• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_VLAN;
444 
445 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 	vsi = ice_get_vf_vsi(vf);
447 	if (!vsi) {
448 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 		goto err;
450 	}
451 
452 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 						    vf->driver_caps);
454 
455 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457 
458 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460 
461 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463 
464 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 	    vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497 
498 	vfres->num_vsis = 1;
499 	/* Tx and Rx queue are equal for VF */
500 	vfres->num_queue_pairs = vsi->num_txq;
501 	vfres->max_vectors = vf->num_msix;
502 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
504 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505 
506 	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
507 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510 			vf->hw_lan_addr);
511 
512 	/* match guest capabilities */
513 	vf->driver_caps = vfres->vf_cap_flags;
514 
515 	ice_vc_set_caps_allowlist(vf);
516 	ice_vc_set_working_allowlist(vf);
517 
518 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519 
520 err:
521 	/* send the response back to the VF */
522 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523 				    (u8 *)vfres, len);
524 
525 	kfree(vfres);
526 	return ret;
527 }
528 
529 /**
530  * ice_vc_reset_vf_msg
531  * @vf: pointer to the VF info
532  *
533  * called from the VF to reset itself,
534  * unlike other virtchnl messages, PF driver
535  * doesn't send the response back to the VF
536  */
ice_vc_reset_vf_msg(struct ice_vf * vf)537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540 		ice_reset_vf(vf, 0);
541 }
542 
543 /**
544  * ice_vc_isvalid_vsi_id
545  * @vf: pointer to the VF info
546  * @vsi_id: VF relative VSI ID
547  *
548  * check for the valid VSI ID
549  */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552 	return vsi_id == ICE_VF_VSI_ID;
553 }
554 
555 /**
556  * ice_vc_isvalid_q_id
557  * @vsi: VSI to check queue ID against
558  * @qid: VSI relative queue ID
559  *
560  * check for the valid queue ID
561  */
ice_vc_isvalid_q_id(struct ice_vsi * vsi,u8 qid)562 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
563 {
564 	/* allocated Tx and Rx queues should be always equal for VF VSI */
565 	return qid < vsi->alloc_txq;
566 }
567 
568 /**
569  * ice_vc_isvalid_ring_len
570  * @ring_len: length of ring
571  *
572  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
573  * or zero
574  */
ice_vc_isvalid_ring_len(u16 ring_len)575 static bool ice_vc_isvalid_ring_len(u16 ring_len)
576 {
577 	return ring_len == 0 ||
578 	       (ring_len >= ICE_MIN_NUM_DESC &&
579 		ring_len <= ICE_MAX_NUM_DESC &&
580 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
581 }
582 
583 /**
584  * ice_vc_validate_pattern
585  * @vf: pointer to the VF info
586  * @proto: virtchnl protocol headers
587  *
588  * validate the pattern is supported or not.
589  *
590  * Return: true on success, false on error.
591  */
592 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
594 {
595 	bool is_ipv4 = false;
596 	bool is_ipv6 = false;
597 	bool is_udp = false;
598 	u16 ptype = -1;
599 	int i = 0;
600 
601 	while (i < proto->count &&
602 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
603 		switch (proto->proto_hdr[i].type) {
604 		case VIRTCHNL_PROTO_HDR_ETH:
605 			ptype = ICE_PTYPE_MAC_PAY;
606 			break;
607 		case VIRTCHNL_PROTO_HDR_IPV4:
608 			ptype = ICE_PTYPE_IPV4_PAY;
609 			is_ipv4 = true;
610 			break;
611 		case VIRTCHNL_PROTO_HDR_IPV6:
612 			ptype = ICE_PTYPE_IPV6_PAY;
613 			is_ipv6 = true;
614 			break;
615 		case VIRTCHNL_PROTO_HDR_UDP:
616 			if (is_ipv4)
617 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
618 			else if (is_ipv6)
619 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
620 			is_udp = true;
621 			break;
622 		case VIRTCHNL_PROTO_HDR_TCP:
623 			if (is_ipv4)
624 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
625 			else if (is_ipv6)
626 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
627 			break;
628 		case VIRTCHNL_PROTO_HDR_SCTP:
629 			if (is_ipv4)
630 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
631 			else if (is_ipv6)
632 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
633 			break;
634 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
635 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
636 			if (is_ipv4)
637 				ptype = ICE_MAC_IPV4_GTPU;
638 			else if (is_ipv6)
639 				ptype = ICE_MAC_IPV6_GTPU;
640 			goto out;
641 		case VIRTCHNL_PROTO_HDR_L2TPV3:
642 			if (is_ipv4)
643 				ptype = ICE_MAC_IPV4_L2TPV3;
644 			else if (is_ipv6)
645 				ptype = ICE_MAC_IPV6_L2TPV3;
646 			goto out;
647 		case VIRTCHNL_PROTO_HDR_ESP:
648 			if (is_ipv4)
649 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
650 						ICE_MAC_IPV4_ESP;
651 			else if (is_ipv6)
652 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
653 						ICE_MAC_IPV6_ESP;
654 			goto out;
655 		case VIRTCHNL_PROTO_HDR_AH:
656 			if (is_ipv4)
657 				ptype = ICE_MAC_IPV4_AH;
658 			else if (is_ipv6)
659 				ptype = ICE_MAC_IPV6_AH;
660 			goto out;
661 		case VIRTCHNL_PROTO_HDR_PFCP:
662 			if (is_ipv4)
663 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
664 			else if (is_ipv6)
665 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
666 			goto out;
667 		default:
668 			break;
669 		}
670 		i++;
671 	}
672 
673 out:
674 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
675 }
676 
677 /**
678  * ice_vc_parse_rss_cfg - parses hash fields and headers from
679  * a specific virtchnl RSS cfg
680  * @hw: pointer to the hardware
681  * @rss_cfg: pointer to the virtchnl RSS cfg
682  * @hash_cfg: pointer to the HW hash configuration
683  *
684  * Return true if all the protocol header and hash fields in the RSS cfg could
685  * be parsed, else return false
686  *
687  * This function parses the virtchnl RSS cfg to be the intended
688  * hash fields and the intended header for RSS configuration
689  */
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,struct ice_rss_hash_cfg * hash_cfg)690 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
691 				 struct virtchnl_rss_cfg *rss_cfg,
692 				 struct ice_rss_hash_cfg *hash_cfg)
693 {
694 	const struct ice_vc_hash_field_match_type *hf_list;
695 	const struct ice_vc_hdr_match_type *hdr_list;
696 	int i, hf_list_len, hdr_list_len;
697 	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
698 	u64 *hash_flds = &hash_cfg->hash_flds;
699 
700 	/* set outer layer RSS as default */
701 	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
702 
703 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
704 		hash_cfg->symm = true;
705 	else
706 		hash_cfg->symm = false;
707 
708 	hf_list = ice_vc_hash_field_list;
709 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
710 	hdr_list = ice_vc_hdr_list;
711 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
712 
713 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
714 		struct virtchnl_proto_hdr *proto_hdr =
715 					&rss_cfg->proto_hdrs.proto_hdr[i];
716 		bool hdr_found = false;
717 		int j;
718 
719 		/* Find matched ice headers according to virtchnl headers. */
720 		for (j = 0; j < hdr_list_len; j++) {
721 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
722 
723 			if (proto_hdr->type == hdr_map.vc_hdr) {
724 				*addl_hdrs |= hdr_map.ice_hdr;
725 				hdr_found = true;
726 			}
727 		}
728 
729 		if (!hdr_found)
730 			return false;
731 
732 		/* Find matched ice hash fields according to
733 		 * virtchnl hash fields.
734 		 */
735 		for (j = 0; j < hf_list_len; j++) {
736 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
737 
738 			if (proto_hdr->type == hf_map.vc_hdr &&
739 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
740 				*hash_flds |= hf_map.ice_hash_field;
741 				break;
742 			}
743 		}
744 	}
745 
746 	return true;
747 }
748 
749 /**
750  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
751  * RSS offloads
752  * @caps: VF driver negotiated capabilities
753  *
754  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
755  * else return false
756  */
ice_vf_adv_rss_offload_ena(u32 caps)757 static bool ice_vf_adv_rss_offload_ena(u32 caps)
758 {
759 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
760 }
761 
762 /**
763  * ice_vc_handle_rss_cfg
764  * @vf: pointer to the VF info
765  * @msg: pointer to the message buffer
766  * @add: add a RSS config if true, otherwise delete a RSS config
767  *
768  * This function adds/deletes a RSS config
769  */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)770 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
771 {
772 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
773 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
774 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
775 	struct device *dev = ice_pf_to_dev(vf->pf);
776 	struct ice_hw *hw = &vf->pf->hw;
777 	struct ice_vsi *vsi;
778 
779 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
780 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
781 			vf->vf_id);
782 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
783 		goto error_param;
784 	}
785 
786 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
787 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
788 			vf->vf_id);
789 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
790 		goto error_param;
791 	}
792 
793 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
794 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795 		goto error_param;
796 	}
797 
798 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
799 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
800 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
801 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
802 			vf->vf_id);
803 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
804 		goto error_param;
805 	}
806 
807 	vsi = ice_get_vf_vsi(vf);
808 	if (!vsi) {
809 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
810 		goto error_param;
811 	}
812 
813 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
814 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
815 		goto error_param;
816 	}
817 
818 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
819 		struct ice_vsi_ctx *ctx;
820 		u8 lut_type, hash_type;
821 		int status;
822 
823 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
824 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
825 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
826 
827 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
828 		if (!ctx) {
829 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
830 			goto error_param;
831 		}
832 
833 		ctx->info.q_opt_rss =
834 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
835 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
836 
837 		/* Preserve existing queueing option setting */
838 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
839 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
840 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
841 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
842 
843 		ctx->info.valid_sections =
844 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
845 
846 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
847 		if (status) {
848 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
849 				status, ice_aq_str(hw->adminq.sq_last_status));
850 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
851 		} else {
852 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
853 		}
854 
855 		kfree(ctx);
856 	} else {
857 		struct ice_rss_hash_cfg cfg;
858 
859 		/* Only check for none raw pattern case */
860 		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
861 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
862 			goto error_param;
863 		}
864 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
865 		cfg.hash_flds = ICE_HASH_INVALID;
866 		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
867 
868 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
869 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
870 			goto error_param;
871 		}
872 
873 		if (add) {
874 			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
875 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
876 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
877 					vsi->vsi_num, v_ret);
878 			}
879 		} else {
880 			int status;
881 
882 			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
883 			/* We just ignore -ENOENT, because if two configurations
884 			 * share the same profile remove one of them actually
885 			 * removes both, since the profile is deleted.
