1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(const struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
has_unwritten_metadata(struct btrfs_block_group * block_group)37 static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38 {
39 /* The meta_write_pointer is available only on the zoned setup. */
40 if (!btrfs_is_zoned(block_group->fs_info))
41 return false;
42
43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44 return false;
45
46 return block_group->start + block_group->alloc_offset >
47 block_group->meta_write_pointer;
48 }
49
50 /*
51 * Return target flags in extended format or 0 if restripe for this chunk_type
52 * is not in progress
53 *
54 * Should be called with balance_lock held
55 */
get_restripe_target(const struct btrfs_fs_info * fs_info,u64 flags)56 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59 u64 target = 0;
60
61 if (!bctl)
62 return 0;
63
64 if (flags & BTRFS_BLOCK_GROUP_DATA &&
65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73 }
74
75 return target;
76 }
77
78 /*
79 * @flags: available profiles in extended format (see ctree.h)
80 *
81 * Return reduced profile in chunk format. If profile changing is in progress
82 * (either running or paused) picks the target profile (if it's already
83 * available), otherwise falls back to plain reducing.
84 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)85 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86 {
87 u64 num_devices = fs_info->fs_devices->rw_devices;
88 u64 target;
89 u64 raid_type;
90 u64 allowed = 0;
91
92 /*
93 * See if restripe for this chunk_type is in progress, if so try to
94 * reduce to the target profile
95 */
96 spin_lock(&fs_info->balance_lock);
97 target = get_restripe_target(fs_info, flags);
98 if (target) {
99 spin_unlock(&fs_info->balance_lock);
100 return extended_to_chunk(target);
101 }
102 spin_unlock(&fs_info->balance_lock);
103
104 /* First, mask out the RAID levels which aren't possible */
105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107 allowed |= btrfs_raid_array[raid_type].bg_flag;
108 }
109 allowed &= flags;
110
111 /* Select the highest-redundancy RAID level. */
112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115 allowed = BTRFS_BLOCK_GROUP_RAID6;
116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119 allowed = BTRFS_BLOCK_GROUP_RAID5;
120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121 allowed = BTRFS_BLOCK_GROUP_RAID10;
122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123 allowed = BTRFS_BLOCK_GROUP_RAID1;
124 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125 allowed = BTRFS_BLOCK_GROUP_DUP;
126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127 allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131 return extended_to_chunk(flags | allowed);
132 }
133
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)134 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135 {
136 unsigned seq;
137 u64 flags;
138
139 do {
140 flags = orig_flags;
141 seq = read_seqbegin(&fs_info->profiles_lock);
142
143 if (flags & BTRFS_BLOCK_GROUP_DATA)
144 flags |= fs_info->avail_data_alloc_bits;
145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146 flags |= fs_info->avail_system_alloc_bits;
147 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148 flags |= fs_info->avail_metadata_alloc_bits;
149 } while (read_seqretry(&fs_info->profiles_lock, seq));
150
151 return btrfs_reduce_alloc_profile(fs_info, flags);
152 }
153
btrfs_get_block_group(struct btrfs_block_group * cache)154 void btrfs_get_block_group(struct btrfs_block_group *cache)
155 {
156 refcount_inc(&cache->refs);
157 }
158
btrfs_put_block_group(struct btrfs_block_group * cache)159 void btrfs_put_block_group(struct btrfs_block_group *cache)
160 {
161 if (refcount_dec_and_test(&cache->refs)) {
162 WARN_ON(cache->pinned > 0);
163 /*
164 * If there was a failure to cleanup a log tree, very likely due
165 * to an IO failure on a writeback attempt of one or more of its
166 * extent buffers, we could not do proper (and cheap) unaccounting
167 * of their reserved space, so don't warn on reserved > 0 in that
168 * case.
169 */
170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172 WARN_ON(cache->reserved > 0);
173
174 /*
175 * A block_group shouldn't be on the discard_list anymore.
176 * Remove the block_group from the discard_list to prevent us
177 * from causing a panic due to NULL pointer dereference.
178 */
179 if (WARN_ON(!list_empty(&cache->discard_list)))
180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181 cache);
182
183 kfree(cache->free_space_ctl);
184 btrfs_free_chunk_map(cache->physical_map);
185 kfree(cache);
186 }
187 }
188
189 /*
190 * This adds the block group to the fs_info rb tree for the block group cache
191 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)192 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
193 struct btrfs_block_group *block_group)
194 {
195 struct rb_node **p;
196 struct rb_node *parent = NULL;
197 struct btrfs_block_group *cache;
198 bool leftmost = true;
199
200 ASSERT(block_group->length != 0);
201
202 write_lock(&info->block_group_cache_lock);
203 p = &info->block_group_cache_tree.rb_root.rb_node;
204
205 while (*p) {
206 parent = *p;
207 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
208 if (block_group->start < cache->start) {
209 p = &(*p)->rb_left;
210 } else if (block_group->start > cache->start) {
211 p = &(*p)->rb_right;
212 leftmost = false;
213 } else {
214 write_unlock(&info->block_group_cache_lock);
215 return -EEXIST;
216 }
217 }
218
219 rb_link_node(&block_group->cache_node, parent, p);
220 rb_insert_color_cached(&block_group->cache_node,
221 &info->block_group_cache_tree, leftmost);
222
223 write_unlock(&info->block_group_cache_lock);
224
225 return 0;
226 }
227
228 /*
229 * This will return the block group at or after bytenr if contains is 0, else
230 * it will return the block group that contains the bytenr
231 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)232 static struct btrfs_block_group *block_group_cache_tree_search(
233 struct btrfs_fs_info *info, u64 bytenr, int contains)
234 {
235 struct btrfs_block_group *cache, *ret = NULL;
236 struct rb_node *n;
237 u64 end, start;
238
239 read_lock(&info->block_group_cache_lock);
240 n = info->block_group_cache_tree.rb_root.rb_node;
241
242 while (n) {
243 cache = rb_entry(n, struct btrfs_block_group, cache_node);
244 end = cache->start + cache->length - 1;
245 start = cache->start;
246
247 if (bytenr < start) {
248 if (!contains && (!ret || start < ret->start))
249 ret = cache;
250 n = n->rb_left;
251 } else if (bytenr > start) {
252 if (contains && bytenr <= end) {
253 ret = cache;
254 break;
255 }
256 n = n->rb_right;
257 } else {
258 ret = cache;
259 break;
260 }
261 }
262 if (ret)
263 btrfs_get_block_group(ret);
264 read_unlock(&info->block_group_cache_lock);
265
266 return ret;
267 }
268
269 /*
270 * Return the block group that starts at or after bytenr
271 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)272 struct btrfs_block_group *btrfs_lookup_first_block_group(
273 struct btrfs_fs_info *info, u64 bytenr)
274 {
275 return block_group_cache_tree_search(info, bytenr, 0);
276 }
277
278 /*
279 * Return the block group that contains the given bytenr
280 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)281 struct btrfs_block_group *btrfs_lookup_block_group(
282 struct btrfs_fs_info *info, u64 bytenr)
283 {
284 return block_group_cache_tree_search(info, bytenr, 1);
285 }
286
btrfs_next_block_group(struct btrfs_block_group * cache)287 struct btrfs_block_group *btrfs_next_block_group(
288 struct btrfs_block_group *cache)
289 {
290 struct btrfs_fs_info *fs_info = cache->fs_info;
291 struct rb_node *node;
292
293 read_lock(&fs_info->block_group_cache_lock);
294
295 /* If our block group was removed, we need a full search. */
296 if (RB_EMPTY_NODE(&cache->cache_node)) {
297 const u64 next_bytenr = cache->start + cache->length;
298
299 read_unlock(&fs_info->block_group_cache_lock);
300 btrfs_put_block_group(cache);
301 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
302 }
303 node = rb_next(&cache->cache_node);
304 btrfs_put_block_group(cache);
305 if (node) {
306 cache = rb_entry(node, struct btrfs_block_group, cache_node);
307 btrfs_get_block_group(cache);
308 } else
309 cache = NULL;
310 read_unlock(&fs_info->block_group_cache_lock);
311 return cache;
312 }
313
314 /*
315 * Check if we can do a NOCOW write for a given extent.
316 *
317 * @fs_info: The filesystem information object.
318 * @bytenr: Logical start address of the extent.
319 *
320 * Check if we can do a NOCOW write for the given extent, and increments the
321 * number of NOCOW writers in the block group that contains the extent, as long
322 * as the block group exists and it's currently not in read-only mode.
323 *
324 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
325 * is responsible for calling btrfs_dec_nocow_writers() later.
326 *
327 * Or NULL if we can not do a NOCOW write
328 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)329 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
330 u64 bytenr)
331 {
332 struct btrfs_block_group *bg;
333 bool can_nocow = true;
334
335 bg = btrfs_lookup_block_group(fs_info, bytenr);
336 if (!bg)
337 return NULL;
338
339 spin_lock(&bg->lock);
340 if (bg->ro)
341 can_nocow = false;
342 else
343 atomic_inc(&bg->nocow_writers);
344 spin_unlock(&bg->lock);
345
346 if (!can_nocow) {
347 btrfs_put_block_group(bg);
348 return NULL;
349 }
350
351 /* No put on block group, done by btrfs_dec_nocow_writers(). */
352 return bg;
353 }
354
355 /*
356 * Decrement the number of NOCOW writers in a block group.
357 *
358 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
359 * and on the block group returned by that call. Typically this is called after
360 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
361 * relocation.
362 *
363 * After this call, the caller should not use the block group anymore. It it wants
364 * to use it, then it should get a reference on it before calling this function.
365 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)366 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
367 {
368 if (atomic_dec_and_test(&bg->nocow_writers))
369 wake_up_var(&bg->nocow_writers);
370
371 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
372 btrfs_put_block_group(bg);
373 }
374
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)375 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
376 {
377 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
378 }
379
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)380 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
381 const u64 start)
382 {
383 struct btrfs_block_group *bg;
384
385 bg = btrfs_lookup_block_group(fs_info, start);
386 ASSERT(bg);
387 if (atomic_dec_and_test(&bg->reservations))
388 wake_up_var(&bg->reservations);
389 btrfs_put_block_group(bg);
390 }
391
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)392 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
393 {
394 struct btrfs_space_info *space_info = bg->space_info;
395
396 ASSERT(bg->ro);
397
398 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
399 return;
400
401 /*
402 * Our block group is read only but before we set it to read only,
403 * some task might have had allocated an extent from it already, but it
404 * has not yet created a respective ordered extent (and added it to a
405 * root's list of ordered extents).
406 * Therefore wait for any task currently allocating extents, since the
407 * block group's reservations counter is incremented while a read lock
408 * on the groups' semaphore is held and decremented after releasing
409 * the read access on that semaphore and creating the ordered extent.
410 */
411 down_write(&space_info->groups_sem);
412 up_write(&space_info->groups_sem);
413
414 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
415 }
416
btrfs_get_caching_control(struct btrfs_block_group * cache)417 struct btrfs_caching_control *btrfs_get_caching_control(
418 struct btrfs_block_group *cache)
419 {
420 struct btrfs_caching_control *ctl;
421
422 spin_lock(&cache->lock);
423 if (!cache->caching_ctl) {
424 spin_unlock(&cache->lock);
425 return NULL;
426 }
427
428 ctl = cache->caching_ctl;
429 refcount_inc(&ctl->count);
430 spin_unlock(&cache->lock);
431 return ctl;
432 }
433
btrfs_put_caching_control(struct btrfs_caching_control * ctl)434 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
435 {
436 if (refcount_dec_and_test(&ctl->count))
437 kfree(ctl);
438 }
439
440 /*
441 * When we wait for progress in the block group caching, its because our
442 * allocation attempt failed at least once. So, we must sleep and let some
443 * progress happen before we try again.
444 *
445 * This function will sleep at least once waiting for new free space to show
446 * up, and then it will check the block group free space numbers for our min
447 * num_bytes. Another option is to have it go ahead and look in the rbtree for
448 * a free extent of a given size, but this is a good start.
449 *
450 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
451 * any of the information in this block group.
452 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)453 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
454 u64 num_bytes)
455 {
456 struct btrfs_caching_control *caching_ctl;
457 int progress;
458
459 caching_ctl = btrfs_get_caching_control(cache);
460 if (!caching_ctl)
461 return;
462
463 /*
464 * We've already failed to allocate from this block group, so even if
465 * there's enough space in the block group it isn't contiguous enough to
466 * allow for an allocation, so wait for at least the next wakeup tick,
467 * or for the thing to be done.
468 */
469 progress = atomic_read(&caching_ctl->progress);
470
471 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
472 (progress != atomic_read(&caching_ctl->progress) &&
473 (cache->free_space_ctl->free_space >= num_bytes)));
474
475 btrfs_put_caching_control(caching_ctl);
476 }
477
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)478 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
479 struct btrfs_caching_control *caching_ctl)
480 {
481 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
482 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
483 }
484
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)485 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
486 {
487 struct btrfs_caching_control *caching_ctl;
488 int ret;
489
490 caching_ctl = btrfs_get_caching_control(cache);
491 if (!caching_ctl)
492 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
493 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
494 btrfs_put_caching_control(caching_ctl);
495 return ret;
496 }
497
498 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)499 static void fragment_free_space(struct btrfs_block_group *block_group)
500 {
501 struct btrfs_fs_info *fs_info = block_group->fs_info;
502 u64 start = block_group->start;
503 u64 len = block_group->length;
504 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
505 fs_info->nodesize : fs_info->sectorsize;
506 u64 step = chunk << 1;
507
508 while (len > chunk) {
509 btrfs_remove_free_space(block_group, start, chunk);
510 start += step;
511 if (len < step)
512 len = 0;
513 else
514 len -= step;
515 }
516 }
517 #endif
518
519 /*
520 * Add a free space range to the in memory free space cache of a block group.
