1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13
14 #include <trace/events/block.h>
15
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 struct bvec_iter iter = bio->bi_iter;
29 int idx;
30
31 bio_get_first_bvec(bio, bv);
32 if (bv->bv_len == bio->bi_iter.bi_size)
33 return; /* this bio only has a single bvec */
34
35 bio_advance_iter(bio, &iter, iter.bi_size);
36
37 if (!iter.bi_bvec_done)
38 idx = iter.bi_idx - 1;
39 else /* in the middle of bvec */
40 idx = iter.bi_idx;
41
42 *bv = bio->bi_io_vec[idx];
43
44 /*
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
47 */
48 if (iter.bi_bvec_done)
49 bv->bv_len = iter.bi_bvec_done;
50 }
51
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 struct bio_vec pb, nb;
56
57 if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 return false;
59
60 /*
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
64 */
65 if (prev_rq)
66 bio_get_first_bvec(prev_rq->bio, &pb);
67 else
68 bio_get_first_bvec(prev, &pb);
69 if (pb.bv_offset & queue_virt_boundary(q))
70 return true;
71
72 /*
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
75 *
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
79 * merge with 'pb'
80 */
81 bio_get_last_bvec(prev, &pb);
82 bio_get_first_bvec(next, &nb);
83 if (biovec_phys_mergeable(q, &pb, &nb))
84 return false;
85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97
98 /*
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
102 */
bio_allowed_max_sectors(const struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107
bio_submit_split(struct bio * bio,int split_sectors)108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
109 {
110 if (unlikely(split_sectors < 0)) {
111 bio->bi_status = errno_to_blk_status(split_sectors);
112 bio_endio(bio);
113 return NULL;
114 }
115
116 if (split_sectors) {
117 struct bio *split;
118
119 split = bio_split(bio, split_sectors, GFP_NOIO,
120 &bio->bi_bdev->bd_disk->bio_split);
121 split->bi_opf |= REQ_NOMERGE;
122 blkcg_bio_issue_init(split);
123 bio_chain(split, bio);
124 trace_block_split(split, bio->bi_iter.bi_sector);
125 WARN_ON_ONCE(bio_zone_write_plugging(bio));
126 submit_bio_noacct(bio);
127 return split;
128 }
129
130 return bio;
131 }
132
bio_split_discard(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)133 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
134 unsigned *nsegs)
135 {
136 unsigned int max_discard_sectors, granularity;
137 sector_t tmp;
138 unsigned split_sectors;
139
140 *nsegs = 1;
141
142 granularity = max(lim->discard_granularity >> 9, 1U);
143
144 max_discard_sectors =
145 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
146 max_discard_sectors -= max_discard_sectors % granularity;
147 if (unlikely(!max_discard_sectors))
148 return bio;
149
150 if (bio_sectors(bio) <= max_discard_sectors)
151 return bio;
152
153 split_sectors = max_discard_sectors;
154
155 /*
156 * If the next starting sector would be misaligned, stop the discard at
157 * the previous aligned sector.
158 */
159 tmp = bio->bi_iter.bi_sector + split_sectors -
160 ((lim->discard_alignment >> 9) % granularity);
161 tmp = sector_div(tmp, granularity);
162
163 if (split_sectors > tmp)
164 split_sectors -= tmp;
165
166 return bio_submit_split(bio, split_sectors);
167 }
168
blk_boundary_sectors(const struct queue_limits * lim,bool is_atomic)169 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
170 bool is_atomic)
171 {
172 /*
173 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
174 * both non-zero.
175 */
176 if (is_atomic && lim->atomic_write_boundary_sectors)
177 return lim->atomic_write_boundary_sectors;
178
179 return lim->chunk_sectors;
180 }
181
182 /*
183 * Return the maximum number of sectors from the start of a bio that may be
184 * submitted as a single request to a block device. If enough sectors remain,
185 * align the end to the physical block size. Otherwise align the end to the
186 * logical block size. This approach minimizes the number of non-aligned
187 * requests that are submitted to a block device if the start of a bio is not
188 * aligned to a physical block boundary.
189 */
get_max_io_size(struct bio * bio,const struct queue_limits * lim)190 static inline unsigned get_max_io_size(struct bio *bio,
191 const struct queue_limits *lim)
192 {
193 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
194 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
195 bool is_atomic = bio->bi_opf & REQ_ATOMIC;
196 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
197 unsigned max_sectors, start, end;
198
199 /*
200 * We ignore lim->max_sectors for atomic writes because it may less
201 * than the actual bio size, which we cannot tolerate.
