1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166 }
167
free_devices(struct list_head * devices,struct mapped_device * md)168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180 }
181
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
dm_table_destroy(struct dm_table * t)184 void dm_table_destroy(struct dm_table *t)
185 {
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213 }
214
215 /*
216 * See if we've already got a device in the list.
217 */
find_device(struct list_head * l,dev_t dev)218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227 }
228
229 /*
230 * If possible, this checks an area of a destination device is invalid.
231 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234 {
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (!bdev_is_zone_aligned(bdev, start)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (!bdev_is_zone_aligned(bdev, len)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306 }
307
308 /*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316 {
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331 }
332
333 /*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
dm_devt_from_path(const char * path,dev_t * dev_p)337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354 #endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362
363 /*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369 {
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410 out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415 unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423 {
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 mutex_lock(&q->limits_lock);
435 if (blk_stack_limits(limits, &q->limits,
436 get_start_sect(bdev) + start) < 0)
437 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
438 "physical_block_size=%u, logical_block_size=%u, "
439 "alignment_offset=%u, start=%llu",
440 dm_device_name(ti->table->md), bdev,
441 q->limits.physical_block_size,
442 q->limits.logical_block_size,
443 q->limits.alignment_offset,
444 (unsigned long long) start << SECTOR_SHIFT);
445
446 /*
447 * Only stack the integrity profile if the target doesn't have native
448 * integrity support.
449 */
450 if (!dm_target_has_integrity(ti->type))
451 queue_limits_stack_integrity_bdev(limits, bdev);
452 mutex_unlock(&q->limits_lock);
453 return 0;
454 }
455
456 /*
457 * Decrement a device's use count and remove it if necessary.
458 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)459 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
460 {
461 int found = 0;
462 struct dm_table *t = ti->table;
463 struct list_head *devices = &t->devices;
464 struct dm_dev_internal *dd;
465
466 down_write(&t->devices_lock);
467
468 list_for_each_entry(dd, devices, list) {
469 if (dd->dm_dev == d) {
470 found = 1;
471 break;
472 }
473 }
474 if (!found) {
475 DMERR("%s: device %s not in table devices list",
476 dm_device_name(t->md), d->name);
477 goto unlock_ret;
478 }
479 if (refcount_dec_and_test(&dd->count)) {
480 dm_put_table_device(t->md, d);
481 list_del(&dd->list);
482 kfree(dd);
483 }
484
485 unlock_ret:
486 up_write(&t->devices_lock);
487 }
488 EXPORT_SYMBOL(dm_put_device);
489
490 /*
491 * Checks to see if the target joins onto the end of the table.
492 */
adjoin(struct dm_table * t,struct dm_target * ti)493 static int adjoin(struct dm_table *t, struct dm_target *ti)
494 {
495 struct dm_target *prev;
496
497 if (!t->num_targets)
498 return !ti->begin;
499
500 prev = &t->targets[t->num_targets - 1];
501 return (ti->begin == (prev->begin + prev->len));
502 }
503
504 /*
505 * Used to dynamically allocate the arg array.
506 *
507 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
508 * process messages even if some device is suspended. These messages have a
509 * small fixed number of arguments.
510 *
511 * On the other hand, dm-switch needs to process bulk data using messages and
512 * excessive use of GFP_NOIO could cause trouble.
513 */
realloc_argv(unsigned int * size,char ** old_argv)514 static char **realloc_argv(unsigned int *size, char **old_argv)
515 {
516 char **argv;
517 unsigned int new_size;
518 gfp_t gfp;
519
520 if (*size) {
521 new_size = *size * 2;
522 gfp = GFP_KERNEL;
523 } else {
524 new_size = 8;
525 gfp = GFP_NOIO;
526 }
527 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
528 if (argv) {
529 if (old_argv)
530 memcpy(argv, old_argv, *size * sizeof(*argv));
531 *size = new_size;
532 }
533
534 kfree(old_argv);
535 return argv;
536 }
537
538 /*
539 * Destructively splits up the argument list to pass to ctr.
540 */
dm_split_args(int * argc,char *** argvp,char * input)541 int dm_split_args(int *argc, char ***argvp, char *input)
542 {
543 char *start, *end = input, *out, **argv = NULL;
544 unsigned int array_size = 0;
545
546 *argc = 0;
547
548 if (!input) {
549 *argvp = NULL;
550 return 0;
551 }
552
553 argv = realloc_argv(&array_size, argv);
554 if (!argv)
555 return -ENOMEM;
556
557 while (1) {
558 /* Skip whitespace */
559 start = skip_spaces(end);
560
561 if (!*start)
562 break; /* success, we hit the end */
563
564 /* 'out' is used to remove any back-quotes */
565 end = out = start;
566 while (*end) {
567 /* Everything apart from '\0' can be quoted */
568 if (*end == '\\' && *(end + 1)) {
569 *out++ = *(end + 1);
570 end += 2;
571 continue;
572 }
573
574 if (isspace(*end))
575 break; /* end of token */
576
577 *out++ = *end++;
578 }
579
580 /* have we already filled the array ? */
581 if ((*argc + 1) > array_size) {
582 argv = realloc_argv(&array_size, argv);
583 if (!argv)
584 return -ENOMEM;
585 }
586
587 /* we know this is whitespace */
588 if (*end)
589 end++;
590
591 /* terminate the string and put it in the array */
592 *out = '\0';
593 argv[*argc] = start;
594 (*argc)++;
595 }
596
597 *argvp = argv;
598 return 0;
599 }
600
dm_set_stacking_limits(struct queue_limits * limits)601 static void dm_set_stacking_limits(struct queue_limits *limits)
602 {
603 blk_set_stacking_limits(limits);
604 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
605 }
606
607 /*
608 * Impose necessary and sufficient conditions on a devices's table such
609 * that any incoming bio which respects its logical_block_size can be
610 * processed successfully. If it falls across the boundary between
611 * two or more targets, the size of each piece it gets split into must
612 * be compatible with the logical_block_size of the target processing it.
613 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)614 static int validate_hardware_logical_block_alignment(struct dm_table *t,
615 struct queue_limits *limits)
616 {
617 /*
618 * This function uses arithmetic modulo the logical_block_size
619 * (in units of 512-byte sectors).
620 */
621 unsigned short device_logical_block_size_sects =
622 limits->logical_block_size >> SECTOR_SHIFT;
623
624 /*
625 * Offset of the start of the next table entry, mod logical_block_size.
