5561
5562 if (vcpu->kvm->arch.has_protected_state &&
5563 vcpu->arch.guest_state_protected)
5564 return -EINVAL;
5565
5566 if (dbgregs->flags)
5567 return -EINVAL;
5568
5569 if (!kvm_dr6_valid(dbgregs->dr6))
5570 return -EINVAL;
5571 if (!kvm_dr7_valid(dbgregs->dr7))
5572 return -EINVAL;
5573
5574 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5575 vcpu->arch.db[i] = dbgregs->db[i];
5576
5577 kvm_update_dr0123(vcpu);
5578 vcpu->arch.dr6 = dbgregs->dr6;
5579 vcpu->arch.dr7 = dbgregs->dr7;
5580 kvm_update_dr7(vcpu);
5581
5582 return 0;
5583 }
5584
5585
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5586 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5587 u8 *state, unsigned int size)
5588 {
5589 /*
5590 * Only copy state for features that are enabled for the guest. The
5591 * state itself isn't problematic, but setting bits in the header for
5592 * features that are supported in *this* host but not exposed to the
5593 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5594 * compatible host without the features that are NOT exposed to the
5595 * guest.
5596 *
5597 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5598 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5599 * supported by the host.
5600 */
5601 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5602 XFEATURE_MASK_FPSSE;
5603
5604 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5605 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5606
5607 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5608 supported_xcr0, vcpu->arch.pkru);
5609 return 0;
5610 }
5611
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5612 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5613 struct kvm_xsave *guest_xsave)
5614 {
5615 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5616 sizeof(guest_xsave->region));
5617 }
5618
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5619 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5620 struct kvm_xsave *guest_xsave)
5621 {
5622 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5623 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5624
5625 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5626 guest_xsave->region,
5627 kvm_caps.supported_xcr0,
5628 &vcpu->arch.pkru);
5629 }
5630
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5631 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5632 struct kvm_xcrs *guest_xcrs)
5633 {
5634 if (vcpu->kvm->arch.has_protected_state &&
5635 vcpu->arch.guest_state_protected)
5636 return -EINVAL;
5637
5638 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5639 guest_xcrs->nr_xcrs = 0;
5640 return 0;
5641 }
5642
5643 guest_xcrs->nr_xcrs = 1;
5644 guest_xcrs->flags = 0;
5645 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5646 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5647 return 0;
5648 }
5649
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5650 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5651 struct kvm_xcrs *guest_xcrs)
5652 {
5653 int i, r = 0;
5654
5655 if (vcpu->kvm->arch.has_protected_state &&
5656 vcpu->arch.guest_state_protected)
5657 return -EINVAL;
5658
5659 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5660 return -EINVAL;
5661
5662 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5663 return -EINVAL;
5664
5665 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5666 /* Only support XCR0 currently */
5667 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5668 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5669 guest_xcrs->xcrs[i].value);
5670 break;
5671 }
5672 if (r)
5673 r = -EINVAL;
5674 return r;
5675 }
5676
5677 /*
5678 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5679 * stopped by the hypervisor. This function will be called from the host only.
5680 * EINVAL is returned when the host attempts to set the flag for a guest that
5681 * does not support pv clocks.
5682 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5683 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5684 {
5685 if (!vcpu->arch.pv_time.active)
5686 return -EINVAL;
5687 vcpu->arch.pvclock_set_guest_stopped_request = true;
5688 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5689 return 0;
5690 }
5691
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5692 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5693 struct kvm_device_attr *attr)
5694 {
5695 int r;
5696
5697 switch (attr->attr) {
5698 case KVM_VCPU_TSC_OFFSET:
5699 r = 0;
5700 break;
5701 default:
5702 r = -ENXIO;
5703 }
5704
5705 return r;
5706 }
5707
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5708 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5709 struct kvm_device_attr *attr)
5710 {
5711 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5712 int r;
5713
5714 switch (attr->attr) {
5715 case KVM_VCPU_TSC_OFFSET:
5716 r = -EFAULT;
5717 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5718 break;
5719 r = 0;
5720 break;
5721 default:
5722 r = -ENXIO;
5723 }
5724
5725 return r;
5726 }
5727
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5728 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5729 struct kvm_device_attr *attr)
5730 {
5731 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5732 struct kvm *kvm = vcpu->kvm;
5733 int r;
5734
5735 switch (attr->attr) {
5736 case KVM_VCPU_TSC_OFFSET: {
5737 u64 offset, tsc, ns;
5738 unsigned long flags;
5739 bool matched;
5740
5741 r = -EFAULT;
5742 if (get_user(offset, uaddr))
5743 break;
5744
5745 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5746
5747 matched = (vcpu->arch.virtual_tsc_khz &&
5748 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5749 kvm->arch.last_tsc_offset == offset);
5750
5751 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5752 ns = get_kvmclock_base_ns();
5753
5754 kvm->arch.user_set_tsc = true;
5755 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5757
5758 r = 0;
5759 break;
5760 }
5761 default:
5762 r = -ENXIO;
5763 }
5764
5765 return r;
5766 }
5767
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5768 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5769 unsigned int ioctl,
5770 void __user *argp)
5771 {
5772 struct kvm_device_attr attr;
5773 int r;
5774
5775 if (copy_from_user(&attr, argp, sizeof(attr)))
5776 return -EFAULT;
5777
5778 if (attr.group != KVM_VCPU_TSC_CTRL)
5779 return -ENXIO;
5780
5781 switch (ioctl) {
5782 case KVM_HAS_DEVICE_ATTR:
5783 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5784 break;
5785 case KVM_GET_DEVICE_ATTR:
5786 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5787 break;
5788 case KVM_SET_DEVICE_ATTR:
5789 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5790 break;
5791 }
5792
5793 return r;
5794 }
5795
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5796 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5797 struct kvm_enable_cap *cap)
5798 {
5799 if (cap->flags)
5800 return -EINVAL;
5801
5802 switch (cap->cap) {
5803 #ifdef CONFIG_KVM_HYPERV
5804 case KVM_CAP_HYPERV_SYNIC2:
5805 if (cap->args[0])
5806 return -EINVAL;
5807 fallthrough;
5808
5809 case KVM_CAP_HYPERV_SYNIC:
5810 if (!irqchip_in_kernel(vcpu->kvm))
5811 return -EINVAL;
5812 return kvm_hv_activate_synic(vcpu, cap->cap ==
5813 KVM_CAP_HYPERV_SYNIC2);
5814 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5815 {
5816 int r;
5817 uint16_t vmcs_version;
5818 void __user *user_ptr;
5819
5820 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5821 return -ENOTTY;
5822 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5823 if (!r) {
5824 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5825 if (copy_to_user(user_ptr, &vmcs_version,
5826 sizeof(vmcs_version)))
5827 r = -EFAULT;
5828 }
5829 return r;
5830 }
5831 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5832 if (!kvm_x86_ops.enable_l2_tlb_flush)
5833 return -ENOTTY;
5834
5835 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5836
5837 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5838 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5839 #endif
5840
5841 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5842 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5843 if (vcpu->arch.pv_cpuid.enforce)
5844 kvm_update_pv_runtime(vcpu);
5845
5846 return 0;
5847 default:
5848 return -EINVAL;
5849 }
5850 }
5851
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5852 long kvm_arch_vcpu_ioctl(struct file *filp,
5853 unsigned int ioctl, unsigned long arg)
5854 {
5855 struct kvm_vcpu *vcpu = filp->private_data;
5856 void __user *argp = (void __user *)arg;
5857 int r;
5858 union {
5859 struct kvm_sregs2 *sregs2;
5860 struct kvm_lapic_state *lapic;
5861 struct kvm_xsave *xsave;
5862 struct kvm_xcrs *xcrs;
5863 void *buffer;
5864 } u;
5865
5866 vcpu_load(vcpu);
5867
5868 u.buffer = NULL;
5869 switch (ioctl) {
5870 case KVM_GET_LAPIC: {
5871 r = -EINVAL;
5872 if (!lapic_in_kernel(vcpu))
5873 goto out;
5874 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5875
5876 r = -ENOMEM;
5877 if (!u.lapic)
5878 goto out;
5879 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5880 if (r)
5881 goto out;
5882 r = -EFAULT;
5883 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5884 goto out;
5885 r = 0;
5886 break;
5887 }
5888 case KVM_SET_LAPIC: {
5889 r = -EINVAL;
5890 if (!lapic_in_kernel(vcpu))
5891 goto out;
5892 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5893 if (IS_ERR(u.lapic)) {
5894 r = PTR_ERR(u.lapic);
5895 goto out_nofree;
5896 }
5897
5898 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5899 break;
5900 }
5901 case KVM_INTERRUPT: {
5902 struct kvm_interrupt irq;
5903
5904 r = -EFAULT;
5905 if (copy_from_user(&irq, argp, sizeof(irq)))
5906 goto out;
5907 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5908 break;
5909 }
5910 case KVM_NMI: {
5911 r = kvm_vcpu_ioctl_nmi(vcpu);
5912 break;
5913 }
5914 case KVM_SMI: {
5915 r = kvm_inject_smi(vcpu);
5916 break;
5917 }
5918 case KVM_SET_CPUID: {
5919 struct kvm_cpuid __user *cpuid_arg = argp;
5920 struct kvm_cpuid cpuid;
5921
5922 r = -EFAULT;
5923 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5924 goto out;
5925 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5926 break;
5927 }
5928 case KVM_SET_CPUID2: {
5929 struct kvm_cpuid2 __user *cpuid_arg = argp;
5930 struct kvm_cpuid2 cpuid;
5931
5932 r = -EFAULT;
5933 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5934 goto out;
5935 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5936 cpuid_arg->entries);
5937 break;
5938 }
5939 case KVM_GET_CPUID2: {
5940 struct kvm_cpuid2 __user *cpuid_arg = argp;
5941 struct kvm_cpuid2 cpuid;
5942
5943 r = -EFAULT;
5944 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945 goto out;
5946 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5947 cpuid_arg->entries);
5948 if (r)
5949 goto out;
5950 r = -EFAULT;
5951 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5952 goto out;
5953 r = 0;
5954 break;
5955 }
5956 case KVM_GET_MSRS: {
5957 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5958 r = msr_io(vcpu, argp, do_get_msr, 1);
5959 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5960 break;
5961 }
5962 case KVM_SET_MSRS: {
5963 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5964 r = msr_io(vcpu, argp, do_set_msr, 0);
5965 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5966 break;
5967 }
5968 case KVM_TPR_ACCESS_REPORTING: {
5969 struct kvm_tpr_access_ctl tac;
5970
5971 r = -EFAULT;
5972 if (copy_from_user(&tac, argp, sizeof(tac)))
5973 goto out;
5974 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5975 if (r)
5976 goto out;
5977 r = -EFAULT;
5978 if (copy_to_user(argp, &tac, sizeof(tac)))
5979 goto out;
5980 r = 0;
5981 break;
5982 };
5983 case KVM_SET_VAPIC_ADDR: {
5984 struct kvm_vapic_addr va;
5985 int idx;
5986
5987 r = -EINVAL;
5988 if (!lapic_in_kernel(vcpu))
5989 goto out;
5990 r = -EFAULT;
5991 if (copy_from_user(&va, argp, sizeof(va)))
5992 goto out;
5993 idx = srcu_read_lock(&vcpu->kvm->srcu);
5994 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5995 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5996 break;
5997 }
5998 case KVM_X86_SETUP_MCE: {
5999 u64 mcg_cap;
6000
6001 r = -EFAULT;
6002 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6003 goto out;
6004 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6005 break;
6006 }
6007 case KVM_X86_SET_MCE: {
6008 struct kvm_x86_mce mce;
6009
6010 r = -EFAULT;
6011 if (copy_from_user(&mce, argp, sizeof(mce)))
6012 goto out;
6013 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6014 break;
6015 }
6016 case KVM_GET_VCPU_EVENTS: {
6017 struct kvm_vcpu_events events;
6018
6019 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6020
6021 r = -EFAULT;
6022 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6023 break;
6024 r = 0;
6025 break;
6026 }
6027 case KVM_SET_VCPU_EVENTS: {
6028 struct kvm_vcpu_events events;
6029
6030 r = -EFAULT;
6031 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6032 break;
6033
6034 kvm_vcpu_srcu_read_lock(vcpu);
6035 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6036 kvm_vcpu_srcu_read_unlock(vcpu);
6037 break;
6038 }
6039 case KVM_GET_DEBUGREGS: {
6040 struct kvm_debugregs dbgregs;
6041
6042 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6043 if (r < 0)
6044 break;
6045
6046 r = -EFAULT;
6047 if (copy_to_user(argp, &dbgregs,
6048 sizeof(struct kvm_debugregs)))
6049 break;
6050 r = 0;
6051 break;
6052 }
6053 case KVM_SET_DEBUGREGS: {
6054 struct kvm_debugregs dbgregs;
6055
6056 r = -EFAULT;
6057 if (copy_from_user(&dbgregs, argp,
6058 sizeof(struct kvm_debugregs)))
6059 break;
6060
6061 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6062 break;
6063 }
6064 case KVM_GET_XSAVE: {
6065 r = -EINVAL;
6066 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6067 break;
6068
6069 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6070 r = -ENOMEM;
6071 if (!u.xsave)
6072 break;
6073
6074 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6075 if (r < 0)
6076 break;
6077
6078 r = -EFAULT;
6079 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6080 break;
6081 r = 0;
6082 break;
6083 }
6084 case KVM_SET_XSAVE: {
6085 int size = vcpu->arch.guest_fpu.uabi_size;
6086
6087 u.xsave = memdup_user(argp, size);
6088 if (IS_ERR(u.xsave)) {
6089 r = PTR_ERR(u.xsave);
6090 goto out_nofree;
6091 }
6092
6093 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6094 break;
6095 }
6096
6097 case KVM_GET_XSAVE2: {
6098 int size = vcpu->arch.guest_fpu.uabi_size;
6099
6100 u.xsave = kzalloc(size, GFP_KERNEL);
6101 r = -ENOMEM;
6102 if (!u.xsave)
6103 break;
6104
6105 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6106 if (r < 0)
6107 break;
6108
6109 r = -EFAULT;
6110 if (copy_to_user(argp, u.xsave, size))
6111 break;
6112
6113 r = 0;
6114 break;
6115 }
6116
6117 case KVM_GET_XCRS: {
6118 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6119 r = -ENOMEM;
6120 if (!u.xcrs)
6121 break;
6122
6123 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6124 if (r < 0)
6125 break;
6126
6127 r = -EFAULT;
6128 if (copy_to_user(argp, u.xcrs,
6129 sizeof(struct kvm_xcrs)))
6130 break;
6131 r = 0;
6132 break;
6133 }
6134 case KVM_SET_XCRS: {
6135 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6136 if (IS_ERR(u.xcrs)) {
6137 r = PTR_ERR(u.xcrs);
6138 goto out_nofree;
6139 }
6140
6141 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6142 break;
6143 }
6144 case KVM_SET_TSC_KHZ: {
6145 u32 user_tsc_khz;
6146
6147 r = -EINVAL;
6148 user_tsc_khz = (u32)arg;
6149
6150 if (kvm_caps.has_tsc_control &&
6151 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6152 goto out;
6153
6154 if (user_tsc_khz == 0)
6155 user_tsc_khz = tsc_khz;
6156
6157 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6158 r = 0;
6159
6160 goto out;
6161 }
6162 case KVM_GET_TSC_KHZ: {
6163 r = vcpu->arch.virtual_tsc_khz;
6164 goto out;
6165 }
6166 case KVM_KVMCLOCK_CTRL: {
6167 r = kvm_set_guest_paused(vcpu);
6168 goto out;
6169 }
6170 case KVM_ENABLE_CAP: {
6171 struct kvm_enable_cap cap;
6172
6173 r = -EFAULT;
6174 if (copy_from_user(&cap, argp, sizeof(cap)))
6175 goto out;
6176 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6177 break;
6178 }
6179 case KVM_GET_NESTED_STATE: {
6180 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6181 u32 user_data_size;
6182
6183 r = -EINVAL;
6184 if (!kvm_x86_ops.nested_ops->get_state)
6185 break;
6186
6187 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6188 r = -EFAULT;
6189 if (get_user(user_data_size, &user_kvm_nested_state->size))
6190 break;
6191
6192 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6193 user_data_size);
6194 if (r < 0)
6195 break;
6196
6197 if (r > user_data_size) {
6198 if (put_user(r, &user_kvm_nested_state->size))
6199 r = -EFAULT;
6200 else
6201 r = -E2BIG;
6202 break;
6203 }
6204
6205 r = 0;
6206 break;
6207 }
6208 case KVM_SET_NESTED_STATE: {
6209 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6210 struct kvm_nested_state kvm_state;
6211 int idx;
6212
6213 r = -EINVAL;
6214 if (!kvm_x86_ops.nested_ops->set_state)
6215 break;
6216
6217 r = -EFAULT;
6218 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6219 break;
6220
6221 r = -EINVAL;
6222 if (kvm_state.size < sizeof(kvm_state))
6223 break;
6224
6225 if (kvm_state.flags &
6226 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6227 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6228 | KVM_STATE_NESTED_GIF_SET))
6229 break;
6230
6231 /* nested_run_pending implies guest_mode. */
6232 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6233 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6234 break;
6235
6236 idx = srcu_read_lock(&vcpu->kvm->srcu);
6237 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6238 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6239 break;
6240 }
6241 #ifdef CONFIG_KVM_HYPERV
6242 case KVM_GET_SUPPORTED_HV_CPUID:
6243 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6244 break;
6245 #endif
6246 #ifdef CONFIG_KVM_XEN
6247 case KVM_XEN_VCPU_GET_ATTR: {
6248 struct kvm_xen_vcpu_attr xva;
6249
6250 r = -EFAULT;
6251 if (copy_from_user(&xva, argp, sizeof(xva)))
6252 goto out;
6253 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6254 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6255 r = -EFAULT;
6256 break;
6257 }
6258 case KVM_XEN_VCPU_SET_ATTR: {
6259 struct kvm_xen_vcpu_attr xva;
6260
6261 r = -EFAULT;
6262 if (copy_from_user(&xva, argp, sizeof(xva)))
6263 goto out;
6264 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6265 break;
6266 }
6267 #endif
6268 case KVM_GET_SREGS2: {
6269 r = -EINVAL;
6270 if (vcpu->kvm->arch.has_protected_state &&
6271 vcpu->arch.guest_state_protected)
6272 goto out;
6273
6274 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6275 r = -ENOMEM;
6276 if (!u.sregs2)
6277 goto out;
6278 __get_sregs2(vcpu, u.sregs2);
6279 r = -EFAULT;
6280 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6281 goto out;
6282 r = 0;
6283 break;
6284 }
6285 case KVM_SET_SREGS2: {
6286 r = -EINVAL;
6287 if (vcpu->kvm->arch.has_protected_state &&
6288 vcpu->arch.guest_state_protected)
6289 goto out;
6290
6291 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6292 if (IS_ERR(u.sregs2)) {
6293 r = PTR_ERR(u.sregs2);
6294 u.sregs2 = NULL;
6295 goto out;
6296 }
6297 r = __set_sregs2(vcpu, u.sregs2);
6298 break;
6299 }
6300 case KVM_HAS_DEVICE_ATTR:
6301 case KVM_GET_DEVICE_ATTR:
6302 case KVM_SET_DEVICE_ATTR:
6303 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6304 break;
6305 default:
6306 r = -EINVAL;
6307 }
6308 out:
6309 kfree(u.buffer);
6310 out_nofree:
6311 vcpu_put(vcpu);
6312 return r;
6313 }
6314
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6315 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6316 {
6317 return VM_FAULT_SIGBUS;
6318 }
6319
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6320 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6321 {
6322 int ret;
6323
6324 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6325 return -EINVAL;
6326 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6327 return ret;
6328 }
6329
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6330 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6331 u64 ident_addr)
6332 {
6333 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6334 }
6335
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6336 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6337 unsigned long kvm_nr_mmu_pages)
6338 {
6339 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6340 return -EINVAL;
6341
6342 mutex_lock(&kvm->slots_lock);
6343
6344 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6345 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6346
6347 mutex_unlock(&kvm->slots_lock);
6348 return 0;
6349 }
6350
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6351 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6352 {
6353 struct kvm_pic *pic = kvm->arch.vpic;
6354 int r;
6355
6356 r = 0;
6357 switch (chip->chip_id) {
6358 case KVM_IRQCHIP_PIC_MASTER:
6359 memcpy(&chip->chip.pic, &pic->pics[0],
6360 sizeof(struct kvm_pic_state));
6361 break;
6362 case KVM_IRQCHIP_PIC_SLAVE:
6363 memcpy(&chip->chip.pic, &pic->pics[1],
6364 sizeof(struct kvm_pic_state));
6365 break;
6366 case KVM_IRQCHIP_IOAPIC:
6367 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6368 break;
6369 default:
6370 r = -EINVAL;
6371 break;
6372 }
6373 return r;
6374 }
6375
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6376 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6377 {
6378 struct kvm_pic *pic = kvm->arch.vpic;
6379 int r;
6380
6381 r = 0;
6382 switch (chip->chip_id) {
6383 case KVM_IRQCHIP_PIC_MASTER:
6384 spin_lock(&pic->lock);
6385 memcpy(&pic->pics[0], &chip->chip.pic,
6386 sizeof(struct kvm_pic_state));
6387 spin_unlock(&pic->lock);
6388 break;
6389 case KVM_IRQCHIP_PIC_SLAVE:
6390 spin_lock(&pic->lock);
6391 memcpy(&pic->pics[1], &chip->chip.pic,
6392 sizeof(struct kvm_pic_state));
6393 spin_unlock(&pic->lock);
6394 break;
6395 case KVM_IRQCHIP_IOAPIC:
6396 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6397 break;
6398 default:
6399 r = -EINVAL;
6400 break;
6401 }
6402 kvm_pic_update_irq(pic);
6403 return r;
6404 }
6405
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6406 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6407 {
6408 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6409
6410 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6411
6412 mutex_lock(&kps->lock);
6413 memcpy(ps, &kps->channels, sizeof(*ps));
6414 mutex_unlock(&kps->lock);
6415 return 0;
6416 }
6417
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6418 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6419 {
6420 int i;
6421 struct kvm_pit *pit = kvm->arch.vpit;
6422
6423 mutex_lock(&pit->pit_state.lock);
6424 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6425 for (i = 0; i < 3; i++)
6426 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6427 mutex_unlock(&pit->pit_state.lock);
6428 return 0;
6429 }
6430
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6431 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6432 {
6433 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6434 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6435 sizeof(ps->channels));
6436 ps->flags = kvm->arch.vpit->pit_state.flags;
6437 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6438 memset(&ps->reserved, 0, sizeof(ps->reserved));
6439 return 0;
6440 }
6441
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6442 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6443 {
6444 int start = 0;
6445 int i;
6446 u32 prev_legacy, cur_legacy;
6447 struct kvm_pit *pit = kvm->arch.vpit;
6448
6449 mutex_lock(&pit->pit_state.lock);
6450 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6451 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6452 if (!prev_legacy && cur_legacy)
6453 start = 1;
6454 memcpy(&pit->pit_state.channels, &ps->channels,
6455 sizeof(pit->pit_state.channels));
6456 pit->pit_state.flags = ps->flags;
6457 for (i = 0; i < 3; i++)
6458 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6459 start && i == 0);
6460 mutex_unlock(&pit->pit_state.lock);
6461 return 0;
6462 }
6463
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6464 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6465 struct kvm_reinject_control *control)
6466 {
6467 struct kvm_pit *pit = kvm->arch.vpit;
6468
6469 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6470 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6471 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6472 */
6473 mutex_lock(&pit->pit_state.lock);
6474 kvm_pit_set_reinject(pit, control->pit_reinject);
6475 mutex_unlock(&pit->pit_state.lock);
6476
6477 return 0;
6478 }
6479
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6480 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6481 {
6482
6483 /*
6484 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6485 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6486 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6487 * VM-Exit.
6488 */
6489 struct kvm_vcpu *vcpu;
6490 unsigned long i;
6491
6492 if (!kvm_x86_ops.cpu_dirty_log_size)
6493 return;
6494
6495 kvm_for_each_vcpu(i, vcpu, kvm)
6496 kvm_vcpu_kick(vcpu);
6497 }
6498
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6499 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6500 bool line_status)
6501 {
6502 if (!irqchip_in_kernel(kvm))
6503 return -ENXIO;
6504
6505 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6506 irq_event->irq, irq_event->level,
6507 line_status);
6508 return 0;
6509 }
6510
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6511 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6512 struct kvm_enable_cap *cap)
6513 {
6514 int r;
6515
6516 if (cap->flags)
6517 return -EINVAL;
6518
6519 switch (cap->cap) {
6520 case KVM_CAP_DISABLE_QUIRKS2:
6521 r = -EINVAL;
6522 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6523 break;
6524 fallthrough;
6525 case KVM_CAP_DISABLE_QUIRKS:
6526 kvm->arch.disabled_quirks = cap->args[0];
6527 r = 0;
6528 break;
6529 case KVM_CAP_SPLIT_IRQCHIP: {
6530 mutex_lock(&kvm->lock);
6531 r = -EINVAL;
6532 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6533 goto split_irqchip_unlock;
6534 r = -EEXIST;
6535 if (irqchip_in_kernel(kvm))
6536 goto split_irqchip_unlock;
6537 if (kvm->created_vcpus)
6538 goto split_irqchip_unlock;
6539 /* Pairs with irqchip_in_kernel. */
6540 smp_wmb();
6541 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6542 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6543 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6544 r = 0;
6545 split_irqchip_unlock:
6546 mutex_unlock(&kvm->lock);
6547 break;
6548 }
6549 case KVM_CAP_X2APIC_API:
6550 r = -EINVAL;
6551 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6552 break;
6553
6554 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6555 kvm->arch.x2apic_format = true;
6556 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6557 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6558
6559 r = 0;
6560 break;
6561 case KVM_CAP_X86_DISABLE_EXITS:
6562 r = -EINVAL;
6563 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6564 break;
6565
6566 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6567 kvm->arch.pause_in_guest = true;
6568
6569 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6570 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6571
6572 if (!mitigate_smt_rsb) {
6573 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6574 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6575 pr_warn_once(SMT_RSB_MSG);
6576
6577 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6578 kvm_can_mwait_in_guest())
6579 kvm->arch.mwait_in_guest = true;
6580 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6581 kvm->arch.hlt_in_guest = true;
6582 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6583 kvm->arch.cstate_in_guest = true;
6584 }
6585
6586 r = 0;
6587 break;
6588 case KVM_CAP_MSR_PLATFORM_INFO:
6589 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6590 r = 0;
6591 break;
6592 case KVM_CAP_EXCEPTION_PAYLOAD:
6593 kvm->arch.exception_payload_enabled = cap->args[0];
6594 r = 0;
6595 break;
6596 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6597 kvm->arch.triple_fault_event = cap->args[0];
6598 r = 0;
6599 break;
6600 case KVM_CAP_X86_USER_SPACE_MSR:
6601 r = -EINVAL;
6602 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6603 break;
6604 kvm->arch.user_space_msr_mask = cap->args[0];
6605 r = 0;
6606 break;
6607 case KVM_CAP_X86_BUS_LOCK_EXIT:
6608 r = -EINVAL;
6609 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6610 break;
6611
6612 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6613 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6614 break;
6615
6616 if (kvm_caps.has_bus_lock_exit &&
6617 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6618 kvm->arch.bus_lock_detection_enabled = true;
6619 r = 0;
6620 break;
6621 #ifdef CONFIG_X86_SGX_KVM
6622 case KVM_CAP_SGX_ATTRIBUTE: {
6623 unsigned long allowed_attributes = 0;
6624
6625 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6626 if (r)
6627 break;
6628
6629 /* KVM only supports the PROVISIONKEY privileged attribute. */
6630 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6631 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6632 kvm->arch.sgx_provisioning_allowed = true;
6633 else
6634 r = -EINVAL;
6635 break;
6636 }
6637 #endif
6638 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6639 r = -EINVAL;
6640 if (!kvm_x86_ops.vm_copy_enc_context_from)
6641 break;
6642
6643 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6644 break;
6645 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6646 r = -EINVAL;
6647 if (!kvm_x86_ops.vm_move_enc_context_from)
6648 break;
6649
6650 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6651 break;
6652 case KVM_CAP_EXIT_HYPERCALL:
6653 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6654 r = -EINVAL;
6655 break;
6656 }
6657 kvm->arch.hypercall_exit_enabled = cap->args[0];
6658 r = 0;
6659 break;
6660 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6661 r = -EINVAL;
6662 if (cap->args[0] & ~1)
6663 break;
6664 kvm->arch.exit_on_emulation_error = cap->args[0];
6665 r = 0;
6666 break;
6667 case KVM_CAP_PMU_CAPABILITY:
6668 r = -EINVAL;
6669 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6670 break;
6671
6672 mutex_lock(&kvm->lock);
6673 if (!kvm->created_vcpus) {
6674 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6675 r = 0;
6676 }
6677 mutex_unlock(&kvm->lock);
6678 break;
6679 case KVM_CAP_MAX_VCPU_ID:
6680 r = -EINVAL;
6681 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6682 break;
6683
6684 mutex_lock(&kvm->lock);
6685 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6686 ;
6687 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6688 r = 0;
6689 } else if (!kvm->arch.max_vcpu_ids) {
6690 kvm->arch.max_vcpu_ids = cap->args[0];
6691 r = 0;
6692 }
6693 mutex_unlock(&kvm->lock);
6694 break;
6695 case KVM_CAP_X86_NOTIFY_VMEXIT:
6696 r = -EINVAL;
6697 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6698 break;
6699 if (!kvm_caps.has_notify_vmexit)
6700 break;
6701 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6702 break;
6703 mutex_lock(&kvm->lock);
6704 if (!kvm->created_vcpus) {
6705 kvm->arch.notify_window = cap->args[0] >> 32;
6706 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6707 r = 0;
6708 }
6709 mutex_unlock(&kvm->lock);
6710 break;
6711 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6712 r = -EINVAL;
6713
6714 /*
6715 * Since the risk of disabling NX hugepages is a guest crashing
6716 * the system, ensure the userspace process has permission to
6717 * reboot the system.
