• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @commit_done_timedout: True if there has been a timeout on commit after
130  *			enabling the encoder.
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @hw_dsc:		Handle to the DSC blocks used for the display.
139  * @dsc_mask:		Bitmask of used DSC blocks.
140  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
141  *			for partial update right-only cases, such as pingpong
142  *			split where virtual pingpong does not generate IRQs
143  * @crtc:		Pointer to the currently assigned crtc. Normally you
144  *			would use crtc->state->encoder_mask to determine the
145  *			link between encoder/crtc. However in this case we need
146  *			to track crtc in the disable() hook which is called
147  *			_after_ encoder_mask is cleared.
148  * @connector:		If a mode is set, cached pointer to the active connector
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @frame_done_timeout_ms:	frame done timeout in ms
155  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
156  * 				done timeouts
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 	bool commit_done_timedout;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
183 
184 	unsigned int dsc_mask;
185 
186 	bool intfs_swapped;
187 
188 	struct drm_crtc *crtc;
189 	struct drm_connector *connector;
190 
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 
194 	atomic_t frame_done_timeout_ms;
195 	atomic_t frame_done_timeout_cnt;
196 	struct timer_list frame_done_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 
208 	bool wide_bus_en;
209 
210 	/* DSC configuration */
211 	struct drm_dsc_config *dsc;
212 };
213 
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215 
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219 
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)220 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
221 {
222 	struct drm_encoder *drm_enc;
223 	struct dpu_encoder_virt *dpu_enc;
224 	struct drm_display_info *info;
225 	struct drm_display_mode *mode;
226 
227 	drm_enc = phys_enc->parent;
228 	dpu_enc = to_dpu_encoder_virt(drm_enc);
229 	info = &dpu_enc->connector->display_info;
230 	mode = &phys_enc->cached_mode;
231 
232 	if (drm_mode_is_420_only(info, mode))
233 		return DRM_FORMAT_YUV420;
234 
235 	return DRM_FORMAT_RGB888;
236 }
237 
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)238 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
239 {
240 	struct drm_encoder *drm_enc;
241 	struct dpu_encoder_virt *dpu_enc;
242 	struct msm_display_info *disp_info;
243 	struct msm_drm_private *priv;
244 	struct drm_display_mode *mode;
245 
246 	drm_enc = phys_enc->parent;
247 	dpu_enc = to_dpu_encoder_virt(drm_enc);
248 	disp_info = &dpu_enc->disp_info;
249 	priv = drm_enc->dev->dev_private;
250 	mode = &phys_enc->cached_mode;
251 
252 	return phys_enc->hw_intf->cap->type == INTF_DP &&
253 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
254 }
255 
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)256 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
257 {
258 	const struct dpu_encoder_virt *dpu_enc;
259 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
260 	const struct msm_display_info *disp_info;
261 	int index;
262 
263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
264 	disp_info = &dpu_enc->disp_info;
265 	index = disp_info->h_tile_instance[0];
266 
267 	if (disp_info->intf_type == INTF_DP)
268 		return msm_dp_wide_bus_available(priv->dp[index]);
269 	else if (disp_info->intf_type == INTF_DSI)
270 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
271 
272 	return false;
273 }
274 
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)275 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
276 {
277 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
278 
279 	return dpu_enc->dsc ? true : false;
280 }
281 
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)282 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
283 {
284 	struct dpu_encoder_virt *dpu_enc;
285 	int i, num_intf = 0;
286 
287 	dpu_enc = to_dpu_encoder_virt(drm_enc);
288 
289 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
290 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
291 
292 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
293 				&& phys->hw_intf->ops.collect_misr)
294 			num_intf++;
295 	}
296 
297 	return num_intf;
298 }
299 
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)300 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
301 {
302 	struct dpu_encoder_virt *dpu_enc;
303 
304 	int i;
305 
306 	dpu_enc = to_dpu_encoder_virt(drm_enc);
307 
308 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
309 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
310 
311 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
312 			continue;
313 
314 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
315 	}
316 }
317 
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)318 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
319 {
320 	struct dpu_encoder_virt *dpu_enc;
321 
322 	int i, rc = 0, entries_added = 0;
323 
324 	if (!drm_enc->crtc) {
325 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
326 		return -EINVAL;
327 	}
328 
329 	dpu_enc = to_dpu_encoder_virt(drm_enc);
330 
331 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
332 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
333 
334 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
335 			continue;
336 
337 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
338 		if (rc)
339 			return rc;
340 		entries_added++;
341 	}
342 
343 	return entries_added;
344 }
345 
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)346 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
347 {
348 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
349 
350 	if (!hw_pp->ops.setup_dither)
351 		return;
352 
353 	switch (bpc) {
354 	case 6:
355 		dither_cfg.c0_bitdepth = 6;
356 		dither_cfg.c1_bitdepth = 6;
357 		dither_cfg.c2_bitdepth = 6;
358 		dither_cfg.c3_bitdepth = 6;
359 		dither_cfg.temporal_en = 0;
360 		break;
361 	default:
362 		hw_pp->ops.setup_dither(hw_pp, NULL);
363 		return;
364 	}
365 
366 	memcpy(&dither_cfg.matrix, dither_matrix,
367 			sizeof(u32) * DITHER_MATRIX_SZ);
368 
369 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
370 }
371 
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)372 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
373 {
374 	switch (intf_mode) {
375 	case INTF_MODE_VIDEO:
376 		return "INTF_MODE_VIDEO";
377 	case INTF_MODE_CMD:
378 		return "INTF_MODE_CMD";
379 	case INTF_MODE_WB_BLOCK:
380 		return "INTF_MODE_WB_BLOCK";
381 	case INTF_MODE_WB_LINE:
382 		return "INTF_MODE_WB_LINE";
383 	default:
384 		return "INTF_MODE_UNKNOWN";
385 	}
386 }
387 
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)388 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
389 		enum dpu_intr_idx intr_idx)
390 {
391 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
392 			DRMID(phys_enc->parent),
393 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
394 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
395 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
396 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
397 
398 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
399 				DPU_ENCODER_FRAME_EVENT_ERROR);
400 }
401 
402 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
403 		u32 irq_idx, struct dpu_encoder_wait_info *info);
404 
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)405 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
406 		unsigned int irq_idx,
407 		void (*func)(void *arg),
408 		struct dpu_encoder_wait_info *wait_info)
409 {
410 	u32 irq_status;
411 	int ret;
412 
413 	if (!wait_info) {
414 		DPU_ERROR("invalid params\n");
415 		return -EINVAL;
416 	}
417 	/* note: do master / slave checking outside */
418 
419 	/* return EWOULDBLOCK since we know the wait isn't necessary */
420 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
421 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
422 			  DRMID(phys_enc->parent), func,
423 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
424 		return -EWOULDBLOCK;
425 	}
426 
427 	if (irq_idx == 0) {
428 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
429 			      DRMID(phys_enc->parent), func);
430 		return 0;
431 	}
432 
433 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
434 		      DRMID(phys_enc->parent), func,
435 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
436 		      atomic_read(wait_info->atomic_cnt));
437 
438 	ret = dpu_encoder_helper_wait_event_timeout(
439 			DRMID(phys_enc->parent),
440 			irq_idx,
441 			wait_info);
442 
443 	if (ret <= 0) {
444 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
445 		if (irq_status) {
446 			unsigned long flags;
447 
448 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
449 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
450 				      DRMID(phys_enc->parent), func,
451 				      phys_enc->hw_pp->idx - PINGPONG_0,
452 				      atomic_read(wait_info->atomic_cnt));
453 			local_irq_save(flags);
454 			func(phys_enc);
455 			local_irq_restore(flags);
456 			ret = 0;
457 		} else {
458 			ret = -ETIMEDOUT;
459 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
460 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
461 				      DRMID(phys_enc->parent), func,
462 				      phys_enc->hw_pp->idx - PINGPONG_0,
463 				      atomic_read(wait_info->atomic_cnt));
464 		}
465 	} else {
466 		ret = 0;
467 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
468 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
469 			phys_enc->hw_pp->idx - PINGPONG_0,
470 			atomic_read(wait_info->atomic_cnt));
471 	}
472 
473 	return ret;
474 }
475 
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)476 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
477 {
478 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
479 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
480 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
481 }
482 
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)483 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
484 {
485 	struct dpu_encoder_virt *dpu_enc;
486 	struct dpu_encoder_phys *phys;
487 	int linecount = 0;
488 
489 	dpu_enc = to_dpu_encoder_virt(drm_enc);
490 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
491 
492 	if (phys && phys->ops.get_line_count)
493 		linecount = phys->ops.get_line_count(phys);
494 
495 	return linecount;
496 }
497 
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)498 void dpu_encoder_helper_split_config(
499 		struct dpu_encoder_phys *phys_enc,
500 		enum dpu_intf interface)
501 {
502 	struct dpu_encoder_virt *dpu_enc;
503 	struct split_pipe_cfg cfg = { 0 };
504 	struct dpu_hw_mdp *hw_mdptop;
505 	struct msm_display_info *disp_info;
506 
507 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
508 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
509 		return;
510 	}
511 
512 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
513 	hw_mdptop = phys_enc->hw_mdptop;
514 	disp_info = &dpu_enc->disp_info;
515 
516 	if (disp_info->intf_type != INTF_DSI)
517 		return;
518 
519 	/**
520 	 * disable split modes since encoder will be operating in as the only
521 	 * encoder, either for the entire use case in the case of, for example,
522 	 * single DSI, or for this frame in the case of left/right only partial
523 	 * update.