521 * This checks if the range contains super block locations and any such
522 * locations are not added to the free space cache.
523 *
524 * @block_group: The target block group.
525 * @start: Start offset of the range.
526 * @end: End offset of the range (exclusive).
527 * @total_added_ret: Optional pointer to return the total amount of space
528 * added to the block group's free space cache.
529 *
530 * Returns 0 on success or < 0 on error.
531 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)532 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
533 u64 end, u64 *total_added_ret)
534 {
535 struct btrfs_fs_info *info = block_group->fs_info;
536 u64 extent_start, extent_end, size;
537 int ret;
538
539 if (total_added_ret)
540 *total_added_ret = 0;
541
542 while (start < end) {
543 if (!find_first_extent_bit(&info->excluded_extents, start,
544 &extent_start, &extent_end,
545 EXTENT_DIRTY | EXTENT_UPTODATE,
546 NULL))
547 break;
548
549 if (extent_start <= start) {
550 start = extent_end + 1;
551 } else if (extent_start > start && extent_start < end) {
552 size = extent_start - start;
553 ret = btrfs_add_free_space_async_trimmed(block_group,
554 start, size);
555 if (ret)
556 return ret;
557 if (total_added_ret)
558 *total_added_ret += size;
559 start = extent_end + 1;
560 } else {
561 break;
562 }
563 }
564
565 if (start < end) {
566 size = end - start;
567 ret = btrfs_add_free_space_async_trimmed(block_group, start,
568 size);
569 if (ret)
570 return ret;
571 if (total_added_ret)
572 *total_added_ret += size;
573 }
574
575 return 0;
576 }
577
578 /*
579 * Get an arbitrary extent item index / max_index through the block group
580 *
581 * @block_group the block group to sample from
582 * @index: the integral step through the block group to grab from
583 * @max_index: the granularity of the sampling
584 * @key: return value parameter for the item we find
585 *
586 * Pre-conditions on indices:
587 * 0 <= index <= max_index
588 * 0 < max_index
589 *
590 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
591 * error code on error.
592 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)593 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
594 struct btrfs_block_group *block_group,
595 int index, int max_index,
596 struct btrfs_key *found_key)
597 {
598 struct btrfs_fs_info *fs_info = block_group->fs_info;
599 struct btrfs_root *extent_root;
600 u64 search_offset;
601 u64 search_end = block_group->start + block_group->length;
602 struct btrfs_path *path;
603 struct btrfs_key search_key;
604 int ret = 0;
605
606 ASSERT(index >= 0);
607 ASSERT(index <= max_index);
608 ASSERT(max_index > 0);
609 lockdep_assert_held(&caching_ctl->mutex);
610 lockdep_assert_held_read(&fs_info->commit_root_sem);
611
612 path = btrfs_alloc_path();
613 if (!path)
614 return -ENOMEM;
615
616 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
617 BTRFS_SUPER_INFO_OFFSET));
618
619 path->skip_locking = 1;
620 path->search_commit_root = 1;
621 path->reada = READA_FORWARD;
622
623 search_offset = index * div_u64(block_group->length, max_index);
624 search_key.objectid = block_group->start + search_offset;
625 search_key.type = BTRFS_EXTENT_ITEM_KEY;
626 search_key.offset = 0;
627
628 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
629 /* Success; sampled an extent item in the block group */
630 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
631 found_key->objectid >= block_group->start &&
632 found_key->objectid + found_key->offset <= search_end)
633 break;
634
635 /* We can't possibly find a valid extent item anymore */
636 if (found_key->objectid >= search_end) {
637 ret = 1;
638 break;
639 }
640 }
641
642 lockdep_assert_held(&caching_ctl->mutex);
643 lockdep_assert_held_read(&fs_info->commit_root_sem);
644 btrfs_free_path(path);
645 return ret;
646 }
647
648 /*
649 * Best effort attempt to compute a block group's size class while caching it.
650 *
651 * @block_group: the block group we are caching
652 *
653 * We cannot infer the size class while adding free space extents, because that
654 * logic doesn't care about contiguous file extents (it doesn't differentiate
655 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
656 * file extent items. Reading all of them is quite wasteful, because usually
657 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
658 * them at even steps through the block group and pick the smallest size class
659 * we see. Since size class is best effort, and not guaranteed in general,
660 * inaccuracy is acceptable.
661 *
662 * To be more explicit about why this algorithm makes sense:
663 *
664 * If we are caching in a block group from disk, then there are three major cases
665 * to consider:
666 * 1. the block group is well behaved and all extents in it are the same size
667 * class.
668 * 2. the block group is mostly one size class with rare exceptions for last
669 * ditch allocations
670 * 3. the block group was populated before size classes and can have a totally
671 * arbitrary mix of size classes.
672 *
673 * In case 1, looking at any extent in the block group will yield the correct
674 * result. For the mixed cases, taking the minimum size class seems like a good
675 * approximation, since gaps from frees will be usable to the size class. For
676 * 2., a small handful of file extents is likely to yield the right answer. For
677 * 3, we can either read every file extent, or admit that this is best effort
678 * anyway and try to stay fast.
679 *
680 * Returns: 0 on success, negative error code on error.
681 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)682 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
683 struct btrfs_block_group *block_group)
684 {
685 struct btrfs_fs_info *fs_info = block_group->fs_info;
686 struct btrfs_key key;
687 int i;
688 u64 min_size = block_group->length;
689 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
690 int ret;
691
692 if (!btrfs_block_group_should_use_size_class(block_group))
693 return 0;
694
695 lockdep_assert_held(&caching_ctl->mutex);
696 lockdep_assert_held_read(&fs_info->commit_root_sem);
697 for (i = 0; i < 5; ++i) {
698 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
699 if (ret < 0)
700 goto out;
701 if (ret > 0)
702 continue;
703 min_size = min_t(u64, min_size, key.offset);
704 size_class = btrfs_calc_block_group_size_class(min_size);
705 }
706 if (size_class != BTRFS_BG_SZ_NONE) {
707 spin_lock(&block_group->lock);
708 block_group->size_class = size_class;
709 spin_unlock(&block_group->lock);
710 }
711 out:
712 return ret;
713 }
714
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)715 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
716 {
717 struct btrfs_block_group *block_group = caching_ctl->block_group;
718 struct btrfs_fs_info *fs_info = block_group->fs_info;
719 struct btrfs_root *extent_root;
720 struct btrfs_path *path;
721 struct extent_buffer *leaf;
722 struct btrfs_key key;
723 u64 total_found = 0;
724 u64 last = 0;
725 u32 nritems;
726 int ret;
727 bool wakeup = true;
728
729 path = btrfs_alloc_path();
730 if (!path)
731 return -ENOMEM;
732
733 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
734 extent_root = btrfs_extent_root(fs_info, last);
735
736 #ifdef CONFIG_BTRFS_DEBUG
737 /*
738 * If we're fragmenting we don't want to make anybody think we can
739 * allocate from this block group until we've had a chance to fragment
740 * the free space.
741 */
742 if (btrfs_should_fragment_free_space(block_group))
743 wakeup = false;
744 #endif
745 /*
746 * We don't want to deadlock with somebody trying to allocate a new
747 * extent for the extent root while also trying to search the extent
748 * root to add free space. So we skip locking and search the commit
749 * root, since its read-only
750 */
751 path->skip_locking = 1;
752 path->search_commit_root = 1;
753 path->reada = READA_FORWARD;
754
755 key.objectid = last;
756 key.offset = 0;
757 key.type = BTRFS_EXTENT_ITEM_KEY;
758
759 next:
760 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
761 if (ret < 0)
762 goto out;
763
764 leaf = path->nodes[0];
765 nritems = btrfs_header_nritems(leaf);
766
767 while (1) {
768 if (btrfs_fs_closing(fs_info) > 1) {
769 last = (u64)-1;
770 break;
771 }
772
773 if (path->slots[0] < nritems) {
774 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
775 } else {
776 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
777 if (ret)
778 break;
779
780 if (need_resched() ||
781 rwsem_is_contended(&fs_info->commit_root_sem)) {
782 btrfs_release_path(path);
783 up_read(&fs_info->commit_root_sem);
784 mutex_unlock(&caching_ctl->mutex);
785 cond_resched();
786 mutex_lock(&caching_ctl->mutex);
787 down_read(&fs_info->commit_root_sem);
788 goto next;
789 }
790
791 ret = btrfs_next_leaf(extent_root, path);
792 if (ret < 0)
793 goto out;
794 if (ret)
795 break;
796 leaf = path->nodes[0];
797 nritems = btrfs_header_nritems(leaf);
798 continue;
799 }
800
801 if (key.objectid < last) {
802 key.objectid = last;
803 key.offset = 0;
804 key.type = BTRFS_EXTENT_ITEM_KEY;
805 btrfs_release_path(path);
806 goto next;
807 }
808
809 if (key.objectid < block_group->start) {
810 path->slots[0]++;
811 continue;
812 }
813
814 if (key.objectid >= block_group->start + block_group->length)
815 break;
816
817 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
818 key.type == BTRFS_METADATA_ITEM_KEY) {
819 u64 space_added;
820
821 ret = btrfs_add_new_free_space(block_group, last,
822 key.objectid, &space_added);
823 if (ret)
824 goto out;
825 total_found += space_added;
826 if (key.type == BTRFS_METADATA_ITEM_KEY)
827 last = key.objectid +
828 fs_info->nodesize;
829 else
830 last = key.objectid + key.offset;
831
832 if (total_found > CACHING_CTL_WAKE_UP) {
833 total_found = 0;
834 if (wakeup) {
835 atomic_inc(&caching_ctl->progress);
836 wake_up(&caching_ctl->wait);
837 }
838 }
839 }
840 path->slots[0]++;
841 }
842
843 ret = btrfs_add_new_free_space(block_group, last,
844 block_group->start + block_group->length,
845 NULL);
846 out:
847 btrfs_free_path(path);
848 return ret;
849 }
850
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)851 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
852 {
853 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
854 bg->start + bg->length - 1, EXTENT_UPTODATE);
855 }
856
caching_thread(struct btrfs_work * work)857 static noinline void caching_thread(struct btrfs_work *work)
858 {
859 struct btrfs_block_group *block_group;
860 struct btrfs_fs_info *fs_info;
861 struct btrfs_caching_control *caching_ctl;
862 int ret;
863
864 caching_ctl = container_of(work, struct btrfs_caching_control, work);
865 block_group = caching_ctl->block_group;
866 fs_info = block_group->fs_info;
867
868 mutex_lock(&caching_ctl->mutex);
869 down_read(&fs_info->commit_root_sem);
870
871 load_block_group_size_class(caching_ctl, block_group);
872 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
873 ret = load_free_space_cache(block_group);
874 if (ret == 1) {
875 ret = 0;
876 goto done;
877 }
878
879 /*
880 * We failed to load the space cache, set ourselves to
881 * CACHE_STARTED and carry on.
882 */
883 spin_lock(&block_group->lock);
884 block_group->cached = BTRFS_CACHE_STARTED;
885 spin_unlock(&block_group->lock);
886 wake_up(&caching_ctl->wait);
887 }
888
889 /*
890 * If we are in the transaction that populated the free space tree we
891 * can't actually cache from the free space tree as our commit root and
892 * real root are the same, so we could change the contents of the blocks
893 * while caching. Instead do the slow caching in this case, and after
894 * the transaction has committed we will be safe.