202 */
203 if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
204 max_sectors = lim->max_write_zeroes_sectors;
205 else if (is_atomic)
206 max_sectors = lim->atomic_write_max_sectors;
207 else
208 max_sectors = lim->max_sectors;
209
210 if (boundary_sectors) {
211 max_sectors = min(max_sectors,
212 blk_boundary_sectors_left(bio->bi_iter.bi_sector,
213 boundary_sectors));
214 }
215
216 start = bio->bi_iter.bi_sector & (pbs - 1);
217 end = (start + max_sectors) & ~(pbs - 1);
218 if (end > start)
219 return end - start;
220 return max_sectors & ~(lbs - 1);
221 }
222
223 /**
224 * get_max_segment_size() - maximum number of bytes to add as a single segment
225 * @lim: Request queue limits.
226 * @paddr: address of the range to add
227 * @len: maximum length available to add at @paddr
228 *
229 * Returns the maximum number of bytes of the range starting at @paddr that can
230 * be added to a single segment.
231 */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)232 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
233 phys_addr_t paddr, unsigned int len)
234 {
235 /*
236 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
237 * after having calculated the minimum.
238 */
239 return min_t(unsigned long, len,
240 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
241 (unsigned long)lim->max_segment_size - 1) + 1);
242 }
243
244 /**
245 * bvec_split_segs - verify whether or not a bvec should be split in the middle
246 * @lim: [in] queue limits to split based on
247 * @bv: [in] bvec to examine
248 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
249 * by the number of segments from @bv that may be appended to that
250 * bio without exceeding @max_segs
251 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
252 * by the number of bytes from @bv that may be appended to that
253 * bio without exceeding @max_bytes
254 * @max_segs: [in] upper bound for *@nsegs
255 * @max_bytes: [in] upper bound for *@bytes
256 *
257 * When splitting a bio, it can happen that a bvec is encountered that is too
258 * big to fit in a single segment and hence that it has to be split in the
259 * middle. This function verifies whether or not that should happen. The value
260 * %true is returned if and only if appending the entire @bv to a bio with
261 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
262 * the block driver.
263 */
bvec_split_segs(const struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)264 static bool bvec_split_segs(const struct queue_limits *lim,
265 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
266 unsigned max_segs, unsigned max_bytes)
267 {
268 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
269 unsigned len = min(bv->bv_len, max_len);
270 unsigned total_len = 0;
271 unsigned seg_size = 0;
272
273 while (len && *nsegs < max_segs) {
274 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
275
276 (*nsegs)++;
277 total_len += seg_size;
278 len -= seg_size;
279
280 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
281 break;
282 }
283
284 *bytes += total_len;
285
286 /* tell the caller to split the bvec if it is too big to fit */
287 return len > 0 || bv->bv_len > max_len;
288 }
289
bio_split_alignment(struct bio * bio,const struct queue_limits * lim)290 static unsigned int bio_split_alignment(struct bio *bio,
291 const struct queue_limits *lim)
292 {
293 if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
294 return lim->zone_write_granularity;
295 return lim->logical_block_size;
296 }
297
298 /**
299 * bio_split_rw_at - check if and where to split a read/write bio
300 * @bio: [in] bio to be split
301 * @lim: [in] queue limits to split based on
302 * @segs: [out] number of segments in the bio with the first half of the sectors
303 * @max_bytes: [in] maximum number of bytes per bio
304 *
305 * Find out if @bio needs to be split to fit the queue limits in @lim and a
306 * maximum size of @max_bytes. Returns a negative error number if @bio can't be
307 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
308 * @bio needs to be split.
309 */
bio_split_rw_at(struct bio * bio,const struct queue_limits * lim,unsigned * segs,unsigned max_bytes)310 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
311 unsigned *segs, unsigned max_bytes)
312 {
313 struct bio_vec bv, bvprv, *bvprvp = NULL;
314 struct bvec_iter iter;
315 unsigned nsegs = 0, bytes = 0;
316
317 bio_for_each_bvec(bv, bio, iter) {
318 /*
319 * If the queue doesn't support SG gaps and adding this
320 * offset would create a gap, disallow it.
321 */
322 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
323 goto split;
324
325 if (nsegs < lim->max_segments &&
326 bytes + bv.bv_len <= max_bytes &&
327 bv.bv_offset + bv.bv_len <= lim->min_segment_size) {
328 nsegs++;
329 bytes += bv.bv_len;
330 } else {
331 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
332 lim->max_segments, max_bytes))
333 goto split;
334 }
335
336 bvprv = bv;
337 bvprvp = &bvprv;
338 }
339
340 *segs = nsegs;
341 return 0;
342 split:
343 if (bio->bi_opf & REQ_ATOMIC)
344 return -EINVAL;
345
346 /*
347 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
348 * with EAGAIN if splitting is required and return an error pointer.