524 	 */
525 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
526 		if (hw_mdptop->ops.setup_split_pipe)
527 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
528 		return;
529 	}
530 
531 	cfg.en = true;
532 	cfg.mode = phys_enc->intf_mode;
533 	cfg.intf = interface;
534 
535 	if (cfg.en && phys_enc->ops.needs_single_flush &&
536 			phys_enc->ops.needs_single_flush(phys_enc))
537 		cfg.split_flush_en = true;
538 
539 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
540 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
541 
542 		if (hw_mdptop->ops.setup_split_pipe)
543 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
544 	}
545 }
546 
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)547 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
548 {
549 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
550 	int i, intf_count = 0, num_dsc = 0;
551 
552 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
553 		if (dpu_enc->phys_encs[i])
554 			intf_count++;
555 
556 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
557 	if (dpu_enc->dsc)
558 		num_dsc = 2;
559 
560 	return (num_dsc > 0) && (num_dsc > intf_count);
561 }
562 
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)563 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
564 {
565 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
566 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
567 	int index = dpu_enc->disp_info.h_tile_instance[0];
568 
569 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
570 		return msm_dsi_get_dsc_config(priv->dsi[index]);
571 
572 	return NULL;
573 }
574 
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode,struct drm_crtc_state * crtc_state,struct drm_dsc_config * dsc)575 static struct msm_display_topology dpu_encoder_get_topology(
576 			struct dpu_encoder_virt *dpu_enc,
577 			struct dpu_kms *dpu_kms,
578 			struct drm_display_mode *mode,
579 			struct drm_crtc_state *crtc_state,
580 			struct drm_dsc_config *dsc)
581 {
582 	struct msm_display_topology topology = {0};
583 	int i, intf_count = 0;
584 
585 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
586 		if (dpu_enc->phys_encs[i])
587 			intf_count++;
588 
589 	/* Datapath topology selection
590 	 *
591 	 * Dual display
592 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
593 	 *
594 	 * Single display
595 	 * 1 LM, 1 INTF
596 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
597 	 *
598 	 * Add dspps to the reservation requirements if ctm is requested
599 	 */
600 	if (intf_count == 2)
601 		topology.num_lm = 2;
602 	else if (!dpu_kms->catalog->caps->has_3d_merge)
603 		topology.num_lm = 1;
604 	else
605 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
606 
607 	if (crtc_state->ctm)
608 		topology.num_dspp = topology.num_lm;
609 
610 	topology.num_intf = intf_count;
611 
612 	if (dsc) {
613 		/*
614 		 * In case of Display Stream Compression (DSC), we would use
615 		 * 2 DSC encoders, 2 layer mixers and 1 interface
616 		 * this is power optimal and can drive up to (including) 4k
617 		 * screens
618 		 */
619 		topology.num_dsc = 2;
620 		topology.num_lm = 2;
621 		topology.num_intf = 1;
622 	}
623 
624 	return topology;
625 }
626 
dpu_encoder_assign_crtc_resources(struct dpu_kms * dpu_kms,struct drm_encoder * drm_enc,struct dpu_global_state * global_state,struct drm_crtc_state * crtc_state)627 static void dpu_encoder_assign_crtc_resources(struct dpu_kms *dpu_kms,
628 					      struct drm_encoder *drm_enc,
629 					      struct dpu_global_state *global_state,
630 					      struct drm_crtc_state *crtc_state)
631 {
632 	struct dpu_crtc_state *cstate;
633 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
634 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
635 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC];
636 	int num_lm, num_ctl, num_dspp, i;
637 
638 	cstate = to_dpu_crtc_state(crtc_state);
639 
640 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
641 
642 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
643 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
644 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
645 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
646 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
647 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
648 		ARRAY_SIZE(hw_dspp));
649 
650 	for (i = 0; i < num_lm; i++) {
651 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
652 
653 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
654 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
655 		cstate->mixers[i].hw_dspp = i < num_dspp ? to_dpu_hw_dspp(hw_dspp[i]) : NULL;
656 	}
657 
658 	cstate->num_mixers = num_lm;
659 }
660 
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)661 static int dpu_encoder_virt_atomic_check(
662 		struct drm_encoder *drm_enc,
663 		struct drm_crtc_state *crtc_state,
664 		struct drm_connector_state *conn_state)
665 {
666 	struct dpu_encoder_virt *dpu_enc;
667 	struct msm_drm_private *priv;
668 	struct dpu_kms *dpu_kms;
669 	struct drm_display_mode *adj_mode;
670 	struct msm_display_topology topology;
671 	struct msm_display_info *disp_info;
672 	struct dpu_global_state *global_state;
673 	struct drm_framebuffer *fb;
674 	struct drm_dsc_config *dsc;
675 	int ret = 0;
676 
677 	if (!drm_enc || !crtc_state || !conn_state) {
678 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
679 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
680 		return -EINVAL;
681 	}
682 
683 	dpu_enc = to_dpu_encoder_virt(drm_enc);
684 	DPU_DEBUG_ENC(dpu_enc, "\n");
685 
686 	priv = drm_enc->dev->dev_private;
687 	disp_info = &dpu_enc->disp_info;
688 	dpu_kms = to_dpu_kms(priv->kms);
689 	adj_mode = &crtc_state->adjusted_mode;
690 	global_state = dpu_kms_get_global_state(crtc_state->state);
691 	if (IS_ERR(global_state))
692 		return PTR_ERR(global_state);
693 
694 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
695 
696 	dsc = dpu_encoder_get_dsc_config(drm_enc);
697 
698 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
699 
700 	/*
701 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
702 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
703 	 * earlier.