626 */
627 unsigned short next_target_start = 0;
628
629 /*
630 * Given an aligned bio that extends beyond the end of a
631 * target, how many sectors must the next target handle?
632 */
633 unsigned short remaining = 0;
634
635 struct dm_target *ti;
636 struct queue_limits ti_limits;
637 unsigned int i;
638
639 /*
640 * Check each entry in the table in turn.
641 */
642 for (i = 0; i < t->num_targets; i++) {
643 ti = dm_table_get_target(t, i);
644
645 dm_set_stacking_limits(&ti_limits);
646
647 /* combine all target devices' limits */
648 if (ti->type->iterate_devices)
649 ti->type->iterate_devices(ti, dm_set_device_limits,
650 &ti_limits);
651
652 /*
653 * If the remaining sectors fall entirely within this
654 * table entry are they compatible with its logical_block_size?
655 */
656 if (remaining < ti->len &&
657 remaining & ((ti_limits.logical_block_size >>
658 SECTOR_SHIFT) - 1))
659 break; /* Error */
660
661 next_target_start =
662 (unsigned short) ((next_target_start + ti->len) &
663 (device_logical_block_size_sects - 1));
664 remaining = next_target_start ?
665 device_logical_block_size_sects - next_target_start : 0;
666 }
667
668 if (remaining) {
669 DMERR("%s: table line %u (start sect %llu len %llu) "
670 "not aligned to h/w logical block size %u",
671 dm_device_name(t->md), i,
672 (unsigned long long) ti->begin,
673 (unsigned long long) ti->len,
674 limits->logical_block_size);
675 return -EINVAL;
676 }
677
678 return 0;
679 }
680
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)681 int dm_table_add_target(struct dm_table *t, const char *type,
682 sector_t start, sector_t len, char *params)
683 {
684 int r = -EINVAL, argc;
685 char **argv;
686 struct dm_target *ti;
687
688 if (t->singleton) {
689 DMERR("%s: target type %s must appear alone in table",
690 dm_device_name(t->md), t->targets->type->name);
691 return -EINVAL;
692 }
693
694 BUG_ON(t->num_targets >= t->num_allocated);
695
696 ti = t->targets + t->num_targets;
697 memset(ti, 0, sizeof(*ti));
698
699 if (!len) {
700 DMERR("%s: zero-length target", dm_device_name(t->md));
701 return -EINVAL;
702 }
703 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) {
704 DMERR("%s: too large device", dm_device_name(t->md));
705 return -EINVAL;
706 }
707
708 ti->type = dm_get_target_type(type);
709 if (!ti->type) {
710 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
711 return -EINVAL;
712 }
713
714 if (dm_target_needs_singleton(ti->type)) {
715 if (t->num_targets) {
716 ti->error = "singleton target type must appear alone in table";
717 goto bad;
718 }
719 t->singleton = true;
720 }
721
722 if (dm_target_always_writeable(ti->type) &&
723 !(t->mode & BLK_OPEN_WRITE)) {
724 ti->error = "target type may not be included in a read-only table";
725 goto bad;
726 }
727
728 if (t->immutable_target_type) {
729 if (t->immutable_target_type != ti->type) {
730 ti->error = "immutable target type cannot be mixed with other target types";
731 goto bad;
732 }
733 } else if (dm_target_is_immutable(ti->type)) {
734 if (t->num_targets) {
735 ti->error = "immutable target type cannot be mixed with other target types";
736 goto bad;
737 }
738 t->immutable_target_type = ti->type;
739 }
740
741 ti->table = t;
742 ti->begin = start;
743 ti->len = len;
744 ti->error = "Unknown error";
745
746 /*
747 * Does this target adjoin the previous one ?
748 */
749 if (!adjoin(t, ti)) {
750 ti->error = "Gap in table";
751 goto bad;
752 }
753
754 r = dm_split_args(&argc, &argv, params);
755 if (r) {
756 ti->error = "couldn't split parameters";
757 goto bad;
758 }
759
760 r = ti->type->ctr(ti, argc, argv);
761 kfree(argv);
762 if (r)
763 goto bad;
764
765 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
766
767 if (!ti->num_discard_bios && ti->discards_supported)
768 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
769 dm_device_name(t->md), type);
770
771 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
772 static_branch_enable(&swap_bios_enabled);
773
774 if (!ti->flush_bypasses_map)
775 t->flush_bypasses_map = false;
776
777 return 0;
778
779 bad:
780 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
781 dm_put_target_type(ti->type);
782 return r;
783 }
784
785 /*
786 * Target argument parsing helpers.