895 */
896 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
897 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
898 ret = load_free_space_tree(caching_ctl);
899 else
900 ret = load_extent_tree_free(caching_ctl);
901 done:
902 spin_lock(&block_group->lock);
903 block_group->caching_ctl = NULL;
904 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
905 spin_unlock(&block_group->lock);
906
907 #ifdef CONFIG_BTRFS_DEBUG
908 if (btrfs_should_fragment_free_space(block_group)) {
909 u64 bytes_used;
910
911 spin_lock(&block_group->space_info->lock);
912 spin_lock(&block_group->lock);
913 bytes_used = block_group->length - block_group->used;
914 block_group->space_info->bytes_used += bytes_used >> 1;
915 spin_unlock(&block_group->lock);
916 spin_unlock(&block_group->space_info->lock);
917 fragment_free_space(block_group);
918 }
919 #endif
920
921 up_read(&fs_info->commit_root_sem);
922 btrfs_free_excluded_extents(block_group);
923 mutex_unlock(&caching_ctl->mutex);
924
925 wake_up(&caching_ctl->wait);
926
927 btrfs_put_caching_control(caching_ctl);
928 btrfs_put_block_group(block_group);
929 }
930
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)931 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
932 {
933 struct btrfs_fs_info *fs_info = cache->fs_info;
934 struct btrfs_caching_control *caching_ctl = NULL;
935 int ret = 0;
936
937 /* Allocator for zoned filesystems does not use the cache at all */
938 if (btrfs_is_zoned(fs_info))
939 return 0;
940
941 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
942 if (!caching_ctl)
943 return -ENOMEM;
944
945 INIT_LIST_HEAD(&caching_ctl->list);
946 mutex_init(&caching_ctl->mutex);
947 init_waitqueue_head(&caching_ctl->wait);
948 caching_ctl->block_group = cache;
949 refcount_set(&caching_ctl->count, 2);
950 atomic_set(&caching_ctl->progress, 0);
951 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
952
953 spin_lock(&cache->lock);
954 if (cache->cached != BTRFS_CACHE_NO) {
955 kfree(caching_ctl);
956
957 caching_ctl = cache->caching_ctl;
958 if (caching_ctl)
959 refcount_inc(&caching_ctl->count);
960 spin_unlock(&cache->lock);
961 goto out;
962 }
963 WARN_ON(cache->caching_ctl);
964 cache->caching_ctl = caching_ctl;
965 cache->cached = BTRFS_CACHE_STARTED;
966 spin_unlock(&cache->lock);
967
968 write_lock(&fs_info->block_group_cache_lock);
969 refcount_inc(&caching_ctl->count);
970 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
971 write_unlock(&fs_info->block_group_cache_lock);
972
973 btrfs_get_block_group(cache);
974
975 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
976 out:
977 if (wait && caching_ctl)
978 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
979 if (caching_ctl)
980 btrfs_put_caching_control(caching_ctl);
981
982 return ret;
983 }
984
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)985 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
986 {
987 u64 extra_flags = chunk_to_extended(flags) &
988 BTRFS_EXTENDED_PROFILE_MASK;
989
990 write_seqlock(&fs_info->profiles_lock);
991 if (flags & BTRFS_BLOCK_GROUP_DATA)
992 fs_info->avail_data_alloc_bits &= ~extra_flags;
993 if (flags & BTRFS_BLOCK_GROUP_METADATA)
994 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
995 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
996 fs_info->avail_system_alloc_bits &= ~extra_flags;
997 write_sequnlock(&fs_info->profiles_lock);
998 }
999
1000 /*
1001 * Clear incompat bits for the following feature(s):
1002 *
1003 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
1004 * in the whole filesystem
1005 *
1006 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1007 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)1008 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1009 {
1010 bool found_raid56 = false;
1011 bool found_raid1c34 = false;
1012
1013 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1014 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1015 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1016 struct list_head *head = &fs_info->space_info;
1017 struct btrfs_space_info *sinfo;
1018
1019 list_for_each_entry_rcu(sinfo, head, list) {
1020 down_read(&sinfo->groups_sem);
1021 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1022 found_raid56 = true;
1023 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1024 found_raid56 = true;
1025 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1026 found_raid1c34 = true;
1027 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1028 found_raid1c34 = true;
1029 up_read(&sinfo->groups_sem);
1030 }
1031 if (!found_raid56)
1032 btrfs_clear_fs_incompat(fs_info, RAID56);
1033 if (!found_raid1c34)
1034 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1035 }
1036 }
1037
btrfs_block_group_root(struct btrfs_fs_info * fs_info)1038 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1039 {
1040 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1041 return fs_info->block_group_root;
1042 return btrfs_extent_root(fs_info, 0);
1043 }
1044
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1045 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1046 struct btrfs_path *path,
1047 struct btrfs_block_group *block_group)
1048 {
1049 struct btrfs_fs_info *fs_info = trans->fs_info;
1050 struct btrfs_root *root;
1051 struct btrfs_key key;
1052 int ret;
1053
1054 root = btrfs_block_group_root(fs_info);
1055 key.objectid = block_group->start;
1056 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1057 key.offset = block_group->length;
1058
1059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1060 if (ret > 0)
1061 ret = -ENOENT;
1062 if (ret < 0)
1063 return ret;
1064
1065 ret = btrfs_del_item(trans, root, path);
1066 return ret;
1067 }
1068
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map)1069 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1070 struct btrfs_chunk_map *map)
1071 {
1072 struct btrfs_fs_info *fs_info = trans->fs_info;
1073 struct btrfs_path *path;
1074 struct btrfs_block_group *block_group;
1075 struct btrfs_free_cluster *cluster;
1076 struct inode *inode;
1077 struct kobject *kobj = NULL;
1078 int ret;
1079 int index;
1080 int factor;
1081 struct btrfs_caching_control *caching_ctl = NULL;
1082 bool remove_map;
1083 bool remove_rsv = false;
1084
1085 block_group = btrfs_lookup_block_group(fs_info, map->start);
1086 if (!block_group)
1087 return -ENOENT;
1088
1089 BUG_ON(!block_group->ro);
1090
1091 trace_btrfs_remove_block_group(block_group);
1092 /*
1093 * Free the reserved super bytes from this block group before
1094 * remove it.
1095 */
1096 btrfs_free_excluded_extents(block_group);
1097 btrfs_free_ref_tree_range(fs_info, block_group->start,
1098 block_group->length);
1099
1100 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1101 factor = btrfs_bg_type_to_factor(block_group->flags);
1102
1103 /* make sure this block group isn't part of an allocation cluster */
1104 cluster = &fs_info->data_alloc_cluster;
1105 spin_lock(&cluster->refill_lock);
1106 btrfs_return_cluster_to_free_space(block_group, cluster);
1107 spin_unlock(&cluster->refill_lock);
1108
1109 /*
1110 * make sure this block group isn't part of a metadata
1111 * allocation cluster
1112 */
1113 cluster = &fs_info->meta_alloc_cluster;
1114 spin_lock(&cluster->refill_lock);
1115 btrfs_return_cluster_to_free_space(block_group, cluster);
1116 spin_unlock(&cluster->refill_lock);
1117
1118 btrfs_clear_treelog_bg(block_group);
1119 btrfs_clear_data_reloc_bg(block_group);
1120
1121 path = btrfs_alloc_path();
1122 if (!path) {
1123 ret = -ENOMEM;
1124 goto out;
1125 }
1126
1127 /*
1128 * get the inode first so any iput calls done for the io_list
1129 * aren't the final iput (no unlinks allowed now)
1130 */
1131 inode = lookup_free_space_inode(block_group, path);
1132
1133 mutex_lock(&trans->transaction->cache_write_mutex);
1134 /*
1135 * Make sure our free space cache IO is done before removing the
1136 * free space inode
1137 */
1138 spin_lock(&trans->transaction->dirty_bgs_lock);
1139 if (!list_empty(&block_group->io_list)) {
1140 list_del_init(&block_group->io_list);
1141
1142 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1143
1144 spin_unlock(&trans->transaction->dirty_bgs_lock);
1145 btrfs_wait_cache_io(trans, block_group, path);
1146 btrfs_put_block_group(block_group);
1147 spin_lock(&trans->transaction->dirty_bgs_lock);
1148 }
1149
1150 if (!list_empty(&block_group->dirty_list)) {
1151 list_del_init(&block_group->dirty_list);
1152 remove_rsv = true;
1153 btrfs_put_block_group(block_group);
1154 }
1155 spin_unlock(&trans->transaction->dirty_bgs_lock);
1156 mutex_unlock(&trans->transaction->cache_write_mutex);
1157
1158 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1159 if (ret)
1160 goto out;
1161
1162 write_lock(&fs_info->block_group_cache_lock);
1163 rb_erase_cached(&block_group->cache_node,
1164 &fs_info->block_group_cache_tree);
1165 RB_CLEAR_NODE(&block_group->cache_node);
1166
1167 /* Once for the block groups rbtree */
1168 btrfs_put_block_group(block_group);
1169
1170 write_unlock(&fs_info->block_group_cache_lock);
1171
1172 down_write(&block_group->space_info->groups_sem);
1173 /*
1174 * we must use list_del_init so people can check to see if they
1175 * are still on the list after taking the semaphore
1176 */
1177 list_del_init(&block_group->list);
1178 if (list_empty(&block_group->space_info->block_groups[index])) {
1179 kobj = block_group->space_info->block_group_kobjs[index];
1180 block_group->space_info->block_group_kobjs[index] = NULL;
1181 clear_avail_alloc_bits(fs_info, block_group->flags);
1182 }
1183 up_write(&block_group->space_info->groups_sem);
1184 clear_incompat_bg_bits(fs_info, block_group->flags);
1185 if (kobj) {
1186 kobject_del(kobj);
1187 kobject_put(kobj);
1188 }
1189
1190 if (block_group->cached == BTRFS_CACHE_STARTED)
1191 btrfs_wait_block_group_cache_done(block_group);
1192
1193 write_lock(&fs_info->block_group_cache_lock);
1194 caching_ctl = btrfs_get_caching_control(block_group);
1195 if (!caching_ctl) {
1196 struct btrfs_caching_control *ctl;
1197
1198 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1199 if (ctl->block_group == block_group) {
1200 caching_ctl = ctl;
1201 refcount_inc(&caching_ctl->count);
1202 break;
1203 }
1204 }
1205 }
1206 if (caching_ctl)
1207 list_del_init(&caching_ctl->list);
1208 write_unlock(&fs_info->block_group_cache_lock);
1209
1210 if (caching_ctl) {
1211 /* Once for the caching bgs list and once for us. */
1212 btrfs_put_caching_control(caching_ctl);
1213 btrfs_put_caching_control(caching_ctl);
1214 }
1215
1216 spin_lock(&trans->transaction->dirty_bgs_lock);
1217 WARN_ON(!list_empty(&block_group->dirty_list));
1218 WARN_ON(!list_empty(&block_group->io_list));
1219 spin_unlock(&trans->transaction->dirty_bgs_lock);
1220
1221 btrfs_remove_free_space_cache(block_group);
1222
1223 spin_lock(&block_group->space_info->lock);
1224 list_del_init(&block_group->ro_list);
1225
1226 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1227 WARN_ON(block_group->space_info->total_bytes
1228 < block_group->length);
1229 WARN_ON(block_group->space_info->bytes_readonly
1230 < block_group->length - block_group->zone_unusable);
1231 WARN_ON(block_group->space_info->bytes_zone_unusable
1232 < block_group->zone_unusable);
1233 WARN_ON(block_group->space_info->disk_total
1234 < block_group->length * factor);
1235 }
1236 block_group->space_info->total_bytes -= block_group->length;
1237 block_group->space_info->bytes_readonly -=
1238 (block_group->length - block_group->zone_unusable);
1239 btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1240 -block_group->zone_unusable);
1241 block_group->space_info->disk_total -= block_group->length * factor;
1242
1243 spin_unlock(&block_group->space_info->lock);
1244
1245 /*
1246 * Remove the free space for the block group from the free space tree
1247 * and the block group's item from the extent tree before marking the
1248 * block group as removed. This is to prevent races with tasks that
1249 * freeze and unfreeze a block group, this task and another task
1250 * allocating a new block group - the unfreeze task ends up removing
1251 * the block group's extent map before the task calling this function
1252 * deletes the block group item from the extent tree, allowing for
1253 * another task to attempt to create another block group with the same
1254 * item key (and failing with -EEXIST and a transaction abort).
1255 */
1256 ret = remove_block_group_free_space(trans, block_group);
1257 if (ret)
1258 goto out;
1259
1260 ret = remove_block_group_item(trans, path, block_group);
1261 if (ret < 0)
1262 goto out;
1263
1264 spin_lock(&block_group->lock);
1265 /*
1266 * Hitting this WARN means we removed a block group with an unwritten
1267 * region. It will cause "unable to find chunk map for logical" errors.
1268 */
1269 if (WARN_ON(has_unwritten_metadata(block_group)))
1270 btrfs_warn(fs_info,
1271 "block group %llu is removed before metadata write out",
1272 block_group->start);
1273
1274 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1275
1276 /*
1277 * At this point trimming or scrub can't start on this block group,
1278 * because we removed the block group from the rbtree
1279 * fs_info->block_group_cache_tree so no one can't find it anymore and
1280 * even if someone already got this block group before we removed it
1281 * from the rbtree, they have already incremented block_group->frozen -
1282 * if they didn't, for the trimming case they won't find any free space
1283 * entries because we already removed them all when we called
1284 * btrfs_remove_free_space_cache().
1285 *
1286 * And we must not remove the chunk map from the fs_info->mapping_tree
1287 * to prevent the same logical address range and physical device space
1288 * ranges from being reused for a new block group. This is needed to
1289 * avoid races with trimming and scrub.
1290 *
1291 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1292 * completely transactionless, so while it is trimming a range the
1293 * currently running transaction might finish and a new one start,
1294 * allowing for new block groups to be created that can reuse the same
1295 * physical device locations unless we take this special care.
1296 *
1297 * There may also be an implicit trim operation if the file system
1298 * is mounted with -odiscard. The same protections must remain
1299 * in place until the extents have been discarded completely when
1300 * the transaction commit has completed.
1301 */
1302 remove_map = (atomic_read(&block_group->frozen) == 0);
1303 spin_unlock(&block_group->lock);
1304
1305 if (remove_map)
1306 btrfs_remove_chunk_map(fs_info, map);
1307
1308 out:
1309 /* Once for the lookup reference */
1310 btrfs_put_block_group(block_group);
1311 if (remove_rsv)
1312 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1313 btrfs_free_path(path);
1314 return ret;
1315 }
1316
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1317 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1318 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1319 {
1320 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1321 struct btrfs_chunk_map *map;
1322 unsigned int num_items;
1323
1324 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1325 ASSERT(map != NULL);
1326 ASSERT(map->start == chunk_offset);
1327
1328 /*
1329 * We need to reserve 3 + N units from the metadata space info in order
1330 * to remove a block group (done at btrfs_remove_chunk() and at
1331 * btrfs_remove_block_group()), which are used for:
1332 *
1333 * 1 unit for adding the free space inode's orphan (located in the tree
1334 * of tree roots).
1335 * 1 unit for deleting the block group item (located in the extent
1336 * tree).