886 			 */
887 			if (status && status != -ENOENT) {
888 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
889 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
890 					vf->vf_id, status);
891 			}
892 		}
893 	}
894 
895 error_param:
896 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
897 }
898 
899 /**
900  * ice_vc_config_rss_key
901  * @vf: pointer to the VF info
902  * @msg: pointer to the msg buffer
903  *
904  * Configure the VF's RSS key
905  */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)906 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
907 {
908 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
909 	struct virtchnl_rss_key *vrk =
910 		(struct virtchnl_rss_key *)msg;
911 	struct ice_vsi *vsi;
912 
913 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
914 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
915 		goto error_param;
916 	}
917 
918 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
919 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
920 		goto error_param;
921 	}
922 
923 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
924 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
925 		goto error_param;
926 	}
927 
928 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
929 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
930 		goto error_param;
931 	}
932 
933 	vsi = ice_get_vf_vsi(vf);
934 	if (!vsi) {
935 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 		goto error_param;
937 	}
938 
939 	if (ice_set_rss_key(vsi, vrk->key))
940 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
941 error_param:
942 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
943 				     NULL, 0);
944 }
945 
946 /**
947  * ice_vc_config_rss_lut
948  * @vf: pointer to the VF info
949  * @msg: pointer to the msg buffer
950  *
951  * Configure the VF's RSS LUT
952  */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)953 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
954 {
955 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
956 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
957 	struct ice_vsi *vsi;
958 
959 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
960 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
961 		goto error_param;
962 	}
963 
964 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
965 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
966 		goto error_param;
967 	}
968 
969 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
970 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
971 		goto error_param;
972 	}
973 
974 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
975 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
976 		goto error_param;
977 	}
978 
979 	vsi = ice_get_vf_vsi(vf);
980 	if (!vsi) {
981 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
982 		goto error_param;
983 	}
984 
985 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
986 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
987 error_param:
988 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
989 				     NULL, 0);
990 }
991 
992 /**
993  * ice_vc_config_rss_hfunc
994  * @vf: pointer to the VF info
995  * @msg: pointer to the msg buffer
996  *
997  * Configure the VF's RSS Hash function
998  */
ice_vc_config_rss_hfunc(struct ice_vf * vf,u8 * msg)999 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1000 {
1001 	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1002 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1003 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1004 	struct ice_vsi *vsi;
1005 
1006 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1007 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1008 		goto error_param;
1009 	}
1010 
1011 	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1012 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013 		goto error_param;
1014 	}
1015 
1016 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1017 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1018 		goto error_param;
1019 	}
1020 
1021 	vsi = ice_get_vf_vsi(vf);
1022 	if (!vsi) {
1023 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1024 		goto error_param;
1025 	}
1026 
1027 	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1028 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1029 
1030 	if (ice_set_rss_hfunc(vsi, hfunc))
1031 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1032 error_param:
1033 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1034 				     NULL, 0);
1035 }
1036 
1037 /**
1038  * ice_vc_cfg_promiscuous_mode_msg
1039  * @vf: pointer to the VF info
1040  * @msg: pointer to the msg buffer
1041  *
1042  * called from the VF to configure VF VSIs promiscuous mode
1043  */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)1044 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1045 {
1046 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1047 	bool rm_promisc, alluni = false, allmulti = false;
1048 	struct virtchnl_promisc_info *info =
1049 	    (struct virtchnl_promisc_info *)msg;
1050 	struct ice_vsi_vlan_ops *vlan_ops;
1051 	int mcast_err = 0, ucast_err = 0;
1052 	struct ice_pf *pf = vf->pf;
1053 	struct ice_vsi *vsi;
1054 	u8 mcast_m, ucast_m;
1055 	struct device *dev;
1056 	int ret = 0;
1057 
1058 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1059 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1060 		goto error_param;
1061 	}
1062 
1063 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1064 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 		goto error_param;
1066 	}
1067 
1068 	vsi = ice_get_vf_vsi(vf);
1069 	if (!vsi) {
1070 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 		goto error_param;
1072 	}
1073 
1074 	dev = ice_pf_to_dev(pf);
1075 	if (!ice_is_vf_trusted(vf)) {
1076 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1077 			vf->vf_id);
1078 		/* Leave v_ret alone, lie to the VF on purpose. */
1079 		goto error_param;
1080 	}
1081 
1082 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1083 		alluni = true;
1084 
1085 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1086 		allmulti = true;
1087 
1088 	rm_promisc = !allmulti && !alluni;
1089 
1090 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1091 	if (rm_promisc)
1092 		ret = vlan_ops->ena_rx_filtering(vsi);
1093 	else
1094 		ret = vlan_ops->dis_rx_filtering(vsi);
1095 	if (ret) {
1096 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1097 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1098 		goto error_param;
1099 	}
1100 
1101 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1102 
1103 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1104 		if (alluni) {
1105 			/* in this case we're turning on promiscuous mode */
1106 			ret = ice_set_dflt_vsi(vsi);
1107 		} else {
1108 			/* in this case we're turning off promiscuous mode */
1109 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1110 				ret = ice_clear_dflt_vsi(vsi);
1111 		}
1112 
1113 		/* in this case we're turning on/off only
1114 		 * allmulticast
1115 		 */
1116 		if (allmulti)
1117 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1118 		else
1119 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1120 
1121 		if (ret) {
1122 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1123 				vf->vf_id, ret);
1124 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1125 			goto error_param;
1126 		}
1127 	} else {
1128 		if (alluni)
1129 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1130 		else
1131 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1132 
1133 		if (allmulti)
1134 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1135 		else
1136 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1137 
1138 		if (ucast_err || mcast_err)
1139 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1140 	}
1141 
1142 	if (!mcast_err) {
1143 		if (allmulti &&
1144 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1145 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1146 				 vf->vf_id);
1147 		else if (!allmulti &&
1148 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1149 					    vf->vf_states))
1150 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1151 				 vf->vf_id);
1152 	} else {
1153 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1154 			vf->vf_id, mcast_err);
1155 	}
1156 
1157 	if (!ucast_err) {
1158 		if (alluni &&
1159 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1160 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1161 				 vf->vf_id);
1162 		else if (!alluni &&
1163 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1164 					    vf->vf_states))
1165 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1166 				 vf->vf_id);
1167 	} else {
1168 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1169 			vf->vf_id, ucast_err);
1170 	}
1171 
1172 error_param:
1173 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1174 				     v_ret, NULL, 0);
1175 }
1176 
1177 /**
1178  * ice_vc_get_stats_msg
1179  * @vf: pointer to the VF info
1180  * @msg: pointer to the msg buffer
1181  *
1182  * called from the VF to get VSI stats
1183  */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1184 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1185 {
1186 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1187 	struct virtchnl_queue_select *vqs =
1188 		(struct virtchnl_queue_select *)msg;
1189 	struct ice_eth_stats stats = { 0 };
1190 	struct ice_vsi *vsi;
1191 
1192 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1193 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1194 		goto error_param;
1195 	}
1196 
1197 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1198 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1199 		goto error_param;
1200 	}
1201 
1202 	vsi = ice_get_vf_vsi(vf);
1203 	if (!vsi) {
1204 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1205 		goto error_param;
1206 	}
1207 
1208 	ice_update_eth_stats(vsi);
1209 
1210 	stats = vsi->eth_stats;
1211 
1212 error_param:
1213 	/* send the response to the VF */
1214 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1215 				     (u8 *)&stats, sizeof(stats));
1216 }
1217 
1218 /**
1219  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1220  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1221  *
1222  * Return true on successful validation, else false
1223  */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1224 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1225 {
1226 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1227 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1228 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1229 		return false;
1230 
1231 	return true;
1232 }
1233 
1234 /**
1235  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1236  * @vsi: VSI of the VF to configure
1237  * @q_idx: VF queue index used to determine the queue in the PF's space
1238  */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1239 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1240 {
1241 	struct ice_hw *hw = &vsi->back->hw;
1242 	u32 pfq = vsi->txq_map[q_idx];
1243 	u32 reg;
1244 
1245 	reg = rd32(hw, QINT_TQCTL(pfq));
1246 
1247 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1248 	 * this is most likely a poll mode VF driver, so don't enable an
1249 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1250 	 */
1251 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1252 		return;
1253 
1254 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1255 }
1256 
1257 /**
1258  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1259  * @vsi: VSI of the VF to configure
1260  * @q_idx: VF queue index used to determine the queue in the PF's space
1261  */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1262 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1263 {
1264 	struct ice_hw *hw = &vsi->back->hw;
1265 	u32 pfq = vsi->rxq_map[q_idx];
1266 	u32 reg;
1267 
1268 	reg = rd32(hw, QINT_RQCTL(pfq));
1269 
1270 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1271 	 * this is most likely a poll mode VF driver, so don't enable an
1272 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1273 	 */
1274 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1275 		return;
1276 
1277 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1278 }
1279 
1280 /**
1281  * ice_vc_ena_qs_msg
1282  * @vf: pointer to the VF info
1283  * @msg: pointer to the msg buffer
1284  *
1285  * called from the VF to enable all or specific queue(s)
1286  */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1287 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1288 {
1289 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1290 	struct virtchnl_queue_select *vqs =
1291 	    (struct virtchnl_queue_select *)msg;
1292 	struct ice_vsi *vsi;
1293 	unsigned long q_map;
1294 	u16 vf_q_id;
1295 
1296 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1297 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298 		goto error_param;
1299 	}
1300 
1301 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1302 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1303 		goto error_param;
1304 	}
1305 
1306 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1307 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1308 		goto error_param;
1309 	}
1310 
1311 	vsi = ice_get_vf_vsi(vf);
1312 	if (!vsi) {
1313 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1314 		goto error_param;
1315 	}
1316 
1317 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1318 	 * Tx queue group list was configured and the context bits were
1319 	 * programmed using ice_vsi_cfg_txqs
1320 	 */
1321 	q_map = vqs->rx_queues;
1322 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1323 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1324 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1325 			goto error_param;
1326 		}
1327 
1328 		/* Skip queue if enabled */
1329 		if (test_bit(vf_q_id, vf->rxq_ena))
1330 			continue;
1331 
1332 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1333 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1334 				vf_q_id, vsi->vsi_num);
1335 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1336 			goto error_param;
1337 		}
1338 
1339 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1340 		set_bit(vf_q_id, vf->rxq_ena);
1341 	}
1342 
1343 	q_map = vqs->tx_queues;
1344 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1345 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1346 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1347 			goto error_param;
1348 		}
1349 
1350 		/* Skip queue if enabled */
1351 		if (test_bit(vf_q_id, vf->txq_ena))
1352 			continue;
1353 
1354 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1355 		set_bit(vf_q_id, vf->txq_ena);
1356 	}
1357 
1358 	/* Set flag to indicate that queues are enabled */
1359 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1360 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1361 
1362 error_param:
1363 	/* send the response to the VF */
1364 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1365 				     NULL, 0);
1366 }
1367 
1368 /**
1369  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1370  * @vf: VF to disable queue for
1371  * @vsi: VSI for the VF
1372  * @q_id: VF relative (0-based) queue ID
1373  *
1374  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1375  * disabled then clear q_id bit in the enabled queues bitmap and return
1376  * success. Otherwise return error.
