• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 		  const char *format, ...)
214 {
215 	struct va_format vaf;
216 	va_list args;
217 
218 	va_start(args, format);
219 
220 	vaf.fmt = format;
221 	vaf.va = &args;
222 
223 	__ibdev_printk(level, ibdev, &vaf);
224 
225 	va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228 
229 #define define_ibdev_printk_level(func, level)                  \
230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231 {                                                               \
232 	struct va_format vaf;                                   \
233 	va_list args;                                           \
234 								\
235 	va_start(args, fmt);                                    \
236 								\
237 	vaf.fmt = fmt;                                          \
238 	vaf.va = &args;                                         \
239 								\
240 	__ibdev_printk(level, ibdev, &vaf);                     \
241 								\
242 	va_end(args);                                           \
243 }                                                               \
244 EXPORT_SYMBOL(func);
245 
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253 
254 static struct notifier_block ibdev_lsm_nb = {
255 	.notifier_call = ib_security_change,
256 };
257 
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 				 struct net *net);
260 
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 	struct rcu_head rcu_head;
264 	struct ib_port_data pdata[];
265 };
266 
ib_device_check_mandatory(struct ib_device * device)267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 	static const struct {
271 		size_t offset;
272 		char  *name;
273 	} mandatory_table[] = {
274 		IB_MANDATORY_FUNC(query_device),
275 		IB_MANDATORY_FUNC(query_port),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(reg_user_mr),
289 		IB_MANDATORY_FUNC(dereg_mr),
290 		IB_MANDATORY_FUNC(get_port_immutable)
291 	};
292 	int i;
293 
294 	device->kverbs_provider = true;
295 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 		if (!*(void **) ((void *) &device->ops +
297 				 mandatory_table[i].offset)) {
298 			device->kverbs_provider = false;
299 			break;
300 		}
301 	}
302 }
303 
304 /*
305  * Caller must perform ib_device_put() to return the device reference count
306  * when ib_device_get_by_index() returns valid device pointer.
307  */
ib_device_get_by_index(const struct net * net,u32 index)308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 	struct ib_device *device;
311 
312 	down_read(&devices_rwsem);
313 	device = xa_load(&devices, index);
314 	if (device) {
315 		if (!rdma_dev_access_netns(device, net)) {
316 			device = NULL;
317 			goto out;
318 		}
319 
320 		if (!ib_device_try_get(device))
321 			device = NULL;
322 	}
323 out:
324 	up_read(&devices_rwsem);
325 	return device;
326 }
327 
328 /**
329  * ib_device_put - Release IB device reference
330  * @device: device whose reference to be released
331  *
332  * ib_device_put() releases reference to the IB device to allow it to be
333  * unregistered and eventually free.
334  */
ib_device_put(struct ib_device * device)335 void ib_device_put(struct ib_device *device)
336 {
337 	if (refcount_dec_and_test(&device->refcount))
338 		complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341 
__ib_device_get_by_name(const char * name)342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 	struct ib_device *device;
345 	unsigned long index;
346 
347 	xa_for_each (&devices, index, device)
348 		if (!strcmp(name, dev_name(&device->dev)))
349 			return device;
350 
351 	return NULL;
352 }
353 
354 /**
355  * ib_device_get_by_name - Find an IB device by name
356  * @name: The name to look for
357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358  *
359  * Find and hold an ib_device by its name. The caller must call
360  * ib_device_put() on the returned pointer.
361  */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362 struct ib_device *ib_device_get_by_name(const char *name,
363 					enum rdma_driver_id driver_id)
364 {
365 	struct ib_device *device;
366 
367 	down_read(&devices_rwsem);
368 	device = __ib_device_get_by_name(name);
369 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 	    device->ops.driver_id != driver_id)
371 		device = NULL;
372 
373 	if (device) {
374 		if (!ib_device_try_get(device))
375 			device = NULL;
376 	}
377 	up_read(&devices_rwsem);
378 	return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381 
rename_compat_devs(struct ib_device * device)382 static int rename_compat_devs(struct ib_device *device)
383 {
384 	struct ib_core_device *cdev;
385 	unsigned long index;
386 	int ret = 0;
387 
388 	mutex_lock(&device->compat_devs_mutex);
389 	xa_for_each (&device->compat_devs, index, cdev) {
390 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 		if (ret) {
392 			dev_warn(&cdev->dev,
393 				 "Fail to rename compatdev to new name %s\n",
394 				 dev_name(&device->dev));
395 			break;
396 		}
397 	}
398 	mutex_unlock(&device->compat_devs_mutex);
399 	return ret;
400 }
401 
ib_device_rename(struct ib_device * ibdev,const char * name)402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 	unsigned long index;
405 	void *client_data;
406 	int ret;
407 
408 	down_write(&devices_rwsem);
409 	if (!strcmp(name, dev_name(&ibdev->dev))) {
410 		up_write(&devices_rwsem);
411 		return 0;
412 	}
413 
414 	if (__ib_device_get_by_name(name)) {
415 		up_write(&devices_rwsem);
416 		return -EEXIST;
417 	}
418 
419 	ret = device_rename(&ibdev->dev, name);
420 	if (ret) {
421 		up_write(&devices_rwsem);
422 		return ret;
423 	}
424 
425 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 	ret = rename_compat_devs(ibdev);
427 
428 	downgrade_write(&devices_rwsem);
429 	down_read(&ibdev->client_data_rwsem);
430 	xan_for_each_marked(&ibdev->client_data, index, client_data,
431 			    CLIENT_DATA_REGISTERED) {
432 		struct ib_client *client = xa_load(&clients, index);
433 
434 		if (!client || !client->rename)
435 			continue;
436 
437 		client->rename(ibdev, client_data);
438 	}
439 	up_read(&ibdev->client_data_rwsem);
440 	up_read(&devices_rwsem);
441 	return 0;
442 }
443 
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 	if (use_dim > 1)
447 		return -EINVAL;
448 	ibdev->use_cq_dim = use_dim;
449 
450 	return 0;
451 }
452 
alloc_name(struct ib_device * ibdev,const char * name)453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 	struct ib_device *device;
456 	unsigned long index;
457 	struct ida inuse;
458 	int rc;
459 	int i;
460 
461 	lockdep_assert_held_write(&devices_rwsem);
462 	ida_init(&inuse);
463 	xa_for_each (&devices, index, device) {
464 		char buf[IB_DEVICE_NAME_MAX];
465 
466 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 			continue;
468 		if (i < 0 || i >= INT_MAX)
469 			continue;
470 		snprintf(buf, sizeof buf, name, i);
471 		if (strcmp(buf, dev_name(&device->dev)) != 0)
472 			continue;
473 
474 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 		if (rc < 0)
476 			goto out;
477 	}
478 
479 	rc = ida_alloc(&inuse, GFP_KERNEL);
480 	if (rc < 0)
481 		goto out;
482 
483 	rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 	ida_destroy(&inuse);
486 	return rc;
487 }
488 
ib_device_release(struct device * device)489 static void ib_device_release(struct device *device)
490 {
491 	struct ib_device *dev = container_of(device, struct ib_device, dev);
492 
493 	free_netdevs(dev);
494 	WARN_ON(refcount_read(&dev->refcount));
495 	if (dev->hw_stats_data)
496 		ib_device_release_hw_stats(dev->hw_stats_data);
497 	if (dev->port_data) {
498 		ib_cache_release_one(dev);
499 		ib_security_release_port_pkey_list(dev);
500 		rdma_counter_release(dev);
501 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 				       pdata[0]),
503 			  rcu_head);
504 	}
505 
506 	mutex_destroy(&dev->subdev_lock);
507 	mutex_destroy(&dev->unregistration_lock);
508 	mutex_destroy(&dev->compat_devs_mutex);
509 
510 	xa_destroy(&dev->compat_devs);
511 	xa_destroy(&dev->client_data);
512 	kfree_rcu(dev, rcu_head);
513 }
514 
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)515 static int ib_device_uevent(const struct device *device,
516 			    struct kobj_uevent_env *env)
517 {
518 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
519 		return -ENOMEM;
520 
521 	/*
522 	 * It would be nice to pass the node GUID with the event...
523 	 */
524 
525 	return 0;
526 }
527 
net_namespace(const struct device * d)528 static const void *net_namespace(const struct device *d)
529 {
530 	const struct ib_core_device *coredev =
531 			container_of(d, struct ib_core_device, dev);
532 
533 	return read_pnet(&coredev->rdma_net);
534 }
535 
536 static struct class ib_class = {
537 	.name    = "infiniband",
538 	.dev_release = ib_device_release,
539 	.dev_uevent = ib_device_uevent,
540 	.ns_type = &net_ns_type_operations,
541 	.namespace = net_namespace,
542 };
543 
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)544 static void rdma_init_coredev(struct ib_core_device *coredev,
545 			      struct ib_device *dev, struct net *net)
546 {
547 	bool is_full_dev = &dev->coredev == coredev;
548 
549 	/* This BUILD_BUG_ON is intended to catch layout change
550 	 * of union of ib_core_device and device.
551 	 * dev must be the first element as ib_core and providers
552 	 * driver uses it. Adding anything in ib_core_device before
553 	 * device will break this assumption.
554 	 */
555 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
556 		     offsetof(struct ib_device, dev));
557 
558 	coredev->dev.class = &ib_class;
559 	coredev->dev.groups = dev->groups;
560 
561 	/*
562 	 * Don't expose hw counters outside of the init namespace.
563 	 */
564 	if (!is_full_dev && dev->hw_stats_attr_index)
565 		coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
566 
567 	device_initialize(&coredev->dev);
568 	coredev->owner = dev;
569 	INIT_LIST_HEAD(&coredev->port_list);
570 	write_pnet(&coredev->rdma_net, net);
571 }
572 
573 /**
574  * _ib_alloc_device - allocate an IB device struct
575  * @size:size of structure to allocate
576  *
577  * Low-level drivers should use ib_alloc_device() to allocate &struct
578  * ib_device.  @size is the size of the structure to be allocated,
579  * including any private data used by the low-level driver.
580  * ib_dealloc_device() must be used to free structures allocated with
581  * ib_alloc_device().
582  */
_ib_alloc_device(size_t size)583 struct ib_device *_ib_alloc_device(size_t size)
584 {
585 	struct ib_device *device;
586 	unsigned int i;
587 
588 	if (WARN_ON(size < sizeof(struct ib_device)))
589 		return NULL;
590 
591 	device = kzalloc(size, GFP_KERNEL);
592 	if (!device)
593 		return NULL;
594 
595 	if (rdma_restrack_init(device)) {
596 		kfree(device);
597 		return NULL;
598 	}
599 
600 	rdma_init_coredev(&device->coredev, device, &init_net);
601 
602 	INIT_LIST_HEAD(&device->event_handler_list);
603 	spin_lock_init(&device->qp_open_list_lock);
604 	init_rwsem(&device->event_handler_rwsem);
605 	mutex_init(&device->unregistration_lock);
606 	/*
607 	 * client_data needs to be alloc because we don't want our mark to be
608 	 * destroyed if the user stores NULL in the client data.