1337 * 1 unit for deleting the free space item (located in tree of tree
1338 * roots).
1339 * N units for deleting N device extent items corresponding to each
1340 * stripe (located in the device tree).
1341 *
1342 * In order to remove a block group we also need to reserve units in the
1343 * system space info in order to update the chunk tree (update one or
1344 * more device items and remove one chunk item), but this is done at
1345 * btrfs_remove_chunk() through a call to check_system_chunk().
1346 */
1347 num_items = 3 + map->num_stripes;
1348 btrfs_free_chunk_map(map);
1349
1350 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1351 }
1352
1353 /*
1354 * Mark block group @cache read-only, so later write won't happen to block
1355 * group @cache.
1356 *
1357 * If @force is not set, this function will only mark the block group readonly
1358 * if we have enough free space (1M) in other metadata/system block groups.
1359 * If @force is not set, this function will mark the block group readonly
1360 * without checking free space.
1361 *
1362 * NOTE: This function doesn't care if other block groups can contain all the
1363 * data in this block group. That check should be done by relocation routine,
1364 * not this function.
1365 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1366 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1367 {
1368 struct btrfs_space_info *sinfo = cache->space_info;
1369 u64 num_bytes;
1370 int ret = -ENOSPC;
1371
1372 spin_lock(&sinfo->lock);
1373 spin_lock(&cache->lock);
1374
1375 if (cache->swap_extents) {
1376 ret = -ETXTBSY;
1377 goto out;
1378 }
1379
1380 if (cache->ro) {
1381 cache->ro++;
1382 ret = 0;
1383 goto out;
1384 }
1385
1386 num_bytes = cache->length - cache->reserved - cache->pinned -
1387 cache->bytes_super - cache->zone_unusable - cache->used;
1388
1389 /*
1390 * Data never overcommits, even in mixed mode, so do just the straight
1391 * check of left over space in how much we have allocated.
1392 */
1393 if (force) {
1394 ret = 0;
1395 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1396 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1397
1398 /*
1399 * Here we make sure if we mark this bg RO, we still have enough
1400 * free space as buffer.
1401 */
1402 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1403 ret = 0;
1404 } else {
1405 /*
1406 * We overcommit metadata, so we need to do the
1407 * btrfs_can_overcommit check here, and we need to pass in
1408 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1409 * leeway to allow us to mark this block group as read only.
1410 */
1411 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1412 BTRFS_RESERVE_NO_FLUSH))
1413 ret = 0;
1414 }
1415
1416 if (!ret) {
1417 sinfo->bytes_readonly += num_bytes;
1418 if (btrfs_is_zoned(cache->fs_info)) {
1419 /* Migrate zone_unusable bytes to readonly */
1420 sinfo->bytes_readonly += cache->zone_unusable;
1421 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1422 -cache->zone_unusable);
1423 cache->zone_unusable = 0;
1424 }
1425 cache->ro++;
1426 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1427 }
1428 out:
1429 spin_unlock(&cache->lock);
1430 spin_unlock(&sinfo->lock);
1431 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1432 btrfs_info(cache->fs_info,
1433 "unable to make block group %llu ro", cache->start);
1434 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1435 }
1436 return ret;
1437 }
1438
clean_pinned_extents(struct btrfs_trans_handle * trans,const struct btrfs_block_group * bg)1439 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1440 const struct btrfs_block_group *bg)
1441 {
1442 struct btrfs_fs_info *fs_info = trans->fs_info;
1443 struct btrfs_transaction *prev_trans = NULL;
1444 const u64 start = bg->start;
1445 const u64 end = start + bg->length - 1;
1446 int ret;
1447
1448 spin_lock(&fs_info->trans_lock);
1449 if (trans->transaction->list.prev != &fs_info->trans_list) {
1450 prev_trans = list_last_entry(&trans->transaction->list,
1451 struct btrfs_transaction, list);
1452 refcount_inc(&prev_trans->use_count);
1453 }
1454 spin_unlock(&fs_info->trans_lock);
1455
1456 /*
1457 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1458 * btrfs_finish_extent_commit(). If we are at transaction N, another
1459 * task might be running finish_extent_commit() for the previous
1460 * transaction N - 1, and have seen a range belonging to the block
1461 * group in pinned_extents before we were able to clear the whole block
1462 * group range from pinned_extents. This means that task can lookup for
1463 * the block group after we unpinned it from pinned_extents and removed
1464 * it, leading to an error at unpin_extent_range().
1465 */
1466 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1467 if (prev_trans) {
1468 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1469 EXTENT_DIRTY);
1470 if (ret)
1471 goto out;
1472 }
1473
1474 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1475 EXTENT_DIRTY);
1476 out:
1477 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1478 if (prev_trans)
1479 btrfs_put_transaction(prev_trans);
1480
1481 return ret == 0;
1482 }
1483
1484 /*
1485 * Link the block_group to a list via bg_list.
1486 *
1487 * @bg: The block_group to link to the list.
1488 * @list: The list to link it to.
1489 *
1490 * Use this rather than list_add_tail() directly to ensure proper respect
1491 * to locking and refcounting.
1492 *
1493 * Returns: true if the bg was linked with a refcount bump and false otherwise.
1494 */
btrfs_link_bg_list(struct btrfs_block_group * bg,struct list_head * list)1495 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1496 {
1497 struct btrfs_fs_info *fs_info = bg->fs_info;
1498 bool added = false;
1499
1500 spin_lock(&fs_info->unused_bgs_lock);
1501 if (list_empty(&bg->bg_list)) {
1502 btrfs_get_block_group(bg);
1503 list_add_tail(&bg->bg_list, list);
1504 added = true;
1505 }
1506 spin_unlock(&fs_info->unused_bgs_lock);
1507 return added;
1508 }
1509
1510 /*
1511 * Process the unused_bgs list and remove any that don't have any allocated
1512 * space inside of them.
1513 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1514 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1515 {
1516 LIST_HEAD(retry_list);
1517 struct btrfs_block_group *block_group;
1518 struct btrfs_space_info *space_info;
1519 struct btrfs_trans_handle *trans;
1520 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1521 int ret = 0;
1522
1523 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1524 return;
1525
1526 if (btrfs_fs_closing(fs_info))
1527 return;
1528
1529 /*
1530 * Long running balances can keep us blocked here for eternity, so
1531 * simply skip deletion if we're unable to get the mutex.
1532 */
1533 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1534 return;
1535
1536 spin_lock(&fs_info->unused_bgs_lock);
1537 while (!list_empty(&fs_info->unused_bgs)) {
1538 u64 used;
1539 int trimming;
1540
1541 block_group = list_first_entry(&fs_info->unused_bgs,
1542 struct btrfs_block_group,
1543 bg_list);
1544 list_del_init(&block_group->bg_list);
1545
1546 space_info = block_group->space_info;
1547
1548 if (ret || btrfs_mixed_space_info(space_info)) {
1549 btrfs_put_block_group(block_group);
1550 continue;
1551 }
1552 spin_unlock(&fs_info->unused_bgs_lock);
1553
1554 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1555
1556 /* Don't want to race with allocators so take the groups_sem */
1557 down_write(&space_info->groups_sem);
1558
1559 /*
1560 * Async discard moves the final block group discard to be prior
1561 * to the unused_bgs code path. Therefore, if it's not fully
1562 * trimmed, punt it back to the async discard lists.
1563 */
1564 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1565 !btrfs_is_free_space_trimmed(block_group)) {
1566 trace_btrfs_skip_unused_block_group(block_group);
1567 up_write(&space_info->groups_sem);
1568 /* Requeue if we failed because of async discard */
1569 btrfs_discard_queue_work(&fs_info->discard_ctl,
1570 block_group);
1571 goto next;
1572 }
1573
1574 spin_lock(&space_info->lock);
1575 spin_lock(&block_group->lock);
1576 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1577 list_is_singular(&block_group->list)) {
1578 /*
1579 * We want to bail if we made new allocations or have
1580 * outstanding allocations in this block group. We do
1581 * the ro check in case balance is currently acting on
1582 * this block group.
1583 *
1584 * Also bail out if this is the only block group for its
1585 * type, because otherwise we would lose profile
1586 * information from fs_info->avail_*_alloc_bits and the
1587 * next block group of this type would be created with a
1588 * "single" profile (even if we're in a raid fs) because
1589 * fs_info->avail_*_alloc_bits would be 0.
1590 */
1591 trace_btrfs_skip_unused_block_group(block_group);
1592 spin_unlock(&block_group->lock);
1593 spin_unlock(&space_info->lock);
1594 up_write(&space_info->groups_sem);
1595 goto next;
1596 }
1597
1598 /*
1599 * The block group may be unused but there may be space reserved
1600 * accounting with the existence of that block group, that is,
1601 * space_info->bytes_may_use was incremented by a task but no
1602 * space was yet allocated from the block group by the task.
1603 * That space may or may not be allocated, as we are generally
1604 * pessimistic about space reservation for metadata as well as
1605 * for data when using compression (as we reserve space based on
1606 * the worst case, when data can't be compressed, and before
1607 * actually attempting compression, before starting writeback).
1608 *
1609 * So check if the total space of the space_info minus the size
1610 * of this block group is less than the used space of the
1611 * space_info - if that's the case, then it means we have tasks
1612 * that might be relying on the block group in order to allocate
1613 * extents, and add back the block group to the unused list when
1614 * we finish, so that we retry later in case no tasks ended up
1615 * needing to allocate extents from the block group.
1616 */
1617 used = btrfs_space_info_used(space_info, true);
1618 if ((space_info->total_bytes - block_group->length < used &&
1619 block_group->zone_unusable < block_group->length) ||
1620 has_unwritten_metadata(block_group)) {
1621 /*
1622 * Add a reference for the list, compensate for the ref
1623 * drop under the "next" label for the
1624 * fs_info->unused_bgs list.
1625 */
1626 btrfs_link_bg_list(block_group, &retry_list);
1627
1628 trace_btrfs_skip_unused_block_group(block_group);
1629 spin_unlock(&block_group->lock);
1630 spin_unlock(&space_info->lock);
1631 up_write(&space_info->groups_sem);
1632 goto next;
1633 }
1634
1635 spin_unlock(&block_group->lock);
1636 spin_unlock(&space_info->lock);
1637
1638 /* We don't want to force the issue, only flip if it's ok. */
1639 ret = inc_block_group_ro(block_group, 0);
1640 up_write(&space_info->groups_sem);
1641 if (ret < 0) {
1642 ret = 0;
1643 goto next;
1644 }
1645
1646 ret = btrfs_zone_finish(block_group);
1647 if (ret < 0) {
1648 btrfs_dec_block_group_ro(block_group);
1649 if (ret == -EAGAIN) {
1650 btrfs_link_bg_list(block_group, &retry_list);
1651 ret = 0;
1652 }
1653 goto next;
1654 }
1655
1656 /*
1657 * Want to do this before we do anything else so we can recover
1658 * properly if we fail to join the transaction.
1659 */
1660 trans = btrfs_start_trans_remove_block_group(fs_info,
1661 block_group->start);
1662 if (IS_ERR(trans)) {
1663 btrfs_dec_block_group_ro(block_group);
1664 ret = PTR_ERR(trans);
1665 goto next;
1666 }
1667
1668 /*
1669 * We could have pending pinned extents for this block group,
1670 * just delete them, we don't care about them anymore.
1671 */
1672 if (!clean_pinned_extents(trans, block_group)) {
1673 btrfs_dec_block_group_ro(block_group);
1674 goto end_trans;
1675 }
1676
1677 /*
1678 * At this point, the block_group is read only and should fail
1679 * new allocations. However, btrfs_finish_extent_commit() can
1680 * cause this block_group to be placed back on the discard
1681 * lists because now the block_group isn't fully discarded.
1682 * Bail here and try again later after discarding everything.
1683 */
1684 spin_lock(&fs_info->discard_ctl.lock);
1685 if (!list_empty(&block_group->discard_list)) {
1686 spin_unlock(&fs_info->discard_ctl.lock);
1687 btrfs_dec_block_group_ro(block_group);
1688 btrfs_discard_queue_work(&fs_info->discard_ctl,
1689 block_group);
1690 goto end_trans;
1691 }
1692 spin_unlock(&fs_info->discard_ctl.lock);
1693
1694 /* Reset pinned so btrfs_put_block_group doesn't complain */
1695 spin_lock(&space_info->lock);
1696 spin_lock(&block_group->lock);
1697
1698 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1699 -block_group->pinned);
1700 space_info->bytes_readonly += block_group->pinned;
1701 block_group->pinned = 0;
1702
1703 spin_unlock(&block_group->lock);
1704 spin_unlock(&space_info->lock);
1705
1706 /*
1707 * The normal path here is an unused block group is passed here,
1708 * then trimming is handled in the transaction commit path.
1709 * Async discard interposes before this to do the trimming
1710 * before coming down the unused block group path as trimming
1711 * will no longer be done later in the transaction commit path.
1712 */
1713 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1714 goto flip_async;
1715
1716 /*
1717 * DISCARD can flip during remount. On zoned filesystems, we
1718 * need to reset sequential-required zones.
1719 */
1720 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1721 btrfs_is_zoned(fs_info);
1722
1723 /* Implicit trim during transaction commit. */
1724 if (trimming)
1725 btrfs_freeze_block_group(block_group);
1726
1727 /*
1728 * Btrfs_remove_chunk will abort the transaction if things go
1729 * horribly wrong.