6718 *
6719 * Note that unlike the reboot() syscall, the process must have
6720 * this capability in the root namespace because exposing
6721 * /dev/kvm into a container does not limit the scope of the
6722 * iTLB multihit bug to that container. In other words,
6723 * this must use capable(), not ns_capable().
6724 */
6725 if (!capable(CAP_SYS_BOOT)) {
6726 r = -EPERM;
6727 break;
6728 }
6729
6730 if (cap->args[0])
6731 break;
6732
6733 mutex_lock(&kvm->lock);
6734 if (!kvm->created_vcpus) {
6735 kvm->arch.disable_nx_huge_pages = true;
6736 r = 0;
6737 }
6738 mutex_unlock(&kvm->lock);
6739 break;
6740 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6741 u64 bus_cycle_ns = cap->args[0];
6742 u64 unused;
6743
6744 /*
6745 * Guard against overflow in tmict_to_ns(). 128 is the highest
6746 * divide value that can be programmed in APIC_TDCR.
6747 */
6748 r = -EINVAL;
6749 if (!bus_cycle_ns ||
6750 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6751 break;
6752
6753 r = 0;
6754 mutex_lock(&kvm->lock);
6755 if (!irqchip_in_kernel(kvm))
6756 r = -ENXIO;
6757 else if (kvm->created_vcpus)
6758 r = -EINVAL;
6759 else
6760 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6761 mutex_unlock(&kvm->lock);
6762 break;
6763 }
6764 default:
6765 r = -EINVAL;
6766 break;
6767 }
6768 return r;
6769 }
6770
kvm_alloc_msr_filter(bool default_allow)6771 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6772 {
6773 struct kvm_x86_msr_filter *msr_filter;
6774
6775 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6776 if (!msr_filter)
6777 return NULL;
6778
6779 msr_filter->default_allow = default_allow;
6780 return msr_filter;
6781 }
6782
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6783 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6784 {
6785 u32 i;
6786
6787 if (!msr_filter)
6788 return;
6789
6790 for (i = 0; i < msr_filter->count; i++)
6791 kfree(msr_filter->ranges[i].bitmap);
6792
6793 kfree(msr_filter);
6794 }
6795
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6796 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6797 struct kvm_msr_filter_range *user_range)
6798 {
6799 unsigned long *bitmap;
6800 size_t bitmap_size;
6801
6802 if (!user_range->nmsrs)
6803 return 0;
6804
6805 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6806 return -EINVAL;
6807
6808 if (!user_range->flags)
6809 return -EINVAL;
6810
6811 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6812 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6813 return -EINVAL;
6814
6815 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6816 if (IS_ERR(bitmap))
6817 return PTR_ERR(bitmap);
6818
6819 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6820 .flags = user_range->flags,
6821 .base = user_range->base,
6822 .nmsrs = user_range->nmsrs,
6823 .bitmap = bitmap,
6824 };
6825
6826 msr_filter->count++;
6827 return 0;
6828 }
6829
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6830 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6831 struct kvm_msr_filter *filter)
6832 {
6833 struct kvm_x86_msr_filter *new_filter, *old_filter;
6834 bool default_allow;
6835 bool empty = true;
6836 int r;
6837 u32 i;
6838
6839 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6840 return -EINVAL;
6841
6842 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6843 empty &= !filter->ranges[i].nmsrs;
6844
6845 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6846 if (empty && !default_allow)
6847 return -EINVAL;
6848
6849 new_filter = kvm_alloc_msr_filter(default_allow);
6850 if (!new_filter)
6851 return -ENOMEM;
6852
6853 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6854 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6855 if (r) {
6856 kvm_free_msr_filter(new_filter);
6857 return r;
6858 }
6859 }
6860
6861 mutex_lock(&kvm->lock);
6862 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6863 mutex_is_locked(&kvm->lock));
6864 mutex_unlock(&kvm->lock);
6865 synchronize_srcu(&kvm->srcu);
6866
6867 kvm_free_msr_filter(old_filter);
6868
6869 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6870
6871 return 0;
6872 }
6873
6874 #ifdef CONFIG_KVM_COMPAT
6875 /* for KVM_X86_SET_MSR_FILTER */
6876 struct kvm_msr_filter_range_compat {
6877 __u32 flags;
6878 __u32 nmsrs;
6879 __u32 base;
6880 __u32 bitmap;
6881 };
6882
6883 struct kvm_msr_filter_compat {
6884 __u32 flags;
6885 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6886 };
6887
6888 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6889
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6890 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6891 unsigned long arg)
6892 {
6893 void __user *argp = (void __user *)arg;
6894 struct kvm *kvm = filp->private_data;
6895 long r = -ENOTTY;
6896
6897 switch (ioctl) {
6898 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6899 struct kvm_msr_filter __user *user_msr_filter = argp;
6900 struct kvm_msr_filter_compat filter_compat;
6901 struct kvm_msr_filter filter;
6902 int i;
6903
6904 if (copy_from_user(&filter_compat, user_msr_filter,
6905 sizeof(filter_compat)))
6906 return -EFAULT;
6907
6908 filter.flags = filter_compat.flags;
6909 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6910 struct kvm_msr_filter_range_compat *cr;
6911
6912 cr = &filter_compat.ranges[i];
6913 filter.ranges[i] = (struct kvm_msr_filter_range) {
6914 .flags = cr->flags,
6915 .nmsrs = cr->nmsrs,
6916 .base = cr->base,
6917 .bitmap = (__u8 *)(ulong)cr->bitmap,
6918 };
6919 }
6920
6921 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6922 break;
6923 }
6924 }
6925
6926 return r;
6927 }
6928 #endif
6929
6930 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6931 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6932 {
6933 struct kvm_vcpu *vcpu;
6934 unsigned long i;
6935 int ret = 0;
6936
6937 mutex_lock(&kvm->lock);
6938 kvm_for_each_vcpu(i, vcpu, kvm) {
6939 if (!vcpu->arch.pv_time.active)
6940 continue;
6941
6942 ret = kvm_set_guest_paused(vcpu);
6943 if (ret) {
6944 kvm_err("Failed to pause guest VCPU%d: %d\n",
6945 vcpu->vcpu_id, ret);
6946 break;
6947 }
6948 }
6949 mutex_unlock(&kvm->lock);
6950
6951 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6952 }
6953
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6954 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6955 {
6956 switch (state) {
6957 case PM_HIBERNATION_PREPARE:
6958 case PM_SUSPEND_PREPARE:
6959 return kvm_arch_suspend_notifier(kvm);
6960 }
6961
6962 return NOTIFY_DONE;
6963 }
6964 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6965
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6966 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6967 {
6968 struct kvm_clock_data data = { 0 };
6969
6970 get_kvmclock(kvm, &data);
6971 if (copy_to_user(argp, &data, sizeof(data)))
6972 return -EFAULT;
6973
6974 return 0;
6975 }
6976
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6977 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6978 {
6979 struct kvm_arch *ka = &kvm->arch;
6980 struct kvm_clock_data data;
6981 u64 now_raw_ns;
6982
6983 if (copy_from_user(&data, argp, sizeof(data)))
6984 return -EFAULT;
6985
6986 /*
6987 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6988 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6989 */
6990 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6991 return -EINVAL;
6992
6993 kvm_hv_request_tsc_page_update(kvm);
6994 kvm_start_pvclock_update(kvm);
6995 pvclock_update_vm_gtod_copy(kvm);
6996
6997 /*
6998 * This pairs with kvm_guest_time_update(): when masterclock is
6999 * in use, we use master_kernel_ns + kvmclock_offset to set
7000 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7001 * is slightly ahead) here we risk going negative on unsigned
7002 * 'system_time' when 'data.clock' is very small.
7003 */
7004 if (data.flags & KVM_CLOCK_REALTIME) {
7005 u64 now_real_ns = ktime_get_real_ns();
7006
7007 /*
7008 * Avoid stepping the kvmclock backwards.
7009 */
7010 if (now_real_ns > data.realtime)
7011 data.clock += now_real_ns - data.realtime;
7012 }
7013
7014 if (ka->use_master_clock)
7015 now_raw_ns = ka->master_kernel_ns;
7016 else
7017 now_raw_ns = get_kvmclock_base_ns();
7018 ka->kvmclock_offset = data.clock - now_raw_ns;
7019 kvm_end_pvclock_update(kvm);
7020 return 0;
7021 }
7022
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7023 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7024 {
7025 struct kvm *kvm = filp->private_data;
7026 void __user *argp = (void __user *)arg;
7027 int r = -ENOTTY;
7028 /*
7029 * This union makes it completely explicit to gcc-3.x
7030 * that these two variables' stack usage should be
7031 * combined, not added together.
7032 */
7033 union {
7034 struct kvm_pit_state ps;
7035 struct kvm_pit_state2 ps2;
7036 struct kvm_pit_config pit_config;
7037 } u;
7038
7039 switch (ioctl) {
7040 case KVM_SET_TSS_ADDR:
7041 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7042 break;
7043 case KVM_SET_IDENTITY_MAP_ADDR: {
7044 u64 ident_addr;
7045
7046 mutex_lock(&kvm->lock);
7047 r = -EINVAL;
7048 if (kvm->created_vcpus)
7049 goto set_identity_unlock;
7050 r = -EFAULT;
7051 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7052 goto set_identity_unlock;
7053 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7054 set_identity_unlock:
7055 mutex_unlock(&kvm->lock);
7056 break;
7057 }
7058 case KVM_SET_NR_MMU_PAGES:
7059 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7060 break;
7061 case KVM_CREATE_IRQCHIP: {
7062 mutex_lock(&kvm->lock);
7063
7064 r = -EEXIST;
7065 if (irqchip_in_kernel(kvm))
7066 goto create_irqchip_unlock;
7067
7068 r = -EINVAL;
7069 if (kvm->created_vcpus)
7070 goto create_irqchip_unlock;
7071
7072 r = kvm_pic_init(kvm);
7073 if (r)
7074 goto create_irqchip_unlock;
7075
7076 r = kvm_ioapic_init(kvm);
7077 if (r) {
7078 kvm_pic_destroy(kvm);
7079 goto create_irqchip_unlock;
7080 }
7081
7082 r = kvm_setup_default_irq_routing(kvm);
7083 if (r) {
7084 kvm_ioapic_destroy(kvm);
7085 kvm_pic_destroy(kvm);
7086 goto create_irqchip_unlock;
7087 }
7088 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7089 smp_wmb();
7090 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7091 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7092 create_irqchip_unlock:
7093 mutex_unlock(&kvm->lock);
7094 break;
7095 }
7096 case KVM_CREATE_PIT:
7097 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7098 goto create_pit;
7099 case KVM_CREATE_PIT2:
7100 r = -EFAULT;
7101 if (copy_from_user(&u.pit_config, argp,
7102 sizeof(struct kvm_pit_config)))
7103 goto out;
7104 create_pit:
7105 mutex_lock(&kvm->lock);
7106 r = -EEXIST;
7107 if (kvm->arch.vpit)
7108 goto create_pit_unlock;
7109 r = -ENOENT;
7110 if (!pic_in_kernel(kvm))
7111 goto create_pit_unlock;
7112 r = -ENOMEM;
7113 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7114 if (kvm->arch.vpit)
7115 r = 0;
7116 create_pit_unlock:
7117 mutex_unlock(&kvm->lock);
7118 break;
7119 case KVM_GET_IRQCHIP: {
7120 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7121 struct kvm_irqchip *chip;
7122
7123 chip = memdup_user(argp, sizeof(*chip));
7124 if (IS_ERR(chip)) {
7125 r = PTR_ERR(chip);
7126 goto out;
7127 }
7128
7129 r = -ENXIO;
7130 if (!irqchip_kernel(kvm))
7131 goto get_irqchip_out;
7132 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7133 if (r)
7134 goto get_irqchip_out;
7135 r = -EFAULT;
7136 if (copy_to_user(argp, chip, sizeof(*chip)))
7137 goto get_irqchip_out;
7138 r = 0;
7139 get_irqchip_out:
7140 kfree(chip);
7141 break;
7142 }
7143 case KVM_SET_IRQCHIP: {
7144 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7145 struct kvm_irqchip *chip;
7146
7147 chip = memdup_user(argp, sizeof(*chip));
7148 if (IS_ERR(chip)) {
7149 r = PTR_ERR(chip);
7150 goto out;
7151 }
7152
7153 r = -ENXIO;
7154 if (!irqchip_kernel(kvm))
7155 goto set_irqchip_out;
7156 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7157 set_irqchip_out:
7158 kfree(chip);
7159 break;
7160 }
7161 case KVM_GET_PIT: {
7162 r = -EFAULT;
7163 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7164 goto out;
7165 r = -ENXIO;
7166 if (!kvm->arch.vpit)
7167 goto out;
7168 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7169 if (r)
7170 goto out;
7171 r = -EFAULT;
7172 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7173 goto out;
7174 r = 0;
7175 break;
7176 }
7177 case KVM_SET_PIT: {
7178 r = -EFAULT;
7179 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7180 goto out;
7181 mutex_lock(&kvm->lock);
7182 r = -ENXIO;
7183 if (!kvm->arch.vpit)
7184 goto set_pit_out;
7185 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7186 set_pit_out:
7187 mutex_unlock(&kvm->lock);
7188 break;
7189 }
7190 case KVM_GET_PIT2: {
7191 r = -ENXIO;
7192 if (!kvm->arch.vpit)
7193 goto out;
7194 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7195 if (r)
7196 goto out;
7197 r = -EFAULT;
7198 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7199 goto out;
7200 r = 0;
7201 break;
7202 }
7203 case KVM_SET_PIT2: {
7204 r = -EFAULT;
7205 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7206 goto out;
7207 mutex_lock(&kvm->lock);
7208 r = -ENXIO;
7209 if (!kvm->arch.vpit)
7210 goto set_pit2_out;
7211 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7212 set_pit2_out:
7213 mutex_unlock(&kvm->lock);
7214 break;
7215 }
7216 case KVM_REINJECT_CONTROL: {
7217 struct kvm_reinject_control control;
7218 r = -EFAULT;
7219 if (copy_from_user(&control, argp, sizeof(control)))
7220 goto out;
7221 r = -ENXIO;
7222 if (!kvm->arch.vpit)
7223 goto out;
7224 r = kvm_vm_ioctl_reinject(kvm, &control);
7225 break;
7226 }
7227 case KVM_SET_BOOT_CPU_ID:
7228 r = 0;
7229 mutex_lock(&kvm->lock);
7230 if (kvm->created_vcpus)
7231 r = -EBUSY;
7232 else if (arg > KVM_MAX_VCPU_IDS ||
7233 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7234 r = -EINVAL;
7235 else
7236 kvm->arch.bsp_vcpu_id = arg;
7237 mutex_unlock(&kvm->lock);
7238 break;
7239 #ifdef CONFIG_KVM_XEN
7240 case KVM_XEN_HVM_CONFIG: {
7241 struct kvm_xen_hvm_config xhc;
7242 r = -EFAULT;
7243 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7244 goto out;
7245 r = kvm_xen_hvm_config(kvm, &xhc);
7246 break;
7247 }
7248 case KVM_XEN_HVM_GET_ATTR: {
7249 struct kvm_xen_hvm_attr xha;
7250
7251 r = -EFAULT;
7252 if (copy_from_user(&xha, argp, sizeof(xha)))
7253 goto out;
7254 r = kvm_xen_hvm_get_attr(kvm, &xha);
7255 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7256 r = -EFAULT;
7257 break;
7258 }
7259 case KVM_XEN_HVM_SET_ATTR: {
7260 struct kvm_xen_hvm_attr xha;
7261
7262 r = -EFAULT;
7263 if (copy_from_user(&xha, argp, sizeof(xha)))
7264 goto out;
7265 r = kvm_xen_hvm_set_attr(kvm, &xha);
7266 break;
7267 }
7268 case KVM_XEN_HVM_EVTCHN_SEND: {
7269 struct kvm_irq_routing_xen_evtchn uxe;
7270
7271 r = -EFAULT;
7272 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7273 goto out;
7274 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7275 break;
7276 }
7277 #endif
7278 case KVM_SET_CLOCK:
7279 r = kvm_vm_ioctl_set_clock(kvm, argp);
7280 break;
7281 case KVM_GET_CLOCK:
7282 r = kvm_vm_ioctl_get_clock(kvm, argp);
7283 break;
7284 case KVM_SET_TSC_KHZ: {
7285 u32 user_tsc_khz;
7286
7287 r = -EINVAL;
7288 user_tsc_khz = (u32)arg;
7289
7290 if (kvm_caps.has_tsc_control &&
7291 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7292 goto out;
7293
7294 if (user_tsc_khz == 0)
7295 user_tsc_khz = tsc_khz;
7296
7297 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7298 r = 0;
7299
7300 goto out;
7301 }
7302 case KVM_GET_TSC_KHZ: {
7303 r = READ_ONCE(kvm->arch.default_tsc_khz);
7304 goto out;
7305 }
7306 case KVM_MEMORY_ENCRYPT_OP: {
7307 r = -ENOTTY;
7308 if (!kvm_x86_ops.mem_enc_ioctl)
7309 goto out;
7310
7311 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7312 break;
7313 }
7314 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7315 struct kvm_enc_region region;
7316
7317 r = -EFAULT;
7318 if (copy_from_user(®ion, argp, sizeof(region)))
7319 goto out;
7320
7321 r = -ENOTTY;
7322 if (!kvm_x86_ops.mem_enc_register_region)
7323 goto out;
7324
7325 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7326 break;
7327 }
7328 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7329 struct kvm_enc_region region;
7330
7331 r = -EFAULT;
7332 if (copy_from_user(®ion, argp, sizeof(region)))
7333 goto out;
7334
7335 r = -ENOTTY;
7336 if (!kvm_x86_ops.mem_enc_unregister_region)
7337 goto out;
7338
7339 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7340 break;
7341 }
7342 #ifdef CONFIG_KVM_HYPERV
7343 case KVM_HYPERV_EVENTFD: {
7344 struct kvm_hyperv_eventfd hvevfd;
7345
7346 r = -EFAULT;
7347 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7348 goto out;
7349 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7350 break;
7351 }
7352 #endif
7353 case KVM_SET_PMU_EVENT_FILTER:
7354 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7355 break;
7356 case KVM_X86_SET_MSR_FILTER: {
7357 struct kvm_msr_filter __user *user_msr_filter = argp;
7358 struct kvm_msr_filter filter;
7359
7360 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7361 return -EFAULT;
7362
7363 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7364 break;
7365 }
7366 default:
7367 r = -ENOTTY;
7368 }
7369 out:
7370 return r;
7371 }
7372
kvm_probe_feature_msr(u32 msr_index)7373 static void kvm_probe_feature_msr(u32 msr_index)
7374 {
7375 u64 data;
7376
7377 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7378 return;
7379
7380 msr_based_features[num_msr_based_features++] = msr_index;
7381 }
7382
kvm_probe_msr_to_save(u32 msr_index)7383 static void kvm_probe_msr_to_save(u32 msr_index)
7384 {
7385 u32 dummy[2];
7386
7387 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7388 return;
7389
7390 /*
7391 * Even MSRs that are valid in the host may not be exposed to guests in
7392 * some cases.
7393 */
7394 switch (msr_index) {
7395 case MSR_IA32_BNDCFGS:
7396 if (!kvm_mpx_supported())
7397 return;
7398 break;
7399 case MSR_TSC_AUX:
7400 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7401 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7402 return;
7403 break;
7404 case MSR_IA32_UMWAIT_CONTROL:
7405 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7406 return;
7407 break;
7408 case MSR_IA32_RTIT_CTL:
7409 case MSR_IA32_RTIT_STATUS:
7410 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7411 return;
7412 break;
7413 case MSR_IA32_RTIT_CR3_MATCH:
7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7415 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7416 return;
7417 break;
7418 case MSR_IA32_RTIT_OUTPUT_BASE:
7419 case MSR_IA32_RTIT_OUTPUT_MASK:
7420 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7421 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7422 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7423 return;
7424 break;
7425 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7426 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7427 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7428 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7429 return;
7430 break;
7431 case MSR_ARCH_PERFMON_PERFCTR0 ...
7432 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7433 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7434 kvm_pmu_cap.num_counters_gp)
7435 return;
7436 break;
7437 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7438 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7439 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7440 kvm_pmu_cap.num_counters_gp)
7441 return;
7442 break;
7443 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7444 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7445 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7446 kvm_pmu_cap.num_counters_fixed)
7447 return;
7448 break;
7449 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7450 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7451 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7452 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7453 return;
7454 break;
7455 case MSR_IA32_XFD:
7456 case MSR_IA32_XFD_ERR:
7457 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7458 return;
7459 break;
7460 case MSR_IA32_TSX_CTRL:
7461 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7462 return;
7463 break;
7464 default:
7465 break;
7466 }
7467
7468 msrs_to_save[num_msrs_to_save++] = msr_index;
7469 }
7470
kvm_init_msr_lists(void)7471 static void kvm_init_msr_lists(void)
7472 {
7473 unsigned i;
7474
7475 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7476 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7477
7478 num_msrs_to_save = 0;
7479 num_emulated_msrs = 0;
7480 num_msr_based_features = 0;
7481
7482 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7483 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7484
7485 if (enable_pmu) {
7486 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7487 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7488 }
7489
7490 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7491 if (!kvm_x86_call(has_emulated_msr)(NULL,
7492 emulated_msrs_all[i]))
7493 continue;
7494
7495 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7496 }
7497
7498 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7499 kvm_probe_feature_msr(i);
7500
7501 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7502 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7503 }
7504
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7505 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7506 const void *v)
7507 {
7508 int handled = 0;
7509 int n;
7510
7511 do {
7512 n = min(len, 8);
7513 if (!(lapic_in_kernel(vcpu) &&
7514 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7515 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7516 break;
7517 handled += n;
7518 addr += n;
7519 len -= n;
7520 v += n;
7521 } while (len);
7522
7523 return handled;
7524 }
7525
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7526 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7527 {
7528 int handled = 0;
7529 int n;
7530
7531 do {
7532 n = min(len, 8);
7533 if (!(lapic_in_kernel(vcpu) &&
7534 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7535 addr, n, v))
7536 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7537 break;
7538 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7539 handled += n;
7540 addr += n;
7541 len -= n;
7542 v += n;
7543 } while (len);
7544
7545 return handled;
7546 }
7547
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7548 void kvm_set_segment(struct kvm_vcpu *vcpu,
7549 struct kvm_segment *var, int seg)
7550 {
7551 kvm_x86_call(set_segment)(vcpu, var, seg);
7552 }
7553
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7554 void kvm_get_segment(struct kvm_vcpu *vcpu,
7555 struct kvm_segment *var, int seg)
7556 {
7557 kvm_x86_call(get_segment)(vcpu, var, seg);
7558 }
7559
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7560 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7561 struct x86_exception *exception)
7562 {
7563 struct kvm_mmu *mmu = vcpu->arch.mmu;
7564 gpa_t t_gpa;
7565
7566 BUG_ON(!mmu_is_nested(vcpu));
7567
7568 /* NPT walks are always user-walks */
7569 access |= PFERR_USER_MASK;
7570 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7571
7572 return t_gpa;
7573 }
7574
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7575 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7576 struct x86_exception *exception)
7577 {
7578 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7579
7580 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7581 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7582 }
7583 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7584
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7585 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7586 struct x86_exception *exception)
7587 {
7588 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7589
7590 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7591 access |= PFERR_WRITE_MASK;
7592 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7593 }
7594 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7595
7596 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7597 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7598 struct x86_exception *exception)
7599 {
7600 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7601
7602 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7603 }
7604
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7605 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7606 struct kvm_vcpu *vcpu, u64 access,
7607 struct x86_exception *exception)
7608 {
7609 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7610 void *data = val;
7611 int r = X86EMUL_CONTINUE;
7612
7613 while (bytes) {
7614 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7615 unsigned offset = addr & (PAGE_SIZE-1);
7616 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7617 int ret;
7618
7619 if (gpa == INVALID_GPA)
7620 return X86EMUL_PROPAGATE_FAULT;
7621 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7622 offset, toread);
7623 if (ret < 0) {
7624 r = X86EMUL_IO_NEEDED;
7625 goto out;
7626 }
7627
7628 bytes -= toread;
7629 data += toread;
7630 addr += toread;
7631 }
7632 out:
7633 return r;
7634 }
7635
7636 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7637 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7638 gva_t addr, void *val, unsigned int bytes,
7639 struct x86_exception *exception)
7640 {
7641 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7642 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7643 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7644 unsigned offset;
7645 int ret;
7646
7647 /* Inline kvm_read_guest_virt_helper for speed. */
7648 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7649 exception);
7650 if (unlikely(gpa == INVALID_GPA))
7651 return X86EMUL_PROPAGATE_FAULT;
7652
7653 offset = addr & (PAGE_SIZE-1);
7654 if (WARN_ON(offset + bytes > PAGE_SIZE))
7655 bytes = (unsigned)PAGE_SIZE - offset;
7656 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7657 offset, bytes);
7658 if (unlikely(ret < 0))
7659 return X86EMUL_IO_NEEDED;
7660
7661 return X86EMUL_CONTINUE;
7662 }
7663
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7664 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7665 gva_t addr, void *val, unsigned int bytes,
7666 struct x86_exception *exception)
7667 {
7668 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7669
7670 /*
7671 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7672 * is returned, but our callers are not ready for that and they blindly
7673 * call kvm_inject_page_fault. Ensure that they at least do not leak
7674 * uninitialized kernel stack memory into cr2 and error code.
7675 */
7676 memset(exception, 0, sizeof(*exception));
7677 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7678 exception);
7679 }
7680 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7681
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7682 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7683 gva_t addr, void *val, unsigned int bytes,
7684 struct x86_exception *exception, bool system)
7685 {
7686 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7687 u64 access = 0;
7688
7689 if (system)
7690 access |= PFERR_IMPLICIT_ACCESS;
7691 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7692 access |= PFERR_USER_MASK;
7693
7694 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7695 }
7696
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7697 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7698 struct kvm_vcpu *vcpu, u64 access,
7699 struct x86_exception *exception)
7700 {
7701 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7702 void *data = val;
7703 int r = X86EMUL_CONTINUE;
7704
7705 while (bytes) {
7706 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7707 unsigned offset = addr & (PAGE_SIZE-1);
7708 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7709 int ret;
7710
7711 if (gpa == INVALID_GPA)
7712 return X86EMUL_PROPAGATE_FAULT;
7713 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7714 if (ret < 0) {
7715 r = X86EMUL_IO_NEEDED;
7716 goto out;
7717 }
7718
7719 bytes -= towrite;
7720 data += towrite;
7721 addr += towrite;
7722 }
7723 out:
7724 return r;
7725 }
7726
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7727 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7728 unsigned int bytes, struct x86_exception *exception,
7729 bool system)
7730 {
7731 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7732 u64 access = PFERR_WRITE_MASK;
7733
7734 if (system)
7735 access |= PFERR_IMPLICIT_ACCESS;
7736 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7737 access |= PFERR_USER_MASK;
7738
7739 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7740 access, exception);
7741 }
7742
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7743 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7744 unsigned int bytes, struct x86_exception *exception)
7745 {
7746 /* kvm_write_guest_virt_system can pull in tons of pages. */
7747 vcpu->arch.l1tf_flush_l1d = true;
7748
7749 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7750 PFERR_WRITE_MASK, exception);
7751 }
7752 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7753
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7754 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7755 void *insn, int insn_len)
7756 {
7757 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7758 insn, insn_len);
7759 }
7760
handle_ud(struct kvm_vcpu * vcpu)7761 int handle_ud(struct kvm_vcpu *vcpu)
7762 {
7763 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7764 int fep_flags = READ_ONCE(force_emulation_prefix);
7765 int emul_type = EMULTYPE_TRAP_UD;
7766 char sig[5]; /* ud2; .ascii "kvm" */
7767 struct x86_exception e;
7768 int r;
7769
7770 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7771 if (r != X86EMUL_CONTINUE)
7772 return 1;
7773
7774 if (fep_flags &&
7775 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7776 sig, sizeof(sig), &e) == 0 &&
7777 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7778 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7779 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7780 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7781 emul_type = EMULTYPE_TRAP_UD_FORCED;
7782 }
7783
7784 return kvm_emulate_instruction(vcpu, emul_type);
7785 }
7786 EXPORT_SYMBOL_GPL(handle_ud);
7787
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7788 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7789 gpa_t gpa, bool write)
7790 {
7791 /* For APIC access vmexit */
7792 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7793 return 1;
7794
7795 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7796 trace_vcpu_match_mmio(gva, gpa, write, true);
7797 return 1;
7798 }
7799
7800 return 0;
7801 }
7802
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7803 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7804 gpa_t *gpa, struct x86_exception *exception,
7805 bool write)
7806 {
7807 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7808 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7809 | (write ? PFERR_WRITE_MASK : 0);
7810
7811 /*
7812 * currently PKRU is only applied to ept enabled guest so
7813 * there is no pkey in EPT page table for L1 guest or EPT
7814 * shadow page table for L2 guest.