349 */
350 if (bio->bi_opf & REQ_NOWAIT)
351 return -EAGAIN;
352
353 *segs = nsegs;
354
355 /*
356 * Individual bvecs might not be logical block aligned. Round down the
357 * split size so that each bio is properly block size aligned, even if
358 * we do not use the full hardware limits.
359 */
360 bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
361
362 /*
363 * Bio splitting may cause subtle trouble such as hang when doing sync
364 * iopoll in direct IO routine. Given performance gain of iopoll for
365 * big IO can be trival, disable iopoll when split needed.
366 */
367 bio_clear_polled(bio);
368 return bytes >> SECTOR_SHIFT;
369 }
370 EXPORT_SYMBOL_GPL(bio_split_rw_at);
371
bio_split_rw(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)372 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
373 unsigned *nr_segs)
374 {
375 return bio_submit_split(bio,
376 bio_split_rw_at(bio, lim, nr_segs,
377 get_max_io_size(bio, lim) << SECTOR_SHIFT));
378 }
379
380 /*
381 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
382 *
383 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
384 * a good sanity check that the submitter built the bio correctly is nice to
385 * have as well.
386 */
bio_split_zone_append(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)387 struct bio *bio_split_zone_append(struct bio *bio,
388 const struct queue_limits *lim, unsigned *nr_segs)
389 {
390 unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim);
391 int split_sectors;
392
393 split_sectors = bio_split_rw_at(bio, lim, nr_segs,
394 max_sectors << SECTOR_SHIFT);
395 if (WARN_ON_ONCE(split_sectors > 0))
396 split_sectors = -EINVAL;
397 return bio_submit_split(bio, split_sectors);
398 }
399
bio_split_write_zeroes(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)400 struct bio *bio_split_write_zeroes(struct bio *bio,
401 const struct queue_limits *lim, unsigned *nsegs)
402 {
403 unsigned int max_sectors = get_max_io_size(bio, lim);
404
405 *nsegs = 0;
406
407 /*
408 * An unset limit should normally not happen, as bio submission is keyed
409 * off having a non-zero limit. But SCSI can clear the limit in the
410 * I/O completion handler, and we can race and see this. Splitting to a
411 * zero limit obviously doesn't make sense, so band-aid it here.
412 */
413 if (!max_sectors)
414 return bio;
415 if (bio_sectors(bio) <= max_sectors)
416 return bio;
417 return bio_submit_split(bio, max_sectors);
418 }
419
420 /**
421 * bio_split_to_limits - split a bio to fit the queue limits
422 * @bio: bio to be split
423 *
424 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
425 * if so split off a bio fitting the limits from the beginning of @bio and
426 * return it. @bio is shortened to the remainder and re-submitted.
427 *
428 * The split bio is allocated from @q->bio_split, which is provided by the
429 * block layer.
430 */
bio_split_to_limits(struct bio * bio)431 struct bio *bio_split_to_limits(struct bio *bio)
432 {
433 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
434 unsigned int nr_segs;
435
436 return __bio_split_to_limits(bio, lim, &nr_segs);
437 }
438 EXPORT_SYMBOL(bio_split_to_limits);
439
blk_recalc_rq_segments(struct request * rq)440 unsigned int blk_recalc_rq_segments(struct request *rq)
441 {
442 unsigned int nr_phys_segs = 0;
443 unsigned int bytes = 0;
444 struct req_iterator iter;
445 struct bio_vec bv;
446
447 if (!rq->bio)
448 return 0;
449
450 switch (bio_op(rq->bio)) {
451 case REQ_OP_DISCARD:
452 case REQ_OP_SECURE_ERASE:
453 if (queue_max_discard_segments(rq->q) > 1) {
454 struct bio *bio = rq->bio;
455
456 for_each_bio(bio)
457 nr_phys_segs++;
458 return nr_phys_segs;
459 }
460 return 1;
461 case REQ_OP_WRITE_ZEROES:
462 return 0;
463 default:
464 break;
465 }
466
467 rq_for_each_bvec(bv, rq, iter)
468 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
469 UINT_MAX, UINT_MAX);
470 return nr_phys_segs;
471 }
472
473 struct phys_vec {
474 phys_addr_t paddr;
475 u32 len;
476 };
477
blk_map_iter_next(struct request * req,struct req_iterator * iter,struct phys_vec * vec)478 static bool blk_map_iter_next(struct request *req,
479 struct req_iterator *iter, struct phys_vec *vec)
480 {
481 unsigned int max_size;
482 struct bio_vec bv;
483
484 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
485 if (!iter->bio)
486 return false;
487 vec->paddr = bvec_phys(&req->special_vec);
488 vec->len = req->special_vec.bv_len;
489 iter->bio = NULL;
490 return true;
491 }
492
493 if (!iter->iter.bi_size)
494 return false;
495
496 bv = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter);
497 vec->paddr = bvec_phys(&bv);
498 max_size = get_max_segment_size(&req->q->limits, vec->paddr, UINT_MAX);
499 bv.bv_len = min(bv.bv_len, max_size);
500 bio_advance_iter_single(iter->bio, &iter->iter, bv.bv_len);
501
502 /*
503 * If we are entirely done with this bi_io_vec entry, check if the next
504 * one could be merged into it. This typically happens when moving to
505 * the next bio, but some callers also don't pack bvecs tight.