787 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)788 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
789 unsigned int *value, char **error, unsigned int grouped)
790 {
791 const char *arg_str = dm_shift_arg(arg_set);
792 char dummy;
793
794 if (!arg_str ||
795 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
796 (*value < arg->min) ||
797 (*value > arg->max) ||
798 (grouped && arg_set->argc < *value)) {
799 *error = arg->error;
800 return -EINVAL;
801 }
802
803 return 0;
804 }
805
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)806 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808 {
809 return validate_next_arg(arg, arg_set, value, error, 0);
810 }
811 EXPORT_SYMBOL(dm_read_arg);
812
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)813 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
814 unsigned int *value, char **error)
815 {
816 return validate_next_arg(arg, arg_set, value, error, 1);
817 }
818 EXPORT_SYMBOL(dm_read_arg_group);
819
dm_shift_arg(struct dm_arg_set * as)820 const char *dm_shift_arg(struct dm_arg_set *as)
821 {
822 char *r;
823
824 if (as->argc) {
825 as->argc--;
826 r = *as->argv;
827 as->argv++;
828 return r;
829 }
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(dm_shift_arg);
834
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)835 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
836 {
837 BUG_ON(as->argc < num_args);
838 as->argc -= num_args;
839 as->argv += num_args;
840 }
841 EXPORT_SYMBOL(dm_consume_args);
842
__table_type_bio_based(enum dm_queue_mode table_type)843 static bool __table_type_bio_based(enum dm_queue_mode table_type)
844 {
845 return (table_type == DM_TYPE_BIO_BASED ||
846 table_type == DM_TYPE_DAX_BIO_BASED);
847 }
848
__table_type_request_based(enum dm_queue_mode table_type)849 static bool __table_type_request_based(enum dm_queue_mode table_type)
850 {
851 return table_type == DM_TYPE_REQUEST_BASED;
852 }
853
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)854 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
855 {
856 t->type = type;
857 }
858 EXPORT_SYMBOL_GPL(dm_table_set_type);
859
860 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)861 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
862 sector_t start, sector_t len, void *data)
863 {
864 if (dev->dax_dev)
865 return false;
866
867 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
868 return true;
869 }
870
871 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)872 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
873 sector_t start, sector_t len, void *data)
874 {
875 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
876 }
877
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)878 static bool dm_table_supports_dax(struct dm_table *t,
879 iterate_devices_callout_fn iterate_fn)
880 {
881 /* Ensure that all targets support DAX. */
882 for (unsigned int i = 0; i < t->num_targets; i++) {
883 struct dm_target *ti = dm_table_get_target(t, i);
884
885 if (!ti->type->direct_access)
886 return false;
887
888 if (dm_target_is_wildcard(ti->type) ||
889 !ti->type->iterate_devices ||
890 ti->type->iterate_devices(ti, iterate_fn, NULL))
891 return false;
892 }
893
894 return true;
895 }
896
device_is_not_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)897 static int device_is_not_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
898 sector_t start, sector_t len, void *data)
899 {
900 struct block_device *bdev = dev->bdev;
901 struct request_queue *q = bdev_get_queue(bdev);
902
903 /* request-based cannot stack on partitions! */
904 if (bdev_is_partition(bdev))
905 return true;
906
907 return !queue_is_mq(q);
908 }
909
dm_table_determine_type(struct dm_table * t)910 static int dm_table_determine_type(struct dm_table *t)
911 {
912 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
913 struct dm_target *ti;
914 struct list_head *devices = dm_table_get_devices(t);
915 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
916
917 if (t->type != DM_TYPE_NONE) {
918 /* target already set the table's type */
919 if (t->type == DM_TYPE_BIO_BASED) {
920 /* possibly upgrade to a variant of bio-based */
921 goto verify_bio_based;
922 }
923 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
924 goto verify_rq_based;
925 }
926
927 for (unsigned int i = 0; i < t->num_targets; i++) {
928 ti = dm_table_get_target(t, i);
929 if (dm_target_hybrid(ti))
930 hybrid = 1;
931 else if (dm_target_request_based(ti))
932 request_based = 1;
933 else
934 bio_based = 1;
935
936 if (bio_based && request_based) {
937 DMERR("Inconsistent table: different target types can't be mixed up");
938 return -EINVAL;
939 }
940 }
941
942 if (hybrid && !bio_based && !request_based) {
943 /*
944 * The targets can work either way.
945 * Determine the type from the live device.
946 * Default to bio-based if device is new.
947 */
948 if (__table_type_request_based(live_md_type))
949 request_based = 1;
950 else
951 bio_based = 1;
952 }
953
954 if (bio_based) {
955 verify_bio_based:
956 /* We must use this table as bio-based */
957 t->type = DM_TYPE_BIO_BASED;
958 if (dm_table_supports_dax(t, device_not_dax_capable) ||
959 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
960 t->type = DM_TYPE_DAX_BIO_BASED;
961 }
962 return 0;
963 }
964
965 BUG_ON(!request_based); /* No targets in this table */
966
967 t->type = DM_TYPE_REQUEST_BASED;
968
969 verify_rq_based:
970 /*
971 * Request-based dm supports only tables that have a single target now.
972 * To support multiple targets, request splitting support is needed,
973 * and that needs lots of changes in the block-layer.
974 * (e.g. request completion process for partial completion.)
975 */
976 if (t->num_targets > 1) {
977 DMERR("request-based DM doesn't support multiple targets");
978 return -EINVAL;
979 }
980
981 if (list_empty(devices)) {
982 int srcu_idx;
983 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
984
985 /* inherit live table's type */
986 if (live_table)
987 t->type = live_table->type;
988 dm_put_live_table(t->md, srcu_idx);
989 return 0;
990 }
991
992 ti = dm_table_get_immutable_target(t);
993 if (!ti) {
994 DMERR("table load rejected: immutable target is required");
995 return -EINVAL;
996 } else if (ti->max_io_len) {
997 DMERR("table load rejected: immutable target that splits IO is not supported");
998 return -EINVAL;
999 }
1000
1001 /* Non-request-stackable devices can't be used for request-based dm */
1002 if (!ti->type->iterate_devices ||
1003 ti->type->iterate_devices(ti, device_is_not_rq_stackable, NULL)) {
1004 DMERR("table load rejected: including non-request-stackable devices");
1005 return -EINVAL;
1006 }
1007
1008 return 0;
1009 }
1010
dm_table_get_type(struct dm_table * t)1011 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1012 {