7815 */
7816 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7817 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7818 vcpu->arch.mmio_access, 0, access))) {
7819 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7820 (gva & (PAGE_SIZE - 1));
7821 trace_vcpu_match_mmio(gva, *gpa, write, false);
7822 return 1;
7823 }
7824
7825 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7826
7827 if (*gpa == INVALID_GPA)
7828 return -1;
7829
7830 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7831 }
7832
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7833 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7834 const void *val, int bytes)
7835 {
7836 int ret;
7837
7838 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7839 if (ret < 0)
7840 return 0;
7841 kvm_page_track_write(vcpu, gpa, val, bytes);
7842 return 1;
7843 }
7844
7845 struct read_write_emulator_ops {
7846 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7847 int bytes);
7848 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7849 void *val, int bytes);
7850 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7851 int bytes, void *val);
7852 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7853 void *val, int bytes);
7854 bool write;
7855 };
7856
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7857 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7858 {
7859 if (vcpu->mmio_read_completed) {
7860 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7861 vcpu->mmio_fragments[0].gpa, val);
7862 vcpu->mmio_read_completed = 0;
7863 return 1;
7864 }
7865
7866 return 0;
7867 }
7868
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7869 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7870 void *val, int bytes)
7871 {
7872 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7873 }
7874
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7875 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7876 void *val, int bytes)
7877 {
7878 return emulator_write_phys(vcpu, gpa, val, bytes);
7879 }
7880
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7881 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7882 {
7883 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7884 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7885 }
7886
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7887 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7888 void *val, int bytes)
7889 {
7890 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7891 return X86EMUL_IO_NEEDED;
7892 }
7893
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7894 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7895 void *val, int bytes)
7896 {
7897 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7898
7899 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7900 return X86EMUL_CONTINUE;
7901 }
7902
7903 static const struct read_write_emulator_ops read_emultor = {
7904 .read_write_prepare = read_prepare,
7905 .read_write_emulate = read_emulate,
7906 .read_write_mmio = vcpu_mmio_read,
7907 .read_write_exit_mmio = read_exit_mmio,
7908 };
7909
7910 static const struct read_write_emulator_ops write_emultor = {
7911 .read_write_emulate = write_emulate,
7912 .read_write_mmio = write_mmio,
7913 .read_write_exit_mmio = write_exit_mmio,
7914 .write = true,
7915 };
7916
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7917 static int emulator_read_write_onepage(unsigned long addr, void *val,
7918 unsigned int bytes,
7919 struct x86_exception *exception,
7920 struct kvm_vcpu *vcpu,
7921 const struct read_write_emulator_ops *ops)
7922 {
7923 gpa_t gpa;
7924 int handled, ret;
7925 bool write = ops->write;
7926 struct kvm_mmio_fragment *frag;
7927 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7928
7929 /*
7930 * If the exit was due to a NPF we may already have a GPA.
7931 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7932 * Note, this cannot be used on string operations since string
7933 * operation using rep will only have the initial GPA from the NPF
7934 * occurred.
7935 */
7936 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7937 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7938 gpa = ctxt->gpa_val;
7939 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7940 } else {
7941 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7942 if (ret < 0)
7943 return X86EMUL_PROPAGATE_FAULT;
7944 }
7945
7946 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7947 return X86EMUL_CONTINUE;
7948
7949 /*
7950 * Is this MMIO handled locally?
7951 */
7952 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7953 if (handled == bytes)
7954 return X86EMUL_CONTINUE;
7955
7956 gpa += handled;
7957 bytes -= handled;
7958 val += handled;
7959
7960 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7961 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7962 frag->gpa = gpa;
7963 frag->data = val;
7964 frag->len = bytes;
7965 return X86EMUL_CONTINUE;
7966 }
7967
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7968 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7969 unsigned long addr,
7970 void *val, unsigned int bytes,
7971 struct x86_exception *exception,
7972 const struct read_write_emulator_ops *ops)
7973 {
7974 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7975 gpa_t gpa;
7976 int rc;
7977
7978 if (ops->read_write_prepare &&
7979 ops->read_write_prepare(vcpu, val, bytes))
7980 return X86EMUL_CONTINUE;
7981
7982 vcpu->mmio_nr_fragments = 0;
7983
7984 /* Crossing a page boundary? */
7985 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7986 int now;
7987
7988 now = -addr & ~PAGE_MASK;
7989 rc = emulator_read_write_onepage(addr, val, now, exception,
7990 vcpu, ops);
7991
7992 if (rc != X86EMUL_CONTINUE)
7993 return rc;
7994 addr += now;
7995 if (ctxt->mode != X86EMUL_MODE_PROT64)
7996 addr = (u32)addr;
7997 val += now;
7998 bytes -= now;
7999 }
8000
8001 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8002 vcpu, ops);
8003 if (rc != X86EMUL_CONTINUE)
8004 return rc;
8005
8006 if (!vcpu->mmio_nr_fragments)
8007 return rc;
8008
8009 gpa = vcpu->mmio_fragments[0].gpa;
8010
8011 vcpu->mmio_needed = 1;
8012 vcpu->mmio_cur_fragment = 0;
8013
8014 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8015 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8016 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8017 vcpu->run->mmio.phys_addr = gpa;
8018
8019 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8020 }
8021
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8022 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8023 unsigned long addr,
8024 void *val,
8025 unsigned int bytes,
8026 struct x86_exception *exception)
8027 {
8028 return emulator_read_write(ctxt, addr, val, bytes,
8029 exception, &read_emultor);
8030 }
8031
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8032 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8033 unsigned long addr,
8034 const void *val,
8035 unsigned int bytes,
8036 struct x86_exception *exception)
8037 {
8038 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8039 exception, &write_emultor);
8040 }
8041
8042 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8043 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8044
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8045 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8046 unsigned long addr,
8047 const void *old,
8048 const void *new,
8049 unsigned int bytes,
8050 struct x86_exception *exception)
8051 {
8052 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8053 u64 page_line_mask;
8054 unsigned long hva;
8055 gpa_t gpa;
8056 int r;
8057
8058 /* guests cmpxchg8b have to be emulated atomically */
8059 if (bytes > 8 || (bytes & (bytes - 1)))
8060 goto emul_write;
8061
8062 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8063
8064 if (gpa == INVALID_GPA ||
8065 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8066 goto emul_write;
8067
8068 /*
8069 * Emulate the atomic as a straight write to avoid #AC if SLD is
8070 * enabled in the host and the access splits a cache line.
8071 */
8072 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8073 page_line_mask = ~(cache_line_size() - 1);
8074 else
8075 page_line_mask = PAGE_MASK;
8076
8077 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8078 goto emul_write;
8079
8080 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8081 if (kvm_is_error_hva(hva))
8082 goto emul_write;
8083
8084 hva += offset_in_page(gpa);
8085
8086 switch (bytes) {
8087 case 1:
8088 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8089 break;
8090 case 2:
8091 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8092 break;
8093 case 4:
8094 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8095 break;
8096 case 8:
8097 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8098 break;
8099 default:
8100 BUG();
8101 }
8102
8103 if (r < 0)
8104 return X86EMUL_UNHANDLEABLE;
8105
8106 /*
8107 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8108 * successful, as the old value is written back on failure. Note, for
8109 * live migration, this is unnecessarily conservative as CMPXCHG writes
8110 * back the original value and the access is atomic, but KVM's ABI is
8111 * that all writes are dirty logged, regardless of the value written.
8112 */
8113 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8114
8115 if (r)
8116 return X86EMUL_CMPXCHG_FAILED;
8117
8118 kvm_page_track_write(vcpu, gpa, new, bytes);
8119
8120 return X86EMUL_CONTINUE;
8121
8122 emul_write:
8123 pr_warn_once("emulating exchange as write\n");
8124
8125 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8126 }
8127
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8128 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8129 unsigned short port, void *data,
8130 unsigned int count, bool in)
8131 {
8132 unsigned i;
8133 int r;
8134
8135 WARN_ON_ONCE(vcpu->arch.pio.count);
8136 for (i = 0; i < count; i++) {
8137 if (in)
8138 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8139 else
8140 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8141
8142 if (r) {
8143 if (i == 0)
8144 goto userspace_io;
8145
8146 /*
8147 * Userspace must have unregistered the device while PIO
8148 * was running. Drop writes / read as 0.
8149 */
8150 if (in)
8151 memset(data, 0, size * (count - i));
8152 break;
8153 }
8154
8155 data += size;
8156 }
8157 return 1;
8158
8159 userspace_io:
8160 vcpu->arch.pio.port = port;
8161 vcpu->arch.pio.in = in;
8162 vcpu->arch.pio.count = count;
8163 vcpu->arch.pio.size = size;
8164
8165 if (in)
8166 memset(vcpu->arch.pio_data, 0, size * count);
8167 else
8168 memcpy(vcpu->arch.pio_data, data, size * count);
8169
8170 vcpu->run->exit_reason = KVM_EXIT_IO;
8171 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8172 vcpu->run->io.size = size;
8173 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8174 vcpu->run->io.count = count;
8175 vcpu->run->io.port = port;
8176 return 0;
8177 }
8178
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8179 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8180 unsigned short port, void *val, unsigned int count)
8181 {
8182 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8183 if (r)
8184 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8185
8186 return r;
8187 }
8188
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8189 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8190 {
8191 int size = vcpu->arch.pio.size;
8192 unsigned int count = vcpu->arch.pio.count;
8193 memcpy(val, vcpu->arch.pio_data, size * count);
8194 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8195 vcpu->arch.pio.count = 0;
8196 }
8197
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8198 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8199 int size, unsigned short port, void *val,
8200 unsigned int count)
8201 {
8202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203 if (vcpu->arch.pio.count) {
8204 /*
8205 * Complete a previous iteration that required userspace I/O.
8206 * Note, @count isn't guaranteed to match pio.count as userspace
8207 * can modify ECX before rerunning the vCPU. Ignore any such
8208 * shenanigans as KVM doesn't support modifying the rep count,
8209 * and the emulator ensures @count doesn't overflow the buffer.
8210 */
8211 complete_emulator_pio_in(vcpu, val);
8212 return 1;
8213 }
8214
8215 return emulator_pio_in(vcpu, size, port, val, count);
8216 }
8217
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8218 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8219 unsigned short port, const void *val,
8220 unsigned int count)
8221 {
8222 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8223 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8224 }
8225
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8226 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8227 int size, unsigned short port,
8228 const void *val, unsigned int count)
8229 {
8230 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8231 }
8232
get_segment_base(struct kvm_vcpu * vcpu,int seg)8233 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8234 {
8235 return kvm_x86_call(get_segment_base)(vcpu, seg);
8236 }
8237
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8238 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8239 {
8240 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8241 }
8242
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8243 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8244 {
8245 if (!need_emulate_wbinvd(vcpu))
8246 return X86EMUL_CONTINUE;
8247
8248 if (kvm_x86_call(has_wbinvd_exit)()) {
8249 int cpu = get_cpu();
8250
8251 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8252 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8253 wbinvd_ipi, NULL, 1);
8254 put_cpu();
8255 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8256 } else
8257 wbinvd();
8258 return X86EMUL_CONTINUE;
8259 }
8260
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8261 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8262 {
8263 kvm_emulate_wbinvd_noskip(vcpu);
8264 return kvm_skip_emulated_instruction(vcpu);
8265 }
8266 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8267
8268
8269
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8270 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8271 {
8272 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8273 }
8274
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8275 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8276 {
8277 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8278 }
8279
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8280 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8281 unsigned long value)
8282 {
8283
8284 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8285 }
8286
mk_cr_64(u64 curr_cr,u32 new_val)8287 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8288 {
8289 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8290 }
8291
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8292 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8293 {
8294 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8295 unsigned long value;
8296
8297 switch (cr) {
8298 case 0:
8299 value = kvm_read_cr0(vcpu);
8300 break;
8301 case 2:
8302 value = vcpu->arch.cr2;
8303 break;
8304 case 3:
8305 value = kvm_read_cr3(vcpu);
8306 break;
8307 case 4:
8308 value = kvm_read_cr4(vcpu);
8309 break;
8310 case 8:
8311 value = kvm_get_cr8(vcpu);
8312 break;
8313 default:
8314 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8315 return 0;
8316 }
8317
8318 return value;
8319 }
8320
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8321 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8322 {
8323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8324 int res = 0;
8325
8326 switch (cr) {
8327 case 0:
8328 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8329 break;
8330 case 2:
8331 vcpu->arch.cr2 = val;
8332 break;
8333 case 3:
8334 res = kvm_set_cr3(vcpu, val);
8335 break;
8336 case 4:
8337 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8338 break;
8339 case 8:
8340 res = kvm_set_cr8(vcpu, val);
8341 break;
8342 default:
8343 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8344 res = -1;
8345 }
8346
8347 return res;
8348 }
8349
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8350 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8351 {
8352 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8353 }
8354
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8355 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8356 {
8357 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8358 }
8359
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8360 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8361 {
8362 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8363 }
8364
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8365 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8366 {
8367 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8368 }
8369
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8370 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8371 {
8372 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8373 }
8374
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8375 static unsigned long emulator_get_cached_segment_base(
8376 struct x86_emulate_ctxt *ctxt, int seg)
8377 {
8378 return get_segment_base(emul_to_vcpu(ctxt), seg);
8379 }
8380
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8381 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8382 struct desc_struct *desc, u32 *base3,
8383 int seg)
8384 {
8385 struct kvm_segment var;
8386
8387 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8388 *selector = var.selector;
8389
8390 if (var.unusable) {
8391 memset(desc, 0, sizeof(*desc));
8392 if (base3)
8393 *base3 = 0;
8394 return false;
8395 }
8396
8397 if (var.g)
8398 var.limit >>= 12;
8399 set_desc_limit(desc, var.limit);
8400 set_desc_base(desc, (unsigned long)var.base);
8401 #ifdef CONFIG_X86_64
8402 if (base3)
8403 *base3 = var.base >> 32;
8404 #endif
8405 desc->type = var.type;
8406 desc->s = var.s;
8407 desc->dpl = var.dpl;
8408 desc->p = var.present;
8409 desc->avl = var.avl;
8410 desc->l = var.l;
8411 desc->d = var.db;
8412 desc->g = var.g;
8413
8414 return true;
8415 }
8416
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8417 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8418 struct desc_struct *desc, u32 base3,
8419 int seg)
8420 {
8421 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8422 struct kvm_segment var;
8423
8424 var.selector = selector;
8425 var.base = get_desc_base(desc);
8426 #ifdef CONFIG_X86_64
8427 var.base |= ((u64)base3) << 32;
8428 #endif
8429 var.limit = get_desc_limit(desc);
8430 if (desc->g)
8431 var.limit = (var.limit << 12) | 0xfff;
8432 var.type = desc->type;
8433 var.dpl = desc->dpl;
8434 var.db = desc->d;
8435 var.s = desc->s;
8436 var.l = desc->l;
8437 var.g = desc->g;
8438 var.avl = desc->avl;
8439 var.present = desc->p;
8440 var.unusable = !var.present;
8441 var.padding = 0;
8442
8443 kvm_set_segment(vcpu, &var, seg);
8444 return;
8445 }
8446
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8447 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8448 u32 msr_index, u64 *pdata)
8449 {
8450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8451 int r;
8452
8453 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8454 if (r < 0)
8455 return X86EMUL_UNHANDLEABLE;
8456
8457 if (r) {
8458 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8459 complete_emulated_rdmsr, r))
8460 return X86EMUL_IO_NEEDED;
8461
8462 trace_kvm_msr_read_ex(msr_index);
8463 return X86EMUL_PROPAGATE_FAULT;
8464 }
8465
8466 trace_kvm_msr_read(msr_index, *pdata);
8467 return X86EMUL_CONTINUE;
8468 }
8469
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8470 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8471 u32 msr_index, u64 data)
8472 {
8473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8474 int r;
8475
8476 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8477 if (r < 0)
8478 return X86EMUL_UNHANDLEABLE;
8479
8480 if (r) {
8481 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8482 complete_emulated_msr_access, r))
8483 return X86EMUL_IO_NEEDED;
8484
8485 trace_kvm_msr_write_ex(msr_index, data);
8486 return X86EMUL_PROPAGATE_FAULT;
8487 }
8488
8489 trace_kvm_msr_write(msr_index, data);
8490 return X86EMUL_CONTINUE;
8491 }
8492
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8493 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8494 u32 msr_index, u64 *pdata)
8495 {
8496 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8497 }
8498
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8499 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8500 {
8501 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8502 }
8503
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8504 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8505 u32 pmc, u64 *pdata)
8506 {
8507 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8508 }
8509
emulator_halt(struct x86_emulate_ctxt * ctxt)8510 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8511 {
8512 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8513 }
8514
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8515 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8516 struct x86_instruction_info *info,
8517 enum x86_intercept_stage stage)
8518 {
8519 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8520 &ctxt->exception);
8521 }
8522
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8523 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8524 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8525 bool exact_only)
8526 {
8527 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8528 }
8529
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8530 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8531 {
8532 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8533 }
8534
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8535 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8536 {
8537 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8538 }
8539
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8540 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8541 {
8542 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8543 }
8544
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8545 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8546 {
8547 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8548 }
8549
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8550 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8551 {
8552 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8553 }
8554
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8555 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8556 {
8557 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8558 }
8559
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8560 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8561 {
8562 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8563 }
8564
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8565 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8566 {
8567 return is_smm(emul_to_vcpu(ctxt));
8568 }
8569
8570 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8571 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8572 {
8573 WARN_ON_ONCE(1);
8574 return X86EMUL_UNHANDLEABLE;
8575 }
8576 #endif
8577
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8578 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8579 {
8580 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8581 }
8582
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8583 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8584 {
8585 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8586 }
8587
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8588 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8589 {
8590 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8591
8592 if (!kvm->vm_bugged)
8593 kvm_vm_bugged(kvm);
8594 }
8595
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8596 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8597 gva_t addr, unsigned int flags)
8598 {
8599 if (!kvm_x86_ops.get_untagged_addr)
8600 return addr;
8601
8602 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8603 addr, flags);
8604 }
8605
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8606 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8607 gva_t addr, unsigned int flags)
8608 {
8609 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8610 }
8611
8612 static const struct x86_emulate_ops emulate_ops = {
8613 .vm_bugged = emulator_vm_bugged,
8614 .read_gpr = emulator_read_gpr,
8615 .write_gpr = emulator_write_gpr,
8616 .read_std = emulator_read_std,
8617 .write_std = emulator_write_std,
8618 .fetch = kvm_fetch_guest_virt,
8619 .read_emulated = emulator_read_emulated,
8620 .write_emulated = emulator_write_emulated,
8621 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8622 .invlpg = emulator_invlpg,
8623 .pio_in_emulated = emulator_pio_in_emulated,
8624 .pio_out_emulated = emulator_pio_out_emulated,
8625 .get_segment = emulator_get_segment,
8626 .set_segment = emulator_set_segment,
8627 .get_cached_segment_base = emulator_get_cached_segment_base,
8628 .get_gdt = emulator_get_gdt,
8629 .get_idt = emulator_get_idt,
8630 .set_gdt = emulator_set_gdt,
8631 .set_idt = emulator_set_idt,
8632 .get_cr = emulator_get_cr,
8633 .set_cr = emulator_set_cr,
8634 .cpl = emulator_get_cpl,
8635 .get_dr = emulator_get_dr,
8636 .set_dr = emulator_set_dr,
8637 .set_msr_with_filter = emulator_set_msr_with_filter,
8638 .get_msr_with_filter = emulator_get_msr_with_filter,
8639 .get_msr = emulator_get_msr,
8640 .check_rdpmc_early = emulator_check_rdpmc_early,
8641 .read_pmc = emulator_read_pmc,
8642 .halt = emulator_halt,
8643 .wbinvd = emulator_wbinvd,
8644 .fix_hypercall = emulator_fix_hypercall,
8645 .intercept = emulator_intercept,
8646 .get_cpuid = emulator_get_cpuid,
8647 .guest_has_movbe = emulator_guest_has_movbe,
8648 .guest_has_fxsr = emulator_guest_has_fxsr,
8649 .guest_has_rdpid = emulator_guest_has_rdpid,
8650 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8651 .set_nmi_mask = emulator_set_nmi_mask,
8652 .is_smm = emulator_is_smm,
8653 .leave_smm = emulator_leave_smm,
8654 .triple_fault = emulator_triple_fault,
8655 .set_xcr = emulator_set_xcr,
8656 .get_untagged_addr = emulator_get_untagged_addr,
8657 .is_canonical_addr = emulator_is_canonical_addr,
8658 };
8659
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8660 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8661 {
8662 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8663 /*
8664 * an sti; sti; sequence only disable interrupts for the first
8665 * instruction. So, if the last instruction, be it emulated or
8666 * not, left the system with the INT_STI flag enabled, it
8667 * means that the last instruction is an sti. We should not
8668 * leave the flag on in this case. The same goes for mov ss
8669 */
8670 if (int_shadow & mask)
8671 mask = 0;
8672 if (unlikely(int_shadow || mask)) {
8673 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8674 if (!mask)
8675 kvm_make_request(KVM_REQ_EVENT, vcpu);
8676 }
8677 }
8678
inject_emulated_exception(struct kvm_vcpu * vcpu)8679 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8680 {
8681 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8682
8683 if (ctxt->exception.vector == PF_VECTOR)
8684 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8685 else if (ctxt->exception.error_code_valid)
8686 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8687 ctxt->exception.error_code);
8688 else
8689 kvm_queue_exception(vcpu, ctxt->exception.vector);
8690 }
8691
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8692 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8693 {
8694 struct x86_emulate_ctxt *ctxt;
8695
8696 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8697 if (!ctxt) {
8698 pr_err("failed to allocate vcpu's emulator\n");
8699 return NULL;
8700 }
8701
8702 ctxt->vcpu = vcpu;
8703 ctxt->ops = &emulate_ops;
8704 vcpu->arch.emulate_ctxt = ctxt;
8705
8706 return ctxt;
8707 }
8708
init_emulate_ctxt(struct kvm_vcpu * vcpu)8709 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8710 {
8711 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8712 int cs_db, cs_l;
8713
8714 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8715
8716 ctxt->gpa_available = false;
8717 ctxt->eflags = kvm_get_rflags(vcpu);
8718 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8719
8720 ctxt->eip = kvm_rip_read(vcpu);
8721 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8722 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8723 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8724 cs_db ? X86EMUL_MODE_PROT32 :
8725 X86EMUL_MODE_PROT16;
8726 ctxt->interruptibility = 0;
8727 ctxt->have_exception = false;
8728 ctxt->exception.vector = -1;
8729 ctxt->perm_ok = false;
8730
8731 init_decode_cache(ctxt);
8732 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8733 }
8734
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8735 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8736 {
8737 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8738 int ret;
8739
8740 init_emulate_ctxt(vcpu);
8741
8742 ctxt->op_bytes = 2;
8743 ctxt->ad_bytes = 2;
8744 ctxt->_eip = ctxt->eip + inc_eip;
8745 ret = emulate_int_real(ctxt, irq);
8746
8747 if (ret != X86EMUL_CONTINUE) {
8748 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8749 } else {
8750 ctxt->eip = ctxt->_eip;
8751 kvm_rip_write(vcpu, ctxt->eip);
8752 kvm_set_rflags(vcpu, ctxt->eflags);
8753 }
8754 }
8755 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8756
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8757 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8758 u8 ndata, u8 *insn_bytes, u8 insn_size)
8759 {
8760 struct kvm_run *run = vcpu->run;
8761 u64 info[5];
8762 u8 info_start;
8763
8764 /*
8765 * Zero the whole array used to retrieve the exit info, as casting to
8766 * u32 for select entries will leave some chunks uninitialized.
8767 */
8768 memset(&info, 0, sizeof(info));
8769
8770 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8771 (u32 *)&info[3], (u32 *)&info[4]);
8772
8773 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8774 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8775
8776 /*
8777 * There's currently space for 13 entries, but 5 are used for the exit
8778 * reason and info. Restrict to 4 to reduce the maintenance burden
8779 * when expanding kvm_run.emulation_failure in the future.
8780 */
8781 if (WARN_ON_ONCE(ndata > 4))
8782 ndata = 4;
8783
8784 /* Always include the flags as a 'data' entry. */
8785 info_start = 1;
8786 run->emulation_failure.flags = 0;
8787
8788 if (insn_size) {
8789 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8790 sizeof(run->emulation_failure.insn_bytes) != 16));
8791 info_start += 2;
8792 run->emulation_failure.flags |=
8793 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8794 run->emulation_failure.insn_size = insn_size;
8795 memset(run->emulation_failure.insn_bytes, 0x90,
8796 sizeof(run->emulation_failure.insn_bytes));
8797 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8798 }
8799
8800 memcpy(&run->internal.data[info_start], info, sizeof(info));
8801 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8802 ndata * sizeof(data[0]));
8803
8804 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8805 }
8806
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8807 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8808 {
8809 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8810
8811 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8812 ctxt->fetch.end - ctxt->fetch.data);
8813 }
8814
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8815 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8816 u8 ndata)
8817 {
8818 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8819 }
8820 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8821
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8822 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8823 {
8824 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8825 }
8826 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8827
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8828 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8829 {
8830 struct kvm *kvm = vcpu->kvm;
8831
8832 ++vcpu->stat.insn_emulation_fail;
8833 trace_kvm_emulate_insn_failed(vcpu);
8834
8835 if (emulation_type & EMULTYPE_VMWARE_GP) {
8836 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8837 return 1;
8838 }
8839
8840 if (kvm->arch.exit_on_emulation_error ||
8841 (emulation_type & EMULTYPE_SKIP)) {
8842 prepare_emulation_ctxt_failure_exit(vcpu);
8843 return 0;
8844 }
8845
8846 kvm_queue_exception(vcpu, UD_VECTOR);
8847
8848 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8849 prepare_emulation_ctxt_failure_exit(vcpu);
8850 return 0;
8851 }
8852
8853 return 1;
8854 }
8855
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8856 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8857 gpa_t cr2_or_gpa,
8858 int emulation_type)
8859 {
8860 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8861 return false;
8862
8863 /*
8864 * If the failed instruction faulted on an access to page tables that
8865 * are used to translate any part of the instruction, KVM can't resolve
8866 * the issue by unprotecting the gfn, as zapping the shadow page will
8867 * result in the instruction taking a !PRESENT page fault and thus put
8868 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8869 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8870 * then zap the SPTE to unprotect the gfn, and then do it all over
8871 * again. Report the error to userspace.
8872 */
8873 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8874 return false;
8875
8876 /*
8877 * If emulation may have been triggered by a write to a shadowed page
8878 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8879 * guest to let the CPU re-execute the instruction in the hope that the
8880 * CPU can cleanly execute the instruction that KVM failed to emulate.
8881 */
8882 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8883
8884 /*
8885 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8886 * all SPTEs were already zapped by a different task. The alternative
8887 * is to report the error to userspace and likely terminate the guest,
8888 * and the last_retry_{eip,addr} checks will prevent retrying the page
8889 * fault indefinitely, i.e. there's nothing to lose by retrying.
8890 */
8891 return true;
8892 }
8893
8894 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8895 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8896
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8897 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8898 unsigned long *db)
8899 {
8900 u32 dr6 = 0;
8901 int i;
8902 u32 enable, rwlen;
8903
8904 enable = dr7;
8905 rwlen = dr7 >> 16;
8906 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8907 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8908 dr6 |= (1 << i);
8909 return dr6;
8910 }
8911
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8912 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8913 {
8914 struct kvm_run *kvm_run = vcpu->run;
8915
8916 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8917 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8918 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8919 kvm_run->debug.arch.exception = DB_VECTOR;
8920 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8921 return 0;
8922 }
8923 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8924 return 1;
8925 }
8926
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8927 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8928 {
8929 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8930 int r;
8931
8932 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8933 if (unlikely(!r))
8934 return 0;
8935
8936 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8937
8938 /*
8939 * rflags is the old, "raw" value of the flags. The new value has
8940 * not been saved yet.
8941 *
8942 * This is correct even for TF set by the guest, because "the
8943 * processor will not generate this exception after the instruction
8944 * that sets the TF flag".
8945 */
8946 if (unlikely(rflags & X86_EFLAGS_TF))
8947 r = kvm_vcpu_do_singlestep(vcpu);
8948 return r;
8949 }
8950 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8951
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8952 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8953 {
8954 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8955 return true;
8956
8957 /*
8958 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8959 * active, but AMD compatible CPUs do not.