1377  */
1378 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1379 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1380 {
1381 	struct ice_txq_meta txq_meta = { 0 };
1382 	struct ice_tx_ring *ring;
1383 	int err;
1384 
1385 	if (!test_bit(q_id, vf->txq_ena))
1386 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1387 			q_id, vsi->vsi_num);
1388 
1389 	ring = vsi->tx_rings[q_id];
1390 	if (!ring)
1391 		return -EINVAL;
1392 
1393 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1394 
1395 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1396 	if (err) {
1397 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1398 			q_id, vsi->vsi_num);
1399 		return err;
1400 	}
1401 
1402 	/* Clear enabled queues flag */
1403 	clear_bit(q_id, vf->txq_ena);
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  * ice_vc_dis_qs_msg
1410  * @vf: pointer to the VF info
1411  * @msg: pointer to the msg buffer
1412  *
1413  * called from the VF to disable all or specific queue(s)
1414  */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1415 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1416 {
1417 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1418 	struct virtchnl_queue_select *vqs =
1419 	    (struct virtchnl_queue_select *)msg;
1420 	struct ice_vsi *vsi;
1421 	unsigned long q_map;
1422 	u16 vf_q_id;
1423 
1424 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1425 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1426 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1427 		goto error_param;
1428 	}
1429 
1430 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1431 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 		goto error_param;
1433 	}
1434 
1435 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1436 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1437 		goto error_param;
1438 	}
1439 
1440 	vsi = ice_get_vf_vsi(vf);
1441 	if (!vsi) {
1442 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1443 		goto error_param;
1444 	}
1445 
1446 	if (vqs->tx_queues) {
1447 		q_map = vqs->tx_queues;
1448 
1449 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1450 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1451 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1452 				goto error_param;
1453 			}
1454 
1455 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1456 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1457 				goto error_param;
1458 			}
1459 		}
1460 	}
1461 
1462 	q_map = vqs->rx_queues;
1463 	/* speed up Rx queue disable by batching them if possible */
1464 	if (q_map &&
1465 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1466 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1467 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1468 				vsi->vsi_num);
1469 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1470 			goto error_param;
1471 		}
1472 
1473 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1474 	} else if (q_map) {
1475 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1476 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1477 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1478 				goto error_param;
1479 			}
1480 
1481 			/* Skip queue if not enabled */
1482 			if (!test_bit(vf_q_id, vf->rxq_ena))
1483 				continue;
1484 
1485 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1486 						     true)) {
1487 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1488 					vf_q_id, vsi->vsi_num);
1489 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1490 				goto error_param;
1491 			}
1492 
1493 			/* Clear enabled queues flag */
1494 			clear_bit(vf_q_id, vf->rxq_ena);
1495 		}
1496 	}
1497 
1498 	/* Clear enabled queues flag */
1499 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1500 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1501 
1502 error_param:
1503 	/* send the response to the VF */
1504 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1505 				     NULL, 0);
1506 }
1507 
1508 /**
1509  * ice_cfg_interrupt
1510  * @vf: pointer to the VF info
1511  * @vsi: the VSI being configured
1512  * @map: vector map for mapping vectors to queues
1513  * @q_vector: structure for interrupt vector
1514  * configure the IRQ to queue map
1515  */
1516 static enum virtchnl_status_code
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1517 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1518 		  struct virtchnl_vector_map *map,
1519 		  struct ice_q_vector *q_vector)
1520 {
1521 	u16 vsi_q_id, vsi_q_id_idx;
1522 	unsigned long qmap;
1523 
1524 	q_vector->num_ring_rx = 0;
1525 	q_vector->num_ring_tx = 0;
1526 
1527 	qmap = map->rxq_map;
1528 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1529 		vsi_q_id = vsi_q_id_idx;
1530 
1531 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1532 			return VIRTCHNL_STATUS_ERR_PARAM;
1533 
1534 		q_vector->num_ring_rx++;
1535 		q_vector->rx.itr_idx = map->rxitr_idx;
1536 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1537 		ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1538 				      q_vector->vf_reg_idx,
1539 				      q_vector->rx.itr_idx);
1540 	}
1541 
1542 	qmap = map->txq_map;
1543 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1544 		vsi_q_id = vsi_q_id_idx;
1545 
1546 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1547 			return VIRTCHNL_STATUS_ERR_PARAM;
1548 
1549 		q_vector->num_ring_tx++;
1550 		q_vector->tx.itr_idx = map->txitr_idx;
1551 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1552 		ice_cfg_txq_interrupt(vsi, vsi_q_id,
1553 				      q_vector->vf_reg_idx,
1554 				      q_vector->tx.itr_idx);
1555 	}
1556 
1557 	return VIRTCHNL_STATUS_SUCCESS;
1558 }
1559 
1560 /**
1561  * ice_vc_cfg_irq_map_msg
1562  * @vf: pointer to the VF info
1563  * @msg: pointer to the msg buffer
1564  *
1565  * called from the VF to configure the IRQ to queue map
1566  */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1567 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1568 {
1569 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1570 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1571 	struct virtchnl_irq_map_info *irqmap_info;
1572 	struct virtchnl_vector_map *map;
1573 	struct ice_vsi *vsi;
1574 	int i;
1575 
1576 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1577 	num_q_vectors_mapped = irqmap_info->num_vectors;
1578 
1579 	/* Check to make sure number of VF vectors mapped is not greater than
1580 	 * number of VF vectors originally allocated, and check that
1581 	 * there is actually at least a single VF queue vector mapped
1582 	 */
1583 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1584 	    vf->num_msix < num_q_vectors_mapped ||
1585 	    !num_q_vectors_mapped) {
1586 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587 		goto error_param;
1588 	}
1589 
1590 	vsi = ice_get_vf_vsi(vf);
1591 	if (!vsi) {
1592 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1593 		goto error_param;
1594 	}
1595 
1596 	for (i = 0; i < num_q_vectors_mapped; i++) {
1597 		struct ice_q_vector *q_vector;
1598 
1599 		map = &irqmap_info->vecmap[i];
1600 
1601 		vector_id = map->vector_id;
1602 		vsi_id = map->vsi_id;
1603 		/* vector_id is always 0-based for each VF, and can never be
1604 		 * larger than or equal to the max allowed interrupts per VF
1605 		 */
1606 		if (!(vector_id < vf->num_msix) ||
1607 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1608 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1609 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1610 			goto error_param;
1611 		}
1612 
1613 		/* No need to map VF miscellaneous or rogue vector */
1614 		if (!vector_id)
1615 			continue;
1616 
1617 		/* Subtract non queue vector from vector_id passed by VF
1618 		 * to get actual number of VSI queue vector array index
1619 		 */
1620 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1621 		if (!q_vector) {
1622 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1623 			goto error_param;
1624 		}
1625 
1626 		/* lookout for the invalid queue index */
1627 		v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1628 		if (v_ret)
1629 			goto error_param;
1630 	}
1631 
1632 error_param:
1633 	/* send the response to the VF */
1634 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1635 				     NULL, 0);
1636 }
1637 
1638 /**
1639  * ice_vc_cfg_qs_msg
1640  * @vf: pointer to the VF info
1641  * @msg: pointer to the msg buffer
1642  *
1643  * called from the VF to configure the Rx/Tx queues
1644  */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1645 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1646 {
1647 	struct virtchnl_vsi_queue_config_info *qci =
1648 	    (struct virtchnl_vsi_queue_config_info *)msg;
1649 	struct virtchnl_queue_pair_info *qpi;
1650 	struct ice_pf *pf = vf->pf;
1651 	struct ice_lag *lag;
1652 	struct ice_vsi *vsi;
1653 	u8 act_prt, pri_prt;
1654 	int i = -1, q_idx;
1655 
1656 	lag = pf->lag;
1657 	mutex_lock(&pf->lag_mutex);
1658 	act_prt = ICE_LAG_INVALID_PORT;
1659 	pri_prt = pf->hw.port_info->lport;
1660 	if (lag && lag->bonded && lag->primary) {
1661 		act_prt = lag->active_port;
1662 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1663 		    lag->upper_netdev)
1664 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1665 		else
1666 			act_prt = ICE_LAG_INVALID_PORT;
1667 	}
1668 
1669 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1670 		goto error_param;
1671 
1672 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1673 		goto error_param;
1674 
1675 	vsi = ice_get_vf_vsi(vf);
1676 	if (!vsi)
1677 		goto error_param;
1678 
1679 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1680 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1681 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1682 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1683 		goto error_param;
1684 	}
1685 
1686 	for (i = 0; i < qci->num_queue_pairs; i++) {
1687 		if (!qci->qpair[i].rxq.crc_disable)
1688 			continue;
1689 
1690 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1691 		    vf->vlan_strip_ena)
1692 			goto error_param;
1693 	}
1694 
1695 	for (i = 0; i < qci->num_queue_pairs; i++) {
1696 		qpi = &qci->qpair[i];
1697 		if (qpi->txq.vsi_id != qci->vsi_id ||
1698 		    qpi->rxq.vsi_id != qci->vsi_id ||
1699 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1700 		    qpi->txq.headwb_enabled ||
1701 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1702 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1703 		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1704 			goto error_param;
1705 		}
1706 
1707 		q_idx = qpi->rxq.queue_id;
1708 
1709 		/* make sure selected "q_idx" is in valid range of queues
1710 		 * for selected "vsi"
1711 		 */
1712 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1713 			goto error_param;
1714 		}
1715 
1716 		/* copy Tx queue info from VF into VSI */
1717 		if (qpi->txq.ring_len > 0) {
1718 			vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
1719 			vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
1720 
1721 			/* Disable any existing queue first */
1722 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1723 				goto error_param;
1724 
1725 			/* Configure a queue with the requested settings */
1726 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1727 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1728 					 vf->vf_id, q_idx);
1729 				goto error_param;
1730 			}
1731 		}
1732 
1733 		/* copy Rx queue info from VF into VSI */
1734 		if (qpi->rxq.ring_len > 0) {
1735 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1736 			struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
1737 			u32 rxdid;
1738 
1739 			ring->dma = qpi->rxq.dma_ring_addr;
1740 			ring->count = qpi->rxq.ring_len;
1741 
1742 			if (qpi->rxq.crc_disable)
1743 				ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1744 			else
1745 				ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1746 
1747 			if (qpi->rxq.databuffer_size != 0 &&
1748 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1749 			     qpi->rxq.databuffer_size < 1024))
1750 				goto error_param;
1751 			ring->rx_buf_len = qpi->rxq.databuffer_size;
1752 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1753 			    qpi->rxq.max_pkt_size < 64)
1754 				goto error_param;
1755 
1756 			ring->max_frame = qpi->rxq.max_pkt_size;
1757 			/* add space for the port VLAN since the VF driver is
1758 			 * not expected to account for it in the MTU
1759 			 * calculation
1760 			 */
1761 			if (ice_vf_is_port_vlan_ena(vf))
1762 				ring->max_frame += VLAN_HLEN;
1763 
1764 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1765 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1766 					 vf->vf_id, q_idx);
1767 				goto error_param;
1768 			}
1769 
1770 			/* If Rx flex desc is supported, select RXDID for Rx
1771 			 * queues. Otherwise, use legacy 32byte descriptor
1772 			 * format. Legacy 16byte descriptor is not supported.
1773 			 * If this RXDID is selected, return error.