506 */
507 while (!iter->iter.bi_size || !iter->iter.bi_bvec_done) {
508 struct bio_vec next;
509
510 if (!iter->iter.bi_size) {
511 if (!iter->bio->bi_next)
512 break;
513 iter->bio = iter->bio->bi_next;
514 iter->iter = iter->bio->bi_iter;
515 }
516
517 next = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter);
518 if (bv.bv_len + next.bv_len > max_size ||
519 !biovec_phys_mergeable(req->q, &bv, &next))
520 break;
521
522 bv.bv_len += next.bv_len;
523 bio_advance_iter_single(iter->bio, &iter->iter, next.bv_len);
524 }
525
526 vec->len = bv.bv_len;
527 return true;
528 }
529
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)530 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
531 struct scatterlist *sglist)
532 {
533 if (!*sg)
534 return sglist;
535
536 /*
537 * If the driver previously mapped a shorter list, we could see a
538 * termination bit prematurely unless it fully inits the sg table
539 * on each mapping. We KNOW that there must be more entries here
540 * or the driver would be buggy, so force clear the termination bit
541 * to avoid doing a full sg_init_table() in drivers for each command.
542 */
543 sg_unmark_end(*sg);
544 return sg_next(*sg);
545 }
546
547 /*
548 * Map a request to scatterlist, return number of sg entries setup. Caller
549 * must make sure sg can hold rq->nr_phys_segments entries.
550 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)551 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
552 struct scatterlist *sglist, struct scatterlist **last_sg)
553 {
554 struct req_iterator iter = {
555 .bio = rq->bio,
556 };
557 struct phys_vec vec;
558 int nsegs = 0;
559
560 /* the internal flush request may not have bio attached */
561 if (iter.bio)
562 iter.iter = iter.bio->bi_iter;
563
564 while (blk_map_iter_next(rq, &iter, &vec)) {
565 *last_sg = blk_next_sg(last_sg, sglist);
566 sg_set_page(*last_sg, phys_to_page(vec.paddr), vec.len,
567 offset_in_page(vec.paddr));
568 nsegs++;
569 }
570
571 if (*last_sg)
572 sg_mark_end(*last_sg);
573
574 /*
575 * Something must have been wrong if the figured number of
576 * segment is bigger than number of req's physical segments
577 */
578 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
579
580 return nsegs;
581 }
582 EXPORT_SYMBOL(__blk_rq_map_sg);
583
blk_rq_get_max_sectors(struct request * rq,sector_t offset)584 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
585 sector_t offset)
586 {
587 struct request_queue *q = rq->q;
588 struct queue_limits *lim = &q->limits;
589 unsigned int max_sectors, boundary_sectors;
590 bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
591
592 if (blk_rq_is_passthrough(rq))
593 return q->limits.max_hw_sectors;
594
595 boundary_sectors = blk_boundary_sectors(lim, is_atomic);
596 max_sectors = blk_queue_get_max_sectors(rq);
597
598 if (!boundary_sectors ||
599 req_op(rq) == REQ_OP_DISCARD ||
600 req_op(rq) == REQ_OP_SECURE_ERASE)
601 return max_sectors;
602 return min(max_sectors,
603 blk_boundary_sectors_left(offset, boundary_sectors));
604 }
605
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)606 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
607 unsigned int nr_phys_segs)
608 {
609 if (!blk_cgroup_mergeable(req, bio))
610 goto no_merge;
611
612 if (blk_integrity_merge_bio(req->q, req, bio) == false)
613 goto no_merge;
614
615 /* discard request merge won't add new segment */
616 if (req_op(req) == REQ_OP_DISCARD)
617 return 1;
618
619 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
620 goto no_merge;
621
622 /*
623 * This will form the start of a new hw segment. Bump both
624 * counters.