8960 */
8961 if (!guest_cpuid_is_intel_compatible(vcpu))
8962 return false;
8963
8964 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8965 }
8966
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8967 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8968 int emulation_type, int *r)
8969 {
8970 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8971
8972 /*
8973 * Do not check for code breakpoints if hardware has already done the
8974 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8975 * the instruction has passed all exception checks, and all intercepted
8976 * exceptions that trigger emulation have lower priority than code
8977 * breakpoints, i.e. the fact that the intercepted exception occurred
8978 * means any code breakpoints have already been serviced.
8979 *
8980 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8981 * hardware has checked the RIP of the magic prefix, but not the RIP of
8982 * the instruction being emulated. The intent of forced emulation is
8983 * to behave as if KVM intercepted the instruction without an exception
8984 * and without a prefix.
8985 */
8986 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8987 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8988 return false;
8989
8990 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8991 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8992 struct kvm_run *kvm_run = vcpu->run;
8993 unsigned long eip = kvm_get_linear_rip(vcpu);
8994 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8995 vcpu->arch.guest_debug_dr7,
8996 vcpu->arch.eff_db);
8997
8998 if (dr6 != 0) {
8999 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9000 kvm_run->debug.arch.pc = eip;
9001 kvm_run->debug.arch.exception = DB_VECTOR;
9002 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9003 *r = 0;
9004 return true;
9005 }
9006 }
9007
9008 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9009 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9010 unsigned long eip = kvm_get_linear_rip(vcpu);
9011 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9012 vcpu->arch.dr7,
9013 vcpu->arch.db);
9014
9015 if (dr6 != 0) {
9016 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9017 *r = 1;
9018 return true;
9019 }
9020 }
9021
9022 return false;
9023 }
9024
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9025 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9026 {
9027 switch (ctxt->opcode_len) {
9028 case 1:
9029 switch (ctxt->b) {
9030 case 0xe4: /* IN */
9031 case 0xe5:
9032 case 0xec:
9033 case 0xed:
9034 case 0xe6: /* OUT */
9035 case 0xe7:
9036 case 0xee:
9037 case 0xef:
9038 case 0x6c: /* INS */
9039 case 0x6d:
9040 case 0x6e: /* OUTS */
9041 case 0x6f:
9042 return true;
9043 }
9044 break;
9045 case 2:
9046 switch (ctxt->b) {
9047 case 0x33: /* RDPMC */
9048 return true;
9049 }
9050 break;
9051 }
9052
9053 return false;
9054 }
9055
9056 /*
9057 * Decode an instruction for emulation. The caller is responsible for handling
9058 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9059 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9060 * code breakpoints have higher priority and thus have already been done by
9061 * hardware.
9062 *
9063 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9064 * response to a machine check.
9065 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9066 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9067 void *insn, int insn_len)
9068 {
9069 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9070 int r;
9071
9072 init_emulate_ctxt(vcpu);
9073
9074 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9075
9076 trace_kvm_emulate_insn_start(vcpu);
9077 ++vcpu->stat.insn_emulation;
9078
9079 return r;
9080 }
9081 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9082
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9083 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9084 int emulation_type, void *insn, int insn_len)
9085 {
9086 int r;
9087 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9088 bool writeback = true;
9089
9090 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9091 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9092 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9093 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9094
9095 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9096 if (r != X86EMUL_CONTINUE) {
9097 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9098 return 1;
9099
9100 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9101 return handle_emulation_failure(vcpu, emulation_type);
9102 }
9103
9104 vcpu->arch.l1tf_flush_l1d = true;
9105
9106 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9107 kvm_clear_exception_queue(vcpu);
9108
9109 /*
9110 * Return immediately if RIP hits a code breakpoint, such #DBs
9111 * are fault-like and are higher priority than any faults on
9112 * the code fetch itself.
9113 */
9114 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9115 return r;
9116
9117 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9118 insn, insn_len);
9119 if (r != EMULATION_OK) {
9120 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9121 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9122 kvm_queue_exception(vcpu, UD_VECTOR);
9123 return 1;
9124 }
9125 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9126 emulation_type))
9127 return 1;
9128
9129 if (ctxt->have_exception &&
9130 !(emulation_type & EMULTYPE_SKIP)) {
9131 /*
9132 * #UD should result in just EMULATION_FAILED, and trap-like
9133 * exception should not be encountered during decode.
9134 */
9135 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9136 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9137 inject_emulated_exception(vcpu);
9138 return 1;
9139 }
9140 return handle_emulation_failure(vcpu, emulation_type);
9141 }
9142 }
9143
9144 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9145 !is_vmware_backdoor_opcode(ctxt)) {
9146 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9147 return 1;
9148 }
9149
9150 /*
9151 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9152 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9153 * The caller is responsible for updating interruptibility state and
9154 * injecting single-step #DBs.
9155 */
9156 if (emulation_type & EMULTYPE_SKIP) {
9157 if (ctxt->mode != X86EMUL_MODE_PROT64)
9158 ctxt->eip = (u32)ctxt->_eip;
9159 else
9160 ctxt->eip = ctxt->_eip;
9161
9162 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9163 r = 1;
9164 goto writeback;
9165 }
9166
9167 kvm_rip_write(vcpu, ctxt->eip);
9168 if (ctxt->eflags & X86_EFLAGS_RF)
9169 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9170 return 1;
9171 }
9172
9173 /*
9174 * If emulation was caused by a write-protection #PF on a non-page_table
9175 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9176 * and retry the instruction, as the vCPU is likely no longer using the
9177 * gfn as a page table.
9178 */
9179 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9180 !x86_page_table_writing_insn(ctxt) &&
9181 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9182 return 1;
9183
9184 /* this is needed for vmware backdoor interface to work since it
9185 changes registers values during IO operation */
9186 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9187 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9188 emulator_invalidate_register_cache(ctxt);
9189 }
9190
9191 restart:
9192 if (emulation_type & EMULTYPE_PF) {
9193 /* Save the faulting GPA (cr2) in the address field */
9194 ctxt->exception.address = cr2_or_gpa;
9195
9196 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9197 if (vcpu->arch.mmu->root_role.direct) {
9198 ctxt->gpa_available = true;
9199 ctxt->gpa_val = cr2_or_gpa;
9200 }
9201 } else {
9202 /* Sanitize the address out of an abundance of paranoia. */
9203 ctxt->exception.address = 0;
9204 }
9205
9206 /*
9207 * Check L1's instruction intercepts when emulating instructions for
9208 * L2, unless KVM is re-emulating a previously decoded instruction,
9209 * e.g. to complete userspace I/O, in which case KVM has already
9210 * checked the intercepts.
9211 */
9212 r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9213 !(emulation_type & EMULTYPE_NO_DECODE));
9214
9215 if (r == EMULATION_INTERCEPTED)
9216 return 1;
9217
9218 if (r == EMULATION_FAILED) {
9219 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9220 emulation_type))
9221 return 1;
9222
9223 return handle_emulation_failure(vcpu, emulation_type);
9224 }
9225
9226 if (ctxt->have_exception) {
9227 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9228 vcpu->mmio_needed = false;
9229 r = 1;
9230 inject_emulated_exception(vcpu);
9231 } else if (vcpu->arch.pio.count) {
9232 if (!vcpu->arch.pio.in) {
9233 /* FIXME: return into emulator if single-stepping. */
9234 vcpu->arch.pio.count = 0;
9235 } else {
9236 writeback = false;
9237 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9238 }
9239 r = 0;
9240 } else if (vcpu->mmio_needed) {
9241 ++vcpu->stat.mmio_exits;
9242
9243 if (!vcpu->mmio_is_write)
9244 writeback = false;
9245 r = 0;
9246 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9247 } else if (vcpu->arch.complete_userspace_io) {
9248 writeback = false;
9249 r = 0;
9250 } else if (r == EMULATION_RESTART)
9251 goto restart;
9252 else
9253 r = 1;
9254
9255 writeback:
9256 if (writeback) {
9257 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9258 toggle_interruptibility(vcpu, ctxt->interruptibility);
9259 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9260
9261 /*
9262 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9263 * only supports code breakpoints and general detect #DB, both
9264 * of which are fault-like.
9265 */
9266 if (!ctxt->have_exception ||
9267 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9268 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9269 if (ctxt->is_branch)
9270 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9271 kvm_rip_write(vcpu, ctxt->eip);
9272 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9273 r = kvm_vcpu_do_singlestep(vcpu);
9274 kvm_x86_call(update_emulated_instruction)(vcpu);
9275 __kvm_set_rflags(vcpu, ctxt->eflags);
9276 }
9277
9278 /*
9279 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9280 * do nothing, and it will be requested again as soon as
9281 * the shadow expires. But we still need to check here,
9282 * because POPF has no interrupt shadow.
9283 */
9284 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9285 kvm_make_request(KVM_REQ_EVENT, vcpu);
9286 } else
9287 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9288
9289 return r;
9290 }
9291
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9292 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9293 {
9294 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9295 }
9296 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9297
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9298 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9299 void *insn, int insn_len)
9300 {
9301 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9302 }
9303 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9304
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9305 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9306 {
9307 vcpu->arch.pio.count = 0;
9308 return 1;
9309 }
9310
complete_fast_pio_out(struct kvm_vcpu * vcpu)9311 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9312 {
9313 vcpu->arch.pio.count = 0;
9314
9315 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9316 return 1;
9317
9318 return kvm_skip_emulated_instruction(vcpu);
9319 }
9320
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9321 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9322 unsigned short port)
9323 {
9324 unsigned long val = kvm_rax_read(vcpu);
9325 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9326
9327 if (ret)
9328 return ret;
9329
9330 /*
9331 * Workaround userspace that relies on old KVM behavior of %rip being
9332 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9333 */
9334 if (port == 0x7e &&
9335 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9336 vcpu->arch.complete_userspace_io =
9337 complete_fast_pio_out_port_0x7e;
9338 kvm_skip_emulated_instruction(vcpu);
9339 } else {
9340 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9341 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9342 }
9343 return 0;
9344 }
9345
complete_fast_pio_in(struct kvm_vcpu * vcpu)9346 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9347 {
9348 unsigned long val;
9349
9350 /* We should only ever be called with arch.pio.count equal to 1 */
9351 BUG_ON(vcpu->arch.pio.count != 1);
9352
9353 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9354 vcpu->arch.pio.count = 0;
9355 return 1;
9356 }
9357
9358 /* For size less than 4 we merge, else we zero extend */
9359 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9360
9361 complete_emulator_pio_in(vcpu, &val);
9362 kvm_rax_write(vcpu, val);
9363
9364 return kvm_skip_emulated_instruction(vcpu);
9365 }
9366
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9367 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9368 unsigned short port)
9369 {
9370 unsigned long val;
9371 int ret;
9372
9373 /* For size less than 4 we merge, else we zero extend */
9374 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9375
9376 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9377 if (ret) {
9378 kvm_rax_write(vcpu, val);
9379 return ret;
9380 }
9381
9382 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9383 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9384
9385 return 0;
9386 }
9387
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9388 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9389 {
9390 int ret;
9391
9392 if (in)
9393 ret = kvm_fast_pio_in(vcpu, size, port);
9394 else
9395 ret = kvm_fast_pio_out(vcpu, size, port);
9396 return ret && kvm_skip_emulated_instruction(vcpu);
9397 }
9398 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9399
kvmclock_cpu_down_prep(unsigned int cpu)9400 static int kvmclock_cpu_down_prep(unsigned int cpu)
9401 {
9402 __this_cpu_write(cpu_tsc_khz, 0);
9403 return 0;
9404 }
9405
tsc_khz_changed(void * data)9406 static void tsc_khz_changed(void *data)
9407 {
9408 struct cpufreq_freqs *freq = data;
9409 unsigned long khz;
9410
9411 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9412
9413 if (data)
9414 khz = freq->new;
9415 else
9416 khz = cpufreq_quick_get(raw_smp_processor_id());
9417 if (!khz)
9418 khz = tsc_khz;
9419 __this_cpu_write(cpu_tsc_khz, khz);
9420 }
9421
9422 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9423 static void kvm_hyperv_tsc_notifier(void)
9424 {
9425 struct kvm *kvm;
9426 int cpu;
9427
9428 mutex_lock(&kvm_lock);
9429 list_for_each_entry(kvm, &vm_list, vm_list)
9430 kvm_make_mclock_inprogress_request(kvm);
9431
9432 /* no guest entries from this point */
9433 hyperv_stop_tsc_emulation();
9434
9435 /* TSC frequency always matches when on Hyper-V */
9436 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9437 for_each_present_cpu(cpu)
9438 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9439 }
9440 kvm_caps.max_guest_tsc_khz = tsc_khz;
9441
9442 list_for_each_entry(kvm, &vm_list, vm_list) {
9443 __kvm_start_pvclock_update(kvm);
9444 pvclock_update_vm_gtod_copy(kvm);
9445 kvm_end_pvclock_update(kvm);
9446 }
9447
9448 mutex_unlock(&kvm_lock);
9449 }
9450 #endif
9451
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9452 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9453 {
9454 struct kvm *kvm;
9455 struct kvm_vcpu *vcpu;
9456 int send_ipi = 0;
9457 unsigned long i;
9458
9459 /*
9460 * We allow guests to temporarily run on slowing clocks,
9461 * provided we notify them after, or to run on accelerating
9462 * clocks, provided we notify them before. Thus time never
9463 * goes backwards.
9464 *
9465 * However, we have a problem. We can't atomically update
9466 * the frequency of a given CPU from this function; it is
9467 * merely a notifier, which can be called from any CPU.
9468 * Changing the TSC frequency at arbitrary points in time
9469 * requires a recomputation of local variables related to
9470 * the TSC for each VCPU. We must flag these local variables
9471 * to be updated and be sure the update takes place with the
9472 * new frequency before any guests proceed.
9473 *
9474 * Unfortunately, the combination of hotplug CPU and frequency
9475 * change creates an intractable locking scenario; the order
9476 * of when these callouts happen is undefined with respect to
9477 * CPU hotplug, and they can race with each other. As such,
9478 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9479 * undefined; you can actually have a CPU frequency change take
9480 * place in between the computation of X and the setting of the
9481 * variable. To protect against this problem, all updates of
9482 * the per_cpu tsc_khz variable are done in an interrupt
9483 * protected IPI, and all callers wishing to update the value
9484 * must wait for a synchronous IPI to complete (which is trivial
9485 * if the caller is on the CPU already). This establishes the
9486 * necessary total order on variable updates.
9487 *
9488 * Note that because a guest time update may take place
9489 * anytime after the setting of the VCPU's request bit, the
9490 * correct TSC value must be set before the request. However,
9491 * to ensure the update actually makes it to any guest which
9492 * starts running in hardware virtualization between the set
9493 * and the acquisition of the spinlock, we must also ping the
9494 * CPU after setting the request bit.
9495 *
9496 */
9497
9498 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9499
9500 mutex_lock(&kvm_lock);
9501 list_for_each_entry(kvm, &vm_list, vm_list) {
9502 kvm_for_each_vcpu(i, vcpu, kvm) {
9503 if (vcpu->cpu != cpu)
9504 continue;
9505 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9506 if (vcpu->cpu != raw_smp_processor_id())
9507 send_ipi = 1;
9508 }
9509 }
9510 mutex_unlock(&kvm_lock);
9511
9512 if (freq->old < freq->new && send_ipi) {
9513 /*
9514 * We upscale the frequency. Must make the guest
9515 * doesn't see old kvmclock values while running with
9516 * the new frequency, otherwise we risk the guest sees
9517 * time go backwards.
9518 *
9519 * In case we update the frequency for another cpu
9520 * (which might be in guest context) send an interrupt
9521 * to kick the cpu out of guest context. Next time
9522 * guest context is entered kvmclock will be updated,
9523 * so the guest will not see stale values.
9524 */
9525 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9526 }
9527 }
9528
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9529 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9530 void *data)
9531 {
9532 struct cpufreq_freqs *freq = data;
9533 int cpu;
9534
9535 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9536 return 0;
9537 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9538 return 0;
9539
9540 for_each_cpu(cpu, freq->policy->cpus)
9541 __kvmclock_cpufreq_notifier(freq, cpu);
9542
9543 return 0;
9544 }
9545
9546 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9547 .notifier_call = kvmclock_cpufreq_notifier
9548 };
9549
kvmclock_cpu_online(unsigned int cpu)9550 static int kvmclock_cpu_online(unsigned int cpu)
9551 {
9552 tsc_khz_changed(NULL);
9553 return 0;
9554 }
9555
kvm_timer_init(void)9556 static void kvm_timer_init(void)
9557 {
9558 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9559 max_tsc_khz = tsc_khz;
9560
9561 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9562 struct cpufreq_policy *policy;
9563 int cpu;
9564
9565 cpu = get_cpu();
9566 policy = cpufreq_cpu_get(cpu);
9567 if (policy) {
9568 if (policy->cpuinfo.max_freq)
9569 max_tsc_khz = policy->cpuinfo.max_freq;
9570 cpufreq_cpu_put(policy);
9571 }
9572 put_cpu();
9573 }
9574 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9575 CPUFREQ_TRANSITION_NOTIFIER);
9576
9577 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9578 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9579 }
9580 }
9581
9582 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9583 static void pvclock_gtod_update_fn(struct work_struct *work)
9584 {
9585 struct kvm *kvm;
9586 struct kvm_vcpu *vcpu;
9587 unsigned long i;
9588
9589 mutex_lock(&kvm_lock);
9590 list_for_each_entry(kvm, &vm_list, vm_list)
9591 kvm_for_each_vcpu(i, vcpu, kvm)
9592 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9593 atomic_set(&kvm_guest_has_master_clock, 0);
9594 mutex_unlock(&kvm_lock);
9595 }
9596
9597 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9598
9599 /*
9600 * Indirection to move queue_work() out of the tk_core.seq write held
9601 * region to prevent possible deadlocks against time accessors which
9602 * are invoked with work related locks held.
9603 */
pvclock_irq_work_fn(struct irq_work * w)9604 static void pvclock_irq_work_fn(struct irq_work *w)
9605 {
9606 queue_work(system_long_wq, &pvclock_gtod_work);
9607 }
9608
9609 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9610
9611 /*
9612 * Notification about pvclock gtod data update.
9613 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9614 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9615 void *priv)
9616 {
9617 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9618 struct timekeeper *tk = priv;
9619
9620 update_pvclock_gtod(tk);
9621
9622 /*
9623 * Disable master clock if host does not trust, or does not use,
9624 * TSC based clocksource. Delegate queue_work() to irq_work as
9625 * this is invoked with tk_core.seq write held.
9626 */
9627 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9628 atomic_read(&kvm_guest_has_master_clock) != 0)
9629 irq_work_queue(&pvclock_irq_work);
9630 return 0;
9631 }
9632
9633 static struct notifier_block pvclock_gtod_notifier = {
9634 .notifier_call = pvclock_gtod_notify,
9635 };
9636 #endif
9637
kvm_ops_update(struct kvm_x86_init_ops * ops)9638 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9639 {
9640 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9641
9642 #define __KVM_X86_OP(func) \
9643 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9644 #define KVM_X86_OP(func) \
9645 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9646 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9647 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9648 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9649 (void *)__static_call_return0);
9650 #include <asm/kvm-x86-ops.h>
9651 #undef __KVM_X86_OP
9652
9653 kvm_pmu_ops_update(ops->pmu_ops);
9654 }
9655
kvm_x86_check_processor_compatibility(void)9656 static int kvm_x86_check_processor_compatibility(void)
9657 {
9658 int cpu = smp_processor_id();
9659 struct cpuinfo_x86 *c = &cpu_data(cpu);
9660
9661 /*
9662 * Compatibility checks are done when loading KVM and when enabling
9663 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9664 * compatible, i.e. KVM should never perform a compatibility check on
9665 * an offline CPU.
9666 */
9667 WARN_ON(!cpu_online(cpu));
9668
9669 if (__cr4_reserved_bits(cpu_has, c) !=
9670 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9671 return -EIO;
9672
9673 return kvm_x86_call(check_processor_compatibility)();
9674 }
9675
kvm_x86_check_cpu_compat(void * ret)9676 static void kvm_x86_check_cpu_compat(void *ret)
9677 {
9678 *(int *)ret = kvm_x86_check_processor_compatibility();
9679 }
9680
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9681 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9682 {
9683 u64 host_pat;
9684 int r, cpu;
9685
9686 guard(mutex)(&vendor_module_lock);
9687
9688 if (kvm_x86_ops.enable_virtualization_cpu) {
9689 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9690 return -EEXIST;
9691 }
9692
9693 /*
9694 * KVM explicitly assumes that the guest has an FPU and
9695 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9696 * vCPU's FPU state as a fxregs_state struct.
9697 */
9698 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9699 pr_err("inadequate fpu\n");
9700 return -EOPNOTSUPP;
9701 }
9702
9703 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9704 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9705 return -EOPNOTSUPP;
9706 }
9707
9708 /*
9709 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9710 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9711 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9712 * with an exception. PAT[0] is set to WB on RESET and also by the
9713 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9714 */
9715 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9716 (host_pat & GENMASK(2, 0)) != 6) {
9717 pr_err("host PAT[0] is not WB\n");
9718 return -EIO;
9719 }
9720
9721 memset(&kvm_caps, 0, sizeof(kvm_caps));
9722
9723 x86_emulator_cache = kvm_alloc_emulator_cache();
9724 if (!x86_emulator_cache) {
9725 pr_err("failed to allocate cache for x86 emulator\n");
9726 return -ENOMEM;
9727 }
9728
9729 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9730 if (!user_return_msrs) {
9731 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9732 r = -ENOMEM;
9733 goto out_free_x86_emulator_cache;
9734 }
9735 kvm_nr_uret_msrs = 0;
9736
9737 r = kvm_mmu_vendor_module_init();
9738 if (r)
9739 goto out_free_percpu;
9740
9741 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9742 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9743
9744 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9745 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9746 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9747 }
9748
9749 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9750
9751 if (boot_cpu_has(X86_FEATURE_XSAVES))
9752 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9753
9754 kvm_init_pmu_capability(ops->pmu_ops);
9755
9756 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9757 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9758
9759 r = ops->hardware_setup();
9760 if (r != 0)
9761 goto out_mmu_exit;
9762
9763 kvm_ops_update(ops);
9764
9765 for_each_online_cpu(cpu) {
9766 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9767 if (r < 0)
9768 goto out_unwind_ops;
9769 }
9770
9771 /*
9772 * Point of no return! DO NOT add error paths below this point unless
9773 * absolutely necessary, as most operations from this point forward
9774 * require unwinding.
9775 */
9776 kvm_timer_init();
9777
9778 if (pi_inject_timer == -1)
9779 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9780 #ifdef CONFIG_X86_64
9781 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9782
9783 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9784 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9785 #endif
9786
9787 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9788
9789 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9790 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9791
9792 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9793 kvm_caps.supported_xss = 0;
9794
9795 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9796 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9797 #undef __kvm_cpu_cap_has
9798
9799 if (kvm_caps.has_tsc_control) {
9800 /*
9801 * Make sure the user can only configure tsc_khz values that
9802 * fit into a signed integer.
9803 * A min value is not calculated because it will always
9804 * be 1 on all machines.
9805 */
9806 u64 max = min(0x7fffffffULL,
9807 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9808 kvm_caps.max_guest_tsc_khz = max;
9809 }
9810 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9811 kvm_init_msr_lists();
9812 return 0;
9813
9814 out_unwind_ops:
9815 kvm_x86_ops.enable_virtualization_cpu = NULL;
9816 kvm_x86_call(hardware_unsetup)();
9817 out_mmu_exit:
9818 kvm_mmu_vendor_module_exit();
9819 out_free_percpu:
9820 free_percpu(user_return_msrs);
9821 out_free_x86_emulator_cache:
9822 kmem_cache_destroy(x86_emulator_cache);
9823 return r;
9824 }
9825 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9826
kvm_x86_vendor_exit(void)9827 void kvm_x86_vendor_exit(void)
9828 {
9829 kvm_unregister_perf_callbacks();
9830
9831 #ifdef CONFIG_X86_64
9832 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9833 clear_hv_tscchange_cb();
9834 #endif
9835 kvm_lapic_exit();
9836
9837 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9838 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9839 CPUFREQ_TRANSITION_NOTIFIER);
9840 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9841 }
9842 #ifdef CONFIG_X86_64
9843 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9844 irq_work_sync(&pvclock_irq_work);
9845 cancel_work_sync(&pvclock_gtod_work);
9846 #endif
9847 kvm_x86_call(hardware_unsetup)();
9848 kvm_mmu_vendor_module_exit();
9849 free_percpu(user_return_msrs);
9850 kmem_cache_destroy(x86_emulator_cache);
9851 #ifdef CONFIG_KVM_XEN
9852 static_key_deferred_flush(&kvm_xen_enabled);
9853 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9854 #endif
9855 mutex_lock(&vendor_module_lock);
9856 kvm_x86_ops.enable_virtualization_cpu = NULL;
9857 mutex_unlock(&vendor_module_lock);
9858 }
9859 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9860
9861 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9862 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9863 unsigned long clock_type)
9864 {
9865 struct kvm_clock_pairing clock_pairing;
9866 struct timespec64 ts;
9867 u64 cycle;
9868 int ret;
9869
9870 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9871 return -KVM_EOPNOTSUPP;
9872
9873 /*
9874 * When tsc is in permanent catchup mode guests won't be able to use
9875 * pvclock_read_retry loop to get consistent view of pvclock
9876 */
9877 if (vcpu->arch.tsc_always_catchup)
9878 return -KVM_EOPNOTSUPP;
9879
9880 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9881 return -KVM_EOPNOTSUPP;
9882
9883 clock_pairing.sec = ts.tv_sec;
9884 clock_pairing.nsec = ts.tv_nsec;
9885 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9886 clock_pairing.flags = 0;
9887 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9888
9889 ret = 0;
9890 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9891 sizeof(struct kvm_clock_pairing)))
9892 ret = -KVM_EFAULT;
9893
9894 return ret;
9895 }
9896 #endif
9897
9898 /*
9899 * kvm_pv_kick_cpu_op: Kick a vcpu.
9900 *
9901 * @apicid - apicid of vcpu to be kicked.
9902 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9903 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9904 {
9905 /*
9906 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9907 * common code, e.g. for tracing. Defer initialization to the compiler.