1013 return t->type;
1014 }
1015
dm_table_get_immutable_target_type(struct dm_table * t)1016 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1017 {
1018 return t->immutable_target_type;
1019 }
1020
dm_table_get_immutable_target(struct dm_table * t)1021 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1022 {
1023 /* Immutable target is implicitly a singleton */
1024 if (t->num_targets > 1 ||
1025 !dm_target_is_immutable(t->targets[0].type))
1026 return NULL;
1027
1028 return t->targets;
1029 }
1030
dm_table_get_wildcard_target(struct dm_table * t)1031 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1032 {
1033 for (unsigned int i = 0; i < t->num_targets; i++) {
1034 struct dm_target *ti = dm_table_get_target(t, i);
1035
1036 if (dm_target_is_wildcard(ti->type))
1037 return ti;
1038 }
1039
1040 return NULL;
1041 }
1042
dm_table_bio_based(struct dm_table * t)1043 bool dm_table_bio_based(struct dm_table *t)
1044 {
1045 return __table_type_bio_based(dm_table_get_type(t));
1046 }
1047
dm_table_request_based(struct dm_table * t)1048 bool dm_table_request_based(struct dm_table *t)
1049 {
1050 return __table_type_request_based(dm_table_get_type(t));
1051 }
1052
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1053 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1054 {
1055 enum dm_queue_mode type = dm_table_get_type(t);
1056 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1057 unsigned int min_pool_size = 0, pool_size;
1058 struct dm_md_mempools *pools;
1059 unsigned int bioset_flags = 0;
1060 bool mempool_needs_integrity = t->integrity_supported;
1061
1062 if (unlikely(type == DM_TYPE_NONE)) {
1063 DMERR("no table type is set, can't allocate mempools");
1064 return -EINVAL;
1065 }
1066
1067 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1068 if (!pools)
1069 return -ENOMEM;
1070
1071 if (type == DM_TYPE_REQUEST_BASED) {
1072 pool_size = dm_get_reserved_rq_based_ios();
1073 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1074 goto init_bs;
1075 }
1076
1077 if (md->queue->limits.features & BLK_FEAT_POLL)
1078 bioset_flags |= BIOSET_PERCPU_CACHE;
1079
1080 for (unsigned int i = 0; i < t->num_targets; i++) {
1081 struct dm_target *ti = dm_table_get_target(t, i);
1082
1083 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1084 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1085
1086 mempool_needs_integrity |= ti->mempool_needs_integrity;
1087 }
1088 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1089 front_pad = roundup(per_io_data_size,
1090 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1091
1092 io_front_pad = roundup(per_io_data_size,
1093 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1094 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1095 goto out_free_pools;
1096 if (mempool_needs_integrity &&
1097 bioset_integrity_create(&pools->io_bs, pool_size))
1098 goto out_free_pools;
1099 init_bs:
1100 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1101 goto out_free_pools;
1102 if (mempool_needs_integrity &&
1103 bioset_integrity_create(&pools->bs, pool_size))
1104 goto out_free_pools;
1105
1106 t->mempools = pools;
1107 return 0;
1108
1109 out_free_pools:
1110 dm_free_md_mempools(pools);
1111 return -ENOMEM;
1112 }
1113
setup_indexes(struct dm_table * t)1114 static int setup_indexes(struct dm_table *t)
1115 {
1116 int i;
1117 unsigned int total = 0;
1118 sector_t *indexes;
1119
1120 /* allocate the space for *all* the indexes */
1121 for (i = t->depth - 2; i >= 0; i--) {
1122 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1123 total += t->counts[i];
1124 }
1125
1126 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1127 if (!indexes)
1128 return -ENOMEM;
1129
1130 /* set up internal nodes, bottom-up */
1131 for (i = t->depth - 2; i >= 0; i--) {
1132 t->index[i] = indexes;
1133 indexes += (KEYS_PER_NODE * t->counts[i]);
1134 setup_btree_index(i, t);
1135 }
1136
1137 return 0;
1138 }
1139
1140 /*
1141 * Builds the btree to index the map.
1142 */
dm_table_build_index(struct dm_table * t)1143 static int dm_table_build_index(struct dm_table *t)
1144 {
1145 int r = 0;
1146 unsigned int leaf_nodes;
1147
1148 /* how many indexes will the btree have ? */
1149 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1150 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1151
1152 /* leaf layer has already been set up */
1153 t->counts[t->depth - 1] = leaf_nodes;
1154 t->index[t->depth - 1] = t->highs;
1155
1156 if (t->depth >= 2)
1157 r = setup_indexes(t);
1158
1159 return r;
1160 }
1161
1162 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1163
1164 struct dm_crypto_profile {
1165 struct blk_crypto_profile profile;
1166 struct mapped_device *md;
1167 };
1168
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1169 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1170 sector_t start, sector_t len, void *data)
1171 {
1172 const struct blk_crypto_key *key = data;
1173
1174 blk_crypto_evict_key(dev->bdev, key);
1175 return 0;
1176 }
1177
1178 /*
1179 * When an inline encryption key is evicted from a device-mapper device, evict
1180 * it from all the underlying devices.
1181 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1182 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1183 const struct blk_crypto_key *key, unsigned int slot)
1184 {
1185 struct mapped_device *md =
1186 container_of(profile, struct dm_crypto_profile, profile)->md;
1187 struct dm_table *t;
1188 int srcu_idx;
1189
1190 t = dm_get_live_table(md, &srcu_idx);
1191 if (!t)
1192 goto put_live_table;
1193
1194 for (unsigned int i = 0; i < t->num_targets; i++) {
1195 struct dm_target *ti = dm_table_get_target(t, i);
1196
1197 if (!ti->type->iterate_devices)
1198 continue;
1199 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1200 (void *)key);
1201 }
1202
1203 put_live_table:
1204 dm_put_live_table(md, srcu_idx);
1205 return 0;
1206 }
1207
1208 struct dm_derive_sw_secret_args {
1209 const u8 *eph_key;
1210 size_t eph_key_size;
1211 u8 *sw_secret;
1212 int err;
1213 };
1214
dm_derive_sw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1215 static int dm_derive_sw_secret_callback(struct dm_target *ti,
1216 struct dm_dev *dev, sector_t start,
1217 sector_t len, void *data)
1218 {
1219 struct dm_derive_sw_secret_args *args = data;
1220
1221 if (!args->err)
1222 return 0;
1223
1224 args->err = blk_crypto_derive_sw_secret(dev->bdev,
1225 args->eph_key,
1226 args->eph_key_size,
1227 args->sw_secret);
1228 /* Try another device in case this fails. */
1229 return 0;
1230 }
1231
1232 /*
1233 * Retrieve the sw_secret from the underlying device. Given that only one
1234 * sw_secret can exist for a particular wrapped key, retrieve it only from the
1235 * first device that supports derive_sw_secret().