704 	 */
705 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
706 		fb = conn_state->writeback_job->fb;
707 
708 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
709 			topology.needs_cdm = true;
710 	} else if (disp_info->intf_type == INTF_DP) {
711 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
712 			topology.needs_cdm = true;
713 	}
714 
715 	if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
716 		crtc_state->mode_changed = true;
717 	else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
718 		crtc_state->mode_changed = true;
719 	/*
720 	 * Release and Allocate resources on every modeset
721 	 */
722 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
723 		dpu_rm_release(global_state, drm_enc);
724 
725 		if (crtc_state->enable)
726 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
727 					drm_enc, crtc_state, topology);
728 		if (!ret)
729 			dpu_encoder_assign_crtc_resources(dpu_kms, drm_enc,
730 							  global_state, crtc_state);
731 	}
732 
733 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
734 
735 	return ret;
736 }
737 
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)738 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
739 			struct msm_display_info *disp_info)
740 {
741 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
742 	struct msm_drm_private *priv;
743 	struct dpu_kms *dpu_kms;
744 	struct dpu_hw_mdp *hw_mdptop;
745 	struct drm_encoder *drm_enc;
746 	struct dpu_encoder_phys *phys_enc;
747 	int i;
748 
749 	if (!dpu_enc || !disp_info) {
750 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
751 					dpu_enc != NULL, disp_info != NULL);
752 		return;
753 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
754 		DPU_ERROR("invalid num phys enc %d/%d\n",
755 				dpu_enc->num_phys_encs,
756 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
757 		return;
758 	}
759 
760 	drm_enc = &dpu_enc->base;
761 	/* this pointers are checked in virt_enable_helper */
762 	priv = drm_enc->dev->dev_private;
763 
764 	dpu_kms = to_dpu_kms(priv->kms);
765 	hw_mdptop = dpu_kms->hw_mdp;
766 	if (!hw_mdptop) {
767 		DPU_ERROR("invalid mdptop\n");
768 		return;
769 	}
770 
771 	if (hw_mdptop->ops.setup_vsync_source) {
772 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
773 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
774 
775 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
776 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
777 
778 		vsync_cfg.vsync_source = disp_info->vsync_source;
779 
780 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
781 
782 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
783 			phys_enc = dpu_enc->phys_encs[i];
784 
785 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
786 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
787 						vsync_cfg.vsync_source);
788 		}
789 	}
790 }
791 
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)792 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
793 {
794 	struct dpu_encoder_virt *dpu_enc;
795 	int i;
796 
797 	if (!drm_enc) {
798 		DPU_ERROR("invalid encoder\n");
799 		return;
800 	}
801 
802 	dpu_enc = to_dpu_encoder_virt(drm_enc);
803 
804 	DPU_DEBUG_ENC(dpu_enc, "\n");
805 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
806 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
807 
808 		phys->ops.irq_enable(phys);
809 	}
810 }
811 
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)812 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
813 {
814 	struct dpu_encoder_virt *dpu_enc;
815 	int i;
816 
817 	if (!drm_enc) {
818 		DPU_ERROR("invalid encoder\n");
819 		return;
820 	}
821 
822 	dpu_enc = to_dpu_encoder_virt(drm_enc);
823 
824 	DPU_DEBUG_ENC(dpu_enc, "\n");
825 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
826 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
827 
828 		phys->ops.irq_disable(phys);
829 	}
830 }
831 
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)832 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
833 {
834 	struct msm_drm_private *priv;
835 	struct dpu_kms *dpu_kms;
836 	struct dpu_encoder_virt *dpu_enc;
837 
838 	dpu_enc = to_dpu_encoder_virt(drm_enc);
839 	priv = drm_enc->dev->dev_private;
840 	dpu_kms = to_dpu_kms(priv->kms);
841 
842 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
843 
844 	if (!dpu_enc->cur_master) {
845 		DPU_ERROR("encoder master not set\n");
846 		return;
847 	}
848 
849 	/* enable DPU core clks */
850 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
851 
852 	/* enable all the irq */
853 	_dpu_encoder_irq_enable(drm_enc);
854 }
855 
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)856 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
857 {
858 	struct msm_drm_private *priv;
859 	struct dpu_kms *dpu_kms;
860 	struct dpu_encoder_virt *dpu_enc;
861 
862 	dpu_enc = to_dpu_encoder_virt(drm_enc);
863 	priv = drm_enc->dev->dev_private;
864 	dpu_kms = to_dpu_kms(priv->kms);
865 
866 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
867 
868 	if (!dpu_enc->cur_master) {
869 		DPU_ERROR("encoder master not set\n");
870 		return;
871 	}
872 
873 	/* disable all the irq */
874 	_dpu_encoder_irq_disable(drm_enc);
875 
876 	/* disable DPU core clks */
877 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
878 }
879 
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)880 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
881 		u32 sw_event)
882 {
883 	struct dpu_encoder_virt *dpu_enc;
884 	struct msm_drm_private *priv;
885 	bool is_vid_mode = false;
886 
887 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
888 		DPU_ERROR("invalid parameters\n");
889 		return -EINVAL;
890 	}
891 	dpu_enc = to_dpu_encoder_virt(drm_enc);
892 	priv = drm_enc->dev->dev_private;
893 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
894 
895 	/*
896 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
897 	 * events and return early for other events (ie wb display).
898 	 */
899 	if (!dpu_enc->idle_pc_supported &&
900 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
901 			sw_event != DPU_ENC_RC_EVENT_STOP &&
902 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
903 		return 0;
904 
905 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
906 			 dpu_enc->rc_state, "begin");
907 
908 	switch (sw_event) {
909 	case DPU_ENC_RC_EVENT_KICKOFF:
910 		/* cancel delayed off work, if any */
911 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
912 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
913 					sw_event);
914 
915 		mutex_lock(&dpu_enc->rc_lock);
916 
917 		/* return if the resource control is already in ON state */
918 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
919 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
920 				      DRMID(drm_enc), sw_event);
921 			mutex_unlock(&dpu_enc->rc_lock);
922 			return 0;
923 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
924 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
925 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
926 				      DRMID(drm_enc), sw_event,
927 				      dpu_enc->rc_state);
928 			mutex_unlock(&dpu_enc->rc_lock);
929 			return -EINVAL;
930 		}
931 
932 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
933 			_dpu_encoder_irq_enable(drm_enc);
934 		else
935 			_dpu_encoder_resource_enable(drm_enc);
936 
937 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
938 
939 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
940 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
941 				 "kickoff");
942 
943 		mutex_unlock(&dpu_enc->rc_lock);
944 		break;
945 
946 	case DPU_ENC_RC_EVENT_FRAME_DONE:
947 		/*
948 		 * mutex lock is not used as this event happens at interrupt
949 		 * context. And locking is not required as, the other events
950 		 * like KICKOFF and STOP does a wait-for-idle before executing
951 		 * the resource_control
952 		 */
953 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
954 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
955 				      DRMID(drm_enc), sw_event,
956 				      dpu_enc->rc_state);
957 			return -EINVAL;
958 		}
959 
960 		/*
961 		 * schedule off work item only when there are no
962 		 * frames pending
963 		 */
964 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
965 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
966 				      DRMID(drm_enc));
967 			return 0;
968 		}
969 
970 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
971 				   msecs_to_jiffies(dpu_enc->idle_timeout));
972 
973 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
974 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
975 				 "frame done");
976 		break;
977 
978 	case DPU_ENC_RC_EVENT_PRE_STOP:
979 		/* cancel delayed off work, if any */
980 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
981 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
982 					sw_event);
983 
984 		mutex_lock(&dpu_enc->rc_lock);
985 
986 		if (is_vid_mode &&
987 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
988 			_dpu_encoder_irq_enable(drm_enc);
989 		}
990 		/* skip if is already OFF or IDLE, resources are off already */
991 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
992 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
993 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
994 				      DRMID(drm_enc), sw_event,
995 				      dpu_enc->rc_state);
996 			mutex_unlock(&dpu_enc->rc_lock);
997 			return 0;
998 		}
999 
1000 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1001 
1002 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1003 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1004 				 "pre stop");
1005 
1006 		mutex_unlock(&dpu_enc->rc_lock);
1007 		break;
1008 
1009 	case DPU_ENC_RC_EVENT_STOP:
1010 		mutex_lock(&dpu_enc->rc_lock);
1011 
1012 		/* return if the resource control is already in OFF state */
1013 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1014 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1015 				      DRMID(drm_enc), sw_event);
1016 			mutex_unlock(&dpu_enc->rc_lock);
1017 			return 0;
1018 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1019 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1020 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1021 			mutex_unlock(&dpu_enc->rc_lock);