9908 */
9909 struct kvm_lapic_irq lapic_irq = {
9910 .delivery_mode = APIC_DM_REMRD,
9911 .dest_mode = APIC_DEST_PHYSICAL,
9912 .shorthand = APIC_DEST_NOSHORT,
9913 .dest_id = apicid,
9914 };
9915
9916 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9917 }
9918
kvm_apicv_activated(struct kvm * kvm)9919 bool kvm_apicv_activated(struct kvm *kvm)
9920 {
9921 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9922 }
9923 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9924
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9925 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9926 {
9927 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9928 ulong vcpu_reasons =
9929 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9930
9931 return (vm_reasons | vcpu_reasons) == 0;
9932 }
9933 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9934
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9935 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9936 enum kvm_apicv_inhibit reason, bool set)
9937 {
9938 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9939
9940 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9941
9942 if (set)
9943 __set_bit(reason, inhibits);
9944 else
9945 __clear_bit(reason, inhibits);
9946
9947 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9948 }
9949
kvm_apicv_init(struct kvm * kvm)9950 static void kvm_apicv_init(struct kvm *kvm)
9951 {
9952 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9953 APICV_INHIBIT_REASON_DISABLED;
9954
9955 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9956
9957 init_rwsem(&kvm->arch.apicv_update_lock);
9958 }
9959
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9960 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9961 {
9962 struct kvm_vcpu *target = NULL;
9963 struct kvm_apic_map *map;
9964
9965 vcpu->stat.directed_yield_attempted++;
9966
9967 if (single_task_running())
9968 goto no_yield;
9969
9970 rcu_read_lock();
9971 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9972
9973 if (likely(map) && dest_id <= map->max_apic_id) {
9974 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
9975 if (map->phys_map[dest_id])
9976 target = map->phys_map[dest_id]->vcpu;
9977 }
9978
9979 rcu_read_unlock();
9980
9981 if (!target || !READ_ONCE(target->ready))
9982 goto no_yield;
9983
9984 /* Ignore requests to yield to self */
9985 if (vcpu == target)
9986 goto no_yield;
9987
9988 if (kvm_vcpu_yield_to(target) <= 0)
9989 goto no_yield;
9990
9991 vcpu->stat.directed_yield_successful++;
9992
9993 no_yield:
9994 return;
9995 }
9996
complete_hypercall_exit(struct kvm_vcpu * vcpu)9997 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9998 {
9999 u64 ret = vcpu->run->hypercall.ret;
10000
10001 if (!is_64_bit_hypercall(vcpu))
10002 ret = (u32)ret;
10003 kvm_rax_write(vcpu, ret);
10004 ++vcpu->stat.hypercalls;
10005 return kvm_skip_emulated_instruction(vcpu);
10006 }
10007
__kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl)10008 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10009 unsigned long a0, unsigned long a1,
10010 unsigned long a2, unsigned long a3,
10011 int op_64_bit, int cpl)
10012 {
10013 unsigned long ret;
10014
10015 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10016
10017 if (!op_64_bit) {
10018 nr &= 0xFFFFFFFF;
10019 a0 &= 0xFFFFFFFF;
10020 a1 &= 0xFFFFFFFF;
10021 a2 &= 0xFFFFFFFF;
10022 a3 &= 0xFFFFFFFF;
10023 }
10024
10025 if (cpl) {
10026 ret = -KVM_EPERM;
10027 goto out;
10028 }
10029
10030 ret = -KVM_ENOSYS;
10031
10032 switch (nr) {
10033 case KVM_HC_VAPIC_POLL_IRQ:
10034 ret = 0;
10035 break;
10036 case KVM_HC_KICK_CPU:
10037 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10038 break;
10039
10040 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10041 kvm_sched_yield(vcpu, a1);
10042 ret = 0;
10043 break;
10044 #ifdef CONFIG_X86_64
10045 case KVM_HC_CLOCK_PAIRING:
10046 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10047 break;
10048 #endif
10049 case KVM_HC_SEND_IPI:
10050 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10051 break;
10052
10053 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10054 break;
10055 case KVM_HC_SCHED_YIELD:
10056 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10057 break;
10058
10059 kvm_sched_yield(vcpu, a0);
10060 ret = 0;
10061 break;
10062 case KVM_HC_MAP_GPA_RANGE: {
10063 u64 gpa = a0, npages = a1, attrs = a2;
10064
10065 ret = -KVM_ENOSYS;
10066 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10067 break;
10068
10069 if (!PAGE_ALIGNED(gpa) || !npages ||
10070 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10071 ret = -KVM_EINVAL;
10072 break;
10073 }
10074
10075 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10076 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10077 vcpu->run->hypercall.args[0] = gpa;
10078 vcpu->run->hypercall.args[1] = npages;
10079 vcpu->run->hypercall.args[2] = attrs;
10080 vcpu->run->hypercall.flags = 0;
10081 if (op_64_bit)
10082 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10083
10084 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10085 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10086 /* stat is incremented on completion. */
10087 return 0;
10088 }
10089 default:
10090 ret = -KVM_ENOSYS;
10091 break;
10092 }
10093
10094 out:
10095 ++vcpu->stat.hypercalls;
10096 return ret;
10097 }
10098 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10099
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10100 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10101 {
10102 unsigned long nr, a0, a1, a2, a3, ret;
10103 int op_64_bit;
10104 int cpl;
10105
10106 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10107 return kvm_xen_hypercall(vcpu);
10108
10109 if (kvm_hv_hypercall_enabled(vcpu))
10110 return kvm_hv_hypercall(vcpu);
10111
10112 nr = kvm_rax_read(vcpu);
10113 a0 = kvm_rbx_read(vcpu);
10114 a1 = kvm_rcx_read(vcpu);
10115 a2 = kvm_rdx_read(vcpu);
10116 a3 = kvm_rsi_read(vcpu);
10117 op_64_bit = is_64_bit_hypercall(vcpu);
10118 cpl = kvm_x86_call(get_cpl)(vcpu);
10119
10120 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10121 if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10122 /* MAP_GPA tosses the request to the user space. */
10123 return 0;
10124
10125 if (!op_64_bit)
10126 ret = (u32)ret;
10127 kvm_rax_write(vcpu, ret);
10128
10129 return kvm_skip_emulated_instruction(vcpu);
10130 }
10131 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10132
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10133 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10134 {
10135 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10136 char instruction[3];
10137 unsigned long rip = kvm_rip_read(vcpu);
10138
10139 /*
10140 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10141 * the pieces.
10142 */
10143 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10144 ctxt->exception.error_code_valid = false;
10145 ctxt->exception.vector = UD_VECTOR;
10146 ctxt->have_exception = true;
10147 return X86EMUL_PROPAGATE_FAULT;
10148 }
10149
10150 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10151
10152 return emulator_write_emulated(ctxt, rip, instruction, 3,
10153 &ctxt->exception);
10154 }
10155
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10156 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10157 {
10158 return vcpu->run->request_interrupt_window &&
10159 likely(!pic_in_kernel(vcpu->kvm));
10160 }
10161
10162 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10163 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10164 {
10165 struct kvm_run *kvm_run = vcpu->run;
10166
10167 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10168 kvm_run->cr8 = kvm_get_cr8(vcpu);
10169 kvm_run->apic_base = vcpu->arch.apic_base;
10170
10171 kvm_run->ready_for_interrupt_injection =
10172 pic_in_kernel(vcpu->kvm) ||
10173 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10174
10175 if (is_smm(vcpu))
10176 kvm_run->flags |= KVM_RUN_X86_SMM;
10177 if (is_guest_mode(vcpu))
10178 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10179 }
10180
update_cr8_intercept(struct kvm_vcpu * vcpu)10181 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10182 {
10183 int max_irr, tpr;
10184
10185 if (!kvm_x86_ops.update_cr8_intercept)
10186 return;
10187
10188 if (!lapic_in_kernel(vcpu))
10189 return;
10190
10191 if (vcpu->arch.apic->apicv_active)
10192 return;
10193
10194 if (!vcpu->arch.apic->vapic_addr)
10195 max_irr = kvm_lapic_find_highest_irr(vcpu);
10196 else
10197 max_irr = -1;
10198
10199 if (max_irr != -1)
10200 max_irr >>= 4;
10201
10202 tpr = kvm_lapic_get_cr8(vcpu);
10203
10204 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10205 }
10206
10207
kvm_check_nested_events(struct kvm_vcpu * vcpu)10208 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10209 {
10210 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10211 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10212 return 1;
10213 }
10214
10215 return kvm_x86_ops.nested_ops->check_events(vcpu);
10216 }
10217
kvm_inject_exception(struct kvm_vcpu * vcpu)10218 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10219 {
10220 /*
10221 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10222 * exceptions don't report error codes. The presence of an error code
10223 * is carried with the exception and only stripped when the exception
10224 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10225 * report an error code despite the CPU being in Real Mode.
10226 */
10227 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10228
10229 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10230 vcpu->arch.exception.has_error_code,
10231 vcpu->arch.exception.error_code,
10232 vcpu->arch.exception.injected);
10233
10234 kvm_x86_call(inject_exception)(vcpu);
10235 }
10236
10237 /*
10238 * Check for any event (interrupt or exception) that is ready to be injected,
10239 * and if there is at least one event, inject the event with the highest
10240 * priority. This handles both "pending" events, i.e. events that have never
10241 * been injected into the guest, and "injected" events, i.e. events that were
10242 * injected as part of a previous VM-Enter, but weren't successfully delivered
10243 * and need to be re-injected.
10244 *
10245 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10246 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10247 * be able to inject exceptions in the "middle" of an instruction, and so must
10248 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10249 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10250 * boundaries is necessary and correct.
10251 *
10252 * For simplicity, KVM uses a single path to inject all events (except events
10253 * that are injected directly from L1 to L2) and doesn't explicitly track
10254 * instruction boundaries for asynchronous events. However, because VM-Exits
10255 * that can occur during instruction execution typically result in KVM skipping
10256 * the instruction or injecting an exception, e.g. instruction and exception
10257 * intercepts, and because pending exceptions have higher priority than pending
10258 * interrupts, KVM still honors instruction boundaries in most scenarios.
10259 *
10260 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10261 * the instruction or inject an exception, then KVM can incorrecty inject a new
10262 * asynchronous event if the event became pending after the CPU fetched the
10263 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10264 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10265 * injected on the restarted instruction instead of being deferred until the
10266 * instruction completes.
10267 *
10268 * In practice, this virtualization hole is unlikely to be observed by the
10269 * guest, and even less likely to cause functional problems. To detect the
10270 * hole, the guest would have to trigger an event on a side effect of an early
10271 * phase of instruction execution, e.g. on the instruction fetch from memory.
10272 * And for it to be a functional problem, the guest would need to depend on the
10273 * ordering between that side effect, the instruction completing, _and_ the
10274 * delivery of the asynchronous event.
10275 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10276 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10277 bool *req_immediate_exit)
10278 {
10279 bool can_inject;
10280 int r;
10281
10282 /*
10283 * Process nested events first, as nested VM-Exit supersedes event
10284 * re-injection. If there's an event queued for re-injection, it will
10285 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10286 */
10287 if (is_guest_mode(vcpu))
10288 r = kvm_check_nested_events(vcpu);
10289 else
10290 r = 0;
10291
10292 /*
10293 * Re-inject exceptions and events *especially* if immediate entry+exit
10294 * to/from L2 is needed, as any event that has already been injected
10295 * into L2 needs to complete its lifecycle before injecting a new event.
10296 *
10297 * Don't re-inject an NMI or interrupt if there is a pending exception.
10298 * This collision arises if an exception occurred while vectoring the
10299 * injected event, KVM intercepted said exception, and KVM ultimately
10300 * determined the fault belongs to the guest and queues the exception
10301 * for injection back into the guest.
10302 *
10303 * "Injected" interrupts can also collide with pending exceptions if
10304 * userspace ignores the "ready for injection" flag and blindly queues
10305 * an interrupt. In that case, prioritizing the exception is correct,
10306 * as the exception "occurred" before the exit to userspace. Trap-like
10307 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10308 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10309 * priority, they're only generated (pended) during instruction
10310 * execution, and interrupts are recognized at instruction boundaries.
10311 * Thus a pending fault-like exception means the fault occurred on the
10312 * *previous* instruction and must be serviced prior to recognizing any
10313 * new events in order to fully complete the previous instruction.
10314 */
10315 if (vcpu->arch.exception.injected)
10316 kvm_inject_exception(vcpu);
10317 else if (kvm_is_exception_pending(vcpu))
10318 ; /* see above */
10319 else if (vcpu->arch.nmi_injected)
10320 kvm_x86_call(inject_nmi)(vcpu);
10321 else if (vcpu->arch.interrupt.injected)
10322 kvm_x86_call(inject_irq)(vcpu, true);
10323
10324 /*
10325 * Exceptions that morph to VM-Exits are handled above, and pending
10326 * exceptions on top of injected exceptions that do not VM-Exit should
10327 * either morph to #DF or, sadly, override the injected exception.
10328 */
10329 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10330 vcpu->arch.exception.pending);
10331
10332 /*
10333 * Bail if immediate entry+exit to/from the guest is needed to complete
10334 * nested VM-Enter or event re-injection so that a different pending
10335 * event can be serviced (or if KVM needs to exit to userspace).
10336 *
10337 * Otherwise, continue processing events even if VM-Exit occurred. The
10338 * VM-Exit will have cleared exceptions that were meant for L2, but
10339 * there may now be events that can be injected into L1.
10340 */
10341 if (r < 0)
10342 goto out;
10343
10344 /*
10345 * A pending exception VM-Exit should either result in nested VM-Exit
10346 * or force an immediate re-entry and exit to/from L2, and exception
10347 * VM-Exits cannot be injected (flag should _never_ be set).
10348 */
10349 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10350 vcpu->arch.exception_vmexit.pending);
10351
10352 /*
10353 * New events, other than exceptions, cannot be injected if KVM needs
10354 * to re-inject a previous event. See above comments on re-injecting
10355 * for why pending exceptions get priority.
10356 */
10357 can_inject = !kvm_event_needs_reinjection(vcpu);
10358
10359 if (vcpu->arch.exception.pending) {
10360 /*
10361 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10362 * value pushed on the stack. Trap-like exception and all #DBs
10363 * leave RF as-is (KVM follows Intel's behavior in this regard;
10364 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10365 *
10366 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10367 * describe the behavior of General Detect #DBs, which are
10368 * fault-like. They do _not_ set RF, a la code breakpoints.
10369 */
10370 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10371 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10372 X86_EFLAGS_RF);
10373
10374 if (vcpu->arch.exception.vector == DB_VECTOR) {
10375 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10376 if (vcpu->arch.dr7 & DR7_GD) {
10377 vcpu->arch.dr7 &= ~DR7_GD;
10378 kvm_update_dr7(vcpu);
10379 }
10380 }
10381
10382 kvm_inject_exception(vcpu);
10383
10384 vcpu->arch.exception.pending = false;
10385 vcpu->arch.exception.injected = true;
10386
10387 can_inject = false;
10388 }
10389
10390 /* Don't inject interrupts if the user asked to avoid doing so */
10391 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10392 return 0;
10393
10394 /*
10395 * Finally, inject interrupt events. If an event cannot be injected
10396 * due to architectural conditions (e.g. IF=0) a window-open exit
10397 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10398 * and can architecturally be injected, but we cannot do it right now:
10399 * an interrupt could have arrived just now and we have to inject it
10400 * as a vmexit, or there could already an event in the queue, which is
10401 * indicated by can_inject. In that case we request an immediate exit
10402 * in order to make progress and get back here for another iteration.
10403 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10404 */
10405 #ifdef CONFIG_KVM_SMM
10406 if (vcpu->arch.smi_pending) {
10407 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10408 -EBUSY;
10409 if (r < 0)
10410 goto out;
10411 if (r) {
10412 vcpu->arch.smi_pending = false;
10413 ++vcpu->arch.smi_count;
10414 enter_smm(vcpu);
10415 can_inject = false;
10416 } else
10417 kvm_x86_call(enable_smi_window)(vcpu);
10418 }
10419 #endif
10420
10421 if (vcpu->arch.nmi_pending) {
10422 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10423 -EBUSY;
10424 if (r < 0)
10425 goto out;
10426 if (r) {
10427 --vcpu->arch.nmi_pending;
10428 vcpu->arch.nmi_injected = true;
10429 kvm_x86_call(inject_nmi)(vcpu);
10430 can_inject = false;
10431 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10432 }
10433 if (vcpu->arch.nmi_pending)
10434 kvm_x86_call(enable_nmi_window)(vcpu);
10435 }
10436
10437 if (kvm_cpu_has_injectable_intr(vcpu)) {
10438 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10439 -EBUSY;
10440 if (r < 0)
10441 goto out;
10442 if (r) {
10443 int irq = kvm_cpu_get_interrupt(vcpu);
10444
10445 if (!WARN_ON_ONCE(irq == -1)) {
10446 kvm_queue_interrupt(vcpu, irq, false);
10447 kvm_x86_call(inject_irq)(vcpu, false);
10448 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10449 }
10450 }
10451 if (kvm_cpu_has_injectable_intr(vcpu))
10452 kvm_x86_call(enable_irq_window)(vcpu);
10453 }
10454
10455 if (is_guest_mode(vcpu) &&
10456 kvm_x86_ops.nested_ops->has_events &&
10457 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10458 *req_immediate_exit = true;
10459
10460 /*
10461 * KVM must never queue a new exception while injecting an event; KVM
10462 * is done emulating and should only propagate the to-be-injected event
10463 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10464 * infinite loop as KVM will bail from VM-Enter to inject the pending
10465 * exception and start the cycle all over.
10466 *
10467 * Exempt triple faults as they have special handling and won't put the
10468 * vCPU into an infinite loop. Triple fault can be queued when running
10469 * VMX without unrestricted guest, as that requires KVM to emulate Real
10470 * Mode events (see kvm_inject_realmode_interrupt()).
10471 */
10472 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10473 vcpu->arch.exception_vmexit.pending);
10474 return 0;
10475
10476 out:
10477 if (r == -EBUSY) {
10478 *req_immediate_exit = true;
10479 r = 0;
10480 }
10481 return r;
10482 }
10483
process_nmi(struct kvm_vcpu * vcpu)10484 static void process_nmi(struct kvm_vcpu *vcpu)
10485 {
10486 unsigned int limit;
10487
10488 /*
10489 * x86 is limited to one NMI pending, but because KVM can't react to
10490 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10491 * scheduled out, KVM needs to play nice with two queued NMIs showing
10492 * up at the same time. To handle this scenario, allow two NMIs to be
10493 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10494 * waiting for a previous NMI injection to complete (which effectively
10495 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10496 * will request an NMI window to handle the second NMI.
10497 */
10498 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10499 limit = 1;
10500 else
10501 limit = 2;
10502
10503 /*
10504 * Adjust the limit to account for pending virtual NMIs, which aren't
10505 * tracked in vcpu->arch.nmi_pending.
10506 */
10507 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10508 limit--;
10509
10510 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10511 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10512
10513 if (vcpu->arch.nmi_pending &&
10514 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10515 vcpu->arch.nmi_pending--;
10516
10517 if (vcpu->arch.nmi_pending)
10518 kvm_make_request(KVM_REQ_EVENT, vcpu);
10519 }
10520
10521 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10522 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10523 {
10524 return vcpu->arch.nmi_pending +
10525 kvm_x86_call(is_vnmi_pending)(vcpu);
10526 }
10527
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10528 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10529 unsigned long *vcpu_bitmap)
10530 {
10531 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10532 }
10533
kvm_make_scan_ioapic_request(struct kvm * kvm)10534 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10535 {
10536 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10537 }
10538
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10539 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10540 {
10541 struct kvm_lapic *apic = vcpu->arch.apic;
10542 bool activate;
10543
10544 if (!lapic_in_kernel(vcpu))
10545 return;
10546
10547 down_read(&vcpu->kvm->arch.apicv_update_lock);
10548 preempt_disable();
10549
10550 /* Do not activate APICV when APIC is disabled */
10551 activate = kvm_vcpu_apicv_activated(vcpu) &&
10552 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10553
10554 if (apic->apicv_active == activate)
10555 goto out;
10556
10557 apic->apicv_active = activate;
10558 kvm_apic_update_apicv(vcpu);
10559 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10560
10561 /*
10562 * When APICv gets disabled, we may still have injected interrupts
10563 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10564 * still active when the interrupt got accepted. Make sure
10565 * kvm_check_and_inject_events() is called to check for that.
10566 */
10567 if (!apic->apicv_active)
10568 kvm_make_request(KVM_REQ_EVENT, vcpu);
10569
10570 out:
10571 preempt_enable();
10572 up_read(&vcpu->kvm->arch.apicv_update_lock);
10573 }
10574 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10575
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10576 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10577 {
10578 if (!lapic_in_kernel(vcpu))
10579 return;
10580
10581 /*
10582 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10583 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10584 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10585 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10586 * this case so that KVM can the AVIC doorbell to inject interrupts to
10587 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10588 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10589 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10590 * access page is sticky.
10591 */
10592 if (apic_x2apic_mode(vcpu->arch.apic) &&
10593 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10594 kvm_inhibit_apic_access_page(vcpu);
10595
10596 __kvm_vcpu_update_apicv(vcpu);
10597 }
10598
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10599 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10600 enum kvm_apicv_inhibit reason, bool set)
10601 {
10602 unsigned long old, new;
10603
10604 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10605
10606 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10607 return;
10608
10609 old = new = kvm->arch.apicv_inhibit_reasons;
10610
10611 set_or_clear_apicv_inhibit(&new, reason, set);
10612
10613 if (!!old != !!new) {
10614 /*
10615 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10616 * false positives in the sanity check WARN in svm_vcpu_run().
10617 * This task will wait for all vCPUs to ack the kick IRQ before
10618 * updating apicv_inhibit_reasons, and all other vCPUs will
10619 * block on acquiring apicv_update_lock so that vCPUs can't
10620 * redo svm_vcpu_run() without seeing the new inhibit state.
10621 *
10622 * Note, holding apicv_update_lock and taking it in the read
10623 * side (handling the request) also prevents other vCPUs from
10624 * servicing the request with a stale apicv_inhibit_reasons.
10625 */
10626 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10627 kvm->arch.apicv_inhibit_reasons = new;
10628 if (new) {
10629 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10630 int idx = srcu_read_lock(&kvm->srcu);
10631
10632 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10633 srcu_read_unlock(&kvm->srcu, idx);
10634 }
10635 } else {
10636 kvm->arch.apicv_inhibit_reasons = new;
10637 }
10638 }
10639
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10640 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10641 enum kvm_apicv_inhibit reason, bool set)
10642 {
10643 if (!enable_apicv)
10644 return;
10645
10646 down_write(&kvm->arch.apicv_update_lock);
10647 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10648 up_write(&kvm->arch.apicv_update_lock);
10649 }
10650 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10651
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10652 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10653 {
10654 if (!kvm_apic_present(vcpu))
10655 return;
10656
10657 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10658
10659 kvm_x86_call(sync_pir_to_irr)(vcpu);
10660
10661 if (irqchip_split(vcpu->kvm))
10662 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10663 else if (ioapic_in_kernel(vcpu->kvm))
10664 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10665
10666 if (is_guest_mode(vcpu))
10667 vcpu->arch.load_eoi_exitmap_pending = true;
10668 else
10669 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10670 }
10671
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10672 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10673 {
10674 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10675 return;
10676
10677 #ifdef CONFIG_KVM_HYPERV
10678 if (to_hv_vcpu(vcpu)) {
10679 u64 eoi_exit_bitmap[4];
10680
10681 bitmap_or((ulong *)eoi_exit_bitmap,
10682 vcpu->arch.ioapic_handled_vectors,
10683 to_hv_synic(vcpu)->vec_bitmap, 256);
10684 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10685 return;
10686 }
10687 #endif
10688 kvm_x86_call(load_eoi_exitmap)(
10689 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10690 }
10691
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10692 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10693 {
10694 kvm_x86_call(guest_memory_reclaimed)(kvm);
10695 }
10696
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10697 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10698 {
10699 if (!lapic_in_kernel(vcpu))
10700 return;
10701
10702 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10703 }
10704
10705 /*
10706 * Called within kvm->srcu read side.
10707 * Returns 1 to let vcpu_run() continue the guest execution loop without
10708 * exiting to the userspace. Otherwise, the value will be returned to the
10709 * userspace.
10710 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10711 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10712 {
10713 int r;
10714 bool req_int_win =
10715 dm_request_for_irq_injection(vcpu) &&
10716 kvm_cpu_accept_dm_intr(vcpu);
10717 fastpath_t exit_fastpath;
10718 u64 run_flags, debug_ctl;
10719
10720 bool req_immediate_exit = false;
10721
10722 if (kvm_request_pending(vcpu)) {
10723 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10724 r = -EIO;
10725 goto out;
10726 }
10727
10728 if (kvm_dirty_ring_check_request(vcpu)) {
10729 r = 0;
10730 goto out;
10731 }
10732
10733 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10734 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10735 r = 0;
10736 goto out;
10737 }
10738 }
10739 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10740 kvm_mmu_free_obsolete_roots(vcpu);
10741 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10742 __kvm_migrate_timers(vcpu);
10743 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10744 kvm_update_masterclock(vcpu->kvm);
10745 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10746 kvm_gen_kvmclock_update(vcpu);
10747 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10748 r = kvm_guest_time_update(vcpu);
10749 if (unlikely(r))
10750 goto out;
10751 }
10752 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10753 kvm_mmu_sync_roots(vcpu);
10754 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10755 kvm_mmu_load_pgd(vcpu);
10756
10757 /*
10758 * Note, the order matters here, as flushing "all" TLB entries
10759 * also flushes the "current" TLB entries, i.e. servicing the
10760 * flush "all" will clear any request to flush "current".
10761 */
10762 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10763 kvm_vcpu_flush_tlb_all(vcpu);
10764
10765 kvm_service_local_tlb_flush_requests(vcpu);
10766
10767 /*
10768 * Fall back to a "full" guest flush if Hyper-V's precise
10769 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10770 * the flushes are considered "remote" and not "local" because
10771 * the requests can be initiated from other vCPUs.
10772 */
10773 #ifdef CONFIG_KVM_HYPERV
10774 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10775 kvm_hv_vcpu_flush_tlb(vcpu))
10776 kvm_vcpu_flush_tlb_guest(vcpu);
10777 #endif
10778
10779 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10780 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10781 r = 0;
10782 goto out;
10783 }
10784 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10785 if (is_guest_mode(vcpu))
10786 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10787
10788 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10789 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10790 vcpu->mmio_needed = 0;
10791 r = 0;
10792 goto out;
10793 }
10794 }
10795 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10796 /* Page is swapped out. Do synthetic halt */
10797 vcpu->arch.apf.halted = true;
10798 r = 1;
10799 goto out;
10800 }
10801 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10802 record_steal_time(vcpu);
10803 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10804 kvm_pmu_handle_event(vcpu);
10805 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10806 kvm_pmu_deliver_pmi(vcpu);
10807 #ifdef CONFIG_KVM_SMM
10808 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10809 process_smi(vcpu);
10810 #endif
10811 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10812 process_nmi(vcpu);
10813 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10814 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10815 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10816 vcpu->arch.ioapic_handled_vectors)) {
10817 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10818 vcpu->run->eoi.vector =
10819 vcpu->arch.pending_ioapic_eoi;
10820 r = 0;
10821 goto out;
10822 }
10823 }
10824 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10825 vcpu_scan_ioapic(vcpu);
10826 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10827 vcpu_load_eoi_exitmap(vcpu);
10828 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10829 kvm_vcpu_reload_apic_access_page(vcpu);
10830 #ifdef CONFIG_KVM_HYPERV
10831 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10832 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10833 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10834 vcpu->run->system_event.ndata = 0;
10835 r = 0;
10836 goto out;
10837 }
10838 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10839 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10840 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10841 vcpu->run->system_event.ndata = 0;
10842 r = 0;
10843 goto out;
10844 }
10845 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10846 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10847
10848 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10849 vcpu->run->hyperv = hv_vcpu->exit;
10850 r = 0;
10851 goto out;
10852 }
10853
10854 /*
10855 * KVM_REQ_HV_STIMER has to be processed after
10856 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10857 * depend on the guest clock being up-to-date
10858 */
10859 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10860 kvm_hv_process_stimers(vcpu);
10861 #endif
10862 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10863 kvm_vcpu_update_apicv(vcpu);
10864 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10865 kvm_check_async_pf_completion(vcpu);
10866 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10867 kvm_x86_call(msr_filter_changed)(vcpu);
10868
10869 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10870 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10871
10872 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10873 kvm_vcpu_reset(vcpu, true);
10874 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10875 r = 1;
10876 goto out;
10877 }
10878 }
10879 }
10880
10881 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10882 kvm_xen_has_interrupt(vcpu)) {
10883 ++vcpu->stat.req_event;
10884 r = kvm_apic_accept_events(vcpu);
10885 if (r < 0) {
10886 r = 0;
10887 goto out;
10888 }
10889 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10890 r = 1;
10891 goto out;
10892 }
10893
10894 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10895 if (r < 0) {
10896 r = 0;
10897 goto out;
10898 }
10899 if (req_int_win)
10900 kvm_x86_call(enable_irq_window)(vcpu);
10901
10902 if (kvm_lapic_enabled(vcpu)) {
10903 update_cr8_intercept(vcpu);
10904 kvm_lapic_sync_to_vapic(vcpu);
10905 }
10906 }
10907
10908 r = kvm_mmu_reload(vcpu);
10909 if (unlikely(r)) {
10910 goto cancel_injection;
10911 }
10912
10913 preempt_disable();
10914
10915 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10916
10917 /*
10918 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10919 * IPI are then delayed after guest entry, which ensures that they
10920 * result in virtual interrupt delivery.
10921 */
10922 local_irq_disable();
10923
10924 /* Store vcpu->apicv_active before vcpu->mode. */
10925 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10926
10927 kvm_vcpu_srcu_read_unlock(vcpu);
10928
10929 /*
10930 * 1) We should set ->mode before checking ->requests. Please see
10931 * the comment in kvm_vcpu_exiting_guest_mode().
10932 *
10933 * 2) For APICv, we should set ->mode before checking PID.ON. This
10934 * pairs with the memory barrier implicit in pi_test_and_set_on
10935 * (see vmx_deliver_posted_interrupt).
10936 *
10937 * 3) This also orders the write to mode from any reads to the page
10938 * tables done while the VCPU is running. Please see the comment
10939 * in kvm_flush_remote_tlbs.
10940 */
10941 smp_mb__after_srcu_read_unlock();
10942
10943 /*
10944 * Process pending posted interrupts to handle the case where the
10945 * notification IRQ arrived in the host, or was never sent (because the
10946 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10947 * status, KVM doesn't update assigned devices when APICv is inhibited,
10948 * i.e. they can post interrupts even if APICv is temporarily disabled.
10949 */
10950 if (kvm_lapic_enabled(vcpu))
10951 kvm_x86_call(sync_pir_to_irr)(vcpu);
10952
10953 if (kvm_vcpu_exit_request(vcpu)) {
10954 vcpu->mode = OUTSIDE_GUEST_MODE;
10955 smp_wmb();
10956 local_irq_enable();
10957 preempt_enable();
10958 kvm_vcpu_srcu_read_lock(vcpu);
10959 r = 1;
10960 goto cancel_injection;
10961 }
10962
10963 run_flags = 0;
10964 if (req_immediate_exit) {
10965 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
10966 kvm_make_request(KVM_REQ_EVENT, vcpu);
10967 }
10968
10969 fpregs_assert_state_consistent();
10970 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10971 switch_fpu_return();
10972
10973 if (vcpu->arch.guest_fpu.xfd_err)
10974 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10975
10976 if (unlikely(vcpu->arch.switch_db_regs)) {
10977 set_debugreg(DR7_FIXED_1, 7);
10978 set_debugreg(vcpu->arch.eff_db[0], 0);
10979 set_debugreg(vcpu->arch.eff_db[1], 1);
10980 set_debugreg(vcpu->arch.eff_db[2], 2);
10981 set_debugreg(vcpu->arch.eff_db[3], 3);
10982 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10983 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10984 run_flags |= KVM_RUN_LOAD_GUEST_DR6;
10985 } else if (unlikely(hw_breakpoint_active())) {
10986 set_debugreg(DR7_FIXED_1, 7);
10987 }
10988
10989 /*
10990 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
10991 * can be modified in IRQ context, e.g. via SMP function calls. Inform
10992 * vendor code if any host-owned bits were changed, e.g. so that the
10993 * value loaded into hardware while running the guest can be updated.