625 */
626 req->nr_phys_segments += nr_phys_segs;
627 if (bio_integrity(bio))
628 req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
629 bio);
630 return 1;
631
632 no_merge:
633 req_set_nomerge(req->q, req);
634 return 0;
635 }
636
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)637 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
638 {
639 if (req_gap_back_merge(req, bio))
640 return 0;
641 if (blk_integrity_rq(req) &&
642 integrity_req_gap_back_merge(req, bio))
643 return 0;
644 if (!bio_crypt_ctx_back_mergeable(req, bio))
645 return 0;
646 if (blk_rq_sectors(req) + bio_sectors(bio) >
647 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
648 req_set_nomerge(req->q, req);
649 return 0;
650 }
651
652 return ll_new_hw_segment(req, bio, nr_segs);
653 }
654
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)655 static int ll_front_merge_fn(struct request *req, struct bio *bio,
656 unsigned int nr_segs)
657 {
658 if (req_gap_front_merge(req, bio))
659 return 0;
660 if (blk_integrity_rq(req) &&
661 integrity_req_gap_front_merge(req, bio))
662 return 0;
663 if (!bio_crypt_ctx_front_mergeable(req, bio))
664 return 0;
665 if (blk_rq_sectors(req) + bio_sectors(bio) >
666 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
667 req_set_nomerge(req->q, req);
668 return 0;
669 }
670
671 return ll_new_hw_segment(req, bio, nr_segs);
672 }
673
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)674 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
675 struct request *next)
676 {
677 unsigned short segments = blk_rq_nr_discard_segments(req);
678
679 if (segments >= queue_max_discard_segments(q))
680 goto no_merge;
681 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
682 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
683 goto no_merge;
684
685 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
686 return true;
687 no_merge:
688 req_set_nomerge(q, req);
689 return false;
690 }
691
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)692 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
693 struct request *next)
694 {
695 int total_phys_segments;
696
697 if (req_gap_back_merge(req, next->bio))
698 return 0;
699
700 /*
701 * Will it become too large?
702 */
703 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
704 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
705 return 0;
706
707 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
708 if (total_phys_segments > blk_rq_get_max_segments(req))
709 return 0;
710
711 if (!blk_cgroup_mergeable(req, next->bio))
712 return 0;
713
714 if (blk_integrity_merge_rq(q, req, next) == false)
715 return 0;
716
717 if (!bio_crypt_ctx_merge_rq(req, next))
718 return 0;
719
720 /* Merge is OK... */
721 req->nr_phys_segments = total_phys_segments;
722 req->nr_integrity_segments += next->nr_integrity_segments;
723 return 1;
724 }
725
726 /**
727 * blk_rq_set_mixed_merge - mark a request as mixed merge
728 * @rq: request to mark as mixed merge
729 *
730 * Description:
731 * @rq is about to be mixed merged. Make sure the attributes
732 * which can be mixed are set in each bio and mark @rq as mixed
733 * merged.
734 */
blk_rq_set_mixed_merge(struct request * rq)735 static void blk_rq_set_mixed_merge(struct request *rq)
736 {
737 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
738 struct bio *bio;
739
740 if (rq->rq_flags & RQF_MIXED_MERGE)
741 return;
742
743 /*
744 * @rq will no longer represent mixable attributes for all the
745 * contained bios. It will just track those of the first one.
746 * Distributes the attributs to each bio.
747 */
748 for (bio = rq->bio; bio; bio = bio->bi_next) {
749 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
750 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
751 bio->bi_opf |= ff;
752 }
753 rq->rq_flags |= RQF_MIXED_MERGE;
754 }
755
bio_failfast(const struct bio * bio)756 static inline blk_opf_t bio_failfast(const struct bio *bio)
757 {
758 if (bio->bi_opf & REQ_RAHEAD)
759 return REQ_FAILFAST_MASK;
760
761 return bio->bi_opf & REQ_FAILFAST_MASK;
762 }
763
764 /*
765 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
766 * as failfast, and request's failfast has to be updated in case of
767 * front merge.