1730 */
1731 ret = btrfs_remove_chunk(trans, block_group->start);
1732
1733 if (ret) {
1734 if (trimming)
1735 btrfs_unfreeze_block_group(block_group);
1736 goto end_trans;
1737 }
1738
1739 /*
1740 * If we're not mounted with -odiscard, we can just forget
1741 * about this block group. Otherwise we'll need to wait
1742 * until transaction commit to do the actual discard.
1743 */
1744 if (trimming) {
1745 spin_lock(&fs_info->unused_bgs_lock);
1746 /*
1747 * A concurrent scrub might have added us to the list
1748 * fs_info->unused_bgs, so use a list_move operation
1749 * to add the block group to the deleted_bgs list.
1750 */
1751 list_move(&block_group->bg_list,
1752 &trans->transaction->deleted_bgs);
1753 spin_unlock(&fs_info->unused_bgs_lock);
1754 btrfs_get_block_group(block_group);
1755 }
1756 end_trans:
1757 btrfs_end_transaction(trans);
1758 next:
1759 btrfs_put_block_group(block_group);
1760 spin_lock(&fs_info->unused_bgs_lock);
1761 }
1762 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1763 spin_unlock(&fs_info->unused_bgs_lock);
1764 mutex_unlock(&fs_info->reclaim_bgs_lock);
1765 return;
1766
1767 flip_async:
1768 btrfs_end_transaction(trans);
1769 spin_lock(&fs_info->unused_bgs_lock);
1770 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1771 spin_unlock(&fs_info->unused_bgs_lock);
1772 mutex_unlock(&fs_info->reclaim_bgs_lock);
1773 btrfs_put_block_group(block_group);
1774 btrfs_discard_punt_unused_bgs_list(fs_info);
1775 }
1776
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1777 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1778 {
1779 struct btrfs_fs_info *fs_info = bg->fs_info;
1780
1781 spin_lock(&fs_info->unused_bgs_lock);
1782 if (list_empty(&bg->bg_list)) {
1783 btrfs_get_block_group(bg);
1784 trace_btrfs_add_unused_block_group(bg);
1785 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1786 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1787 /* Pull out the block group from the reclaim_bgs list. */
1788 trace_btrfs_add_unused_block_group(bg);
1789 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1790 }
1791 spin_unlock(&fs_info->unused_bgs_lock);
1792 }
1793
1794 /*
1795 * We want block groups with a low number of used bytes to be in the beginning
1796 * of the list, so they will get reclaimed first.
1797 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1798 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1799 const struct list_head *b)
1800 {
1801 const struct btrfs_block_group *bg1, *bg2;
1802
1803 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1804 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1805
1806 return bg1->used > bg2->used;
1807 }
1808
btrfs_should_reclaim(const struct btrfs_fs_info * fs_info)1809 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1810 {
1811 if (btrfs_is_zoned(fs_info))
1812 return btrfs_zoned_should_reclaim(fs_info);
1813 return true;
1814 }
1815
should_reclaim_block_group(const struct btrfs_block_group * bg,u64 bytes_freed)1816 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1817 {
1818 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1819 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1820 const u64 new_val = bg->used;
1821 const u64 old_val = new_val + bytes_freed;
1822
1823 if (thresh_bytes == 0)
1824 return false;
1825
1826 /*
1827 * If we were below the threshold before don't reclaim, we are likely a
1828 * brand new block group and we don't want to relocate new block groups.
1829 */
1830 if (old_val < thresh_bytes)
1831 return false;
1832 if (new_val >= thresh_bytes)
1833 return false;
1834 return true;
1835 }
1836
btrfs_reclaim_bgs_work(struct work_struct * work)1837 void btrfs_reclaim_bgs_work(struct work_struct *work)
1838 {
1839 struct btrfs_fs_info *fs_info =
1840 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1841 struct btrfs_block_group *bg;
1842 struct btrfs_space_info *space_info;
1843 LIST_HEAD(retry_list);
1844
1845 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1846 return;
1847
1848 if (btrfs_fs_closing(fs_info))
1849 return;
1850
1851 if (!btrfs_should_reclaim(fs_info))
1852 return;
1853
1854 sb_start_write(fs_info->sb);
1855
1856 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1857 sb_end_write(fs_info->sb);
1858 return;
1859 }
1860
1861 /*
1862 * Long running balances can keep us blocked here for eternity, so
1863 * simply skip reclaim if we're unable to get the mutex.
1864 */
1865 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1866 btrfs_exclop_finish(fs_info);
1867 sb_end_write(fs_info->sb);
1868 return;
1869 }
1870
1871 spin_lock(&fs_info->unused_bgs_lock);
1872 /*
1873 * Sort happens under lock because we can't simply splice it and sort.
1874 * The block groups might still be in use and reachable via bg_list,
1875 * and their presence in the reclaim_bgs list must be preserved.
1876 */
1877 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1878 while (!list_empty(&fs_info->reclaim_bgs)) {
1879 u64 zone_unusable;
1880 u64 reclaimed;
1881 int ret = 0;
1882
1883 bg = list_first_entry(&fs_info->reclaim_bgs,
1884 struct btrfs_block_group,
1885 bg_list);
1886 list_del_init(&bg->bg_list);
1887
1888 space_info = bg->space_info;
1889 spin_unlock(&fs_info->unused_bgs_lock);
1890
1891 /* Don't race with allocators so take the groups_sem */
1892 down_write(&space_info->groups_sem);
1893
1894 spin_lock(&space_info->lock);
1895 spin_lock(&bg->lock);
1896 if (bg->reserved || bg->pinned || bg->ro) {
1897 /*
1898 * We want to bail if we made new allocations or have
1899 * outstanding allocations in this block group. We do
1900 * the ro check in case balance is currently acting on
1901 * this block group.
1902 */
1903 spin_unlock(&bg->lock);
1904 spin_unlock(&space_info->lock);
1905 up_write(&space_info->groups_sem);
1906 goto next;
1907 }
1908 if (bg->used == 0) {
1909 /*
1910 * It is possible that we trigger relocation on a block
1911 * group as its extents are deleted and it first goes
1912 * below the threshold, then shortly after goes empty.
1913 *
1914 * In this case, relocating it does delete it, but has
1915 * some overhead in relocation specific metadata, looking
1916 * for the non-existent extents and running some extra
1917 * transactions, which we can avoid by using one of the
1918 * other mechanisms for dealing with empty block groups.
1919 */
1920 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1921 btrfs_mark_bg_unused(bg);
1922 spin_unlock(&bg->lock);
1923 spin_unlock(&space_info->lock);
1924 up_write(&space_info->groups_sem);
1925 goto next;
1926
1927 }
1928 /*
1929 * The block group might no longer meet the reclaim condition by
1930 * the time we get around to reclaiming it, so to avoid
1931 * reclaiming overly full block_groups, skip reclaiming them.
1932 *
1933 * Since the decision making process also depends on the amount
1934 * being freed, pass in a fake giant value to skip that extra
1935 * check, which is more meaningful when adding to the list in
1936 * the first place.
1937 */
1938 if (!should_reclaim_block_group(bg, bg->length)) {
1939 spin_unlock(&bg->lock);
1940 spin_unlock(&space_info->lock);
1941 up_write(&space_info->groups_sem);
1942 goto next;
1943 }
1944
1945 /*
1946 * Cache the zone_unusable value before turning the block group
1947 * to read only. As soon as the block group is read only it's
1948 * zone_unusable value gets moved to the block group's read-only
1949 * bytes and isn't available for calculations anymore. We also
1950 * cache it before unlocking the block group, to prevent races
1951 * (reports from KCSAN and such tools) with tasks updating it.
1952 */
1953 zone_unusable = bg->zone_unusable;
1954
1955 spin_unlock(&bg->lock);
1956 spin_unlock(&space_info->lock);
1957
1958 /*
1959 * Get out fast, in case we're read-only or unmounting the
1960 * filesystem. It is OK to drop block groups from the list even
1961 * for the read-only case. As we did sb_start_write(),
1962 * "mount -o remount,ro" won't happen and read-only filesystem
1963 * means it is forced read-only due to a fatal error. So, it
1964 * never gets back to read-write to let us reclaim again.
1965 */
1966 if (btrfs_need_cleaner_sleep(fs_info)) {
1967 up_write(&space_info->groups_sem);
1968 goto next;
1969 }
1970
1971 ret = inc_block_group_ro(bg, 0);
1972 up_write(&space_info->groups_sem);
1973 if (ret < 0)
1974 goto next;
1975
1976 btrfs_info(fs_info,
1977 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1978 bg->start,
1979 div64_u64(bg->used * 100, bg->length),
1980 div64_u64(zone_unusable * 100, bg->length));
1981 trace_btrfs_reclaim_block_group(bg);
1982 reclaimed = bg->used;
1983 ret = btrfs_relocate_chunk(fs_info, bg->start);
1984 if (ret) {
1985 btrfs_dec_block_group_ro(bg);
1986 btrfs_err(fs_info, "error relocating chunk %llu",
1987 bg->start);
1988 reclaimed = 0;
1989 spin_lock(&space_info->lock);
1990 space_info->reclaim_errors++;
1991 if (READ_ONCE(space_info->periodic_reclaim))
1992 space_info->periodic_reclaim_ready = false;
1993 spin_unlock(&space_info->lock);
1994 }
1995 spin_lock(&space_info->lock);
1996 space_info->reclaim_count++;
1997 space_info->reclaim_bytes += reclaimed;
1998 spin_unlock(&space_info->lock);
1999
2000 next:
2001 if (ret && !READ_ONCE(space_info->periodic_reclaim))
2002 btrfs_link_bg_list(bg, &retry_list);
2003 btrfs_put_block_group(bg);
2004
2005 mutex_unlock(&fs_info->reclaim_bgs_lock);
2006 /*
2007 * Reclaiming all the block groups in the list can take really
2008 * long. Prioritize cleaning up unused block groups.
2009 */
2010 btrfs_delete_unused_bgs(fs_info);
2011 /*
2012 * If we are interrupted by a balance, we can just bail out. The
2013 * cleaner thread restart again if necessary.
2014 */
2015 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2016 goto end;
2017 spin_lock(&fs_info->unused_bgs_lock);
2018 }
2019 spin_unlock(&fs_info->unused_bgs_lock);
2020 mutex_unlock(&fs_info->reclaim_bgs_lock);
2021 end:
2022 spin_lock(&fs_info->unused_bgs_lock);
2023 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2024 spin_unlock(&fs_info->unused_bgs_lock);
2025 btrfs_exclop_finish(fs_info);
2026 sb_end_write(fs_info->sb);
2027 }
2028
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)2029 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2030 {
2031 btrfs_reclaim_sweep(fs_info);
2032 spin_lock(&fs_info->unused_bgs_lock);
2033 if (!list_empty(&fs_info->reclaim_bgs))
2034 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
2035 spin_unlock(&fs_info->unused_bgs_lock);
2036 }
2037
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)2038 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2039 {
2040 struct btrfs_fs_info *fs_info = bg->fs_info;
2041
2042 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2043 trace_btrfs_add_reclaim_block_group(bg);
2044 }
2045
read_bg_from_eb(struct btrfs_fs_info * fs_info,const struct btrfs_key * key,const struct btrfs_path * path)2046 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2047 const struct btrfs_path *path)
2048 {
2049 struct btrfs_chunk_map *map;
2050 struct btrfs_block_group_item bg;
2051 struct extent_buffer *leaf;
2052 int slot;
2053 u64 flags;
2054 int ret = 0;
2055
2056 slot = path->slots[0];
2057 leaf = path->nodes[0];
2058
2059 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2060 if (!map) {
2061 btrfs_err(fs_info,
2062 "logical %llu len %llu found bg but no related chunk",
2063 key->objectid, key->offset);
2064 return -ENOENT;
2065 }
2066
2067 if (map->start != key->objectid || map->chunk_len != key->offset) {
2068 btrfs_err(fs_info,
2069 "block group %llu len %llu mismatch with chunk %llu len %llu",
2070 key->objectid, key->offset, map->start, map->chunk_len);
2071 ret = -EUCLEAN;
2072 goto out_free_map;
2073 }
2074
2075 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2076 sizeof(bg));
2077 flags = btrfs_stack_block_group_flags(&bg) &
2078 BTRFS_BLOCK_GROUP_TYPE_MASK;
2079
2080 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2081 btrfs_err(fs_info,
2082 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2083 key->objectid, key->offset, flags,
2084 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2085 ret = -EUCLEAN;
2086 }
2087
2088 out_free_map:
2089 btrfs_free_chunk_map(map);
2090 return ret;
2091 }
2092
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * key)2093 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2094 struct btrfs_path *path,
2095 const struct btrfs_key *key)
2096 {
2097 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2098 int ret;
2099 struct btrfs_key found_key;
2100
2101 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2102 if (found_key.objectid >= key->objectid &&
2103 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2104 return read_bg_from_eb(fs_info, &found_key, path);
2105 }
2106 }
2107 return ret;
2108 }
2109
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2110 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2111 {
2112 u64 extra_flags = chunk_to_extended(flags) &
2113 BTRFS_EXTENDED_PROFILE_MASK;
2114
2115 write_seqlock(&fs_info->profiles_lock);
2116 if (flags & BTRFS_BLOCK_GROUP_DATA)
2117 fs_info->avail_data_alloc_bits |= extra_flags;
2118 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2119 fs_info->avail_metadata_alloc_bits |= extra_flags;
2120 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2121 fs_info->avail_system_alloc_bits |= extra_flags;
2122 write_sequnlock(&fs_info->profiles_lock);
2123 }
2124
2125 /*
2126 * Map a physical disk address to a list of logical addresses.