1774 			 */
1775 			if (vf->driver_caps &
1776 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1777 				rxdid = qpi->rxq.rxdid;
1778 				if (!(BIT(rxdid) & pf->supported_rxdids))
1779 					goto error_param;
1780 			} else {
1781 				rxdid = ICE_RXDID_LEGACY_1;
1782 			}
1783 
1784 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1785 						vsi->rxq_map[q_idx],
1786 						rxdid, 0x03, false);
1787 		}
1788 	}
1789 
1790 	if (lag && lag->bonded && lag->primary &&
1791 	    act_prt != ICE_LAG_INVALID_PORT)
1792 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1793 	mutex_unlock(&pf->lag_mutex);
1794 
1795 	/* send the response to the VF */
1796 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1797 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1798 error_param:
1799 	/* disable whatever we can */
1800 	for (; i >= 0; i--) {
1801 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1802 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1803 				vf->vf_id, i);
1804 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1805 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1806 				vf->vf_id, i);
1807 	}
1808 
1809 	if (lag && lag->bonded && lag->primary &&
1810 	    act_prt != ICE_LAG_INVALID_PORT)
1811 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1812 	mutex_unlock(&pf->lag_mutex);
1813 
1814 	ice_lag_move_new_vf_nodes(vf);
1815 
1816 	/* send the response to the VF */
1817 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1818 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1819 }
1820 
1821 /**
1822  * ice_can_vf_change_mac
1823  * @vf: pointer to the VF info
1824  *
1825  * Return true if the VF is allowed to change its MAC filters, false otherwise
1826  */
ice_can_vf_change_mac(struct ice_vf * vf)1827 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1828 {
1829 	/* If the VF MAC address has been set administratively (via the
1830 	 * ndo_set_vf_mac command), then deny permission to the VF to
1831 	 * add/delete unicast MAC addresses, unless the VF is trusted
1832 	 */
1833 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1834 		return false;
1835 
1836 	return true;
1837 }
1838 
1839 /**
1840  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1841  * @vc_ether_addr: used to extract the type
1842  */
1843 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)1844 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1845 {
1846 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1847 }
1848 
1849 /**
1850  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1851  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1852  */
1853 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)1854 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1855 {
1856 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1857 
1858 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1859 }
1860 
1861 /**
1862  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1863  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1864  *
1865  * This function should only be called when the MAC address in
1866  * virtchnl_ether_addr is a valid unicast MAC
1867  */
1868 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)1869 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1870 {
1871 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1872 
1873 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1874 }
1875 
1876 /**
1877  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1878  * @vf: VF to update
1879  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1880  */
1881 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1882 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1883 {
1884 	u8 *mac_addr = vc_ether_addr->addr;
1885 
1886 	if (!is_valid_ether_addr(mac_addr))
1887 		return;
1888 
1889 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1890 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1891 	 * was correctly specified over VIRTCHNL
1892 	 */
1893 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1894 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1895 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1896 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1897 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1898 	}
1899 
1900 	/* hardware and device MACs are already set, but its possible that the
1901 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1902 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1903 	 * away for the legacy VF driver case as it will be updated in the
1904 	 * delete flow for this case
1905 	 */
1906 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1907 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1908 				mac_addr);
1909 		vf->legacy_last_added_umac.time_modified = jiffies;
1910 	}
1911 }
1912 
1913 /**
1914  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1915  * @vf: pointer to the VF info
1916  * @vsi: pointer to the VF's VSI
1917  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1918  */
1919 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1920 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1921 		    struct virtchnl_ether_addr *vc_ether_addr)
1922 {
1923 	struct device *dev = ice_pf_to_dev(vf->pf);
1924 	u8 *mac_addr = vc_ether_addr->addr;
1925 	int ret;
1926 
1927 	/* device MAC already added */
1928 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1929 		return 0;
1930 
1931 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1932 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1933 		return -EPERM;
1934 	}
1935 
1936 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1937 	if (ret == -EEXIST) {
1938 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1939 			vf->vf_id);
1940 		/* don't return since we might need to update
1941 		 * the primary MAC in ice_vfhw_mac_add() below
1942 		 */
1943 	} else if (ret) {
1944 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1945 			mac_addr, vf->vf_id, ret);
1946 		return ret;
1947 	} else {
1948 		vf->num_mac++;
1949 	}
1950 
1951 	ice_vfhw_mac_add(vf, vc_ether_addr);
1952 
1953 	return ret;
1954 }
1955 
1956 /**
1957  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1958  * @last_added_umac: structure used to check expiration
1959  */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)1960 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1961 {
1962 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1963 	return time_is_before_jiffies(last_added_umac->time_modified +
1964 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1965 }
1966 
1967 /**
1968  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1969  * @vf: VF to update
1970  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1971  *
1972  * only update cached hardware MAC for legacy VF drivers on delete
1973  * because we cannot guarantee order/type of MAC from the VF driver
1974  */
1975 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1976 ice_update_legacy_cached_mac(struct ice_vf *vf,
1977 			     struct virtchnl_ether_addr *vc_ether_addr)
1978 {
1979 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1980 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1981 		return;
1982 
1983 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1984 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1985 }
1986 
1987 /**
1988  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1989  * @vf: VF to update
1990  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1991  */
1992 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1993 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1994 {
1995 	u8 *mac_addr = vc_ether_addr->addr;
1996 
1997 	if (!is_valid_ether_addr(mac_addr) ||
1998 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1999 		return;
2000 
2001 	/* allow the device MAC to be repopulated in the add flow and don't
2002 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2003 	 * to be persistent on VM reboot and across driver unload/load, which
2004 	 * won't work if we clear the hardware MAC here
2005 	 */
2006 	eth_zero_addr(vf->dev_lan_addr);
2007 
2008 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2009 }
2010 
2011 /**
2012  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2013  * @vf: pointer to the VF info
2014  * @vsi: pointer to the VF's VSI
2015  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2016  */
2017 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2018 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2019 		    struct virtchnl_ether_addr *vc_ether_addr)
2020 {
2021 	struct device *dev = ice_pf_to_dev(vf->pf);
2022 	u8 *mac_addr = vc_ether_addr->addr;
2023 	int status;
2024 
2025 	if (!ice_can_vf_change_mac(vf) &&
2026 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2027 		return 0;
2028 
2029 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2030 	if (status == -ENOENT) {
2031 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2032 			vf->vf_id);
2033 		return -ENOENT;
2034 	} else if (status) {
2035 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2036 			mac_addr, vf->vf_id, status);
2037 		return -EIO;
2038 	}
2039 
2040 	ice_vfhw_mac_del(vf, vc_ether_addr);
2041 
2042 	vf->num_mac--;
2043 
2044 	return 0;
2045 }
2046 
2047 /**
2048  * ice_vc_handle_mac_addr_msg
2049  * @vf: pointer to the VF info
2050  * @msg: pointer to the msg buffer
2051  * @set: true if MAC filters are being set, false otherwise
2052  *
2053  * add guest MAC address filter
2054  */
2055 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)2056 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2057 {
2058 	int (*ice_vc_cfg_mac)
2059 		(struct ice_vf *vf, struct ice_vsi *vsi,
2060 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2061 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2062 	struct virtchnl_ether_addr_list *al =
2063 	    (struct virtchnl_ether_addr_list *)msg;
2064 	struct ice_pf *pf = vf->pf;
2065 	enum virtchnl_ops vc_op;
2066 	struct ice_vsi *vsi;
2067 	int i;
2068 
2069 	if (set) {
2070 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2071 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2072 	} else {
2073 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2074 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2075 	}
2076 
2077 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2078 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2079 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2080 		goto handle_mac_exit;
2081 	}
2082 
2083 	/* If this VF is not privileged, then we can't add more than a
2084 	 * limited number of addresses. Check to make sure that the
2085 	 * additions do not push us over the limit.
2086 	 */
2087 	if (set && !ice_is_vf_trusted(vf) &&
2088 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2089 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2090 			vf->vf_id);
2091 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2092 		goto handle_mac_exit;
2093 	}
2094 
2095 	vsi = ice_get_vf_vsi(vf);
2096 	if (!vsi) {
2097 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2098 		goto handle_mac_exit;
2099 	}
2100 
2101 	for (i = 0; i < al->num_elements; i++) {
2102 		u8 *mac_addr = al->list[i].addr;
2103 		int result;
2104 
2105 		if (is_broadcast_ether_addr(mac_addr) ||
2106 		    is_zero_ether_addr(mac_addr))
2107 			continue;
2108 
2109 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2110 		if (result == -EEXIST || result == -ENOENT) {
2111 			continue;
2112 		} else if (result) {
2113 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2114 			goto handle_mac_exit;
2115 		}
2116 	}
2117 
2118 handle_mac_exit:
2119 	/* send the response to the VF */
2120 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2121 }
2122 
2123 /**
2124  * ice_vc_add_mac_addr_msg
2125  * @vf: pointer to the VF info
2126  * @msg: pointer to the msg buffer
2127  *
2128  * add guest MAC address filter
2129  */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2130 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2131 {
2132 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2133 }
2134 
2135 /**
2136  * ice_vc_del_mac_addr_msg
2137  * @vf: pointer to the VF info
2138  * @msg: pointer to the msg buffer
2139  *
2140  * remove guest MAC address filter
2141  */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2142 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2143 {
2144 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2145 }
2146 
2147 /**
2148  * ice_vc_request_qs_msg
2149  * @vf: pointer to the VF info
2150  * @msg: pointer to the msg buffer
2151  *
2152  * VFs get a default number of queues but can use this message to request a
2153  * different number. If the request is successful, PF will reset the VF and
2154  * return 0. If unsuccessful, PF will send message informing VF of number of
2155  * available queue pairs via virtchnl message response to VF.
2156  */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2157 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2158 {
2159 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2160 	struct virtchnl_vf_res_request *vfres =
2161 		(struct virtchnl_vf_res_request *)msg;
2162 	u16 req_queues = vfres->num_queue_pairs;
2163 	struct ice_pf *pf = vf->pf;
2164 	u16 max_allowed_vf_queues;
2165 	u16 tx_rx_queue_left;
2166 	struct device *dev;
2167 	u16 cur_queues;
2168 
2169 	dev = ice_pf_to_dev(pf);
2170 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2171 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2172 		goto error_param;
2173 	}
2174 
2175 	cur_queues = vf->num_vf_qs;
2176 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2177 				 ice_get_avail_rxq_count(pf));
2178 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2179 	if (!req_queues) {
2180 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2181 			vf->vf_id);
2182 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2183 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2184 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2185 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2186 	} else if (req_queues > cur_queues &&
2187 		   req_queues - cur_queues > tx_rx_queue_left) {
2188 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2189 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2190 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2191 					       ICE_MAX_RSS_QS_PER_VF);
2192 	} else {
2193 		/* request is successful, then reset VF */
2194 		vf->num_req_qs = req_queues;
2195 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2196 		dev_info(dev, "VF %d granted request of %u queues.\n",
2197 			 vf->vf_id, req_queues);
2198 		return 0;
2199 	}
2200 
2201 error_param:
2202 	/* send the response to the VF */
2203 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2204 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2205 }
2206 
2207 /**
2208  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2209  * @caps: VF driver negotiated capabilities
2210  *
2211  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2212  */
ice_vf_vlan_offload_ena(u32 caps)2213 static bool ice_vf_vlan_offload_ena(u32 caps)
2214 {
2215 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2216 }
2217 
2218 /**
2219  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2220  * @vf: VF used to determine if VLAN promiscuous config is allowed
2221  */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2222 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2223 {
2224 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2225 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2226 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2227 		return true;
2228 
2229 	return false;
2230 }
2231 
2232 /**
2233  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2234  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2235  * @vlan: VLAN used to enable VLAN promiscuous
2236  *
2237  * This function should only be called if VLAN promiscuous mode is allowed,
2238  * which can be determined via ice_is_vlan_promisc_allowed().
2239  */
ice_vf_ena_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2240 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2241 {
2242 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2243 	int status;
2244 
2245 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2246 					  vlan->vid);
2247 	if (status && status != -EEXIST)
2248 		return status;
2249 
2250 	return 0;
2251 }
2252 
2253 /**
2254  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2255  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2256  * @vlan: VLAN used to disable VLAN promiscuous
2257  *
2258  * This function should only be called if VLAN promiscuous mode is allowed,
2259  * which can be determined via ice_is_vlan_promisc_allowed().
2260  */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2261 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2262 {
2263 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2264 	int status;
2265 
2266 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2267 					    vlan->vid);
2268 	if (status && status != -ENOENT)
2269 		return status;
2270 
2271 	return 0;
2272 }
2273 
2274 /**
2275  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2276  * @vf: VF to check against
2277  * @vsi: VF's VSI
2278  *
2279  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2280  * wants to, so return false.