768 */
blk_update_mixed_merge(struct request * req,struct bio * bio,bool front_merge)769 static inline void blk_update_mixed_merge(struct request *req,
770 struct bio *bio, bool front_merge)
771 {
772 if (req->rq_flags & RQF_MIXED_MERGE) {
773 if (bio->bi_opf & REQ_RAHEAD)
774 bio->bi_opf |= REQ_FAILFAST_MASK;
775
776 if (front_merge) {
777 req->cmd_flags &= ~REQ_FAILFAST_MASK;
778 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
779 }
780 }
781 }
782
blk_account_io_merge_request(struct request * req)783 static void blk_account_io_merge_request(struct request *req)
784 {
785 if (blk_do_io_stat(req)) {
786 part_stat_lock();
787 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
788 part_stat_local_dec(req->part,
789 in_flight[op_is_write(req_op(req))]);
790 part_stat_unlock();
791 }
792 }
793
blk_try_req_merge(struct request * req,struct request * next)794 static enum elv_merge blk_try_req_merge(struct request *req,
795 struct request *next)
796 {
797 if (blk_discard_mergable(req))
798 return ELEVATOR_DISCARD_MERGE;
799 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
800 return ELEVATOR_BACK_MERGE;
801
802 return ELEVATOR_NO_MERGE;
803 }
804
blk_atomic_write_mergeable_rq_bio(struct request * rq,struct bio * bio)805 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
806 struct bio *bio)
807 {
808 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
809 }
810
blk_atomic_write_mergeable_rqs(struct request * rq,struct request * next)811 static bool blk_atomic_write_mergeable_rqs(struct request *rq,
812 struct request *next)
813 {
814 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
815 }
816
817 /*
818 * For non-mq, this has to be called with the request spinlock acquired.
819 * For mq with scheduling, the appropriate queue wide lock should be held.
820 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)821 static struct request *attempt_merge(struct request_queue *q,
822 struct request *req, struct request *next)
823 {
824 if (!rq_mergeable(req) || !rq_mergeable(next))
825 return NULL;
826
827 if (req_op(req) != req_op(next))
828 return NULL;
829
830 if (rq_data_dir(req) != rq_data_dir(next))
831 return NULL;
832
833 /* Don't merge requests with different write hints. */
834 if (req->write_hint != next->write_hint)
835 return NULL;
836
837 if (req->ioprio != next->ioprio)
838 return NULL;
839
840 if (!blk_atomic_write_mergeable_rqs(req, next))
841 return NULL;
842
843 /*
844 * If we are allowed to merge, then append bio list
845 * from next to rq and release next. merge_requests_fn
846 * will have updated segment counts, update sector
847 * counts here. Handle DISCARDs separately, as they
848 * have separate settings.
849 */
850
851 switch (blk_try_req_merge(req, next)) {
852 case ELEVATOR_DISCARD_MERGE:
853 if (!req_attempt_discard_merge(q, req, next))
854 return NULL;
855 break;
856 case ELEVATOR_BACK_MERGE:
857 if (!ll_merge_requests_fn(q, req, next))
858 return NULL;
859 break;
860 default:
861 return NULL;
862 }
863
864 /*
865 * If failfast settings disagree or any of the two is already
866 * a mixed merge, mark both as mixed before proceeding. This
867 * makes sure that all involved bios have mixable attributes
868 * set properly.
869 */
870 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
871 (req->cmd_flags & REQ_FAILFAST_MASK) !=
872 (next->cmd_flags & REQ_FAILFAST_MASK)) {
873 blk_rq_set_mixed_merge(req);
874 blk_rq_set_mixed_merge(next);
875 }
876
877 /*
878 * At this point we have either done a back merge or front merge. We
879 * need the smaller start_time_ns of the merged requests to be the
880 * current request for accounting purposes.
881 */
882 if (next->start_time_ns < req->start_time_ns)
883 req->start_time_ns = next->start_time_ns;
884
885 req->biotail->bi_next = next->bio;
886 req->biotail = next->biotail;
887
888 req->__data_len += blk_rq_bytes(next);
889
890 if (!blk_discard_mergable(req))
891 elv_merge_requests(q, req, next);
892
893 blk_crypto_rq_put_keyslot(next);
894
895 /*
896 * 'next' is going away, so update stats accordingly
897 */
898 blk_account_io_merge_request(next);
899
900 trace_block_rq_merge(next);
901
902 /*
903 * ownership of bio passed from next to req, return 'next' for
904 * the caller to free
905 */
906 next->bio = NULL;
907 return next;
908 }
909
attempt_back_merge(struct request_queue * q,struct request * rq)910 static struct request *attempt_back_merge(struct request_queue *q,
911 struct request *rq)
912 {
913 struct request *next = elv_latter_request(q, rq);
914
915 if (next)
916 return attempt_merge(q, rq, next);
917
918 return NULL;
919 }
920
attempt_front_merge(struct request_queue * q,struct request * rq)921 static struct request *attempt_front_merge(struct request_queue *q,
922 struct request *rq)
923 {
924 struct request *prev = elv_former_request(q, rq);
925
926 if (prev)
927 return attempt_merge(q, prev, rq);
928
929 return NULL;
930 }
931
932 /*
933 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
934 * otherwise. The caller is responsible for freeing 'next' if the merge
935 * happened.
