• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	bool			need_sync;
81 	bool			boot_enabled;
82 	unsigned int		enable_count;
83 	unsigned int		prepare_count;
84 	unsigned int		protect_count;
85 	unsigned long		min_rate;
86 	unsigned long		max_rate;
87 	unsigned long		accuracy;
88 	int			phase;
89 	struct clk_duty		duty;
90 	struct hlist_head	children;
91 	struct hlist_node	child_node;
92 	struct hlist_head	clks;
93 	unsigned int		notifier_count;
94 #ifdef CONFIG_DEBUG_FS
95 	struct dentry		*dentry;
96 	struct hlist_node	debug_node;
97 #endif
98 	struct kref		ref;
99 };
100 
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/clk.h>
103 
104 struct clk {
105 	struct clk_core	*core;
106 	struct device *dev;
107 	const char *dev_id;
108 	const char *con_id;
109 	unsigned long min_rate;
110 	unsigned long max_rate;
111 	unsigned int exclusive_count;
112 	struct hlist_node clks_node;
113 };
114 
115 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)116 static int clk_pm_runtime_get(struct clk_core *core)
117 {
118 	if (!core->rpm_enabled)
119 		return 0;
120 
121 	return pm_runtime_resume_and_get(core->dev);
122 }
123 
clk_pm_runtime_put(struct clk_core * core)124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /**
133  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
134  *
135  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
136  * that disabling unused clks avoids a deadlock where a device is runtime PM
137  * resuming/suspending and the runtime PM callback is trying to grab the
138  * prepare_lock for something like clk_prepare_enable() while
139  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
140  * PM resume/suspend the device as well.
141  *
142  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
143  * success. Otherwise the lock is released on failure.
144  *
145  * Return: 0 on success, negative errno otherwise.
146  */
clk_pm_runtime_get_all(void)147 static int clk_pm_runtime_get_all(void)
148 {
149 	int ret;
150 	struct clk_core *core, *failed;
151 
152 	/*
153 	 * Grab the list lock to prevent any new clks from being registered
154 	 * or unregistered until clk_pm_runtime_put_all().
155 	 */
156 	mutex_lock(&clk_rpm_list_lock);
157 
158 	/*
159 	 * Runtime PM "get" all the devices that are needed for the clks
160 	 * currently registered. Do this without holding the prepare_lock, to
161 	 * avoid the deadlock.
162 	 */
163 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
164 		ret = clk_pm_runtime_get(core);
165 		if (ret) {
166 			failed = core;
167 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
168 			       dev_name(failed->dev), failed->name);
169 			goto err;
170 		}
171 	}
172 
173 	return 0;
174 
175 err:
176 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
177 		if (core == failed)
178 			break;
179 
180 		clk_pm_runtime_put(core);
181 	}
182 	mutex_unlock(&clk_rpm_list_lock);
183 
184 	return ret;
185 }
186 
187 /**
188  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
189  *
190  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
191  * the 'clk_rpm_list_lock'.
192  */
clk_pm_runtime_put_all(void)193 static void clk_pm_runtime_put_all(void)
194 {
195 	struct clk_core *core;
196 
197 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
198 		clk_pm_runtime_put(core);
199 	mutex_unlock(&clk_rpm_list_lock);
200 }
201 
clk_pm_runtime_init(struct clk_core * core)202 static void clk_pm_runtime_init(struct clk_core *core)
203 {
204 	struct device *dev = core->dev;
205 
206 	if (dev && pm_runtime_enabled(dev)) {
207 		core->rpm_enabled = true;
208 
209 		mutex_lock(&clk_rpm_list_lock);
210 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
211 		mutex_unlock(&clk_rpm_list_lock);
212 	}
213 }
214 
215 /***           locking             ***/
clk_prepare_lock(void)216 static void clk_prepare_lock(void)
217 {
218 	if (!mutex_trylock(&prepare_lock)) {
219 		if (prepare_owner == current) {
220 			prepare_refcnt++;
221 			return;
222 		}
223 		mutex_lock(&prepare_lock);
224 	}
225 	WARN_ON_ONCE(prepare_owner != NULL);
226 	WARN_ON_ONCE(prepare_refcnt != 0);
227 	prepare_owner = current;
228 	prepare_refcnt = 1;
229 }
230 
clk_prepare_unlock(void)231 static void clk_prepare_unlock(void)
232 {
233 	WARN_ON_ONCE(prepare_owner != current);
234 	WARN_ON_ONCE(prepare_refcnt == 0);
235 
236 	if (--prepare_refcnt)
237 		return;
238 	prepare_owner = NULL;
239 	mutex_unlock(&prepare_lock);
240 }
241 
clk_enable_lock(void)242 static unsigned long clk_enable_lock(void)
243 	__acquires(enable_lock)
244 {
245 	unsigned long flags;
246 
247 	/*
248 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
249 	 * we already hold the lock. So, in that case, we rely only on
250 	 * reference counting.
251 	 */
252 	if (!IS_ENABLED(CONFIG_SMP) ||
253 	    !spin_trylock_irqsave(&enable_lock, flags)) {
254 		if (enable_owner == current) {
255 			enable_refcnt++;
256 			__acquire(enable_lock);
257 			if (!IS_ENABLED(CONFIG_SMP))
258 				local_save_flags(flags);
259 			return flags;
260 		}
261 		spin_lock_irqsave(&enable_lock, flags);
262 	}
263 	WARN_ON_ONCE(enable_owner != NULL);
264 	WARN_ON_ONCE(enable_refcnt != 0);
265 	enable_owner = current;
266 	enable_refcnt = 1;
267 	return flags;
268 }
269 
clk_enable_unlock(unsigned long flags)270 static void clk_enable_unlock(unsigned long flags)
271 	__releases(enable_lock)
272 {
273 	WARN_ON_ONCE(enable_owner != current);
274 	WARN_ON_ONCE(enable_refcnt == 0);
275 
276 	if (--enable_refcnt) {
277 		__release(enable_lock);
278 		return;
279 	}
280 	enable_owner = NULL;
281 	spin_unlock_irqrestore(&enable_lock, flags);
282 }
283 
clk_core_rate_is_protected(struct clk_core * core)284 static bool clk_core_rate_is_protected(struct clk_core *core)
285 {
286 	return core->protect_count;
287 }
288 
clk_core_is_prepared(struct clk_core * core)289 static bool clk_core_is_prepared(struct clk_core *core)
290 {
291 	bool ret = false;
292 
293 	/*
294 	 * .is_prepared is optional for clocks that can prepare
295 	 * fall back to software usage counter if it is missing
296 	 */
297 	if (!core->ops->is_prepared)
298 		return core->prepare_count;
299 
300 	if (!clk_pm_runtime_get(core)) {
301 		ret = core->ops->is_prepared(core->hw);
302 		clk_pm_runtime_put(core);
303 	}
304 
305 	return ret;
306 }
307 
clk_core_is_enabled(struct clk_core * core)308 static bool clk_core_is_enabled(struct clk_core *core)
309 {
310 	bool ret = false;
311 
312 	/*
313 	 * .is_enabled is only mandatory for clocks that gate
314 	 * fall back to software usage counter if .is_enabled is missing
315 	 */
316 	if (!core->ops->is_enabled)
317 		return core->enable_count;
318 
319 	/*
320 	 * Check if clock controller's device is runtime active before
321 	 * calling .is_enabled callback. If not, assume that clock is
322 	 * disabled, because we might be called from atomic context, from
323 	 * which pm_runtime_get() is not allowed.
324 	 * This function is called mainly from clk_disable_unused_subtree,
325 	 * which ensures proper runtime pm activation of controller before
326 	 * taking enable spinlock, but the below check is needed if one tries
327 	 * to call it from other places.
328 	 */
329 	if (core->rpm_enabled) {
330 		pm_runtime_get_noresume(core->dev);
331 		if (!pm_runtime_active(core->dev)) {
332 			ret = false;
333 			goto done;
334 		}
335 	}
336 
337 	/*
338 	 * This could be called with the enable lock held, or from atomic
339 	 * context. If the parent isn't enabled already, we can't do
340 	 * anything here. We can also assume this clock isn't enabled.
341 	 */
342 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
343 		if (!clk_core_is_enabled(core->parent)) {
344 			ret = false;
345 			goto done;
346 		}
347 
348 	ret = core->ops->is_enabled(core->hw);
349 done:
350 	if (core->rpm_enabled)
351 		pm_runtime_put(core->dev);
352 
353 	return ret;
354 }
355 
356 /***    helper functions   ***/
357 
__clk_get_name(const struct clk * clk)358 const char *__clk_get_name(const struct clk *clk)
359 {
360 	return !clk ? NULL : clk->core->name;
361 }
362 EXPORT_SYMBOL_GPL(__clk_get_name);
363 
clk_hw_get_name(const struct clk_hw * hw)364 const char *clk_hw_get_name(const struct clk_hw *hw)
365 {
366 	return hw->core->name;
367 }
368 EXPORT_SYMBOL_GPL(clk_hw_get_name);
369 
__clk_get_hw(struct clk * clk)370 struct clk_hw *__clk_get_hw(struct clk *clk)
371 {
372 	return !clk ? NULL : clk->core->hw;
373 }
374 EXPORT_SYMBOL_GPL(__clk_get_hw);
375 
clk_hw_get_num_parents(const struct clk_hw * hw)376 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
377 {
378 	return hw->core->num_parents;
379 }
380 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
381 
clk_hw_get_parent(const struct clk_hw * hw)382 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
383 {
384 	return hw->core->parent ? hw->core->parent->hw : NULL;
385 }
386 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
387 
__clk_lookup_subtree(const char * name,struct clk_core * core)388 static struct clk_core *__clk_lookup_subtree(const char *name,
389 					     struct clk_core *core)
390 {
391 	struct clk_core *child;
392 	struct clk_core *ret;
393 
394 	if (!strcmp(core->name, name))
395 		return core;
396 
397 	hlist_for_each_entry(child, &core->children, child_node) {
398 		ret = __clk_lookup_subtree(name, child);
399 		if (ret)
400 			return ret;
401 	}
402 
403 	return NULL;
404 }
405 
clk_core_lookup(const char * name)406 static struct clk_core *clk_core_lookup(const char *name)
407 {
408 	struct clk_core *root_clk;
409 	struct clk_core *ret;
410 
411 	if (!name)
412 		return NULL;
413 
414 	/* search the 'proper' clk tree first */
415 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
416 		ret = __clk_lookup_subtree(name, root_clk);
417 		if (ret)
418 			return ret;
419 	}
420 
421 	/* if not found, then search the orphan tree */
422 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
423 		ret = __clk_lookup_subtree(name, root_clk);
424 		if (ret)
425 			return ret;
426 	}
427 
428 	return NULL;
429 }
430 
431 #ifdef CONFIG_OF
432 static int of_parse_clkspec(const struct device_node *np, int index,
433 			    const char *name, struct of_phandle_args *out_args);
434 static struct clk_hw *
435 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
436 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)437 static inline int of_parse_clkspec(const struct device_node *np, int index,
438 				   const char *name,
439 				   struct of_phandle_args *out_args)
440 {
441 	return -ENOENT;
442 }
443 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)444 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
445 {
446 	return ERR_PTR(-ENOENT);
447 }
448 #endif
449 
450 /**
451  * clk_core_get - Find the clk_core parent of a clk
452  * @core: clk to find parent of
453  * @p_index: parent index to search for
454  *
455  * This is the preferred method for clk providers to find the parent of a
456  * clk when that parent is external to the clk controller. The parent_names
457  * array is indexed and treated as a local name matching a string in the device
458  * node's 'clock-names' property or as the 'con_id' matching the device's
459  * dev_name() in a clk_lookup. This allows clk providers to use their own
460  * namespace instead of looking for a globally unique parent string.
461  *
462  * For example the following DT snippet would allow a clock registered by the
463  * clock-controller@c001 that has a clk_init_data::parent_data array
464  * with 'xtal' in the 'name' member to find the clock provided by the
465  * clock-controller@f00abcd without needing to get the globally unique name of
466  * the xtal clk.
467  *
468  *      parent: clock-controller@f00abcd {
469  *              reg = <0xf00abcd 0xabcd>;
470  *              #clock-cells = <0>;
471  *      };
472  *
473  *      clock-controller@c001 {
474  *              reg = <0xc001 0xf00d>;
475  *              clocks = <&parent>;
476  *              clock-names = "xtal";
477  *              #clock-cells = <1>;
478  *      };
479  *
480  * Returns: -ENOENT when the provider can't be found or the clk doesn't
481  * exist in the provider or the name can't be found in the DT node or
482  * in a clkdev lookup. NULL when the provider knows about the clk but it
483  * isn't provided on this system.
484  * A valid clk_core pointer when the clk can be found in the provider.
485  */
clk_core_get(struct clk_core * core,u8 p_index)486 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
487 {
488 	const char *name = core->parents[p_index].fw_name;
489 	int index = core->parents[p_index].index;
490 	struct clk_hw *hw = ERR_PTR(-ENOENT);
491 	struct device *dev = core->dev;
492 	const char *dev_id = dev ? dev_name(dev) : NULL;
493 	struct device_node *np = core->of_node;
494 	struct of_phandle_args clkspec;
495 
496 	if (np && (name || index >= 0) &&
497 	    !of_parse_clkspec(np, index, name, &clkspec)) {
498 		hw = of_clk_get_hw_from_clkspec(&clkspec);
499 		of_node_put(clkspec.np);
500 	} else if (name) {
501 		/*
502 		 * If the DT search above couldn't find the provider fallback to
503 		 * looking up via clkdev based clk_lookups.
504 		 */
505 		hw = clk_find_hw(dev_id, name);
506 	}
507 
508 	if (IS_ERR(hw))
509 		return ERR_CAST(hw);
510 
511 	if (!hw)
512 		return NULL;
513 
514 	return hw->core;
515 }
516 
clk_core_fill_parent_index(struct clk_core * core,u8 index)517 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
518 {
519 	struct clk_parent_map *entry = &core->parents[index];
520 	struct clk_core *parent;
521 
522 	if (entry->hw) {
523 		parent = entry->hw->core;
524 	} else {
525 		parent = clk_core_get(core, index);
526 		if (PTR_ERR(parent) == -ENOENT && entry->name)
527 			parent = clk_core_lookup(entry->name);
528 	}
529 
530 	/*
531 	 * We have a direct reference but it isn't registered yet?
532 	 * Orphan it and let clk_reparent() update the orphan status
533 	 * when the parent is registered.
534 	 */
535 	if (!parent)
536 		parent = ERR_PTR(-EPROBE_DEFER);
537 
538 	/* Only cache it if it's not an error */
539 	if (!IS_ERR(parent))
540 		entry->core = parent;
541 }
542 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)543 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
544 							 u8 index)
545 {
546 	if (!core || index >= core->num_parents || !core->parents)
547 		return NULL;
548 
549 	if (!core->parents[index].core)
550 		clk_core_fill_parent_index(core, index);
551 
552 	return core->parents[index].core;
553 }
554 
555 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)556 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
557 {
558 	struct clk_core *parent;
559 
560 	parent = clk_core_get_parent_by_index(hw->core, index);
561 
562 	return !parent ? NULL : parent->hw;
563 }
564 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
565 
__clk_get_enable_count(struct clk * clk)566 unsigned int __clk_get_enable_count(struct clk *clk)
567 {
568 	return !clk ? 0 : clk->core->enable_count;
569 }
570 
clk_core_get_rate_nolock(struct clk_core * core)571 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
572 {
573 	if (!core)
574 		return 0;
575 
576 	if (!core->num_parents || core->parent)
577 		return core->rate;
578 
579 	/*
580 	 * Clk must have a parent because num_parents > 0 but the parent isn't
581 	 * known yet. Best to return 0 as the rate of this clk until we can
582 	 * properly recalc the rate based on the parent's rate.
583 	 */
584 	return 0;
585 }
586 
clk_hw_get_rate(const struct clk_hw * hw)587 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
588 {
589 	return clk_core_get_rate_nolock(hw->core);
590 }
591 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
592 
clk_core_get_accuracy_no_lock(struct clk_core * core)593 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
594 {
595 	if (!core)
596 		return 0;
597 
598 	return core->accuracy;
599 }
600 
clk_hw_get_flags(const struct clk_hw * hw)601 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
602 {
603 	return hw->core->flags;
604 }
605 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
606 
clk_hw_is_prepared(const struct clk_hw * hw)607 bool clk_hw_is_prepared(const struct clk_hw *hw)
608 {
609 	return clk_core_is_prepared(hw->core);
610 }
611 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
612 
clk_hw_rate_is_protected(const struct clk_hw * hw)613 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
614 {
615 	return clk_core_rate_is_protected(hw->core);
616 }
617 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
618 
clk_hw_is_enabled(const struct clk_hw * hw)619 bool clk_hw_is_enabled(const struct clk_hw *hw)
620 {
621 	return clk_core_is_enabled(hw->core);
622 }
623 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
624 
__clk_is_enabled(struct clk * clk)625 bool __clk_is_enabled(struct clk *clk)
626 {
627 	if (!clk)
628 		return false;
629 
630 	return clk_core_is_enabled(clk->core);
631 }
632 EXPORT_SYMBOL_GPL(__clk_is_enabled);
633 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)634 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
635 			   unsigned long best, unsigned long flags)
636 {
637 	if (flags & CLK_MUX_ROUND_CLOSEST)
638 		return abs(now - rate) < abs(best - rate);
639 
640 	return now <= rate && now > best;
641 }
642 
643 static void clk_core_init_rate_req(struct clk_core * const core,
644 				   struct clk_rate_request *req,
645 				   unsigned long rate);
646 
647 static int clk_core_round_rate_nolock(struct clk_core *core,
648 				      struct clk_rate_request *req);
649 
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)650 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
651 {
652 	struct clk_core *tmp;
653 	unsigned int i;
654 
655 	/* Optimize for the case where the parent is already the parent. */
656 	if (core->parent == parent)
657 		return true;
658 
659 	for (i = 0; i < core->num_parents; i++) {
660 		tmp = clk_core_get_parent_by_index(core, i);
661 		if (!tmp)
662 			continue;
663 
664 		if (tmp == parent)
665 			return true;
666 	}
667 
668 	return false;
669 }
670 
671 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)672 clk_core_forward_rate_req(struct clk_core *core,
673 			  const struct clk_rate_request *old_req,
674 			  struct clk_core *parent,
675 			  struct clk_rate_request *req,
676 			  unsigned long parent_rate)
677 {
678 	if (WARN_ON(!clk_core_has_parent(core, parent)))
679 		return;
680 
681 	clk_core_init_rate_req(parent, req, parent_rate);
682 
683 	if (req->min_rate < old_req->min_rate)
684 		req->min_rate = old_req->min_rate;
685 
686 	if (req->max_rate > old_req->max_rate)
687 		req->max_rate = old_req->max_rate;
688 }
689 
690 static int
clk_core_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)691 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
692 				    struct clk_rate_request *req)
693 {
694 	struct clk_core *core = hw->core;
695 	struct clk_core *parent = core->parent;
696 	unsigned long best;
697 	int ret;
698 
699 	if (core->flags & CLK_SET_RATE_PARENT) {
700 		struct clk_rate_request parent_req;
701 
702 		if (!parent) {
703 			req->rate = 0;
704 			return 0;
705 		}
706 
707 		clk_core_forward_rate_req(core, req, parent, &parent_req,
708 					  req->rate);
709 
710 		trace_clk_rate_request_start(&parent_req);
711 
712 		ret = clk_core_round_rate_nolock(parent, &parent_req);
713 		if (ret)
714 			return ret;
715 
716 		trace_clk_rate_request_done(&parent_req);
717 
718 		best = parent_req.rate;
719 	} else if (parent) {
720 		best = clk_core_get_rate_nolock(parent);
721 	} else {
722 		best = clk_core_get_rate_nolock(core);
723 	}
724 
725 	req->best_parent_rate = best;
726 	req->rate = best;
727 
728 	return 0;
729 }
730 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)731 int clk_mux_determine_rate_flags(struct clk_hw *hw,
732 				 struct clk_rate_request *req,
733 				 unsigned long flags)
734 {
735 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
736 	int i, num_parents, ret;
737 	unsigned long best = 0;
738 
739 	/* if NO_REPARENT flag set, pass through to current parent */
740 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
741 		return clk_core_determine_rate_no_reparent(hw, req);
742 
743 	/* find the parent that can provide the fastest rate <= rate */
744 	num_parents = core->num_parents;
745 	for (i = 0; i < num_parents; i++) {
746 		unsigned long parent_rate;
747 
748 		parent = clk_core_get_parent_by_index(core, i);
749 		if (!parent)
750 			continue;
751 
752 		if (core->flags & CLK_SET_RATE_PARENT) {
753 			struct clk_rate_request parent_req;
754 
755 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
756 
757 			trace_clk_rate_request_start(&parent_req);
758 
759 			ret = clk_core_round_rate_nolock(parent, &parent_req);
760 			if (ret)
761 				continue;
762 
763 			trace_clk_rate_request_done(&parent_req);
764 
765 			parent_rate = parent_req.rate;
766 		} else {
767 			parent_rate = clk_core_get_rate_nolock(parent);
768 		}
769 
770 		if (mux_is_better_rate(req->rate, parent_rate,
771 				       best, flags)) {
772 			best_parent = parent;
773 			best = parent_rate;
774 		}
775 	}
776 
777 	if (!best_parent)
778 		return -EINVAL;
779 
780 	req->best_parent_hw = best_parent->hw;
781 	req->best_parent_rate = best;
782 	req->rate = best;
783 
784 	return 0;
785 }
786 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
787 
__clk_lookup(const char * name)788 struct clk *__clk_lookup(const char *name)
789 {
790 	struct clk_core *core = clk_core_lookup(name);
791 
792 	return !core ? NULL : core->hw->clk;
793 }
794 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)795 static void clk_core_get_boundaries(struct clk_core *core,
796 				    unsigned long *min_rate,
797 				    unsigned long *max_rate)
798 {
799 	struct clk *clk_user;
800 
801 	lockdep_assert_held(&prepare_lock);
802 
803 	*min_rate = core->min_rate;
804 	*max_rate = core->max_rate;
805 
806 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
807 		*min_rate = max(*min_rate, clk_user->min_rate);
808 
809 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
810 		*max_rate = min(*max_rate, clk_user->max_rate);
811 }
812 
813 /*
814  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
815  * @hw: the hw clk we want to get the range from
816  * @min_rate: pointer to the variable that will hold the minimum
817  * @max_rate: pointer to the variable that will hold the maximum
818  *
819  * Fills the @min_rate and @max_rate variables with the minimum and
820  * maximum that clock can reach.