1236 */
dm_derive_sw_secret(struct blk_crypto_profile * profile,const u8 * eph_key,size_t eph_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])1237 static int dm_derive_sw_secret(struct blk_crypto_profile *profile,
1238 const u8 *eph_key, size_t eph_key_size,
1239 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
1240 {
1241 struct mapped_device *md =
1242 container_of(profile, struct dm_crypto_profile, profile)->md;
1243 struct dm_derive_sw_secret_args args = {
1244 .eph_key = eph_key,
1245 .eph_key_size = eph_key_size,
1246 .sw_secret = sw_secret,
1247 .err = -EOPNOTSUPP,
1248 };
1249 struct dm_table *t;
1250 int srcu_idx;
1251 int i;
1252 struct dm_target *ti;
1253
1254 t = dm_get_live_table(md, &srcu_idx);
1255 if (!t)
1256 return -EOPNOTSUPP;
1257 for (i = 0; i < t->num_targets; i++) {
1258 ti = dm_table_get_target(t, i);
1259 if (!ti->type->iterate_devices)
1260 continue;
1261 ti->type->iterate_devices(ti, dm_derive_sw_secret_callback,
1262 &args);
1263 if (!args.err)
1264 break;
1265 }
1266 dm_put_live_table(md, srcu_idx);
1267 return args.err;
1268 }
1269
1270 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1271 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1272 sector_t start, sector_t len, void *data)
1273 {
1274 struct blk_crypto_profile *parent = data;
1275 struct blk_crypto_profile *child =
1276 bdev_get_queue(dev->bdev)->crypto_profile;
1277
1278 blk_crypto_intersect_capabilities(parent, child);
1279 return 0;
1280 }
1281
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1282 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1283 {
1284 struct dm_crypto_profile *dmcp = container_of(profile,
1285 struct dm_crypto_profile,
1286 profile);
1287
1288 if (!profile)
1289 return;
1290
1291 blk_crypto_profile_destroy(profile);
1292 kfree(dmcp);
1293 }
1294
dm_table_destroy_crypto_profile(struct dm_table * t)1295 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1296 {
1297 dm_destroy_crypto_profile(t->crypto_profile);
1298 t->crypto_profile = NULL;
1299 }
1300
1301 /*
1302 * Constructs and initializes t->crypto_profile with a crypto profile that
1303 * represents the common set of crypto capabilities of the devices described by
1304 * the dm_table. However, if the constructed crypto profile doesn't support all
1305 * crypto capabilities that are supported by the current mapped_device, it
1306 * returns an error instead, since we don't support removing crypto capabilities
1307 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1308 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1309 */
dm_table_construct_crypto_profile(struct dm_table * t)1310 static int dm_table_construct_crypto_profile(struct dm_table *t)
1311 {
1312 struct dm_crypto_profile *dmcp;
1313 struct blk_crypto_profile *profile;
1314 unsigned int i;
1315 bool empty_profile = true;
1316
1317 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1318 if (!dmcp)
1319 return -ENOMEM;
1320 dmcp->md = t->md;
1321
1322 profile = &dmcp->profile;
1323 blk_crypto_profile_init(profile, 0);
1324 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1325 profile->ll_ops.derive_sw_secret = dm_derive_sw_secret;
1326 profile->max_dun_bytes_supported = UINT_MAX;
1327 memset(profile->modes_supported, 0xFF,
1328 sizeof(profile->modes_supported));
1329 profile->key_types_supported = ~0;
1330
1331 for (i = 0; i < t->num_targets; i++) {
1332 struct dm_target *ti = dm_table_get_target(t, i);
1333
1334 if (!dm_target_passes_crypto(ti->type)) {
1335 blk_crypto_intersect_capabilities(profile, NULL);
1336 break;
1337 }
1338 if (!ti->type->iterate_devices)
1339 continue;
1340 ti->type->iterate_devices(ti,
1341 device_intersect_crypto_capabilities,
1342 profile);
1343 }
1344
1345 if (t->md->queue &&
1346 !blk_crypto_has_capabilities(profile,
1347 t->md->queue->crypto_profile)) {
1348 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1349 dm_destroy_crypto_profile(profile);
1350 return -EINVAL;
1351 }
1352
1353 /*
1354 * If the new profile doesn't actually support any crypto capabilities,
1355 * we may as well represent it with a NULL profile.
1356 */
1357 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1358 if (profile->modes_supported[i]) {
1359 empty_profile = false;
1360 break;
1361 }
1362 }
1363
1364 if (empty_profile) {
1365 dm_destroy_crypto_profile(profile);
1366 profile = NULL;
1367 }
1368
1369 /*
1370 * t->crypto_profile is only set temporarily while the table is being
1371 * set up, and it gets set to NULL after the profile has been
1372 * transferred to the request_queue.
1373 */
1374 t->crypto_profile = profile;
1375
1376 return 0;
1377 }
1378
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1379 static void dm_update_crypto_profile(struct request_queue *q,
1380 struct dm_table *t)
1381 {
1382 if (!t->crypto_profile)
1383 return;
1384
1385 /* Make the crypto profile less restrictive. */
1386 if (!q->crypto_profile) {
1387 blk_crypto_register(t->crypto_profile, q);
1388 } else {
1389 blk_crypto_update_capabilities(q->crypto_profile,
1390 t->crypto_profile);
1391 dm_destroy_crypto_profile(t->crypto_profile);
1392 }
1393 t->crypto_profile = NULL;
1394 }
1395
1396 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1397
dm_table_construct_crypto_profile(struct dm_table * t)1398 static int dm_table_construct_crypto_profile(struct dm_table *t)
1399 {
1400 return 0;
1401 }
1402
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1403 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1404 {
1405 }
1406
dm_table_destroy_crypto_profile(struct dm_table * t)1407 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1408 {
1409 }
1410
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1411 static void dm_update_crypto_profile(struct request_queue *q,
1412 struct dm_table *t)
1413 {
1414 }
1415
1416 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1417
1418 /*
1419 * Prepares the table for use by building the indices,
1420 * setting the type, and allocating mempools.
1421 */
dm_table_complete(struct dm_table * t)1422 int dm_table_complete(struct dm_table *t)
1423 {
1424 int r;
1425
1426 r = dm_table_determine_type(t);
1427 if (r) {
1428 DMERR("unable to determine table type");
1429 return r;
1430 }
1431
1432 r = dm_table_build_index(t);
1433 if (r) {
1434 DMERR("unable to build btrees");
1435 return r;
1436 }
1437
1438 r = dm_table_construct_crypto_profile(t);
1439 if (r) {
1440 DMERR("could not construct crypto profile.");
1441 return r;
1442 }
1443
1444 r = dm_table_alloc_md_mempools(t, t->md);
1445 if (r)
1446 DMERR("unable to allocate mempools");
1447
1448 return r;
1449 }
1450
1451 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1452 void dm_table_event_callback(struct dm_table *t,
1453 void (*fn)(void *), void *context)
1454 {
1455 mutex_lock(&_event_lock);
1456 t->event_fn = fn;
1457 t->event_context = context;
1458 mutex_unlock(&_event_lock);
1459 }
1460
dm_table_event(struct dm_table * t)1461 void dm_table_event(struct dm_table *t)
1462 {
1463 mutex_lock(&_event_lock);
1464 if (t->event_fn)
1465 t->event_fn(t->event_context);
1466 mutex_unlock(&_event_lock);
1467 }
1468 EXPORT_SYMBOL(dm_table_event);
1469
dm_table_get_size(struct dm_table * t)1470 inline sector_t dm_table_get_size(struct dm_table *t)
1471 {
1472 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1473 }
1474 EXPORT_SYMBOL(dm_table_get_size);
1475
1476 /*
1477 * Search the btree for the correct target.