609 	 */
610 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
611 	init_rwsem(&device->client_data_rwsem);
612 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
613 	mutex_init(&device->compat_devs_mutex);
614 	init_completion(&device->unreg_completion);
615 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
616 
617 	spin_lock_init(&device->cq_pools_lock);
618 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
619 		INIT_LIST_HEAD(&device->cq_pools[i]);
620 
621 	rwlock_init(&device->cache_lock);
622 
623 	device->uverbs_cmd_mask =
624 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
625 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
626 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
627 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
628 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
629 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
630 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
632 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
633 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
634 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
635 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
636 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
637 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
638 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
639 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
640 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
641 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
642 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
643 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
644 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
645 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
646 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
647 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
648 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
649 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
650 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
651 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
652 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
653 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
654 
655 	mutex_init(&device->subdev_lock);
656 	INIT_LIST_HEAD(&device->subdev_list_head);
657 	INIT_LIST_HEAD(&device->subdev_list);
658 
659 	return device;
660 }
661 EXPORT_SYMBOL(_ib_alloc_device);
662 
663 /**
664  * ib_dealloc_device - free an IB device struct
665  * @device:structure to free
666  *
667  * Free a structure allocated with ib_alloc_device().
668  */
ib_dealloc_device(struct ib_device * device)669 void ib_dealloc_device(struct ib_device *device)
670 {
671 	if (device->ops.dealloc_driver)
672 		device->ops.dealloc_driver(device);
673 
674 	/*
675 	 * ib_unregister_driver() requires all devices to remain in the xarray
676 	 * while their ops are callable. The last op we call is dealloc_driver
677 	 * above.  This is needed to create a fence on op callbacks prior to
678 	 * allowing the driver module to unload.
679 	 */
680 	down_write(&devices_rwsem);
681 	if (xa_load(&devices, device->index) == device)
682 		xa_erase(&devices, device->index);
683 	up_write(&devices_rwsem);
684 
685 	/* Expedite releasing netdev references */
686 	free_netdevs(device);
687 
688 	WARN_ON(!xa_empty(&device->compat_devs));
689 	WARN_ON(!xa_empty(&device->client_data));
690 	WARN_ON(refcount_read(&device->refcount));
691 	rdma_restrack_clean(device);
692 	/* Balances with device_initialize */
693 	put_device(&device->dev);
694 }
695 EXPORT_SYMBOL(ib_dealloc_device);
696 
697 /*
698  * add_client_context() and remove_client_context() must be safe against
699  * parallel calls on the same device - registration/unregistration of both the
700  * device and client can be occurring in parallel.
701  *
702  * The routines need to be a fence, any caller must not return until the add
703  * or remove is fully completed.
704  */
add_client_context(struct ib_device * device,struct ib_client * client)705 static int add_client_context(struct ib_device *device,
706 			      struct ib_client *client)
707 {
708 	int ret = 0;
709 
710 	if (!device->kverbs_provider && !client->no_kverbs_req)
711 		return 0;
712 
713 	down_write(&device->client_data_rwsem);
714 	/*
715 	 * So long as the client is registered hold both the client and device
716 	 * unregistration locks.
717 	 */
718 	if (!refcount_inc_not_zero(&client->uses))
719 		goto out_unlock;
720 	refcount_inc(&device->refcount);
721 
722 	/*
723 	 * Another caller to add_client_context got here first and has already
724 	 * completely initialized context.
725 	 */
726 	if (xa_get_mark(&device->client_data, client->client_id,
727 		    CLIENT_DATA_REGISTERED))
728 		goto out;
729 
730 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
731 			      GFP_KERNEL));
732 	if (ret)
733 		goto out;
734 	downgrade_write(&device->client_data_rwsem);
735 	if (client->add) {
736 		if (client->add(device)) {
737 			/*
738 			 * If a client fails to add then the error code is
739 			 * ignored, but we won't call any more ops on this
740 			 * client.
741 			 */
742 			xa_erase(&device->client_data, client->client_id);
743 			up_read(&device->client_data_rwsem);
744 			ib_device_put(device);
745 			ib_client_put(client);
746 			return 0;
747 		}
748 	}
749 
750 	/* Readers shall not see a client until add has been completed */
751 	xa_set_mark(&device->client_data, client->client_id,
752 		    CLIENT_DATA_REGISTERED);
753 	up_read(&device->client_data_rwsem);
754 	return 0;
755 
756 out:
757 	ib_device_put(device);
758 	ib_client_put(client);
759 out_unlock:
760 	up_write(&device->client_data_rwsem);
761 	return ret;
762 }
763 
remove_client_context(struct ib_device * device,unsigned int client_id)764 static void remove_client_context(struct ib_device *device,
765 				  unsigned int client_id)
766 {
767 	struct ib_client *client;
768 	void *client_data;
769 
770 	down_write(&device->client_data_rwsem);
771 	if (!xa_get_mark(&device->client_data, client_id,
772 			 CLIENT_DATA_REGISTERED)) {
773 		up_write(&device->client_data_rwsem);
774 		return;
775 	}
776 	client_data = xa_load(&device->client_data, client_id);
777 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
778 	client = xa_load(&clients, client_id);
779 	up_write(&device->client_data_rwsem);
780 
781 	/*
782 	 * Notice we cannot be holding any exclusive locks when calling the
783 	 * remove callback as the remove callback can recurse back into any
784 	 * public functions in this module and thus try for any locks those
785 	 * functions take.
786 	 *
787 	 * For this reason clients and drivers should not call the
788 	 * unregistration functions will holdling any locks.
789 	 */
790 	if (client->remove)
791 		client->remove(device, client_data);
792 
793 	xa_erase(&device->client_data, client_id);
794 	ib_device_put(device);
795 	ib_client_put(client);
796 }
797 
alloc_port_data(struct ib_device * device)798 static int alloc_port_data(struct ib_device *device)
799 {
800 	struct ib_port_data_rcu *pdata_rcu;
801 	u32 port;
802 
803 	if (device->port_data)
804 		return 0;
805 
806 	/* This can only be called once the physical port range is defined */
807 	if (WARN_ON(!device->phys_port_cnt))
808 		return -EINVAL;
809 
810 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
811 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
812 		return -EINVAL;
813 
814 	/*
815 	 * device->port_data is indexed directly by the port number to make
816 	 * access to this data as efficient as possible.
817 	 *
818 	 * Therefore port_data is declared as a 1 based array with potential
819 	 * empty slots at the beginning.
820 	 */
821 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
822 					size_add(rdma_end_port(device), 1)),
823 			    GFP_KERNEL);
824 	if (!pdata_rcu)
825 		return -ENOMEM;
826 	/*
827 	 * The rcu_head is put in front of the port data array and the stored
828 	 * pointer is adjusted since we never need to see that member until
829 	 * kfree_rcu.
830 	 */
831 	device->port_data = pdata_rcu->pdata;
832 
833 	rdma_for_each_port (device, port) {
834 		struct ib_port_data *pdata = &device->port_data[port];
835 
836 		pdata->ib_dev = device;
837 		spin_lock_init(&pdata->pkey_list_lock);
838 		INIT_LIST_HEAD(&pdata->pkey_list);
839 		spin_lock_init(&pdata->netdev_lock);
840 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
841 	}
842 	return 0;
843 }
844 
verify_immutable(const struct ib_device * dev,u32 port)845 static int verify_immutable(const struct ib_device *dev, u32 port)
846 {
847 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
848 			    rdma_max_mad_size(dev, port) != 0);
849 }
850 
setup_port_data(struct ib_device * device)851 static int setup_port_data(struct ib_device *device)
852 {
853 	u32 port;
854 	int ret;
855 
856 	ret = alloc_port_data(device);
857 	if (ret)
858 		return ret;
859 
860 	rdma_for_each_port (device, port) {
861 		struct ib_port_data *pdata = &device->port_data[port];
862 
863 		ret = device->ops.get_port_immutable(device, port,
864 						     &pdata->immutable);
865 		if (ret)
866 			return ret;
867 
868 		if (verify_immutable(device, port))
869 			return -EINVAL;
870 	}
871 	return 0;
872 }
873 
874 /**
875  * ib_port_immutable_read() - Read rdma port's immutable data
876  * @dev: IB device
877  * @port: port number whose immutable data to read. It starts with index 1 and
878  *        valid upto including rdma_end_port().
879  */
880 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)881 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
882 {
883 	WARN_ON(!rdma_is_port_valid(dev, port));
884 	return &dev->port_data[port].immutable;
885 }
886 EXPORT_SYMBOL(ib_port_immutable_read);
887 
ib_get_device_fw_str(struct ib_device * dev,char * str)888 void ib_get_device_fw_str(struct ib_device *dev, char *str)
889 {
890 	if (dev->ops.get_dev_fw_str)
891 		dev->ops.get_dev_fw_str(dev, str);
892 	else
893 		str[0] = '\0';
894 }
895 EXPORT_SYMBOL(ib_get_device_fw_str);
896 
ib_policy_change_task(struct work_struct * work)897 static void ib_policy_change_task(struct work_struct *work)
898 {
899 	struct ib_device *dev;
900 	unsigned long index;
901 
902 	down_read(&devices_rwsem);
903 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
904 		unsigned int i;
905 
906 		rdma_for_each_port (dev, i) {
907 			u64 sp;
908 			ib_get_cached_subnet_prefix(dev, i, &sp);
909 			ib_security_cache_change(dev, i, sp);
910 		}
911 	}
912 	up_read(&devices_rwsem);
913 }
914 
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)915 static int ib_security_change(struct notifier_block *nb, unsigned long event,
916 			      void *lsm_data)
917 {
918 	if (event != LSM_POLICY_CHANGE)
919 		return NOTIFY_DONE;
920 
921 	schedule_work(&ib_policy_change_work);
922 	ib_mad_agent_security_change();
923 
924 	return NOTIFY_OK;
925 }
926 
compatdev_release(struct device * dev)927 static void compatdev_release(struct device *dev)
928 {
929 	struct ib_core_device *cdev =
930 		container_of(dev, struct ib_core_device, dev);
931 
932 	kfree(cdev);
933 }
934 
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)935 static int add_one_compat_dev(struct ib_device *device,
936 			      struct rdma_dev_net *rnet)
937 {
938 	struct ib_core_device *cdev;
939 	int ret;
940 
941 	lockdep_assert_held(&rdma_nets_rwsem);
942 	if (!ib_devices_shared_netns)
943 		return 0;
944 
945 	/*
946 	 * Create and add compat device in all namespaces other than where it
947 	 * is currently bound to.
948 	 */
949 	if (net_eq(read_pnet(&rnet->net),
950 		   read_pnet(&device->coredev.rdma_net)))
951 		return 0;
952 
953 	/*
954 	 * The first of init_net() or ib_register_device() to take the
955 	 * compat_devs_mutex wins and gets to add the device. Others will wait
956 	 * for completion here.