821  */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)822 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
823 			   unsigned long *max_rate)
824 {
825 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
826 }
827 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
828 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)829 static bool clk_core_check_boundaries(struct clk_core *core,
830 				      unsigned long min_rate,
831 				      unsigned long max_rate)
832 {
833 	struct clk *user;
834 
835 	lockdep_assert_held(&prepare_lock);
836 
837 	if (min_rate > core->max_rate || max_rate < core->min_rate)
838 		return false;
839 
840 	hlist_for_each_entry(user, &core->clks, clks_node)
841 		if (min_rate > user->max_rate || max_rate < user->min_rate)
842 			return false;
843 
844 	return true;
845 }
846 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)847 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
848 			   unsigned long max_rate)
849 {
850 	hw->core->min_rate = min_rate;
851 	hw->core->max_rate = max_rate;
852 }
853 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
854 
855 /*
856  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
857  * @hw: mux type clk to determine rate on
858  * @req: rate request, also used to return preferred parent and frequencies
859  *
860  * Helper for finding best parent to provide a given frequency. This can be used
861  * directly as a determine_rate callback (e.g. for a mux), or from a more
862  * complex clock that may combine a mux with other operations.
863  *
864  * Returns: 0 on success, -EERROR value on error
865  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)866 int __clk_mux_determine_rate(struct clk_hw *hw,
867 			     struct clk_rate_request *req)
868 {
869 	return clk_mux_determine_rate_flags(hw, req, 0);
870 }
871 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
872 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)873 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
874 				     struct clk_rate_request *req)
875 {
876 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
877 }
878 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
879 
880 /*
881  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
882  * @hw: mux type clk to determine rate on
883  * @req: rate request, also used to return preferred frequency
884  *
885  * Helper for finding best parent rate to provide a given frequency.
886  * This can be used directly as a determine_rate callback (e.g. for a
887  * mux), or from a more complex clock that may combine a mux with other
888  * operations.
889  *
890  * Returns: 0 on success, -EERROR value on error
891  */
clk_hw_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)892 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
893 				      struct clk_rate_request *req)
894 {
895 	return clk_core_determine_rate_no_reparent(hw, req);
896 }
897 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
898 
899 /***        clk api        ***/
900 
clk_core_rate_unprotect(struct clk_core * core)901 static void clk_core_rate_unprotect(struct clk_core *core)
902 {
903 	lockdep_assert_held(&prepare_lock);
904 
905 	if (!core)
906 		return;
907 
908 	if (WARN(core->protect_count == 0,
909 	    "%s already unprotected\n", core->name))
910 		return;
911 
912 	if (--core->protect_count > 0)
913 		return;
914 
915 	clk_core_rate_unprotect(core->parent);
916 }
917 
clk_core_rate_nuke_protect(struct clk_core * core)918 static int clk_core_rate_nuke_protect(struct clk_core *core)
919 {
920 	int ret;
921 
922 	lockdep_assert_held(&prepare_lock);
923 
924 	if (!core)
925 		return -EINVAL;
926 
927 	if (core->protect_count == 0)
928 		return 0;
929 
930 	ret = core->protect_count;
931 	core->protect_count = 1;
932 	clk_core_rate_unprotect(core);
933 
934 	return ret;
935 }
936 
937 /**
938  * clk_rate_exclusive_put - release exclusivity over clock rate control
939  * @clk: the clk over which the exclusivity is released
940  *
941  * clk_rate_exclusive_put() completes a critical section during which a clock
942  * consumer cannot tolerate any other consumer making any operation on the
943  * clock which could result in a rate change or rate glitch. Exclusive clocks
944  * cannot have their rate changed, either directly or indirectly due to changes
945  * further up the parent chain of clocks. As a result, clocks up parent chain
946  * also get under exclusive control of the calling consumer.
947  *
948  * If exlusivity is claimed more than once on clock, even by the same consumer,
949  * the rate effectively gets locked as exclusivity can't be preempted.
950  *
951  * Calls to clk_rate_exclusive_put() must be balanced with calls to
952  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
953  * error status.
954  */
clk_rate_exclusive_put(struct clk * clk)955 void clk_rate_exclusive_put(struct clk *clk)
956 {
957 	if (!clk)
958 		return;
959 
960 	clk_prepare_lock();
961 
962 	/*
963 	 * if there is something wrong with this consumer protect count, stop
964 	 * here before messing with the provider
965 	 */
966 	if (WARN_ON(clk->exclusive_count <= 0))
967 		goto out;
968 
969 	clk_core_rate_unprotect(clk->core);
970 	clk->exclusive_count--;
971 out:
972 	clk_prepare_unlock();
973 }
974 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
975 
clk_core_rate_protect(struct clk_core * core)976 static void clk_core_rate_protect(struct clk_core *core)
977 {
978 	lockdep_assert_held(&prepare_lock);
979 
980 	if (!core)
981 		return;
982 
983 	if (core->protect_count == 0)
984 		clk_core_rate_protect(core->parent);
985 
986 	core->protect_count++;
987 }
988 
clk_core_rate_restore_protect(struct clk_core * core,int count)989 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
990 {
991 	lockdep_assert_held(&prepare_lock);
992 
993 	if (!core)
994 		return;
995 
996 	if (count == 0)
997 		return;
998 
999 	clk_core_rate_protect(core);
1000 	core->protect_count = count;
1001 }
1002 
1003 /**
1004  * clk_rate_exclusive_get - get exclusivity over the clk rate control
1005  * @clk: the clk over which the exclusity of rate control is requested
1006  *
1007  * clk_rate_exclusive_get() begins a critical section during which a clock
1008  * consumer cannot tolerate any other consumer making any operation on the
1009  * clock which could result in a rate change or rate glitch. Exclusive clocks
1010  * cannot have their rate changed, either directly or indirectly due to changes
1011  * further up the parent chain of clocks. As a result, clocks up parent chain
1012  * also get under exclusive control of the calling consumer.
1013  *
1014  * If exlusivity is claimed more than once on clock, even by the same consumer,
1015  * the rate effectively gets locked as exclusivity can't be preempted.
1016  *
1017  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1018  * clk_rate_exclusive_put(). Calls to this function may sleep.
1019  * Returns 0 on success, -EERROR otherwise
1020  */
clk_rate_exclusive_get(struct clk * clk)1021 int clk_rate_exclusive_get(struct clk *clk)
1022 {
1023 	if (!clk)
1024 		return 0;
1025 
1026 	clk_prepare_lock();
1027 	clk_core_rate_protect(clk->core);
1028 	clk->exclusive_count++;
1029 	clk_prepare_unlock();
1030 
1031 	return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1034 
devm_clk_rate_exclusive_put(void * data)1035 static void devm_clk_rate_exclusive_put(void *data)
1036 {
1037 	struct clk *clk = data;
1038 
1039 	clk_rate_exclusive_put(clk);
1040 }
1041 
devm_clk_rate_exclusive_get(struct device * dev,struct clk * clk)1042 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1043 {
1044 	int ret;
1045 
1046 	ret = clk_rate_exclusive_get(clk);
1047 	if (ret)
1048 		return ret;
1049 
1050 	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1051 }
1052 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1053 
clk_core_unprepare(struct clk_core * core)1054 static void clk_core_unprepare(struct clk_core *core)
1055 {
1056 	lockdep_assert_held(&prepare_lock);
1057 
1058 	if (!core)
1059 		return;
1060 
1061 	if (WARN(core->prepare_count == 0,
1062 	    "%s already unprepared\n", core->name))
1063 		return;
1064 
1065 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1066 	    "Unpreparing critical %s\n", core->name))
1067 		return;
1068 
1069 	if (core->flags & CLK_SET_RATE_GATE)
1070 		clk_core_rate_unprotect(core);
1071 
1072 	if (--core->prepare_count > 0)
1073 		return;
1074 
1075 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1076 
1077 	trace_clk_unprepare(core);
1078 
1079 	if (core->ops->unprepare)
1080 		core->ops->unprepare(core->hw);
1081 
1082 	trace_clk_unprepare_complete(core);
1083 	clk_core_unprepare(core->parent);
1084 	clk_pm_runtime_put(core);
1085 }
1086 
clk_core_unprepare_lock(struct clk_core * core)1087 static void clk_core_unprepare_lock(struct clk_core *core)
1088 {
1089 	clk_prepare_lock();
1090 	clk_core_unprepare(core);
1091 	clk_prepare_unlock();
1092 }
1093 
1094 /**
1095  * clk_unprepare - undo preparation of a clock source
1096  * @clk: the clk being unprepared
1097  *
1098  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1099  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1100  * if the operation may sleep.  One example is a clk which is accessed over
1101  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1102  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1103  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1104  */
clk_unprepare(struct clk * clk)1105 void clk_unprepare(struct clk *clk)
1106 {
1107 	if (IS_ERR_OR_NULL(clk))
1108 		return;
1109 
1110 	clk_core_unprepare_lock(clk->core);
1111 }
1112 EXPORT_SYMBOL_GPL(clk_unprepare);
1113 
clk_core_prepare(struct clk_core * core)1114 static int clk_core_prepare(struct clk_core *core)
1115 {
1116 	int ret = 0;
1117 
1118 	lockdep_assert_held(&prepare_lock);
1119 
1120 	if (!core)
1121 		return 0;
1122 
1123 	if (core->prepare_count == 0) {
1124 		ret = clk_pm_runtime_get(core);
1125 		if (ret)
1126 			return ret;
1127 
1128 		ret = clk_core_prepare(core->parent);
1129 		if (ret)
1130 			goto runtime_put;
1131 
1132 		trace_clk_prepare(core);
1133 
1134 		if (core->ops->prepare)
1135 			ret = core->ops->prepare(core->hw);
1136 
1137 		trace_clk_prepare_complete(core);
1138 
1139 		if (ret)
1140 			goto unprepare;
1141 	}
1142 
1143 	core->prepare_count++;
1144 
1145 	/*
1146 	 * CLK_SET_RATE_GATE is a special case of clock protection
1147 	 * Instead of a consumer claiming exclusive rate control, it is
1148 	 * actually the provider which prevents any consumer from making any
1149 	 * operation which could result in a rate change or rate glitch while
1150 	 * the clock is prepared.
1151 	 */
1152 	if (core->flags & CLK_SET_RATE_GATE)
1153 		clk_core_rate_protect(core);
1154 
1155 	return 0;
1156 unprepare:
1157 	clk_core_unprepare(core->parent);
1158 runtime_put:
1159 	clk_pm_runtime_put(core);
1160 	return ret;
1161 }
1162 
clk_core_prepare_lock(struct clk_core * core)1163 static int clk_core_prepare_lock(struct clk_core *core)
1164 {
1165 	int ret;
1166 
1167 	clk_prepare_lock();
1168 	ret = clk_core_prepare(core);
1169 	clk_prepare_unlock();
1170 
1171 	return ret;
1172 }
1173 
1174 /**
1175  * clk_prepare - prepare a clock source
1176  * @clk: the clk being prepared
1177  *
1178  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1179  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1180  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1181  * the complex case a clk ungate operation may require a fast and a slow part.
1182  * It is this reason that clk_prepare and clk_enable are not mutually
1183  * exclusive.  In fact clk_prepare must be called before clk_enable.
1184  * Returns 0 on success, -EERROR otherwise.
1185  */
clk_prepare(struct clk * clk)1186 int clk_prepare(struct clk *clk)
1187 {
1188 	if (!clk)
1189 		return 0;
1190 
1191 	return clk_core_prepare_lock(clk->core);
1192 }
1193 EXPORT_SYMBOL_GPL(clk_prepare);
1194 
clk_core_disable(struct clk_core * core)1195 static void clk_core_disable(struct clk_core *core)
1196 {
1197 	lockdep_assert_held(&enable_lock);
1198 
1199 	if (!core)
1200 		return;
1201 
1202 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1203 		return;
1204 
1205 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1206 	    "Disabling critical %s\n", core->name))
1207 		return;
1208 
1209 	if (--core->enable_count > 0)
1210 		return;
1211 
1212 	trace_clk_disable(core);
1213 
1214 	if (core->ops->disable)
1215 		core->ops->disable(core->hw);
1216 
1217 	trace_clk_disable_complete(core);
1218 
1219 	clk_core_disable(core->parent);
1220 }
1221 
clk_core_disable_lock(struct clk_core * core)1222 static void clk_core_disable_lock(struct clk_core *core)
1223 {
1224 	unsigned long flags;
1225 
1226 	flags = clk_enable_lock();
1227 	clk_core_disable(core);
1228 	clk_enable_unlock(flags);
1229 }
1230 
1231 /**
1232  * clk_disable - gate a clock
1233  * @clk: the clk being gated
1234  *
1235  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1236  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1237  * clk if the operation is fast and will never sleep.  One example is a
1238  * SoC-internal clk which is controlled via simple register writes.  In the
1239  * complex case a clk gate operation may require a fast and a slow part.  It is
1240  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1241  * In fact clk_disable must be called before clk_unprepare.
1242  */
clk_disable(struct clk * clk)1243 void clk_disable(struct clk *clk)
1244 {
1245 	if (IS_ERR_OR_NULL(clk))
1246 		return;
1247 
1248 	clk_core_disable_lock(clk->core);
1249 }
1250 EXPORT_SYMBOL_GPL(clk_disable);
1251 
clk_core_enable(struct clk_core * core)1252 static int clk_core_enable(struct clk_core *core)
1253 {
1254 	int ret = 0;
1255 
1256 	lockdep_assert_held(&enable_lock);
1257 
1258 	if (!core)
1259 		return 0;
1260 
1261 	if (WARN(core->prepare_count == 0,
1262 	    "Enabling unprepared %s\n", core->name))
1263 		return -ESHUTDOWN;
1264 
1265 	if (core->enable_count == 0) {
1266 		ret = clk_core_enable(core->parent);
1267 
1268 		if (ret)
1269 			return ret;
1270 
1271 		trace_clk_enable(core);
1272 
1273 		if (core->ops->enable)
1274 			ret = core->ops->enable(core->hw);
1275 
1276 		trace_clk_enable_complete(core);
1277 
1278 		if (ret) {
1279 			clk_core_disable(core->parent);
1280 			return ret;
1281 		}
1282 	}
1283 
1284 	core->enable_count++;
1285 	return 0;
1286 }
1287 
clk_core_enable_lock(struct clk_core * core)1288 static int clk_core_enable_lock(struct clk_core *core)
1289 {
1290 	unsigned long flags;
1291 	int ret;
1292 
1293 	flags = clk_enable_lock();
1294 	ret = clk_core_enable(core);
1295 	clk_enable_unlock(flags);
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  * clk_gate_restore_context - restore context for poweroff
1302  * @hw: the clk_hw pointer of clock whose state is to be restored
1303  *
1304  * The clock gate restore context function enables or disables
1305  * the gate clocks based on the enable_count. This is done in cases
1306  * where the clock context is lost and based on the enable_count
1307  * the clock either needs to be enabled/disabled. This
1308  * helps restore the state of gate clocks.
1309  */
clk_gate_restore_context(struct clk_hw * hw)1310 void clk_gate_restore_context(struct clk_hw *hw)
1311 {
1312 	struct clk_core *core = hw->core;
1313 
1314 	if (core->enable_count)
1315 		core->ops->enable(hw);
1316 	else
1317 		core->ops->disable(hw);
1318 }
1319 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1320 
clk_core_save_context(struct clk_core * core)1321 static int clk_core_save_context(struct clk_core *core)
1322 {
1323 	struct clk_core *child;
1324 	int ret = 0;
1325 
1326 	hlist_for_each_entry(child, &core->children, child_node) {
1327 		ret = clk_core_save_context(child);
1328 		if (ret < 0)
1329 			return ret;
1330 	}
1331 
1332 	if (core->ops && core->ops->save_context)
1333 		ret = core->ops->save_context(core->hw);
1334 
1335 	return ret;
1336 }
1337 
clk_core_restore_context(struct clk_core * core)1338 static void clk_core_restore_context(struct clk_core *core)
1339 {
1340 	struct clk_core *child;
1341 
1342 	if (core->ops && core->ops->restore_context)
1343 		core->ops->restore_context(core->hw);
1344 
1345 	hlist_for_each_entry(child, &core->children, child_node)
1346 		clk_core_restore_context(child);
1347 }
1348 
1349 /**
1350  * clk_save_context - save clock context for poweroff
1351  *
1352  * Saves the context of the clock register for powerstates in which the
1353  * contents of the registers will be lost. Occurs deep within the suspend
1354  * code.  Returns 0 on success.
1355  */
clk_save_context(void)1356 int clk_save_context(void)
1357 {
1358 	struct clk_core *clk;
1359 	int ret;
1360 
1361 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1362 		ret = clk_core_save_context(clk);
1363 		if (ret < 0)
1364 			return ret;
1365 	}
1366 
1367 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1368 		ret = clk_core_save_context(clk);
1369 		if (ret < 0)
1370 			return ret;
1371 	}
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(clk_save_context);
1376 
1377 /**
1378  * clk_restore_context - restore clock context after poweroff
1379  *
1380  * Restore the saved clock context upon resume.
1381  *
1382  */
clk_restore_context(void)1383 void clk_restore_context(void)
1384 {
1385 	struct clk_core *core;
1386 
1387 	hlist_for_each_entry(core, &clk_root_list, child_node)
1388 		clk_core_restore_context(core);
1389 
1390 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1391 		clk_core_restore_context(core);
1392 }
1393 EXPORT_SYMBOL_GPL(clk_restore_context);
1394 
1395 /**
1396  * clk_enable - ungate a clock
1397  * @clk: the clk being ungated
1398  *
1399  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1400  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1401  * if the operation will never sleep.  One example is a SoC-internal clk which
1402  * is controlled via simple register writes.  In the complex case a clk ungate
1403  * operation may require a fast and a slow part.  It is this reason that
1404  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1405  * must be called before clk_enable.  Returns 0 on success, -EERROR
1406  * otherwise.
1407  */
clk_enable(struct clk * clk)1408 int clk_enable(struct clk *clk)
1409 {
1410 	if (!clk)
1411 		return 0;
1412 
1413 	return clk_core_enable_lock(clk->core);
1414 }
1415 EXPORT_SYMBOL_GPL(clk_enable);
1416 
1417 /**
1418  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1419  * @clk: clock source
1420  *
1421  * Returns true if clk_prepare() implicitly enables the clock, effectively
1422  * making clk_enable()/clk_disable() no-ops, false otherwise.
1423  *
1424  * This is of interest mainly to power management code where actually
1425  * disabling the clock also requires unpreparing it to have any material
1426  * effect.
1427  *
1428  * Regardless of the value returned here, the caller must always invoke
1429  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1430  * to be right.