1478 *
1479 * Caller should check returned pointer for NULL
1480 * to trap I/O beyond end of device.
1481 */
dm_table_find_target(struct dm_table * t,sector_t sector)1482 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1483 {
1484 unsigned int l, n = 0, k = 0;
1485 sector_t *node;
1486
1487 if (unlikely(sector >= dm_table_get_size(t)))
1488 return NULL;
1489
1490 for (l = 0; l < t->depth; l++) {
1491 n = get_child(n, k);
1492 node = get_node(t, l, n);
1493
1494 for (k = 0; k < KEYS_PER_NODE; k++)
1495 if (node[k] >= sector)
1496 break;
1497 }
1498
1499 return &t->targets[(KEYS_PER_NODE * n) + k];
1500 }
1501
1502 /*
1503 * type->iterate_devices() should be called when the sanity check needs to
1504 * iterate and check all underlying data devices. iterate_devices() will
1505 * iterate all underlying data devices until it encounters a non-zero return
1506 * code, returned by whether the input iterate_devices_callout_fn, or
1507 * iterate_devices() itself internally.
1508 *
1509 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1510 * iterate multiple underlying devices internally, in which case a non-zero
1511 * return code returned by iterate_devices_callout_fn will stop the iteration
1512 * in advance.
1513 *
1514 * Cases requiring _any_ underlying device supporting some kind of attribute,
1515 * should use the iteration structure like dm_table_any_dev_attr(), or call
1516 * it directly. @func should handle semantics of positive examples, e.g.
1517 * capable of something.
1518 *
1519 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1520 * should use the iteration structure like dm_table_supports_nowait() or
1521 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1522 * uses an @anti_func that handle semantics of counter examples, e.g. not
1523 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1524 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1525 static bool dm_table_any_dev_attr(struct dm_table *t,
1526 iterate_devices_callout_fn func, void *data)
1527 {
1528 for (unsigned int i = 0; i < t->num_targets; i++) {
1529 struct dm_target *ti = dm_table_get_target(t, i);
1530
1531 if (ti->type->iterate_devices &&
1532 ti->type->iterate_devices(ti, func, data))
1533 return true;
1534 }
1535
1536 return false;
1537 }
1538
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1539 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1540 sector_t start, sector_t len, void *data)
1541 {
1542 unsigned int *num_devices = data;
1543
1544 (*num_devices)++;
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * Check whether a table has no data devices attached using each
1551 * target's iterate_devices method.
1552 * Returns false if the result is unknown because a target doesn't
1553 * support iterate_devices.
1554 */
dm_table_has_no_data_devices(struct dm_table * t)1555 bool dm_table_has_no_data_devices(struct dm_table *t)
1556 {
1557 for (unsigned int i = 0; i < t->num_targets; i++) {
1558 struct dm_target *ti = dm_table_get_target(t, i);
1559 unsigned int num_devices = 0;
1560
1561 if (!ti->type->iterate_devices)
1562 return false;
1563
1564 ti->type->iterate_devices(ti, count_device, &num_devices);
1565 if (num_devices)
1566 return false;
1567 }
1568
1569 return true;
1570 }
1571
device_not_zoned(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1572 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1573 sector_t start, sector_t len, void *data)
1574 {
1575 bool *zoned = data;
1576
1577 return bdev_is_zoned(dev->bdev) != *zoned;
1578 }
1579
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1580 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1581 sector_t start, sector_t len, void *data)
1582 {
1583 return bdev_is_zoned(dev->bdev);
1584 }
1585
1586 /*
1587 * Check the device zoned model based on the target feature flag. If the target
1588 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1589 * also accepted but all devices must have the same zoned model. If the target
1590 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1591 * zoned model with all zoned devices having the same zone size.
1592 */
dm_table_supports_zoned(struct dm_table * t,bool zoned)1593 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1594 {
1595 for (unsigned int i = 0; i < t->num_targets; i++) {
1596 struct dm_target *ti = dm_table_get_target(t, i);
1597
1598 /*
1599 * For the wildcard target (dm-error), if we do not have a
1600 * backing device, we must always return false. If we have a
1601 * backing device, the result must depend on checking zoned
1602 * model, like for any other target. So for this, check directly
1603 * if the target backing device is zoned as we get "false" when
1604 * dm-error was set without a backing device.
1605 */
1606 if (dm_target_is_wildcard(ti->type) &&
1607 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1608 return false;
1609
1610 if (dm_target_supports_zoned_hm(ti->type)) {
1611 if (!ti->type->iterate_devices ||
1612 ti->type->iterate_devices(ti, device_not_zoned,
1613 &zoned))
1614 return false;
1615 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1616 if (zoned)
1617 return false;
1618 }
1619 }
1620
1621 return true;
1622 }
1623
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1624 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1625 sector_t start, sector_t len, void *data)
1626 {
1627 unsigned int *zone_sectors = data;
1628
1629 if (!bdev_is_zoned(dev->bdev))
1630 return 0;
1631 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1632 }
1633
1634 /*
1635 * Check consistency of zoned model and zone sectors across all targets. For
1636 * zone sectors, if the destination device is a zoned block device, it shall
1637 * have the specified zone_sectors.
1638 */
validate_hardware_zoned(struct dm_table * t,bool zoned,unsigned int zone_sectors)1639 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1640 unsigned int zone_sectors)
1641 {
1642 if (!zoned)
1643 return 0;
1644
1645 if (!dm_table_supports_zoned(t, zoned)) {
1646 DMERR("%s: zoned model is not consistent across all devices",
1647 dm_device_name(t->md));
1648 return -EINVAL;
1649 }
1650
1651 /* Check zone size validity. */
1652 if (!zone_sectors)
1653 return -EINVAL;
1654
1655 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1656 DMERR("%s: zone sectors is not consistent across all zoned devices",
1657 dm_device_name(t->md));
1658 return -EINVAL;
1659 }
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Establish the new table's queue_limits and validate them.