2281  *
2282  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2283  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2284  */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2285 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2286 {
2287 	if (ice_is_vf_trusted(vf))
2288 		return false;
2289 
2290 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2291 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2292 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2293 }
2294 
2295 /**
2296  * ice_vc_process_vlan_msg
2297  * @vf: pointer to the VF info
2298  * @msg: pointer to the msg buffer
2299  * @add_v: Add VLAN if true, otherwise delete VLAN
2300  *
2301  * Process virtchnl op to add or remove programmed guest VLAN ID
2302  */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2303 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2304 {
2305 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2306 	struct virtchnl_vlan_filter_list *vfl =
2307 	    (struct virtchnl_vlan_filter_list *)msg;
2308 	struct ice_pf *pf = vf->pf;
2309 	bool vlan_promisc = false;
2310 	struct ice_vsi *vsi;
2311 	struct device *dev;
2312 	int status = 0;
2313 	int i;
2314 
2315 	dev = ice_pf_to_dev(pf);
2316 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2317 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2318 		goto error_param;
2319 	}
2320 
2321 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2322 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2323 		goto error_param;
2324 	}
2325 
2326 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2327 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2328 		goto error_param;
2329 	}
2330 
2331 	for (i = 0; i < vfl->num_elements; i++) {
2332 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2333 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2334 			dev_err(dev, "invalid VF VLAN id %d\n",
2335 				vfl->vlan_id[i]);
2336 			goto error_param;
2337 		}
2338 	}
2339 
2340 	vsi = ice_get_vf_vsi(vf);
2341 	if (!vsi) {
2342 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2343 		goto error_param;
2344 	}
2345 
2346 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2347 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2348 			 vf->vf_id);
2349 		/* There is no need to let VF know about being not trusted,
2350 		 * so we can just return success message here
2351 		 */
2352 		goto error_param;
2353 	}
2354 
2355 	/* in DVM a VF can add/delete inner VLAN filters when
2356 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2357 	 */
2358 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2359 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2360 		goto error_param;
2361 	}
2362 
2363 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2364 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2365 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2366 	 */
2367 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2368 		!ice_is_dvm_ena(&pf->hw) &&
2369 		!ice_vf_is_port_vlan_ena(vf);
2370 
2371 	if (add_v) {
2372 		for (i = 0; i < vfl->num_elements; i++) {
2373 			u16 vid = vfl->vlan_id[i];
2374 			struct ice_vlan vlan;
2375 
2376 			if (ice_vf_has_max_vlans(vf, vsi)) {
2377 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2378 					 vf->vf_id);
2379 				/* There is no need to let VF know about being
2380 				 * not trusted, so we can just return success
2381 				 * message here as well.
2382 				 */
2383 				goto error_param;
2384 			}
2385 
2386 			/* we add VLAN 0 by default for each VF so we can enable
2387 			 * Tx VLAN anti-spoof without triggering MDD events so
2388 			 * we don't need to add it again here
2389 			 */
2390 			if (!vid)
2391 				continue;
2392 
2393 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2394 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2395 			if (status) {
2396 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2397 				goto error_param;
2398 			}
2399 
2400 			/* Enable VLAN filtering on first non-zero VLAN */
2401 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2402 				if (vf->spoofchk) {
2403 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2404 					if (status) {
2405 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2406 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2407 							vid, status);
2408 						goto error_param;
2409 					}
2410 				}
2411 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2412 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2413 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2414 						vid, status);
2415 					goto error_param;
2416 				}
2417 			} else if (vlan_promisc) {
2418 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2419 				if (status) {
2420 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2422 						vid, status);
2423 				}
2424 			}
2425 		}
2426 	} else {
2427 		/* In case of non_trusted VF, number of VLAN elements passed
2428 		 * to PF for removal might be greater than number of VLANs
2429 		 * filter programmed for that VF - So, use actual number of
2430 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2431 		 * removing VLAN that doesn't exist, which result to sending
2432 		 * erroneous failed message back to the VF
2433 		 */
2434 		int num_vf_vlan;
2435 
2436 		num_vf_vlan = vsi->num_vlan;
2437 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2438 			u16 vid = vfl->vlan_id[i];
2439 			struct ice_vlan vlan;
2440 
2441 			/* we add VLAN 0 by default for each VF so we can enable
2442 			 * Tx VLAN anti-spoof without triggering MDD events so
2443 			 * we don't want a VIRTCHNL request to remove it
2444 			 */
2445 			if (!vid)
2446 				continue;
2447 
2448 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2449 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2450 			if (status) {
2451 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2452 				goto error_param;
2453 			}
2454 
2455 			/* Disable VLAN filtering when only VLAN 0 is left */
2456 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2457 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2458 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2459 			}
2460 
2461 			if (vlan_promisc)
2462 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2463 		}
2464 	}
2465 
2466 error_param:
2467 	/* send the response to the VF */
2468 	if (add_v)
2469 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2470 					     NULL, 0);
2471 	else
2472 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2473 					     NULL, 0);
2474 }
2475 
2476 /**
2477  * ice_vc_add_vlan_msg
2478  * @vf: pointer to the VF info
2479  * @msg: pointer to the msg buffer
2480  *
2481  * Add and program guest VLAN ID
2482  */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2483 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2484 {
2485 	return ice_vc_process_vlan_msg(vf, msg, true);
2486 }
2487 
2488 /**
2489  * ice_vc_remove_vlan_msg
2490  * @vf: pointer to the VF info
2491  * @msg: pointer to the msg buffer
2492  *
2493  * remove programmed guest VLAN ID
2494  */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2495 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2496 {
2497 	return ice_vc_process_vlan_msg(vf, msg, false);
2498 }
2499 
2500 /**
2501  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2502  * @vsi: pointer to the VF VSI info
2503  */
ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi * vsi)2504 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2505 {
2506 	unsigned int i;
2507 
2508 	ice_for_each_alloc_rxq(vsi, i)
2509 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2510 			return true;
2511 
2512 	return false;
2513 }
2514 
2515 /**
2516  * ice_vc_ena_vlan_stripping
2517  * @vf: pointer to the VF info
2518  *
2519  * Enable VLAN header stripping for a given VF
2520  */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2521 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2522 {
2523 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2524 	struct ice_vsi *vsi;
2525 
2526 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2527 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2528 		goto error_param;
2529 	}
2530 
2531 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2532 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533 		goto error_param;
2534 	}
2535 
2536 	vsi = ice_get_vf_vsi(vf);
2537 	if (!vsi) {
2538 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2539 		goto error_param;
2540 	}
2541 
2542 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2543 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2544 	else
2545 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2546 
2547 error_param:
2548 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2549 				     v_ret, NULL, 0);
2550 }
2551 
2552 /**
2553  * ice_vc_dis_vlan_stripping
2554  * @vf: pointer to the VF info
2555  *
2556  * Disable VLAN header stripping for a given VF
2557  */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2558 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2559 {
2560 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2561 	struct ice_vsi *vsi;
2562 
2563 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2564 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2565 		goto error_param;
2566 	}
2567 
2568 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2569 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2570 		goto error_param;
2571 	}
2572 
2573 	vsi = ice_get_vf_vsi(vf);
2574 	if (!vsi) {
2575 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2576 		goto error_param;
2577 	}
2578 
2579 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2580 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2581 	else
2582 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2583 
2584 error_param:
2585 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2586 				     v_ret, NULL, 0);
2587 }
2588 
2589 /**
2590  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2591  * @vf: pointer to the VF info
2592  */
ice_vc_get_rss_hena(struct ice_vf * vf)2593 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2594 {
2595 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2596 	struct virtchnl_rss_hena *vrh = NULL;
2597 	int len = 0, ret;
2598 
2599 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2600 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2601 		goto err;
2602 	}
2603 
2604 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2605 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2606 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2607 		goto err;
2608 	}
2609 
2610 	len = sizeof(struct virtchnl_rss_hena);
2611 	vrh = kzalloc(len, GFP_KERNEL);
2612 	if (!vrh) {
2613 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2614 		len = 0;
2615 		goto err;
2616 	}
2617 
2618 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2619 err:
2620 	/* send the response back to the VF */
2621 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2622 				    (u8 *)vrh, len);
2623 	kfree(vrh);
2624 	return ret;
2625 }
2626 
2627 /**
2628  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2629  * @vf: pointer to the VF info
2630  * @msg: pointer to the msg buffer
2631  */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2632 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2633 {
2634 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2635 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2636 	struct ice_pf *pf = vf->pf;
2637 	struct ice_vsi *vsi;
2638 	struct device *dev;
2639 	int status;
2640 
2641 	dev = ice_pf_to_dev(pf);
2642 
2643 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2644 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2645 		goto err;
2646 	}
2647 
2648 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2649 		dev_err(dev, "RSS not supported by PF\n");
2650 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2651 		goto err;
2652 	}
2653 
2654 	vsi = ice_get_vf_vsi(vf);
2655 	if (!vsi) {
2656 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2657 		goto err;
2658 	}
2659 
2660 	/* clear all previously programmed RSS configuration to allow VF drivers
2661 	 * the ability to customize the RSS configuration and/or completely
2662 	 * disable RSS
2663 	 */
2664 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2665 	if (status && !vrh->hena) {
2666 		/* only report failure to clear the current RSS configuration if
2667 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2668 		 */
2669 		v_ret = ice_err_to_virt_err(status);
2670 		goto err;
2671 	} else if (status) {
2672 		/* allow the VF to update the RSS configuration even on failure
2673 		 * to clear the current RSS confguration in an attempt to keep
2674 		 * RSS in a working state
2675 		 */
2676 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2677 			 vf->vf_id);
2678 	}
2679 
2680 	if (vrh->hena) {
2681 		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2682 		v_ret = ice_err_to_virt_err(status);
2683 	}
2684 
2685 	/* send the response to the VF */
2686 err:
2687 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2688 				     NULL, 0);
2689 }
2690 
2691 /**
2692  * ice_vc_query_rxdid - query RXDID supported by DDP package
2693  * @vf: pointer to VF info
2694  *
2695  * Called from VF to query a bitmap of supported flexible
2696  * descriptor RXDIDs of a DDP package.
2697  */
ice_vc_query_rxdid(struct ice_vf * vf)2698 static int ice_vc_query_rxdid(struct ice_vf *vf)
2699 {
2700 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2701 	struct virtchnl_supported_rxdids *rxdid = NULL;
2702 	struct ice_hw *hw = &vf->pf->hw;
2703 	struct ice_pf *pf = vf->pf;
2704 	int len = 0;
2705 	int ret, i;
2706 	u32 regval;
2707 
2708 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2709 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2710 		goto err;
2711 	}
2712 
2713 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2714 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2715 		goto err;
2716 	}
2717 
2718 	len = sizeof(struct virtchnl_supported_rxdids);
2719 	rxdid = kzalloc(len, GFP_KERNEL);
2720 	if (!rxdid) {
2721 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2722 		len = 0;
2723 		goto err;
2724 	}
2725 
2726 	/* RXDIDs supported by DDP package can be read from the register
2727 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2728 	 * is not listed in DDP package, add it in the bitmap manually.
2729 	 * Legacy 16byte descriptor is not supported.
2730 	 */
2731 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2732 
2733 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2734 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2735 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2736 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2737 			rxdid->supported_rxdids |= BIT(i);
2738 	}
2739 
2740 	pf->supported_rxdids = rxdid->supported_rxdids;
2741 
2742 err:
2743 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2744 				    v_ret, (u8 *)rxdid, len);
2745 	kfree(rxdid);
2746 	return ret;
2747 }
2748 
2749 /**
2750  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2751  * @vf: VF to enable/disable VLAN stripping for on initialization
2752  *
2753  * Set the default for VLAN stripping based on whether a port VLAN is configured
2754  * and the current VLAN mode of the device.
2755  */
ice_vf_init_vlan_stripping(struct ice_vf * vf)2756 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2757 {
2758 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2759 
2760 	vf->vlan_strip_ena = 0;
2761 
2762 	if (!vsi)
2763 		return -EINVAL;
2764 
2765 	/* don't modify stripping if port VLAN is configured in SVM since the
2766 	 * port VLAN is based on the inner/single VLAN in SVM
2767 	 */
2768 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2769 		return 0;
2770 
2771 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2772 		int err;
2773 
2774 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2775 		if (!err)
2776 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2777 		return err;
2778 	}
2779 
2780 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2781 }
2782 
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)2783 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2784 {
2785 	if (vf->trusted)
2786 		return VLAN_N_VID;
2787 	else
2788 		return ICE_MAX_VLAN_PER_VF;
2789 }
2790 
2791 /**
2792  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2793  * @vf: VF that being checked for
2794  *
2795  * When the device is in double VLAN mode, check whether or not the outer VLAN
2796  * is allowed.