10994 */
10995 debug_ctl = get_debugctlmsr();
10996 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
10997 !vcpu->arch.guest_state_protected)
10998 run_flags |= KVM_RUN_LOAD_DEBUGCTL;
10999 vcpu->arch.host_debugctl = debug_ctl;
11000
11001 guest_timing_enter_irqoff();
11002
11003 for (;;) {
11004 /*
11005 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11006 * update must kick and wait for all vCPUs before toggling the
11007 * per-VM state, and responding vCPUs must wait for the update
11008 * to complete before servicing KVM_REQ_APICV_UPDATE.
11009 */
11010 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11011 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11012
11013 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11014 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11015 break;
11016
11017 if (kvm_lapic_enabled(vcpu))
11018 kvm_x86_call(sync_pir_to_irr)(vcpu);
11019
11020 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11021 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11022 break;
11023 }
11024
11025 run_flags = 0;
11026
11027 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11028 ++vcpu->stat.exits;
11029 }
11030
11031 /*
11032 * Do this here before restoring debug registers on the host. And
11033 * since we do this before handling the vmexit, a DR access vmexit
11034 * can (a) read the correct value of the debug registers, (b) set
11035 * KVM_DEBUGREG_WONT_EXIT again.
11036 */
11037 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11038 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11039 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11040 kvm_update_dr0123(vcpu);
11041 kvm_update_dr7(vcpu);
11042 }
11043
11044 /*
11045 * If the guest has used debug registers, at least dr7
11046 * will be disabled while returning to the host.
11047 * If we don't have active breakpoints in the host, we don't
11048 * care about the messed up debug address registers. But if
11049 * we have some of them active, restore the old state.
11050 */
11051 if (hw_breakpoint_active())
11052 hw_breakpoint_restore();
11053
11054 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11055 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11056
11057 vcpu->mode = OUTSIDE_GUEST_MODE;
11058 smp_wmb();
11059
11060 /*
11061 * Sync xfd before calling handle_exit_irqoff() which may
11062 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11063 * in #NM irqoff handler).
11064 */
11065 if (vcpu->arch.xfd_no_write_intercept)
11066 fpu_sync_guest_vmexit_xfd_state();
11067
11068 kvm_x86_call(handle_exit_irqoff)(vcpu);
11069
11070 if (vcpu->arch.guest_fpu.xfd_err)
11071 wrmsrl(MSR_IA32_XFD_ERR, 0);
11072
11073 /*
11074 * Mark this CPU as needing a branch predictor flush before running
11075 * userspace. Must be done before enabling preemption to ensure it gets
11076 * set for the CPU that actually ran the guest, and not the CPU that it
11077 * may migrate to.
11078 */
11079 if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11080 this_cpu_write(x86_ibpb_exit_to_user, true);
11081
11082 /*
11083 * Consume any pending interrupts, including the possible source of
11084 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11085 * An instruction is required after local_irq_enable() to fully unblock
11086 * interrupts on processors that implement an interrupt shadow, the
11087 * stat.exits increment will do nicely.
11088 */
11089 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11090 local_irq_enable();
11091 ++vcpu->stat.exits;
11092 local_irq_disable();
11093 kvm_after_interrupt(vcpu);
11094
11095 /*
11096 * Wait until after servicing IRQs to account guest time so that any
11097 * ticks that occurred while running the guest are properly accounted
11098 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11099 * of accounting via context tracking, but the loss of accuracy is
11100 * acceptable for all known use cases.
11101 */
11102 guest_timing_exit_irqoff();
11103
11104 local_irq_enable();
11105 preempt_enable();
11106
11107 kvm_vcpu_srcu_read_lock(vcpu);
11108
11109 /*
11110 * Call this to ensure WC buffers in guest are evicted after each VM
11111 * Exit, so that the evicted WC writes can be snooped across all cpus
11112 */
11113 smp_mb__after_srcu_read_lock();
11114
11115 /*
11116 * Profile KVM exit RIPs:
11117 */
11118 if (unlikely(prof_on == KVM_PROFILING)) {
11119 unsigned long rip = kvm_rip_read(vcpu);
11120 profile_hit(KVM_PROFILING, (void *)rip);
11121 }
11122
11123 if (unlikely(vcpu->arch.tsc_always_catchup))
11124 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11125
11126 if (vcpu->arch.apic_attention)
11127 kvm_lapic_sync_from_vapic(vcpu);
11128
11129 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11130 return 0;
11131
11132 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11133 return r;
11134
11135 cancel_injection:
11136 if (req_immediate_exit)
11137 kvm_make_request(KVM_REQ_EVENT, vcpu);
11138 kvm_x86_call(cancel_injection)(vcpu);
11139 if (unlikely(vcpu->arch.apic_attention))
11140 kvm_lapic_sync_from_vapic(vcpu);
11141 out:
11142 return r;
11143 }
11144
kvm_vcpu_running(struct kvm_vcpu * vcpu)11145 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11146 {
11147 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11148 !vcpu->arch.apf.halted);
11149 }
11150
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11151 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11152 {
11153 if (!list_empty_careful(&vcpu->async_pf.done))
11154 return true;
11155
11156 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11157 kvm_apic_init_sipi_allowed(vcpu))
11158 return true;
11159
11160 if (vcpu->arch.pv.pv_unhalted)
11161 return true;
11162
11163 if (kvm_is_exception_pending(vcpu))
11164 return true;
11165
11166 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11167 (vcpu->arch.nmi_pending &&
11168 kvm_x86_call(nmi_allowed)(vcpu, false)))
11169 return true;
11170
11171 #ifdef CONFIG_KVM_SMM
11172 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11173 (vcpu->arch.smi_pending &&
11174 kvm_x86_call(smi_allowed)(vcpu, false)))
11175 return true;
11176 #endif
11177
11178 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11179 return true;
11180
11181 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11182 return true;
11183
11184 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11185 return true;
11186
11187 if (kvm_hv_has_stimer_pending(vcpu))
11188 return true;
11189
11190 if (is_guest_mode(vcpu) &&
11191 kvm_x86_ops.nested_ops->has_events &&
11192 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11193 return true;
11194
11195 if (kvm_xen_has_pending_events(vcpu))
11196 return true;
11197
11198 return false;
11199 }
11200
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11201 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11202 {
11203 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11204 }
11205
11206 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11207 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11208 {
11209 bool hv_timer;
11210
11211 if (!kvm_arch_vcpu_runnable(vcpu)) {
11212 /*
11213 * Switch to the software timer before halt-polling/blocking as
11214 * the guest's timer may be a break event for the vCPU, and the
11215 * hypervisor timer runs only when the CPU is in guest mode.
11216 * Switch before halt-polling so that KVM recognizes an expired
11217 * timer before blocking.
11218 */
11219 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11220 if (hv_timer)
11221 kvm_lapic_switch_to_sw_timer(vcpu);
11222
11223 kvm_vcpu_srcu_read_unlock(vcpu);
11224 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11225 kvm_vcpu_halt(vcpu);
11226 else
11227 kvm_vcpu_block(vcpu);
11228 kvm_vcpu_srcu_read_lock(vcpu);
11229
11230 if (hv_timer)
11231 kvm_lapic_switch_to_hv_timer(vcpu);
11232
11233 /*
11234 * If the vCPU is not runnable, a signal or another host event
11235 * of some kind is pending; service it without changing the
11236 * vCPU's activity state.
11237 */
11238 if (!kvm_arch_vcpu_runnable(vcpu))
11239 return 1;
11240 }
11241
11242 /*
11243 * Evaluate nested events before exiting the halted state. This allows
11244 * the halt state to be recorded properly in the VMCS12's activity
11245 * state field (AMD does not have a similar field and a VM-Exit always
11246 * causes a spurious wakeup from HLT).
11247 */
11248 if (is_guest_mode(vcpu)) {
11249 int r = kvm_check_nested_events(vcpu);
11250
11251 WARN_ON_ONCE(r == -EBUSY);
11252 if (r < 0)
11253 return 0;
11254 }
11255
11256 if (kvm_apic_accept_events(vcpu) < 0)
11257 return 0;
11258 switch(vcpu->arch.mp_state) {
11259 case KVM_MP_STATE_HALTED:
11260 case KVM_MP_STATE_AP_RESET_HOLD:
11261 vcpu->arch.pv.pv_unhalted = false;
11262 vcpu->arch.mp_state =
11263 KVM_MP_STATE_RUNNABLE;
11264 fallthrough;
11265 case KVM_MP_STATE_RUNNABLE:
11266 vcpu->arch.apf.halted = false;
11267 break;
11268 case KVM_MP_STATE_INIT_RECEIVED:
11269 break;
11270 default:
11271 WARN_ON_ONCE(1);
11272 break;
11273 }
11274 return 1;
11275 }
11276
11277 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11278 static int vcpu_run(struct kvm_vcpu *vcpu)
11279 {
11280 int r;
11281
11282 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11283
11284 for (;;) {
11285 /*
11286 * If another guest vCPU requests a PV TLB flush in the middle
11287 * of instruction emulation, the rest of the emulation could
11288 * use a stale page translation. Assume that any code after
11289 * this point can start executing an instruction.
11290 */
11291 vcpu->arch.at_instruction_boundary = false;
11292 if (kvm_vcpu_running(vcpu)) {
11293 r = vcpu_enter_guest(vcpu);
11294 } else {
11295 r = vcpu_block(vcpu);
11296 }
11297
11298 if (r <= 0)
11299 break;
11300
11301 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11302 if (kvm_xen_has_pending_events(vcpu))
11303 kvm_xen_inject_pending_events(vcpu);
11304
11305 if (kvm_cpu_has_pending_timer(vcpu))
11306 kvm_inject_pending_timer_irqs(vcpu);
11307
11308 if (dm_request_for_irq_injection(vcpu) &&
11309 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11310 r = 0;
11311 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11312 ++vcpu->stat.request_irq_exits;
11313 break;
11314 }
11315
11316 if (__xfer_to_guest_mode_work_pending()) {
11317 kvm_vcpu_srcu_read_unlock(vcpu);
11318 r = xfer_to_guest_mode_handle_work(vcpu);
11319 kvm_vcpu_srcu_read_lock(vcpu);
11320 if (r)
11321 return r;
11322 }
11323 }
11324
11325 return r;
11326 }
11327
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11328 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11329 {
11330 /*
11331 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11332 * local APIC is in-kernel, the run loop will detect the non-runnable
11333 * state and halt the vCPU. Exit to userspace if the local APIC is
11334 * managed by userspace, in which case userspace is responsible for
11335 * handling wake events.
11336 */
11337 ++vcpu->stat.halt_exits;
11338 if (lapic_in_kernel(vcpu)) {
11339 if (kvm_vcpu_has_events(vcpu))
11340 vcpu->arch.pv.pv_unhalted = false;
11341 else
11342 vcpu->arch.mp_state = state;
11343 return 1;
11344 } else {
11345 vcpu->run->exit_reason = reason;
11346 return 0;
11347 }
11348 }
11349
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11350 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11351 {
11352 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11353 }
11354 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11355
kvm_emulate_halt(struct kvm_vcpu * vcpu)11356 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11357 {
11358 int ret = kvm_skip_emulated_instruction(vcpu);
11359 /*
11360 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11361 * KVM_EXIT_DEBUG here.
11362 */
11363 return kvm_emulate_halt_noskip(vcpu) && ret;
11364 }
11365 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11366
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11367 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11368 {
11369 int ret;
11370
11371 kvm_vcpu_srcu_read_lock(vcpu);
11372 ret = kvm_emulate_halt(vcpu);
11373 kvm_vcpu_srcu_read_unlock(vcpu);
11374
11375 if (!ret)
11376 return EXIT_FASTPATH_EXIT_USERSPACE;
11377
11378 if (kvm_vcpu_running(vcpu))
11379 return EXIT_FASTPATH_REENTER_GUEST;
11380
11381 return EXIT_FASTPATH_EXIT_HANDLED;
11382 }
11383 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11384
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11385 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11386 {
11387 int ret = kvm_skip_emulated_instruction(vcpu);
11388
11389 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11390 KVM_EXIT_AP_RESET_HOLD) && ret;
11391 }
11392 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11393
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11394 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11395 {
11396 return kvm_vcpu_apicv_active(vcpu) &&
11397 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11398 }
11399
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11400 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11401 {
11402 return vcpu->arch.preempted_in_kernel;
11403 }
11404
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11405 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11406 {
11407 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11408 return true;
11409
11410 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11411 #ifdef CONFIG_KVM_SMM
11412 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11413 #endif
11414 kvm_test_request(KVM_REQ_EVENT, vcpu))
11415 return true;
11416
11417 return kvm_arch_dy_has_pending_interrupt(vcpu);
11418 }
11419
complete_emulated_io(struct kvm_vcpu * vcpu)11420 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11421 {
11422 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11423 }
11424
complete_emulated_pio(struct kvm_vcpu * vcpu)11425 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11426 {
11427 BUG_ON(!vcpu->arch.pio.count);
11428
11429 return complete_emulated_io(vcpu);
11430 }
11431
11432 /*
11433 * Implements the following, as a state machine:
11434 *
11435 * read:
11436 * for each fragment
11437 * for each mmio piece in the fragment
11438 * write gpa, len
11439 * exit
11440 * copy data
11441 * execute insn
11442 *
11443 * write:
11444 * for each fragment
11445 * for each mmio piece in the fragment
11446 * write gpa, len
11447 * copy data
11448 * exit
11449 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11450 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11451 {
11452 struct kvm_run *run = vcpu->run;
11453 struct kvm_mmio_fragment *frag;
11454 unsigned len;
11455
11456 BUG_ON(!vcpu->mmio_needed);
11457
11458 /* Complete previous fragment */
11459 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11460 len = min(8u, frag->len);
11461 if (!vcpu->mmio_is_write)
11462 memcpy(frag->data, run->mmio.data, len);
11463
11464 if (frag->len <= 8) {
11465 /* Switch to the next fragment. */
11466 frag++;
11467 vcpu->mmio_cur_fragment++;
11468 } else {
11469 /* Go forward to the next mmio piece. */
11470 frag->data += len;
11471 frag->gpa += len;
11472 frag->len -= len;
11473 }
11474
11475 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11476 vcpu->mmio_needed = 0;
11477
11478 /* FIXME: return into emulator if single-stepping. */
11479 if (vcpu->mmio_is_write)
11480 return 1;
11481 vcpu->mmio_read_completed = 1;
11482 return complete_emulated_io(vcpu);
11483 }
11484
11485 run->exit_reason = KVM_EXIT_MMIO;
11486 run->mmio.phys_addr = frag->gpa;
11487 if (vcpu->mmio_is_write)
11488 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11489 run->mmio.len = min(8u, frag->len);
11490 run->mmio.is_write = vcpu->mmio_is_write;
11491 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11492 return 0;
11493 }
11494
11495 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11496 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11497 {
11498 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11499 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11500 trace_kvm_fpu(1);
11501 }
11502
11503 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11504 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11505 {
11506 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11507 ++vcpu->stat.fpu_reload;
11508 trace_kvm_fpu(0);
11509 }
11510
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11511 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11512 {
11513 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11514 struct kvm_run *kvm_run = vcpu->run;
11515 u32 sync_valid_fields;
11516 int r;
11517
11518 r = kvm_mmu_post_init_vm(vcpu->kvm);
11519 if (r)
11520 return r;
11521
11522 vcpu_load(vcpu);
11523 kvm_sigset_activate(vcpu);
11524 kvm_run->flags = 0;
11525 kvm_load_guest_fpu(vcpu);
11526
11527 kvm_vcpu_srcu_read_lock(vcpu);
11528 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11529 if (!vcpu->wants_to_run) {
11530 r = -EINTR;
11531 goto out;
11532 }
11533
11534 /*
11535 * Don't bother switching APIC timer emulation from the
11536 * hypervisor timer to the software timer, the only way for the
11537 * APIC timer to be active is if userspace stuffed vCPU state,
11538 * i.e. put the vCPU into a nonsensical state. Only an INIT
11539 * will transition the vCPU out of UNINITIALIZED (without more
11540 * state stuffing from userspace), which will reset the local
11541 * APIC and thus cancel the timer or drop the IRQ (if the timer
11542 * already expired).
11543 */
11544 kvm_vcpu_srcu_read_unlock(vcpu);
11545 kvm_vcpu_block(vcpu);
11546 kvm_vcpu_srcu_read_lock(vcpu);
11547
11548 if (kvm_apic_accept_events(vcpu) < 0) {
11549 r = 0;
11550 goto out;
11551 }
11552 r = -EAGAIN;
11553 if (signal_pending(current)) {
11554 r = -EINTR;
11555 kvm_run->exit_reason = KVM_EXIT_INTR;
11556 ++vcpu->stat.signal_exits;
11557 }
11558 goto out;
11559 }
11560
11561 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11562 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11563 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11564 r = -EINVAL;
11565 goto out;
11566 }
11567
11568 if (kvm_run->kvm_dirty_regs) {
11569 r = sync_regs(vcpu);
11570 if (r != 0)
11571 goto out;
11572 }
11573
11574 /* re-sync apic's tpr */
11575 if (!lapic_in_kernel(vcpu)) {
11576 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11577 r = -EINVAL;
11578 goto out;
11579 }
11580 }
11581
11582 /*
11583 * If userspace set a pending exception and L2 is active, convert it to
11584 * a pending VM-Exit if L1 wants to intercept the exception.
11585 */
11586 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11587 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11588 ex->error_code)) {
11589 kvm_queue_exception_vmexit(vcpu, ex->vector,
11590 ex->has_error_code, ex->error_code,
11591 ex->has_payload, ex->payload);
11592 ex->injected = false;
11593 ex->pending = false;
11594 }
11595 vcpu->arch.exception_from_userspace = false;
11596
11597 if (unlikely(vcpu->arch.complete_userspace_io)) {
11598 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11599 vcpu->arch.complete_userspace_io = NULL;
11600 r = cui(vcpu);
11601 if (r <= 0)
11602 goto out;
11603 } else {
11604 WARN_ON_ONCE(vcpu->arch.pio.count);
11605 WARN_ON_ONCE(vcpu->mmio_needed);
11606 }
11607
11608 if (!vcpu->wants_to_run) {
11609 r = -EINTR;
11610 goto out;
11611 }
11612
11613 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11614 if (r <= 0)
11615 goto out;
11616
11617 r = vcpu_run(vcpu);
11618
11619 out:
11620 kvm_put_guest_fpu(vcpu);
11621 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11622 store_regs(vcpu);
11623 post_kvm_run_save(vcpu);
11624 kvm_vcpu_srcu_read_unlock(vcpu);
11625
11626 kvm_sigset_deactivate(vcpu);
11627 vcpu_put(vcpu);
11628 return r;
11629 }
11630
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11631 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11632 {
11633 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11634 /*
11635 * We are here if userspace calls get_regs() in the middle of
11636 * instruction emulation. Registers state needs to be copied
11637 * back from emulation context to vcpu. Userspace shouldn't do
11638 * that usually, but some bad designed PV devices (vmware
11639 * backdoor interface) need this to work
11640 */
11641 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11643 }
11644 regs->rax = kvm_rax_read(vcpu);
11645 regs->rbx = kvm_rbx_read(vcpu);
11646 regs->rcx = kvm_rcx_read(vcpu);
11647 regs->rdx = kvm_rdx_read(vcpu);
11648 regs->rsi = kvm_rsi_read(vcpu);
11649 regs->rdi = kvm_rdi_read(vcpu);
11650 regs->rsp = kvm_rsp_read(vcpu);
11651 regs->rbp = kvm_rbp_read(vcpu);
11652 #ifdef CONFIG_X86_64
11653 regs->r8 = kvm_r8_read(vcpu);
11654 regs->r9 = kvm_r9_read(vcpu);
11655 regs->r10 = kvm_r10_read(vcpu);
11656 regs->r11 = kvm_r11_read(vcpu);
11657 regs->r12 = kvm_r12_read(vcpu);
11658 regs->r13 = kvm_r13_read(vcpu);
11659 regs->r14 = kvm_r14_read(vcpu);
11660 regs->r15 = kvm_r15_read(vcpu);
11661 #endif
11662
11663 regs->rip = kvm_rip_read(vcpu);
11664 regs->rflags = kvm_get_rflags(vcpu);
11665 }
11666
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11667 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11668 {
11669 if (vcpu->kvm->arch.has_protected_state &&
11670 vcpu->arch.guest_state_protected)
11671 return -EINVAL;
11672
11673 vcpu_load(vcpu);
11674 __get_regs(vcpu, regs);
11675 vcpu_put(vcpu);
11676 return 0;
11677 }
11678
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11679 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11680 {
11681 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11682 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11683
11684 kvm_rax_write(vcpu, regs->rax);
11685 kvm_rbx_write(vcpu, regs->rbx);
11686 kvm_rcx_write(vcpu, regs->rcx);
11687 kvm_rdx_write(vcpu, regs->rdx);
11688 kvm_rsi_write(vcpu, regs->rsi);
11689 kvm_rdi_write(vcpu, regs->rdi);
11690 kvm_rsp_write(vcpu, regs->rsp);
11691 kvm_rbp_write(vcpu, regs->rbp);
11692 #ifdef CONFIG_X86_64
11693 kvm_r8_write(vcpu, regs->r8);
11694 kvm_r9_write(vcpu, regs->r9);
11695 kvm_r10_write(vcpu, regs->r10);
11696 kvm_r11_write(vcpu, regs->r11);
11697 kvm_r12_write(vcpu, regs->r12);
11698 kvm_r13_write(vcpu, regs->r13);
11699 kvm_r14_write(vcpu, regs->r14);
11700 kvm_r15_write(vcpu, regs->r15);
11701 #endif
11702
11703 kvm_rip_write(vcpu, regs->rip);
11704 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11705
11706 vcpu->arch.exception.pending = false;
11707 vcpu->arch.exception_vmexit.pending = false;
11708
11709 kvm_make_request(KVM_REQ_EVENT, vcpu);
11710 }
11711
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11712 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11713 {
11714 if (vcpu->kvm->arch.has_protected_state &&
11715 vcpu->arch.guest_state_protected)
11716 return -EINVAL;
11717
11718 vcpu_load(vcpu);
11719 __set_regs(vcpu, regs);
11720 vcpu_put(vcpu);
11721 return 0;
11722 }
11723
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11724 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11725 {
11726 struct desc_ptr dt;
11727
11728 if (vcpu->arch.guest_state_protected)
11729 goto skip_protected_regs;
11730
11731 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11732 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11733 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11734 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11735 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11736 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11737
11738 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11739 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11740
11741 kvm_x86_call(get_idt)(vcpu, &dt);
11742 sregs->idt.limit = dt.size;
11743 sregs->idt.base = dt.address;
11744 kvm_x86_call(get_gdt)(vcpu, &dt);
11745 sregs->gdt.limit = dt.size;
11746 sregs->gdt.base = dt.address;
11747
11748 sregs->cr2 = vcpu->arch.cr2;
11749 sregs->cr3 = kvm_read_cr3(vcpu);
11750
11751 skip_protected_regs:
11752 sregs->cr0 = kvm_read_cr0(vcpu);
11753 sregs->cr4 = kvm_read_cr4(vcpu);
11754 sregs->cr8 = kvm_get_cr8(vcpu);
11755 sregs->efer = vcpu->arch.efer;
11756 sregs->apic_base = vcpu->arch.apic_base;
11757 }
11758
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11759 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11760 {
11761 __get_sregs_common(vcpu, sregs);
11762
11763 if (vcpu->arch.guest_state_protected)
11764 return;
11765
11766 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11767 set_bit(vcpu->arch.interrupt.nr,
11768 (unsigned long *)sregs->interrupt_bitmap);
11769 }
11770
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11771 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11772 {
11773 int i;
11774
11775 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11776
11777 if (vcpu->arch.guest_state_protected)
11778 return;
11779
11780 if (is_pae_paging(vcpu)) {
11781 for (i = 0 ; i < 4 ; i++)
11782 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11783 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11784 }
11785 }
11786
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11787 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11788 struct kvm_sregs *sregs)
11789 {
11790 if (vcpu->kvm->arch.has_protected_state &&
11791 vcpu->arch.guest_state_protected)
11792 return -EINVAL;
11793
11794 vcpu_load(vcpu);
11795 __get_sregs(vcpu, sregs);
11796 vcpu_put(vcpu);
11797 return 0;
11798 }
11799
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11800 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11801 struct kvm_mp_state *mp_state)
11802 {
11803 int r;
11804
11805 vcpu_load(vcpu);
11806 if (kvm_mpx_supported())
11807 kvm_load_guest_fpu(vcpu);
11808
11809 kvm_vcpu_srcu_read_lock(vcpu);
11810
11811 r = kvm_apic_accept_events(vcpu);
11812 if (r < 0)
11813 goto out;
11814 r = 0;
11815
11816 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11817 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11818 vcpu->arch.pv.pv_unhalted)
11819 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11820 else
11821 mp_state->mp_state = vcpu->arch.mp_state;
11822
11823 out:
11824 kvm_vcpu_srcu_read_unlock(vcpu);
11825
11826 if (kvm_mpx_supported())
11827 kvm_put_guest_fpu(vcpu);
11828 vcpu_put(vcpu);
11829 return r;
11830 }
11831
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11832 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11833 struct kvm_mp_state *mp_state)
11834 {
11835 int ret = -EINVAL;
11836
11837 vcpu_load(vcpu);
11838
11839 switch (mp_state->mp_state) {
11840 case KVM_MP_STATE_UNINITIALIZED:
11841 case KVM_MP_STATE_HALTED:
11842 case KVM_MP_STATE_AP_RESET_HOLD:
11843 case KVM_MP_STATE_INIT_RECEIVED:
11844 case KVM_MP_STATE_SIPI_RECEIVED:
11845 if (!lapic_in_kernel(vcpu))
11846 goto out;
11847 break;
11848
11849 case KVM_MP_STATE_RUNNABLE:
11850 break;
11851
11852 default:
11853 goto out;
11854 }
11855
11856 /*
11857 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11858 * forcing the guest into INIT/SIPI if those events are supposed to be
11859 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11860 * if an SMI is pending as well.
11861 */
11862 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11863 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11864 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11865 goto out;
11866
11867 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11868 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11869 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11870 } else
11871 vcpu->arch.mp_state = mp_state->mp_state;
11872 kvm_make_request(KVM_REQ_EVENT, vcpu);
11873
11874 ret = 0;
11875 out:
11876 vcpu_put(vcpu);
11877 return ret;
11878 }
11879
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11880 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11881 int reason, bool has_error_code, u32 error_code)
11882 {
11883 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11884 int ret;
11885
11886 init_emulate_ctxt(vcpu);
11887
11888 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11889 has_error_code, error_code);
11890
11891 /*
11892 * Report an error userspace if MMIO is needed, as KVM doesn't support
11893 * MMIO during a task switch (or any other complex operation).
11894 */
11895 if (ret || vcpu->mmio_needed) {
11896 vcpu->mmio_needed = false;
11897 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11898 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11899 vcpu->run->internal.ndata = 0;
11900 return 0;
11901 }
11902
11903 kvm_rip_write(vcpu, ctxt->eip);
11904 kvm_set_rflags(vcpu, ctxt->eflags);
11905 return 1;
11906 }
11907 EXPORT_SYMBOL_GPL(kvm_task_switch);
11908
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11909 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11910 {
11911 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11912 /*
11913 * When EFER.LME and CR0.PG are set, the processor is in
11914 * 64-bit mode (though maybe in a 32-bit code segment).
11915 * CR4.PAE and EFER.LMA must be set.
11916 */
11917 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11918 return false;
11919 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11920 return false;
11921 } else {
11922 /*
11923 * Not in 64-bit mode: EFER.LMA is clear and the code
11924 * segment cannot be 64-bit.