1431  */
clk_is_enabled_when_prepared(struct clk * clk)1432 bool clk_is_enabled_when_prepared(struct clk *clk)
1433 {
1434 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1435 }
1436 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1437 
clk_core_prepare_enable(struct clk_core * core)1438 static int clk_core_prepare_enable(struct clk_core *core)
1439 {
1440 	int ret;
1441 
1442 	ret = clk_core_prepare_lock(core);
1443 	if (ret)
1444 		return ret;
1445 
1446 	ret = clk_core_enable_lock(core);
1447 	if (ret)
1448 		clk_core_unprepare_lock(core);
1449 
1450 	return ret;
1451 }
1452 
clk_core_disable_unprepare(struct clk_core * core)1453 static void clk_core_disable_unprepare(struct clk_core *core)
1454 {
1455 	clk_core_disable_lock(core);
1456 	clk_core_unprepare_lock(core);
1457 }
1458 
clk_unprepare_unused_subtree(struct clk_core * core)1459 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1460 {
1461 	struct clk_core *child;
1462 
1463 	lockdep_assert_held(&prepare_lock);
1464 
1465 	hlist_for_each_entry(child, &core->children, child_node)
1466 		clk_unprepare_unused_subtree(child);
1467 
1468 	if (dev_has_sync_state(core->dev) &&
1469 	    !(core->flags & CLK_DONT_HOLD_STATE))
1470 		return;
1471 
1472 	if (core->prepare_count)
1473 		return;
1474 
1475 	if (core->flags & CLK_IGNORE_UNUSED)
1476 		return;
1477 
1478 	if (clk_core_is_prepared(core)) {
1479 		trace_clk_unprepare(core);
1480 		if (core->ops->unprepare_unused)
1481 			core->ops->unprepare_unused(core->hw);
1482 		else if (core->ops->unprepare)
1483 			core->ops->unprepare(core->hw);
1484 		trace_clk_unprepare_complete(core);
1485 	}
1486 }
1487 
clk_disable_unused_subtree(struct clk_core * core)1488 static void __init clk_disable_unused_subtree(struct clk_core *core)
1489 {
1490 	struct clk_core *child;
1491 	unsigned long flags;
1492 
1493 	lockdep_assert_held(&prepare_lock);
1494 
1495 	hlist_for_each_entry(child, &core->children, child_node)
1496 		clk_disable_unused_subtree(child);
1497 
1498 	if (dev_has_sync_state(core->dev) &&
1499 	    !(core->flags & CLK_DONT_HOLD_STATE))
1500 		return;
1501 
1502 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1503 		clk_core_prepare_enable(core->parent);
1504 
1505 	flags = clk_enable_lock();
1506 
1507 	if (core->enable_count)
1508 		goto unlock_out;
1509 
1510 	if (core->flags & CLK_IGNORE_UNUSED)
1511 		goto unlock_out;
1512 
1513 	/*
1514 	 * some gate clocks have special needs during the disable-unused
1515 	 * sequence.  call .disable_unused if available, otherwise fall
1516 	 * back to .disable
1517 	 */
1518 	if (clk_core_is_enabled(core)) {
1519 		trace_clk_disable(core);
1520 		if (core->ops->disable_unused)
1521 			core->ops->disable_unused(core->hw);
1522 		else if (core->ops->disable)
1523 			core->ops->disable(core->hw);
1524 		trace_clk_disable_complete(core);
1525 	}
1526 
1527 unlock_out:
1528 	clk_enable_unlock(flags);
1529 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1530 		clk_core_disable_unprepare(core->parent);
1531 }
1532 
1533 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1534 static int __init clk_ignore_unused_setup(char *__unused)
1535 {
1536 	clk_ignore_unused = true;
1537 	return 1;
1538 }
1539 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1540 
clk_disable_unused(void)1541 static int __init clk_disable_unused(void)
1542 {
1543 	struct clk_core *core;
1544 	int ret;
1545 
1546 	if (clk_ignore_unused) {
1547 		pr_warn("clk: Not disabling unused clocks\n");
1548 		return 0;
1549 	}
1550 
1551 	pr_info("clk: Disabling unused clocks\n");
1552 
1553 	ret = clk_pm_runtime_get_all();
1554 	if (ret)
1555 		return ret;
1556 	/*
1557 	 * Grab the prepare lock to keep the clk topology stable while iterating
1558 	 * over clks.
1559 	 */
1560 	clk_prepare_lock();
1561 
1562 	hlist_for_each_entry(core, &clk_root_list, child_node)
1563 		clk_disable_unused_subtree(core);
1564 
1565 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1566 		clk_disable_unused_subtree(core);
1567 
1568 	hlist_for_each_entry(core, &clk_root_list, child_node)
1569 		clk_unprepare_unused_subtree(core);
1570 
1571 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1572 		clk_unprepare_unused_subtree(core);
1573 
1574 	clk_prepare_unlock();
1575 
1576 	clk_pm_runtime_put_all();
1577 
1578 	return 0;
1579 }
1580 late_initcall_sync(clk_disable_unused);
1581 
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1582 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1583 					      struct device *dev)
1584 {
1585 	struct clk_core *child;
1586 
1587 	lockdep_assert_held(&prepare_lock);
1588 
1589 	hlist_for_each_entry(child, &core->children, child_node)
1590 		clk_unprepare_disable_dev_subtree(child, dev);
1591 
1592 	if (core->dev != dev || !core->need_sync)
1593 		return;
1594 
1595 	clk_core_disable_unprepare(core);
1596 }
1597 
clk_sync_state(struct device * dev)1598 void clk_sync_state(struct device *dev)
1599 {
1600 	struct clk_core *core;
1601 
1602 	clk_prepare_lock();
1603 
1604 	hlist_for_each_entry(core, &clk_root_list, child_node)
1605 		clk_unprepare_disable_dev_subtree(core, dev);
1606 
1607 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1608 		clk_unprepare_disable_dev_subtree(core, dev);
1609 
1610 	clk_prepare_unlock();
1611 }
1612 EXPORT_SYMBOL_GPL(clk_sync_state);
1613 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1614 static int clk_core_determine_round_nolock(struct clk_core *core,
1615 					   struct clk_rate_request *req)
1616 {
1617 	long rate;
1618 
1619 	lockdep_assert_held(&prepare_lock);
1620 
1621 	if (!core)
1622 		return 0;
1623 
1624 	/*
1625 	 * Some clock providers hand-craft their clk_rate_requests and
1626 	 * might not fill min_rate and max_rate.
1627 	 *
1628 	 * If it's the case, clamping the rate is equivalent to setting
1629 	 * the rate to 0 which is bad. Skip the clamping but complain so
1630 	 * that it gets fixed, hopefully.
1631 	 */
1632 	if (!req->min_rate && !req->max_rate)
1633 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1634 			__func__, core->name);
1635 	else
1636 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1637 
1638 	/*
1639 	 * At this point, core protection will be disabled
1640 	 * - if the provider is not protected at all
1641 	 * - if the calling consumer is the only one which has exclusivity
1642 	 *   over the provider
1643 	 */
1644 	if (clk_core_rate_is_protected(core)) {
1645 		req->rate = core->rate;
1646 	} else if (core->ops->determine_rate) {
1647 		return core->ops->determine_rate(core->hw, req);
1648 	} else if (core->ops->round_rate) {
1649 		rate = core->ops->round_rate(core->hw, req->rate,
1650 					     &req->best_parent_rate);
1651 		if (rate < 0)
1652 			return rate;
1653 
1654 		req->rate = rate;
1655 	} else {
1656 		return -EINVAL;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1662 static void clk_core_init_rate_req(struct clk_core * const core,
1663 				   struct clk_rate_request *req,
1664 				   unsigned long rate)
1665 {
1666 	struct clk_core *parent;
1667 
1668 	if (WARN_ON(!req))
1669 		return;
1670 
1671 	memset(req, 0, sizeof(*req));
1672 	req->max_rate = ULONG_MAX;
1673 
1674 	if (!core)
1675 		return;
1676 
1677 	req->core = core;
1678 	req->rate = rate;
1679 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1680 
1681 	parent = core->parent;
1682 	if (parent) {
1683 		req->best_parent_hw = parent->hw;
1684 		req->best_parent_rate = parent->rate;
1685 	} else {
1686 		req->best_parent_hw = NULL;
1687 		req->best_parent_rate = 0;
1688 	}
1689 }
1690 
1691 /**
1692  * clk_hw_init_rate_request - Initializes a clk_rate_request
1693  * @hw: the clk for which we want to submit a rate request
1694  * @req: the clk_rate_request structure we want to initialise
1695  * @rate: the rate which is to be requested
1696  *
1697  * Initializes a clk_rate_request structure to submit to
1698  * __clk_determine_rate() or similar functions.
1699  */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1700 void clk_hw_init_rate_request(const struct clk_hw *hw,
1701 			      struct clk_rate_request *req,
1702 			      unsigned long rate)
1703 {
1704 	if (WARN_ON(!hw || !req))
1705 		return;
1706 
1707 	clk_core_init_rate_req(hw->core, req, rate);
1708 }
1709 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1710 
1711 /**
1712  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1713  * @hw: the original clock that got the rate request
1714  * @old_req: the original clk_rate_request structure we want to forward
1715  * @parent: the clk we want to forward @old_req to
1716  * @req: the clk_rate_request structure we want to initialise
1717  * @parent_rate: The rate which is to be requested to @parent
1718  *
1719  * Initializes a clk_rate_request structure to submit to a clock parent
1720  * in __clk_determine_rate() or similar functions.
1721  */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1722 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1723 				 const struct clk_rate_request *old_req,
1724 				 const struct clk_hw *parent,
1725 				 struct clk_rate_request *req,
1726 				 unsigned long parent_rate)
1727 {
1728 	if (WARN_ON(!hw || !old_req || !parent || !req))
1729 		return;
1730 
1731 	clk_core_forward_rate_req(hw->core, old_req,
1732 				  parent->core, req,
1733 				  parent_rate);
1734 }
1735 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1736 
clk_core_can_round(struct clk_core * const core)1737 static bool clk_core_can_round(struct clk_core * const core)
1738 {
1739 	return core->ops->determine_rate || core->ops->round_rate;
1740 }
1741 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1742 static int clk_core_round_rate_nolock(struct clk_core *core,
1743 				      struct clk_rate_request *req)
1744 {
1745 	int ret;
1746 
1747 	lockdep_assert_held(&prepare_lock);
1748 
1749 	if (!core) {
1750 		req->rate = 0;
1751 		return 0;
1752 	}
1753 
1754 	if (clk_core_can_round(core))
1755 		return clk_core_determine_round_nolock(core, req);
1756 
1757 	if (core->flags & CLK_SET_RATE_PARENT) {
1758 		struct clk_rate_request parent_req;
1759 
1760 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1761 
1762 		trace_clk_rate_request_start(&parent_req);
1763 
1764 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1765 		if (ret)
1766 			return ret;
1767 
1768 		trace_clk_rate_request_done(&parent_req);
1769 
1770 		req->best_parent_rate = parent_req.rate;
1771 		req->rate = parent_req.rate;
1772 
1773 		return 0;
1774 	}
1775 
1776 	req->rate = core->rate;
1777 	return 0;
1778 }
1779 
1780 /**
1781  * __clk_determine_rate - get the closest rate actually supported by a clock
1782  * @hw: determine the rate of this clock
1783  * @req: target rate request
1784  *
1785  * Useful for clk_ops such as .set_rate and .determine_rate.
1786  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1787 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1788 {
1789 	if (!hw) {
1790 		req->rate = 0;
1791 		return 0;
1792 	}
1793 
1794 	return clk_core_round_rate_nolock(hw->core, req);
1795 }
1796 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1797 
1798 /**
1799  * clk_hw_round_rate() - round the given rate for a hw clk
1800  * @hw: the hw clk for which we are rounding a rate
1801  * @rate: the rate which is to be rounded
1802  *
1803  * Takes in a rate as input and rounds it to a rate that the clk can actually
1804  * use.
1805  *
1806  * Context: prepare_lock must be held.
1807  *          For clk providers to call from within clk_ops such as .round_rate,
1808  *          .determine_rate.
1809  *
1810  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1811  *         else returns the parent rate.
1812  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1813 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1814 {
1815 	int ret;
1816 	struct clk_rate_request req;
1817 
1818 	clk_core_init_rate_req(hw->core, &req, rate);
1819 
1820 	trace_clk_rate_request_start(&req);
1821 
1822 	ret = clk_core_round_rate_nolock(hw->core, &req);
1823 	if (ret)
1824 		return 0;
1825 
1826 	trace_clk_rate_request_done(&req);
1827 
1828 	return req.rate;
1829 }
1830 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1831 
1832 /**
1833  * clk_round_rate - round the given rate for a clk
1834  * @clk: the clk for which we are rounding a rate
1835  * @rate: the rate which is to be rounded
1836  *
1837  * Takes in a rate as input and rounds it to a rate that the clk can actually
1838  * use which is then returned.  If clk doesn't support round_rate operation
1839  * then the parent rate is returned.
1840  */
clk_round_rate(struct clk * clk,unsigned long rate)1841 long clk_round_rate(struct clk *clk, unsigned long rate)
1842 {
1843 	struct clk_rate_request req;
1844 	int ret;
1845 
1846 	if (!clk)
1847 		return 0;
1848 
1849 	clk_prepare_lock();
1850 
1851 	if (clk->exclusive_count)
1852 		clk_core_rate_unprotect(clk->core);
1853 
1854 	clk_core_init_rate_req(clk->core, &req, rate);
1855 
1856 	trace_clk_rate_request_start(&req);
1857 
1858 	ret = clk_core_round_rate_nolock(clk->core, &req);
1859 
1860 	trace_clk_rate_request_done(&req);
1861 
1862 	if (clk->exclusive_count)
1863 		clk_core_rate_protect(clk->core);
1864 
1865 	clk_prepare_unlock();
1866 
1867 	if (ret)
1868 		return ret;
1869 
1870 	return req.rate;
1871 }
1872 EXPORT_SYMBOL_GPL(clk_round_rate);
1873 
1874 /**
1875  * __clk_notify - call clk notifier chain
1876  * @core: clk that is changing rate
1877  * @msg: clk notifier type (see include/linux/clk.h)
1878  * @old_rate: old clk rate
1879  * @new_rate: new clk rate
1880  *
1881  * Triggers a notifier call chain on the clk rate-change notification
1882  * for 'clk'.  Passes a pointer to the struct clk and the previous
1883  * and current rates to the notifier callback.  Intended to be called by
1884  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1885  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1886  * a driver returns that.
1887  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1888 static int __clk_notify(struct clk_core *core, unsigned long msg,
1889 		unsigned long old_rate, unsigned long new_rate)
1890 {
1891 	struct clk_notifier *cn;
1892 	struct clk_notifier_data cnd;
1893 	int ret = NOTIFY_DONE;
1894 
1895 	cnd.old_rate = old_rate;
1896 	cnd.new_rate = new_rate;
1897 
1898 	list_for_each_entry(cn, &clk_notifier_list, node) {
1899 		if (cn->clk->core == core) {
1900 			cnd.clk = cn->clk;
1901 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1902 					&cnd);
1903 			if (ret & NOTIFY_STOP_MASK)
1904 				return ret;
1905 		}
1906 	}
1907 
1908 	return ret;
1909 }
1910 
1911 /**
1912  * __clk_recalc_accuracies
1913  * @core: first clk in the subtree
1914  *
1915  * Walks the subtree of clks starting with clk and recalculates accuracies as
1916  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1917  * callback then it is assumed that the clock will take on the accuracy of its
1918  * parent.
1919  */
__clk_recalc_accuracies(struct clk_core * core)1920 static void __clk_recalc_accuracies(struct clk_core *core)
1921 {
1922 	unsigned long parent_accuracy = 0;
1923 	struct clk_core *child;
1924 
1925 	lockdep_assert_held(&prepare_lock);
1926 
1927 	if (core->parent)
1928 		parent_accuracy = core->parent->accuracy;
1929 
1930 	if (core->ops->recalc_accuracy)
1931 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1932 							  parent_accuracy);
1933 	else
1934 		core->accuracy = parent_accuracy;
1935 
1936 	hlist_for_each_entry(child, &core->children, child_node)
1937 		__clk_recalc_accuracies(child);
1938 }
1939 
clk_core_get_accuracy_recalc(struct clk_core * core)1940 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1941 {
1942 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1943 		__clk_recalc_accuracies(core);
1944 
1945 	return clk_core_get_accuracy_no_lock(core);
1946 }
1947 
1948 /**
1949  * clk_get_accuracy - return the accuracy of clk
1950  * @clk: the clk whose accuracy is being returned
1951  *
1952  * Simply returns the cached accuracy of the clk, unless
1953  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1954  * issued.
1955  * If clk is NULL then returns 0.
1956  */
clk_get_accuracy(struct clk * clk)1957 long clk_get_accuracy(struct clk *clk)
1958 {
1959 	long accuracy;
1960 
1961 	if (!clk)
1962 		return 0;
1963 
1964 	clk_prepare_lock();
1965 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1966 	clk_prepare_unlock();
1967 
1968 	return accuracy;
1969 }
1970 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1971 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1972 static unsigned long clk_recalc(struct clk_core *core,
1973 				unsigned long parent_rate)
1974 {
1975 	unsigned long rate = parent_rate;
1976 
1977 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1978 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1979 		clk_pm_runtime_put(core);
1980 	}
1981 	return rate;
1982 }
1983 
1984 /**
1985  * __clk_recalc_rates
1986  * @core: first clk in the subtree
1987  * @update_req: Whether req_rate should be updated with the new rate
1988  * @msg: notification type (see include/linux/clk.h)
1989  *
1990  * Walks the subtree of clks starting with clk and recalculates rates as it
1991  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1992  * it is assumed that the clock will take on the rate of its parent.
1993  *
1994  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1995  * if necessary.
1996  */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1997 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1998 			       unsigned long msg)
1999 {
2000 	unsigned long old_rate;
2001 	unsigned long parent_rate = 0;
2002 	struct clk_core *child;
2003 
2004 	lockdep_assert_held(&prepare_lock);
2005 
2006 	old_rate = core->rate;
2007 
2008 	if (core->parent)
2009 		parent_rate = core->parent->rate;
2010 
2011 	core->rate = clk_recalc(core, parent_rate);
2012 	if (update_req)
2013 		core->req_rate = core->rate;
2014 
2015 	/*
2016 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
2017 	 * & ABORT_RATE_CHANGE notifiers
2018 	 */
2019 	if (core->notifier_count && msg)
2020 		__clk_notify(core, msg, old_rate, core->rate);
2021 
2022 	hlist_for_each_entry(child, &core->children, child_node)
2023 		__clk_recalc_rates(child, update_req, msg);
2024 }
2025 
clk_core_get_rate_recalc(struct clk_core * core)2026 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
2027 {
2028 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
2029 		__clk_recalc_rates(core, false, 0);
2030 
2031 	return clk_core_get_rate_nolock(core);
2032 }
2033 
2034 /**
2035  * clk_get_rate - return the rate of clk
2036  * @clk: the clk whose rate is being returned
2037  *
2038  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
2039  * is set, which means a recalc_rate will be issued. Can be called regardless of
2040  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
2041  * 0.
2042  */
clk_get_rate(struct clk * clk)2043 unsigned long clk_get_rate(struct clk *clk)
2044 {
2045 	unsigned long rate;
2046 
2047 	if (!clk)
2048 		return 0;
2049 
2050 	clk_prepare_lock();
2051 	rate = clk_core_get_rate_recalc(clk->core);
2052 	clk_prepare_unlock();
2053 
2054 	return rate;
2055 }
2056 EXPORT_SYMBOL_GPL(clk_get_rate);
2057 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)2058 static int clk_fetch_parent_index(struct clk_core *core,
2059 				  struct clk_core *parent)
2060 {
2061 	int i;
2062 
2063 	if (!parent)
2064 		return -EINVAL;
2065 
2066 	for (i = 0; i < core->num_parents; i++) {
2067 		/* Found it first try! */
2068 		if (core->parents[i].core == parent)
2069 			return i;
2070 
2071 		/* Something else is here, so keep looking */
2072 		if (core->parents[i].core)
2073 			continue;
2074 
2075 		/* Maybe core hasn't been cached but the hw is all we know? */
2076 		if (core->parents[i].hw) {
2077 			if (core->parents[i].hw == parent->hw)
2078 				break;
2079 
2080 			/* Didn't match, but we're expecting a clk_hw */
2081 			continue;
2082 		}
2083 
2084 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2085 		if (parent == clk_core_get(core, i))
2086 			break;
2087 
2088 		/* Fallback to comparing globally unique names */
2089 		if (core->parents[i].name &&
2090 		    !strcmp(parent->name, core->parents[i].name))
2091 			break;
2092 	}
2093 
2094 	if (i == core->num_parents)
2095 		return -EINVAL;
2096 
2097 	core->parents[i].core = parent;
2098 	return i;
2099 }
2100 
2101 /**
2102  * clk_hw_get_parent_index - return the index of the parent clock
2103  * @hw: clk_hw associated with the clk being consumed
2104  *
2105  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2106  * clock does not have a current parent.
2107  */
clk_hw_get_parent_index(struct clk_hw * hw)2108 int clk_hw_get_parent_index(struct clk_hw *hw)
2109 {
2110 	struct clk_hw *parent = clk_hw_get_parent(hw);
2111 
2112 	if (WARN_ON(parent == NULL))
2113 		return -EINVAL;
2114 
2115 	return clk_fetch_parent_index(hw->core, parent->core);
2116 }
2117 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2118 
clk_core_hold_state(struct clk_core * core)2119 static void clk_core_hold_state(struct clk_core *core)
2120 {
2121 	if (core->need_sync || !core->boot_enabled)
2122 		return;
2123 
2124 	if (core->orphan || !dev_has_sync_state(core->dev))
2125 		return;
2126 
2127 	if (core->flags & CLK_DONT_HOLD_STATE)
2128 		return;
2129 
2130 	core->need_sync = !clk_core_prepare_enable(core);
2131 }
2132 
__clk_core_update_orphan_hold_state(struct clk_core * core)2133 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
2134 {
2135 	struct clk_core *child;
2136 
2137 	if (core->orphan)
2138 		return;
2139 
2140 	clk_core_hold_state(core);
2141 
2142 	hlist_for_each_entry(child, &core->children, child_node)
2143 		__clk_core_update_orphan_hold_state(child);
2144 }
2145 
2146 /*
2147  * Update the orphan status of @core and all its children.