1022 			return -EINVAL;
1023 		}
1024 
1025 		/**
1026 		 * expect to arrive here only if in either idle state or pre-off
1027 		 * and in IDLE state the resources are already disabled
1028 		 */
1029 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1030 			_dpu_encoder_resource_disable(drm_enc);
1031 
1032 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1033 
1034 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1035 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1036 				 "stop");
1037 
1038 		mutex_unlock(&dpu_enc->rc_lock);
1039 		break;
1040 
1041 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1042 		mutex_lock(&dpu_enc->rc_lock);
1043 
1044 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1045 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1046 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1047 			mutex_unlock(&dpu_enc->rc_lock);
1048 			return 0;
1049 		}
1050 
1051 		/*
1052 		 * if we are in ON but a frame was just kicked off,
1053 		 * ignore the IDLE event, it's probably a stale timer event
1054 		 */
1055 		if (dpu_enc->frame_busy_mask[0]) {
1056 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1057 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1058 			mutex_unlock(&dpu_enc->rc_lock);
1059 			return 0;
1060 		}
1061 
1062 		if (is_vid_mode)
1063 			_dpu_encoder_irq_disable(drm_enc);
1064 		else
1065 			_dpu_encoder_resource_disable(drm_enc);
1066 
1067 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1068 
1069 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1070 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1071 				 "idle");
1072 
1073 		mutex_unlock(&dpu_enc->rc_lock);
1074 		break;
1075 
1076 	default:
1077 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1078 			  sw_event);
1079 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1080 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1081 				 "error");
1082 		break;
1083 	}
1084 
1085 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1086 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1087 			 "end");
1088 	return 0;
1089 }
1090 
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1091 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1092 		struct drm_writeback_job *job)
1093 {
1094 	struct dpu_encoder_virt *dpu_enc;
1095 	int i;
1096 
1097 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1098 
1099 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1100 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1101 
1102 		if (phys->ops.prepare_wb_job)
1103 			phys->ops.prepare_wb_job(phys, job);
1104 
1105 	}
1106 }
1107 
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1108 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1109 		struct drm_writeback_job *job)
1110 {
1111 	struct dpu_encoder_virt *dpu_enc;
1112 	int i;
1113 
1114 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1115 
1116 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1117 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1118 
1119 		if (phys->ops.cleanup_wb_job)
1120 			phys->ops.cleanup_wb_job(phys, job);
1121 
1122 	}
1123 }
1124 
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1125 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1126 					     struct drm_crtc_state *crtc_state,
1127 					     struct drm_connector_state *conn_state)
1128 {
1129 	struct dpu_encoder_virt *dpu_enc;
1130 	struct msm_drm_private *priv;
1131 	struct dpu_kms *dpu_kms;
1132 	struct dpu_global_state *global_state;
1133 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1134 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1135 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1136 	int num_ctl, num_pp, num_dsc;
1137 	unsigned int dsc_mask = 0;
1138 	int i;
1139 
1140 	if (!drm_enc) {
1141 		DPU_ERROR("invalid encoder\n");
1142 		return;
1143 	}
1144 
1145 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1146 	DPU_DEBUG_ENC(dpu_enc, "\n");
1147 
1148 	priv = drm_enc->dev->dev_private;
1149 	dpu_kms = to_dpu_kms(priv->kms);
1150 
1151 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1152 	if (IS_ERR_OR_NULL(global_state)) {
1153 		DPU_ERROR("Failed to get global state");
1154 		return;
1155 	}
1156 
1157 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1158 
1159 	/* Query resource that have been reserved in atomic check step. */
1160 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1161 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1162 		ARRAY_SIZE(hw_pp));
1163 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1164 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1165 
1166 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1167 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1168 						: NULL;
1169 
1170 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1171 						drm_enc->base.id, DPU_HW_BLK_DSC,
1172 						hw_dsc, ARRAY_SIZE(hw_dsc));
1173 	for (i = 0; i < num_dsc; i++) {
1174 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1175 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1176 	}
1177 
1178 	dpu_enc->dsc_mask = dsc_mask;
1179 
1180 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1181 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1182 		struct dpu_hw_blk *hw_cdm = NULL;
1183 
1184 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1185 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1186 					      &hw_cdm, 1);
1187 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1188 	}
1189 
1190 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1191 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1192 
1193 		phys->hw_pp = dpu_enc->hw_pp[i];
1194 		if (!phys->hw_pp) {
1195 			DPU_ERROR_ENC(dpu_enc,
1196 				"no pp block assigned at idx: %d\n", i);
1197 			return;
1198 		}
1199 
1200 		phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1201 		if (!phys->hw_ctl) {
1202 			DPU_ERROR_ENC(dpu_enc,
1203 				"no ctl block assigned at idx: %d\n", i);
1204 			return;
1205 		}
1206 
1207 		phys->cached_mode = crtc_state->adjusted_mode;
1208 		if (phys->ops.atomic_mode_set)
1209 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1210 	}
1211 }
1212 
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1213 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1214 {
1215 	struct dpu_encoder_virt *dpu_enc = NULL;
1216 	int i;
1217 
1218 	if (!drm_enc || !drm_enc->dev) {
1219 		DPU_ERROR("invalid parameters\n");
1220 		return;
1221 	}
1222 
1223 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1224 	if (!dpu_enc || !dpu_enc->cur_master) {
1225 		DPU_ERROR("invalid dpu encoder/master\n");
1226 		return;
1227 	}
1228 
1229 
1230 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1231 		dpu_enc->cur_master->hw_mdptop &&
1232 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1233 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1234 			dpu_enc->cur_master->hw_mdptop);
1235 
1236 	if (dpu_enc->disp_info.is_cmd_mode)
1237 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1238 
1239 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1240 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1241 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1242 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1243 			if (!dpu_enc->hw_pp[i])
1244 				continue;
1245 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1246 		}
1247 	}
1248 }
1249 
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1250 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1251 {
1252 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1253 
1254 	mutex_lock(&dpu_enc->enc_lock);
1255 
1256 	if (!dpu_enc->enabled)
1257 		goto out;
1258 
1259 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1260 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1261 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1262 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1263 
1264 	_dpu_encoder_virt_enable_helper(drm_enc);
1265 
1266 out:
1267 	mutex_unlock(&dpu_enc->enc_lock);
1268 }
1269 
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1270 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1271 					struct drm_atomic_state *state)
1272 {
1273 	struct dpu_encoder_virt *dpu_enc = NULL;
1274 	int ret = 0;
1275 	struct drm_display_mode *cur_mode = NULL;
1276 
1277 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1278 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1279 
1280 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1281 
1282 	mutex_lock(&dpu_enc->enc_lock);
1283 
1284 	dpu_enc->commit_done_timedout = false;
1285 
1286 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1287 
1288 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1289 
1290 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1291 
1292 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1293 			     cur_mode->vdisplay);
1294 
1295 	/* always enable slave encoder before master */
1296 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1297 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1298 
1299 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1300 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1301 
1302 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1303 	if (ret) {
1304 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1305 				ret);
1306 		goto out;
1307 	}
1308 
1309 	_dpu_encoder_virt_enable_helper(drm_enc);
1310 
1311 	dpu_enc->enabled = true;
1312 
1313 out:
1314 	mutex_unlock(&dpu_enc->enc_lock);
1315 }
1316 
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1317 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1318 					struct drm_atomic_state *state)
1319 {
1320 	struct dpu_encoder_virt *dpu_enc = NULL;
1321 	struct drm_crtc *crtc;
1322 	struct drm_crtc_state *old_state = NULL;
1323 	int i = 0;
1324 
1325 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1326 	DPU_DEBUG_ENC(dpu_enc, "\n");
1327 
1328 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1329 	if (crtc)
1330 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1331 
1332 	/*
1333 	 * The encoder is already disabled if self refresh mode was set earlier,
1334 	 * in the old_state for the corresponding crtc.