2127 *
2128 * @fs_info: the filesystem
2129 * @chunk_start: logical address of block group
2130 * @physical: physical address to map to logical addresses
2131 * @logical: return array of logical addresses which map to @physical
2132 * @naddrs: length of @logical
2133 * @stripe_len: size of IO stripe for the given block group
2134 *
2135 * Maps a particular @physical disk address to a list of @logical addresses.
2136 * Used primarily to exclude those portions of a block group that contain super
2137 * block copies.
2138 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2139 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2140 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2141 {
2142 struct btrfs_chunk_map *map;
2143 u64 *buf;
2144 u64 bytenr;
2145 u64 data_stripe_length;
2146 u64 io_stripe_size;
2147 int i, nr = 0;
2148 int ret = 0;
2149
2150 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2151 if (IS_ERR(map))
2152 return -EIO;
2153
2154 data_stripe_length = map->stripe_size;
2155 io_stripe_size = BTRFS_STRIPE_LEN;
2156 chunk_start = map->start;
2157
2158 /* For RAID5/6 adjust to a full IO stripe length */
2159 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2160 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2161
2162 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2163 if (!buf) {
2164 ret = -ENOMEM;
2165 goto out;
2166 }
2167
2168 for (i = 0; i < map->num_stripes; i++) {
2169 bool already_inserted = false;
2170 u32 stripe_nr;
2171 u32 offset;
2172 int j;
2173
2174 if (!in_range(physical, map->stripes[i].physical,
2175 data_stripe_length))
2176 continue;
2177
2178 stripe_nr = (physical - map->stripes[i].physical) >>
2179 BTRFS_STRIPE_LEN_SHIFT;
2180 offset = (physical - map->stripes[i].physical) &
2181 BTRFS_STRIPE_LEN_MASK;
2182
2183 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2184 BTRFS_BLOCK_GROUP_RAID10))
2185 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2186 map->sub_stripes);
2187 /*
2188 * The remaining case would be for RAID56, multiply by
2189 * nr_data_stripes(). Alternatively, just use rmap_len below
2190 * instead of map->stripe_len
2191 */
2192 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2193
2194 /* Ensure we don't add duplicate addresses */
2195 for (j = 0; j < nr; j++) {
2196 if (buf[j] == bytenr) {
2197 already_inserted = true;
2198 break;
2199 }
2200 }
2201
2202 if (!already_inserted)
2203 buf[nr++] = bytenr;
2204 }
2205
2206 *logical = buf;
2207 *naddrs = nr;
2208 *stripe_len = io_stripe_size;
2209 out:
2210 btrfs_free_chunk_map(map);
2211 return ret;
2212 }
2213
exclude_super_stripes(struct btrfs_block_group * cache)2214 static int exclude_super_stripes(struct btrfs_block_group *cache)
2215 {
2216 struct btrfs_fs_info *fs_info = cache->fs_info;
2217 const bool zoned = btrfs_is_zoned(fs_info);
2218 u64 bytenr;
2219 u64 *logical;
2220 int stripe_len;
2221 int i, nr, ret;
2222
2223 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2224 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2225 cache->bytes_super += stripe_len;
2226 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2227 cache->start + stripe_len - 1,
2228 EXTENT_UPTODATE, NULL);
2229 if (ret)
2230 return ret;
2231 }
2232
2233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2234 bytenr = btrfs_sb_offset(i);
2235 ret = btrfs_rmap_block(fs_info, cache->start,
2236 bytenr, &logical, &nr, &stripe_len);
2237 if (ret)
2238 return ret;
2239
2240 /* Shouldn't have super stripes in sequential zones */
2241 if (zoned && nr) {
2242 kfree(logical);
2243 btrfs_err(fs_info,
2244 "zoned: block group %llu must not contain super block",
2245 cache->start);
2246 return -EUCLEAN;
2247 }
2248
2249 while (nr--) {
2250 u64 len = min_t(u64, stripe_len,
2251 cache->start + cache->length - logical[nr]);
2252
2253 cache->bytes_super += len;
2254 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2255 logical[nr] + len - 1,
2256 EXTENT_UPTODATE, NULL);
2257 if (ret) {
2258 kfree(logical);
2259 return ret;
2260 }
2261 }
2262
2263 kfree(logical);
2264 }
2265 return 0;
2266 }
2267
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2268 static struct btrfs_block_group *btrfs_create_block_group_cache(
2269 struct btrfs_fs_info *fs_info, u64 start)
2270 {
2271 struct btrfs_block_group *cache;
2272
2273 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2274 if (!cache)
2275 return NULL;
2276
2277 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2278 GFP_NOFS);
2279 if (!cache->free_space_ctl) {
2280 kfree(cache);
2281 return NULL;
2282 }
2283
2284 cache->start = start;
2285
2286 cache->fs_info = fs_info;
2287 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2288
2289 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2290
2291 refcount_set(&cache->refs, 1);
2292 spin_lock_init(&cache->lock);
2293 init_rwsem(&cache->data_rwsem);
2294 INIT_LIST_HEAD(&cache->list);
2295 INIT_LIST_HEAD(&cache->cluster_list);
2296 INIT_LIST_HEAD(&cache->bg_list);
2297 INIT_LIST_HEAD(&cache->ro_list);
2298 INIT_LIST_HEAD(&cache->discard_list);
2299 INIT_LIST_HEAD(&cache->dirty_list);
2300 INIT_LIST_HEAD(&cache->io_list);
2301 INIT_LIST_HEAD(&cache->active_bg_list);
2302 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2303 atomic_set(&cache->frozen, 0);
2304 mutex_init(&cache->free_space_lock);
2305
2306 return cache;
2307 }
2308
2309 /*
2310 * Iterate all chunks and verify that each of them has the corresponding block
2311 * group
2312 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2313 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2314 {
2315 u64 start = 0;
2316 int ret = 0;
2317
2318 while (1) {
2319 struct btrfs_chunk_map *map;
2320 struct btrfs_block_group *bg;
2321
2322 /*
2323 * btrfs_find_chunk_map() will return the first chunk map
2324 * intersecting the range, so setting @length to 1 is enough to
2325 * get the first chunk.
2326 */
2327 map = btrfs_find_chunk_map(fs_info, start, 1);
2328 if (!map)
2329 break;
2330
2331 bg = btrfs_lookup_block_group(fs_info, map->start);
2332 if (!bg) {
2333 btrfs_err(fs_info,
2334 "chunk start=%llu len=%llu doesn't have corresponding block group",
2335 map->start, map->chunk_len);
2336 ret = -EUCLEAN;
2337 btrfs_free_chunk_map(map);
2338 break;
2339 }
2340 if (bg->start != map->start || bg->length != map->chunk_len ||
2341 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2342 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2343 btrfs_err(fs_info,
2344 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2345 map->start, map->chunk_len,
2346 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2347 bg->start, bg->length,
2348 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2349 ret = -EUCLEAN;
2350 btrfs_free_chunk_map(map);
2351 btrfs_put_block_group(bg);
2352 break;
2353 }
2354 start = map->start + map->chunk_len;
2355 btrfs_free_chunk_map(map);
2356 btrfs_put_block_group(bg);
2357 }
2358 return ret;
2359 }
2360
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2361 static int read_one_block_group(struct btrfs_fs_info *info,
2362 struct btrfs_block_group_item *bgi,
2363 const struct btrfs_key *key,
2364 int need_clear)
2365 {
2366 struct btrfs_block_group *cache;
2367 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2368 int ret;
2369
2370 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2371
2372 cache = btrfs_create_block_group_cache(info, key->objectid);
2373 if (!cache)
2374 return -ENOMEM;
2375
2376 cache->length = key->offset;
2377 cache->used = btrfs_stack_block_group_used(bgi);
2378 cache->commit_used = cache->used;
2379 cache->flags = btrfs_stack_block_group_flags(bgi);
2380 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2381
2382 set_free_space_tree_thresholds(cache);
2383
2384 if (need_clear) {
2385 /*
2386 * When we mount with old space cache, we need to
2387 * set BTRFS_DC_CLEAR and set dirty flag.
2388 *
2389 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2390 * truncate the old free space cache inode and
2391 * setup a new one.
2392 * b) Setting 'dirty flag' makes sure that we flush
2393 * the new space cache info onto disk.
2394 */
2395 if (btrfs_test_opt(info, SPACE_CACHE))
2396 cache->disk_cache_state = BTRFS_DC_CLEAR;
2397 }
2398 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2399 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2400 btrfs_err(info,
2401 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2402 cache->start);
2403 ret = -EINVAL;
2404 goto error;
2405 }
2406
2407 ret = btrfs_load_block_group_zone_info(cache, false);
2408 if (ret) {
2409 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2410 cache->start);
2411 goto error;
2412 }
2413
2414 /*
2415 * We need to exclude the super stripes now so that the space info has
2416 * super bytes accounted for, otherwise we'll think we have more space
2417 * than we actually do.
2418 */
2419 ret = exclude_super_stripes(cache);
2420 if (ret) {
2421 /* We may have excluded something, so call this just in case. */
2422 btrfs_free_excluded_extents(cache);
2423 goto error;
2424 }
2425
2426 /*
2427 * For zoned filesystem, space after the allocation offset is the only
2428 * free space for a block group. So, we don't need any caching work.
2429 * btrfs_calc_zone_unusable() will set the amount of free space and
2430 * zone_unusable space.
2431 *
2432 * For regular filesystem, check for two cases, either we are full, and
2433 * therefore don't need to bother with the caching work since we won't
2434 * find any space, or we are empty, and we can just add all the space
2435 * in and be done with it. This saves us _a_lot_ of time, particularly
2436 * in the full case.
2437 */
2438 if (btrfs_is_zoned(info)) {
2439 btrfs_calc_zone_unusable(cache);
2440 /* Should not have any excluded extents. Just in case, though. */
2441 btrfs_free_excluded_extents(cache);
2442 } else if (cache->length == cache->used) {
2443 cache->cached = BTRFS_CACHE_FINISHED;
2444 btrfs_free_excluded_extents(cache);
2445 } else if (cache->used == 0) {
2446 cache->cached = BTRFS_CACHE_FINISHED;
2447 ret = btrfs_add_new_free_space(cache, cache->start,
2448 cache->start + cache->length, NULL);
2449 btrfs_free_excluded_extents(cache);
2450 if (ret)
2451 goto error;
2452 }
2453
2454 ret = btrfs_add_block_group_cache(info, cache);
2455 if (ret) {
2456 btrfs_remove_free_space_cache(cache);
2457 goto error;
2458 }
2459 trace_btrfs_add_block_group(info, cache, 0);
2460 btrfs_add_bg_to_space_info(info, cache);
2461
2462 set_avail_alloc_bits(info, cache->flags);
2463 if (btrfs_chunk_writeable(info, cache->start)) {
2464 if (cache->used == 0) {
2465 ASSERT(list_empty(&cache->bg_list));
2466 if (btrfs_test_opt(info, DISCARD_ASYNC))
2467 btrfs_discard_queue_work(&info->discard_ctl, cache);
2468 else
2469 btrfs_mark_bg_unused(cache);
2470 }
2471 } else {
2472 inc_block_group_ro(cache, 1);
2473 }
2474
2475 return 0;
2476 error:
2477 btrfs_put_block_group(cache);
2478 return ret;
2479 }
2480
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2481 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2482 {
2483 struct rb_node *node;
2484 int ret = 0;
2485
2486 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2487 struct btrfs_chunk_map *map;
2488 struct btrfs_block_group *bg;
2489
2490 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2491 bg = btrfs_create_block_group_cache(fs_info, map->start);
2492 if (!bg) {
2493 ret = -ENOMEM;
2494 break;
2495 }
2496
2497 /* Fill dummy cache as FULL */
2498 bg->length = map->chunk_len;
2499 bg->flags = map->type;
2500 bg->cached = BTRFS_CACHE_FINISHED;
2501 bg->used = map->chunk_len;
2502 bg->flags = map->type;
2503 ret = btrfs_add_block_group_cache(fs_info, bg);
2504 /*
2505 * We may have some valid block group cache added already, in
2506 * that case we skip to the next one.
2507 */
2508 if (ret == -EEXIST) {
2509 ret = 0;
2510 btrfs_put_block_group(bg);
2511 continue;
2512 }
2513
2514 if (ret) {
2515 btrfs_remove_free_space_cache(bg);
2516 btrfs_put_block_group(bg);
2517 break;
2518 }
2519
2520 btrfs_add_bg_to_space_info(fs_info, bg);
2521
2522 set_avail_alloc_bits(fs_info, bg->flags);
2523 }
2524 if (!ret)
2525 btrfs_init_global_block_rsv(fs_info);
2526 return ret;
2527 }
2528
btrfs_read_block_groups(struct btrfs_fs_info * info)2529 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2530 {
2531 struct btrfs_root *root = btrfs_block_group_root(info);
2532 struct btrfs_path *path;
2533 int ret;
2534 struct btrfs_block_group *cache;
2535 struct btrfs_space_info *space_info;
2536 struct btrfs_key key;
2537 int need_clear = 0;
2538 u64 cache_gen;
2539
2540 /*
2541 * Either no extent root (with ibadroots rescue option) or we have
2542 * unsupported RO options. The fs can never be mounted read-write, so no
2543 * need to waste time searching block group items.
2544 *
2545 * This also allows new extent tree related changes to be RO compat,
2546 * no need for a full incompat flag.