2148  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)2149 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2150 {
2151 	struct clk_core *child;
2152 
2153 	core->orphan = is_orphan;
2154 
2155 	hlist_for_each_entry(child, &core->children, child_node)
2156 		clk_core_update_orphan_status(child, is_orphan);
2157 }
2158 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)2159 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2160 {
2161 	bool was_orphan = core->orphan;
2162 
2163 	hlist_del(&core->child_node);
2164 
2165 	if (new_parent) {
2166 		bool becomes_orphan = new_parent->orphan;
2167 
2168 		/* avoid duplicate POST_RATE_CHANGE notifications */
2169 		if (new_parent->new_child == core)
2170 			new_parent->new_child = NULL;
2171 
2172 		hlist_add_head(&core->child_node, &new_parent->children);
2173 
2174 		if (was_orphan != becomes_orphan)
2175 			clk_core_update_orphan_status(core, becomes_orphan);
2176 	} else {
2177 		hlist_add_head(&core->child_node, &clk_orphan_list);
2178 		if (!was_orphan)
2179 			clk_core_update_orphan_status(core, true);
2180 	}
2181 
2182 	core->parent = new_parent;
2183 }
2184 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)2185 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2186 					   struct clk_core *parent)
2187 {
2188 	unsigned long flags;
2189 	struct clk_core *old_parent = core->parent;
2190 
2191 	/*
2192 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2193 	 *
2194 	 * 2. Migrate prepare state between parents and prevent race with
2195 	 * clk_enable().
2196 	 *
2197 	 * If the clock is not prepared, then a race with
2198 	 * clk_enable/disable() is impossible since we already have the
2199 	 * prepare lock (future calls to clk_enable() need to be preceded by
2200 	 * a clk_prepare()).
2201 	 *
2202 	 * If the clock is prepared, migrate the prepared state to the new
2203 	 * parent and also protect against a race with clk_enable() by
2204 	 * forcing the clock and the new parent on.  This ensures that all
2205 	 * future calls to clk_enable() are practically NOPs with respect to
2206 	 * hardware and software states.
2207 	 *
2208 	 * See also: Comment for clk_set_parent() below.
2209 	 */
2210 
2211 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2212 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2213 		clk_core_prepare_enable(old_parent);
2214 		clk_core_prepare_enable(parent);
2215 	}
2216 
2217 	/* migrate prepare count if > 0 */
2218 	if (core->prepare_count) {
2219 		clk_core_prepare_enable(parent);
2220 		clk_core_enable_lock(core);
2221 	}
2222 
2223 	/* update the clk tree topology */
2224 	flags = clk_enable_lock();
2225 	clk_reparent(core, parent);
2226 	clk_enable_unlock(flags);
2227 
2228 	return old_parent;
2229 }
2230 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)2231 static void __clk_set_parent_after(struct clk_core *core,
2232 				   struct clk_core *parent,
2233 				   struct clk_core *old_parent)
2234 {
2235 	/*
2236 	 * Finish the migration of prepare state and undo the changes done
2237 	 * for preventing a race with clk_enable().
2238 	 */
2239 	if (core->prepare_count) {
2240 		clk_core_disable_lock(core);
2241 		clk_core_disable_unprepare(old_parent);
2242 	}
2243 
2244 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2245 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2246 		clk_core_disable_unprepare(parent);
2247 		clk_core_disable_unprepare(old_parent);
2248 	}
2249 }
2250 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2251 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2252 			    u8 p_index)
2253 {
2254 	unsigned long flags;
2255 	int ret = 0;
2256 	struct clk_core *old_parent;
2257 
2258 	old_parent = __clk_set_parent_before(core, parent);
2259 
2260 	trace_clk_set_parent(core, parent);
2261 
2262 	/* change clock input source */
2263 	if (parent && core->ops->set_parent)
2264 		ret = core->ops->set_parent(core->hw, p_index);
2265 
2266 	trace_clk_set_parent_complete(core, parent);
2267 
2268 	if (ret) {
2269 		flags = clk_enable_lock();
2270 		clk_reparent(core, old_parent);
2271 		clk_enable_unlock(flags);
2272 
2273 		__clk_set_parent_after(core, old_parent, parent);
2274 
2275 		return ret;
2276 	}
2277 
2278 	__clk_set_parent_after(core, parent, old_parent);
2279 
2280 	return 0;
2281 }
2282 
2283 /**
2284  * __clk_speculate_rates
2285  * @core: first clk in the subtree
2286  * @parent_rate: the "future" rate of clk's parent
2287  *
2288  * Walks the subtree of clks starting with clk, speculating rates as it
2289  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2290  *
2291  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2292  * pre-rate change notifications and returns early if no clks in the
2293  * subtree have subscribed to the notifications.  Note that if a clk does not
2294  * implement the .recalc_rate callback then it is assumed that the clock will
2295  * take on the rate of its parent.
2296  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2297 static int __clk_speculate_rates(struct clk_core *core,
2298 				 unsigned long parent_rate)
2299 {
2300 	struct clk_core *child;
2301 	unsigned long new_rate;
2302 	int ret = NOTIFY_DONE;
2303 
2304 	lockdep_assert_held(&prepare_lock);
2305 
2306 	new_rate = clk_recalc(core, parent_rate);
2307 
2308 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2309 	if (core->notifier_count)
2310 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2311 
2312 	if (ret & NOTIFY_STOP_MASK) {
2313 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2314 				__func__, core->name, ret);
2315 		goto out;
2316 	}
2317 
2318 	hlist_for_each_entry(child, &core->children, child_node) {
2319 		ret = __clk_speculate_rates(child, new_rate);
2320 		if (ret & NOTIFY_STOP_MASK)
2321 			break;
2322 	}
2323 
2324 out:
2325 	return ret;
2326 }
2327 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2328 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2329 			     struct clk_core *new_parent, u8 p_index)
2330 {
2331 	struct clk_core *child;
2332 
2333 	core->new_rate = new_rate;
2334 	core->new_parent = new_parent;
2335 	core->new_parent_index = p_index;
2336 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2337 	core->new_child = NULL;
2338 	if (new_parent && new_parent != core->parent)
2339 		new_parent->new_child = core;
2340 
2341 	hlist_for_each_entry(child, &core->children, child_node) {
2342 		child->new_rate = clk_recalc(child, new_rate);
2343 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2344 	}
2345 }
2346 
2347 /*
2348  * calculate the new rates returning the topmost clock that has to be
2349  * changed.
2350  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2351 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2352 					   unsigned long rate)
2353 {
2354 	struct clk_core *top = core;
2355 	struct clk_core *old_parent, *parent;
2356 	unsigned long best_parent_rate = 0;
2357 	unsigned long new_rate;
2358 	unsigned long min_rate;
2359 	unsigned long max_rate;
2360 	int p_index = 0;
2361 	long ret;
2362 
2363 	/* sanity */
2364 	if (IS_ERR_OR_NULL(core))
2365 		return NULL;
2366 
2367 	/* save parent rate, if it exists */
2368 	parent = old_parent = core->parent;
2369 	if (parent)
2370 		best_parent_rate = parent->rate;
2371 
2372 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2373 
2374 	/* find the closest rate and parent clk/rate */
2375 	if (clk_core_can_round(core)) {
2376 		struct clk_rate_request req;
2377 
2378 		clk_core_init_rate_req(core, &req, rate);
2379 
2380 		trace_clk_rate_request_start(&req);
2381 
2382 		ret = clk_core_determine_round_nolock(core, &req);
2383 		if (ret < 0)
2384 			return NULL;
2385 
2386 		trace_clk_rate_request_done(&req);
2387 
2388 		best_parent_rate = req.best_parent_rate;
2389 		new_rate = req.rate;
2390 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2391 
2392 		if (new_rate < min_rate || new_rate > max_rate)
2393 			return NULL;
2394 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2395 		/* pass-through clock without adjustable parent */
2396 		core->new_rate = core->rate;
2397 		return NULL;
2398 	} else {
2399 		/* pass-through clock with adjustable parent */
2400 		top = clk_calc_new_rates(parent, rate);
2401 		new_rate = parent->new_rate;
2402 		goto out;
2403 	}
2404 
2405 	/* some clocks must be gated to change parent */
2406 	if (parent != old_parent &&
2407 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2408 		pr_debug("%s: %s not gated but wants to reparent\n",
2409 			 __func__, core->name);
2410 		return NULL;
2411 	}
2412 
2413 	/* try finding the new parent index */
2414 	if (parent && core->num_parents > 1) {
2415 		p_index = clk_fetch_parent_index(core, parent);
2416 		if (p_index < 0) {
2417 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2418 				 __func__, parent->name, core->name);
2419 			return NULL;
2420 		}
2421 	}
2422 
2423 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2424 	    best_parent_rate != parent->rate)
2425 		top = clk_calc_new_rates(parent, best_parent_rate);
2426 
2427 out:
2428 	clk_calc_subtree(core, new_rate, parent, p_index);
2429 
2430 	return top;
2431 }
2432 
2433 /*
2434  * Notify about rate changes in a subtree. Always walk down the whole tree
2435  * so that in case of an error we can walk down the whole tree again and
2436  * abort the change.
2437  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2438 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2439 						  unsigned long event)
2440 {
2441 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2442 	int ret = NOTIFY_DONE;
2443 
2444 	if (core->rate == core->new_rate)
2445 		return NULL;
2446 
2447 	if (core->notifier_count) {
2448 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2449 		if (ret & NOTIFY_STOP_MASK)
2450 			fail_clk = core;
2451 	}
2452 
2453 	if (core->ops->pre_rate_change) {
2454 		ret = core->ops->pre_rate_change(core->hw, core->rate,
2455 						 core->new_rate);
2456 		if (ret)
2457 			fail_clk = core;
2458 	}
2459 
2460 	hlist_for_each_entry(child, &core->children, child_node) {
2461 		/* Skip children who will be reparented to another clock */
2462 		if (child->new_parent && child->new_parent != core)
2463 			continue;
2464 		tmp_clk = clk_propagate_rate_change(child, event);
2465 		if (tmp_clk)
2466 			fail_clk = tmp_clk;
2467 	}
2468 
2469 	/* handle the new child who might not be in core->children yet */
2470 	if (core->new_child) {
2471 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2472 		if (tmp_clk)
2473 			fail_clk = tmp_clk;
2474 	}
2475 
2476 	return fail_clk;
2477 }
2478 
2479 /*
2480  * walk down a subtree and set the new rates notifying the rate
2481  * change on the way
2482  */
clk_change_rate(struct clk_core * core)2483 static void clk_change_rate(struct clk_core *core)
2484 {
2485 	struct clk_core *child;
2486 	struct hlist_node *tmp;
2487 	unsigned long old_rate;
2488 	unsigned long best_parent_rate = 0;
2489 	bool skip_set_rate = false;
2490 	struct clk_core *old_parent;
2491 	struct clk_core *parent = NULL;
2492 
2493 	old_rate = core->rate;
2494 
2495 	if (core->new_parent) {
2496 		parent = core->new_parent;
2497 		best_parent_rate = core->new_parent->rate;
2498 	} else if (core->parent) {
2499 		parent = core->parent;
2500 		best_parent_rate = core->parent->rate;
2501 	}
2502 
2503 	if (clk_pm_runtime_get(core))
2504 		return;
2505 
2506 	if (core->flags & CLK_SET_RATE_UNGATE) {
2507 		clk_core_prepare(core);
2508 		clk_core_enable_lock(core);
2509 	}
2510 
2511 	if (core->new_parent && core->new_parent != core->parent) {
2512 		old_parent = __clk_set_parent_before(core, core->new_parent);
2513 		trace_clk_set_parent(core, core->new_parent);
2514 
2515 		if (core->ops->set_rate_and_parent) {
2516 			skip_set_rate = true;
2517 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2518 					best_parent_rate,
2519 					core->new_parent_index);
2520 		} else if (core->ops->set_parent) {
2521 			core->ops->set_parent(core->hw, core->new_parent_index);
2522 		}
2523 
2524 		trace_clk_set_parent_complete(core, core->new_parent);
2525 		__clk_set_parent_after(core, core->new_parent, old_parent);
2526 	}
2527 
2528 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2529 		clk_core_prepare_enable(parent);
2530 
2531 	trace_clk_set_rate(core, core->new_rate);
2532 
2533 	if (!skip_set_rate && core->ops->set_rate)
2534 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2535 
2536 	trace_clk_set_rate_complete(core, core->new_rate);
2537 
2538 	core->rate = clk_recalc(core, best_parent_rate);
2539 
2540 	if (core->flags & CLK_SET_RATE_UNGATE) {
2541 		clk_core_disable_lock(core);
2542 		clk_core_unprepare(core);
2543 	}
2544 
2545 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2546 		clk_core_disable_unprepare(parent);
2547 
2548 	if (core->notifier_count && old_rate != core->rate)
2549 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2550 
2551 	if (core->flags & CLK_RECALC_NEW_RATES)
2552 		(void)clk_calc_new_rates(core, core->new_rate);
2553 
2554 	if (core->ops->post_rate_change)
2555 		core->ops->post_rate_change(core->hw, old_rate, core->rate);
2556 
2557 	/*
2558 	 * Use safe iteration, as change_rate can actually swap parents
2559 	 * for certain clock types.
2560 	 */
2561 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2562 		/* Skip children who will be reparented to another clock */
2563 		if (child->new_parent && child->new_parent != core)
2564 			continue;
2565 		clk_change_rate(child);
2566 	}
2567 
2568 	/* handle the new child who might not be in core->children yet */
2569 	if (core->new_child)
2570 		clk_change_rate(core->new_child);
2571 
2572 	clk_pm_runtime_put(core);
2573 }
2574 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2575 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2576 						     unsigned long req_rate)
2577 {
2578 	int ret, cnt;
2579 	struct clk_rate_request req;
2580 
2581 	lockdep_assert_held(&prepare_lock);
2582 
2583 	if (!core)
2584 		return 0;
2585 
2586 	/* simulate what the rate would be if it could be freely set */
2587 	cnt = clk_core_rate_nuke_protect(core);
2588 	if (cnt < 0)
2589 		return cnt;
2590 
2591 	clk_core_init_rate_req(core, &req, req_rate);
2592 
2593 	trace_clk_rate_request_start(&req);
2594 
2595 	ret = clk_core_round_rate_nolock(core, &req);
2596 
2597 	trace_clk_rate_request_done(&req);
2598 
2599 	/* restore the protection */
2600 	clk_core_rate_restore_protect(core, cnt);
2601 
2602 	return ret ? 0 : req.rate;
2603 }
2604 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2605 static int clk_core_set_rate_nolock(struct clk_core *core,
2606 				    unsigned long req_rate)
2607 {
2608 	struct clk_core *top, *fail_clk;
2609 	unsigned long rate;
2610 	int ret;
2611 
2612 	if (!core)
2613 		return 0;
2614 
2615 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2616 
2617 	/* bail early if nothing to do */
2618 	if (rate == clk_core_get_rate_nolock(core))
2619 		return 0;
2620 
2621 	/* fail on a direct rate set of a protected provider */
2622 	if (clk_core_rate_is_protected(core))
2623 		return -EBUSY;
2624 
2625 	/* calculate new rates and get the topmost changed clock */
2626 	top = clk_calc_new_rates(core, req_rate);
2627 	if (!top)
2628 		return -EINVAL;
2629 
2630 	ret = clk_pm_runtime_get(core);
2631 	if (ret)
2632 		return ret;
2633 
2634 	/* notify that we are about to change rates */
2635 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2636 	if (fail_clk) {
2637 		pr_debug("%s: failed to set %s rate\n", __func__,
2638 				fail_clk->name);
2639 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2640 		ret = -EBUSY;
2641 		goto err;
2642 	}
2643 
2644 	/* change the rates */
2645 	clk_change_rate(top);
2646 
2647 	core->req_rate = req_rate;
2648 err:
2649 	clk_pm_runtime_put(core);
2650 
2651 	return ret;
2652 }
2653 
2654 /**
2655  * clk_set_rate - specify a new rate for clk
2656  * @clk: the clk whose rate is being changed
2657  * @rate: the new rate for clk
2658  *
2659  * In the simplest case clk_set_rate will only adjust the rate of clk.
2660  *
2661  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2662  * propagate up to clk's parent; whether or not this happens depends on the
2663  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2664  * after calling .round_rate then upstream parent propagation is ignored.  If
2665  * *parent_rate comes back with a new rate for clk's parent then we propagate
2666  * up to clk's parent and set its rate.  Upward propagation will continue
2667  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2668  * .round_rate stops requesting changes to clk's parent_rate.
2669  *
2670  * Rate changes are accomplished via tree traversal that also recalculates the
2671  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2672  *
2673  * Returns 0 on success, -EERROR otherwise.
2674  */
clk_set_rate(struct clk * clk,unsigned long rate)2675 int clk_set_rate(struct clk *clk, unsigned long rate)
2676 {
2677 	int ret;
2678 
2679 	if (!clk)
2680 		return 0;
2681 
2682 	/* prevent racing with updates to the clock topology */
2683 	clk_prepare_lock();
2684 
2685 	if (clk->exclusive_count)
2686 		clk_core_rate_unprotect(clk->core);
2687 
2688 	ret = clk_core_set_rate_nolock(clk->core, rate);
2689 
2690 	if (clk->exclusive_count)
2691 		clk_core_rate_protect(clk->core);
2692 
2693 	clk_prepare_unlock();
2694 
2695 	return ret;
2696 }
2697 EXPORT_SYMBOL_GPL(clk_set_rate);
2698 
2699 /**
2700  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2701  * @clk: the clk whose rate is being changed
2702  * @rate: the new rate for clk
2703  *
2704  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2705  * within a critical section
2706  *
2707  * This can be used initially to ensure that at least 1 consumer is
2708  * satisfied when several consumers are competing for exclusivity over the
2709  * same clock provider.
2710  *
2711  * The exclusivity is not applied if setting the rate failed.
2712  *
2713  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2714  * clk_rate_exclusive_put().
2715  *
2716  * Returns 0 on success, -EERROR otherwise.
2717  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2718 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2719 {
2720 	int ret;
2721 
2722 	if (!clk)
2723 		return 0;
2724 
2725 	/* prevent racing with updates to the clock topology */
2726 	clk_prepare_lock();
2727 
2728 	/*
2729 	 * The temporary protection removal is not here, on purpose
2730 	 * This function is meant to be used instead of clk_rate_protect,
2731 	 * so before the consumer code path protect the clock provider
2732 	 */
2733 
2734 	ret = clk_core_set_rate_nolock(clk->core, rate);
2735 	if (!ret) {
2736 		clk_core_rate_protect(clk->core);
2737 		clk->exclusive_count++;
2738 	}
2739 
2740 	clk_prepare_unlock();
2741 
2742 	return ret;
2743 }
2744 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2745 
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2746 static int clk_set_rate_range_nolock(struct clk *clk,
2747 				     unsigned long min,
2748 				     unsigned long max)
2749 {
2750 	int ret = 0;
2751 	unsigned long old_min, old_max, rate;
2752 
2753 	lockdep_assert_held(&prepare_lock);
2754 
2755 	if (!clk)
2756 		return 0;
2757 
2758 	trace_clk_set_rate_range(clk->core, min, max);
2759 
2760 	if (min > max) {
2761 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2762 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2763 		       min, max);
2764 		return -EINVAL;
2765 	}
2766 
2767 	if (clk->exclusive_count)
2768 		clk_core_rate_unprotect(clk->core);
2769 
2770 	/* Save the current values in case we need to rollback the change */
2771 	old_min = clk->min_rate;
2772 	old_max = clk->max_rate;
2773 	clk->min_rate = min;
2774 	clk->max_rate = max;
2775 
2776 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2777 		ret = -EINVAL;
2778 		goto out;
2779 	}
2780 
2781 	rate = clk->core->req_rate;
2782 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2783 		rate = clk_core_get_rate_recalc(clk->core);
2784 
2785 	/*
2786 	 * Since the boundaries have been changed, let's give the
2787 	 * opportunity to the provider to adjust the clock rate based on
2788 	 * the new boundaries.
2789 	 *
2790 	 * We also need to handle the case where the clock is currently
2791 	 * outside of the boundaries. Clamping the last requested rate
2792 	 * to the current minimum and maximum will also handle this.
2793 	 *
2794 	 * FIXME:
2795 	 * There is a catch. It may fail for the usual reason (clock
2796 	 * broken, clock protected, etc) but also because:
2797 	 * - round_rate() was not favorable and fell on the wrong
2798 	 *   side of the boundary
2799 	 * - the determine_rate() callback does not really check for
2800 	 *   this corner case when determining the rate
2801 	 */
2802 	rate = clamp(rate, min, max);
2803 	ret = clk_core_set_rate_nolock(clk->core, rate);
2804 	if (ret) {
2805 		/* rollback the changes */
2806 		clk->min_rate = old_min;
2807 		clk->max_rate = old_max;
2808 	}
2809 
2810 out:
2811 	if (clk->exclusive_count)
2812 		clk_core_rate_protect(clk->core);
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  * clk_set_rate_range - set a rate range for a clock source
2819  * @clk: clock source
2820  * @min: desired minimum clock rate in Hz, inclusive
2821  * @max: desired maximum clock rate in Hz, inclusive
2822  *
2823  * Return: 0 for success or negative errno on failure.
2824  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2825 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2826 {
2827 	int ret;
2828 
2829 	if (!clk)
2830 		return 0;
2831 
2832 	clk_prepare_lock();
2833 
2834 	ret = clk_set_rate_range_nolock(clk, min, max);
2835 
2836 	clk_prepare_unlock();
2837 
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2841 
2842 /**
2843  * clk_set_min_rate - set a minimum clock rate for a clock source
2844  * @clk: clock source
2845  * @rate: desired minimum clock rate in Hz, inclusive
2846  *
2847  * Returns success (0) or negative errno.
2848  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2849 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2850 {
2851 	if (!clk)
2852 		return 0;
2853 
2854 	trace_clk_set_min_rate(clk->core, rate);
2855 
2856 	return clk_set_rate_range(clk, rate, clk->max_rate);
2857 }
2858 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2859 
2860 /**
2861  * clk_set_max_rate - set a maximum clock rate for a clock source
2862  * @clk: clock source
2863  * @rate: desired maximum clock rate in Hz, inclusive
2864  *
2865  * Returns success (0) or negative errno.