2797  */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)2798 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2799 {
2800 	if (ice_vf_is_port_vlan_ena(vf))
2801 		return true;
2802 
2803 	return false;
2804 }
2805 
2806 /**
2807  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2808  * @vf: VF that capabilities are being set for
2809  * @caps: VLAN capabilities to populate
2810  *
2811  * Determine VLAN capabilities support based on whether a port VLAN is
2812  * configured. If a port VLAN is configured then the VF should use the inner
2813  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2814  * capabilies.
2815  */
2816 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2817 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2818 {
2819 	struct virtchnl_vlan_supported_caps *supported_caps;
2820 
2821 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2822 		/* until support for inner VLAN filtering is added when a port
2823 		 * VLAN is configured, only support software offloaded inner
2824 		 * VLANs when a port VLAN is confgured in DVM
2825 		 */
2826 		supported_caps = &caps->filtering.filtering_support;
2827 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2828 
2829 		supported_caps = &caps->offloads.stripping_support;
2830 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2831 					VIRTCHNL_VLAN_TOGGLE |
2832 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2833 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2834 
2835 		supported_caps = &caps->offloads.insertion_support;
2836 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2837 					VIRTCHNL_VLAN_TOGGLE |
2838 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2839 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2840 
2841 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2842 		caps->offloads.ethertype_match =
2843 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2844 	} else {
2845 		supported_caps = &caps->filtering.filtering_support;
2846 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2847 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2848 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2849 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2850 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2851 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2852 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2853 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2854 
2855 		supported_caps = &caps->offloads.stripping_support;
2856 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2857 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2858 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2859 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2860 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2861 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2862 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2863 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2864 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2865 
2866 		supported_caps = &caps->offloads.insertion_support;
2867 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2868 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2869 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2870 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2871 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2872 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2873 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2874 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2875 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2876 
2877 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2878 
2879 		caps->offloads.ethertype_match =
2880 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2881 	}
2882 
2883 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2884 }
2885 
2886 /**
2887  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2888  * @vf: VF that capabilities are being set for
2889  * @caps: VLAN capabilities to populate
2890  *
2891  * Determine VLAN capabilities support based on whether a port VLAN is
2892  * configured. If a port VLAN is configured then the VF does not have any VLAN
2893  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2894  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2895  * VLAN fitlering and offload capabilities.
2896  */
2897 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2898 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2899 {
2900 	struct virtchnl_vlan_supported_caps *supported_caps;
2901 
2902 	if (ice_vf_is_port_vlan_ena(vf)) {
2903 		supported_caps = &caps->filtering.filtering_support;
2904 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2905 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2906 
2907 		supported_caps = &caps->offloads.stripping_support;
2908 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2909 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2910 
2911 		supported_caps = &caps->offloads.insertion_support;
2912 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2913 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2914 
2915 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2916 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2917 		caps->filtering.max_filters = 0;
2918 	} else {
2919 		supported_caps = &caps->filtering.filtering_support;
2920 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2922 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2923 
2924 		supported_caps = &caps->offloads.stripping_support;
2925 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2926 					VIRTCHNL_VLAN_TOGGLE |
2927 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2928 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2929 
2930 		supported_caps = &caps->offloads.insertion_support;
2931 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2932 					VIRTCHNL_VLAN_TOGGLE |
2933 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2934 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2935 
2936 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2937 		caps->offloads.ethertype_match =
2938 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2939 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2940 	}
2941 }
2942 
2943 /**
2944  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2945  * @vf: VF to determine VLAN capabilities for
2946  *
2947  * This will only be called if the VF and PF successfully negotiated
2948  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2949  *
2950  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2951  * is configured or not.
2952  */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)2953 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2954 {
2955 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2956 	struct virtchnl_vlan_caps *caps = NULL;
2957 	int err, len = 0;
2958 
2959 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2960 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2961 		goto out;
2962 	}
2963 
2964 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2965 	if (!caps) {
2966 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2967 		goto out;
2968 	}
2969 	len = sizeof(*caps);
2970 
2971 	if (ice_is_dvm_ena(&vf->pf->hw))
2972 		ice_vc_set_dvm_caps(vf, caps);
2973 	else
2974 		ice_vc_set_svm_caps(vf, caps);
2975 
2976 	/* store negotiated caps to prevent invalid VF messages */
2977 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2978 
2979 out:
2980 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2981 				    v_ret, (u8 *)caps, len);
2982 	kfree(caps);
2983 	return err;
2984 }
2985 
2986 /**
2987  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2988  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2989  * @tpid: VLAN TPID used for validation
2990  *
2991  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2992  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2993  */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)2994 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2995 {
2996 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2997 
2998 	switch (tpid) {
2999 	case ETH_P_8021Q:
3000 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3001 		break;
3002 	case ETH_P_8021AD:
3003 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3004 		break;
3005 	case ETH_P_QINQ1:
3006 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3007 		break;
3008 	}
3009 
3010 	if (!(filtering_caps & vlan_ethertype))
3011 		return false;
3012 
3013 	return true;
3014 }
3015 
3016 /**
3017  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3018  * @vc_vlan: virtchnl_vlan to validate
3019  *
3020  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3021  * false. Otherwise return true.
3022  */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)3023 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3024 {
3025 	if (!vc_vlan->tci || !vc_vlan->tpid)
3026 		return false;
3027 
3028 	return true;
3029 }
3030 
3031 /**
3032  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3033  * @vfc: negotiated/supported VLAN filtering capabilities
3034  * @vfl: VLAN filter list from VF to validate
3035  *
3036  * Validate all of the filters in the VLAN filter list from the VF. If any of
3037  * the checks fail then return false. Otherwise return true.
3038  */
3039 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3040 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3041 				 struct virtchnl_vlan_filter_list_v2 *vfl)
3042 {
3043 	u16 i;
3044 
3045 	if (!vfl->num_elements)
3046 		return false;
3047 
3048 	for (i = 0; i < vfl->num_elements; i++) {
3049 		struct virtchnl_vlan_supported_caps *filtering_support =
3050 			&vfc->filtering_support;
3051 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3052 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3053 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3054 
3055 		if ((ice_vc_is_valid_vlan(outer) &&
3056 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3057 		    (ice_vc_is_valid_vlan(inner) &&
3058 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3059 			return false;
3060 
3061 		if ((outer->tci_mask &&
3062 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3063 		    (inner->tci_mask &&
3064 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3065 			return false;
3066 
3067 		if (((outer->tci & VLAN_PRIO_MASK) &&
3068 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3069 		    ((inner->tci & VLAN_PRIO_MASK) &&
3070 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3071 			return false;
3072 
3073 		if ((ice_vc_is_valid_vlan(outer) &&
3074 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3075 						outer->tpid)) ||
3076 		    (ice_vc_is_valid_vlan(inner) &&
3077 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3078 						inner->tpid)))
3079 			return false;
3080 	}
3081 
3082 	return true;
3083 }
3084 
3085 /**
3086  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3087  * @vc_vlan: struct virtchnl_vlan to transform
3088  */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)3089 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3090 {
3091 	struct ice_vlan vlan = { 0 };
3092 
3093 	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3094 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3095 	vlan.tpid = vc_vlan->tpid;
3096 
3097 	return vlan;
3098 }
3099 
3100 /**
3101  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3102  * @vsi: VF's VSI used to perform the action
3103  * @vlan_action: function to perform the action with (i.e. add/del)
3104  * @vlan: VLAN filter to perform the action with
3105  */
3106 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)3107 ice_vc_vlan_action(struct ice_vsi *vsi,
3108 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3109 		   struct ice_vlan *vlan)
3110 {
3111 	int err;
3112 
3113 	err = vlan_action(vsi, vlan);
3114 	if (err)
3115 		return err;
3116 
3117 	return 0;
3118 }
3119 
3120 /**
3121  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3122  * @vf: VF used to delete the VLAN(s)
3123  * @vsi: VF's VSI used to delete the VLAN(s)
3124  * @vfl: virthchnl filter list used to delete the filters
3125  */
3126 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3127 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3128 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3129 {
3130 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3131 	int err;
3132 	u16 i;
3133 
3134 	for (i = 0; i < vfl->num_elements; i++) {
3135 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3136 		struct virtchnl_vlan *vc_vlan;
3137 
3138 		vc_vlan = &vlan_fltr->outer;
3139 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3140 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3141 
3142 			err = ice_vc_vlan_action(vsi,
3143 						 vsi->outer_vlan_ops.del_vlan,
3144 						 &vlan);
3145 			if (err)
3146 				return err;
3147 
3148 			if (vlan_promisc)
3149 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3150 
3151 			/* Disable VLAN filtering when only VLAN 0 is left */
3152 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3153 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3154 				if (err)
3155 					return err;
3156 			}
3157 		}
3158 
3159 		vc_vlan = &vlan_fltr->inner;
3160 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3161 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3162 
3163 			err = ice_vc_vlan_action(vsi,
3164 						 vsi->inner_vlan_ops.del_vlan,
3165 						 &vlan);
3166 			if (err)
3167 				return err;
3168 
3169 			/* no support for VLAN promiscuous on inner VLAN unless
3170 			 * we are in Single VLAN Mode (SVM)
3171 			 */
3172 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3173 				if (vlan_promisc)
3174 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3175 
3176 				/* Disable VLAN filtering when only VLAN 0 is left */
3177 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3178 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3179 					if (err)
3180 						return err;
3181 				}
3182 			}
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 /**
3190  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3191  * @vf: VF the message was received from
3192  * @msg: message received from the VF
3193  */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3194 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3195 {
3196 	struct virtchnl_vlan_filter_list_v2 *vfl =
3197 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3198 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3199 	struct ice_vsi *vsi;
3200 
3201 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3202 					      vfl)) {
3203 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3204 		goto out;
3205 	}
3206 
3207 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3208 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3209 		goto out;
3210 	}
3211 
3212 	vsi = ice_get_vf_vsi(vf);
3213 	if (!vsi) {
3214 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3215 		goto out;
3216 	}
3217 
3218 	if (ice_vc_del_vlans(vf, vsi, vfl))
3219 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3220 
3221 out:
3222 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3223 				     0);
3224 }
3225 
3226 /**
3227  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3228  * @vf: VF used to add the VLAN(s)
3229  * @vsi: VF's VSI used to add the VLAN(s)
3230  * @vfl: virthchnl filter list used to add the filters
3231  */
3232 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3233 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3234 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3235 {
3236 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3237 	int err;
3238 	u16 i;
3239 
3240 	for (i = 0; i < vfl->num_elements; i++) {
3241 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3242 		struct virtchnl_vlan *vc_vlan;
3243 
3244 		vc_vlan = &vlan_fltr->outer;
3245 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3246 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3247 
3248 			err = ice_vc_vlan_action(vsi,
3249 						 vsi->outer_vlan_ops.add_vlan,
3250 						 &vlan);
3251 			if (err)
3252 				return err;
3253 
3254 			if (vlan_promisc) {
3255 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3256 				if (err)
3257 					return err;
3258 			}
3259 
3260 			/* Enable VLAN filtering on first non-zero VLAN */
3261 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3262 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3263 				if (err)
3264 					return err;
3265 			}
3266 		}
3267 
3268 		vc_vlan = &vlan_fltr->inner;
3269 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3270 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3271 
3272 			err = ice_vc_vlan_action(vsi,
3273 						 vsi->inner_vlan_ops.add_vlan,
3274 						 &vlan);
3275 			if (err)
3276 				return err;
3277 
3278 			/* no support for VLAN promiscuous on inner VLAN unless
3279 			 * we are in Single VLAN Mode (SVM)
3280 			 */
3281 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3282 				if (vlan_promisc) {
3283 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3284 					if (err)
3285 						return err;
3286 				}
3287 
3288 				/* Enable VLAN filtering on first non-zero VLAN */
3289 				if (vf->spoofchk && vlan.vid) {
3290 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3291 					if (err)
3292 						return err;
3293 				}
3294 			}
3295 		}
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 /**
3302  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3303  * @vsi: VF VSI used to get number of existing VLAN filters
3304  * @vfc: negotiated/supported VLAN filtering capabilities
3305  * @vfl: VLAN filter list from VF to validate
3306  *
3307  * Validate all of the filters in the VLAN filter list from the VF during the
3308  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3309  * Otherwise return true.