957 	 */
958 	mutex_lock(&device->compat_devs_mutex);
959 	cdev = xa_load(&device->compat_devs, rnet->id);
960 	if (cdev) {
961 		ret = 0;
962 		goto done;
963 	}
964 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
965 	if (ret)
966 		goto done;
967 
968 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
969 	if (!cdev) {
970 		ret = -ENOMEM;
971 		goto cdev_err;
972 	}
973 
974 	cdev->dev.parent = device->dev.parent;
975 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
976 	cdev->dev.release = compatdev_release;
977 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
978 	if (ret)
979 		goto add_err;
980 
981 	ret = device_add(&cdev->dev);
982 	if (ret)
983 		goto add_err;
984 	ret = ib_setup_port_attrs(cdev);
985 	if (ret)
986 		goto port_err;
987 
988 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
989 			      cdev, GFP_KERNEL));
990 	if (ret)
991 		goto insert_err;
992 
993 	mutex_unlock(&device->compat_devs_mutex);
994 	return 0;
995 
996 insert_err:
997 	ib_free_port_attrs(cdev);
998 port_err:
999 	device_del(&cdev->dev);
1000 add_err:
1001 	put_device(&cdev->dev);
1002 cdev_err:
1003 	xa_release(&device->compat_devs, rnet->id);
1004 done:
1005 	mutex_unlock(&device->compat_devs_mutex);
1006 	return ret;
1007 }
1008 
remove_one_compat_dev(struct ib_device * device,u32 id)1009 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1010 {
1011 	struct ib_core_device *cdev;
1012 
1013 	mutex_lock(&device->compat_devs_mutex);
1014 	cdev = xa_erase(&device->compat_devs, id);
1015 	mutex_unlock(&device->compat_devs_mutex);
1016 	if (cdev) {
1017 		ib_free_port_attrs(cdev);
1018 		device_del(&cdev->dev);
1019 		put_device(&cdev->dev);
1020 	}
1021 }
1022 
remove_compat_devs(struct ib_device * device)1023 static void remove_compat_devs(struct ib_device *device)
1024 {
1025 	struct ib_core_device *cdev;
1026 	unsigned long index;
1027 
1028 	xa_for_each (&device->compat_devs, index, cdev)
1029 		remove_one_compat_dev(device, index);
1030 }
1031 
add_compat_devs(struct ib_device * device)1032 static int add_compat_devs(struct ib_device *device)
1033 {
1034 	struct rdma_dev_net *rnet;
1035 	unsigned long index;
1036 	int ret = 0;
1037 
1038 	lockdep_assert_held(&devices_rwsem);
1039 
1040 	down_read(&rdma_nets_rwsem);
1041 	xa_for_each (&rdma_nets, index, rnet) {
1042 		ret = add_one_compat_dev(device, rnet);
1043 		if (ret)
1044 			break;
1045 	}
1046 	up_read(&rdma_nets_rwsem);
1047 	return ret;
1048 }
1049 
remove_all_compat_devs(void)1050 static void remove_all_compat_devs(void)
1051 {
1052 	struct ib_compat_device *cdev;
1053 	struct ib_device *dev;
1054 	unsigned long index;
1055 
1056 	down_read(&devices_rwsem);
1057 	xa_for_each (&devices, index, dev) {
1058 		unsigned long c_index = 0;
1059 
1060 		/* Hold nets_rwsem so that any other thread modifying this
1061 		 * system param can sync with this thread.
1062 		 */
1063 		down_read(&rdma_nets_rwsem);
1064 		xa_for_each (&dev->compat_devs, c_index, cdev)
1065 			remove_one_compat_dev(dev, c_index);
1066 		up_read(&rdma_nets_rwsem);
1067 	}
1068 	up_read(&devices_rwsem);
1069 }
1070 
add_all_compat_devs(void)1071 static int add_all_compat_devs(void)
1072 {
1073 	struct rdma_dev_net *rnet;
1074 	struct ib_device *dev;
1075 	unsigned long index;
1076 	int ret = 0;
1077 
1078 	down_read(&devices_rwsem);
1079 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1080 		unsigned long net_index = 0;
1081 
1082 		/* Hold nets_rwsem so that any other thread modifying this
1083 		 * system param can sync with this thread.
1084 		 */
1085 		down_read(&rdma_nets_rwsem);
1086 		xa_for_each (&rdma_nets, net_index, rnet) {
1087 			ret = add_one_compat_dev(dev, rnet);
1088 			if (ret)
1089 				break;
1090 		}
1091 		up_read(&rdma_nets_rwsem);
1092 	}
1093 	up_read(&devices_rwsem);
1094 	if (ret)
1095 		remove_all_compat_devs();
1096 	return ret;
1097 }
1098 
rdma_compatdev_set(u8 enable)1099 int rdma_compatdev_set(u8 enable)
1100 {
1101 	struct rdma_dev_net *rnet;
1102 	unsigned long index;
1103 	int ret = 0;
1104 
1105 	down_write(&rdma_nets_rwsem);
1106 	if (ib_devices_shared_netns == enable) {
1107 		up_write(&rdma_nets_rwsem);
1108 		return 0;
1109 	}
1110 
1111 	/* enable/disable of compat devices is not supported
1112 	 * when more than default init_net exists.
1113 	 */
1114 	xa_for_each (&rdma_nets, index, rnet) {
1115 		ret++;
1116 		break;
1117 	}
1118 	if (!ret)
1119 		ib_devices_shared_netns = enable;
1120 	up_write(&rdma_nets_rwsem);
1121 	if (ret)
1122 		return -EBUSY;
1123 
1124 	if (enable)
1125 		ret = add_all_compat_devs();
1126 	else
1127 		remove_all_compat_devs();
1128 	return ret;
1129 }
1130 
rdma_dev_exit_net(struct net * net)1131 static void rdma_dev_exit_net(struct net *net)
1132 {
1133 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1134 	struct ib_device *dev;
1135 	unsigned long index;
1136 	int ret;
1137 
1138 	down_write(&rdma_nets_rwsem);
1139 	/*
1140 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1141 	 */
1142 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1143 	WARN_ON(ret);
1144 	up_write(&rdma_nets_rwsem);
1145 
1146 	down_read(&devices_rwsem);
1147 	xa_for_each (&devices, index, dev) {
1148 		get_device(&dev->dev);
1149 		/*
1150 		 * Release the devices_rwsem so that pontentially blocking
1151 		 * device_del, doesn't hold the devices_rwsem for too long.
1152 		 */
1153 		up_read(&devices_rwsem);
1154 
1155 		remove_one_compat_dev(dev, rnet->id);
1156 
1157 		/*
1158 		 * If the real device is in the NS then move it back to init.
1159 		 */
1160 		rdma_dev_change_netns(dev, net, &init_net);
1161 
1162 		put_device(&dev->dev);
1163 		down_read(&devices_rwsem);
1164 	}
1165 	up_read(&devices_rwsem);
1166 
1167 	rdma_nl_net_exit(rnet);
1168 	xa_erase(&rdma_nets, rnet->id);
1169 }
1170 
rdma_dev_init_net(struct net * net)1171 static __net_init int rdma_dev_init_net(struct net *net)
1172 {
1173 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1174 	unsigned long index;
1175 	struct ib_device *dev;
1176 	int ret;
1177 
1178 	write_pnet(&rnet->net, net);
1179 
1180 	ret = rdma_nl_net_init(rnet);
1181 	if (ret)
1182 		return ret;
1183 
1184 	/* No need to create any compat devices in default init_net. */
1185 	if (net_eq(net, &init_net))
1186 		return 0;
1187 
1188 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1189 	if (ret) {
1190 		rdma_nl_net_exit(rnet);
1191 		return ret;
1192 	}
1193 
1194 	down_read(&devices_rwsem);
1195 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1196 		/* Hold nets_rwsem so that netlink command cannot change
1197 		 * system configuration for device sharing mode.
1198 		 */
1199 		down_read(&rdma_nets_rwsem);
1200 		ret = add_one_compat_dev(dev, rnet);
1201 		up_read(&rdma_nets_rwsem);
1202 		if (ret)
1203 			break;
1204 	}
1205 	up_read(&devices_rwsem);
1206 
1207 	if (ret)
1208 		rdma_dev_exit_net(net);
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Assign the unique string device name and the unique device index. This is
1215  * undone by ib_dealloc_device.
1216  */
assign_name(struct ib_device * device,const char * name)1217 static int assign_name(struct ib_device *device, const char *name)
1218 {
1219 	static u32 last_id;
1220 	int ret;
1221 
1222 	down_write(&devices_rwsem);
1223 	/* Assign a unique name to the device */
1224 	if (strchr(name, '%'))
1225 		ret = alloc_name(device, name);
1226 	else
1227 		ret = dev_set_name(&device->dev, name);
1228 	if (ret)
1229 		goto out;
1230 
1231 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1232 		ret = -ENFILE;
1233 		goto out;
1234 	}
1235 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1236 
1237 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1238 			&last_id, GFP_KERNEL);
1239 	if (ret > 0)
1240 		ret = 0;
1241 
1242 out:
1243 	up_write(&devices_rwsem);
1244 	return ret;
1245 }
1246 
1247 /*
1248  * setup_device() allocates memory and sets up data that requires calling the
1249  * device ops, this is the only reason these actions are not done during
1250  * ib_alloc_device. It is undone by ib_dealloc_device().
1251  */
setup_device(struct ib_device * device)1252 static int setup_device(struct ib_device *device)
1253 {
1254 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1255 	int ret;
1256 
1257 	ib_device_check_mandatory(device);
1258 
1259 	ret = setup_port_data(device);
1260 	if (ret) {
1261 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1262 		return ret;
1263 	}
1264 
1265 	memset(&device->attrs, 0, sizeof(device->attrs));
1266 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1267 	if (ret) {
1268 		dev_warn(&device->dev,
1269 			 "Couldn't query the device attributes\n");
1270 		return ret;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
disable_device(struct ib_device * device)1276 static void disable_device(struct ib_device *device)
1277 {
1278 	u32 cid;
1279 
1280 	WARN_ON(!refcount_read(&device->refcount));
1281 
1282 	down_write(&devices_rwsem);
1283 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1284 	up_write(&devices_rwsem);
1285 
1286 	/*
1287 	 * Remove clients in LIFO order, see assign_client_id. This could be
1288 	 * more efficient if xarray learns to reverse iterate. Since no new
1289 	 * clients can be added to this ib_device past this point we only need
1290 	 * the maximum possible client_id value here.
1291 	 */
1292 	down_read(&clients_rwsem);
1293 	cid = highest_client_id;
1294 	up_read(&clients_rwsem);
1295 	while (cid) {
1296 		cid--;
1297 		remove_client_context(device, cid);
1298 	}
1299 
1300 	ib_cq_pool_cleanup(device);
1301 
1302 	/* Pairs with refcount_set in enable_device */
1303 	ib_device_put(device);
1304 	wait_for_completion(&device->unreg_completion);
1305 
1306 	/*
1307 	 * compat devices must be removed after device refcount drops to zero.
1308 	 * Otherwise init_net() may add more compatdevs after removing compat
1309 	 * devices and before device is disabled.
1310 	 */
1311 	remove_compat_devs(device);
1312 }
1313 
1314 /*
1315  * An enabled device is visible to all clients and to all the public facing
1316  * APIs that return a device pointer. This always returns with a new get, even
1317  * if it fails.
1318  */
enable_device_and_get(struct ib_device * device)1319 static int enable_device_and_get(struct ib_device *device)
1320 {
1321 	struct ib_client *client;
1322 	unsigned long index;
1323 	int ret = 0;
1324 
1325 	/*
1326 	 * One ref belongs to the xa and the other belongs to this
1327 	 * thread. This is needed to guard against parallel unregistration.
1328 	 */
1329 	refcount_set(&device->refcount, 2);
1330 	down_write(&devices_rwsem);
1331 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1332 
1333 	/*
1334 	 * By using downgrade_write() we ensure that no other thread can clear
1335 	 * DEVICE_REGISTERED while we are completing the client setup.