2866  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2867 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2868 {
2869 	if (!clk)
2870 		return 0;
2871 
2872 	trace_clk_set_max_rate(clk->core, rate);
2873 
2874 	return clk_set_rate_range(clk, clk->min_rate, rate);
2875 }
2876 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2877 
2878 /**
2879  * clk_get_parent - return the parent of a clk
2880  * @clk: the clk whose parent gets returned
2881  *
2882  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2883  */
clk_get_parent(struct clk * clk)2884 struct clk *clk_get_parent(struct clk *clk)
2885 {
2886 	struct clk *parent;
2887 
2888 	if (!clk)
2889 		return NULL;
2890 
2891 	clk_prepare_lock();
2892 	/* TODO: Create a per-user clk and change callers to call clk_put */
2893 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2894 	clk_prepare_unlock();
2895 
2896 	return parent;
2897 }
2898 EXPORT_SYMBOL_GPL(clk_get_parent);
2899 
__clk_init_parent(struct clk_core * core)2900 static struct clk_core *__clk_init_parent(struct clk_core *core)
2901 {
2902 	u8 index = 0;
2903 
2904 	if (core->num_parents > 1 && core->ops->get_parent)
2905 		index = core->ops->get_parent(core->hw);
2906 
2907 	return clk_core_get_parent_by_index(core, index);
2908 }
2909 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2910 static void clk_core_reparent(struct clk_core *core,
2911 				  struct clk_core *new_parent)
2912 {
2913 	clk_reparent(core, new_parent);
2914 	__clk_recalc_accuracies(core);
2915 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2916 }
2917 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2918 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2919 {
2920 	if (!hw)
2921 		return;
2922 
2923 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2924 }
2925 
2926 /**
2927  * clk_has_parent - check if a clock is a possible parent for another
2928  * @clk: clock source
2929  * @parent: parent clock source
2930  *
2931  * This function can be used in drivers that need to check that a clock can be
2932  * the parent of another without actually changing the parent.
2933  *
2934  * Returns true if @parent is a possible parent for @clk, false otherwise.
2935  */
clk_has_parent(const struct clk * clk,const struct clk * parent)2936 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2937 {
2938 	/* NULL clocks should be nops, so return success if either is NULL. */
2939 	if (!clk || !parent)
2940 		return true;
2941 
2942 	return clk_core_has_parent(clk->core, parent->core);
2943 }
2944 EXPORT_SYMBOL_GPL(clk_has_parent);
2945 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2946 static int clk_core_set_parent_nolock(struct clk_core *core,
2947 				      struct clk_core *parent)
2948 {
2949 	int ret = 0;
2950 	int p_index = 0;
2951 	unsigned long p_rate = 0;
2952 
2953 	lockdep_assert_held(&prepare_lock);
2954 
2955 	if (!core)
2956 		return 0;
2957 
2958 	if (core->parent == parent)
2959 		return 0;
2960 
2961 	/* verify ops for multi-parent clks */
2962 	if (core->num_parents > 1 && !core->ops->set_parent)
2963 		return -EPERM;
2964 
2965 	/* check that we are allowed to re-parent if the clock is in use */
2966 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2967 		return -EBUSY;
2968 
2969 	if (clk_core_rate_is_protected(core))
2970 		return -EBUSY;
2971 
2972 	/* try finding the new parent index */
2973 	if (parent) {
2974 		p_index = clk_fetch_parent_index(core, parent);
2975 		if (p_index < 0) {
2976 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2977 					__func__, parent->name, core->name);
2978 			return p_index;
2979 		}
2980 		p_rate = parent->rate;
2981 	}
2982 
2983 	ret = clk_pm_runtime_get(core);
2984 	if (ret)
2985 		return ret;
2986 
2987 	/* propagate PRE_RATE_CHANGE notifications */
2988 	ret = __clk_speculate_rates(core, p_rate);
2989 
2990 	/* abort if a driver objects */
2991 	if (ret & NOTIFY_STOP_MASK)
2992 		goto runtime_put;
2993 
2994 	/* do the re-parent */
2995 	ret = __clk_set_parent(core, parent, p_index);
2996 
2997 	/* propagate rate an accuracy recalculation accordingly */
2998 	if (ret) {
2999 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
3000 	} else {
3001 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
3002 		__clk_recalc_accuracies(core);
3003 	}
3004 
3005 runtime_put:
3006 	clk_pm_runtime_put(core);
3007 
3008 	return ret;
3009 }
3010 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)3011 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
3012 {
3013 	return clk_core_set_parent_nolock(hw->core, parent->core);
3014 }
3015 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
3016 
3017 /**
3018  * clk_set_parent - switch the parent of a mux clk
3019  * @clk: the mux clk whose input we are switching
3020  * @parent: the new input to clk
3021  *
3022  * Re-parent clk to use parent as its new input source.  If clk is in
3023  * prepared state, the clk will get enabled for the duration of this call. If
3024  * that's not acceptable for a specific clk (Eg: the consumer can't handle
3025  * that, the reparenting is glitchy in hardware, etc), use the
3026  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
3027  *
3028  * After successfully changing clk's parent clk_set_parent will update the
3029  * clk topology, sysfs topology and propagate rate recalculation via
3030  * __clk_recalc_rates.
3031  *
3032  * Returns 0 on success, -EERROR otherwise.
3033  */
clk_set_parent(struct clk * clk,struct clk * parent)3034 int clk_set_parent(struct clk *clk, struct clk *parent)
3035 {
3036 	int ret;
3037 
3038 	if (!clk)
3039 		return 0;
3040 
3041 	clk_prepare_lock();
3042 
3043 	if (clk->exclusive_count)
3044 		clk_core_rate_unprotect(clk->core);
3045 
3046 	ret = clk_core_set_parent_nolock(clk->core,
3047 					 parent ? parent->core : NULL);
3048 
3049 	if (clk->exclusive_count)
3050 		clk_core_rate_protect(clk->core);
3051 
3052 	clk_prepare_unlock();
3053 
3054 	return ret;
3055 }
3056 EXPORT_SYMBOL_GPL(clk_set_parent);
3057 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)3058 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
3059 {
3060 	int ret = -EINVAL;
3061 
3062 	lockdep_assert_held(&prepare_lock);
3063 
3064 	if (!core)
3065 		return 0;
3066 
3067 	if (clk_core_rate_is_protected(core))
3068 		return -EBUSY;
3069 
3070 	trace_clk_set_phase(core, degrees);
3071 
3072 	if (core->ops->set_phase) {
3073 		ret = core->ops->set_phase(core->hw, degrees);
3074 		if (!ret)
3075 			core->phase = degrees;
3076 	}
3077 
3078 	trace_clk_set_phase_complete(core, degrees);
3079 
3080 	return ret;
3081 }
3082 
3083 /**
3084  * clk_set_phase - adjust the phase shift of a clock signal
3085  * @clk: clock signal source
3086  * @degrees: number of degrees the signal is shifted
3087  *
3088  * Shifts the phase of a clock signal by the specified
3089  * degrees. Returns 0 on success, -EERROR otherwise.
3090  *
3091  * This function makes no distinction about the input or reference
3092  * signal that we adjust the clock signal phase against. For example
3093  * phase locked-loop clock signal generators we may shift phase with
3094  * respect to feedback clock signal input, but for other cases the
3095  * clock phase may be shifted with respect to some other, unspecified
3096  * signal.
3097  *
3098  * Additionally the concept of phase shift does not propagate through
3099  * the clock tree hierarchy, which sets it apart from clock rates and
3100  * clock accuracy. A parent clock phase attribute does not have an
3101  * impact on the phase attribute of a child clock.
3102  */
clk_set_phase(struct clk * clk,int degrees)3103 int clk_set_phase(struct clk *clk, int degrees)
3104 {
3105 	int ret;
3106 
3107 	if (!clk)
3108 		return 0;
3109 
3110 	/* sanity check degrees */
3111 	degrees %= 360;
3112 	if (degrees < 0)
3113 		degrees += 360;
3114 
3115 	clk_prepare_lock();
3116 
3117 	if (clk->exclusive_count)
3118 		clk_core_rate_unprotect(clk->core);
3119 
3120 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3121 
3122 	if (clk->exclusive_count)
3123 		clk_core_rate_protect(clk->core);
3124 
3125 	clk_prepare_unlock();
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(clk_set_phase);
3130 
clk_core_get_phase(struct clk_core * core)3131 static int clk_core_get_phase(struct clk_core *core)
3132 {
3133 	int ret;
3134 
3135 	lockdep_assert_held(&prepare_lock);
3136 	if (!core->ops->get_phase)
3137 		return 0;
3138 
3139 	/* Always try to update cached phase if possible */
3140 	ret = core->ops->get_phase(core->hw);
3141 	if (ret >= 0)
3142 		core->phase = ret;
3143 
3144 	return ret;
3145 }
3146 
3147 /**
3148  * clk_get_phase - return the phase shift of a clock signal
3149  * @clk: clock signal source
3150  *
3151  * Returns the phase shift of a clock node in degrees, otherwise returns
3152  * -EERROR.
3153  */
clk_get_phase(struct clk * clk)3154 int clk_get_phase(struct clk *clk)
3155 {
3156 	int ret;
3157 
3158 	if (!clk)
3159 		return 0;
3160 
3161 	clk_prepare_lock();
3162 	ret = clk_core_get_phase(clk->core);
3163 	clk_prepare_unlock();
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(clk_get_phase);
3168 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)3169 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3170 {
3171 	/* Assume a default value of 50% */
3172 	core->duty.num = 1;
3173 	core->duty.den = 2;
3174 }
3175 
3176 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3177 
clk_core_update_duty_cycle_nolock(struct clk_core * core)3178 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3179 {
3180 	struct clk_duty *duty = &core->duty;
3181 	int ret = 0;
3182 
3183 	if (!core->ops->get_duty_cycle)
3184 		return clk_core_update_duty_cycle_parent_nolock(core);
3185 
3186 	ret = core->ops->get_duty_cycle(core->hw, duty);
3187 	if (ret)
3188 		goto reset;
3189 
3190 	/* Don't trust the clock provider too much */
3191 	if (duty->den == 0 || duty->num > duty->den) {
3192 		ret = -EINVAL;
3193 		goto reset;
3194 	}
3195 
3196 	return 0;
3197 
3198 reset:
3199 	clk_core_reset_duty_cycle_nolock(core);
3200 	return ret;
3201 }
3202 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)3203 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3204 {
3205 	int ret = 0;
3206 
3207 	if (core->parent &&
3208 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3209 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3210 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3211 	} else {
3212 		clk_core_reset_duty_cycle_nolock(core);
3213 	}
3214 
3215 	return ret;
3216 }
3217 
3218 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3219 						 struct clk_duty *duty);
3220 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)3221 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3222 					  struct clk_duty *duty)
3223 {
3224 	int ret;
3225 
3226 	lockdep_assert_held(&prepare_lock);
3227 
3228 	if (clk_core_rate_is_protected(core))
3229 		return -EBUSY;
3230 
3231 	trace_clk_set_duty_cycle(core, duty);
3232 
3233 	if (!core->ops->set_duty_cycle)
3234 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3235 
3236 	ret = core->ops->set_duty_cycle(core->hw, duty);
3237 	if (!ret)
3238 		memcpy(&core->duty, duty, sizeof(*duty));
3239 
3240 	trace_clk_set_duty_cycle_complete(core, duty);
3241 
3242 	return ret;
3243 }
3244 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)3245 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3246 						 struct clk_duty *duty)
3247 {
3248 	int ret = 0;
3249 
3250 	if (core->parent &&
3251 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3252 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3253 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3254 	}
3255 
3256 	return ret;
3257 }
3258 
3259 /**
3260  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3261  * @clk: clock signal source
3262  * @num: numerator of the duty cycle ratio to be applied
3263  * @den: denominator of the duty cycle ratio to be applied
3264  *
3265  * Apply the duty cycle ratio if the ratio is valid and the clock can
3266  * perform this operation
3267  *
3268  * Returns (0) on success, a negative errno otherwise.
3269  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3270 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3271 {
3272 	int ret;
3273 	struct clk_duty duty;
3274 
3275 	if (!clk)
3276 		return 0;
3277 
3278 	/* sanity check the ratio */
3279 	if (den == 0 || num > den)
3280 		return -EINVAL;
3281 
3282 	duty.num = num;
3283 	duty.den = den;
3284 
3285 	clk_prepare_lock();
3286 
3287 	if (clk->exclusive_count)
3288 		clk_core_rate_unprotect(clk->core);
3289 
3290 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3291 
3292 	if (clk->exclusive_count)
3293 		clk_core_rate_protect(clk->core);
3294 
3295 	clk_prepare_unlock();
3296 
3297 	return ret;
3298 }
3299 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3300 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3301 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3302 					  unsigned int scale)
3303 {
3304 	struct clk_duty *duty = &core->duty;
3305 	int ret;
3306 
3307 	clk_prepare_lock();
3308 
3309 	ret = clk_core_update_duty_cycle_nolock(core);
3310 	if (!ret)
3311 		ret = mult_frac(scale, duty->num, duty->den);
3312 
3313 	clk_prepare_unlock();
3314 
3315 	return ret;
3316 }
3317 
3318 /**
3319  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3320  * @clk: clock signal source
3321  * @scale: scaling factor to be applied to represent the ratio as an integer
3322  *
3323  * Returns the duty cycle ratio of a clock node multiplied by the provided
3324  * scaling factor, or negative errno on error.
3325  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3326 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3327 {
3328 	if (!clk)
3329 		return 0;
3330 
3331 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3332 }
3333 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3334 
3335 /**
3336  * clk_is_match - check if two clk's point to the same hardware clock
3337  * @p: clk compared against q
3338  * @q: clk compared against p
3339  *
3340  * Returns true if the two struct clk pointers both point to the same hardware
3341  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3342  * share the same struct clk_core object.
3343  *
3344  * Returns false otherwise. Note that two NULL clks are treated as matching.
3345  */
clk_is_match(const struct clk * p,const struct clk * q)3346 bool clk_is_match(const struct clk *p, const struct clk *q)
3347 {
3348 	/* trivial case: identical struct clk's or both NULL */
3349 	if (p == q)
3350 		return true;
3351 
3352 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3353 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3354 		if (p->core == q->core)
3355 			return true;
3356 
3357 	return false;
3358 }
3359 EXPORT_SYMBOL_GPL(clk_is_match);
3360 
3361 /***        debugfs support        ***/
3362 
3363 #ifdef CONFIG_DEBUG_FS
3364 #include <linux/debugfs.h>
3365 
3366 static struct dentry *rootdir;
3367 static int inited = 0;
3368 static DEFINE_MUTEX(clk_debug_lock);
3369 static HLIST_HEAD(clk_debug_list);
3370 
3371 static struct hlist_head *orphan_list[] = {
3372 	&clk_orphan_list,
3373 	NULL,
3374 };
3375 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3376 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3377 				 int level)
3378 {
3379 	int phase;
3380 	struct clk *clk_user;
3381 	int multi_node = 0;
3382 
3383 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3384 		   level * 3 + 1, "",
3385 		   35 - level * 3, c->name,
3386 		   c->enable_count, c->prepare_count, c->protect_count,
3387 		   clk_core_get_rate_recalc(c),
3388 		   clk_core_get_accuracy_recalc(c));
3389 
3390 	phase = clk_core_get_phase(c);
3391 	if (phase >= 0)
3392 		seq_printf(s, "%-5d", phase);
3393 	else
3394 		seq_puts(s, "-----");
3395 
3396 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3397 
3398 	if (c->ops->is_enabled)
3399 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3400 	else if (!c->ops->enable)
3401 		seq_printf(s, " %5c ", 'Y');
3402 	else
3403 		seq_printf(s, " %5c ", '?');
3404 
3405 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3406 		seq_printf(s, "%*s%-*s  %-25s\n",
3407 			   level * 3 + 2 + 105 * multi_node, "",
3408 			   30,
3409 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3410 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3411 
3412 		multi_node = 1;
3413 	}
3414 
3415 }
3416 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3417 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3418 				     int level)
3419 {
3420 	struct clk_core *child;
3421 
3422 	clk_summary_show_one(s, c, level);
3423 
3424 	hlist_for_each_entry(child, &c->children, child_node)
3425 		clk_summary_show_subtree(s, child, level + 1);
3426 }
3427 
clk_summary_show(struct seq_file * s,void * data)3428 static int clk_summary_show(struct seq_file *s, void *data)
3429 {
3430 	struct clk_core *c;
3431 	struct hlist_head **lists = s->private;
3432 	int ret;
3433 
3434 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3435 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3436 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3437 
3438 	ret = clk_pm_runtime_get_all();
3439 	if (ret)
3440 		return ret;
3441 
3442 	clk_prepare_lock();
3443 
3444 	for (; *lists; lists++)
3445 		hlist_for_each_entry(c, *lists, child_node)
3446 			clk_summary_show_subtree(s, c, 0);
3447 
3448 	clk_prepare_unlock();
3449 	clk_pm_runtime_put_all();
3450 
3451 	return 0;
3452 }
3453 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3454 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3455 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3456 {
3457 	int phase;
3458 	unsigned long min_rate, max_rate;
3459 
3460 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3461 
3462 	/* This should be JSON format, i.e. elements separated with a comma */
3463 	seq_printf(s, "\"%s\": { ", c->name);
3464 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3465 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3466 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3467 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3468 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3469 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3470 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3471 	phase = clk_core_get_phase(c);
3472 	if (phase >= 0)
3473 		seq_printf(s, "\"phase\": %d,", phase);
3474 	seq_printf(s, "\"duty_cycle\": %u",
3475 		   clk_core_get_scaled_duty_cycle(c, 100000));
3476 }
3477 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3478 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3479 {
3480 	struct clk_core *child;
3481 
3482 	clk_dump_one(s, c, level);
3483 
3484 	hlist_for_each_entry(child, &c->children, child_node) {
3485 		seq_putc(s, ',');
3486 		clk_dump_subtree(s, child, level + 1);
3487 	}
3488 
3489 	seq_putc(s, '}');
3490 }
3491 
clk_dump_show(struct seq_file * s,void * data)3492 static int clk_dump_show(struct seq_file *s, void *data)
3493 {
3494 	struct clk_core *c;
3495 	bool first_node = true;
3496 	struct hlist_head **lists = s->private;
3497 	int ret;
3498 
3499 	ret = clk_pm_runtime_get_all();
3500 	if (ret)
3501 		return ret;
3502 
3503 	seq_putc(s, '{');
3504 
3505 	clk_prepare_lock();
3506 
3507 	for (; *lists; lists++) {
3508 		hlist_for_each_entry(c, *lists, child_node) {
3509 			if (!first_node)
3510 				seq_putc(s, ',');
3511 			first_node = false;
3512 			clk_dump_subtree(s, c, 0);
3513 		}
3514 	}
3515 
3516 	clk_prepare_unlock();
3517 	clk_pm_runtime_put_all();
3518 
3519 	seq_puts(s, "}\n");
3520 	return 0;
3521 }
3522 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3523 
3524 #define CLOCK_ALLOW_WRITE_DEBUGFS
3525 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3526 /*
3527  * This can be dangerous, therefore don't provide any real compile time
3528  * configuration option for this feature.
3529  * People who want to use this will need to modify the source code directly.