11925 */
11926 if (sregs->efer & EFER_LMA || sregs->cs.l)
11927 return false;
11928 }
11929
11930 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11931 kvm_is_valid_cr0(vcpu, sregs->cr0);
11932 }
11933
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11934 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11935 int *mmu_reset_needed, bool update_pdptrs)
11936 {
11937 struct msr_data apic_base_msr;
11938 int idx;
11939 struct desc_ptr dt;
11940
11941 if (!kvm_is_valid_sregs(vcpu, sregs))
11942 return -EINVAL;
11943
11944 apic_base_msr.data = sregs->apic_base;
11945 apic_base_msr.host_initiated = true;
11946 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11947 return -EINVAL;
11948
11949 if (vcpu->arch.guest_state_protected)
11950 return 0;
11951
11952 dt.size = sregs->idt.limit;
11953 dt.address = sregs->idt.base;
11954 kvm_x86_call(set_idt)(vcpu, &dt);
11955 dt.size = sregs->gdt.limit;
11956 dt.address = sregs->gdt.base;
11957 kvm_x86_call(set_gdt)(vcpu, &dt);
11958
11959 vcpu->arch.cr2 = sregs->cr2;
11960 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11961 vcpu->arch.cr3 = sregs->cr3;
11962 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11963 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11964
11965 kvm_set_cr8(vcpu, sregs->cr8);
11966
11967 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11968 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11969
11970 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11971 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11972
11973 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11974 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11975
11976 if (update_pdptrs) {
11977 idx = srcu_read_lock(&vcpu->kvm->srcu);
11978 if (is_pae_paging(vcpu)) {
11979 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11980 *mmu_reset_needed = 1;
11981 }
11982 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11983 }
11984
11985 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11986 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11987 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11988 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11989 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11990 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11991
11992 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11993 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11994
11995 update_cr8_intercept(vcpu);
11996
11997 /* Older userspace won't unhalt the vcpu on reset. */
11998 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11999 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12000 !is_protmode(vcpu))
12001 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12002
12003 return 0;
12004 }
12005
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12006 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12007 {
12008 int pending_vec, max_bits;
12009 int mmu_reset_needed = 0;
12010 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12011
12012 if (ret)
12013 return ret;
12014
12015 if (mmu_reset_needed) {
12016 kvm_mmu_reset_context(vcpu);
12017 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12018 }
12019
12020 max_bits = KVM_NR_INTERRUPTS;
12021 pending_vec = find_first_bit(
12022 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12023
12024 if (pending_vec < max_bits) {
12025 kvm_queue_interrupt(vcpu, pending_vec, false);
12026 pr_debug("Set back pending irq %d\n", pending_vec);
12027 kvm_make_request(KVM_REQ_EVENT, vcpu);
12028 }
12029 return 0;
12030 }
12031
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12032 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12033 {
12034 int mmu_reset_needed = 0;
12035 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12036 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12037 !(sregs2->efer & EFER_LMA);
12038 int i, ret;
12039
12040 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12041 return -EINVAL;
12042
12043 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12044 return -EINVAL;
12045
12046 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12047 &mmu_reset_needed, !valid_pdptrs);
12048 if (ret)
12049 return ret;
12050
12051 if (valid_pdptrs) {
12052 for (i = 0; i < 4 ; i++)
12053 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12054
12055 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12056 mmu_reset_needed = 1;
12057 vcpu->arch.pdptrs_from_userspace = true;
12058 }
12059 if (mmu_reset_needed) {
12060 kvm_mmu_reset_context(vcpu);
12061 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12062 }
12063 return 0;
12064 }
12065
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12066 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12067 struct kvm_sregs *sregs)
12068 {
12069 int ret;
12070
12071 if (vcpu->kvm->arch.has_protected_state &&
12072 vcpu->arch.guest_state_protected)
12073 return -EINVAL;
12074
12075 vcpu_load(vcpu);
12076 ret = __set_sregs(vcpu, sregs);
12077 vcpu_put(vcpu);
12078 return ret;
12079 }
12080
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12081 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12082 {
12083 bool set = false;
12084 struct kvm_vcpu *vcpu;
12085 unsigned long i;
12086
12087 if (!enable_apicv)
12088 return;
12089
12090 down_write(&kvm->arch.apicv_update_lock);
12091
12092 kvm_for_each_vcpu(i, vcpu, kvm) {
12093 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12094 set = true;
12095 break;
12096 }
12097 }
12098 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12099 up_write(&kvm->arch.apicv_update_lock);
12100 }
12101
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12102 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12103 struct kvm_guest_debug *dbg)
12104 {
12105 unsigned long rflags;
12106 int i, r;
12107
12108 if (vcpu->arch.guest_state_protected)
12109 return -EINVAL;
12110
12111 vcpu_load(vcpu);
12112
12113 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12114 r = -EBUSY;
12115 if (kvm_is_exception_pending(vcpu))
12116 goto out;
12117 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12118 kvm_queue_exception(vcpu, DB_VECTOR);
12119 else
12120 kvm_queue_exception(vcpu, BP_VECTOR);
12121 }
12122
12123 /*
12124 * Read rflags as long as potentially injected trace flags are still
12125 * filtered out.
12126 */
12127 rflags = kvm_get_rflags(vcpu);
12128
12129 vcpu->guest_debug = dbg->control;
12130 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12131 vcpu->guest_debug = 0;
12132
12133 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12134 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12135 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12136 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12137 } else {
12138 for (i = 0; i < KVM_NR_DB_REGS; i++)
12139 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12140 }
12141 kvm_update_dr7(vcpu);
12142
12143 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12144 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12145
12146 /*
12147 * Trigger an rflags update that will inject or remove the trace
12148 * flags.
12149 */
12150 kvm_set_rflags(vcpu, rflags);
12151
12152 kvm_x86_call(update_exception_bitmap)(vcpu);
12153
12154 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12155
12156 r = 0;
12157
12158 out:
12159 vcpu_put(vcpu);
12160 return r;
12161 }
12162
12163 /*
12164 * Translate a guest virtual address to a guest physical address.
12165 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12166 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12167 struct kvm_translation *tr)
12168 {
12169 unsigned long vaddr = tr->linear_address;
12170 gpa_t gpa;
12171 int idx;
12172
12173 vcpu_load(vcpu);
12174
12175 idx = srcu_read_lock(&vcpu->kvm->srcu);
12176 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12177 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12178 tr->physical_address = gpa;
12179 tr->valid = gpa != INVALID_GPA;
12180 tr->writeable = 1;
12181 tr->usermode = 0;
12182
12183 vcpu_put(vcpu);
12184 return 0;
12185 }
12186
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12187 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12188 {
12189 struct fxregs_state *fxsave;
12190
12191 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12192 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12193
12194 vcpu_load(vcpu);
12195
12196 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12197 memcpy(fpu->fpr, fxsave->st_space, 128);
12198 fpu->fcw = fxsave->cwd;
12199 fpu->fsw = fxsave->swd;
12200 fpu->ftwx = fxsave->twd;
12201 fpu->last_opcode = fxsave->fop;
12202 fpu->last_ip = fxsave->rip;
12203 fpu->last_dp = fxsave->rdp;
12204 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12205
12206 vcpu_put(vcpu);
12207 return 0;
12208 }
12209
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12210 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12211 {
12212 struct fxregs_state *fxsave;
12213
12214 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12215 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12216
12217 vcpu_load(vcpu);
12218
12219 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12220
12221 memcpy(fxsave->st_space, fpu->fpr, 128);
12222 fxsave->cwd = fpu->fcw;
12223 fxsave->swd = fpu->fsw;
12224 fxsave->twd = fpu->ftwx;
12225 fxsave->fop = fpu->last_opcode;
12226 fxsave->rip = fpu->last_ip;
12227 fxsave->rdp = fpu->last_dp;
12228 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12229
12230 vcpu_put(vcpu);
12231 return 0;
12232 }
12233
store_regs(struct kvm_vcpu * vcpu)12234 static void store_regs(struct kvm_vcpu *vcpu)
12235 {
12236 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12237
12238 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12239 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12240
12241 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12242 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12243
12244 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12245 kvm_vcpu_ioctl_x86_get_vcpu_events(
12246 vcpu, &vcpu->run->s.regs.events);
12247 }
12248
sync_regs(struct kvm_vcpu * vcpu)12249 static int sync_regs(struct kvm_vcpu *vcpu)
12250 {
12251 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12252 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12253 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12254 }
12255
12256 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12257 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12258
12259 if (__set_sregs(vcpu, &sregs))
12260 return -EINVAL;
12261
12262 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12263 }
12264
12265 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12266 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12267
12268 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12269 return -EINVAL;
12270
12271 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12272 }
12273
12274 return 0;
12275 }
12276
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12277 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12278 {
12279 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12280 pr_warn_once("SMP vm created on host with unstable TSC; "
12281 "guest TSC will not be reliable\n");
12282
12283 if (!kvm->arch.max_vcpu_ids)
12284 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12285
12286 if (id >= kvm->arch.max_vcpu_ids)
12287 return -EINVAL;
12288
12289 return kvm_x86_call(vcpu_precreate)(kvm);
12290 }
12291
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12292 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12293 {
12294 struct page *page;
12295 int r;
12296
12297 vcpu->arch.last_vmentry_cpu = -1;
12298 vcpu->arch.regs_avail = ~0;
12299 vcpu->arch.regs_dirty = ~0;
12300
12301 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12302
12303 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12304 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12305 else
12306 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12307
12308 r = kvm_mmu_create(vcpu);
12309 if (r < 0)
12310 return r;
12311
12312 r = kvm_create_lapic(vcpu);
12313 if (r < 0)
12314 goto fail_mmu_destroy;
12315
12316 r = -ENOMEM;
12317
12318 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12319 if (!page)
12320 goto fail_free_lapic;
12321 vcpu->arch.pio_data = page_address(page);
12322
12323 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12324 GFP_KERNEL_ACCOUNT);
12325 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12326 GFP_KERNEL_ACCOUNT);
12327 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12328 goto fail_free_mce_banks;
12329 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12330
12331 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12332 GFP_KERNEL_ACCOUNT))
12333 goto fail_free_mce_banks;
12334
12335 if (!alloc_emulate_ctxt(vcpu))
12336 goto free_wbinvd_dirty_mask;
12337
12338 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12339 pr_err("failed to allocate vcpu's fpu\n");
12340 goto free_emulate_ctxt;
12341 }
12342
12343 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12344 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12345
12346 kvm_async_pf_hash_reset(vcpu);
12347
12348 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12349 kvm_pmu_init(vcpu);
12350
12351 vcpu->arch.pending_external_vector = -1;
12352 vcpu->arch.preempted_in_kernel = false;
12353
12354 #if IS_ENABLED(CONFIG_HYPERV)
12355 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12356 #endif
12357
12358 r = kvm_x86_call(vcpu_create)(vcpu);
12359 if (r)
12360 goto free_guest_fpu;
12361
12362 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12363 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12364 kvm_xen_init_vcpu(vcpu);
12365 vcpu_load(vcpu);
12366 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12367 kvm_vcpu_reset(vcpu, false);
12368 kvm_init_mmu(vcpu);
12369 vcpu_put(vcpu);
12370 return 0;
12371
12372 free_guest_fpu:
12373 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12374 free_emulate_ctxt:
12375 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12376 free_wbinvd_dirty_mask:
12377 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12378 fail_free_mce_banks:
12379 kfree(vcpu->arch.mce_banks);
12380 kfree(vcpu->arch.mci_ctl2_banks);
12381 free_page((unsigned long)vcpu->arch.pio_data);
12382 fail_free_lapic:
12383 kvm_free_lapic(vcpu);
12384 fail_mmu_destroy:
12385 kvm_mmu_destroy(vcpu);
12386 return r;
12387 }
12388
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12389 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12390 {
12391 struct kvm *kvm = vcpu->kvm;
12392
12393 if (mutex_lock_killable(&vcpu->mutex))
12394 return;
12395 vcpu_load(vcpu);
12396 kvm_synchronize_tsc(vcpu, NULL);
12397 vcpu_put(vcpu);
12398
12399 /* poll control enabled by default */
12400 vcpu->arch.msr_kvm_poll_control = 1;
12401
12402 mutex_unlock(&vcpu->mutex);
12403
12404 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12405 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12406 KVMCLOCK_SYNC_PERIOD);
12407 }
12408
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12410 {
12411 int idx;
12412
12413 kvmclock_reset(vcpu);
12414
12415 kvm_x86_call(vcpu_free)(vcpu);
12416
12417 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12418 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12419 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12420
12421 kvm_xen_destroy_vcpu(vcpu);
12422 kvm_hv_vcpu_uninit(vcpu);
12423 kvm_pmu_destroy(vcpu);
12424 kfree(vcpu->arch.mce_banks);
12425 kfree(vcpu->arch.mci_ctl2_banks);
12426 kvm_free_lapic(vcpu);
12427 idx = srcu_read_lock(&vcpu->kvm->srcu);
12428 kvm_mmu_destroy(vcpu);
12429 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12430 free_page((unsigned long)vcpu->arch.pio_data);
12431 kvfree(vcpu->arch.cpuid_entries);
12432 }
12433
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12434 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12435 {
12436 struct kvm_cpuid_entry2 *cpuid_0x1;
12437 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12438 unsigned long new_cr0;
12439
12440 /*
12441 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12442 * to handle side effects. RESET emulation hits those flows and relies
12443 * on emulated/virtualized registers, including those that are loaded
12444 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12445 * to detect improper or missing initialization.
12446 */
12447 WARN_ON_ONCE(!init_event &&
12448 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12449
12450 /*
12451 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12452 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12453 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12454 * bits), i.e. virtualization is disabled.
12455 */
12456 if (is_guest_mode(vcpu))
12457 kvm_leave_nested(vcpu);
12458
12459 kvm_lapic_reset(vcpu, init_event);
12460
12461 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12462 vcpu->arch.hflags = 0;
12463
12464 vcpu->arch.smi_pending = 0;
12465 vcpu->arch.smi_count = 0;
12466 atomic_set(&vcpu->arch.nmi_queued, 0);
12467 vcpu->arch.nmi_pending = 0;
12468 vcpu->arch.nmi_injected = false;
12469 kvm_clear_interrupt_queue(vcpu);
12470 kvm_clear_exception_queue(vcpu);
12471
12472 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12473 kvm_update_dr0123(vcpu);
12474 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12475 vcpu->arch.dr7 = DR7_FIXED_1;
12476 kvm_update_dr7(vcpu);
12477
12478 vcpu->arch.cr2 = 0;
12479
12480 kvm_make_request(KVM_REQ_EVENT, vcpu);
12481 vcpu->arch.apf.msr_en_val = 0;
12482 vcpu->arch.apf.msr_int_val = 0;
12483 vcpu->arch.st.msr_val = 0;
12484
12485 kvmclock_reset(vcpu);
12486
12487 kvm_clear_async_pf_completion_queue(vcpu);
12488 kvm_async_pf_hash_reset(vcpu);
12489 vcpu->arch.apf.halted = false;
12490
12491 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12492 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12493
12494 /*
12495 * All paths that lead to INIT are required to load the guest's
12496 * FPU state (because most paths are buried in KVM_RUN).
12497 */
12498 if (init_event)
12499 kvm_put_guest_fpu(vcpu);
12500
12501 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12502 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12503
12504 if (init_event)
12505 kvm_load_guest_fpu(vcpu);
12506 }
12507
12508 if (!init_event) {
12509 vcpu->arch.smbase = 0x30000;
12510
12511 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12512
12513 vcpu->arch.msr_misc_features_enables = 0;
12514 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12515 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12516
12517 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12518 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12519 }
12520
12521 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12522 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12523 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12524
12525 /*
12526 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12527 * if no CPUID match is found. Note, it's impossible to get a match at
12528 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12529 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12530 * on RESET. But, go through the motions in case that's ever remedied.
12531 */
12532 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12533 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12534
12535 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12536
12537 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12538 kvm_rip_write(vcpu, 0xfff0);
12539
12540 vcpu->arch.cr3 = 0;
12541 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12542
12543 /*
12544 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12545 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12546 * (or qualify) that with a footnote stating that CD/NW are preserved.
12547 */
12548 new_cr0 = X86_CR0_ET;
12549 if (init_event)
12550 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12551 else
12552 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12553
12554 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12555 kvm_x86_call(set_cr4)(vcpu, 0);
12556 kvm_x86_call(set_efer)(vcpu, 0);
12557 kvm_x86_call(update_exception_bitmap)(vcpu);
12558
12559 /*
12560 * On the standard CR0/CR4/EFER modification paths, there are several
12561 * complex conditions determining whether the MMU has to be reset and/or
12562 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12563 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12564 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12565 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12566 */
12567 if (old_cr0 & X86_CR0_PG) {
12568 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12569 kvm_mmu_reset_context(vcpu);
12570 }
12571
12572 /*
12573 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12574 * APM states the TLBs are untouched by INIT, but it also states that
12575 * the TLBs are flushed on "External initialization of the processor."
12576 * Flush the guest TLB regardless of vendor, there is no meaningful
12577 * benefit in relying on the guest to flush the TLB immediately after
12578 * INIT. A spurious TLB flush is benign and likely negligible from a
12579 * performance perspective.
12580 */
12581 if (init_event)
12582 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12583 }
12584 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12585
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12586 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12587 {
12588 struct kvm_segment cs;
12589
12590 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12591 cs.selector = vector << 8;
12592 cs.base = vector << 12;
12593 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12594 kvm_rip_write(vcpu, 0);
12595 }
12596 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12597
kvm_arch_enable_virtualization(void)12598 void kvm_arch_enable_virtualization(void)
12599 {
12600 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12601 }
12602
kvm_arch_disable_virtualization(void)12603 void kvm_arch_disable_virtualization(void)
12604 {
12605 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12606 }
12607
kvm_arch_enable_virtualization_cpu(void)12608 int kvm_arch_enable_virtualization_cpu(void)
12609 {
12610 struct kvm *kvm;
12611 struct kvm_vcpu *vcpu;
12612 unsigned long i;
12613 int ret;
12614 u64 local_tsc;
12615 u64 max_tsc = 0;
12616 bool stable, backwards_tsc = false;
12617
12618 kvm_user_return_msr_cpu_online();
12619
12620 ret = kvm_x86_check_processor_compatibility();
12621 if (ret)
12622 return ret;
12623
12624 ret = kvm_x86_call(enable_virtualization_cpu)();
12625 if (ret != 0)
12626 return ret;
12627
12628 local_tsc = rdtsc();
12629 stable = !kvm_check_tsc_unstable();
12630 list_for_each_entry(kvm, &vm_list, vm_list) {
12631 kvm_for_each_vcpu(i, vcpu, kvm) {
12632 if (!stable && vcpu->cpu == smp_processor_id())
12633 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12634 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12635 backwards_tsc = true;
12636 if (vcpu->arch.last_host_tsc > max_tsc)
12637 max_tsc = vcpu->arch.last_host_tsc;
12638 }
12639 }
12640 }
12641
12642 /*
12643 * Sometimes, even reliable TSCs go backwards. This happens on
12644 * platforms that reset TSC during suspend or hibernate actions, but
12645 * maintain synchronization. We must compensate. Fortunately, we can
12646 * detect that condition here, which happens early in CPU bringup,
12647 * before any KVM threads can be running. Unfortunately, we can't
12648 * bring the TSCs fully up to date with real time, as we aren't yet far
12649 * enough into CPU bringup that we know how much real time has actually
12650 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12651 * variables that haven't been updated yet.
12652 *
12653 * So we simply find the maximum observed TSC above, then record the
12654 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12655 * the adjustment will be applied. Note that we accumulate
12656 * adjustments, in case multiple suspend cycles happen before some VCPU
12657 * gets a chance to run again. In the event that no KVM threads get a
12658 * chance to run, we will miss the entire elapsed period, as we'll have
12659 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12660 * loose cycle time. This isn't too big a deal, since the loss will be
12661 * uniform across all VCPUs (not to mention the scenario is extremely
12662 * unlikely). It is possible that a second hibernate recovery happens
12663 * much faster than a first, causing the observed TSC here to be
12664 * smaller; this would require additional padding adjustment, which is
12665 * why we set last_host_tsc to the local tsc observed here.
12666 *
12667 * N.B. - this code below runs only on platforms with reliable TSC,
12668 * as that is the only way backwards_tsc is set above. Also note
12669 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12670 * have the same delta_cyc adjustment applied if backwards_tsc
12671 * is detected. Note further, this adjustment is only done once,
12672 * as we reset last_host_tsc on all VCPUs to stop this from being
12673 * called multiple times (one for each physical CPU bringup).
12674 *
12675 * Platforms with unreliable TSCs don't have to deal with this, they
12676 * will be compensated by the logic in vcpu_load, which sets the TSC to
12677 * catchup mode. This will catchup all VCPUs to real time, but cannot
12678 * guarantee that they stay in perfect synchronization.
12679 */
12680 if (backwards_tsc) {
12681 u64 delta_cyc = max_tsc - local_tsc;
12682 list_for_each_entry(kvm, &vm_list, vm_list) {
12683 kvm->arch.backwards_tsc_observed = true;
12684 kvm_for_each_vcpu(i, vcpu, kvm) {
12685 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12686 vcpu->arch.last_host_tsc = local_tsc;
12687 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12688 }
12689
12690 /*
12691 * We have to disable TSC offset matching.. if you were
12692 * booting a VM while issuing an S4 host suspend....
12693 * you may have some problem. Solving this issue is
12694 * left as an exercise to the reader.
12695 */
12696 kvm->arch.last_tsc_nsec = 0;
12697 kvm->arch.last_tsc_write = 0;
12698 }
12699
12700 }
12701 return 0;
12702 }
12703
kvm_arch_disable_virtualization_cpu(void)12704 void kvm_arch_disable_virtualization_cpu(void)
12705 {
12706 kvm_x86_call(disable_virtualization_cpu)();
12707 drop_user_return_notifiers();
12708 }
12709
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12710 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12711 {
12712 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12713 }
12714
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12715 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12716 {
12717 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12718 }
12719
kvm_arch_free_vm(struct kvm * kvm)12720 void kvm_arch_free_vm(struct kvm *kvm)
12721 {
12722 #if IS_ENABLED(CONFIG_HYPERV)
12723 kfree(kvm->arch.hv_pa_pg);
12724 #endif
12725 __kvm_arch_free_vm(kvm);
12726 }
12727
12728
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12729 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12730 {
12731 int ret;
12732 unsigned long flags;
12733
12734 if (!kvm_is_vm_type_supported(type))
12735 return -EINVAL;
12736
12737 kvm->arch.vm_type = type;
12738 kvm->arch.has_private_mem =
12739 (type == KVM_X86_SW_PROTECTED_VM);
12740 /* Decided by the vendor code for other VM types. */
12741 kvm->arch.pre_fault_allowed =
12742 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12743
12744 ret = kvm_page_track_init(kvm);
12745 if (ret)
12746 goto out;
12747
12748 kvm_mmu_init_vm(kvm);
12749
12750 ret = kvm_x86_call(vm_init)(kvm);
12751 if (ret)
12752 goto out_uninit_mmu;
12753
12754 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12755 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12756
12757 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12758 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12759 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12760 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12761 &kvm->arch.irq_sources_bitmap);
12762
12763 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12764 mutex_init(&kvm->arch.apic_map_lock);
12765 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12766 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12767
12768 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12769 pvclock_update_vm_gtod_copy(kvm);
12770 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12771
12772 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12773 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12774 kvm->arch.guest_can_read_msr_platform_info = true;
12775 kvm->arch.enable_pmu = enable_pmu;
12776
12777 #if IS_ENABLED(CONFIG_HYPERV)
12778 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12779 kvm->arch.hv_root_tdp = INVALID_PAGE;
12780 #endif
12781
12782 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12783 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12784
12785 kvm_apicv_init(kvm);
12786 kvm_hv_init_vm(kvm);
12787 kvm_xen_init_vm(kvm);
12788
12789 return 0;
12790
12791 out_uninit_mmu:
12792 kvm_mmu_uninit_vm(kvm);
12793 kvm_page_track_cleanup(kvm);
12794 out:
12795 return ret;
12796 }
12797
kvm_arch_post_init_vm(struct kvm * kvm)12798 int kvm_arch_post_init_vm(struct kvm *kvm)
12799 {
12800 once_init(&kvm->arch.nx_once);
12801 return 0;
12802 }
12803
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12804 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12805 {
12806 vcpu_load(vcpu);
12807 kvm_mmu_unload(vcpu);
12808 vcpu_put(vcpu);
12809 }
12810
kvm_unload_vcpu_mmus(struct kvm * kvm)12811 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12812 {
12813 unsigned long i;
12814 struct kvm_vcpu *vcpu;
12815
12816 kvm_for_each_vcpu(i, vcpu, kvm) {
12817 kvm_clear_async_pf_completion_queue(vcpu);
12818 kvm_unload_vcpu_mmu(vcpu);
12819 }
12820 }
12821
kvm_arch_sync_events(struct kvm * kvm)12822 void kvm_arch_sync_events(struct kvm *kvm)
12823 {
12824 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12825 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12826 kvm_free_pit(kvm);
12827 }
12828
12829 /**
12830 * __x86_set_memory_region: Setup KVM internal memory slot
12831 *
12832 * @kvm: the kvm pointer to the VM.
12833 * @id: the slot ID to setup.
12834 * @gpa: the GPA to install the slot (unused when @size == 0).
12835 * @size: the size of the slot. Set to zero to uninstall a slot.
12836 *
12837 * This function helps to setup a KVM internal memory slot. Specify
12838 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12839 * slot. The return code can be one of the following:
12840 *
12841 * HVA: on success (uninstall will return a bogus HVA)
12842 * -errno: on error
12843 *
12844 * The caller should always use IS_ERR() to check the return value
12845 * before use. Note, the KVM internal memory slots are guaranteed to
12846 * remain valid and unchanged until the VM is destroyed, i.e., the
12847 * GPA->HVA translation will not change. However, the HVA is a user
12848 * address, i.e. its accessibility is not guaranteed, and must be
12849 * accessed via __copy_{to,from}_user().
12850 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12851 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12852 u32 size)
12853 {
12854 int i, r;
12855 unsigned long hva, old_npages;
12856 struct kvm_memslots *slots = kvm_memslots(kvm);
12857 struct kvm_memory_slot *slot;
12858
12859 /* Called with kvm->slots_lock held. */
12860 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12861 return ERR_PTR_USR(-EINVAL);
12862
12863 slot = id_to_memslot(slots, id);
12864 if (size) {
12865 if (slot && slot->npages)
12866 return ERR_PTR_USR(-EEXIST);
12867
12868 /*
12869 * MAP_SHARED to prevent internal slot pages from being moved
12870 * by fork()/COW.
12871 */
12872 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12873 MAP_SHARED | MAP_ANONYMOUS, 0);
12874 if (IS_ERR_VALUE(hva))
12875 return (void __user *)hva;
12876 } else {
12877 if (!slot || !slot->npages)
12878 return NULL;
12879
12880 old_npages = slot->npages;
12881 hva = slot->userspace_addr;
12882 }
12883
12884 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12885 struct kvm_userspace_memory_region2 m;
12886
12887 m.slot = id | (i << 16);
12888 m.flags = 0;
12889 m.guest_phys_addr = gpa;
12890 m.userspace_addr = hva;
12891 m.memory_size = size;
12892 r = __kvm_set_memory_region(kvm, &m);
12893 if (r < 0)
12894 return ERR_PTR_USR(r);
12895 }
12896
12897 if (!size)
12898 vm_munmap(hva, old_npages * PAGE_SIZE);
12899
12900 return (void __user *)hva;
12901 }
12902 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12903
kvm_arch_pre_destroy_vm(struct kvm * kvm)12904 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12905 {
12906 kvm_mmu_pre_destroy_vm(kvm);
12907 }
12908
kvm_arch_destroy_vm(struct kvm * kvm)12909 void kvm_arch_destroy_vm(struct kvm *kvm)
12910 {
12911 if (current->mm == kvm->mm) {
12912 /*
12913 * Free memory regions allocated on behalf of userspace,
12914 * unless the memory map has changed due to process exit
12915 * or fd copying.
12916 */
12917 mutex_lock(&kvm->slots_lock);
12918 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12919 0, 0);
12920 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12921 0, 0);
12922 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12923 mutex_unlock(&kvm->slots_lock);
12924 }
12925 kvm_unload_vcpu_mmus(kvm);
12926 kvm_destroy_vcpus(kvm);
12927 kvm_x86_call(vm_destroy)(kvm);
12928 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12929 kvm_pic_destroy(kvm);
12930 kvm_ioapic_destroy(kvm);
12931 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12932 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12933 kvm_mmu_uninit_vm(kvm);
12934 kvm_page_track_cleanup(kvm);
12935 kvm_xen_destroy_vm(kvm);
12936 kvm_hv_destroy_vm(kvm);
12937 }
12938
memslot_rmap_free(struct kvm_memory_slot * slot)12939 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12940 {
12941 int i;
12942
12943 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12944 vfree(slot->arch.rmap[i]);
12945 slot->arch.rmap[i] = NULL;
12946 }
12947 }
12948
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12949 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12950 {
12951 int i;
12952
12953 memslot_rmap_free(slot);
12954
12955 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12956 vfree(slot->arch.lpage_info[i - 1]);
12957 slot->arch.lpage_info[i - 1] = NULL;
12958 }
12959
12960 kvm_page_track_free_memslot(slot);
12961 }
12962
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12963 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12964 {
12965 const int sz = sizeof(*slot->arch.rmap[0]);
12966 int i;
12967
12968 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12969 int level = i + 1;
12970 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12971
12972 if (slot->arch.rmap[i])
12973 continue;
12974
12975 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12976 if (!slot->arch.rmap[i]) {
12977 memslot_rmap_free(slot);
12978 return -ENOMEM;
12979 }
12980 }
12981
12982 return 0;
12983 }
12984
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12985 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12986 struct kvm_memory_slot *slot)
12987 {
12988 unsigned long npages = slot->npages;
12989 int i, r;
12990
12991 /*
12992 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12993 * old arrays will be freed by __kvm_set_memory_region() if installing
12994 * the new memslot is successful.