3310  */
3311 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3312 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3313 				     struct virtchnl_vlan_filtering_caps *vfc,
3314 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3315 {
3316 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3317 		vfl->num_elements;
3318 
3319 	if (num_requested_filters > vfc->max_filters)
3320 		return false;
3321 
3322 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3323 }
3324 
3325 /**
3326  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3327  * @vf: VF the message was received from
3328  * @msg: message received from the VF
3329  */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3330 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3331 {
3332 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3333 	struct virtchnl_vlan_filter_list_v2 *vfl =
3334 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3335 	struct ice_vsi *vsi;
3336 
3337 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3338 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3339 		goto out;
3340 	}
3341 
3342 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3343 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3344 		goto out;
3345 	}
3346 
3347 	vsi = ice_get_vf_vsi(vf);
3348 	if (!vsi) {
3349 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3350 		goto out;
3351 	}
3352 
3353 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3354 						  &vf->vlan_v2_caps.filtering,
3355 						  vfl)) {
3356 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3357 		goto out;
3358 	}
3359 
3360 	if (ice_vc_add_vlans(vf, vsi, vfl))
3361 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3362 
3363 out:
3364 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3365 				     0);
3366 }
3367 
3368 /**
3369  * ice_vc_valid_vlan_setting - validate VLAN setting
3370  * @negotiated_settings: negotiated VLAN settings during VF init
3371  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3372  */
3373 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3374 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3375 {
3376 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3377 		return false;
3378 
3379 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3380 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3381 	 */
3382 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3383 	    hweight32(ethertype_setting) > 1)
3384 		return false;
3385 
3386 	/* ability to modify the VLAN setting was not negotiated */
3387 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3388 		return false;
3389 
3390 	return true;
3391 }
3392 
3393 /**
3394  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3395  * @caps: negotiated VLAN settings during VF init
3396  * @msg: message to validate
3397  *
3398  * Used to validate any VLAN virtchnl message sent as a
3399  * virtchnl_vlan_setting structure. Validates the message against the
3400  * negotiated/supported caps during VF driver init.
3401  */
3402 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3403 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3404 			      struct virtchnl_vlan_setting *msg)
3405 {
3406 	if ((!msg->outer_ethertype_setting &&
3407 	     !msg->inner_ethertype_setting) ||
3408 	    (!caps->outer && !caps->inner))
3409 		return false;
3410 
3411 	if (msg->outer_ethertype_setting &&
3412 	    !ice_vc_valid_vlan_setting(caps->outer,
3413 				       msg->outer_ethertype_setting))
3414 		return false;
3415 
3416 	if (msg->inner_ethertype_setting &&
3417 	    !ice_vc_valid_vlan_setting(caps->inner,
3418 				       msg->inner_ethertype_setting))
3419 		return false;
3420 
3421 	return true;
3422 }
3423 
3424 /**
3425  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3426  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3427  * @tpid: VLAN TPID to populate
3428  */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3429 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3430 {
3431 	switch (ethertype_setting) {
3432 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3433 		*tpid = ETH_P_8021Q;
3434 		break;
3435 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3436 		*tpid = ETH_P_8021AD;
3437 		break;
3438 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3439 		*tpid = ETH_P_QINQ1;
3440 		break;
3441 	default:
3442 		*tpid = 0;
3443 		return -EINVAL;
3444 	}
3445 
3446 	return 0;
3447 }
3448 
3449 /**
3450  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3451  * @vsi: VF's VSI used to enable the VLAN offload
3452  * @ena_offload: function used to enable the VLAN offload
3453  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3454  */
3455 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3456 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3457 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3458 			u32 ethertype_setting)
3459 {
3460 	u16 tpid;
3461 	int err;
3462 
3463 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3464 	if (err)
3465 		return err;
3466 
3467 	err = ena_offload(vsi, tpid);
3468 	if (err)
3469 		return err;
3470 
3471 	return 0;
3472 }
3473 
3474 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3475 #define ICE_L2TSEL_BIT_OFFSET		23
3476 enum ice_l2tsel {
3477 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3478 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3479 };
3480 
3481 /**
3482  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3483  * @vsi: VSI used to update l2tsel on
3484  * @l2tsel: l2tsel setting requested
3485  *
3486  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3487  * This will modify which descriptor field the first offloaded VLAN will be
3488  * stripped into.
3489  */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3490 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3491 {
3492 	struct ice_hw *hw = &vsi->back->hw;
3493 	u32 l2tsel_bit;
3494 	int i;
3495 
3496 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3497 		l2tsel_bit = 0;
3498 	else
3499 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3500 
3501 	for (i = 0; i < vsi->alloc_rxq; i++) {
3502 		u16 pfq = vsi->rxq_map[i];
3503 		u32 qrx_context_offset;
3504 		u32 regval;
3505 
3506 		qrx_context_offset =
3507 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3508 
3509 		regval = rd32(hw, qrx_context_offset);
3510 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3511 		regval |= l2tsel_bit;
3512 		wr32(hw, qrx_context_offset, regval);
3513 	}
3514 }
3515 
3516 /**
3517  * ice_vc_ena_vlan_stripping_v2_msg
3518  * @vf: VF the message was received from
3519  * @msg: message received from the VF
3520  *
3521  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3522  */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3523 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3524 {
3525 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3526 	struct virtchnl_vlan_supported_caps *stripping_support;
3527 	struct virtchnl_vlan_setting *strip_msg =
3528 		(struct virtchnl_vlan_setting *)msg;
3529 	u32 ethertype_setting;
3530 	struct ice_vsi *vsi;
3531 
3532 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3533 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3534 		goto out;
3535 	}
3536 
3537 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3538 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3539 		goto out;
3540 	}
3541 
3542 	vsi = ice_get_vf_vsi(vf);
3543 	if (!vsi) {
3544 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3545 		goto out;
3546 	}
3547 
3548 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3549 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3550 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3551 		goto out;
3552 	}
3553 
3554 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3555 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3556 		goto out;
3557 	}
3558 
3559 	ethertype_setting = strip_msg->outer_ethertype_setting;
3560 	if (ethertype_setting) {
3561 		if (ice_vc_ena_vlan_offload(vsi,
3562 					    vsi->outer_vlan_ops.ena_stripping,
3563 					    ethertype_setting)) {
3564 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3565 			goto out;
3566 		} else {
3567 			enum ice_l2tsel l2tsel =
3568 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3569 
3570 			/* PF tells the VF that the outer VLAN tag is always
3571 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3572 			 * inner is always extracted to
3573 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3574 			 * support outer stripping so the first tag always ends
3575 			 * up in L2TAG2_2ND and the second/inner tag, if
3576 			 * enabled, is extracted in L2TAG1.
3577 			 */
3578 			ice_vsi_update_l2tsel(vsi, l2tsel);
3579 
3580 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3581 		}
3582 	}
3583 
3584 	ethertype_setting = strip_msg->inner_ethertype_setting;
3585 	if (ethertype_setting &&
3586 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3587 				    ethertype_setting)) {
3588 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3589 		goto out;
3590 	}
3591 
3592 	if (ethertype_setting)
3593 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3594 
3595 out:
3596 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3597 				     v_ret, NULL, 0);
3598 }
3599 
3600 /**
3601  * ice_vc_dis_vlan_stripping_v2_msg
3602  * @vf: VF the message was received from
3603  * @msg: message received from the VF
3604  *
3605  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3606  */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3607 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3608 {
3609 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3610 	struct virtchnl_vlan_supported_caps *stripping_support;
3611 	struct virtchnl_vlan_setting *strip_msg =
3612 		(struct virtchnl_vlan_setting *)msg;
3613 	u32 ethertype_setting;
3614 	struct ice_vsi *vsi;
3615 
3616 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3617 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3618 		goto out;
3619 	}
3620 
3621 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3622 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623 		goto out;
3624 	}
3625 
3626 	vsi = ice_get_vf_vsi(vf);
3627 	if (!vsi) {
3628 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3629 		goto out;
3630 	}
3631 
3632 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3633 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3634 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3635 		goto out;
3636 	}
3637 
3638 	ethertype_setting = strip_msg->outer_ethertype_setting;
3639 	if (ethertype_setting) {
3640 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3641 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3642 			goto out;
3643 		} else {
3644 			enum ice_l2tsel l2tsel =
3645 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3646 
3647 			/* PF tells the VF that the outer VLAN tag is always
3648 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3649 			 * inner is always extracted to
3650 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3651 			 * support inner stripping while outer stripping is
3652 			 * disabled so that the first and only tag is extracted
3653 			 * in L2TAG1.
3654 			 */
3655 			ice_vsi_update_l2tsel(vsi, l2tsel);
3656 
3657 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3658 		}
3659 	}
3660 
3661 	ethertype_setting = strip_msg->inner_ethertype_setting;
3662 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3663 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3664 		goto out;
3665 	}
3666 
3667 	if (ethertype_setting)
3668 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3669 
3670 out:
3671 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3672 				     v_ret, NULL, 0);
3673 }
3674 
3675 /**
3676  * ice_vc_ena_vlan_insertion_v2_msg
3677  * @vf: VF the message was received from
3678  * @msg: message received from the VF
3679  *
3680  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3681  */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3682 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3683 {
3684 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3685 	struct virtchnl_vlan_supported_caps *insertion_support;
3686 	struct virtchnl_vlan_setting *insertion_msg =
3687 		(struct virtchnl_vlan_setting *)msg;
3688 	u32 ethertype_setting;
3689 	struct ice_vsi *vsi;
3690 
3691 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3692 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3693 		goto out;
3694 	}
3695 
3696 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3697 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3698 		goto out;
3699 	}
3700 
3701 	vsi = ice_get_vf_vsi(vf);
3702 	if (!vsi) {
3703 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3704 		goto out;
3705 	}
3706 
3707 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3708 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3709 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3710 		goto out;
3711 	}
3712 
3713 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3714 	if (ethertype_setting &&
3715 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3716 				    ethertype_setting)) {
3717 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3718 		goto out;
3719 	}
3720 
3721 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3722 	if (ethertype_setting &&
3723 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3724 				    ethertype_setting)) {
3725 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3726 		goto out;
3727 	}
3728 
3729 out:
3730 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3731 				     v_ret, NULL, 0);
3732 }
3733 
3734 /**
3735  * ice_vc_dis_vlan_insertion_v2_msg
3736  * @vf: VF the message was received from
3737  * @msg: message received from the VF
3738  *
3739  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3740  */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3741 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3742 {
3743 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3744 	struct virtchnl_vlan_supported_caps *insertion_support;
3745 	struct virtchnl_vlan_setting *insertion_msg =
3746 		(struct virtchnl_vlan_setting *)msg;
3747 	u32 ethertype_setting;
3748 	struct ice_vsi *vsi;
3749 
3750 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3751 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3752 		goto out;
3753 	}
3754 
3755 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3756 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3757 		goto out;
3758 	}
3759 
3760 	vsi = ice_get_vf_vsi(vf);
3761 	if (!vsi) {
3762 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3763 		goto out;
3764 	}
3765 
3766 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3767 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3768 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3769 		goto out;
3770 	}
3771 
3772 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3773 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3774 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3775 		goto out;
3776 	}
3777 
3778 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3779 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3780 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3781 		goto out;
3782 	}
3783 
3784 out:
3785 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3786 				     v_ret, NULL, 0);
3787 }
3788 
3789 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3790 	.get_ver_msg = ice_vc_get_ver_msg,
3791 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3792 	.reset_vf = ice_vc_reset_vf_msg,
3793 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3794 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3795 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3796 	.ena_qs_msg = ice_vc_ena_qs_msg,
3797 	.dis_qs_msg = ice_vc_dis_qs_msg,
3798 	.request_qs_msg = ice_vc_request_qs_msg,
3799 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3800 	.config_rss_key = ice_vc_config_rss_key,
3801 	.config_rss_lut = ice_vc_config_rss_lut,
3802 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3803 	.get_stats_msg = ice_vc_get_stats_msg,
3804 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3805 	.add_vlan_msg = ice_vc_add_vlan_msg,
3806 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3807 	.query_rxdid = ice_vc_query_rxdid,
3808 	.get_rss_hena = ice_vc_get_rss_hena,
3809 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3810 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3811 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3812 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3813 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3814 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3815 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3816 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3817 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3818 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3819 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3820 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3821 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3822 };
3823 
3824 /**
3825  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3826  * @vf: the VF to switch ops
3827  */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)3828 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3829 {
3830 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3831 }
3832 
3833 /**
3834  * ice_vc_repr_add_mac
3835  * @vf: pointer to VF
3836  * @msg: virtchannel message
3837  *
3838  * When port representors are created, we do not add MAC rule
3839  * to firmware, we store it so that PF could report same
3840  * MAC as VF.