3530  */
clk_rate_set(void * data,u64 val)3531 static int clk_rate_set(void *data, u64 val)
3532 {
3533 	struct clk_core *core = data;
3534 	int ret;
3535 
3536 	clk_prepare_lock();
3537 	ret = clk_core_set_rate_nolock(core, val);
3538 	clk_prepare_unlock();
3539 
3540 	return ret;
3541 }
3542 
3543 #define clk_rate_mode	0644
3544 
clk_phase_set(void * data,u64 val)3545 static int clk_phase_set(void *data, u64 val)
3546 {
3547 	struct clk_core *core = data;
3548 	int degrees = do_div(val, 360);
3549 	int ret;
3550 
3551 	clk_prepare_lock();
3552 	ret = clk_core_set_phase_nolock(core, degrees);
3553 	clk_prepare_unlock();
3554 
3555 	return ret;
3556 }
3557 
3558 #define clk_phase_mode	0644
3559 
clk_prepare_enable_set(void * data,u64 val)3560 static int clk_prepare_enable_set(void *data, u64 val)
3561 {
3562 	struct clk_core *core = data;
3563 	int ret = 0;
3564 
3565 	if (val)
3566 		ret = clk_prepare_enable(core->hw->clk);
3567 	else
3568 		clk_disable_unprepare(core->hw->clk);
3569 
3570 	return ret;
3571 }
3572 
clk_prepare_enable_get(void * data,u64 * val)3573 static int clk_prepare_enable_get(void *data, u64 *val)
3574 {
3575 	struct clk_core *core = data;
3576 
3577 	*val = core->enable_count && core->prepare_count;
3578 	return 0;
3579 }
3580 
3581 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3582 			 clk_prepare_enable_set, "%llu\n");
3583 
3584 #else
3585 #define clk_rate_set	NULL
3586 #define clk_rate_mode	0444
3587 
3588 #define clk_phase_set	NULL
3589 #define clk_phase_mode	0644
3590 #endif
3591 
clk_rate_get(void * data,u64 * val)3592 static int clk_rate_get(void *data, u64 *val)
3593 {
3594 	struct clk_core *core = data;
3595 
3596 	clk_prepare_lock();
3597 	*val = clk_core_get_rate_recalc(core);
3598 	clk_prepare_unlock();
3599 
3600 	return 0;
3601 }
3602 
3603 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3604 
clk_phase_get(void * data,u64 * val)3605 static int clk_phase_get(void *data, u64 *val)
3606 {
3607 	struct clk_core *core = data;
3608 
3609 	*val = core->phase;
3610 	return 0;
3611 }
3612 
3613 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3614 
3615 static const struct {
3616 	unsigned long flag;
3617 	const char *name;
3618 } clk_flags[] = {
3619 #define ENTRY(f) { f, #f }
3620 	ENTRY(CLK_SET_RATE_GATE),
3621 	ENTRY(CLK_SET_PARENT_GATE),
3622 	ENTRY(CLK_SET_RATE_PARENT),
3623 	ENTRY(CLK_IGNORE_UNUSED),
3624 	ENTRY(CLK_GET_RATE_NOCACHE),
3625 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3626 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3627 	ENTRY(CLK_RECALC_NEW_RATES),
3628 	ENTRY(CLK_SET_RATE_UNGATE),
3629 	ENTRY(CLK_IS_CRITICAL),
3630 	ENTRY(CLK_OPS_PARENT_ENABLE),
3631 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3632 #undef ENTRY
3633 };
3634 
clk_flags_show(struct seq_file * s,void * data)3635 static int clk_flags_show(struct seq_file *s, void *data)
3636 {
3637 	struct clk_core *core = s->private;
3638 	unsigned long flags = core->flags;
3639 	unsigned int i;
3640 
3641 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3642 		if (flags & clk_flags[i].flag) {
3643 			seq_printf(s, "%s\n", clk_flags[i].name);
3644 			flags &= ~clk_flags[i].flag;
3645 		}
3646 	}
3647 	if (flags) {
3648 		/* Unknown flags */
3649 		seq_printf(s, "0x%lx\n", flags);
3650 	}
3651 
3652 	return 0;
3653 }
3654 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3655 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3656 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3657 				 unsigned int i, char terminator)
3658 {
3659 	struct clk_core *parent;
3660 	const char *name = NULL;
3661 
3662 	/*
3663 	 * Go through the following options to fetch a parent's name.
3664 	 *
3665 	 * 1. Fetch the registered parent clock and use its name
3666 	 * 2. Use the global (fallback) name if specified
3667 	 * 3. Use the local fw_name if provided
3668 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3669 	 *
3670 	 * This may still fail in some cases, such as when the parent is
3671 	 * specified directly via a struct clk_hw pointer, but it isn't
3672 	 * registered (yet).
3673 	 */
3674 	parent = clk_core_get_parent_by_index(core, i);
3675 	if (parent) {
3676 		seq_puts(s, parent->name);
3677 	} else if (core->parents[i].name) {
3678 		seq_puts(s, core->parents[i].name);
3679 	} else if (core->parents[i].fw_name) {
3680 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3681 	} else {
3682 		if (core->parents[i].index >= 0)
3683 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3684 		if (!name)
3685 			name = "(missing)";
3686 
3687 		seq_puts(s, name);
3688 	}
3689 
3690 	seq_putc(s, terminator);
3691 }
3692 
possible_parents_show(struct seq_file * s,void * data)3693 static int possible_parents_show(struct seq_file *s, void *data)
3694 {
3695 	struct clk_core *core = s->private;
3696 	int i;
3697 
3698 	for (i = 0; i < core->num_parents - 1; i++)
3699 		possible_parent_show(s, core, i, ' ');
3700 
3701 	possible_parent_show(s, core, i, '\n');
3702 
3703 	return 0;
3704 }
3705 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3706 
current_parent_show(struct seq_file * s,void * data)3707 static int current_parent_show(struct seq_file *s, void *data)
3708 {
3709 	struct clk_core *core = s->private;
3710 
3711 	if (core->parent)
3712 		seq_printf(s, "%s\n", core->parent->name);
3713 
3714 	return 0;
3715 }
3716 DEFINE_SHOW_ATTRIBUTE(current_parent);
3717 
3718 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3719 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3720 				    size_t count, loff_t *ppos)
3721 {
3722 	struct seq_file *s = file->private_data;
3723 	struct clk_core *core = s->private;
3724 	struct clk_core *parent;
3725 	u8 idx;
3726 	int err;
3727 
3728 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3729 	if (err < 0)
3730 		return err;
3731 
3732 	parent = clk_core_get_parent_by_index(core, idx);
3733 	if (!parent)
3734 		return -ENOENT;
3735 
3736 	clk_prepare_lock();
3737 	err = clk_core_set_parent_nolock(core, parent);
3738 	clk_prepare_unlock();
3739 	if (err)
3740 		return err;
3741 
3742 	return count;
3743 }
3744 
3745 static const struct file_operations current_parent_rw_fops = {
3746 	.open		= current_parent_open,
3747 	.write		= current_parent_write,
3748 	.read		= seq_read,
3749 	.llseek		= seq_lseek,
3750 	.release	= single_release,
3751 };
3752 #endif
3753 
clk_duty_cycle_show(struct seq_file * s,void * data)3754 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3755 {
3756 	struct clk_core *core = s->private;
3757 	struct clk_duty *duty = &core->duty;
3758 
3759 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3760 
3761 	return 0;
3762 }
3763 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3764 
clk_min_rate_show(struct seq_file * s,void * data)3765 static int clk_min_rate_show(struct seq_file *s, void *data)
3766 {
3767 	struct clk_core *core = s->private;
3768 	unsigned long min_rate, max_rate;
3769 
3770 	clk_prepare_lock();
3771 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3772 	clk_prepare_unlock();
3773 	seq_printf(s, "%lu\n", min_rate);
3774 
3775 	return 0;
3776 }
3777 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3778 
clk_max_rate_show(struct seq_file * s,void * data)3779 static int clk_max_rate_show(struct seq_file *s, void *data)
3780 {
3781 	struct clk_core *core = s->private;
3782 	unsigned long min_rate, max_rate;
3783 
3784 	clk_prepare_lock();
3785 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3786 	clk_prepare_unlock();
3787 	seq_printf(s, "%lu\n", max_rate);
3788 
3789 	return 0;
3790 }
3791 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3792 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3793 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3794 {
3795 	struct dentry *root;
3796 
3797 	if (!core || !pdentry)
3798 		return;
3799 
3800 	root = debugfs_create_dir(core->name, pdentry);
3801 	core->dentry = root;
3802 
3803 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3804 			    &clk_rate_fops);
3805 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3806 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3807 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3808 	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3809 			    &clk_phase_fops);
3810 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3811 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3812 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3813 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3814 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3815 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3816 			    &clk_duty_cycle_fops);
3817 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3818 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3819 			    &clk_prepare_enable_fops);
3820 
3821 	if (core->num_parents > 1)
3822 		debugfs_create_file("clk_parent", 0644, root, core,
3823 				    &current_parent_rw_fops);
3824 	else
3825 #endif
3826 	if (core->num_parents > 0)
3827 		debugfs_create_file("clk_parent", 0444, root, core,
3828 				    &current_parent_fops);
3829 
3830 	if (core->num_parents > 1)
3831 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3832 				    &possible_parents_fops);
3833 
3834 	if (core->ops->debug_init)
3835 		core->ops->debug_init(core->hw, core->dentry);
3836 }
3837 
3838 /**
3839  * clk_debug_register - add a clk node to the debugfs clk directory
3840  * @core: the clk being added to the debugfs clk directory
3841  *
3842  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3843  * initialized.  Otherwise it bails out early since the debugfs clk directory
3844  * will be created lazily by clk_debug_init as part of a late_initcall.
3845  */
clk_debug_register(struct clk_core * core)3846 static void clk_debug_register(struct clk_core *core)
3847 {
3848 	mutex_lock(&clk_debug_lock);
3849 	hlist_add_head(&core->debug_node, &clk_debug_list);
3850 	if (inited)
3851 		clk_debug_create_one(core, rootdir);
3852 	mutex_unlock(&clk_debug_lock);
3853 }
3854 
3855  /**
3856  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3857  * @core: the clk being removed from the debugfs clk directory
3858  *
3859  * Dynamically removes a clk and all its child nodes from the
3860  * debugfs clk directory if clk->dentry points to debugfs created by
3861  * clk_debug_register in __clk_core_init.
3862  */
clk_debug_unregister(struct clk_core * core)3863 static void clk_debug_unregister(struct clk_core *core)
3864 {
3865 	mutex_lock(&clk_debug_lock);
3866 	hlist_del_init(&core->debug_node);
3867 	debugfs_remove_recursive(core->dentry);
3868 	core->dentry = NULL;
3869 	mutex_unlock(&clk_debug_lock);
3870 }
3871 
3872 /**
3873  * clk_debug_init - lazily populate the debugfs clk directory
3874  *
3875  * clks are often initialized very early during boot before memory can be
3876  * dynamically allocated and well before debugfs is setup. This function
3877  * populates the debugfs clk directory once at boot-time when we know that
3878  * debugfs is setup. It should only be called once at boot-time, all other clks
3879  * added dynamically will be done so with clk_debug_register.
3880  */
clk_debug_init(void)3881 static int __init clk_debug_init(void)
3882 {
3883 	struct clk_core *core;
3884 
3885 	rootdir = debugfs_create_dir("clk", NULL);
3886 
3887 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3888 			    &clk_summary_fops);
3889 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3890 			    &clk_dump_fops);
3891 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3892 			    &clk_summary_fops);
3893 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3894 			    &clk_dump_fops);
3895 
3896 	mutex_lock(&clk_debug_lock);
3897 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3898 		clk_debug_create_one(core, rootdir);
3899 
3900 	inited = 1;
3901 	mutex_unlock(&clk_debug_lock);
3902 
3903 	return 0;
3904 }
3905 late_initcall(clk_debug_init);
3906 #else
clk_debug_register(struct clk_core * core)3907 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3908 static inline void clk_debug_unregister(struct clk_core *core)
3909 {
3910 }
3911 #endif
3912 
clk_core_reparent_orphans_nolock(void)3913 static void clk_core_reparent_orphans_nolock(void)
3914 {
3915 	struct clk_core *orphan;
3916 	struct hlist_node *tmp2;
3917 
3918 	/*
3919 	 * walk the list of orphan clocks and reparent any that newly finds a
3920 	 * parent.
3921 	 */
3922 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3923 		struct clk_core *parent = __clk_init_parent(orphan);
3924 
3925 		/*
3926 		 * We need to use __clk_set_parent_before() and _after() to
3927 		 * properly migrate any prepare/enable count of the orphan
3928 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3929 		 * are enabled during init but might not have a parent yet.
3930 		 */
3931 		if (parent) {
3932 			/* update the clk tree topology */
3933 			__clk_set_parent_before(orphan, parent);
3934 			__clk_set_parent_after(orphan, parent, NULL);
3935 			__clk_recalc_accuracies(orphan);
3936 			__clk_recalc_rates(orphan, true, 0);
3937 			__clk_core_update_orphan_hold_state(orphan);
3938 
3939 			/*
3940 			 * __clk_init_parent() will set the initial req_rate to
3941 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3942 			 * is an orphan when it's registered.
3943 			 *
3944 			 * 'req_rate' is used by clk_set_rate_range() and
3945 			 * clk_put() to trigger a clk_set_rate() call whenever
3946 			 * the boundaries are modified. Let's make sure
3947 			 * 'req_rate' is set to something non-zero so that
3948 			 * clk_set_rate_range() doesn't drop the frequency.
3949 			 */
3950 			orphan->req_rate = orphan->rate;
3951 		}
3952 	}
3953 }
3954 
3955 /**
3956  * __clk_core_init - initialize the data structures in a struct clk_core
3957  * @core:	clk_core being initialized
3958  *
3959  * Initializes the lists in struct clk_core, queries the hardware for the
3960  * parent and rate and sets them both.
3961  */
__clk_core_init(struct clk_core * core)3962 static int __clk_core_init(struct clk_core *core)
3963 {
3964 	int ret;
3965 	struct clk_core *parent;
3966 	unsigned long rate;
3967 	int phase;
3968 
3969 	clk_prepare_lock();
3970 
3971 	/*
3972 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3973 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3974 	 * being NULL as the clk not being registered yet. This is crucial so
3975 	 * that clks aren't parented until their parent is fully registered.
3976 	 */
3977 	core->hw->core = core;
3978 
3979 	ret = clk_pm_runtime_get(core);
3980 	if (ret)
3981 		goto unlock;
3982 
3983 	/* check to see if a clock with this name is already registered */
3984 	if (clk_core_lookup(core->name)) {
3985 		pr_debug("%s: clk %s already initialized\n",
3986 				__func__, core->name);
3987 		ret = -EEXIST;
3988 		goto out;
3989 	}
3990 
3991 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3992 	if (core->ops->set_rate &&
3993 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3994 	      core->ops->recalc_rate)) {
3995 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3996 		       __func__, core->name);
3997 		ret = -EINVAL;
3998 		goto out;
3999 	}
4000 
4001 	if (core->ops->set_parent && !core->ops->get_parent) {
4002 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
4003 		       __func__, core->name);
4004 		ret = -EINVAL;
4005 		goto out;
4006 	}
4007 
4008 	if (core->ops->set_parent && !core->ops->determine_rate) {
4009 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
4010 			__func__, core->name);
4011 		ret = -EINVAL;
4012 		goto out;
4013 	}
4014 
4015 	if (core->num_parents > 1 && !core->ops->get_parent) {
4016 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
4017 		       __func__, core->name);
4018 		ret = -EINVAL;
4019 		goto out;
4020 	}
4021 
4022 	if (core->ops->set_rate_and_parent &&
4023 			!(core->ops->set_parent && core->ops->set_rate)) {
4024 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
4025 				__func__, core->name);
4026 		ret = -EINVAL;
4027 		goto out;
4028 	}
4029 
4030 	/*
4031 	 * optional platform-specific magic
4032 	 *
4033 	 * The .init callback is not used by any of the basic clock types, but
4034 	 * exists for weird hardware that must perform initialization magic for
4035 	 * CCF to get an accurate view of clock for any other callbacks. It may
4036 	 * also be used needs to perform dynamic allocations. Such allocation
4037 	 * must be freed in the terminate() callback.
4038 	 * This callback shall not be used to initialize the parameters state,
4039 	 * such as rate, parent, etc ...
4040 	 *
4041 	 * If it exist, this callback should called before any other callback of
4042 	 * the clock
4043 	 */
4044 	if (core->ops->init) {
4045 		ret = core->ops->init(core->hw);
4046 		if (ret)
4047 			goto out;
4048 	}
4049 
4050 	parent = core->parent = __clk_init_parent(core);
4051 
4052 	/*
4053 	 * Populate core->parent if parent has already been clk_core_init'd. If
4054 	 * parent has not yet been clk_core_init'd then place clk in the orphan
4055 	 * list.  If clk doesn't have any parents then place it in the root
4056 	 * clk list.
4057 	 *
4058 	 * Every time a new clk is clk_init'd then we walk the list of orphan
4059 	 * clocks and re-parent any that are children of the clock currently
4060 	 * being clk_init'd.
4061 	 */
4062 	if (parent) {
4063 		hlist_add_head(&core->child_node, &parent->children);
4064 		core->orphan = parent->orphan;
4065 	} else if (!core->num_parents) {
4066 		hlist_add_head(&core->child_node, &clk_root_list);
4067 		core->orphan = false;
4068 	} else {
4069 		hlist_add_head(&core->child_node, &clk_orphan_list);
4070 		core->orphan = true;
4071 	}
4072 
4073 	/*
4074 	 * Set clk's accuracy.  The preferred method is to use
4075 	 * .recalc_accuracy. For simple clocks and lazy developers the default
4076 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4077 	 * parent (or is orphaned) then accuracy is set to zero (perfect
4078 	 * clock).
4079 	 */
4080 	if (core->ops->recalc_accuracy)
4081 		core->accuracy = core->ops->recalc_accuracy(core->hw,
4082 					clk_core_get_accuracy_no_lock(parent));
4083 	else if (parent)
4084 		core->accuracy = parent->accuracy;
4085 	else
4086 		core->accuracy = 0;
4087 
4088 	/*
4089 	 * Set clk's phase by clk_core_get_phase() caching the phase.
4090 	 * Since a phase is by definition relative to its parent, just
4091 	 * query the current clock phase, or just assume it's in phase.
4092 	 */
4093 	phase = clk_core_get_phase(core);
4094 	if (phase < 0) {
4095 		ret = phase;
4096 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4097 			core->name);
4098 		goto out;
4099 	}
4100 
4101 	/*
4102 	 * Set clk's duty cycle.
4103 	 */
4104 	clk_core_update_duty_cycle_nolock(core);
4105 
4106 	/*
4107 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4108 	 * simple clocks and lazy developers the default fallback is to use the
4109 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4110 	 * then rate is set to zero.
4111 	 */
4112 	if (core->ops->recalc_rate)
4113 		rate = core->ops->recalc_rate(core->hw,
4114 				clk_core_get_rate_nolock(parent));
4115 	else if (parent)
4116 		rate = parent->rate;
4117 	else
4118 		rate = 0;
4119 	core->rate = core->req_rate = rate;
4120 
4121 	core->boot_enabled = clk_core_is_enabled(core);
4122 
4123 	/*
4124 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4125 	 * don't get accidentally disabled when walking the orphan tree and
4126 	 * reparenting clocks
4127 	 */
4128 	if (core->flags & CLK_IS_CRITICAL) {
4129 		ret = clk_core_prepare(core);
4130 		if (ret) {
4131 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4132 			       __func__, core->name);
4133 			goto out;
4134 		}
4135 
4136 		ret = clk_core_enable_lock(core);
4137 		if (ret) {
4138 			pr_warn("%s: critical clk '%s' failed to enable\n",
4139 			       __func__, core->name);
4140 			clk_core_unprepare(core);
4141 			goto out;
4142 		}
4143 	}
4144 
4145 	clk_core_hold_state(core);
4146 	clk_core_reparent_orphans_nolock();
4147 out:
4148 	clk_pm_runtime_put(core);
4149 unlock:
4150 	if (ret) {
4151 		hlist_del_init(&core->child_node);
4152 		core->hw->core = NULL;
4153 	}
4154 
4155 	clk_prepare_unlock();
4156 
4157 	if (!ret)
4158 		clk_debug_register(core);
4159 
4160 	return ret;
4161 }
4162 
4163 /**
4164  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4165  * @core: clk to add consumer to
4166  * @clk: consumer to link to a clk
4167  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)4168 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4169 {
4170 	clk_prepare_lock();
4171 	hlist_add_head(&clk->clks_node, &core->clks);
4172 	clk_prepare_unlock();
4173 }
4174 
4175 /**
4176  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4177  * @clk: consumer to unlink
4178  */
clk_core_unlink_consumer(struct clk * clk)4179 static void clk_core_unlink_consumer(struct clk *clk)
4180 {
4181 	lockdep_assert_held(&prepare_lock);
4182 	hlist_del(&clk->clks_node);
4183 }
4184 
4185 /**
4186  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4187  * @core: clk to allocate a consumer for
4188  * @dev_id: string describing device name
4189  * @con_id: connection ID string on device
4190  *
4191  * Returns: clk consumer left unlinked from the consumer list
4192  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)4193 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4194 			     const char *con_id)
4195 {
4196 	struct clk *clk;
4197 
4198 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4199 	if (!clk)
4200 		return ERR_PTR(-ENOMEM);
4201 
4202 	clk->core = core;
4203 	clk->dev_id = dev_id;
4204 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4205 	clk->max_rate = ULONG_MAX;
4206 
4207 	return clk;
4208 }
4209 
4210 /**
4211  * free_clk - Free a clk consumer
4212  * @clk: clk consumer to free
4213  *
4214  * Note, this assumes the clk has been unlinked from the clk_core consumer
4215  * list.
4216  */
free_clk(struct clk * clk)4217 static void free_clk(struct clk *clk)
4218 {
4219 	kfree_const(clk->con_id);
4220 	kfree(clk);
4221 }
4222 
4223 /**
4224  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4225  * a clk_hw
4226  * @dev: clk consumer device
4227  * @hw: clk_hw associated with the clk being consumed
4228  * @dev_id: string describing device name
4229  * @con_id: connection ID string on device
4230  *
4231  * This is the main function used to create a clk pointer for use by clk
4232  * consumers. It connects a consumer to the clk_core and clk_hw structures
4233  * used by the framework and clk provider respectively.