1335 	 */
1336 	if (old_state && old_state->self_refresh_active)
1337 		return;
1338 
1339 	mutex_lock(&dpu_enc->enc_lock);
1340 	dpu_enc->enabled = false;
1341 
1342 	trace_dpu_enc_disable(DRMID(drm_enc));
1343 
1344 	/* wait for idle */
1345 	dpu_encoder_wait_for_tx_complete(drm_enc);
1346 
1347 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1348 
1349 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1350 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1351 
1352 		if (phys->ops.disable)
1353 			phys->ops.disable(phys);
1354 	}
1355 
1356 
1357 	/* after phys waits for frame-done, should be no more frames pending */
1358 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1359 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1360 		del_timer_sync(&dpu_enc->frame_done_timer);
1361 	}
1362 
1363 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1364 
1365 	dpu_enc->connector = NULL;
1366 
1367 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1368 
1369 	mutex_unlock(&dpu_enc->enc_lock);
1370 }
1371 
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1372 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1373 		struct dpu_rm *dpu_rm,
1374 		enum dpu_intf_type type, u32 controller_id)
1375 {
1376 	int i = 0;
1377 
1378 	if (type == INTF_WB)
1379 		return NULL;
1380 
1381 	for (i = 0; i < catalog->intf_count; i++) {
1382 		if (catalog->intf[i].type == type
1383 		    && catalog->intf[i].controller_id == controller_id) {
1384 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1385 		}
1386 	}
1387 
1388 	return NULL;
1389 }
1390 
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1391 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1392 		struct dpu_encoder_phys *phy_enc)
1393 {
1394 	struct dpu_encoder_virt *dpu_enc = NULL;
1395 	unsigned long lock_flags;
1396 
1397 	if (!drm_enc || !phy_enc)
1398 		return;
1399 
1400 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1401 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1402 
1403 	atomic_inc(&phy_enc->vsync_cnt);
1404 
1405 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1406 	if (dpu_enc->crtc)
1407 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1408 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1409 
1410 	DPU_ATRACE_END("encoder_vblank_callback");
1411 }
1412 
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1413 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1414 		struct dpu_encoder_phys *phy_enc)
1415 {
1416 	if (!phy_enc)
1417 		return;
1418 
1419 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1420 	atomic_inc(&phy_enc->underrun_cnt);
1421 
1422 	/* trigger dump only on the first underrun */
1423 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1424 		msm_disp_snapshot_state(drm_enc->dev);
1425 
1426 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1427 				  atomic_read(&phy_enc->underrun_cnt));
1428 	DPU_ATRACE_END("encoder_underrun_callback");
1429 }
1430 
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1431 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1432 {
1433 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1434 	unsigned long lock_flags;
1435 
1436 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1437 	/* crtc should always be cleared before re-assigning */
1438 	WARN_ON(crtc && dpu_enc->crtc);
1439 	dpu_enc->crtc = crtc;
1440 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1441 }
1442 
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1443 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1444 					struct drm_crtc *crtc, bool enable)
1445 {
1446 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1447 	unsigned long lock_flags;
1448 	int i;
1449 
1450 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1451 
1452 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1453 	if (dpu_enc->crtc != crtc) {
1454 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1455 		return;
1456 	}
1457 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1458 
1459 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1460 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1461 
1462 		if (phys->ops.control_vblank_irq)
1463 			phys->ops.control_vblank_irq(phys, enable);
1464 	}
1465 }
1466 
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1467 void dpu_encoder_frame_done_callback(
1468 		struct drm_encoder *drm_enc,
1469 		struct dpu_encoder_phys *ready_phys, u32 event)
1470 {
1471 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1472 	unsigned int i;
1473 
1474 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1475 			| DPU_ENCODER_FRAME_EVENT_ERROR
1476 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1477 
1478 		if (!dpu_enc->frame_busy_mask[0]) {
1479 			/**
1480 			 * suppress frame_done without waiter,
1481 			 * likely autorefresh
1482 			 */
1483 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1484 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1485 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1486 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1487 			return;
1488 		}
1489 
1490 		/* One of the physical encoders has become idle */
1491 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1492 			if (dpu_enc->phys_encs[i] == ready_phys) {
1493 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1494 						dpu_enc->frame_busy_mask[0]);
1495 				clear_bit(i, dpu_enc->frame_busy_mask);
1496 			}
1497 		}
1498 
1499 		if (!dpu_enc->frame_busy_mask[0]) {
1500 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1501 			del_timer(&dpu_enc->frame_done_timer);
1502 
1503 			dpu_encoder_resource_control(drm_enc,
1504 					DPU_ENC_RC_EVENT_FRAME_DONE);
1505 
1506 			if (dpu_enc->crtc)
1507 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1508 		}
1509 	} else {
1510 		if (dpu_enc->crtc)
1511 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1512 	}
1513 }
1514 
dpu_encoder_off_work(struct work_struct * work)1515 static void dpu_encoder_off_work(struct work_struct *work)
1516 {
1517 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1518 			struct dpu_encoder_virt, delayed_off_work.work);
1519 
1520 	dpu_encoder_resource_control(&dpu_enc->base,
1521 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1522 
1523 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1524 				DPU_ENCODER_FRAME_EVENT_IDLE);
1525 }
1526 
1527 /**
1528  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1529  * @drm_enc: Pointer to drm encoder structure
1530  * @phys: Pointer to physical encoder structure
1531  * @extra_flush_bits: Additional bit mask to include in flush trigger
1532  */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1533 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1534 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1535 {
1536 	struct dpu_hw_ctl *ctl;
1537 	int pending_kickoff_cnt;
1538 	u32 ret = UINT_MAX;
1539 
1540 	if (!phys->hw_pp) {
1541 		DPU_ERROR("invalid pingpong hw\n");
1542 		return;
1543 	}
1544 
1545 	ctl = phys->hw_ctl;
1546 	if (!ctl->ops.trigger_flush) {
1547 		DPU_ERROR("missing trigger cb\n");
1548 		return;
1549 	}
1550 
1551 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1552 
1553 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1554 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1555 
1556 	ctl->ops.trigger_flush(ctl);
1557 
1558 	if (ctl->ops.get_pending_flush)
1559 		ret = ctl->ops.get_pending_flush(ctl);
1560 
1561 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1562 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1563 			phys->hw_intf ? phys->hw_intf->idx : -1,
1564 			phys->hw_wb ? phys->hw_wb->idx : -1,
1565 			pending_kickoff_cnt, ctl->idx,
1566 			extra_flush_bits, ret);
1567 }
1568 
1569 /**
1570  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1571  * @phys: Pointer to physical encoder structure
1572  */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1573 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1574 {
1575 	if (!phys) {
1576 		DPU_ERROR("invalid argument(s)\n");
1577 		return;
1578 	}
1579 
1580 	if (!phys->hw_pp) {
1581 		DPU_ERROR("invalid pingpong hw\n");
1582 		return;
1583 	}
1584 
1585 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1586 		phys->ops.trigger_start(phys);
1587 }
1588 
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1589 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1590 {
1591 	struct dpu_hw_ctl *ctl;
1592 
1593 	ctl = phys_enc->hw_ctl;
1594 	if (ctl->ops.trigger_start) {
1595 		ctl->ops.trigger_start(ctl);
1596 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1597 	}
1598 }
1599 
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1600 static int dpu_encoder_helper_wait_event_timeout(
1601 		int32_t drm_id,
1602 		unsigned int irq_idx,
1603 		struct dpu_encoder_wait_info *info)
1604 {
1605 	int rc = 0;
1606 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1607 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1608 	s64 time;
1609 
1610 	do {
1611 		rc = wait_event_timeout(*(info->wq),
1612 				atomic_read(info->atomic_cnt) == 0, jiffies);
1613 		time = ktime_to_ms(ktime_get());
1614 
1615 		trace_dpu_enc_wait_event_timeout(drm_id,
1616 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1617 						 rc, time,
1618 						 expected_time,
1619 						 atomic_read(info->atomic_cnt));
1620 	/* If we timed out, counter is valid and time is less, wait again */
1621 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1622 			(time < expected_time));
1623 
1624 	return rc;
1625 }
1626 
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1627 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1628 {
1629 	struct dpu_encoder_virt *dpu_enc;
1630 	struct dpu_hw_ctl *ctl;
1631 	int rc;
1632 	struct drm_encoder *drm_enc;
1633 
1634 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1635 	ctl = phys_enc->hw_ctl;
1636 	drm_enc = phys_enc->parent;
1637 
1638 	if (!ctl->ops.reset)
1639 		return;
1640 
1641 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1642 		      ctl->idx);
1643 
1644 	rc = ctl->ops.reset(ctl);
1645 	if (rc) {
1646 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1647 		msm_disp_snapshot_state(drm_enc->dev);
1648 	}
1649 
1650 	phys_enc->enable_state = DPU_ENC_ENABLED;
1651 }
1652 
1653 /**
1654  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1655  *	Iterate through the physical encoders and perform consolidated flush
1656  *	and/or control start triggering as needed. This is done in the virtual
1657  *	encoder rather than the individual physical ones in order to handle
1658  *	use cases that require visibility into multiple physical encoders at
1659  *	a time.
1660  * @dpu_enc: Pointer to virtual encoder structure
1661  */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1662 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1663 {
1664 	struct dpu_hw_ctl *ctl;
1665 	uint32_t i, pending_flush;
1666 	unsigned long lock_flags;
1667 
1668 	pending_flush = 0x0;
1669 
1670 	/* update pending counts and trigger kickoff ctl flush atomically */
1671 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1672 
1673 	/* don't perform flush/start operations for slave encoders */
1674 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1675 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1676 
1677 		if (phys->enable_state == DPU_ENC_DISABLED)
1678 			continue;
1679 
1680 		ctl = phys->hw_ctl;
1681 
1682 		/*
1683 		 * This is cleared in frame_done worker, which isn't invoked
1684 		 * for async commits. So don't set this for async, since it'll
1685 		 * roll over to the next commit.
1686 		 */
1687 		if (phys->split_role != ENC_ROLE_SLAVE)
1688 			set_bit(i, dpu_enc->frame_busy_mask);
1689 
1690 		if (!phys->ops.needs_single_flush ||
1691 				!phys->ops.needs_single_flush(phys))
1692 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1693 		else if (ctl->ops.get_pending_flush)
1694 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1695 	}
1696 
1697 	/* for split flush, combine pending flush masks and send to master */
1698 	if (pending_flush && dpu_enc->cur_master) {
1699 		_dpu_encoder_trigger_flush(
1700 				&dpu_enc->base,
1701 				dpu_enc->cur_master,
1702 				pending_flush);
1703 	}
1704 
1705 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1706 
1707 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1708 }
1709 
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1710 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1711 {
1712 	struct dpu_encoder_virt *dpu_enc;
1713 	struct dpu_encoder_phys *phys;
1714 	unsigned int i;
1715 	struct dpu_hw_ctl *ctl;
1716 	struct msm_display_info *disp_info;
1717 
1718 	if (!drm_enc) {
1719 		DPU_ERROR("invalid encoder\n");
1720 		return;
1721 	}
1722 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1723 	disp_info = &dpu_enc->disp_info;
1724 
1725 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1726 		phys = dpu_enc->phys_encs[i];
1727 
1728 		ctl = phys->hw_ctl;
1729 		ctl->ops.clear_pending_flush(ctl);
1730 
1731 		/* update only for command mode primary ctl */
1732 		if ((phys == dpu_enc->cur_master) &&
1733 		    disp_info->is_cmd_mode
1734 		    && ctl->ops.trigger_pending)
1735 			ctl->ops.trigger_pending(ctl);
1736 	}
1737 }
1738 
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1739 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1740 		struct drm_display_mode *mode)
1741 {
1742 	u64 pclk_rate;
1743 	u32 pclk_period;
1744 	u32 line_time;
1745 
1746 	/*
1747 	 * For linetime calculation, only operate on master encoder.