2547 */
2548 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2549 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2550 return fill_dummy_bgs(info);
2551
2552 key.objectid = 0;
2553 key.offset = 0;
2554 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2555 path = btrfs_alloc_path();
2556 if (!path)
2557 return -ENOMEM;
2558
2559 cache_gen = btrfs_super_cache_generation(info->super_copy);
2560 if (btrfs_test_opt(info, SPACE_CACHE) &&
2561 btrfs_super_generation(info->super_copy) != cache_gen)
2562 need_clear = 1;
2563 if (btrfs_test_opt(info, CLEAR_CACHE))
2564 need_clear = 1;
2565
2566 while (1) {
2567 struct btrfs_block_group_item bgi;
2568 struct extent_buffer *leaf;
2569 int slot;
2570
2571 ret = find_first_block_group(info, path, &key);
2572 if (ret > 0)
2573 break;
2574 if (ret != 0)
2575 goto error;
2576
2577 leaf = path->nodes[0];
2578 slot = path->slots[0];
2579
2580 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2581 sizeof(bgi));
2582
2583 btrfs_item_key_to_cpu(leaf, &key, slot);
2584 btrfs_release_path(path);
2585 ret = read_one_block_group(info, &bgi, &key, need_clear);
2586 if (ret < 0)
2587 goto error;
2588 key.objectid += key.offset;
2589 key.offset = 0;
2590 }
2591 btrfs_release_path(path);
2592
2593 list_for_each_entry(space_info, &info->space_info, list) {
2594 int i;
2595
2596 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2597 if (list_empty(&space_info->block_groups[i]))
2598 continue;
2599 cache = list_first_entry(&space_info->block_groups[i],
2600 struct btrfs_block_group,
2601 list);
2602 btrfs_sysfs_add_block_group_type(cache);
2603 }
2604
2605 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2606 (BTRFS_BLOCK_GROUP_RAID10 |
2607 BTRFS_BLOCK_GROUP_RAID1_MASK |
2608 BTRFS_BLOCK_GROUP_RAID56_MASK |
2609 BTRFS_BLOCK_GROUP_DUP)))
2610 continue;
2611 /*
2612 * Avoid allocating from un-mirrored block group if there are
2613 * mirrored block groups.
2614 */
2615 list_for_each_entry(cache,
2616 &space_info->block_groups[BTRFS_RAID_RAID0],
2617 list)
2618 inc_block_group_ro(cache, 1);
2619 list_for_each_entry(cache,
2620 &space_info->block_groups[BTRFS_RAID_SINGLE],
2621 list)
2622 inc_block_group_ro(cache, 1);
2623 }
2624
2625 btrfs_init_global_block_rsv(info);
2626 ret = check_chunk_block_group_mappings(info);
2627 error:
2628 btrfs_free_path(path);
2629 /*
2630 * We've hit some error while reading the extent tree, and have
2631 * rescue=ibadroots mount option.
2632 * Try to fill the tree using dummy block groups so that the user can
2633 * continue to mount and grab their data.
2634 */
2635 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2636 ret = fill_dummy_bgs(info);
2637 return ret;
2638 }
2639
2640 /*
2641 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2642 * allocation.
2643 *
2644 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2645 * phases.
2646 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2647 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2648 struct btrfs_block_group *block_group)
2649 {
2650 struct btrfs_fs_info *fs_info = trans->fs_info;
2651 struct btrfs_block_group_item bgi;
2652 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2653 struct btrfs_key key;
2654 u64 old_commit_used;
2655 int ret;
2656
2657 spin_lock(&block_group->lock);
2658 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2659 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2660 block_group->global_root_id);
2661 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2662 old_commit_used = block_group->commit_used;
2663 block_group->commit_used = block_group->used;
2664 key.objectid = block_group->start;
2665 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2666 key.offset = block_group->length;
2667 spin_unlock(&block_group->lock);
2668
2669 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2670 if (ret < 0) {
2671 spin_lock(&block_group->lock);
2672 block_group->commit_used = old_commit_used;
2673 spin_unlock(&block_group->lock);
2674 }
2675
2676 return ret;
2677 }
2678
insert_dev_extent(struct btrfs_trans_handle * trans,const struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2679 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2680 const struct btrfs_device *device, u64 chunk_offset,
2681 u64 start, u64 num_bytes)
2682 {
2683 struct btrfs_fs_info *fs_info = device->fs_info;
2684 struct btrfs_root *root = fs_info->dev_root;
2685 struct btrfs_path *path;
2686 struct btrfs_dev_extent *extent;
2687 struct extent_buffer *leaf;
2688 struct btrfs_key key;
2689 int ret;
2690
2691 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2692 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2693 path = btrfs_alloc_path();
2694 if (!path)
2695 return -ENOMEM;
2696
2697 key.objectid = device->devid;
2698 key.type = BTRFS_DEV_EXTENT_KEY;
2699 key.offset = start;
2700 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2701 if (ret)
2702 goto out;
2703
2704 leaf = path->nodes[0];
2705 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2706 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2707 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2708 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2709 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2710
2711 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2712 btrfs_mark_buffer_dirty(trans, leaf);
2713 out:
2714 btrfs_free_path(path);
2715 return ret;
2716 }
2717
2718 /*
2719 * This function belongs to phase 2.
2720 *
2721 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2722 * phases.
2723 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2724 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2725 u64 chunk_offset, u64 chunk_size)
2726 {
2727 struct btrfs_fs_info *fs_info = trans->fs_info;
2728 struct btrfs_device *device;
2729 struct btrfs_chunk_map *map;
2730 u64 dev_offset;
2731 int i;
2732 int ret = 0;
2733
2734 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2735 if (IS_ERR(map))
2736 return PTR_ERR(map);
2737
2738 /*
2739 * Take the device list mutex to prevent races with the final phase of
2740 * a device replace operation that replaces the device object associated
2741 * with the map's stripes, because the device object's id can change
2742 * at any time during that final phase of the device replace operation
2743 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2744 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2745 * resulting in persisting a device extent item with such ID.
2746 */
2747 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2748 for (i = 0; i < map->num_stripes; i++) {
2749 device = map->stripes[i].dev;
2750 dev_offset = map->stripes[i].physical;
2751
2752 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2753 map->stripe_size);
2754 if (ret)
2755 break;
2756 }
2757 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2758
2759 btrfs_free_chunk_map(map);
2760 return ret;
2761 }
2762
2763 /*
2764 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2765 * chunk allocation.
2766 *
2767 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2768 * phases.
2769 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2770 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2771 {
2772 struct btrfs_fs_info *fs_info = trans->fs_info;
2773 struct btrfs_block_group *block_group;
2774 int ret = 0;
2775
2776 while (!list_empty(&trans->new_bgs)) {
2777 int index;
2778
2779 block_group = list_first_entry(&trans->new_bgs,
2780 struct btrfs_block_group,
2781 bg_list);
2782 if (ret)
2783 goto next;
2784
2785 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2786
2787 ret = insert_block_group_item(trans, block_group);
2788 if (ret)
2789 btrfs_abort_transaction(trans, ret);
2790 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2791 &block_group->runtime_flags)) {
2792 mutex_lock(&fs_info->chunk_mutex);
2793 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2794 mutex_unlock(&fs_info->chunk_mutex);
2795 if (ret)
2796 btrfs_abort_transaction(trans, ret);
2797 }
2798 ret = insert_dev_extents(trans, block_group->start,
2799 block_group->length);
2800 if (ret)
2801 btrfs_abort_transaction(trans, ret);
2802 add_block_group_free_space(trans, block_group);
2803
2804 /*
2805 * If we restriped during balance, we may have added a new raid
2806 * type, so now add the sysfs entries when it is safe to do so.
2807 * We don't have to worry about locking here as it's handled in
2808 * btrfs_sysfs_add_block_group_type.
2809 */
2810 if (block_group->space_info->block_group_kobjs[index] == NULL)
2811 btrfs_sysfs_add_block_group_type(block_group);
2812
2813 /* Already aborted the transaction if it failed. */
2814 next:
2815 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2816
2817 spin_lock(&fs_info->unused_bgs_lock);
2818 list_del_init(&block_group->bg_list);
2819 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2820 btrfs_put_block_group(block_group);
2821 spin_unlock(&fs_info->unused_bgs_lock);
2822
2823 /*
2824 * If the block group is still unused, add it to the list of
2825 * unused block groups. The block group may have been created in
2826 * order to satisfy a space reservation, in which case the
2827 * extent allocation only happens later. But often we don't
2828 * actually need to allocate space that we previously reserved,
2829 * so the block group may become unused for a long time. For
2830 * example for metadata we generally reserve space for a worst
2831 * possible scenario, but then don't end up allocating all that
2832 * space or none at all (due to no need to COW, extent buffers
2833 * were already COWed in the current transaction and still
2834 * unwritten, tree heights lower than the maximum possible
2835 * height, etc). For data we generally reserve the axact amount
2836 * of space we are going to allocate later, the exception is
2837 * when using compression, as we must reserve space based on the
2838 * uncompressed data size, because the compression is only done
2839 * when writeback triggered and we don't know how much space we
2840 * are actually going to need, so we reserve the uncompressed
2841 * size because the data may be uncompressible in the worst case.
2842 */
2843 if (ret == 0) {
2844 bool used;
2845
2846 spin_lock(&block_group->lock);
2847 used = btrfs_is_block_group_used(block_group);
2848 spin_unlock(&block_group->lock);
2849
2850 if (!used)
2851 btrfs_mark_bg_unused(block_group);
2852 }
2853 }
2854 btrfs_trans_release_chunk_metadata(trans);
2855 }
2856
2857 /*
2858 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2859 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2860 */
calculate_global_root_id(const struct btrfs_fs_info * fs_info,u64 offset)2861 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2862 {
2863 u64 div = SZ_1G;
2864 u64 index;
2865
2866 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2867 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2868
2869 /* If we have a smaller fs index based on 128MiB. */
2870 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2871 div = SZ_128M;
2872
2873 offset = div64_u64(offset, div);
2874 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2875 return index;
2876 }
2877
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2878 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2879 u64 type,
2880 u64 chunk_offset, u64 size)
2881 {
2882 struct btrfs_fs_info *fs_info = trans->fs_info;
2883 struct btrfs_block_group *cache;
2884 int ret;
2885
2886 btrfs_set_log_full_commit(trans);
2887
2888 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2889 if (!cache)
2890 return ERR_PTR(-ENOMEM);
2891
2892 /*
2893 * Mark it as new before adding it to the rbtree of block groups or any
2894 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2895 * before the new flag is set.
2896 */
2897 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2898
2899 cache->length = size;
2900 set_free_space_tree_thresholds(cache);
2901 cache->flags = type;
2902 cache->cached = BTRFS_CACHE_FINISHED;
2903 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2904
2905 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2906 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2907
2908 ret = btrfs_load_block_group_zone_info(cache, true);
2909 if (ret) {
2910 btrfs_put_block_group(cache);
2911 return ERR_PTR(ret);
2912 }
2913
2914 ret = exclude_super_stripes(cache);
2915 if (ret) {
2916 /* We may have excluded something, so call this just in case */
2917 btrfs_free_excluded_extents(cache);
2918 btrfs_put_block_group(cache);
2919 return ERR_PTR(ret);
2920 }
2921
2922 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2923 btrfs_free_excluded_extents(cache);
2924 if (ret) {
2925 btrfs_put_block_group(cache);
2926 return ERR_PTR(ret);
2927 }
2928
2929 /*
2930 * Ensure the corresponding space_info object is created and
2931 * assigned to our block group. We want our bg to be added to the rbtree
2932 * with its ->space_info set.
2933 */
2934 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2935 ASSERT(cache->space_info);
2936
2937 ret = btrfs_add_block_group_cache(fs_info, cache);
2938 if (ret) {
2939 btrfs_remove_free_space_cache(cache);
2940 btrfs_put_block_group(cache);
2941 return ERR_PTR(ret);
2942 }
2943
2944 /*
2945 * Now that our block group has its ->space_info set and is inserted in
2946 * the rbtree, update the space info's counters.
2947 */
2948 trace_btrfs_add_block_group(fs_info, cache, 1);
2949 btrfs_add_bg_to_space_info(fs_info, cache);
2950 btrfs_update_global_block_rsv(fs_info);
2951
2952 #ifdef CONFIG_BTRFS_DEBUG
2953 if (btrfs_should_fragment_free_space(cache)) {
2954 cache->space_info->bytes_used += size >> 1;
2955 fragment_free_space(cache);
2956 }
2957 #endif
2958
2959 btrfs_link_bg_list(cache, &trans->new_bgs);
2960 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2961
2962 set_avail_alloc_bits(fs_info, type);
2963 return cache;
2964 }
2965
2966 /*
2967 * Mark one block group RO, can be called several times for the same block
2968 * group.
2969 *
2970 * @cache: the destination block group
2971 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2972 * ensure we still have some free space after marking this
2973 * block group RO.
2974 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2975 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2976 bool do_chunk_alloc)
2977 {
2978 struct btrfs_fs_info *fs_info = cache->fs_info;
2979 struct btrfs_trans_handle *trans;
2980 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2981 u64 alloc_flags;
2982 int ret;
2983 bool dirty_bg_running;
2984
2985 /*
2986 * This can only happen when we are doing read-only scrub on read-only
2987 * mount.
2988 * In that case we should not start a new transaction on read-only fs.
2989 * Thus here we skip all chunk allocations.