1336 	 */
1337 	downgrade_write(&devices_rwsem);
1338 
1339 	if (device->ops.enable_driver) {
1340 		ret = device->ops.enable_driver(device);
1341 		if (ret)
1342 			goto out;
1343 	}
1344 
1345 	down_read(&clients_rwsem);
1346 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1347 		ret = add_client_context(device, client);
1348 		if (ret)
1349 			break;
1350 	}
1351 	up_read(&clients_rwsem);
1352 	if (!ret)
1353 		ret = add_compat_devs(device);
1354 out:
1355 	up_read(&devices_rwsem);
1356 	return ret;
1357 }
1358 
prevent_dealloc_device(struct ib_device * ib_dev)1359 static void prevent_dealloc_device(struct ib_device *ib_dev)
1360 {
1361 }
1362 
ib_device_notify_register(struct ib_device * device)1363 static void ib_device_notify_register(struct ib_device *device)
1364 {
1365 	struct net_device *netdev;
1366 	u32 port;
1367 	int ret;
1368 
1369 	down_read(&devices_rwsem);
1370 
1371 	/* Mark for userspace that device is ready */
1372 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1373 
1374 	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1375 	if (ret)
1376 		goto out;
1377 
1378 	rdma_for_each_port(device, port) {
1379 		netdev = ib_device_get_netdev(device, port);
1380 		if (!netdev)
1381 			continue;
1382 
1383 		ret = rdma_nl_notify_event(device, port,
1384 					   RDMA_NETDEV_ATTACH_EVENT);
1385 		dev_put(netdev);
1386 		if (ret)
1387 			goto out;
1388 	}
1389 
1390 out:
1391 	up_read(&devices_rwsem);
1392 }
1393 
1394 /**
1395  * ib_register_device - Register an IB device with IB core
1396  * @device: Device to register
1397  * @name: unique string device name. This may include a '%' which will
1398  * 	  cause a unique index to be added to the passed device name.
1399  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1400  *	        device will be used. In this case the caller should fully
1401  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1402  *
1403  * Low-level drivers use ib_register_device() to register their
1404  * devices with the IB core.  All registered clients will receive a
1405  * callback for each device that is added. @device must be allocated
1406  * with ib_alloc_device().
1407  *
1408  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1409  * asynchronously then the device pointer may become freed as soon as this
1410  * function returns.
1411  */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1412 int ib_register_device(struct ib_device *device, const char *name,
1413 		       struct device *dma_device)
1414 {
1415 	int ret;
1416 
1417 	ret = assign_name(device, name);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/*
1422 	 * If the caller does not provide a DMA capable device then the IB core
1423 	 * will set up ib_sge and scatterlist structures that stash the kernel
1424 	 * virtual address into the address field.
1425 	 */
1426 	WARN_ON(dma_device && !dma_device->dma_parms);
1427 	device->dma_device = dma_device;
1428 
1429 	ret = setup_device(device);
1430 	if (ret)
1431 		return ret;
1432 
1433 	ret = ib_cache_setup_one(device);
1434 	if (ret) {
1435 		dev_warn(&device->dev,
1436 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1437 		return ret;
1438 	}
1439 
1440 	device->groups[0] = &ib_dev_attr_group;
1441 	device->groups[1] = device->ops.device_group;
1442 	ret = ib_setup_device_attrs(device);
1443 	if (ret)
1444 		goto cache_cleanup;
1445 
1446 	ib_device_register_rdmacg(device);
1447 
1448 	rdma_counter_init(device);
1449 
1450 	/*
1451 	 * Ensure that ADD uevent is not fired because it
1452 	 * is too early amd device is not initialized yet.
1453 	 */
1454 	dev_set_uevent_suppress(&device->dev, true);
1455 	ret = device_add(&device->dev);
1456 	if (ret)
1457 		goto cg_cleanup;
1458 
1459 	ret = ib_setup_port_attrs(&device->coredev);
1460 	if (ret) {
1461 		dev_warn(&device->dev,
1462 			 "Couldn't register device with driver model\n");
1463 		goto dev_cleanup;
1464 	}
1465 
1466 	ret = enable_device_and_get(device);
1467 	if (ret) {
1468 		void (*dealloc_fn)(struct ib_device *);
1469 
1470 		/*
1471 		 * If we hit this error flow then we don't want to
1472 		 * automatically dealloc the device since the caller is
1473 		 * expected to call ib_dealloc_device() after
1474 		 * ib_register_device() fails. This is tricky due to the
1475 		 * possibility for a parallel unregistration along with this
1476 		 * error flow. Since we have a refcount here we know any
1477 		 * parallel flow is stopped in disable_device and will see the
1478 		 * special dealloc_driver pointer, causing the responsibility to
1479 		 * ib_dealloc_device() to revert back to this thread.
1480 		 */
1481 		dealloc_fn = device->ops.dealloc_driver;
1482 		device->ops.dealloc_driver = prevent_dealloc_device;
1483 		ib_device_put(device);
1484 		__ib_unregister_device(device);
1485 		device->ops.dealloc_driver = dealloc_fn;
1486 		dev_set_uevent_suppress(&device->dev, false);
1487 		return ret;
1488 	}
1489 	dev_set_uevent_suppress(&device->dev, false);
1490 
1491 	ib_device_notify_register(device);
1492 
1493 	ib_device_put(device);
1494 
1495 	return 0;
1496 
1497 dev_cleanup:
1498 	device_del(&device->dev);
1499 cg_cleanup:
1500 	dev_set_uevent_suppress(&device->dev, false);
1501 	ib_device_unregister_rdmacg(device);
1502 cache_cleanup:
1503 	ib_cache_cleanup_one(device);
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(ib_register_device);
1507 
1508 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1509 static void __ib_unregister_device(struct ib_device *ib_dev)
1510 {
1511 	struct ib_device *sub, *tmp;
1512 
1513 	mutex_lock(&ib_dev->subdev_lock);
1514 	list_for_each_entry_safe_reverse(sub, tmp,
1515 					 &ib_dev->subdev_list_head,
1516 					 subdev_list) {
1517 		list_del(&sub->subdev_list);
1518 		ib_dev->ops.del_sub_dev(sub);
1519 		ib_device_put(ib_dev);
1520 	}
1521 	mutex_unlock(&ib_dev->subdev_lock);
1522 
1523 	/*
1524 	 * We have a registration lock so that all the calls to unregister are
1525 	 * fully fenced, once any unregister returns the device is truely
1526 	 * unregistered even if multiple callers are unregistering it at the
1527 	 * same time. This also interacts with the registration flow and
1528 	 * provides sane semantics if register and unregister are racing.
1529 	 */
1530 	mutex_lock(&ib_dev->unregistration_lock);
1531 	if (!refcount_read(&ib_dev->refcount))
1532 		goto out;
1533 
1534 	disable_device(ib_dev);
1535 	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1536 
1537 	/* Expedite removing unregistered pointers from the hash table */
1538 	free_netdevs(ib_dev);
1539 
1540 	ib_free_port_attrs(&ib_dev->coredev);
1541 	device_del(&ib_dev->dev);
1542 	ib_device_unregister_rdmacg(ib_dev);
1543 	ib_cache_cleanup_one(ib_dev);
1544 
1545 	/*
1546 	 * Drivers using the new flow may not call ib_dealloc_device except
1547 	 * in error unwind prior to registration success.
1548 	 */
1549 	if (ib_dev->ops.dealloc_driver &&
1550 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1551 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1552 		ib_dealloc_device(ib_dev);
1553 	}
1554 out:
1555 	mutex_unlock(&ib_dev->unregistration_lock);
1556 }
1557 
1558 /**
1559  * ib_unregister_device - Unregister an IB device
1560  * @ib_dev: The device to unregister
1561  *
1562  * Unregister an IB device.  All clients will receive a remove callback.
1563  *
1564  * Callers should call this routine only once, and protect against races with
1565  * registration. Typically it should only be called as part of a remove
1566  * callback in an implementation of driver core's struct device_driver and
1567  * related.
1568  *
1569  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1570  * this function.
1571  */
ib_unregister_device(struct ib_device * ib_dev)1572 void ib_unregister_device(struct ib_device *ib_dev)
1573 {
1574 	get_device(&ib_dev->dev);
1575 	__ib_unregister_device(ib_dev);
1576 	put_device(&ib_dev->dev);
1577 }
1578 EXPORT_SYMBOL(ib_unregister_device);
1579 
1580 /**
1581  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1582  * @ib_dev: The device to unregister
1583  *
1584  * This is the same as ib_unregister_device(), except it includes an internal
1585  * ib_device_put() that should match a 'get' obtained by the caller.
1586  *
1587  * It is safe to call this routine concurrently from multiple threads while
1588  * holding the 'get'. When the function returns the device is fully
1589  * unregistered.
1590  *
1591  * Drivers using this flow MUST use the driver_unregister callback to clean up
1592  * their resources associated with the device and dealloc it.
1593  */
ib_unregister_device_and_put(struct ib_device * ib_dev)1594 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1595 {
1596 	WARN_ON(!ib_dev->ops.dealloc_driver);
1597 	get_device(&ib_dev->dev);
1598 	ib_device_put(ib_dev);
1599 	__ib_unregister_device(ib_dev);
1600 	put_device(&ib_dev->dev);
1601 }
1602 EXPORT_SYMBOL(ib_unregister_device_and_put);
1603 
1604 /**
1605  * ib_unregister_driver - Unregister all IB devices for a driver
1606  * @driver_id: The driver to unregister
1607  *
1608  * This implements a fence for device unregistration. It only returns once all
1609  * devices associated with the driver_id have fully completed their
1610  * unregistration and returned from ib_unregister_device*().
1611  *
1612  * If device's are not yet unregistered it goes ahead and starts unregistering
1613  * them.
1614  *
1615  * This does not block creation of new devices with the given driver_id, that
1616  * is the responsibility of the caller.
1617  */
ib_unregister_driver(enum rdma_driver_id driver_id)1618 void ib_unregister_driver(enum rdma_driver_id driver_id)
1619 {
1620 	struct ib_device *ib_dev;
1621 	unsigned long index;
1622 
1623 	down_read(&devices_rwsem);
1624 	xa_for_each (&devices, index, ib_dev) {
1625 		if (ib_dev->ops.driver_id != driver_id)
1626 			continue;
1627 
1628 		get_device(&ib_dev->dev);
1629 		up_read(&devices_rwsem);
1630 
1631 		WARN_ON(!ib_dev->ops.dealloc_driver);
1632 		__ib_unregister_device(ib_dev);
1633 
1634 		put_device(&ib_dev->dev);
1635 		down_read(&devices_rwsem);
1636 	}
1637 	up_read(&devices_rwsem);
1638 }
1639 EXPORT_SYMBOL(ib_unregister_driver);
1640 
ib_unregister_work(struct work_struct * work)1641 static void ib_unregister_work(struct work_struct *work)
1642 {
1643 	struct ib_device *ib_dev =
1644 		container_of(work, struct ib_device, unregistration_work);
1645 
1646 	__ib_unregister_device(ib_dev);
1647 	put_device(&ib_dev->dev);
1648 }
1649 
1650 /**
1651  * ib_unregister_device_queued - Unregister a device using a work queue
1652  * @ib_dev: The device to unregister
1653  *
1654  * This schedules an asynchronous unregistration using a WQ for the device. A
1655  * driver should use this to avoid holding locks while doing unregistration,
1656  * such as holding the RTNL lock.