12995 */
12996 memset(&slot->arch, 0, sizeof(slot->arch));
12997
12998 if (kvm_memslots_have_rmaps(kvm)) {
12999 r = memslot_rmap_alloc(slot, npages);
13000 if (r)
13001 return r;
13002 }
13003
13004 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13005 struct kvm_lpage_info *linfo;
13006 unsigned long ugfn;
13007 int lpages;
13008 int level = i + 1;
13009
13010 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13011
13012 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13013 if (!linfo)
13014 goto out_free;
13015
13016 slot->arch.lpage_info[i - 1] = linfo;
13017
13018 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13019 linfo[0].disallow_lpage = 1;
13020 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13021 linfo[lpages - 1].disallow_lpage = 1;
13022 ugfn = slot->userspace_addr >> PAGE_SHIFT;
13023 /*
13024 * If the gfn and userspace address are not aligned wrt each
13025 * other, disable large page support for this slot.
13026 */
13027 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13028 unsigned long j;
13029
13030 for (j = 0; j < lpages; ++j)
13031 linfo[j].disallow_lpage = 1;
13032 }
13033 }
13034
13035 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13036 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13037 #endif
13038
13039 if (kvm_page_track_create_memslot(kvm, slot, npages))
13040 goto out_free;
13041
13042 return 0;
13043
13044 out_free:
13045 memslot_rmap_free(slot);
13046
13047 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13048 vfree(slot->arch.lpage_info[i - 1]);
13049 slot->arch.lpage_info[i - 1] = NULL;
13050 }
13051 return -ENOMEM;
13052 }
13053
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13054 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13055 {
13056 struct kvm_vcpu *vcpu;
13057 unsigned long i;
13058
13059 /*
13060 * memslots->generation has been incremented.
13061 * mmio generation may have reached its maximum value.
13062 */
13063 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13064
13065 /* Force re-initialization of steal_time cache */
13066 kvm_for_each_vcpu(i, vcpu, kvm)
13067 kvm_vcpu_kick(vcpu);
13068 }
13069
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13070 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13071 const struct kvm_memory_slot *old,
13072 struct kvm_memory_slot *new,
13073 enum kvm_mr_change change)
13074 {
13075 /*
13076 * KVM doesn't support moving memslots when there are external page
13077 * trackers attached to the VM, i.e. if KVMGT is in use.
13078 */
13079 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13080 return -EINVAL;
13081
13082 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13083 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13084 return -EINVAL;
13085
13086 return kvm_alloc_memslot_metadata(kvm, new);
13087 }
13088
13089 if (change == KVM_MR_FLAGS_ONLY)
13090 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13091 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13092 return -EIO;
13093
13094 return 0;
13095 }
13096
13097
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13098 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13099 {
13100 int nr_slots;
13101
13102 if (!kvm_x86_ops.cpu_dirty_log_size)
13103 return;
13104
13105 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13106 if ((enable && nr_slots == 1) || !nr_slots)
13107 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13108 }
13109
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13110 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13111 struct kvm_memory_slot *old,
13112 const struct kvm_memory_slot *new,
13113 enum kvm_mr_change change)
13114 {
13115 u32 old_flags = old ? old->flags : 0;
13116 u32 new_flags = new ? new->flags : 0;
13117 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13118
13119 /*
13120 * Update CPU dirty logging if dirty logging is being toggled. This
13121 * applies to all operations.
13122 */
13123 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13124 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13125
13126 /*
13127 * Nothing more to do for RO slots (which can't be dirtied and can't be
13128 * made writable) or CREATE/MOVE/DELETE of a slot.
13129 *
13130 * For a memslot with dirty logging disabled:
13131 * CREATE: No dirty mappings will already exist.
13132 * MOVE/DELETE: The old mappings will already have been cleaned up by
13133 * kvm_arch_flush_shadow_memslot()
13134 *
13135 * For a memslot with dirty logging enabled:
13136 * CREATE: No shadow pages exist, thus nothing to write-protect
13137 * and no dirty bits to clear.
13138 * MOVE/DELETE: The old mappings will already have been cleaned up by
13139 * kvm_arch_flush_shadow_memslot().
13140 */
13141 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13142 return;
13143
13144 /*
13145 * READONLY and non-flags changes were filtered out above, and the only
13146 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13147 * logging isn't being toggled on or off.
13148 */
13149 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13150 return;
13151
13152 if (!log_dirty_pages) {
13153 /*
13154 * Dirty logging tracks sptes in 4k granularity, meaning that
13155 * large sptes have to be split. If live migration succeeds,
13156 * the guest in the source machine will be destroyed and large
13157 * sptes will be created in the destination. However, if the
13158 * guest continues to run in the source machine (for example if
13159 * live migration fails), small sptes will remain around and
13160 * cause bad performance.
13161 *
13162 * Scan sptes if dirty logging has been stopped, dropping those
13163 * which can be collapsed into a single large-page spte. Later
13164 * page faults will create the large-page sptes.
13165 */
13166 kvm_mmu_zap_collapsible_sptes(kvm, new);
13167 } else {
13168 /*
13169 * Initially-all-set does not require write protecting any page,
13170 * because they're all assumed to be dirty.
13171 */
13172 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13173 return;
13174
13175 if (READ_ONCE(eager_page_split))
13176 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13177
13178 if (kvm_x86_ops.cpu_dirty_log_size) {
13179 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13180 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13181 } else {
13182 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13183 }
13184
13185 /*
13186 * Unconditionally flush the TLBs after enabling dirty logging.
13187 * A flush is almost always going to be necessary (see below),
13188 * and unconditionally flushing allows the helpers to omit
13189 * the subtly complex checks when removing write access.
13190 *
13191 * Do the flush outside of mmu_lock to reduce the amount of
13192 * time mmu_lock is held. Flushing after dropping mmu_lock is
13193 * safe as KVM only needs to guarantee the slot is fully
13194 * write-protected before returning to userspace, i.e. before
13195 * userspace can consume the dirty status.
13196 *
13197 * Flushing outside of mmu_lock requires KVM to be careful when
13198 * making decisions based on writable status of an SPTE, e.g. a
13199 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13200 *
13201 * Specifically, KVM also write-protects guest page tables to
13202 * monitor changes when using shadow paging, and must guarantee
13203 * no CPUs can write to those page before mmu_lock is dropped.
13204 * Because CPUs may have stale TLB entries at this point, a
13205 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13206 *
13207 * KVM also allows making SPTES writable outside of mmu_lock,
13208 * e.g. to allow dirty logging without taking mmu_lock.
13209 *
13210 * To handle these scenarios, KVM uses a separate software-only
13211 * bit (MMU-writable) to track if a SPTE is !writable due to
13212 * a guest page table being write-protected (KVM clears the
13213 * MMU-writable flag when write-protecting for shadow paging).
13214 *
13215 * The use of MMU-writable is also the primary motivation for
13216 * the unconditional flush. Because KVM must guarantee that a
13217 * CPU doesn't contain stale, writable TLB entries for a
13218 * !MMU-writable SPTE, KVM must flush if it encounters any
13219 * MMU-writable SPTE regardless of whether the actual hardware
13220 * writable bit was set. I.e. KVM is almost guaranteed to need
13221 * to flush, while unconditionally flushing allows the "remove
13222 * write access" helpers to ignore MMU-writable entirely.
13223 *
13224 * See is_writable_pte() for more details (the case involving
13225 * access-tracked SPTEs is particularly relevant).
13226 */
13227 kvm_flush_remote_tlbs_memslot(kvm, new);
13228 }
13229 }
13230
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13231 void kvm_arch_commit_memory_region(struct kvm *kvm,
13232 struct kvm_memory_slot *old,
13233 const struct kvm_memory_slot *new,
13234 enum kvm_mr_change change)
13235 {
13236 if (change == KVM_MR_DELETE)
13237 kvm_page_track_delete_slot(kvm, old);
13238
13239 if (!kvm->arch.n_requested_mmu_pages &&
13240 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13241 unsigned long nr_mmu_pages;
13242
13243 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13244 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13245 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13246 }
13247
13248 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13249
13250 /* Free the arrays associated with the old memslot. */
13251 if (change == KVM_MR_MOVE)
13252 kvm_arch_free_memslot(kvm, old);
13253 }
13254
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13255 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13256 {
13257 if (vcpu->arch.guest_state_protected)
13258 return true;
13259
13260 return kvm_x86_call(get_cpl)(vcpu) == 0;
13261 }
13262
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13263 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13264 {
13265 return kvm_rip_read(vcpu);
13266 }
13267
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13268 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13269 {
13270 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13271 }
13272
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13273 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13274 {
13275 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13276 }
13277
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13278 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13279 {
13280 /* Can't read the RIP when guest state is protected, just return 0 */
13281 if (vcpu->arch.guest_state_protected)
13282 return 0;
13283
13284 if (is_64_bit_mode(vcpu))
13285 return kvm_rip_read(vcpu);
13286 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13287 kvm_rip_read(vcpu));
13288 }
13289 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13290
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13291 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13292 {
13293 return kvm_get_linear_rip(vcpu) == linear_rip;
13294 }
13295 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13296
kvm_get_rflags(struct kvm_vcpu * vcpu)13297 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13298 {
13299 unsigned long rflags;
13300
13301 rflags = kvm_x86_call(get_rflags)(vcpu);
13302 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13303 rflags &= ~X86_EFLAGS_TF;
13304 return rflags;
13305 }
13306 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13307
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13308 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13309 {
13310 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13311 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13312 rflags |= X86_EFLAGS_TF;
13313 kvm_x86_call(set_rflags)(vcpu, rflags);
13314 }
13315
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13316 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13317 {
13318 __kvm_set_rflags(vcpu, rflags);
13319 kvm_make_request(KVM_REQ_EVENT, vcpu);
13320 }
13321 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13322
kvm_async_pf_hash_fn(gfn_t gfn)13323 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13324 {
13325 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13326
13327 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13328 }
13329
kvm_async_pf_next_probe(u32 key)13330 static inline u32 kvm_async_pf_next_probe(u32 key)
13331 {
13332 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13333 }
13334
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13335 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13336 {
13337 u32 key = kvm_async_pf_hash_fn(gfn);
13338
13339 while (vcpu->arch.apf.gfns[key] != ~0)
13340 key = kvm_async_pf_next_probe(key);
13341
13342 vcpu->arch.apf.gfns[key] = gfn;
13343 }
13344
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13345 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13346 {
13347 int i;
13348 u32 key = kvm_async_pf_hash_fn(gfn);
13349
13350 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13351 (vcpu->arch.apf.gfns[key] != gfn &&
13352 vcpu->arch.apf.gfns[key] != ~0); i++)
13353 key = kvm_async_pf_next_probe(key);
13354
13355 return key;
13356 }
13357
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13358 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13359 {
13360 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13361 }
13362
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13363 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13364 {
13365 u32 i, j, k;
13366
13367 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13368
13369 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13370 return;
13371
13372 while (true) {
13373 vcpu->arch.apf.gfns[i] = ~0;
13374 do {
13375 j = kvm_async_pf_next_probe(j);
13376 if (vcpu->arch.apf.gfns[j] == ~0)
13377 return;
13378 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13379 /*
13380 * k lies cyclically in ]i,j]
13381 * | i.k.j |
13382 * |....j i.k.| or |.k..j i...|
13383 */
13384 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13385 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13386 i = j;
13387 }
13388 }
13389
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13390 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13391 {
13392 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13393
13394 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13395 sizeof(reason));
13396 }
13397
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13398 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13399 {
13400 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13401
13402 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13403 &token, offset, sizeof(token));
13404 }
13405
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13406 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13407 {
13408 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13409 u32 val;
13410
13411 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13412 &val, offset, sizeof(val)))
13413 return false;
13414
13415 return !val;
13416 }
13417
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13418 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13419 {
13420
13421 if (!kvm_pv_async_pf_enabled(vcpu))
13422 return false;
13423
13424 if (vcpu->arch.apf.send_user_only &&
13425 kvm_x86_call(get_cpl)(vcpu) == 0)
13426 return false;
13427
13428 if (is_guest_mode(vcpu)) {
13429 /*
13430 * L1 needs to opt into the special #PF vmexits that are
13431 * used to deliver async page faults.
13432 */
13433 return vcpu->arch.apf.delivery_as_pf_vmexit;
13434 } else {
13435 /*
13436 * Play it safe in case the guest temporarily disables paging.
13437 * The real mode IDT in particular is unlikely to have a #PF
13438 * exception setup.
13439 */
13440 return is_paging(vcpu);
13441 }
13442 }
13443
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13444 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13445 {
13446 if (unlikely(!lapic_in_kernel(vcpu) ||
13447 kvm_event_needs_reinjection(vcpu) ||
13448 kvm_is_exception_pending(vcpu)))
13449 return false;
13450
13451 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13452 return false;
13453
13454 /*
13455 * If interrupts are off we cannot even use an artificial
13456 * halt state.
13457 */
13458 return kvm_arch_interrupt_allowed(vcpu);
13459 }
13460
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13461 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13462 struct kvm_async_pf *work)
13463 {
13464 struct x86_exception fault;
13465
13466 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13467 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13468
13469 if (kvm_can_deliver_async_pf(vcpu) &&
13470 !apf_put_user_notpresent(vcpu)) {
13471 fault.vector = PF_VECTOR;
13472 fault.error_code_valid = true;
13473 fault.error_code = 0;
13474 fault.nested_page_fault = false;
13475 fault.address = work->arch.token;
13476 fault.async_page_fault = true;
13477 kvm_inject_page_fault(vcpu, &fault);
13478 return true;
13479 } else {
13480 /*
13481 * It is not possible to deliver a paravirtualized asynchronous
13482 * page fault, but putting the guest in an artificial halt state
13483 * can be beneficial nevertheless: if an interrupt arrives, we
13484 * can deliver it timely and perhaps the guest will schedule
13485 * another process. When the instruction that triggered a page
13486 * fault is retried, hopefully the page will be ready in the host.
13487 */
13488 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13489 return false;
13490 }
13491 }
13492
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13493 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13494 struct kvm_async_pf *work)
13495 {
13496 struct kvm_lapic_irq irq = {
13497 .delivery_mode = APIC_DM_FIXED,
13498 .vector = vcpu->arch.apf.vec
13499 };
13500
13501 if (work->wakeup_all)
13502 work->arch.token = ~0; /* broadcast wakeup */
13503 else
13504 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13505 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13506
13507 if ((work->wakeup_all || work->notpresent_injected) &&
13508 kvm_pv_async_pf_enabled(vcpu) &&
13509 !apf_put_user_ready(vcpu, work->arch.token)) {
13510 vcpu->arch.apf.pageready_pending = true;
13511 kvm_apic_set_irq(vcpu, &irq, NULL);
13512 }
13513
13514 vcpu->arch.apf.halted = false;
13515 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13516 }
13517
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13518 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13519 {
13520 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13521 if (!vcpu->arch.apf.pageready_pending)
13522 kvm_vcpu_kick(vcpu);
13523 }
13524
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13525 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13526 {
13527 if (!kvm_pv_async_pf_enabled(vcpu))
13528 return true;
13529 else
13530 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13531 }
13532
kvm_arch_start_assignment(struct kvm * kvm)13533 void kvm_arch_start_assignment(struct kvm *kvm)
13534 {
13535 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13536 kvm_x86_call(pi_start_assignment)(kvm);
13537 }
13538 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13539
kvm_arch_end_assignment(struct kvm * kvm)13540 void kvm_arch_end_assignment(struct kvm *kvm)
13541 {
13542 atomic_dec(&kvm->arch.assigned_device_count);
13543 }
13544 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13545
kvm_arch_has_assigned_device(struct kvm * kvm)13546 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13547 {
13548 return raw_atomic_read(&kvm->arch.assigned_device_count);
13549 }
13550 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13551
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13552 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13553 {
13554 /*
13555 * Non-coherent DMA assignment and de-assignment may affect whether or
13556 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13557 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13558 * (or last) non-coherent device is (un)registered to so that new SPTEs
13559 * with the correct "ignore guest PAT" setting are created.
13560 */
13561 if (kvm_mmu_may_ignore_guest_pat())
13562 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13563 }
13564
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13565 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13566 {
13567 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13568 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13569 }
13570 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13571
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13572 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13573 {
13574 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13575 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13576 }
13577 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13578
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13579 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13580 {
13581 return atomic_read(&kvm->arch.noncoherent_dma_count);
13582 }
13583 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13584
kvm_arch_has_irq_bypass(void)13585 bool kvm_arch_has_irq_bypass(void)
13586 {
13587 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13588 }
13589
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13590 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13591 struct irq_bypass_producer *prod)
13592 {
13593 struct kvm_kernel_irqfd *irqfd =
13594 container_of(cons, struct kvm_kernel_irqfd, consumer);
13595 struct kvm *kvm = irqfd->kvm;
13596 int ret;
13597
13598 kvm_arch_start_assignment(irqfd->kvm);
13599
13600 spin_lock_irq(&kvm->irqfds.lock);
13601 irqfd->producer = prod;
13602
13603 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13604 prod->irq, irqfd->gsi, 1);
13605 if (ret)
13606 kvm_arch_end_assignment(irqfd->kvm);
13607
13608 spin_unlock_irq(&kvm->irqfds.lock);
13609
13610
13611 return ret;
13612 }
13613
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13614 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13615 struct irq_bypass_producer *prod)
13616 {
13617 int ret;
13618 struct kvm_kernel_irqfd *irqfd =
13619 container_of(cons, struct kvm_kernel_irqfd, consumer);
13620 struct kvm *kvm = irqfd->kvm;
13621
13622 WARN_ON(irqfd->producer != prod);
13623
13624 /*
13625 * When producer of consumer is unregistered, we change back to
13626 * remapped mode, so we can re-use the current implementation
13627 * when the irq is masked/disabled or the consumer side (KVM
13628 * int this case doesn't want to receive the interrupts.
13629 */
13630 spin_lock_irq(&kvm->irqfds.lock);
13631 irqfd->producer = NULL;
13632
13633 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13634 prod->irq, irqfd->gsi, 0);
13635 if (ret)
13636 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13637 " fails: %d\n", irqfd->consumer.token, ret);
13638
13639 spin_unlock_irq(&kvm->irqfds.lock);
13640
13641
13642 kvm_arch_end_assignment(irqfd->kvm);
13643 }
13644
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13645 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13646 uint32_t guest_irq, bool set)
13647 {
13648 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13649 }
13650
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13651 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13652 struct kvm_kernel_irq_routing_entry *new)
13653 {
13654 if (old->type != KVM_IRQ_ROUTING_MSI ||
13655 new->type != KVM_IRQ_ROUTING_MSI)
13656 return true;
13657
13658 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13659 }
13660
kvm_vector_hashing_enabled(void)13661 bool kvm_vector_hashing_enabled(void)
13662 {
13663 return vector_hashing;
13664 }
13665
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13666 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13667 {
13668 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13669 }
13670 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13671
13672 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13673 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13674 {
13675 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13676 }
13677 #endif
13678
13679 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13680 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13681 {
13682 kvm_x86_call(gmem_invalidate)(start, end);
13683 }
13684 #endif
13685
kvm_spec_ctrl_test_value(u64 value)13686 int kvm_spec_ctrl_test_value(u64 value)
13687 {
13688 /*
13689 * test that setting IA32_SPEC_CTRL to given value
13690 * is allowed by the host processor
13691 */
13692
13693 u64 saved_value;
13694 unsigned long flags;
13695 int ret = 0;
13696
13697 local_irq_save(flags);
13698
13699 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13700 ret = 1;
13701 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13702 ret = 1;
13703 else
13704 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13705
13706 local_irq_restore(flags);
13707
13708 return ret;
13709 }
13710 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13711
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13712 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13713 {
13714 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13715 struct x86_exception fault;
13716 u64 access = error_code &
13717 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13718
13719 if (!(error_code & PFERR_PRESENT_MASK) ||
13720 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13721 /*
13722 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13723 * tables probably do not match the TLB. Just proceed
13724 * with the error code that the processor gave.
13725 */
13726 fault.vector = PF_VECTOR;
13727 fault.error_code_valid = true;
13728 fault.error_code = error_code;
13729 fault.nested_page_fault = false;
13730 fault.address = gva;
13731 fault.async_page_fault = false;
13732 }
13733 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13734 }
13735 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13736
13737 /*
13738 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13739 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13740 * indicates whether exit to userspace is needed.
13741 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13742 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13743 struct x86_exception *e)
13744 {
13745 if (r == X86EMUL_PROPAGATE_FAULT) {
13746 if (KVM_BUG_ON(!e, vcpu->kvm))
13747 return -EIO;
13748
13749 kvm_inject_emulated_page_fault(vcpu, e);
13750 return 1;
13751 }
13752
13753 /*
13754 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13755 * while handling a VMX instruction KVM could've handled the request
13756 * correctly by exiting to userspace and performing I/O but there
13757 * doesn't seem to be a real use-case behind such requests, just return
13758 * KVM_EXIT_INTERNAL_ERROR for now.
13759 */
13760 kvm_prepare_emulation_failure_exit(vcpu);
13761
13762 return 0;
13763 }
13764 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13765
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13766 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13767 {
13768 bool pcid_enabled;
13769 struct x86_exception e;
13770 struct {
13771 u64 pcid;
13772 u64 gla;
13773 } operand;
13774 int r;
13775
13776 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13777 if (r != X86EMUL_CONTINUE)
13778 return kvm_handle_memory_failure(vcpu, r, &e);
13779
13780 if (operand.pcid >> 12 != 0) {
13781 kvm_inject_gp(vcpu, 0);
13782 return 1;
13783 }
13784
13785 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13786
13787 switch (type) {
13788 case INVPCID_TYPE_INDIV_ADDR:
13789 /*
13790 * LAM doesn't apply to addresses that are inputs to TLB
13791 * invalidation.
13792 */
13793 if ((!pcid_enabled && (operand.pcid != 0)) ||
13794 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13795 kvm_inject_gp(vcpu, 0);
13796 return 1;
13797 }
13798 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13799 return kvm_skip_emulated_instruction(vcpu);
13800
13801 case INVPCID_TYPE_SINGLE_CTXT:
13802 if (!pcid_enabled && (operand.pcid != 0)) {
13803 kvm_inject_gp(vcpu, 0);
13804 return 1;
13805 }
13806
13807 kvm_invalidate_pcid(vcpu, operand.pcid);
13808 return kvm_skip_emulated_instruction(vcpu);
13809
13810 case INVPCID_TYPE_ALL_NON_GLOBAL:
13811 /*
13812 * Currently, KVM doesn't mark global entries in the shadow
13813 * page tables, so a non-global flush just degenerates to a
13814 * global flush. If needed, we could optimize this later by
13815 * keeping track of global entries in shadow page tables.
13816 */
13817
13818 fallthrough;
13819 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13820 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13821 return kvm_skip_emulated_instruction(vcpu);
13822
13823 default:
13824 kvm_inject_gp(vcpu, 0);
13825 return 1;
13826 }
13827 }
13828 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13829
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13830 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13831 {
13832 struct kvm_run *run = vcpu->run;
13833 struct kvm_mmio_fragment *frag;
13834 unsigned int len;
13835
13836 BUG_ON(!vcpu->mmio_needed);
13837
13838 /* Complete previous fragment */
13839 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13840 len = min(8u, frag->len);
13841 if (!vcpu->mmio_is_write)
13842 memcpy(frag->data, run->mmio.data, len);
13843
13844 if (frag->len <= 8) {
13845 /* Switch to the next fragment. */
13846 frag++;
13847 vcpu->mmio_cur_fragment++;
13848 } else {
13849 /* Go forward to the next mmio piece. */
13850 frag->data += len;
13851 frag->gpa += len;
13852 frag->len -= len;
13853 }
13854
13855 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13856 vcpu->mmio_needed = 0;
13857
13858 // VMG change, at this point, we're always done
13859 // RIP has already been advanced
13860 return 1;
13861 }
13862
13863 // More MMIO is needed
13864 run->mmio.phys_addr = frag->gpa;
13865 run->mmio.len = min(8u, frag->len);
13866 run->mmio.is_write = vcpu->mmio_is_write;
13867 if (run->mmio.is_write)
13868 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13869 run->exit_reason = KVM_EXIT_MMIO;
13870
13871 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13872
13873 return 0;
13874 }
13875
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13876 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13877 void *data)
13878 {
13879 int handled;
13880 struct kvm_mmio_fragment *frag;
13881
13882 if (!data)
13883 return -EINVAL;
13884
13885 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13886 if (handled == bytes)
13887 return 1;
13888
13889 bytes -= handled;
13890 gpa += handled;
13891 data += handled;
13892
13893 /*TODO: Check if need to increment number of frags */
13894 frag = vcpu->mmio_fragments;
13895 vcpu->mmio_nr_fragments = 1;
13896 frag->len = bytes;
13897 frag->gpa = gpa;
13898 frag->data = data;
13899
13900 vcpu->mmio_needed = 1;
13901 vcpu->mmio_cur_fragment = 0;
13902
13903 vcpu->run->mmio.phys_addr = gpa;
13904 vcpu->run->mmio.len = min(8u, frag->len);
13905 vcpu->run->mmio.is_write = 1;
13906 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13907 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13908
13909 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13910
13911 return 0;
13912 }
13913 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13914
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13915 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13916 void *data)
13917 {
13918 int handled;
13919 struct kvm_mmio_fragment *frag;
13920
13921 if (!data)
13922 return -EINVAL;
13923
13924 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13925 if (handled == bytes)
13926 return 1;
13927
13928 bytes -= handled;
13929 gpa += handled;
13930 data += handled;
13931
13932 /*TODO: Check if need to increment number of frags */
13933 frag = vcpu->mmio_fragments;
13934 vcpu->mmio_nr_fragments = 1;
13935 frag->len = bytes;
13936 frag->gpa = gpa;
13937 frag->data = data;
13938
13939 vcpu->mmio_needed = 1;
13940 vcpu->mmio_cur_fragment = 0;
13941
13942 vcpu->run->mmio.phys_addr = gpa;
13943 vcpu->run->mmio.len = min(8u, frag->len);
13944 vcpu->run->mmio.is_write = 0;
13945 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13946
13947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13948
13949 return 0;
13950 }
13951 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13952
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13953 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13954 {
13955 vcpu->arch.sev_pio_count -= count;
13956 vcpu->arch.sev_pio_data += count * size;
13957 }
13958
13959 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13960 unsigned int port);
13961
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13962 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13963 {
13964 int size = vcpu->arch.pio.size;
13965 int port = vcpu->arch.pio.port;
13966
13967 vcpu->arch.pio.count = 0;
13968 if (vcpu->arch.sev_pio_count)
13969 return kvm_sev_es_outs(vcpu, size, port);
13970 return 1;
13971 }
13972
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13973 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13974 unsigned int port)
13975 {
13976 for (;;) {
13977 unsigned int count =
13978 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13979 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13980
13981 /* memcpy done already by emulator_pio_out. */
13982 advance_sev_es_emulated_pio(vcpu, count, size);
13983 if (!ret)
13984 break;
13985
13986 /* Emulation done by the kernel. */
13987 if (!vcpu->arch.sev_pio_count)
13988 return 1;
13989 }
13990
13991 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13992 return 0;
13993 }
13994
13995 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13996 unsigned int port);
13997
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13998 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13999 {
14000 unsigned count = vcpu->arch.pio.count;
14001 int size = vcpu->arch.pio.size;
14002 int port = vcpu->arch.pio.port;
14003
14004 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14005 advance_sev_es_emulated_pio(vcpu, count, size);
14006 if (vcpu->arch.sev_pio_count)
14007 return kvm_sev_es_ins(vcpu, size, port);
14008 return 1;
14009 }
14010
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14011 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14012 unsigned int port)
14013 {
14014 for (;;) {
14015 unsigned int count =
14016 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14017 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14018 break;
14019
14020 /* Emulation done by the kernel. */
14021 advance_sev_es_emulated_pio(vcpu, count, size);
14022 if (!vcpu->arch.sev_pio_count)
14023 return 1;
14024 }
14025
14026 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14027 return 0;
14028 }
14029
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14030 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14031 unsigned int port, void *data, unsigned int count,
14032 int in)
14033 {
14034 vcpu->arch.sev_pio_data = data;
14035 vcpu->arch.sev_pio_count = count;
14036 return in ? kvm_sev_es_ins(vcpu, size, port)
14037 : kvm_sev_es_outs(vcpu, size, port);
14038 }
14039 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
14040
14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14043 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14044 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14046 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14047 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14048 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14049 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14050 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14071
kvm_x86_init(void)14072 static int __init kvm_x86_init(void)
14073 {
14074 kvm_init_xstate_sizes();
14075
14076 kvm_mmu_x86_module_init();
14077 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14078 return 0;
14079 }
14080 module_init(kvm_x86_init);
14081
kvm_x86_exit(void)14082 static void __exit kvm_x86_exit(void)
14083 {
14084 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14085 }
14086 module_exit(kvm_x86_exit);
14087