4234  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)4235 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4236 			      const char *dev_id, const char *con_id)
4237 {
4238 	struct clk *clk;
4239 	struct clk_core *core;
4240 
4241 	/* This is to allow this function to be chained to others */
4242 	if (IS_ERR_OR_NULL(hw))
4243 		return ERR_CAST(hw);
4244 
4245 	core = hw->core;
4246 	clk = alloc_clk(core, dev_id, con_id);
4247 	if (IS_ERR(clk))
4248 		return clk;
4249 	clk->dev = dev;
4250 
4251 	if (!try_module_get(core->owner)) {
4252 		free_clk(clk);
4253 		return ERR_PTR(-ENOENT);
4254 	}
4255 
4256 	kref_get(&core->ref);
4257 	clk_core_link_consumer(core, clk);
4258 
4259 	return clk;
4260 }
4261 
4262 /**
4263  * clk_hw_get_clk - get clk consumer given an clk_hw
4264  * @hw: clk_hw associated with the clk being consumed
4265  * @con_id: connection ID string on device
4266  *
4267  * Returns: new clk consumer
4268  * This is the function to be used by providers which need
4269  * to get a consumer clk and act on the clock element
4270  * Calls to this function must be balanced with calls clk_put()
4271  */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)4272 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4273 {
4274 	struct device *dev = hw->core->dev;
4275 	const char *name = dev ? dev_name(dev) : NULL;
4276 
4277 	return clk_hw_create_clk(dev, hw, name, con_id);
4278 }
4279 EXPORT_SYMBOL(clk_hw_get_clk);
4280 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)4281 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4282 {
4283 	const char *dst;
4284 
4285 	if (!src) {
4286 		if (must_exist)
4287 			return -EINVAL;
4288 		return 0;
4289 	}
4290 
4291 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4292 	if (!dst)
4293 		return -ENOMEM;
4294 
4295 	return 0;
4296 }
4297 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)4298 static int clk_core_populate_parent_map(struct clk_core *core,
4299 					const struct clk_init_data *init)
4300 {
4301 	u8 num_parents = init->num_parents;
4302 	const char * const *parent_names = init->parent_names;
4303 	const struct clk_hw **parent_hws = init->parent_hws;
4304 	const struct clk_parent_data *parent_data = init->parent_data;
4305 	int i, ret = 0;
4306 	struct clk_parent_map *parents, *parent;
4307 
4308 	if (!num_parents)
4309 		return 0;
4310 
4311 	/*
4312 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4313 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4314 	 */
4315 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4316 	core->parents = parents;
4317 	if (!parents)
4318 		return -ENOMEM;
4319 
4320 	/* Copy everything over because it might be __initdata */
4321 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4322 		parent->index = -1;
4323 		if (parent_names) {
4324 			/* throw a WARN if any entries are NULL */
4325 			WARN(!parent_names[i],
4326 				"%s: invalid NULL in %s's .parent_names\n",
4327 				__func__, core->name);
4328 			ret = clk_cpy_name(&parent->name, parent_names[i],
4329 					   true);
4330 		} else if (parent_data) {
4331 			parent->hw = parent_data[i].hw;
4332 			parent->index = parent_data[i].index;
4333 			ret = clk_cpy_name(&parent->fw_name,
4334 					   parent_data[i].fw_name, false);
4335 			if (!ret)
4336 				ret = clk_cpy_name(&parent->name,
4337 						   parent_data[i].name,
4338 						   false);
4339 		} else if (parent_hws) {
4340 			parent->hw = parent_hws[i];
4341 		} else {
4342 			ret = -EINVAL;
4343 			WARN(1, "Must specify parents if num_parents > 0\n");
4344 		}
4345 
4346 		if (ret) {
4347 			do {
4348 				kfree_const(parents[i].name);
4349 				kfree_const(parents[i].fw_name);
4350 			} while (--i >= 0);
4351 			kfree(parents);
4352 
4353 			return ret;
4354 		}
4355 	}
4356 
4357 	return 0;
4358 }
4359 
clk_core_free_parent_map(struct clk_core * core)4360 static void clk_core_free_parent_map(struct clk_core *core)
4361 {
4362 	int i = core->num_parents;
4363 
4364 	if (!core->num_parents)
4365 		return;
4366 
4367 	while (--i >= 0) {
4368 		kfree_const(core->parents[i].name);
4369 		kfree_const(core->parents[i].fw_name);
4370 	}
4371 
4372 	kfree(core->parents);
4373 }
4374 
4375 /* Free memory allocated for a struct clk_core */
__clk_release(struct kref * ref)4376 static void __clk_release(struct kref *ref)
4377 {
4378 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4379 
4380 	if (core->rpm_enabled) {
4381 		mutex_lock(&clk_rpm_list_lock);
4382 		hlist_del(&core->rpm_node);
4383 		mutex_unlock(&clk_rpm_list_lock);
4384 	}
4385 
4386 	clk_core_free_parent_map(core);
4387 	kfree_const(core->name);
4388 	kfree(core);
4389 }
4390 
4391 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4392 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4393 {
4394 	int ret;
4395 	struct clk_core *core;
4396 	const struct clk_init_data *init = hw->init;
4397 
4398 	/*
4399 	 * The init data is not supposed to be used outside of registration path.
4400 	 * Set it to NULL so that provider drivers can't use it either and so that
4401 	 * we catch use of hw->init early on in the core.
4402 	 */
4403 	hw->init = NULL;
4404 
4405 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4406 	if (!core) {
4407 		ret = -ENOMEM;
4408 		goto fail_out;
4409 	}
4410 
4411 	kref_init(&core->ref);
4412 
4413 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4414 	if (!core->name) {
4415 		ret = -ENOMEM;
4416 		goto fail_name;
4417 	}
4418 
4419 	if (WARN_ON(!init->ops)) {
4420 		ret = -EINVAL;
4421 		goto fail_ops;
4422 	}
4423 	core->ops = init->ops;
4424 
4425 	core->dev = dev;
4426 	clk_pm_runtime_init(core);
4427 	core->of_node = np;
4428 	if (dev && dev->driver)
4429 		core->owner = dev->driver->owner;
4430 	core->hw = hw;
4431 	core->flags = init->flags;
4432 	core->num_parents = init->num_parents;
4433 	core->min_rate = 0;
4434 	core->max_rate = ULONG_MAX;
4435 
4436 	ret = clk_core_populate_parent_map(core, init);
4437 	if (ret)
4438 		goto fail_parents;
4439 
4440 	INIT_HLIST_HEAD(&core->clks);
4441 
4442 	/*
4443 	 * Don't call clk_hw_create_clk() here because that would pin the
4444 	 * provider module to itself and prevent it from ever being removed.
4445 	 */
4446 	hw->clk = alloc_clk(core, NULL, NULL);
4447 	if (IS_ERR(hw->clk)) {
4448 		ret = PTR_ERR(hw->clk);
4449 		goto fail_create_clk;
4450 	}
4451 
4452 	clk_core_link_consumer(core, hw->clk);
4453 
4454 	ret = __clk_core_init(core);
4455 	if (!ret)
4456 		return hw->clk;
4457 
4458 	clk_prepare_lock();
4459 	clk_core_unlink_consumer(hw->clk);
4460 	clk_prepare_unlock();
4461 
4462 	free_clk(hw->clk);
4463 	hw->clk = NULL;
4464 
4465 fail_create_clk:
4466 fail_parents:
4467 fail_ops:
4468 fail_name:
4469 	kref_put(&core->ref, __clk_release);
4470 fail_out:
4471 	return ERR_PTR(ret);
4472 }
4473 
4474 /**
4475  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4476  * @dev: Device to get device node of
4477  *
4478  * Return: device node pointer of @dev, or the device node pointer of
4479  * @dev->parent if dev doesn't have a device node, or NULL if neither
4480  * @dev or @dev->parent have a device node.
4481  */
dev_or_parent_of_node(struct device * dev)4482 static struct device_node *dev_or_parent_of_node(struct device *dev)
4483 {
4484 	struct device_node *np;
4485 
4486 	if (!dev)
4487 		return NULL;
4488 
4489 	np = dev_of_node(dev);
4490 	if (!np)
4491 		np = dev_of_node(dev->parent);
4492 
4493 	return np;
4494 }
4495 
4496 /**
4497  * clk_register - allocate a new clock, register it and return an opaque cookie
4498  * @dev: device that is registering this clock
4499  * @hw: link to hardware-specific clock data
4500  *
4501  * clk_register is the *deprecated* interface for populating the clock tree with
4502  * new clock nodes. Use clk_hw_register() instead.
4503  *
4504  * Returns: a pointer to the newly allocated struct clk which
4505  * cannot be dereferenced by driver code but may be used in conjunction with the
4506  * rest of the clock API.  In the event of an error clk_register will return an
4507  * error code; drivers must test for an error code after calling clk_register.
4508  */
clk_register(struct device * dev,struct clk_hw * hw)4509 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4510 {
4511 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4512 }
4513 EXPORT_SYMBOL_GPL(clk_register);
4514 
4515 /**
4516  * clk_hw_register - register a clk_hw and return an error code
4517  * @dev: device that is registering this clock
4518  * @hw: link to hardware-specific clock data
4519  *
4520  * clk_hw_register is the primary interface for populating the clock tree with
4521  * new clock nodes. It returns an integer equal to zero indicating success or
4522  * less than zero indicating failure. Drivers must test for an error code after
4523  * calling clk_hw_register().
4524  */
clk_hw_register(struct device * dev,struct clk_hw * hw)4525 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4526 {
4527 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4528 			       hw));
4529 }
4530 EXPORT_SYMBOL_GPL(clk_hw_register);
4531 
4532 /*
4533  * of_clk_hw_register - register a clk_hw and return an error code
4534  * @node: device_node of device that is registering this clock
4535  * @hw: link to hardware-specific clock data
4536  *
4537  * of_clk_hw_register() is the primary interface for populating the clock tree
4538  * with new clock nodes when a struct device is not available, but a struct
4539  * device_node is. It returns an integer equal to zero indicating success or
4540  * less than zero indicating failure. Drivers must test for an error code after
4541  * calling of_clk_hw_register().
4542  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4543 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4544 {
4545 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4546 }
4547 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4548 
4549 /*
4550  * Empty clk_ops for unregistered clocks. These are used temporarily
4551  * after clk_unregister() was called on a clock and until last clock
4552  * consumer calls clk_put() and the struct clk object is freed.
4553  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4554 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4555 {
4556 	return -ENXIO;
4557 }
4558 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4559 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4560 {
4561 	WARN_ON_ONCE(1);
4562 }
4563 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4564 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4565 					unsigned long parent_rate)
4566 {
4567 	return -ENXIO;
4568 }
4569 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4570 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4571 {
4572 	return -ENXIO;
4573 }
4574 
clk_nodrv_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)4575 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4576 				    struct clk_rate_request *req)
4577 {
4578 	return -ENXIO;
4579 }
4580 
4581 static const struct clk_ops clk_nodrv_ops = {
4582 	.enable		= clk_nodrv_prepare_enable,
4583 	.disable	= clk_nodrv_disable_unprepare,
4584 	.prepare	= clk_nodrv_prepare_enable,
4585 	.unprepare	= clk_nodrv_disable_unprepare,
4586 	.determine_rate	= clk_nodrv_determine_rate,
4587 	.set_rate	= clk_nodrv_set_rate,
4588 	.set_parent	= clk_nodrv_set_parent,
4589 };
4590 
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4591 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4592 						const struct clk_core *target)
4593 {
4594 	int i;
4595 	struct clk_core *child;
4596 
4597 	for (i = 0; i < root->num_parents; i++)
4598 		if (root->parents[i].core == target)
4599 			root->parents[i].core = NULL;
4600 
4601 	hlist_for_each_entry(child, &root->children, child_node)
4602 		clk_core_evict_parent_cache_subtree(child, target);
4603 }
4604 
4605 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4606 static void clk_core_evict_parent_cache(struct clk_core *core)
4607 {
4608 	const struct hlist_head **lists;
4609 	struct clk_core *root;
4610 
4611 	lockdep_assert_held(&prepare_lock);
4612 
4613 	for (lists = all_lists; *lists; lists++)
4614 		hlist_for_each_entry(root, *lists, child_node)
4615 			clk_core_evict_parent_cache_subtree(root, core);
4616 
4617 }
4618 
4619 /**
4620  * clk_unregister - unregister a currently registered clock
4621  * @clk: clock to unregister
4622  */
clk_unregister(struct clk * clk)4623 void clk_unregister(struct clk *clk)
4624 {
4625 	unsigned long flags;
4626 	const struct clk_ops *ops;
4627 
4628 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4629 		return;
4630 
4631 	clk_debug_unregister(clk->core);
4632 
4633 	clk_prepare_lock();
4634 
4635 	ops = clk->core->ops;
4636 	if (ops == &clk_nodrv_ops) {
4637 		pr_err("%s: unregistered clock: %s\n", __func__,
4638 		       clk->core->name);
4639 		clk_prepare_unlock();
4640 		return;
4641 	}
4642 	/*
4643 	 * Assign empty clock ops for consumers that might still hold
4644 	 * a reference to this clock.
4645 	 */
4646 	flags = clk_enable_lock();
4647 	clk->core->ops = &clk_nodrv_ops;
4648 	clk_enable_unlock(flags);
4649 
4650 	if (ops->terminate)
4651 		ops->terminate(clk->core->hw);
4652 
4653 	if (!hlist_empty(&clk->core->children)) {
4654 		struct clk_core *child;
4655 		struct hlist_node *t;
4656 
4657 		/* Reparent all children to the orphan list. */
4658 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4659 					  child_node)
4660 			clk_core_set_parent_nolock(child, NULL);
4661 	}
4662 
4663 	clk_core_evict_parent_cache(clk->core);
4664 
4665 	hlist_del_init(&clk->core->child_node);
4666 
4667 	if (clk->core->prepare_count)
4668 		pr_warn("%s: unregistering prepared clock: %s\n",
4669 					__func__, clk->core->name);
4670 
4671 	if (clk->core->protect_count)
4672 		pr_warn("%s: unregistering protected clock: %s\n",
4673 					__func__, clk->core->name);
4674 	clk_prepare_unlock();
4675 
4676 	kref_put(&clk->core->ref, __clk_release);
4677 	free_clk(clk);
4678 }
4679 EXPORT_SYMBOL_GPL(clk_unregister);
4680 
4681 /**
4682  * clk_hw_unregister - unregister a currently registered clk_hw
4683  * @hw: hardware-specific clock data to unregister
4684  */
clk_hw_unregister(struct clk_hw * hw)4685 void clk_hw_unregister(struct clk_hw *hw)
4686 {
4687 	clk_unregister(hw->clk);
4688 }
4689 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4690 
devm_clk_unregister_cb(struct device * dev,void * res)4691 static void devm_clk_unregister_cb(struct device *dev, void *res)
4692 {
4693 	clk_unregister(*(struct clk **)res);
4694 }
4695 
devm_clk_hw_unregister_cb(struct device * dev,void * res)4696 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4697 {
4698 	clk_hw_unregister(*(struct clk_hw **)res);
4699 }
4700 
4701 /**
4702  * devm_clk_register - resource managed clk_register()
4703  * @dev: device that is registering this clock
4704  * @hw: link to hardware-specific clock data
4705  *
4706  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4707  *
4708  * Clocks returned from this function are automatically clk_unregister()ed on
4709  * driver detach. See clk_register() for more information.
4710  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4711 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4712 {
4713 	struct clk *clk;
4714 	struct clk **clkp;
4715 
4716 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4717 	if (!clkp)
4718 		return ERR_PTR(-ENOMEM);
4719 
4720 	clk = clk_register(dev, hw);
4721 	if (!IS_ERR(clk)) {
4722 		*clkp = clk;
4723 		devres_add(dev, clkp);
4724 	} else {
4725 		devres_free(clkp);
4726 	}
4727 
4728 	return clk;
4729 }
4730 EXPORT_SYMBOL_GPL(devm_clk_register);
4731 
4732 /**
4733  * devm_clk_hw_register - resource managed clk_hw_register()
4734  * @dev: device that is registering this clock
4735  * @hw: link to hardware-specific clock data
4736  *
4737  * Managed clk_hw_register(). Clocks registered by this function are
4738  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4739  * for more information.
4740  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4741 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4742 {
4743 	struct clk_hw **hwp;
4744 	int ret;
4745 
4746 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4747 	if (!hwp)
4748 		return -ENOMEM;
4749 
4750 	ret = clk_hw_register(dev, hw);
4751 	if (!ret) {
4752 		*hwp = hw;
4753 		devres_add(dev, hwp);
4754 	} else {
4755 		devres_free(hwp);
4756 	}
4757 
4758 	return ret;
4759 }
4760 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4761 
devm_clk_release(struct device * dev,void * res)4762 static void devm_clk_release(struct device *dev, void *res)
4763 {
4764 	clk_put(*(struct clk **)res);
4765 }
4766 
4767 /**
4768  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4769  * @dev: device that is registering this clock
4770  * @hw: clk_hw associated with the clk being consumed
4771  * @con_id: connection ID string on device
4772  *
4773  * Managed clk_hw_get_clk(). Clocks got with this function are
4774  * automatically clk_put() on driver detach. See clk_put()
4775  * for more information.
4776  */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4777 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4778 				const char *con_id)
4779 {
4780 	struct clk *clk;
4781 	struct clk **clkp;
4782 
4783 	/* This should not happen because it would mean we have drivers
4784 	 * passing around clk_hw pointers instead of having the caller use
4785 	 * proper clk_get() style APIs
4786 	 */
4787 	WARN_ON_ONCE(dev != hw->core->dev);
4788 
4789 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4790 	if (!clkp)
4791 		return ERR_PTR(-ENOMEM);
4792 
4793 	clk = clk_hw_get_clk(hw, con_id);
4794 	if (!IS_ERR(clk)) {
4795 		*clkp = clk;
4796 		devres_add(dev, clkp);
4797 	} else {
4798 		devres_free(clkp);
4799 	}
4800 
4801 	return clk;
4802 }
4803 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4804 
4805 /*
4806  * clkdev helpers
4807  */
4808 
__clk_put(struct clk * clk)4809 void __clk_put(struct clk *clk)
4810 {
4811 	struct module *owner;
4812 
4813 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4814 		return;
4815 
4816 	clk_prepare_lock();
4817 
4818 	/*
4819 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4820 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4821 	 * and by that same consumer
4822 	 */
4823 	if (WARN_ON(clk->exclusive_count)) {
4824 		/* We voiced our concern, let's sanitize the situation */
4825 		clk->core->protect_count -= (clk->exclusive_count - 1);
4826 		clk_core_rate_unprotect(clk->core);
4827 		clk->exclusive_count = 0;
4828 	}
4829 
4830 	clk_core_unlink_consumer(clk);
4831 
4832 	/* If we had any boundaries on that clock, let's drop them. */
4833 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4834 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4835 
4836 	clk_prepare_unlock();
4837 
4838 	owner = clk->core->owner;
4839 	kref_put(&clk->core->ref, __clk_release);
4840 	module_put(owner);
4841 	free_clk(clk);
4842 }
4843 
4844 /***        clk rate change notifiers        ***/
4845 
4846 /**
4847  * clk_notifier_register - add a clk rate change notifier
4848  * @clk: struct clk * to watch
4849  * @nb: struct notifier_block * with callback info
4850  *
4851  * Request notification when clk's rate changes.  This uses an SRCU
4852  * notifier because we want it to block and notifier unregistrations are
4853  * uncommon.  The callbacks associated with the notifier must not
4854  * re-enter into the clk framework by calling any top-level clk APIs;
4855  * this will cause a nested prepare_lock mutex.
4856  *
4857  * In all notification cases (pre, post and abort rate change) the original
4858  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4859  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4860  *
4861  * clk_notifier_register() must be called from non-atomic context.
4862  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4863  * allocation failure; otherwise, passes along the return value of
4864  * srcu_notifier_chain_register().
4865  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4866 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4867 {
4868 	struct clk_notifier *cn;
4869 	int ret = -ENOMEM;
4870 
4871 	if (!clk || !nb)
4872 		return -EINVAL;
4873 
4874 	clk_prepare_lock();
4875 
4876 	/* search the list of notifiers for this clk */
4877 	list_for_each_entry(cn, &clk_notifier_list, node)
4878 		if (cn->clk == clk)
4879 			goto found;
4880 
4881 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4882 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4883 	if (!cn)
4884 		goto out;
4885 
4886 	cn->clk = clk;
4887 	srcu_init_notifier_head(&cn->notifier_head);
4888 
4889 	list_add(&cn->node, &clk_notifier_list);
4890 
4891 found:
4892 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4893 
4894 	clk->core->notifier_count++;
4895 
4896 out:
4897 	clk_prepare_unlock();
4898 
4899 	return ret;
4900 }
4901 EXPORT_SYMBOL_GPL(clk_notifier_register);
4902 
4903 /**
4904  * clk_notifier_unregister - remove a clk rate change notifier
4905  * @clk: struct clk *
4906  * @nb: struct notifier_block * with callback info
4907  *
4908  * Request no further notification for changes to 'clk' and frees memory
4909  * allocated in clk_notifier_register.
4910  *
4911  * Returns -EINVAL if called with null arguments; otherwise, passes
4912  * along the return value of srcu_notifier_chain_unregister().