1657  *
1658  * Drivers using this API must use ib_unregister_driver before module unload
1659  * to ensure that all scheduled unregistrations have completed.
1660  */
ib_unregister_device_queued(struct ib_device * ib_dev)1661 void ib_unregister_device_queued(struct ib_device *ib_dev)
1662 {
1663 	WARN_ON(!refcount_read(&ib_dev->refcount));
1664 	WARN_ON(!ib_dev->ops.dealloc_driver);
1665 	get_device(&ib_dev->dev);
1666 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1667 		put_device(&ib_dev->dev);
1668 }
1669 EXPORT_SYMBOL(ib_unregister_device_queued);
1670 
1671 /*
1672  * The caller must pass in a device that has the kref held and the refcount
1673  * released. If the device is in cur_net and still registered then it is moved
1674  * into net.
1675  */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1676 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1677 				 struct net *net)
1678 {
1679 	int ret2 = -EINVAL;
1680 	int ret;
1681 
1682 	mutex_lock(&device->unregistration_lock);
1683 
1684 	/*
1685 	 * If a device not under ib_device_get() or if the unregistration_lock
1686 	 * is not held, the namespace can be changed, or it can be unregistered.
1687 	 * Check again under the lock.
1688 	 */
1689 	if (refcount_read(&device->refcount) == 0 ||
1690 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1691 		ret = -ENODEV;
1692 		goto out;
1693 	}
1694 
1695 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1696 	disable_device(device);
1697 
1698 	/*
1699 	 * At this point no one can be using the device, so it is safe to
1700 	 * change the namespace.
1701 	 */
1702 	write_pnet(&device->coredev.rdma_net, net);
1703 
1704 	down_read(&devices_rwsem);
1705 	/*
1706 	 * Currently rdma devices are system wide unique. So the device name
1707 	 * is guaranteed free in the new namespace. Publish the new namespace
1708 	 * at the sysfs level.
1709 	 */
1710 	ret = device_rename(&device->dev, dev_name(&device->dev));
1711 	up_read(&devices_rwsem);
1712 	if (ret) {
1713 		dev_warn(&device->dev,
1714 			 "%s: Couldn't rename device after namespace change\n",
1715 			 __func__);
1716 		/* Try and put things back and re-enable the device */
1717 		write_pnet(&device->coredev.rdma_net, cur_net);
1718 	}
1719 
1720 	ret2 = enable_device_and_get(device);
1721 	if (ret2) {
1722 		/*
1723 		 * This shouldn't really happen, but if it does, let the user
1724 		 * retry at later point. So don't disable the device.
1725 		 */
1726 		dev_warn(&device->dev,
1727 			 "%s: Couldn't re-enable device after namespace change\n",
1728 			 __func__);
1729 	}
1730 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1731 
1732 	ib_device_put(device);
1733 out:
1734 	mutex_unlock(&device->unregistration_lock);
1735 	if (ret)
1736 		return ret;
1737 	return ret2;
1738 }
1739 
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1740 int ib_device_set_netns_put(struct sk_buff *skb,
1741 			    struct ib_device *dev, u32 ns_fd)
1742 {
1743 	struct net *net;
1744 	int ret;
1745 
1746 	net = get_net_ns_by_fd(ns_fd);
1747 	if (IS_ERR(net)) {
1748 		ret = PTR_ERR(net);
1749 		goto net_err;
1750 	}
1751 
1752 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1753 		ret = -EPERM;
1754 		goto ns_err;
1755 	}
1756 
1757 	/*
1758 	 * All the ib_clients, including uverbs, are reset when the namespace is
1759 	 * changed and this cannot be blocked waiting for userspace to do
1760 	 * something, so disassociation is mandatory.
1761 	 */
1762 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1763 		ret = -EOPNOTSUPP;
1764 		goto ns_err;
1765 	}
1766 
1767 	get_device(&dev->dev);
1768 	ib_device_put(dev);
1769 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1770 	put_device(&dev->dev);
1771 
1772 	put_net(net);
1773 	return ret;
1774 
1775 ns_err:
1776 	put_net(net);
1777 net_err:
1778 	ib_device_put(dev);
1779 	return ret;
1780 }
1781 
1782 static struct pernet_operations rdma_dev_net_ops = {
1783 	.init = rdma_dev_init_net,
1784 	.exit = rdma_dev_exit_net,
1785 	.id = &rdma_dev_net_id,
1786 	.size = sizeof(struct rdma_dev_net),
1787 };
1788 
assign_client_id(struct ib_client * client)1789 static int assign_client_id(struct ib_client *client)
1790 {
1791 	int ret;
1792 
1793 	lockdep_assert_held(&clients_rwsem);
1794 	/*
1795 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1796 	 * achieve this we assign client_ids so they are sorted in
1797 	 * registration order.
1798 	 */
1799 	client->client_id = highest_client_id;
1800 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1801 	if (ret)
1802 		return ret;
1803 
1804 	highest_client_id++;
1805 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1806 	return 0;
1807 }
1808 
remove_client_id(struct ib_client * client)1809 static void remove_client_id(struct ib_client *client)
1810 {
1811 	down_write(&clients_rwsem);
1812 	xa_erase(&clients, client->client_id);
1813 	for (; highest_client_id; highest_client_id--)
1814 		if (xa_load(&clients, highest_client_id - 1))
1815 			break;
1816 	up_write(&clients_rwsem);
1817 }
1818 
1819 /**
1820  * ib_register_client - Register an IB client
1821  * @client:Client to register
1822  *
1823  * Upper level users of the IB drivers can use ib_register_client() to
1824  * register callbacks for IB device addition and removal.  When an IB
1825  * device is added, each registered client's add method will be called
1826  * (in the order the clients were registered), and when a device is
1827  * removed, each client's remove method will be called (in the reverse
1828  * order that clients were registered).  In addition, when
1829  * ib_register_client() is called, the client will receive an add
1830  * callback for all devices already registered.
1831  */
ib_register_client(struct ib_client * client)1832 int ib_register_client(struct ib_client *client)
1833 {
1834 	struct ib_device *device;
1835 	unsigned long index;
1836 	bool need_unreg = false;
1837 	int ret;
1838 
1839 	refcount_set(&client->uses, 1);
1840 	init_completion(&client->uses_zero);
1841 
1842 	/*
1843 	 * The devices_rwsem is held in write mode to ensure that a racing
1844 	 * ib_register_device() sees a consisent view of clients and devices.
1845 	 */
1846 	down_write(&devices_rwsem);
1847 	down_write(&clients_rwsem);
1848 	ret = assign_client_id(client);
1849 	if (ret)
1850 		goto out;
1851 
1852 	need_unreg = true;
1853 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1854 		ret = add_client_context(device, client);
1855 		if (ret)
1856 			goto out;
1857 	}
1858 	ret = 0;
1859 out:
1860 	up_write(&clients_rwsem);
1861 	up_write(&devices_rwsem);
1862 	if (need_unreg && ret)
1863 		ib_unregister_client(client);
1864 	return ret;
1865 }
1866 EXPORT_SYMBOL(ib_register_client);
1867 
1868 /**
1869  * ib_unregister_client - Unregister an IB client
1870  * @client:Client to unregister
1871  *
1872  * Upper level users use ib_unregister_client() to remove their client
1873  * registration.  When ib_unregister_client() is called, the client
1874  * will receive a remove callback for each IB device still registered.
1875  *
1876  * This is a full fence, once it returns no client callbacks will be called,
1877  * or are running in another thread.
1878  */
ib_unregister_client(struct ib_client * client)1879 void ib_unregister_client(struct ib_client *client)
1880 {
1881 	struct ib_device *device;
1882 	unsigned long index;
1883 
1884 	down_write(&clients_rwsem);
1885 	ib_client_put(client);
1886 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1887 	up_write(&clients_rwsem);
1888 
1889 	/* We do not want to have locks while calling client->remove() */
1890 	rcu_read_lock();
1891 	xa_for_each (&devices, index, device) {
1892 		if (!ib_device_try_get(device))
1893 			continue;
1894 		rcu_read_unlock();
1895 
1896 		remove_client_context(device, client->client_id);
1897 
1898 		ib_device_put(device);
1899 		rcu_read_lock();
1900 	}
1901 	rcu_read_unlock();
1902 
1903 	/*
1904 	 * remove_client_context() is not a fence, it can return even though a
1905 	 * removal is ongoing. Wait until all removals are completed.
1906 	 */
1907 	wait_for_completion(&client->uses_zero);
1908 	remove_client_id(client);
1909 }
1910 EXPORT_SYMBOL(ib_unregister_client);
1911 
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1912 static int __ib_get_global_client_nl_info(const char *client_name,
1913 					  struct ib_client_nl_info *res)
1914 {
1915 	struct ib_client *client;
1916 	unsigned long index;
1917 	int ret = -ENOENT;
1918 
1919 	down_read(&clients_rwsem);
1920 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1921 		if (strcmp(client->name, client_name) != 0)
1922 			continue;
1923 		if (!client->get_global_nl_info) {
1924 			ret = -EOPNOTSUPP;
1925 			break;
1926 		}
1927 		ret = client->get_global_nl_info(res);
1928 		if (WARN_ON(ret == -ENOENT))
1929 			ret = -EINVAL;
1930 		if (!ret && res->cdev)
1931 			get_device(res->cdev);
1932 		break;
1933 	}
1934 	up_read(&clients_rwsem);
1935 	return ret;
1936 }
1937 
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1938 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1939 				   const char *client_name,
1940 				   struct ib_client_nl_info *res)
1941 {
1942 	unsigned long index;
1943 	void *client_data;
1944 	int ret = -ENOENT;
1945 
1946 	down_read(&ibdev->client_data_rwsem);
1947 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1948 			     CLIENT_DATA_REGISTERED) {
1949 		struct ib_client *client = xa_load(&clients, index);
1950 
1951 		if (!client || strcmp(client->name, client_name) != 0)
1952 			continue;
1953 		if (!client->get_nl_info) {
1954 			ret = -EOPNOTSUPP;
1955 			break;
1956 		}
1957 		ret = client->get_nl_info(ibdev, client_data, res);
1958 		if (WARN_ON(ret == -ENOENT))
1959 			ret = -EINVAL;
1960 
1961 		/*
1962 		 * The cdev is guaranteed valid as long as we are inside the
1963 		 * client_data_rwsem as remove_one can't be called. Keep it
1964 		 * valid for the caller.