1666 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1667 int dm_calculate_queue_limits(struct dm_table *t,
1668 struct queue_limits *limits)
1669 {
1670 struct queue_limits ti_limits;
1671 unsigned int zone_sectors = 0;
1672 bool zoned = false;
1673
1674 dm_set_stacking_limits(limits);
1675
1676 t->integrity_supported = true;
1677 for (unsigned int i = 0; i < t->num_targets; i++) {
1678 struct dm_target *ti = dm_table_get_target(t, i);
1679
1680 if (!dm_target_passes_integrity(ti->type))
1681 t->integrity_supported = false;
1682 }
1683
1684 for (unsigned int i = 0; i < t->num_targets; i++) {
1685 struct dm_target *ti = dm_table_get_target(t, i);
1686
1687 dm_set_stacking_limits(&ti_limits);
1688
1689 if (!ti->type->iterate_devices) {
1690 /* Set I/O hints portion of queue limits */
1691 if (ti->type->io_hints)
1692 ti->type->io_hints(ti, &ti_limits);
1693 goto combine_limits;
1694 }
1695
1696 /*
1697 * Combine queue limits of all the devices this target uses.
1698 */
1699 ti->type->iterate_devices(ti, dm_set_device_limits,
1700 &ti_limits);
1701
1702 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1703 /*
1704 * After stacking all limits, validate all devices
1705 * in table support this zoned model and zone sectors.
1706 */
1707 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1708 zone_sectors = ti_limits.chunk_sectors;
1709 }
1710
1711 /* Set I/O hints portion of queue limits */
1712 if (ti->type->io_hints)
1713 ti->type->io_hints(ti, &ti_limits);
1714
1715 /*
1716 * Check each device area is consistent with the target's
1717 * overall queue limits.
1718 */
1719 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1720 &ti_limits))
1721 return -EINVAL;
1722
1723 combine_limits:
1724 /*
1725 * Merge this target's queue limits into the overall limits
1726 * for the table.
1727 */
1728 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1729 DMWARN("%s: adding target device (start sect %llu len %llu) "
1730 "caused an alignment inconsistency",
1731 dm_device_name(t->md),
1732 (unsigned long long) ti->begin,
1733 (unsigned long long) ti->len);
1734
1735 if (t->integrity_supported ||
1736 dm_target_has_integrity(ti->type)) {
1737 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1738 DMWARN("%s: adding target device (start sect %llu len %llu) "
1739 "disabled integrity support due to incompatibility",
1740 dm_device_name(t->md),
1741 (unsigned long long) ti->begin,
1742 (unsigned long long) ti->len);
1743 t->integrity_supported = false;
1744 }
1745 }
1746 }
1747
1748 /*
1749 * Verify that the zoned model and zone sectors, as determined before
1750 * any .io_hints override, are the same across all devices in the table.
1751 * - this is especially relevant if .io_hints is emulating a disk-managed
1752 * zoned model on host-managed zoned block devices.
1753 * BUT...
1754 */
1755 if (limits->features & BLK_FEAT_ZONED) {
1756 /*
1757 * ...IF the above limits stacking determined a zoned model
1758 * validate that all of the table's devices conform to it.
1759 */
1760 zoned = limits->features & BLK_FEAT_ZONED;
1761 zone_sectors = limits->chunk_sectors;
1762 }
1763 if (validate_hardware_zoned(t, zoned, zone_sectors))
1764 return -EINVAL;
1765
1766 return validate_hardware_logical_block_alignment(t, limits);
1767 }
1768
1769 /*
1770 * Check if a target requires flush support even if none of the underlying
1771 * devices need it (e.g. to persist target-specific metadata).
1772 */
dm_table_supports_flush(struct dm_table * t)1773 static bool dm_table_supports_flush(struct dm_table *t)
1774 {
1775 for (unsigned int i = 0; i < t->num_targets; i++) {
1776 struct dm_target *ti = dm_table_get_target(t, i);
1777
1778 if (ti->num_flush_bios && ti->flush_supported)
1779 return true;
1780 }
1781
1782 return false;
1783 }
1784
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1785 static int device_dax_write_cache_enabled(struct dm_target *ti,
1786 struct dm_dev *dev, sector_t start,
1787 sector_t len, void *data)
1788 {
1789 struct dax_device *dax_dev = dev->dax_dev;
1790
1791 if (!dax_dev)
1792 return false;
1793
1794 if (dax_write_cache_enabled(dax_dev))
1795 return true;
1796 return false;
1797 }
1798
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1799 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1800 sector_t start, sector_t len, void *data)
1801 {
1802 struct request_queue *q = bdev_get_queue(dev->bdev);
1803 int b;
1804
1805 mutex_lock(&q->limits_lock);
1806 b = !q->limits.max_write_zeroes_sectors;
1807 mutex_unlock(&q->limits_lock);
1808 return b;
1809 }
1810
dm_table_supports_write_zeroes(struct dm_table * t)1811 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1812 {
1813 for (unsigned int i = 0; i < t->num_targets; i++) {
1814 struct dm_target *ti = dm_table_get_target(t, i);
1815
1816 if (!ti->num_write_zeroes_bios)
1817 return false;
1818
1819 if (!ti->type->iterate_devices ||
1820 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1821 return false;
1822 }
1823
1824 return true;
1825 }
1826
dm_table_supports_nowait(struct dm_table * t)1827 static bool dm_table_supports_nowait(struct dm_table *t)
1828 {
1829 for (unsigned int i = 0; i < t->num_targets; i++) {
1830 struct dm_target *ti = dm_table_get_target(t, i);
1831
1832 if (!dm_target_supports_nowait(ti->type))
1833 return false;
1834 }
1835
1836 return true;
1837 }
1838
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1839 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1840 sector_t start, sector_t len, void *data)
1841 {
1842 return !bdev_max_discard_sectors(dev->bdev);
1843 }
1844
dm_table_supports_discards(struct dm_table * t)1845 static bool dm_table_supports_discards(struct dm_table *t)
1846 {
1847 for (unsigned int i = 0; i < t->num_targets; i++) {
1848 struct dm_target *ti = dm_table_get_target(t, i);
1849
1850 if (!ti->num_discard_bios)
1851 return false;
1852
1853 /*
1854 * Either the target provides discard support (as implied by setting
1855 * 'discards_supported') or it relies on _all_ data devices having
1856 * discard support.