1748 	 */
1749 	if (!dpu_enc->cur_master)
1750 		return 0;
1751 
1752 	if (!dpu_enc->cur_master->ops.get_line_count) {
1753 		DPU_ERROR("get_line_count function not defined\n");
1754 		return 0;
1755 	}
1756 
1757 	pclk_rate = mode->clock; /* pixel clock in kHz */
1758 	if (pclk_rate == 0) {
1759 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1760 		return 0;
1761 	}
1762 
1763 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1764 	if (pclk_period == 0) {
1765 		DPU_ERROR("pclk period is 0\n");
1766 		return 0;
1767 	}
1768 
1769 	/*
1770 	 * Line time calculation based on Pixel clock and HTOTAL.
1771 	 * Final unit is in ns.
1772 	 */
1773 	line_time = (pclk_period * mode->htotal) / 1000;
1774 	if (line_time == 0) {
1775 		DPU_ERROR("line time calculation is 0\n");
1776 		return 0;
1777 	}
1778 
1779 	DPU_DEBUG_ENC(dpu_enc,
1780 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1781 			pclk_rate, pclk_period, line_time);
1782 
1783 	return line_time;
1784 }
1785 
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1786 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1787 {
1788 	struct drm_display_mode *mode;
1789 	struct dpu_encoder_virt *dpu_enc;
1790 	u32 cur_line;
1791 	u32 line_time;
1792 	u32 vtotal, time_to_vsync;
1793 	ktime_t cur_time;
1794 
1795 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1796 
1797 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1798 		DPU_ERROR("crtc/crtc state object is NULL\n");
1799 		return -EINVAL;
1800 	}
1801 	mode = &drm_enc->crtc->state->adjusted_mode;
1802 
1803 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1804 	if (!line_time)
1805 		return -EINVAL;
1806 
1807 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1808 
1809 	vtotal = mode->vtotal;
1810 	if (cur_line >= vtotal)
1811 		time_to_vsync = line_time * vtotal;
1812 	else
1813 		time_to_vsync = line_time * (vtotal - cur_line);
1814 
1815 	if (time_to_vsync == 0) {
1816 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1817 				vtotal);
1818 		return -EINVAL;
1819 	}
1820 
1821 	cur_time = ktime_get();
1822 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1823 
1824 	DPU_DEBUG_ENC(dpu_enc,
1825 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1826 			cur_line, vtotal, time_to_vsync,
1827 			ktime_to_ms(cur_time),
1828 			ktime_to_ms(*wakeup_time));
1829 	return 0;
1830 }
1831 
1832 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1833 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1834 				  u32 enc_ip_width)
1835 {
1836 	int ssm_delay, total_pixels, soft_slice_per_enc;
1837 
1838 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1839 
1840 	/*
1841 	 * minimum number of initial line pixels is a sum of:
1842 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1843 	 *    91 for 10 bpc) * 3
1844 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1845 	 * 3. the initial xmit delay
1846 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1847 	 * 5. 6 additional pixels as the output of the rate buffer is
1848 	 *    48 bits wide
1849 	 */
1850 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1851 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1852 	if (soft_slice_per_enc > 1)
1853 		total_pixels += (ssm_delay * 3);
1854 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1855 }
1856 
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1857 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1858 				     struct dpu_hw_dsc *hw_dsc,
1859 				     struct dpu_hw_pingpong *hw_pp,
1860 				     struct drm_dsc_config *dsc,
1861 				     u32 common_mode,
1862 				     u32 initial_lines)
1863 {
1864 	if (hw_dsc->ops.dsc_config)
1865 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1866 
1867 	if (hw_dsc->ops.dsc_config_thresh)
1868 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1869 
1870 	if (hw_pp->ops.setup_dsc)
1871 		hw_pp->ops.setup_dsc(hw_pp);
1872 
1873 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1874 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1875 
1876 	if (hw_pp->ops.enable_dsc)
1877 		hw_pp->ops.enable_dsc(hw_pp);
1878 
1879 	if (ctl->ops.update_pending_flush_dsc)
1880 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1881 }
1882 
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1883 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1884 				 struct drm_dsc_config *dsc)
1885 {
1886 	/* coding only for 2LM, 2enc, 1 dsc config */
1887 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1888 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1889 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1890 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1891 	int this_frame_slices;
1892 	int intf_ip_w, enc_ip_w;
1893 	int dsc_common_mode;
1894 	int pic_width;
1895 	u32 initial_lines;
1896 	int i;
1897 
1898 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1899 		hw_pp[i] = dpu_enc->hw_pp[i];
1900 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1901 
1902 		if (!hw_pp[i] || !hw_dsc[i]) {
1903 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1904 			return;
1905 		}
1906 	}
1907 
1908 	dsc_common_mode = 0;
1909 	pic_width = dsc->pic_width;
1910 
1911 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1912 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1913 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1914 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1915 		dsc_common_mode |= DSC_MODE_VIDEO;
1916 
1917 	this_frame_slices = pic_width / dsc->slice_width;
1918 	intf_ip_w = this_frame_slices * dsc->slice_width;
1919 
1920 	/*
1921 	 * dsc merge case: when using 2 encoders for the same stream,
1922 	 * no. of slices need to be same on both the encoders.
1923 	 */
1924 	enc_ip_w = intf_ip_w / 2;
1925 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1926 
1927 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1928 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1929 					 dsc, dsc_common_mode, initial_lines);
1930 }
1931 
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1932 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1933 {
1934 	struct dpu_encoder_virt *dpu_enc;
1935 	struct dpu_encoder_phys *phys;
1936 	bool needs_hw_reset = false;
1937 	unsigned int i;
1938 
1939 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1940 
1941 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1942 
1943 	/* prepare for next kickoff, may include waiting on previous kickoff */
1944 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1945 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1946 		phys = dpu_enc->phys_encs[i];
1947 		if (phys->ops.prepare_for_kickoff)
1948 			phys->ops.prepare_for_kickoff(phys);
1949 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1950 			needs_hw_reset = true;
1951 	}
1952 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1953 
1954 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1955 
1956 	/* if any phys needs reset, reset all phys, in-order */
1957 	if (needs_hw_reset) {
1958 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1959 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1960 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1961 		}
1962 	}
1963 
1964 	if (dpu_enc->dsc)
1965 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1966 }
1967 
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1968 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1969 {
1970 	struct dpu_encoder_virt *dpu_enc;
1971 	unsigned int i;
1972 	struct dpu_encoder_phys *phys;
1973 
1974 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1975 
1976 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1977 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1978 			phys = dpu_enc->phys_encs[i];
1979 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1980 				DPU_DEBUG("invalid FB not kicking off\n");
1981 				return false;
1982 			}
1983 		}
1984 	}
1985 
1986 	return true;
1987 }
1988 
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1989 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1990 {
1991 	struct dpu_encoder_virt *dpu_enc;
1992 	struct dpu_encoder_phys *phys;
1993 	unsigned long timeout_ms;
1994 	unsigned int i;
1995 
1996 	DPU_ATRACE_BEGIN("encoder_kickoff");
1997 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1998 
1999 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2000 
2001 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2002 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2003 
2004 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2005 	mod_timer(&dpu_enc->frame_done_timer,
2006 			jiffies + msecs_to_jiffies(timeout_ms));
2007 
2008 	/* All phys encs are ready to go, trigger the kickoff */
2009 	_dpu_encoder_kickoff_phys(dpu_enc);
2010 
2011 	/* allow phys encs to handle any post-kickoff business */
2012 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2013 		phys = dpu_enc->phys_encs[i];
2014 		if (phys->ops.handle_post_kickoff)
2015 			phys->ops.handle_post_kickoff(phys);
2016 	}
2017 
2018 	DPU_ATRACE_END("encoder_kickoff");
2019 }
2020 
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2021 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2022 {
2023 	struct dpu_hw_mixer_cfg mixer;
2024 	int i, num_lm;
2025 	struct dpu_global_state *global_state;
2026 	struct dpu_hw_blk *hw_lm[2];
2027 	struct dpu_hw_mixer *hw_mixer[2];
2028 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2029 
2030 	memset(&mixer, 0, sizeof(mixer));
2031 
2032 	/* reset all mixers for this encoder */
2033 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2034 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2035 
2036 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2037 
2038 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2039 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2040 
2041 	for (i = 0; i < num_lm; i++) {
2042 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2043 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2044 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2045 
2046 		/* clear all blendstages */
2047 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2048 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2049 	}
2050 }
2051 
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2052 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2053 				     struct dpu_hw_dsc *hw_dsc,
2054 				     struct dpu_hw_pingpong *hw_pp)
2055 {
2056 	if (hw_dsc->ops.dsc_disable)
2057 		hw_dsc->ops.dsc_disable(hw_dsc);
2058 
2059 	if (hw_pp->ops.disable_dsc)
2060 		hw_pp->ops.disable_dsc(hw_pp);
2061 
2062 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2063 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2064 
2065 	if (ctl->ops.update_pending_flush_dsc)
2066 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2067 }
2068 
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2069 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2070 {
2071 	/* coding only for 2LM, 2enc, 1 dsc config */
2072 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2073 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2074 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2075 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2076 	int i;
2077 
2078 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2079 		hw_pp[i] = dpu_enc->hw_pp[i];
2080 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2081 
2082 		if (hw_pp[i] && hw_dsc[i])
2083 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2084 	}
2085 }
2086 
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2087 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2088 {
2089 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2090 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2091 	int i;
2092 	struct dpu_encoder_virt *dpu_enc;
2093 
2094 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2095 
2096 	phys_enc->hw_ctl->ops.reset(ctl);
2097 
2098 	dpu_encoder_helper_reset_mixers(phys_enc);
2099 
2100 	/*
2101 	 * TODO: move the once-only operation like CTL flush/trigger
2102 	 * into dpu_encoder_virt_disable() and all operations which need
2103 	 * to be done per phys encoder into the phys_disable() op.