1965 		 */
1966 		if (!ret && res->cdev)
1967 			get_device(res->cdev);
1968 		break;
1969 	}
1970 	up_read(&ibdev->client_data_rwsem);
1971 
1972 	return ret;
1973 }
1974 
1975 /**
1976  * ib_get_client_nl_info - Fetch the nl_info from a client
1977  * @ibdev: IB device
1978  * @client_name: Name of the client
1979  * @res: Result of the query
1980  */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1981 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1982 			  struct ib_client_nl_info *res)
1983 {
1984 	int ret;
1985 
1986 	if (ibdev)
1987 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1988 	else
1989 		ret = __ib_get_global_client_nl_info(client_name, res);
1990 #ifdef CONFIG_MODULES
1991 	if (ret == -ENOENT) {
1992 		request_module("rdma-client-%s", client_name);
1993 		if (ibdev)
1994 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1995 		else
1996 			ret = __ib_get_global_client_nl_info(client_name, res);
1997 	}
1998 #endif
1999 	if (ret) {
2000 		if (ret == -ENOENT)
2001 			return -EOPNOTSUPP;
2002 		return ret;
2003 	}
2004 
2005 	if (WARN_ON(!res->cdev))
2006 		return -EINVAL;
2007 	return 0;
2008 }
2009 
2010 /**
2011  * ib_set_client_data - Set IB client context
2012  * @device:Device to set context for
2013  * @client:Client to set context for
2014  * @data:Context to set
2015  *
2016  * ib_set_client_data() sets client context data that can be retrieved with
2017  * ib_get_client_data(). This can only be called while the client is
2018  * registered to the device, once the ib_client remove() callback returns this
2019  * cannot be called.
2020  */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2021 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2022 			void *data)
2023 {
2024 	void *rc;
2025 
2026 	if (WARN_ON(IS_ERR(data)))
2027 		data = NULL;
2028 
2029 	rc = xa_store(&device->client_data, client->client_id, data,
2030 		      GFP_KERNEL);
2031 	WARN_ON(xa_is_err(rc));
2032 }
2033 EXPORT_SYMBOL(ib_set_client_data);
2034 
2035 /**
2036  * ib_register_event_handler - Register an IB event handler
2037  * @event_handler:Handler to register
2038  *
2039  * ib_register_event_handler() registers an event handler that will be
2040  * called back when asynchronous IB events occur (as defined in
2041  * chapter 11 of the InfiniBand Architecture Specification). This
2042  * callback occurs in workqueue context.
2043  */
ib_register_event_handler(struct ib_event_handler * event_handler)2044 void ib_register_event_handler(struct ib_event_handler *event_handler)
2045 {
2046 	down_write(&event_handler->device->event_handler_rwsem);
2047 	list_add_tail(&event_handler->list,
2048 		      &event_handler->device->event_handler_list);
2049 	up_write(&event_handler->device->event_handler_rwsem);
2050 }
2051 EXPORT_SYMBOL(ib_register_event_handler);
2052 
2053 /**
2054  * ib_unregister_event_handler - Unregister an event handler
2055  * @event_handler:Handler to unregister
2056  *
2057  * Unregister an event handler registered with
2058  * ib_register_event_handler().
2059  */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2060 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2061 {
2062 	down_write(&event_handler->device->event_handler_rwsem);
2063 	list_del(&event_handler->list);
2064 	up_write(&event_handler->device->event_handler_rwsem);
2065 }
2066 EXPORT_SYMBOL(ib_unregister_event_handler);
2067 
ib_dispatch_event_clients(struct ib_event * event)2068 void ib_dispatch_event_clients(struct ib_event *event)
2069 {
2070 	struct ib_event_handler *handler;
2071 
2072 	down_read(&event->device->event_handler_rwsem);
2073 
2074 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2075 		handler->handler(handler, event);
2076 
2077 	up_read(&event->device->event_handler_rwsem);
2078 }
2079 
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2080 static int iw_query_port(struct ib_device *device,
2081 			   u32 port_num,
2082 			   struct ib_port_attr *port_attr)
2083 {
2084 	struct in_device *inetdev;
2085 	struct net_device *netdev;
2086 
2087 	memset(port_attr, 0, sizeof(*port_attr));
2088 
2089 	netdev = ib_device_get_netdev(device, port_num);
2090 	if (!netdev)
2091 		return -ENODEV;
2092 
2093 	port_attr->max_mtu = IB_MTU_4096;
2094 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2095 
2096 	if (!netif_carrier_ok(netdev)) {
2097 		port_attr->state = IB_PORT_DOWN;
2098 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2099 	} else {
2100 		rcu_read_lock();
2101 		inetdev = __in_dev_get_rcu(netdev);
2102 
2103 		if (inetdev && inetdev->ifa_list) {
2104 			port_attr->state = IB_PORT_ACTIVE;
2105 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2106 		} else {
2107 			port_attr->state = IB_PORT_INIT;
2108 			port_attr->phys_state =
2109 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2110 		}
2111 
2112 		rcu_read_unlock();
2113 	}
2114 
2115 	dev_put(netdev);
2116 	return device->ops.query_port(device, port_num, port_attr);
2117 }
2118 
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2119 static int __ib_query_port(struct ib_device *device,
2120 			   u32 port_num,
2121 			   struct ib_port_attr *port_attr)
2122 {
2123 	int err;
2124 
2125 	memset(port_attr, 0, sizeof(*port_attr));
2126 
2127 	err = device->ops.query_port(device, port_num, port_attr);
2128 	if (err || port_attr->subnet_prefix)
2129 		return err;
2130 
2131 	if (rdma_port_get_link_layer(device, port_num) !=
2132 	    IB_LINK_LAYER_INFINIBAND)
2133 		return 0;
2134 
2135 	ib_get_cached_subnet_prefix(device, port_num,
2136 				    &port_attr->subnet_prefix);
2137 	return 0;
2138 }
2139 
2140 /**
2141  * ib_query_port - Query IB port attributes
2142  * @device:Device to query
2143  * @port_num:Port number to query
2144  * @port_attr:Port attributes
2145  *
2146  * ib_query_port() returns the attributes of a port through the
2147  * @port_attr pointer.
2148  */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2149 int ib_query_port(struct ib_device *device,
2150 		  u32 port_num,
2151 		  struct ib_port_attr *port_attr)
2152 {
2153 	if (!rdma_is_port_valid(device, port_num))
2154 		return -EINVAL;
2155 
2156 	if (rdma_protocol_iwarp(device, port_num))
2157 		return iw_query_port(device, port_num, port_attr);
2158 	else
2159 		return __ib_query_port(device, port_num, port_attr);
2160 }
2161 EXPORT_SYMBOL(ib_query_port);
2162 
add_ndev_hash(struct ib_port_data * pdata)2163 static void add_ndev_hash(struct ib_port_data *pdata)
2164 {
2165 	unsigned long flags;
2166 
2167 	might_sleep();
2168 
2169 	spin_lock_irqsave(&ndev_hash_lock, flags);
2170 	if (hash_hashed(&pdata->ndev_hash_link)) {
2171 		hash_del_rcu(&pdata->ndev_hash_link);
2172 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2173 		/*
2174 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2175 		 * grace period
2176 		 */
2177 		synchronize_rcu();
2178 		spin_lock_irqsave(&ndev_hash_lock, flags);
2179 	}
2180 	if (pdata->netdev)
2181 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2182 			     (uintptr_t)pdata->netdev);
2183 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2184 }
2185 
2186 /**
2187  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2188  * @ib_dev: Device to modify
2189  * @ndev: net_device to affiliate, may be NULL
2190  * @port: IB port the net_device is connected to
2191  *
2192  * Drivers should use this to link the ib_device to a netdev so the netdev
2193  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2194  * affiliated with any port.
2195  *
2196  * The caller must ensure that the given ndev is not unregistered or
2197  * unregistering, and that either the ib_device is unregistered or
2198  * ib_device_set_netdev() is called with NULL when the ndev sends a
2199  * NETDEV_UNREGISTER event.
2200  */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2201 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2202 			 u32 port)
2203 {
2204 	enum rdma_nl_notify_event_type etype;
2205 	struct net_device *old_ndev;
2206 	struct ib_port_data *pdata;
2207 	unsigned long flags;
2208 	int ret;
2209 
2210 	if (!rdma_is_port_valid(ib_dev, port))
2211 		return -EINVAL;
2212 
2213 	/*
2214 	 * Drivers wish to call this before ib_register_driver, so we have to
2215 	 * setup the port data early.
2216 	 */
2217 	ret = alloc_port_data(ib_dev);
2218 	if (ret)
2219 		return ret;
2220 
2221 	pdata = &ib_dev->port_data[port];
2222 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2223 	old_ndev = rcu_dereference_protected(
2224 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2225 	if (old_ndev == ndev) {
2226 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2227 		return 0;
2228 	}
2229 
2230 	rcu_assign_pointer(pdata->netdev, ndev);
2231 	netdev_put(old_ndev, &pdata->netdev_tracker);
2232 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2233 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2234 
2235 	add_ndev_hash(pdata);
2236 
2237 	/* Make sure that the device is registered before we send events */
2238 	if (xa_load(&devices, ib_dev->index) != ib_dev)
2239 		return 0;
2240 
2241 	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2242 	rdma_nl_notify_event(ib_dev, port, etype);
2243 
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL(ib_device_set_netdev);
2247 
free_netdevs(struct ib_device * ib_dev)2248 static void free_netdevs(struct ib_device *ib_dev)
2249 {
2250 	unsigned long flags;
2251 	u32 port;
2252 
2253 	if (!ib_dev->port_data)
2254 		return;
2255 
2256 	rdma_for_each_port (ib_dev, port) {
2257 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2258 		struct net_device *ndev;
2259 
2260 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2261 		ndev = rcu_dereference_protected(
2262 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2263 		if (ndev) {
2264 			spin_lock(&ndev_hash_lock);
2265 			hash_del_rcu(&pdata->ndev_hash_link);
2266 			spin_unlock(&ndev_hash_lock);
2267 
2268 			/*
2269 			 * If this is the last dev_put there is still a
2270 			 * synchronize_rcu before the netdev is kfreed, so we
2271 			 * can continue to rely on unlocked pointer
2272 			 * comparisons after the put
2273 			 */
2274 			rcu_assign_pointer(pdata->netdev, NULL);
2275 			netdev_put(ndev, &pdata->netdev_tracker);
2276 		}
2277 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2278 	}
2279 }
2280 
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2281 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2282 					u32 port)
2283 {
2284 	struct ib_port_data *pdata;
2285 	struct net_device *res;
2286 
2287 	if (!rdma_is_port_valid(ib_dev, port))
2288 		return NULL;
2289 
2290 	if (!ib_dev->port_data)
2291 		return NULL;
2292 
2293 	pdata = &ib_dev->port_data[port];
2294 
2295 	/*
2296 	 * New drivers should use ib_device_set_netdev() not the legacy
2297 	 * get_netdev().
2298 	 */
2299 	if (ib_dev->ops.get_netdev)
2300 		res = ib_dev->ops.get_netdev(ib_dev, port);
2301 	else {
2302 		spin_lock(&pdata->netdev_lock);
2303 		res = rcu_dereference_protected(
2304 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2305 		dev_hold(res);
2306 		spin_unlock(&pdata->netdev_lock);
2307 	}
2308 
2309 	return res;
2310 }
2311 EXPORT_SYMBOL(ib_device_get_netdev);
2312 
2313 /**
2314  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2315  * @ndev: netdev to locate
2316  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2317  *
2318  * Find and hold an ib_device that is associated with a netdev via
2319  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2320  * returned pointer.