1857 */
1858 if (!ti->discards_supported &&
1859 (!ti->type->iterate_devices ||
1860 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1861 return false;
1862 }
1863
1864 return true;
1865 }
1866
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1867 static int device_not_secure_erase_capable(struct dm_target *ti,
1868 struct dm_dev *dev, sector_t start,
1869 sector_t len, void *data)
1870 {
1871 return !bdev_max_secure_erase_sectors(dev->bdev);
1872 }
1873
dm_table_supports_secure_erase(struct dm_table * t)1874 static bool dm_table_supports_secure_erase(struct dm_table *t)
1875 {
1876 for (unsigned int i = 0; i < t->num_targets; i++) {
1877 struct dm_target *ti = dm_table_get_target(t, i);
1878
1879 if (!ti->num_secure_erase_bios)
1880 return false;
1881
1882 if (!ti->type->iterate_devices ||
1883 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1884 return false;
1885 }
1886
1887 return true;
1888 }
1889
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1890 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1891 struct queue_limits *limits)
1892 {
1893 int r;
1894
1895 if (!dm_table_supports_nowait(t))
1896 limits->features &= ~BLK_FEAT_NOWAIT;
1897
1898 /*
1899 * The current polling impementation does not support request based
1900 * stacking.
1901 */
1902 if (!__table_type_bio_based(t->type))
1903 limits->features &= ~BLK_FEAT_POLL;
1904
1905 if (!dm_table_supports_discards(t)) {
1906 limits->max_hw_discard_sectors = 0;
1907 limits->discard_granularity = 0;
1908 limits->discard_alignment = 0;
1909 }
1910
1911 if (!dm_table_supports_write_zeroes(t))
1912 limits->max_write_zeroes_sectors = 0;
1913
1914 if (!dm_table_supports_secure_erase(t))
1915 limits->max_secure_erase_sectors = 0;
1916
1917 if (dm_table_supports_flush(t))
1918 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1919
1920 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1921 limits->features |= BLK_FEAT_DAX;
1922 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1923 set_dax_synchronous(t->md->dax_dev);
1924 } else
1925 limits->features &= ~BLK_FEAT_DAX;
1926
1927 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1928 dax_write_cache(t->md->dax_dev, true);
1929
1930 /* For a zoned table, setup the zone related queue attributes. */
1931 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1932 (limits->features & BLK_FEAT_ZONED)) {
1933 r = dm_set_zones_restrictions(t, q, limits);
1934 if (r)
1935 return r;
1936 }
1937
1938 r = queue_limits_set(q, limits);
1939 if (r)
1940 return r;
1941
1942 /*
1943 * Now that the limits are set, check the zones mapped by the table
1944 * and setup the resources for zone append emulation if necessary.
1945 */
1946 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1947 (limits->features & BLK_FEAT_ZONED)) {
1948 r = dm_revalidate_zones(t, q);
1949 if (r)
1950 return r;
1951 }
1952
1953 dm_update_crypto_profile(q, t);
1954 return 0;
1955 }
1956
dm_table_get_devices(struct dm_table * t)1957 struct list_head *dm_table_get_devices(struct dm_table *t)
1958 {
1959 return &t->devices;
1960 }
1961
dm_table_get_mode(struct dm_table * t)1962 blk_mode_t dm_table_get_mode(struct dm_table *t)
1963 {
1964 return t->mode;
1965 }
1966 EXPORT_SYMBOL(dm_table_get_mode);
1967
1968 enum suspend_mode {
1969 PRESUSPEND,
1970 PRESUSPEND_UNDO,
1971 POSTSUSPEND,
1972 };
1973
suspend_targets(struct dm_table * t,enum suspend_mode mode)1974 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1975 {
1976 lockdep_assert_held(&t->md->suspend_lock);
1977
1978 for (unsigned int i = 0; i < t->num_targets; i++) {
1979 struct dm_target *ti = dm_table_get_target(t, i);
1980
1981 switch (mode) {
1982 case PRESUSPEND:
1983 if (ti->type->presuspend)
1984 ti->type->presuspend(ti);
1985 break;
1986 case PRESUSPEND_UNDO:
1987 if (ti->type->presuspend_undo)
1988 ti->type->presuspend_undo(ti);
1989 break;
1990 case POSTSUSPEND:
1991 if (ti->type->postsuspend)
1992 ti->type->postsuspend(ti);
1993 break;
1994 }
1995 }
1996 }
1997
dm_table_presuspend_targets(struct dm_table * t)1998 void dm_table_presuspend_targets(struct dm_table *t)
1999 {
2000 if (!t)
2001 return;
2002
2003 suspend_targets(t, PRESUSPEND);
2004 }
2005
dm_table_presuspend_undo_targets(struct dm_table * t)2006 void dm_table_presuspend_undo_targets(struct dm_table *t)
2007 {
2008 if (!t)
2009 return;
2010
2011 suspend_targets(t, PRESUSPEND_UNDO);
2012 }
2013
dm_table_postsuspend_targets(struct dm_table * t)2014 void dm_table_postsuspend_targets(struct dm_table *t)
2015 {
2016 if (!t)
2017 return;
2018
2019 suspend_targets(t, POSTSUSPEND);
2020 }
2021
dm_table_resume_targets(struct dm_table * t)2022 int dm_table_resume_targets(struct dm_table *t)
2023 {
2024 unsigned int i;
2025 int r = 0;
2026
2027 lockdep_assert_held(&t->md->suspend_lock);
2028
2029 for (i = 0; i < t->num_targets; i++) {
2030 struct dm_target *ti = dm_table_get_target(t, i);
2031
2032 if (!ti->type->preresume)
2033 continue;
2034
2035 r = ti->type->preresume(ti);
2036 if (r) {
2037 DMERR("%s: %s: preresume failed, error = %d",
2038 dm_device_name(t->md), ti->type->name, r);
2039 return r;
2040 }
2041 }
2042
2043 for (i = 0; i < t->num_targets; i++) {
2044 struct dm_target *ti = dm_table_get_target(t, i);
2045
2046 if (ti->type->resume)
2047 ti->type->resume(ti);
2048 }
2049
2050 return 0;
2051 }
2052
dm_table_get_md(struct dm_table * t)2053 struct mapped_device *dm_table_get_md(struct dm_table *t)
2054 {
2055 return t->md;
2056 }
2057 EXPORT_SYMBOL(dm_table_get_md);
2058
dm_table_device_name(struct dm_table * t)2059 const char *dm_table_device_name(struct dm_table *t)
2060 {
2061 return dm_device_name(t->md);
2062 }
2063 EXPORT_SYMBOL_GPL(dm_table_device_name);
2064
dm_table_run_md_queue_async(struct dm_table * t)2065 void dm_table_run_md_queue_async(struct dm_table *t)
2066 {
2067 if (!dm_table_request_based(t))
2068 return;
2069
2070 if (t->md->queue)
2071 blk_mq_run_hw_queues(t->md->queue, true);
2072 }
2073 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2074
2075