936 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)937 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
938 struct request *next)
939 {
940 return attempt_merge(q, rq, next);
941 }
942
blk_rq_merge_ok(struct request * rq,struct bio * bio)943 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
944 {
945 if (!rq_mergeable(rq) || !bio_mergeable(bio))
946 return false;
947
948 if (req_op(rq) != bio_op(bio))
949 return false;
950
951 /* different data direction or already started, don't merge */
952 if (bio_data_dir(bio) != rq_data_dir(rq))
953 return false;
954
955 /* don't merge across cgroup boundaries */
956 if (!blk_cgroup_mergeable(rq, bio))
957 return false;
958
959 /* only merge integrity protected bio into ditto rq */
960 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
961 return false;
962
963 /* Only merge if the crypt contexts are compatible */
964 if (!bio_crypt_rq_ctx_compatible(rq, bio))
965 return false;
966
967 /* Don't merge requests with different write hints. */
968 if (rq->write_hint != bio->bi_write_hint)
969 return false;
970
971 if (rq->ioprio != bio_prio(bio))
972 return false;
973
974 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
975 return false;
976
977 return true;
978 }
979
blk_try_merge(struct request * rq,struct bio * bio)980 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
981 {
982 if (blk_discard_mergable(rq))
983 return ELEVATOR_DISCARD_MERGE;
984 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
985 return ELEVATOR_BACK_MERGE;
986 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
987 return ELEVATOR_FRONT_MERGE;
988 return ELEVATOR_NO_MERGE;
989 }
990
blk_account_io_merge_bio(struct request * req)991 static void blk_account_io_merge_bio(struct request *req)
992 {
993 if (!blk_do_io_stat(req))
994 return;
995
996 part_stat_lock();
997 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
998 part_stat_unlock();
999 }
1000
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1001 enum bio_merge_status bio_attempt_back_merge(struct request *req,
1002 struct bio *bio, unsigned int nr_segs)
1003 {
1004 const blk_opf_t ff = bio_failfast(bio);
1005
1006 if (!ll_back_merge_fn(req, bio, nr_segs))
1007 return BIO_MERGE_FAILED;
1008
1009 trace_block_bio_backmerge(bio);
1010 rq_qos_merge(req->q, req, bio);
1011
1012 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1013 blk_rq_set_mixed_merge(req);
1014
1015 blk_update_mixed_merge(req, bio, false);
1016
1017 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1018 blk_zone_write_plug_bio_merged(bio);
1019
1020 req->biotail->bi_next = bio;
1021 req->biotail = bio;
1022 req->__data_len += bio->bi_iter.bi_size;
1023
1024 bio_crypt_free_ctx(bio);
1025
1026 blk_account_io_merge_bio(req);
1027 return BIO_MERGE_OK;
1028 }
1029
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1030 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1031 struct bio *bio, unsigned int nr_segs)
1032 {
1033 const blk_opf_t ff = bio_failfast(bio);
1034
1035 /*
1036 * A front merge for writes to sequential zones of a zoned block device
1037 * can happen only if the user submitted writes out of order. Do not
1038 * merge such write to let it fail.