2321  */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2322 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2323 					  enum rdma_driver_id driver_id)
2324 {
2325 	struct ib_device *res = NULL;
2326 	struct ib_port_data *cur;
2327 
2328 	rcu_read_lock();
2329 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2330 				    (uintptr_t)ndev) {
2331 		if (rcu_access_pointer(cur->netdev) == ndev &&
2332 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2333 		     cur->ib_dev->ops.driver_id == driver_id) &&
2334 		    ib_device_try_get(cur->ib_dev)) {
2335 			res = cur->ib_dev;
2336 			break;
2337 		}
2338 	}
2339 	rcu_read_unlock();
2340 
2341 	return res;
2342 }
2343 EXPORT_SYMBOL(ib_device_get_by_netdev);
2344 
2345 /**
2346  * ib_enum_roce_netdev - enumerate all RoCE ports
2347  * @ib_dev : IB device we want to query
2348  * @filter: Should we call the callback?
2349  * @filter_cookie: Cookie passed to filter
2350  * @cb: Callback to call for each found RoCE ports
2351  * @cookie: Cookie passed back to the callback
2352  *
2353  * Enumerates all of the physical RoCE ports of ib_dev
2354  * which are related to netdevice and calls callback() on each
2355  * device for which filter() function returns non zero.
2356  */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2357 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2358 			 roce_netdev_filter filter,
2359 			 void *filter_cookie,
2360 			 roce_netdev_callback cb,
2361 			 void *cookie)
2362 {
2363 	u32 port;
2364 
2365 	rdma_for_each_port (ib_dev, port)
2366 		if (rdma_protocol_roce(ib_dev, port)) {
2367 			struct net_device *idev =
2368 				ib_device_get_netdev(ib_dev, port);
2369 
2370 			if (filter(ib_dev, port, idev, filter_cookie))
2371 				cb(ib_dev, port, idev, cookie);
2372 			dev_put(idev);
2373 		}
2374 }
2375 
2376 /**
2377  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2378  * @filter: Should we call the callback?
2379  * @filter_cookie: Cookie passed to filter
2380  * @cb: Callback to call for each found RoCE ports
2381  * @cookie: Cookie passed back to the callback
2382  *
2383  * Enumerates all RoCE devices' physical ports which are related
2384  * to netdevices and calls callback() on each device for which
2385  * filter() function returns non zero.
2386  */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2387 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2388 			      void *filter_cookie,
2389 			      roce_netdev_callback cb,
2390 			      void *cookie)
2391 {
2392 	struct ib_device *dev;
2393 	unsigned long index;
2394 
2395 	down_read(&devices_rwsem);
2396 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2397 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2398 	up_read(&devices_rwsem);
2399 }
2400 
2401 /*
2402  * ib_enum_all_devs - enumerate all ib_devices
2403  * @cb: Callback to call for each found ib_device
2404  *
2405  * Enumerates all ib_devices and calls callback() on each device.
2406  */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2407 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2408 		     struct netlink_callback *cb)
2409 {
2410 	unsigned long index;
2411 	struct ib_device *dev;
2412 	unsigned int idx = 0;
2413 	int ret = 0;
2414 
2415 	down_read(&devices_rwsem);
2416 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2417 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2418 			continue;
2419 
2420 		ret = nldev_cb(dev, skb, cb, idx);
2421 		if (ret)
2422 			break;
2423 		idx++;
2424 	}
2425 	up_read(&devices_rwsem);
2426 	return ret;
2427 }
2428 
2429 /**
2430  * ib_query_pkey - Get P_Key table entry
2431  * @device:Device to query
2432  * @port_num:Port number to query
2433  * @index:P_Key table index to query
2434  * @pkey:Returned P_Key
2435  *
2436  * ib_query_pkey() fetches the specified P_Key table entry.
2437  */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2438 int ib_query_pkey(struct ib_device *device,
2439 		  u32 port_num, u16 index, u16 *pkey)
2440 {
2441 	if (!rdma_is_port_valid(device, port_num))
2442 		return -EINVAL;
2443 
2444 	if (!device->ops.query_pkey)
2445 		return -EOPNOTSUPP;
2446 
2447 	return device->ops.query_pkey(device, port_num, index, pkey);
2448 }
2449 EXPORT_SYMBOL(ib_query_pkey);
2450 
2451 /**
2452  * ib_modify_device - Change IB device attributes
2453  * @device:Device to modify
2454  * @device_modify_mask:Mask of attributes to change
2455  * @device_modify:New attribute values
2456  *
2457  * ib_modify_device() changes a device's attributes as specified by
2458  * the @device_modify_mask and @device_modify structure.
2459  */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2460 int ib_modify_device(struct ib_device *device,
2461 		     int device_modify_mask,
2462 		     struct ib_device_modify *device_modify)
2463 {
2464 	if (!device->ops.modify_device)
2465 		return -EOPNOTSUPP;
2466 
2467 	return device->ops.modify_device(device, device_modify_mask,
2468 					 device_modify);
2469 }
2470 EXPORT_SYMBOL(ib_modify_device);
2471 
2472 /**
2473  * ib_modify_port - Modifies the attributes for the specified port.
2474  * @device: The device to modify.
2475  * @port_num: The number of the port to modify.
2476  * @port_modify_mask: Mask used to specify which attributes of the port
2477  *   to change.
2478  * @port_modify: New attribute values for the port.
2479  *
2480  * ib_modify_port() changes a port's attributes as specified by the
2481  * @port_modify_mask and @port_modify structure.
2482  */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2483 int ib_modify_port(struct ib_device *device,
2484 		   u32 port_num, int port_modify_mask,
2485 		   struct ib_port_modify *port_modify)
2486 {
2487 	int rc;
2488 
2489 	if (!rdma_is_port_valid(device, port_num))
2490 		return -EINVAL;
2491 
2492 	if (device->ops.modify_port)
2493 		rc = device->ops.modify_port(device, port_num,
2494 					     port_modify_mask,
2495 					     port_modify);
2496 	else if (rdma_protocol_roce(device, port_num) &&
2497 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2498 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2499 		rc = 0;
2500 	else
2501 		rc = -EOPNOTSUPP;
2502 	return rc;
2503 }
2504 EXPORT_SYMBOL(ib_modify_port);
2505 
2506 /**
2507  * ib_find_gid - Returns the port number and GID table index where
2508  *   a specified GID value occurs. Its searches only for IB link layer.
2509  * @device: The device to query.
2510  * @gid: The GID value to search for.
2511  * @port_num: The port number of the device where the GID value was found.
2512  * @index: The index into the GID table where the GID was found.  This
2513  *   parameter may be NULL.
2514  */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2515 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2516 		u32 *port_num, u16 *index)
2517 {
2518 	union ib_gid tmp_gid;
2519 	u32 port;
2520 	int ret, i;
2521 
2522 	rdma_for_each_port (device, port) {
2523 		if (!rdma_protocol_ib(device, port))
2524 			continue;
2525 
2526 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2527 		     ++i) {
2528 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2529 			if (ret)
2530 				continue;
2531 
2532 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2533 				*port_num = port;
2534 				if (index)
2535 					*index = i;
2536 				return 0;
2537 			}
2538 		}
2539 	}
2540 
2541 	return -ENOENT;
2542 }
2543 EXPORT_SYMBOL(ib_find_gid);
2544 
2545 /**
2546  * ib_find_pkey - Returns the PKey table index where a specified
2547  *   PKey value occurs.
2548  * @device: The device to query.
2549  * @port_num: The port number of the device to search for the PKey.
2550  * @pkey: The PKey value to search for.
2551  * @index: The index into the PKey table where the PKey was found.
2552  */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2553 int ib_find_pkey(struct ib_device *device,
2554 		 u32 port_num, u16 pkey, u16 *index)
2555 {
2556 	int ret, i;
2557 	u16 tmp_pkey;
2558 	int partial_ix = -1;
2559 
2560 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2561 	     ++i) {
2562 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2563 		if (ret)
2564 			return ret;
2565 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2566 			/* if there is full-member pkey take it.*/
2567 			if (tmp_pkey & 0x8000) {
2568 				*index = i;
2569 				return 0;
2570 			}
2571 			if (partial_ix < 0)
2572 				partial_ix = i;
2573 		}
2574 	}
2575 
2576 	/*no full-member, if exists take the limited*/
2577 	if (partial_ix >= 0) {
2578 		*index = partial_ix;
2579 		return 0;
2580 	}
2581 	return -ENOENT;
2582 }
2583 EXPORT_SYMBOL(ib_find_pkey);
2584 
2585 /**
2586  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2587  * for a received CM request
2588  * @dev:	An RDMA device on which the request has been received.
2589  * @port:	Port number on the RDMA device.
2590  * @pkey:	The Pkey the request came on.
2591  * @gid:	A GID that the net_dev uses to communicate.
2592  * @addr:	Contains the IP address that the request specified as its
2593  *		destination.