4913  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4914 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4915 {
4916 	struct clk_notifier *cn;
4917 	int ret = -ENOENT;
4918 
4919 	if (!clk || !nb)
4920 		return -EINVAL;
4921 
4922 	clk_prepare_lock();
4923 
4924 	list_for_each_entry(cn, &clk_notifier_list, node) {
4925 		if (cn->clk == clk) {
4926 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4927 
4928 			clk->core->notifier_count--;
4929 
4930 			/* XXX the notifier code should handle this better */
4931 			if (!cn->notifier_head.head) {
4932 				srcu_cleanup_notifier_head(&cn->notifier_head);
4933 				list_del(&cn->node);
4934 				kfree(cn);
4935 			}
4936 			break;
4937 		}
4938 	}
4939 
4940 	clk_prepare_unlock();
4941 
4942 	return ret;
4943 }
4944 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4945 
4946 struct clk_notifier_devres {
4947 	struct clk *clk;
4948 	struct notifier_block *nb;
4949 };
4950 
devm_clk_notifier_release(struct device * dev,void * res)4951 static void devm_clk_notifier_release(struct device *dev, void *res)
4952 {
4953 	struct clk_notifier_devres *devres = res;
4954 
4955 	clk_notifier_unregister(devres->clk, devres->nb);
4956 }
4957 
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4958 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4959 			       struct notifier_block *nb)
4960 {
4961 	struct clk_notifier_devres *devres;
4962 	int ret;
4963 
4964 	devres = devres_alloc(devm_clk_notifier_release,
4965 			      sizeof(*devres), GFP_KERNEL);
4966 
4967 	if (!devres)
4968 		return -ENOMEM;
4969 
4970 	ret = clk_notifier_register(clk, nb);
4971 	if (!ret) {
4972 		devres->clk = clk;
4973 		devres->nb = nb;
4974 		devres_add(dev, devres);
4975 	} else {
4976 		devres_free(devres);
4977 	}
4978 
4979 	return ret;
4980 }
4981 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4982 
4983 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4984 static void clk_core_reparent_orphans(void)
4985 {
4986 	clk_prepare_lock();
4987 	clk_core_reparent_orphans_nolock();
4988 	clk_prepare_unlock();
4989 }
4990 
4991 /**
4992  * struct of_clk_provider - Clock provider registration structure
4993  * @link: Entry in global list of clock providers
4994  * @node: Pointer to device tree node of clock provider
4995  * @get: Get clock callback.  Returns NULL or a struct clk for the
4996  *       given clock specifier
4997  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4998  *       struct clk_hw for the given clock specifier
4999  * @data: context pointer to be passed into @get callback
5000  */
5001 struct of_clk_provider {
5002 	struct list_head link;
5003 
5004 	struct device_node *node;
5005 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
5006 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
5007 	void *data;
5008 };
5009 
5010 extern struct of_device_id __clk_of_table;
5011 static const struct of_device_id __clk_of_table_sentinel
5012 	__used __section("__clk_of_table_end");
5013 
5014 static LIST_HEAD(of_clk_providers);
5015 static DEFINE_MUTEX(of_clk_mutex);
5016 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)5017 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
5018 				     void *data)
5019 {
5020 	return data;
5021 }
5022 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
5023 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)5024 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
5025 {
5026 	return data;
5027 }
5028 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
5029 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)5030 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
5031 {
5032 	struct clk_onecell_data *clk_data = data;
5033 	unsigned int idx = clkspec->args[0];
5034 
5035 	if (idx >= clk_data->clk_num) {
5036 		pr_err("%s: invalid clock index %u\n", __func__, idx);
5037 		return ERR_PTR(-EINVAL);
5038 	}
5039 
5040 	return clk_data->clks[idx];
5041 }
5042 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
5043 
5044 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)5045 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
5046 {
5047 	struct clk_hw_onecell_data *hw_data = data;
5048 	unsigned int idx = clkspec->args[0];
5049 
5050 	if (idx >= hw_data->num) {
5051 		pr_err("%s: invalid index %u\n", __func__, idx);
5052 		return ERR_PTR(-EINVAL);
5053 	}
5054 
5055 	return hw_data->hws[idx];
5056 }
5057 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
5058 
5059 /**
5060  * of_clk_add_provider() - Register a clock provider for a node
5061  * @np: Device node pointer associated with clock provider
5062  * @clk_src_get: callback for decoding clock
5063  * @data: context pointer for @clk_src_get callback.
5064  *
5065  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5066  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)5067 int of_clk_add_provider(struct device_node *np,
5068 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5069 						   void *data),
5070 			void *data)
5071 {
5072 	struct of_clk_provider *cp;
5073 	int ret;
5074 
5075 	if (!np)
5076 		return 0;
5077 
5078 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5079 	if (!cp)
5080 		return -ENOMEM;
5081 
5082 	cp->node = of_node_get(np);
5083 	cp->data = data;
5084 	cp->get = clk_src_get;
5085 
5086 	mutex_lock(&of_clk_mutex);
5087 	list_add(&cp->link, &of_clk_providers);
5088 	mutex_unlock(&of_clk_mutex);
5089 	pr_debug("Added clock from %pOF\n", np);
5090 
5091 	clk_core_reparent_orphans();
5092 
5093 	ret = of_clk_set_defaults(np, true);
5094 	if (ret < 0)
5095 		of_clk_del_provider(np);
5096 
5097 	fwnode_dev_initialized(&np->fwnode, true);
5098 
5099 	return ret;
5100 }
5101 EXPORT_SYMBOL_GPL(of_clk_add_provider);
5102 
5103 /**
5104  * of_clk_add_hw_provider() - Register a clock provider for a node
5105  * @np: Device node pointer associated with clock provider
5106  * @get: callback for decoding clk_hw
5107  * @data: context pointer for @get callback.
5108  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5109 int of_clk_add_hw_provider(struct device_node *np,
5110 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5111 						 void *data),
5112 			   void *data)
5113 {
5114 	struct of_clk_provider *cp;
5115 	int ret;
5116 
5117 	if (!np)
5118 		return 0;
5119 
5120 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5121 	if (!cp)
5122 		return -ENOMEM;
5123 
5124 	cp->node = of_node_get(np);
5125 	cp->data = data;
5126 	cp->get_hw = get;
5127 
5128 	mutex_lock(&of_clk_mutex);
5129 	list_add(&cp->link, &of_clk_providers);
5130 	mutex_unlock(&of_clk_mutex);
5131 	pr_debug("Added clk_hw provider from %pOF\n", np);
5132 
5133 	clk_core_reparent_orphans();
5134 
5135 	ret = of_clk_set_defaults(np, true);
5136 	if (ret < 0)
5137 		of_clk_del_provider(np);
5138 
5139 	fwnode_dev_initialized(&np->fwnode, true);
5140 
5141 	return ret;
5142 }
5143 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5144 
devm_of_clk_release_provider(struct device * dev,void * res)5145 static void devm_of_clk_release_provider(struct device *dev, void *res)
5146 {
5147 	of_clk_del_provider(*(struct device_node **)res);
5148 }
5149 
5150 /*
5151  * We allow a child device to use its parent device as the clock provider node
5152  * for cases like MFD sub-devices where the child device driver wants to use
5153  * devm_*() APIs but not list the device in DT as a sub-node.
5154  */
get_clk_provider_node(struct device * dev)5155 static struct device_node *get_clk_provider_node(struct device *dev)
5156 {
5157 	struct device_node *np, *parent_np;
5158 
5159 	np = dev->of_node;
5160 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5161 
5162 	if (!of_property_present(np, "#clock-cells"))
5163 		if (of_property_present(parent_np, "#clock-cells"))
5164 			np = parent_np;
5165 
5166 	return np;
5167 }
5168 
5169 /**
5170  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5171  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5172  * @get: callback for decoding clk_hw
5173  * @data: context pointer for @get callback
5174  *
5175  * Registers clock provider for given device's node. If the device has no DT
5176  * node or if the device node lacks of clock provider information (#clock-cells)
5177  * then the parent device's node is scanned for this information. If parent node
5178  * has the #clock-cells then it is used in registration. Provider is
5179  * automatically released at device exit.
5180  *
5181  * Return: 0 on success or an errno on failure.
5182  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5183 int devm_of_clk_add_hw_provider(struct device *dev,
5184 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5185 					      void *data),
5186 			void *data)
5187 {
5188 	struct device_node **ptr, *np;
5189 	int ret;
5190 
5191 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5192 			   GFP_KERNEL);
5193 	if (!ptr)
5194 		return -ENOMEM;
5195 
5196 	np = get_clk_provider_node(dev);
5197 	ret = of_clk_add_hw_provider(np, get, data);
5198 	if (!ret) {
5199 		*ptr = np;
5200 		devres_add(dev, ptr);
5201 	} else {
5202 		devres_free(ptr);
5203 	}
5204 
5205 	return ret;
5206 }
5207 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5208 
5209 /**
5210  * of_clk_del_provider() - Remove a previously registered clock provider
5211  * @np: Device node pointer associated with clock provider
5212  */
of_clk_del_provider(struct device_node * np)5213 void of_clk_del_provider(struct device_node *np)
5214 {
5215 	struct of_clk_provider *cp;
5216 
5217 	if (!np)
5218 		return;
5219 
5220 	mutex_lock(&of_clk_mutex);
5221 	list_for_each_entry(cp, &of_clk_providers, link) {
5222 		if (cp->node == np) {
5223 			list_del(&cp->link);
5224 			fwnode_dev_initialized(&np->fwnode, false);
5225 			of_node_put(cp->node);
5226 			kfree(cp);
5227 			break;
5228 		}
5229 	}
5230 	mutex_unlock(&of_clk_mutex);
5231 }
5232 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5233 
5234 /**
5235  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5236  * @np: device node to parse clock specifier from
5237  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5238  * @name: clock name to find and parse. If name is NULL, the index is used
5239  * @out_args: Result of parsing the clock specifier
5240  *
5241  * Parses a device node's "clocks" and "clock-names" properties to find the
5242  * phandle and cells for the index or name that is desired. The resulting clock
5243  * specifier is placed into @out_args, or an errno is returned when there's a
5244  * parsing error. The @index argument is ignored if @name is non-NULL.
5245  *
5246  * Example:
5247  *
5248  * phandle1: clock-controller@1 {
5249  *	#clock-cells = <2>;
5250  * }
5251  *
5252  * phandle2: clock-controller@2 {
5253  *	#clock-cells = <1>;
5254  * }
5255  *
5256  * clock-consumer@3 {
5257  *	clocks = <&phandle1 1 2 &phandle2 3>;
5258  *	clock-names = "name1", "name2";
5259  * }
5260  *
5261  * To get a device_node for `clock-controller@2' node you may call this
5262  * function a few different ways:
5263  *
5264  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5265  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5266  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5267  *
5268  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5269  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5270  * the "clock-names" property of @np.
5271  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)5272 static int of_parse_clkspec(const struct device_node *np, int index,
5273 			    const char *name, struct of_phandle_args *out_args)
5274 {
5275 	int ret = -ENOENT;
5276 
5277 	/* Walk up the tree of devices looking for a clock property that matches */
5278 	while (np) {
5279 		/*
5280 		 * For named clocks, first look up the name in the
5281 		 * "clock-names" property.  If it cannot be found, then index
5282 		 * will be an error code and of_parse_phandle_with_args() will
5283 		 * return -EINVAL.
5284 		 */
5285 		if (name)
5286 			index = of_property_match_string(np, "clock-names", name);
5287 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5288 						 index, out_args);
5289 		if (!ret)
5290 			break;
5291 		if (name && index >= 0)
5292 			break;
5293 
5294 		/*
5295 		 * No matching clock found on this node.  If the parent node
5296 		 * has a "clock-ranges" property, then we can try one of its
5297 		 * clocks.
5298 		 */
5299 		np = np->parent;
5300 		if (np && !of_property_present(np, "clock-ranges"))
5301 			break;
5302 		index = 0;
5303 	}
5304 
5305 	return ret;
5306 }
5307 
5308 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)5309 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5310 			      struct of_phandle_args *clkspec)
5311 {
5312 	struct clk *clk;
5313 
5314 	if (provider->get_hw)
5315 		return provider->get_hw(clkspec, provider->data);
5316 
5317 	clk = provider->get(clkspec, provider->data);
5318 	if (IS_ERR(clk))
5319 		return ERR_CAST(clk);
5320 	return __clk_get_hw(clk);
5321 }
5322 
5323 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5324 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5325 {
5326 	struct of_clk_provider *provider;
5327 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5328 
5329 	if (!clkspec)
5330 		return ERR_PTR(-EINVAL);
5331 
5332 	/* Check if node in clkspec is in disabled/fail state */
5333 	if (!of_device_is_available(clkspec->np))
5334 		return ERR_PTR(-ENOENT);
5335 
5336 	mutex_lock(&of_clk_mutex);
5337 	list_for_each_entry(provider, &of_clk_providers, link) {
5338 		if (provider->node == clkspec->np) {
5339 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5340 			if (!IS_ERR(hw))
5341 				break;
5342 		}
5343 	}
5344 	mutex_unlock(&of_clk_mutex);
5345 
5346 	return hw;
5347 }
5348 
5349 /**
5350  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5351  * @clkspec: pointer to a clock specifier data structure
5352  *
5353  * This function looks up a struct clk from the registered list of clock
5354  * providers, an input is a clock specifier data structure as returned
5355  * from the of_parse_phandle_with_args() function call.
5356  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5357 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5358 {
5359 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5360 
5361 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5362 }
5363 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5364 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5365 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5366 			     const char *con_id)
5367 {
5368 	int ret;
5369 	struct clk_hw *hw;
5370 	struct of_phandle_args clkspec;
5371 
5372 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5373 	if (ret)
5374 		return ERR_PTR(ret);
5375 
5376 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5377 	of_node_put(clkspec.np);
5378 
5379 	return hw;
5380 }
5381 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5382 static struct clk *__of_clk_get(struct device_node *np,
5383 				int index, const char *dev_id,
5384 				const char *con_id)
5385 {
5386 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5387 
5388 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5389 }
5390 
of_clk_get(struct device_node * np,int index)5391 struct clk *of_clk_get(struct device_node *np, int index)
5392 {
5393 	return __of_clk_get(np, index, np->full_name, NULL);
5394 }
5395 EXPORT_SYMBOL(of_clk_get);
5396 
5397 /**
5398  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5399  * @np: pointer to clock consumer node
5400  * @name: name of consumer's clock input, or NULL for the first clock reference
5401  *
5402  * This function parses the clocks and clock-names properties,
5403  * and uses them to look up the struct clk from the registered list of clock
5404  * providers.
5405  */
of_clk_get_by_name(struct device_node * np,const char * name)5406 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5407 {
5408 	if (!np)
5409 		return ERR_PTR(-ENOENT);
5410 
5411 	return __of_clk_get(np, 0, np->full_name, name);
5412 }
5413 EXPORT_SYMBOL(of_clk_get_by_name);
5414 
5415 /**
5416  * of_clk_get_parent_count() - Count the number of clocks a device node has
5417  * @np: device node to count
5418  *
5419  * Returns: The number of clocks that are possible parents of this node
5420  */
of_clk_get_parent_count(const struct device_node * np)5421 unsigned int of_clk_get_parent_count(const struct device_node *np)
5422 {
5423 	int count;
5424 
5425 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5426 	if (count < 0)
5427 		return 0;
5428 
5429 	return count;
5430 }
5431 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5432 
of_clk_get_parent_name(const struct device_node * np,int index)5433 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5434 {
5435 	struct of_phandle_args clkspec;
5436 	const char *clk_name;
5437 	bool found = false;
5438 	u32 pv;
5439 	int rc;
5440 	int count;
5441 	struct clk *clk;
5442 
5443 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5444 					&clkspec);
5445 	if (rc)
5446 		return NULL;
5447 
5448 	index = clkspec.args_count ? clkspec.args[0] : 0;
5449 	count = 0;
5450 
5451 	/* if there is an indices property, use it to transfer the index
5452 	 * specified into an array offset for the clock-output-names property.
5453 	 */
5454 	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5455 		if (index == pv) {
5456 			index = count;
5457 			found = true;
5458 			break;
5459 		}
5460 		count++;
5461 	}
5462 	/* We went off the end of 'clock-indices' without finding it */
5463 	if (of_property_present(clkspec.np, "clock-indices") && !found) {
5464 		of_node_put(clkspec.np);
5465 		return NULL;
5466 	}
5467 
5468 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5469 					  index,
5470 					  &clk_name) < 0) {
5471 		/*
5472 		 * Best effort to get the name if the clock has been
5473 		 * registered with the framework. If the clock isn't
5474 		 * registered, we return the node name as the name of
5475 		 * the clock as long as #clock-cells = 0.
5476 		 */
5477 		clk = of_clk_get_from_provider(&clkspec);
5478 		if (IS_ERR(clk)) {
5479 			if (clkspec.args_count == 0)
5480 				clk_name = clkspec.np->name;
5481 			else
5482 				clk_name = NULL;
5483 		} else {
5484 			clk_name = __clk_get_name(clk);
5485 			clk_put(clk);
5486 		}
5487 	}
5488 
5489 
5490 	of_node_put(clkspec.np);
5491 	return clk_name;
5492 }
5493 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5494 
5495 /**
5496  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5497  * number of parents
5498  * @np: Device node pointer associated with clock provider
5499  * @parents: pointer to char array that hold the parents' names
5500  * @size: size of the @parents array
5501  *
5502  * Return: number of parents for the clock node.
5503  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5504 int of_clk_parent_fill(struct device_node *np, const char **parents,
5505 		       unsigned int size)
5506 {
5507 	unsigned int i = 0;
5508 
5509 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5510 		i++;
5511 
5512 	return i;
5513 }
5514 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5515 
5516 struct clock_provider {
5517 	void (*clk_init_cb)(struct device_node *);
5518 	struct device_node *np;
5519 	struct list_head node;
5520 };
5521 
5522 /*
5523  * This function looks for a parent clock. If there is one, then it
5524  * checks that the provider for this parent clock was initialized, in
5525  * this case the parent clock will be ready.
5526  */
parent_ready(struct device_node * np)5527 static int parent_ready(struct device_node *np)
5528 {
5529 	int i = 0;
5530 
5531 	while (true) {
5532 		struct clk *clk = of_clk_get(np, i);
5533 
5534 		/* this parent is ready we can check the next one */
5535 		if (!IS_ERR(clk)) {
5536 			clk_put(clk);
5537 			i++;
5538 			continue;
5539 		}
5540 
5541 		/* at least one parent is not ready, we exit now */
5542 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5543 			return 0;
5544 
5545 		/*
5546 		 * Here we make assumption that the device tree is
5547 		 * written correctly. So an error means that there is
5548 		 * no more parent. As we didn't exit yet, then the
5549 		 * previous parent are ready. If there is no clock
5550 		 * parent, no need to wait for them, then we can
5551 		 * consider their absence as being ready
5552 		 */
5553 		return 1;
5554 	}
5555 }
5556 
5557 /**
5558  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5559  * @np: Device node pointer associated with clock provider
5560  * @index: clock index
5561  * @flags: pointer to top-level framework flags
5562  *
5563  * Detects if the clock-critical property exists and, if so, sets the
5564  * corresponding CLK_IS_CRITICAL flag.
5565  *
5566  * Do not use this function. It exists only for legacy Device Tree
5567  * bindings, such as the one-clock-per-node style that are outdated.
5568  * Those bindings typically put all clock data into .dts and the Linux
5569  * driver has no clock data, thus making it impossible to set this flag
5570  * correctly from the driver. Only those drivers may call
5571  * of_clk_detect_critical from their setup functions.
5572  *
5573  * Return: error code or zero on success
5574  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5575 int of_clk_detect_critical(struct device_node *np, int index,
5576 			   unsigned long *flags)
5577 {
5578 	uint32_t idx;
5579 
5580 	if (!np || !flags)
5581 		return -EINVAL;
5582 
5583 	of_property_for_each_u32(np, "clock-critical", idx)
5584 		if (index == idx)
5585 			*flags |= CLK_IS_CRITICAL;
5586 
5587 	return 0;
5588 }
5589 
5590 /**
5591  * of_clk_init() - Scan and init clock providers from the DT
5592  * @matches: array of compatible values and init functions for providers.
5593  *
5594  * This function scans the device tree for matching clock providers
5595  * and calls their initialization functions. It also does it by trying
5596  * to follow the dependencies.
5597  */
of_clk_init(const struct of_device_id * matches)5598 void __init of_clk_init(const struct of_device_id *matches)
5599 {
5600 	const struct of_device_id *match;
5601 	struct device_node *np;
5602 	struct clock_provider *clk_provider, *next;
5603 	bool is_init_done;
5604 	bool force = false;
5605 	LIST_HEAD(clk_provider_list);
5606 
5607 	if (!matches)
5608 		matches = &__clk_of_table;
5609 
5610 	/* First prepare the list of the clocks providers */
5611 	for_each_matching_node_and_match(np, matches, &match) {
5612 		struct clock_provider *parent;
5613 
5614 		if (!of_device_is_available(np))
5615 			continue;
5616 
5617 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5618 		if (!parent) {
5619 			list_for_each_entry_safe(clk_provider, next,
5620 						 &clk_provider_list, node) {
5621 				list_del(&clk_provider->node);
5622 				of_node_put(clk_provider->np);
5623 				kfree(clk_provider);
5624 			}
5625 			of_node_put(np);
5626 			return;
5627 		}
5628 
5629 		parent->clk_init_cb = match->data;
5630 		parent->np = of_node_get(np);
5631 		list_add_tail(&parent->node, &clk_provider_list);
5632 	}
5633 
5634 	while (!list_empty(&clk_provider_list)) {
5635 		is_init_done = false;
5636 		list_for_each_entry_safe(clk_provider, next,
5637 					&clk_provider_list, node) {
5638 			if (force || parent_ready(clk_provider->np)) {
5639 
5640 				/* Don't populate platform devices */
5641 				of_node_set_flag(clk_provider->np,
5642 						 OF_POPULATED);
5643 
5644 				clk_provider->clk_init_cb(clk_provider->np);
5645 				of_clk_set_defaults(clk_provider->np, true);
5646 
5647 				list_del(&clk_provider->node);
5648 				of_node_put(clk_provider->np);
5649 				kfree(clk_provider);
5650 				is_init_done = true;
5651 			}
5652 		}
5653 
5654 		/*
5655 		 * We didn't manage to initialize any of the
5656 		 * remaining providers during the last loop, so now we
5657 		 * initialize all the remaining ones unconditionally
5658 		 * in case the clock parent was not mandatory
5659 		 */
5660 		if (!is_init_done)
5661 			force = true;
5662 	}
5663 }
5664 #endif
5665