1039 */
1040 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1041 return BIO_MERGE_FAILED;
1042
1043 if (!ll_front_merge_fn(req, bio, nr_segs))
1044 return BIO_MERGE_FAILED;
1045
1046 trace_block_bio_frontmerge(bio);
1047 rq_qos_merge(req->q, req, bio);
1048
1049 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1050 blk_rq_set_mixed_merge(req);
1051
1052 blk_update_mixed_merge(req, bio, true);
1053
1054 bio->bi_next = req->bio;
1055 req->bio = bio;
1056
1057 req->__sector = bio->bi_iter.bi_sector;
1058 req->__data_len += bio->bi_iter.bi_size;
1059
1060 bio_crypt_do_front_merge(req, bio);
1061
1062 blk_account_io_merge_bio(req);
1063 return BIO_MERGE_OK;
1064 }
1065
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1066 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1067 struct request *req, struct bio *bio)
1068 {
1069 unsigned short segments = blk_rq_nr_discard_segments(req);
1070
1071 if (segments >= queue_max_discard_segments(q))
1072 goto no_merge;
1073 if (blk_rq_sectors(req) + bio_sectors(bio) >
1074 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1075 goto no_merge;
1076
1077 rq_qos_merge(q, req, bio);
1078
1079 req->biotail->bi_next = bio;
1080 req->biotail = bio;
1081 req->__data_len += bio->bi_iter.bi_size;
1082 req->nr_phys_segments = segments + 1;
1083
1084 blk_account_io_merge_bio(req);
1085 return BIO_MERGE_OK;
1086 no_merge:
1087 req_set_nomerge(q, req);
1088 return BIO_MERGE_FAILED;
1089 }
1090
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1091 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1092 struct request *rq,
1093 struct bio *bio,
1094 unsigned int nr_segs,
1095 bool sched_allow_merge)
1096 {
1097 if (!blk_rq_merge_ok(rq, bio))
1098 return BIO_MERGE_NONE;
1099
1100 switch (blk_try_merge(rq, bio)) {
1101 case ELEVATOR_BACK_MERGE:
1102 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1103 return bio_attempt_back_merge(rq, bio, nr_segs);
1104 break;
1105 case ELEVATOR_FRONT_MERGE:
1106 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1107 return bio_attempt_front_merge(rq, bio, nr_segs);
1108 break;
1109 case ELEVATOR_DISCARD_MERGE:
1110 return bio_attempt_discard_merge(q, rq, bio);
1111 default:
1112 return BIO_MERGE_NONE;
1113 }
1114
1115 return BIO_MERGE_FAILED;
1116 }
1117
1118 /**
1119 * blk_attempt_plug_merge - try to merge with %current's plugged list
1120 * @q: request_queue new bio is being queued at
1121 * @bio: new bio being queued
1122 * @nr_segs: number of segments in @bio
1123 * from the passed in @q already in the plug list
1124 *
1125 * Determine whether @bio being queued on @q can be merged with the previous
1126 * request on %current's plugged list. Returns %true if merge was successful,
1127 * otherwise %false.
1128 *
1129 * Plugging coalesces IOs from the same issuer for the same purpose without
1130 * going through @q->queue_lock. As such it's more of an issuing mechanism
1131 * than scheduling, and the request, while may have elvpriv data, is not
1132 * added on the elevator at this point. In addition, we don't have
1133 * reliable access to the elevator outside queue lock. Only check basic
1134 * merging parameters without querying the elevator.
1135 *
1136 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1137 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1138 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1139 unsigned int nr_segs)
1140 {
1141 struct blk_plug *plug = current->plug;
1142 struct request *rq;
1143
1144 if (!plug || rq_list_empty(&plug->mq_list))
1145 return false;
1146
1147 rq = plug->mq_list.tail;
1148 if (rq->q == q)
1149 return blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1150 BIO_MERGE_OK;
1151 else if (!plug->multiple_queues)
1152 return false;
1153
1154 rq_list_for_each(&plug->mq_list, rq) {
1155 if (rq->q != q)
1156 continue;
1157 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1158 BIO_MERGE_OK)
1159 return true;
1160 break;
1161 }
1162 return false;
1163 }
1164
1165 /*
1166 * Iterate list of requests and see if we can merge this bio with any
1167 * of them.
1168 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1169 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1170 struct bio *bio, unsigned int nr_segs)
1171 {
1172 struct request *rq;
1173 int checked = 8;
1174
1175 list_for_each_entry_reverse(rq, list, queuelist) {
1176 if (!checked--)
1177 break;
1178
1179 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1180 case BIO_MERGE_NONE:
1181 continue;
1182 case BIO_MERGE_OK:
1183 return true;
1184 case BIO_MERGE_FAILED:
1185 return false;
1186 }
1187
1188 }
1189
1190 return false;
1191 }
1192 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1193
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1194 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1195 unsigned int nr_segs, struct request **merged_request)
1196 {
1197 struct request *rq;
1198
1199 switch (elv_merge(q, &rq, bio)) {
1200 case ELEVATOR_BACK_MERGE:
1201 if (!blk_mq_sched_allow_merge(q, rq, bio))
1202 return false;
1203 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1204 return false;
1205 *merged_request = attempt_back_merge(q, rq);
1206 if (!*merged_request)
1207 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1208 return true;
1209 case ELEVATOR_FRONT_MERGE:
1210 if (!blk_mq_sched_allow_merge(q, rq, bio))
1211 return false;
1212 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1213 return false;
1214 *merged_request = attempt_front_merge(q, rq);
1215 if (!*merged_request)
1216 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1217 return true;
1218 case ELEVATOR_DISCARD_MERGE:
1219 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1220 default:
1221 return false;
1222 }
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1225