2594  *
2595  */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2596 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2597 					    u32 port,
2598 					    u16 pkey,
2599 					    const union ib_gid *gid,
2600 					    const struct sockaddr *addr)
2601 {
2602 	struct net_device *net_dev = NULL;
2603 	unsigned long index;
2604 	void *client_data;
2605 
2606 	if (!rdma_protocol_ib(dev, port))
2607 		return NULL;
2608 
2609 	/*
2610 	 * Holding the read side guarantees that the client will not become
2611 	 * unregistered while we are calling get_net_dev_by_params()
2612 	 */
2613 	down_read(&dev->client_data_rwsem);
2614 	xan_for_each_marked (&dev->client_data, index, client_data,
2615 			     CLIENT_DATA_REGISTERED) {
2616 		struct ib_client *client = xa_load(&clients, index);
2617 
2618 		if (!client || !client->get_net_dev_by_params)
2619 			continue;
2620 
2621 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2622 							addr, client_data);
2623 		if (net_dev)
2624 			break;
2625 	}
2626 	up_read(&dev->client_data_rwsem);
2627 
2628 	return net_dev;
2629 }
2630 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2631 
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2632 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2633 {
2634 	struct ib_device_ops *dev_ops = &dev->ops;
2635 #define SET_DEVICE_OP(ptr, name)                                               \
2636 	do {                                                                   \
2637 		if (ops->name)                                                 \
2638 			if (!((ptr)->name))				       \
2639 				(ptr)->name = ops->name;                       \
2640 	} while (0)
2641 
2642 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2643 
2644 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2645 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2646 			dev_ops->driver_id != ops->driver_id);
2647 		dev_ops->driver_id = ops->driver_id;
2648 	}
2649 	if (ops->owner) {
2650 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2651 		dev_ops->owner = ops->owner;
2652 	}
2653 	if (ops->uverbs_abi_ver)
2654 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2655 
2656 	dev_ops->uverbs_no_driver_id_binding |=
2657 		ops->uverbs_no_driver_id_binding;
2658 
2659 	SET_DEVICE_OP(dev_ops, add_gid);
2660 	SET_DEVICE_OP(dev_ops, add_sub_dev);
2661 	SET_DEVICE_OP(dev_ops, advise_mr);
2662 	SET_DEVICE_OP(dev_ops, alloc_dm);
2663 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2664 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2665 	SET_DEVICE_OP(dev_ops, alloc_mr);
2666 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2667 	SET_DEVICE_OP(dev_ops, alloc_mw);
2668 	SET_DEVICE_OP(dev_ops, alloc_pd);
2669 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2670 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2671 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2672 	SET_DEVICE_OP(dev_ops, attach_mcast);
2673 	SET_DEVICE_OP(dev_ops, check_mr_status);
2674 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2675 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2676 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2677 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2678 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2679 	SET_DEVICE_OP(dev_ops, create_ah);
2680 	SET_DEVICE_OP(dev_ops, create_counters);
2681 	SET_DEVICE_OP(dev_ops, create_cq);
2682 	SET_DEVICE_OP(dev_ops, create_flow);
2683 	SET_DEVICE_OP(dev_ops, create_qp);
2684 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2685 	SET_DEVICE_OP(dev_ops, create_srq);
2686 	SET_DEVICE_OP(dev_ops, create_user_ah);
2687 	SET_DEVICE_OP(dev_ops, create_wq);
2688 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2689 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2690 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2691 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2692 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2693 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2694 	SET_DEVICE_OP(dev_ops, del_gid);
2695 	SET_DEVICE_OP(dev_ops, del_sub_dev);
2696 	SET_DEVICE_OP(dev_ops, dereg_mr);
2697 	SET_DEVICE_OP(dev_ops, destroy_ah);
2698 	SET_DEVICE_OP(dev_ops, destroy_counters);
2699 	SET_DEVICE_OP(dev_ops, destroy_cq);
2700 	SET_DEVICE_OP(dev_ops, destroy_flow);
2701 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2702 	SET_DEVICE_OP(dev_ops, destroy_qp);
2703 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2704 	SET_DEVICE_OP(dev_ops, destroy_srq);
2705 	SET_DEVICE_OP(dev_ops, destroy_wq);
2706 	SET_DEVICE_OP(dev_ops, device_group);
2707 	SET_DEVICE_OP(dev_ops, detach_mcast);
2708 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2709 	SET_DEVICE_OP(dev_ops, drain_rq);
2710 	SET_DEVICE_OP(dev_ops, drain_sq);
2711 	SET_DEVICE_OP(dev_ops, enable_driver);
2712 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2713 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2714 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2715 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2716 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2717 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2718 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2719 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2720 	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2721 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2722 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2723 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2724 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2725 	SET_DEVICE_OP(dev_ops, get_link_layer);
2726 	SET_DEVICE_OP(dev_ops, get_netdev);
2727 	SET_DEVICE_OP(dev_ops, get_numa_node);
2728 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2729 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2730 	SET_DEVICE_OP(dev_ops, get_vf_config);
2731 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2732 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2733 	SET_DEVICE_OP(dev_ops, iw_accept);
2734 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2735 	SET_DEVICE_OP(dev_ops, iw_connect);
2736 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2737 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2738 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2739 	SET_DEVICE_OP(dev_ops, iw_reject);
2740 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2741 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2742 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2743 	SET_DEVICE_OP(dev_ops, mmap);
2744 	SET_DEVICE_OP(dev_ops, mmap_free);
2745 	SET_DEVICE_OP(dev_ops, modify_ah);
2746 	SET_DEVICE_OP(dev_ops, modify_cq);
2747 	SET_DEVICE_OP(dev_ops, modify_device);
2748 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2749 	SET_DEVICE_OP(dev_ops, modify_port);
2750 	SET_DEVICE_OP(dev_ops, modify_qp);
2751 	SET_DEVICE_OP(dev_ops, modify_srq);
2752 	SET_DEVICE_OP(dev_ops, modify_wq);
2753 	SET_DEVICE_OP(dev_ops, peek_cq);
2754 	SET_DEVICE_OP(dev_ops, poll_cq);
2755 	SET_DEVICE_OP(dev_ops, port_groups);
2756 	SET_DEVICE_OP(dev_ops, post_recv);
2757 	SET_DEVICE_OP(dev_ops, post_send);
2758 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2759 	SET_DEVICE_OP(dev_ops, process_mad);
2760 	SET_DEVICE_OP(dev_ops, query_ah);
2761 	SET_DEVICE_OP(dev_ops, query_device);
2762 	SET_DEVICE_OP(dev_ops, query_gid);
2763 	SET_DEVICE_OP(dev_ops, query_pkey);
2764 	SET_DEVICE_OP(dev_ops, query_port);
2765 	SET_DEVICE_OP(dev_ops, query_qp);
2766 	SET_DEVICE_OP(dev_ops, query_srq);
2767 	SET_DEVICE_OP(dev_ops, query_ucontext);
2768 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2769 	SET_DEVICE_OP(dev_ops, read_counters);
2770 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2771 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2772 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2773 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2774 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2775 	SET_DEVICE_OP(dev_ops, resize_cq);
2776 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2777 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2778 
2779 	SET_OBJ_SIZE(dev_ops, ib_ah);
2780 	SET_OBJ_SIZE(dev_ops, ib_counters);
2781 	SET_OBJ_SIZE(dev_ops, ib_cq);
2782 	SET_OBJ_SIZE(dev_ops, ib_mw);
2783 	SET_OBJ_SIZE(dev_ops, ib_pd);
2784 	SET_OBJ_SIZE(dev_ops, ib_qp);
2785 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2786 	SET_OBJ_SIZE(dev_ops, ib_srq);
2787 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2788 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2789 }
2790 EXPORT_SYMBOL(ib_set_device_ops);
2791 
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2792 int ib_add_sub_device(struct ib_device *parent,
2793 		      enum rdma_nl_dev_type type,
2794 		      const char *name)
2795 {
2796 	struct ib_device *sub;
2797 	int ret = 0;
2798 
2799 	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2800 		return -EOPNOTSUPP;
2801 
2802 	if (!ib_device_try_get(parent))
2803 		return -EINVAL;
2804 
2805 	sub = parent->ops.add_sub_dev(parent, type, name);
2806 	if (IS_ERR(sub)) {
2807 		ib_device_put(parent);
2808 		return PTR_ERR(sub);
2809 	}
2810 
2811 	sub->type = type;
2812 	sub->parent = parent;
2813 
2814 	mutex_lock(&parent->subdev_lock);
2815 	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2816 	mutex_unlock(&parent->subdev_lock);
2817 
2818 	return ret;
2819 }
2820 EXPORT_SYMBOL(ib_add_sub_device);
2821 
ib_del_sub_device_and_put(struct ib_device * sub)2822 int ib_del_sub_device_and_put(struct ib_device *sub)
2823 {
2824 	struct ib_device *parent = sub->parent;
2825 
2826 	if (!parent)
2827 		return -EOPNOTSUPP;
2828 
2829 	mutex_lock(&parent->subdev_lock);
2830 	list_del(&sub->subdev_list);
2831 	mutex_unlock(&parent->subdev_lock);
2832 
2833 	ib_device_put(sub);
2834 	parent->ops.del_sub_dev(sub);
2835 	ib_device_put(parent);
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2840 
2841 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2842 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2843 {
2844 	struct scatterlist *s;
2845 	int i;
2846 
2847 	for_each_sg(sg, s, nents, i) {
2848 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2849 		sg_dma_len(s) = s->length;
2850 	}
2851 	return nents;
2852 }
2853 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2854 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2855 
2856 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2857 	[RDMA_NL_LS_OP_RESOLVE] = {
2858 		.doit = ib_nl_handle_resolve_resp,
2859 		.flags = RDMA_NL_ADMIN_PERM,
2860 	},
2861 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2862 		.doit = ib_nl_handle_set_timeout,
2863 		.flags = RDMA_NL_ADMIN_PERM,
2864 	},
2865 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2866 		.doit = ib_nl_handle_ip_res_resp,
2867 		.flags = RDMA_NL_ADMIN_PERM,
2868 	},
2869 };
2870 
ib_core_init(void)2871 static int __init ib_core_init(void)
2872 {
2873 	int ret = -ENOMEM;
2874 
2875 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2876 	if (!ib_wq)
2877 		return -ENOMEM;
2878 
2879 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2880 				      WQ_UNBOUND_MAX_ACTIVE);
2881 	if (!ib_unreg_wq)
2882 		goto err;
2883 
2884 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2885 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2886 	if (!ib_comp_wq)
2887 		goto err_unbound;
2888 
2889 	ib_comp_unbound_wq =
2890 		alloc_workqueue("ib-comp-unb-wq",
2891 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2892 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2893 	if (!ib_comp_unbound_wq)
2894 		goto err_comp;
2895 
2896 	ret = class_register(&ib_class);
2897 	if (ret) {
2898 		pr_warn("Couldn't create InfiniBand device class\n");
2899 		goto err_comp_unbound;
2900 	}
2901 
2902 	rdma_nl_init();
2903 
2904 	ret = addr_init();
2905 	if (ret) {
2906 		pr_warn("Couldn't init IB address resolution\n");
2907 		goto err_ibnl;
2908 	}
2909 
2910 	ret = ib_mad_init();
2911 	if (ret) {
2912 		pr_warn("Couldn't init IB MAD\n");
2913 		goto err_addr;
2914 	}
2915 
2916 	ret = ib_sa_init();
2917 	if (ret) {
2918 		pr_warn("Couldn't init SA\n");
2919 		goto err_mad;
2920 	}
2921 
2922 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2923 	if (ret) {
2924 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2925 		goto err_sa;
2926 	}
2927 
2928 	ret = register_pernet_device(&rdma_dev_net_ops);
2929 	if (ret) {
2930 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2931 		goto err_compat;
2932 	}
2933 
2934 	nldev_init();
2935 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2936 	ret = roce_gid_mgmt_init();
2937 	if (ret) {
2938 		pr_warn("Couldn't init RoCE GID management\n");
2939 		goto err_parent;
2940 	}
2941 
2942 	return 0;
2943 
2944 err_parent:
2945 	rdma_nl_unregister(RDMA_NL_LS);
2946 	nldev_exit();
2947 	unregister_pernet_device(&rdma_dev_net_ops);
2948 err_compat:
2949 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2950 err_sa:
2951 	ib_sa_cleanup();
2952 err_mad:
2953 	ib_mad_cleanup();
2954 err_addr:
2955 	addr_cleanup();
2956 err_ibnl:
2957 	class_unregister(&ib_class);
2958 err_comp_unbound:
2959 	destroy_workqueue(ib_comp_unbound_wq);
2960 err_comp:
2961 	destroy_workqueue(ib_comp_wq);
2962 err_unbound:
2963 	destroy_workqueue(ib_unreg_wq);
2964 err:
2965 	destroy_workqueue(ib_wq);
2966 	return ret;
2967 }
2968 
ib_core_cleanup(void)2969 static void __exit ib_core_cleanup(void)
2970 {
2971 	roce_gid_mgmt_cleanup();
2972 	rdma_nl_unregister(RDMA_NL_LS);
2973 	nldev_exit();
2974 	unregister_pernet_device(&rdma_dev_net_ops);
2975 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2976 	ib_sa_cleanup();
2977 	ib_mad_cleanup();
2978 	addr_cleanup();
2979 	rdma_nl_exit();
2980 	class_unregister(&ib_class);
2981 	destroy_workqueue(ib_comp_unbound_wq);
2982 	destroy_workqueue(ib_comp_wq);
2983 	/* Make sure that any pending umem accounting work is done. */
2984 	destroy_workqueue(ib_wq);
2985 	destroy_workqueue(ib_unreg_wq);
2986 	WARN_ON(!xa_empty(&clients));
2987 	WARN_ON(!xa_empty(&devices));
2988 }
2989 
2990 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2991 
2992 /* ib core relies on netdev stack to first register net_ns_type_operations
2993  * ns kobject type before ib_core initialization.
2994  */
2995 fs_initcall(ib_core_init);
2996 module_exit(ib_core_cleanup);
2997