2104 	 */
2105 	if (phys_enc->hw_wb) {
2106 		/* disable the PP block */
2107 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2108 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2109 
2110 		/* mark WB flush as pending */
2111 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2112 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2113 	} else {
2114 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2115 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2116 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2117 						dpu_enc->phys_encs[i]->hw_intf,
2118 						PINGPONG_NONE);
2119 
2120 			/* mark INTF flush as pending */
2121 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2122 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2123 						dpu_enc->phys_encs[i]->hw_intf->idx);
2124 		}
2125 	}
2126 
2127 	if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2128 		phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2129 
2130 	/* reset the merge 3D HW block */
2131 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2132 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2133 				BLEND_3D_NONE);
2134 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2135 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2136 					phys_enc->hw_pp->merge_3d->idx);
2137 	}
2138 
2139 	if (phys_enc->hw_cdm) {
2140 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2141 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2142 								PINGPONG_NONE);
2143 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2144 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2145 								       phys_enc->hw_cdm->idx);
2146 	}
2147 
2148 	if (dpu_enc->dsc) {
2149 		dpu_encoder_unprep_dsc(dpu_enc);
2150 		dpu_enc->dsc = NULL;
2151 	}
2152 
2153 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2154 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2155 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2156 
2157 	if (phys_enc->hw_intf)
2158 		intf_cfg.intf = phys_enc->hw_intf->idx;
2159 	if (phys_enc->hw_wb)
2160 		intf_cfg.wb = phys_enc->hw_wb->idx;
2161 
2162 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2163 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2164 
2165 	if (ctl->ops.reset_intf_cfg)
2166 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2167 
2168 	ctl->ops.trigger_flush(ctl);
2169 	ctl->ops.trigger_start(ctl);
2170 	ctl->ops.clear_pending_flush(ctl);
2171 }
2172 
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2173 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2174 				       const struct msm_format *dpu_fmt,
2175 				       u32 output_type)
2176 {
2177 	struct dpu_hw_cdm *hw_cdm;
2178 	struct dpu_hw_cdm_cfg *cdm_cfg;
2179 	struct dpu_hw_pingpong *hw_pp;
2180 	int ret;
2181 
2182 	if (!phys_enc)
2183 		return;
2184 
2185 	cdm_cfg = &phys_enc->cdm_cfg;
2186 	hw_pp = phys_enc->hw_pp;
2187 	hw_cdm = phys_enc->hw_cdm;
2188 
2189 	if (!hw_cdm)
2190 		return;
2191 
2192 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2193 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2194 			  &dpu_fmt->pixel_format);
2195 		if (hw_cdm->ops.bind_pingpong_blk)
2196 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2197 
2198 		return;
2199 	}
2200 
2201 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2202 
2203 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2204 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2205 	cdm_cfg->output_fmt = dpu_fmt;
2206 	cdm_cfg->output_type = output_type;
2207 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2208 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2209 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2210 
2211 	/* enable 10 bit logic */
2212 	switch (cdm_cfg->output_fmt->chroma_sample) {
2213 	case CHROMA_FULL:
2214 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2215 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2216 		break;
2217 	case CHROMA_H2V1:
2218 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2219 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2220 		break;
2221 	case CHROMA_420:
2222 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2223 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2224 		break;
2225 	case CHROMA_H1V2:
2226 	default:
2227 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2228 			  DRMID(phys_enc->parent));
2229 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2230 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2231 		break;
2232 	}
2233 
2234 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2235 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2236 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2237 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2238 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2239 
2240 	if (hw_cdm->ops.enable) {
2241 		cdm_cfg->pp_id = hw_pp->idx;
2242 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2243 		if (ret < 0) {
2244 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2245 				  DRMID(phys_enc->parent), ret);
2246 			return;
2247 		}
2248 	}
2249 }
2250 
2251 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2252 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2253 {
2254 	struct drm_encoder *drm_enc = s->private;
2255 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2256 	int i;
2257 
2258 	mutex_lock(&dpu_enc->enc_lock);
2259 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2260 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2261 
2262 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2263 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2264 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2265 				atomic_read(&phys->vsync_cnt),
2266 				atomic_read(&phys->underrun_cnt),
2267 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2268 
2269 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2270 	}
2271 	mutex_unlock(&dpu_enc->enc_lock);
2272 
2273 	return 0;
2274 }
2275 
2276 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2277 
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2278 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2279 {
2280 	/* don't error check these */
2281 	debugfs_create_file("status", 0600,
2282 			    root, drm_enc, &_dpu_encoder_status_fops);
2283 }
2284 #else
2285 #define dpu_encoder_debugfs_init NULL
2286 #endif
2287 
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2288 static int dpu_encoder_virt_add_phys_encs(
2289 		struct drm_device *dev,
2290 		struct msm_display_info *disp_info,
2291 		struct dpu_encoder_virt *dpu_enc,
2292 		struct dpu_enc_phys_init_params *params)
2293 {
2294 	struct dpu_encoder_phys *enc = NULL;
2295 
2296 	DPU_DEBUG_ENC(dpu_enc, "\n");
2297 
2298 	/*
2299 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2300 	 * in this function, check up-front.