3841  */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)3842 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3843 {
3844 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3845 	struct virtchnl_ether_addr_list *al =
3846 	    (struct virtchnl_ether_addr_list *)msg;
3847 	struct ice_vsi *vsi;
3848 	struct ice_pf *pf;
3849 	int i;
3850 
3851 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3852 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3853 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3854 		goto handle_mac_exit;
3855 	}
3856 
3857 	pf = vf->pf;
3858 
3859 	vsi = ice_get_vf_vsi(vf);
3860 	if (!vsi) {
3861 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3862 		goto handle_mac_exit;
3863 	}
3864 
3865 	for (i = 0; i < al->num_elements; i++) {
3866 		u8 *mac_addr = al->list[i].addr;
3867 
3868 		if (!is_unicast_ether_addr(mac_addr) ||
3869 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3870 			continue;
3871 
3872 		if (vf->pf_set_mac) {
3873 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3874 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3875 			goto handle_mac_exit;
3876 		}
3877 
3878 		ice_vfhw_mac_add(vf, &al->list[i]);
3879 		break;
3880 	}
3881 
3882 handle_mac_exit:
3883 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3884 				     v_ret, NULL, 0);
3885 }
3886 
3887 /**
3888  * ice_vc_repr_del_mac - response with success for deleting MAC
3889  * @vf: pointer to VF
3890  * @msg: virtchannel message
3891  *
3892  * Respond with success to not break normal VF flow.
3893  * For legacy VF driver try to update cached MAC address.
3894  */
3895 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)3896 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3897 {
3898 	struct virtchnl_ether_addr_list *al =
3899 		(struct virtchnl_ether_addr_list *)msg;
3900 
3901 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3902 
3903 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3904 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3905 }
3906 
3907 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)3908 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3909 {
3910 	dev_dbg(ice_pf_to_dev(vf->pf),
3911 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3912 		vf->vf_id);
3913 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3914 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3915 				     NULL, 0);
3916 }
3917 
3918 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3919 	.get_ver_msg = ice_vc_get_ver_msg,
3920 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3921 	.reset_vf = ice_vc_reset_vf_msg,
3922 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3923 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3924 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3925 	.ena_qs_msg = ice_vc_ena_qs_msg,
3926 	.dis_qs_msg = ice_vc_dis_qs_msg,
3927 	.request_qs_msg = ice_vc_request_qs_msg,
3928 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3929 	.config_rss_key = ice_vc_config_rss_key,
3930 	.config_rss_lut = ice_vc_config_rss_lut,
3931 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3932 	.get_stats_msg = ice_vc_get_stats_msg,
3933 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3934 	.add_vlan_msg = ice_vc_add_vlan_msg,
3935 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3936 	.query_rxdid = ice_vc_query_rxdid,
3937 	.get_rss_hena = ice_vc_get_rss_hena,
3938 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3939 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3940 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3941 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3942 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3943 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3944 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3945 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3946 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3947 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3948 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3949 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3950 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3951 };
3952 
3953 /**
3954  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3955  * @vf: the VF to switch ops
3956  */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)3957 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3958 {
3959 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3960 }
3961 
3962 /**
3963  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3964  * @vf: the VF to check
3965  * @mbxdata: data about the state of the mailbox
3966  *
3967  * Detect if a given VF might be malicious and attempting to overflow the PF
3968  * mailbox. If so, log a warning message and ignore this event.
3969  */
3970 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)3971 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3972 {
3973 	bool report_malvf = false;
3974 	struct device *dev;
3975 	struct ice_pf *pf;
3976 	int status;
3977 
3978 	pf = vf->pf;
3979 	dev = ice_pf_to_dev(pf);
3980 
3981 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3982 		return vf->mbx_info.malicious;
3983 
3984 	/* check to see if we have a newly malicious VF */
3985 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3986 					  &report_malvf);
3987 	if (status)
3988 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3989 				     vf->vf_id, vf->dev_lan_addr, status);
3990 
3991 	if (report_malvf) {
3992 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3993 		u8 zero_addr[ETH_ALEN] = {};
3994 
3995 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3996 			 vf->dev_lan_addr,
3997 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3998 	}
3999 
4000 	return vf->mbx_info.malicious;
4001 }
4002 
4003 /**
4004  * ice_vc_process_vf_msg - Process request from VF
4005  * @pf: pointer to the PF structure
4006  * @event: pointer to the AQ event
4007  * @mbxdata: information used to detect VF attempting mailbox overflow
4008  *
4009  * Called from the common asq/arq handler to process request from VF. When this
4010  * flow is used for devices with hardware VF to PF message queue overflow
4011  * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4012  * check is skipped.
4013  */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)4014 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4015 			   struct ice_mbx_data *mbxdata)
4016 {
4017 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4018 	s16 vf_id = le16_to_cpu(event->desc.retval);
4019 	const struct ice_virtchnl_ops *ops;
4020 	u16 msglen = event->msg_len;
4021 	u8 *msg = event->msg_buf;
4022 	struct ice_vf *vf = NULL;
4023 	struct device *dev;
4024 	int err = 0;
4025 
4026 	dev = ice_pf_to_dev(pf);
4027 
4028 	vf = ice_get_vf_by_id(pf, vf_id);
4029 	if (!vf) {
4030 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4031 			vf_id, v_opcode, msglen);
4032 		return;
4033 	}
4034 
4035 	mutex_lock(&vf->cfg_lock);
4036 
4037 	/* Check if the VF is trying to overflow the mailbox */
4038 	if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4039 		goto finish;
4040 
4041 	/* Check if VF is disabled. */
4042 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4043 		err = -EPERM;
4044 		goto error_handler;
4045 	}
4046 
4047 	ops = vf->virtchnl_ops;
4048 
4049 	/* Perform basic checks on the msg */
4050 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4051 	if (err) {
4052 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4053 			err = -EPERM;
4054 		else
4055 			err = -EINVAL;
4056 	}
4057 
4058 error_handler:
4059 	if (err) {
4060 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4061 				      NULL, 0);
4062 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4063 			vf_id, v_opcode, msglen, err);
4064 		goto finish;
4065 	}
4066 
4067 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4068 		ice_vc_send_msg_to_vf(vf, v_opcode,
4069 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4070 				      0);
4071 		goto finish;
4072 	}
4073 
4074 	switch (v_opcode) {
4075 	case VIRTCHNL_OP_VERSION:
4076 		err = ops->get_ver_msg(vf, msg);
4077 		break;
4078 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4079 		err = ops->get_vf_res_msg(vf, msg);
4080 		if (ice_vf_init_vlan_stripping(vf))
4081 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4082 				vf->vf_id);
4083 		ice_vc_notify_vf_link_state(vf);
4084 		break;
4085 	case VIRTCHNL_OP_RESET_VF:
4086 		ops->reset_vf(vf);
4087 		break;
4088 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4089 		err = ops->add_mac_addr_msg(vf, msg);
4090 		break;
4091 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4092 		err = ops->del_mac_addr_msg(vf, msg);
4093 		break;
4094 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4095 		err = ops->cfg_qs_msg(vf, msg);
4096 		break;
4097 	case VIRTCHNL_OP_ENABLE_QUEUES:
4098 		err = ops->ena_qs_msg(vf, msg);
4099 		ice_vc_notify_vf_link_state(vf);
4100 		break;
4101 	case VIRTCHNL_OP_DISABLE_QUEUES:
4102 		err = ops->dis_qs_msg(vf, msg);
4103 		break;
4104 	case VIRTCHNL_OP_REQUEST_QUEUES:
4105 		err = ops->request_qs_msg(vf, msg);
4106 		break;
4107 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4108 		err = ops->cfg_irq_map_msg(vf, msg);
4109 		break;
4110 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4111 		err = ops->config_rss_key(vf, msg);
4112 		break;
4113 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4114 		err = ops->config_rss_lut(vf, msg);
4115 		break;
4116 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4117 		err = ops->config_rss_hfunc(vf, msg);
4118 		break;
4119 	case VIRTCHNL_OP_GET_STATS:
4120 		err = ops->get_stats_msg(vf, msg);
4121 		break;
4122 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4123 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4124 		break;
4125 	case VIRTCHNL_OP_ADD_VLAN:
4126 		err = ops->add_vlan_msg(vf, msg);
4127 		break;
4128 	case VIRTCHNL_OP_DEL_VLAN:
4129 		err = ops->remove_vlan_msg(vf, msg);
4130 		break;
4131 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4132 		err = ops->query_rxdid(vf);
4133 		break;
4134 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4135 		err = ops->get_rss_hena(vf);
4136 		break;
4137 	case VIRTCHNL_OP_SET_RSS_HENA:
4138 		err = ops->set_rss_hena_msg(vf, msg);
4139 		break;
4140 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4141 		err = ops->ena_vlan_stripping(vf);
4142 		break;
4143 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4144 		err = ops->dis_vlan_stripping(vf);
4145 		break;
4146 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4147 		err = ops->add_fdir_fltr_msg(vf, msg);
4148 		break;
4149 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4150 		err = ops->del_fdir_fltr_msg(vf, msg);
4151 		break;
4152 	case VIRTCHNL_OP_ADD_RSS_CFG:
4153 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4154 		break;
4155 	case VIRTCHNL_OP_DEL_RSS_CFG:
4156 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4157 		break;
4158 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4159 		err = ops->get_offload_vlan_v2_caps(vf);
4160 		break;
4161 	case VIRTCHNL_OP_ADD_VLAN_V2:
4162 		err = ops->add_vlan_v2_msg(vf, msg);
4163 		break;
4164 	case VIRTCHNL_OP_DEL_VLAN_V2:
4165 		err = ops->remove_vlan_v2_msg(vf, msg);
4166 		break;
4167 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4168 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4169 		break;
4170 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4171 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4172 		break;
4173 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4174 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4175 		break;
4176 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4177 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4178 		break;
4179 	case VIRTCHNL_OP_UNKNOWN:
4180 	default:
4181 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4182 			vf_id);
4183 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4184 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4185 					    NULL, 0);
4186 		break;
4187 	}
4188 	if (err) {
4189 		/* Helper function cares less about error return values here
4190 		 * as it is busy with pending work.
4191 		 */
4192 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4193 			 vf_id, v_opcode, err);
4194 	}
4195 
4196 finish:
4197 	mutex_unlock(&vf->cfg_lock);
4198 	ice_put_vf(vf);
4199 }
4200