2301 	 */
2302 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2303 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2304 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2305 			  dpu_enc->num_phys_encs);
2306 		return -EINVAL;
2307 	}
2308 
2309 
2310 	if (disp_info->intf_type == INTF_WB) {
2311 		enc = dpu_encoder_phys_wb_init(dev, params);
2312 
2313 		if (IS_ERR(enc)) {
2314 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2315 				PTR_ERR(enc));
2316 			return PTR_ERR(enc);
2317 		}
2318 
2319 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2320 		++dpu_enc->num_phys_encs;
2321 	} else if (disp_info->is_cmd_mode) {
2322 		enc = dpu_encoder_phys_cmd_init(dev, params);
2323 
2324 		if (IS_ERR(enc)) {
2325 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2326 				PTR_ERR(enc));
2327 			return PTR_ERR(enc);
2328 		}
2329 
2330 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2331 		++dpu_enc->num_phys_encs;
2332 	} else {
2333 		enc = dpu_encoder_phys_vid_init(dev, params);
2334 
2335 		if (IS_ERR(enc)) {
2336 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2337 				PTR_ERR(enc));
2338 			return PTR_ERR(enc);
2339 		}
2340 
2341 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2342 		++dpu_enc->num_phys_encs;
2343 	}
2344 
2345 	if (params->split_role == ENC_ROLE_SLAVE)
2346 		dpu_enc->cur_slave = enc;
2347 	else
2348 		dpu_enc->cur_master = enc;
2349 
2350 	return 0;
2351 }
2352 
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2353 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2354 				 struct dpu_kms *dpu_kms,
2355 				 struct msm_display_info *disp_info)
2356 {
2357 	int ret = 0;
2358 	int i = 0;
2359 	struct dpu_enc_phys_init_params phys_params;
2360 
2361 	if (!dpu_enc) {
2362 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2363 		return -EINVAL;
2364 	}
2365 
2366 	dpu_enc->cur_master = NULL;
2367 
2368 	memset(&phys_params, 0, sizeof(phys_params));
2369 	phys_params.dpu_kms = dpu_kms;
2370 	phys_params.parent = &dpu_enc->base;
2371 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2372 
2373 	WARN_ON(disp_info->num_of_h_tiles < 1);
2374 
2375 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2376 
2377 	if (disp_info->intf_type != INTF_WB)
2378 		dpu_enc->idle_pc_supported =
2379 				dpu_kms->catalog->caps->has_idle_pc;
2380 
2381 	mutex_lock(&dpu_enc->enc_lock);
2382 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2383 		/*
2384 		 * Left-most tile is at index 0, content is controller id
2385 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2386 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2387 		 */
2388 		u32 controller_id = disp_info->h_tile_instance[i];
2389 
2390 		if (disp_info->num_of_h_tiles > 1) {
2391 			if (i == 0)
2392 				phys_params.split_role = ENC_ROLE_MASTER;
2393 			else
2394 				phys_params.split_role = ENC_ROLE_SLAVE;
2395 		} else {
2396 			phys_params.split_role = ENC_ROLE_SOLO;
2397 		}
2398 
2399 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2400 				i, controller_id, phys_params.split_role);
2401 
2402 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2403 							   disp_info->intf_type,
2404 							   controller_id);
2405 
2406 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2407 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2408 
2409 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2410 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2411 			ret = -EINVAL;
2412 			break;
2413 		}
2414 
2415 		if (phys_params.hw_intf && phys_params.hw_wb) {
2416 			DPU_ERROR_ENC(dpu_enc,
2417 					"invalid phys both intf and wb block at idx: %d\n", i);
2418 			ret = -EINVAL;
2419 			break;
2420 		}
2421 
2422 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2423 				dpu_enc, &phys_params);
2424 		if (ret) {
2425 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2426 			break;
2427 		}
2428 	}
2429 
2430 	mutex_unlock(&dpu_enc->enc_lock);
2431 
2432 	return ret;
2433 }
2434 
dpu_encoder_frame_done_timeout(struct timer_list * t)2435 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2436 {
2437 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2438 			frame_done_timer);
2439 	struct drm_encoder *drm_enc = &dpu_enc->base;
2440 	u32 event;
2441 
2442 	if (!drm_enc->dev) {
2443 		DPU_ERROR("invalid parameters\n");
2444 		return;
2445 	}
2446 
2447 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2448 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2449 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2450 		return;
2451 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2452 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2453 		return;
2454 	}
2455 
2456 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2457 
2458 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2459 		msm_disp_snapshot_state(drm_enc->dev);
2460 
2461 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2462 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2463 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2464 }
2465 
2466 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2467 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2468 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2469 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2470 	.atomic_check = dpu_encoder_virt_atomic_check,
2471 };
2472 
2473 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2474 	.debugfs_init = dpu_encoder_debugfs_init,
2475 };
2476 
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2477 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2478 		int drm_enc_mode,
2479 		struct msm_display_info *disp_info)
2480 {
2481 	struct msm_drm_private *priv = dev->dev_private;
2482 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2483 	struct dpu_encoder_virt *dpu_enc;
2484 	int ret;
2485 
2486 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2487 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2488 	if (IS_ERR(dpu_enc))
2489 		return ERR_CAST(dpu_enc);
2490 
2491 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2492 
2493 	spin_lock_init(&dpu_enc->enc_spinlock);
2494 	dpu_enc->enabled = false;
2495 	mutex_init(&dpu_enc->enc_lock);
2496 	mutex_init(&dpu_enc->rc_lock);
2497 
2498 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2499 	if (ret) {
2500 		DPU_ERROR("failed to setup encoder\n");
2501 		return ERR_PTR(-ENOMEM);
2502 	}
2503 
2504 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2505 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2506 	timer_setup(&dpu_enc->frame_done_timer,
2507 			dpu_encoder_frame_done_timeout, 0);
2508 
2509 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2510 			dpu_encoder_off_work);
2511 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2512 
2513 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2514 
2515 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2516 
2517 	return &dpu_enc->base;
2518 }
2519 
2520 /**
2521  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2522  * @drm_enc:	encoder pointer
2523  *
2524  * Wait for hardware to have flushed the current pending changes to hardware at
2525  * a vblank or CTL_START. Physical encoders will map this differently depending
2526  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2527  *
2528  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2529  */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2530 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2531 {
2532 	struct dpu_encoder_virt *dpu_enc = NULL;
2533 	int i, ret = 0;
2534 
2535 	if (!drm_enc) {
2536 		DPU_ERROR("invalid encoder\n");
2537 		return -EINVAL;
2538 	}
2539 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2540 	DPU_DEBUG_ENC(dpu_enc, "\n");
2541 
2542 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2543 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2544 
2545 		if (phys->ops.wait_for_commit_done) {
2546 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2547 			ret = phys->ops.wait_for_commit_done(phys);
2548 			DPU_ATRACE_END("wait_for_commit_done");
2549 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2550 				dpu_enc->commit_done_timedout = true;
2551 				msm_disp_snapshot_state(drm_enc->dev);
2552 			}
2553 			if (ret)
2554 				return ret;
2555 		}
2556 	}
2557 
2558 	return ret;
2559 }
2560 
2561 /**
2562  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2563  * @drm_enc:	encoder pointer
2564  *
2565  * Wait for the hardware to transfer all the pixels to the panel. Physical
2566  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2567  * cmd mode -> pp_done.
2568  *
2569  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2570  */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2571 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2572 {
2573 	struct dpu_encoder_virt *dpu_enc = NULL;
2574 	int i, ret = 0;
2575 
2576 	if (!drm_enc) {
2577 		DPU_ERROR("invalid encoder\n");
2578 		return -EINVAL;
2579 	}
2580 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2581 	DPU_DEBUG_ENC(dpu_enc, "\n");
2582 
2583 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2584 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2585 
2586 		if (phys->ops.wait_for_tx_complete) {
2587 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2588 			ret = phys->ops.wait_for_tx_complete(phys);
2589 			DPU_ATRACE_END("wait_for_tx_complete");
2590 			if (ret)
2591 				return ret;
2592 		}
2593 	}
2594 
2595 	return ret;
2596 }
2597 
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2598 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2599 {
2600 	struct dpu_encoder_virt *dpu_enc = NULL;
2601 
2602 	if (!encoder) {
2603 		DPU_ERROR("invalid encoder\n");
2604 		return INTF_MODE_NONE;
2605 	}
2606 	dpu_enc = to_dpu_encoder_virt(encoder);
2607 
2608 	if (dpu_enc->cur_master)
2609 		return dpu_enc->cur_master->intf_mode;
2610 
2611 	if (dpu_enc->num_phys_encs)
2612 		return dpu_enc->phys_encs[0]->intf_mode;
2613 
2614 	return INTF_MODE_NONE;
2615 }
2616 
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2617 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2618 {
2619 	struct drm_encoder *encoder = phys_enc->parent;
2620 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2621 
2622 	return dpu_enc->dsc_mask;
2623 }
2624 
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2625 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2626 			  struct dpu_enc_phys_init_params *p)
2627 {
2628 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2629 	phys_enc->hw_intf = p->hw_intf;
2630 	phys_enc->hw_wb = p->hw_wb;
2631 	phys_enc->parent = p->parent;
2632 	phys_enc->dpu_kms = p->dpu_kms;
2633 	phys_enc->split_role = p->split_role;
2634 	phys_enc->enc_spinlock = p->enc_spinlock;
2635 	phys_enc->enable_state = DPU_ENC_DISABLED;
2636 
2637 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2638 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2639 
2640 	atomic_set(&phys_enc->vsync_cnt, 0);
2641 	atomic_set(&phys_enc->underrun_cnt, 0);
2642 
2643 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2644 }
2645