2990 */
2991 if (sb_rdonly(fs_info->sb)) {
2992 mutex_lock(&fs_info->ro_block_group_mutex);
2993 ret = inc_block_group_ro(cache, 0);
2994 mutex_unlock(&fs_info->ro_block_group_mutex);
2995 return ret;
2996 }
2997
2998 do {
2999 trans = btrfs_join_transaction(root);
3000 if (IS_ERR(trans))
3001 return PTR_ERR(trans);
3002
3003 dirty_bg_running = false;
3004
3005 /*
3006 * We're not allowed to set block groups readonly after the dirty
3007 * block group cache has started writing. If it already started,
3008 * back off and let this transaction commit.
3009 */
3010 mutex_lock(&fs_info->ro_block_group_mutex);
3011 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3012 u64 transid = trans->transid;
3013
3014 mutex_unlock(&fs_info->ro_block_group_mutex);
3015 btrfs_end_transaction(trans);
3016
3017 ret = btrfs_wait_for_commit(fs_info, transid);
3018 if (ret)
3019 return ret;
3020 dirty_bg_running = true;
3021 }
3022 } while (dirty_bg_running);
3023
3024 if (do_chunk_alloc) {
3025 /*
3026 * If we are changing raid levels, try to allocate a
3027 * corresponding block group with the new raid level.
3028 */
3029 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3030 if (alloc_flags != cache->flags) {
3031 ret = btrfs_chunk_alloc(trans, alloc_flags,
3032 CHUNK_ALLOC_FORCE);
3033 /*
3034 * ENOSPC is allowed here, we may have enough space
3035 * already allocated at the new raid level to carry on
3036 */
3037 if (ret == -ENOSPC)
3038 ret = 0;
3039 if (ret < 0)
3040 goto out;
3041 }
3042 }
3043
3044 ret = inc_block_group_ro(cache, 0);
3045 if (!ret)
3046 goto out;
3047 if (ret == -ETXTBSY)
3048 goto unlock_out;
3049
3050 /*
3051 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3052 * chunk allocation storm to exhaust the system chunk array. Otherwise
3053 * we still want to try our best to mark the block group read-only.
3054 */
3055 if (!do_chunk_alloc && ret == -ENOSPC &&
3056 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3057 goto unlock_out;
3058
3059 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3060 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3061 if (ret < 0)
3062 goto out;
3063 /*
3064 * We have allocated a new chunk. We also need to activate that chunk to
3065 * grant metadata tickets for zoned filesystem.
3066 */
3067 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3068 if (ret < 0)
3069 goto out;
3070
3071 ret = inc_block_group_ro(cache, 0);
3072 if (ret == -ETXTBSY)
3073 goto unlock_out;
3074 out:
3075 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3076 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3077 mutex_lock(&fs_info->chunk_mutex);
3078 check_system_chunk(trans, alloc_flags);
3079 mutex_unlock(&fs_info->chunk_mutex);
3080 }
3081 unlock_out:
3082 mutex_unlock(&fs_info->ro_block_group_mutex);
3083
3084 btrfs_end_transaction(trans);
3085 return ret;
3086 }
3087
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3088 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3089 {
3090 struct btrfs_space_info *sinfo = cache->space_info;
3091 u64 num_bytes;
3092
3093 BUG_ON(!cache->ro);
3094
3095 spin_lock(&sinfo->lock);
3096 spin_lock(&cache->lock);
3097 if (!--cache->ro) {
3098 if (btrfs_is_zoned(cache->fs_info)) {
3099 /* Migrate zone_unusable bytes back */
3100 cache->zone_unusable =
3101 (cache->alloc_offset - cache->used - cache->pinned -
3102 cache->reserved) +
3103 (cache->length - cache->zone_capacity);
3104 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3105 cache->zone_unusable);
3106 sinfo->bytes_readonly -= cache->zone_unusable;
3107 }
3108 num_bytes = cache->length - cache->reserved -
3109 cache->pinned - cache->bytes_super -
3110 cache->zone_unusable - cache->used;
3111 sinfo->bytes_readonly -= num_bytes;
3112 list_del_init(&cache->ro_list);
3113 }
3114 spin_unlock(&cache->lock);
3115 spin_unlock(&sinfo->lock);
3116 }
3117
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3118 static int update_block_group_item(struct btrfs_trans_handle *trans,
3119 struct btrfs_path *path,
3120 struct btrfs_block_group *cache)
3121 {
3122 struct btrfs_fs_info *fs_info = trans->fs_info;
3123 int ret;
3124 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3125 unsigned long bi;
3126 struct extent_buffer *leaf;
3127 struct btrfs_block_group_item bgi;
3128 struct btrfs_key key;
3129 u64 old_commit_used;
3130 u64 used;
3131
3132 /*
3133 * Block group items update can be triggered out of commit transaction
3134 * critical section, thus we need a consistent view of used bytes.
3135 * We cannot use cache->used directly outside of the spin lock, as it
3136 * may be changed.
3137 */
3138 spin_lock(&cache->lock);
3139 old_commit_used = cache->commit_used;
3140 used = cache->used;
3141 /* No change in used bytes, can safely skip it. */
3142 if (cache->commit_used == used) {
3143 spin_unlock(&cache->lock);
3144 return 0;
3145 }
3146 cache->commit_used = used;
3147 spin_unlock(&cache->lock);
3148
3149 key.objectid = cache->start;
3150 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3151 key.offset = cache->length;
3152
3153 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3154 if (ret) {
3155 if (ret > 0)
3156 ret = -ENOENT;
3157 goto fail;
3158 }
3159
3160 leaf = path->nodes[0];
3161 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 btrfs_set_stack_block_group_used(&bgi, used);
3163 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3164 cache->global_root_id);
3165 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3166 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3167 btrfs_mark_buffer_dirty(trans, leaf);
3168 fail:
3169 btrfs_release_path(path);
3170 /*
3171 * We didn't update the block group item, need to revert commit_used
3172 * unless the block group item didn't exist yet - this is to prevent a
3173 * race with a concurrent insertion of the block group item, with
3174 * insert_block_group_item(), that happened just after we attempted to
3175 * update. In that case we would reset commit_used to 0 just after the
3176 * insertion set it to a value greater than 0 - if the block group later
3177 * becomes with 0 used bytes, we would incorrectly skip its update.
3178 */
3179 if (ret < 0 && ret != -ENOENT) {
3180 spin_lock(&cache->lock);
3181 cache->commit_used = old_commit_used;
3182 spin_unlock(&cache->lock);
3183 }
3184 return ret;
3185
3186 }
3187
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3188 static int cache_save_setup(struct btrfs_block_group *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191 {
3192 struct btrfs_fs_info *fs_info = block_group->fs_info;
3193 struct inode *inode = NULL;
3194 struct extent_changeset *data_reserved = NULL;
3195 u64 alloc_hint = 0;
3196 int dcs = BTRFS_DC_ERROR;
3197 u64 cache_size = 0;
3198 int retries = 0;
3199 int ret = 0;
3200
3201 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3202 return 0;
3203
3204 /*
3205 * If this block group is smaller than 100 megs don't bother caching the
3206 * block group.
3207 */
3208 if (block_group->length < (100 * SZ_1M)) {
3209 spin_lock(&block_group->lock);
3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 spin_unlock(&block_group->lock);
3212 return 0;
3213 }
3214
3215 if (TRANS_ABORTED(trans))
3216 return 0;
3217 again:
3218 inode = lookup_free_space_inode(block_group, path);
3219 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3220 ret = PTR_ERR(inode);
3221 btrfs_release_path(path);
3222 goto out;
3223 }
3224
3225 if (IS_ERR(inode)) {
3226 BUG_ON(retries);
3227 retries++;
3228
3229 if (block_group->ro)
3230 goto out_free;
3231
3232 ret = create_free_space_inode(trans, block_group, path);
3233 if (ret)
3234 goto out_free;
3235 goto again;
3236 }
3237
3238 /*
3239 * We want to set the generation to 0, that way if anything goes wrong
3240 * from here on out we know not to trust this cache when we load up next
3241 * time.
3242 */
3243 BTRFS_I(inode)->generation = 0;
3244 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3245 if (ret) {
3246 /*
3247 * So theoretically we could recover from this, simply set the
3248 * super cache generation to 0 so we know to invalidate the
3249 * cache, but then we'd have to keep track of the block groups
3250 * that fail this way so we know we _have_ to reset this cache
3251 * before the next commit or risk reading stale cache. So to
3252 * limit our exposure to horrible edge cases lets just abort the
3253 * transaction, this only happens in really bad situations
3254 * anyway.
3255 */
3256 btrfs_abort_transaction(trans, ret);
3257 goto out_put;
3258 }
3259 WARN_ON(ret);
3260
3261 /* We've already setup this transaction, go ahead and exit */
3262 if (block_group->cache_generation == trans->transid &&
3263 i_size_read(inode)) {
3264 dcs = BTRFS_DC_SETUP;
3265 goto out_put;
3266 }
3267
3268 if (i_size_read(inode) > 0) {
3269 ret = btrfs_check_trunc_cache_free_space(fs_info,
3270 &fs_info->global_block_rsv);
3271 if (ret)
3272 goto out_put;
3273
3274 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3275 if (ret)
3276 goto out_put;
3277 }
3278
3279 spin_lock(&block_group->lock);
3280 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3281 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3282 /*
3283 * don't bother trying to write stuff out _if_
3284 * a) we're not cached,
3285 * b) we're with nospace_cache mount option,
3286 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3287 */
3288 dcs = BTRFS_DC_WRITTEN;
3289 spin_unlock(&block_group->lock);
3290 goto out_put;
3291 }
3292 spin_unlock(&block_group->lock);
3293
3294 /*
3295 * We hit an ENOSPC when setting up the cache in this transaction, just
3296 * skip doing the setup, we've already cleared the cache so we're safe.
3297 */
3298 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3299 ret = -ENOSPC;
3300 goto out_put;
3301 }
3302
3303 /*
3304 * Try to preallocate enough space based on how big the block group is.
3305 * Keep in mind this has to include any pinned space which could end up
3306 * taking up quite a bit since it's not folded into the other space
3307 * cache.
3308 */
3309 cache_size = div_u64(block_group->length, SZ_256M);
3310 if (!cache_size)
3311 cache_size = 1;
3312
3313 cache_size *= 16;
3314 cache_size *= fs_info->sectorsize;
3315
3316 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3317 cache_size, false);
3318 if (ret)
3319 goto out_put;
3320
3321 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3322 cache_size, cache_size,
3323 &alloc_hint);
3324 /*
3325 * Our cache requires contiguous chunks so that we don't modify a bunch
3326 * of metadata or split extents when writing the cache out, which means
3327 * we can enospc if we are heavily fragmented in addition to just normal
3328 * out of space conditions. So if we hit this just skip setting up any
3329 * other block groups for this transaction, maybe we'll unpin enough
3330 * space the next time around.
3331 */
3332 if (!ret)
3333 dcs = BTRFS_DC_SETUP;
3334 else if (ret == -ENOSPC)
3335 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3336
3337 out_put:
3338 iput(inode);
3339 out_free:
3340 btrfs_release_path(path);
3341 out:
3342 spin_lock(&block_group->lock);
3343 if (!ret && dcs == BTRFS_DC_SETUP)
3344 block_group->cache_generation = trans->transid;
3345 block_group->disk_cache_state = dcs;
3346 spin_unlock(&block_group->lock);
3347
3348 extent_changeset_free(data_reserved);
3349 return ret;
3350 }
3351
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3352 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3353 {
3354 struct btrfs_fs_info *fs_info = trans->fs_info;
3355 struct btrfs_block_group *cache, *tmp;
3356 struct btrfs_transaction *cur_trans = trans->transaction;
3357 struct btrfs_path *path;
3358
3359 if (list_empty(&cur_trans->dirty_bgs) ||
3360 !btrfs_test_opt(fs_info, SPACE_CACHE))
3361 return 0;
3362
3363 path = btrfs_alloc_path();
3364 if (!path)
3365 return -ENOMEM;
3366
3367 /* Could add new block groups, use _safe just in case */
3368 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3369 dirty_list) {
3370 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3371 cache_save_setup(cache, trans, path);
3372 }
3373
3374 btrfs_free_path(path);
3375 return 0;
3376 }
3377
3378 /*
3379 * Transaction commit does final block group cache writeback during a critical
3380 * section where nothing is allowed to change the FS. This is required in
3381 * order for the cache to actually match the block group, but can introduce a
3382 * lot of latency into the commit.
3383 *
3384 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3385 * There's a chance we'll have to redo some of it if the block group changes
3386 * again during the commit, but it greatly reduces the commit latency by
3387 * getting rid of the easy block groups while we're still allowing others to
3388 * join the commit.
3389 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3390 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3391 {
3392 struct btrfs_fs_info *fs_info = trans->fs_info;
3393 struct btrfs_block_group *cache;
3394 struct btrfs_transaction *cur_trans = trans->transaction;
3395 int ret = 0;
3396 int should_put;
3397 struct btrfs_path *path = NULL;
3398 LIST_HEAD(dirty);
3399 struct list_head *io = &cur_trans->io_bgs;
3400 int loops = 0;
3401
3402 spin_lock(&cur_trans->dirty_bgs_lock);
3403 if (list_empty(&cur_trans->dirty_bgs)) {
3404 spin_unlock(&cur_trans->dirty_bgs_lock);
3405 return 0;
3406 }
3407 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3408 spin_unlock(&cur_trans->dirty_bgs_lock);
3409
3410 again:
3411 /* Make sure all the block groups on our dirty list actually exist */
3412 btrfs_create_pending_block_groups(trans);
3413
3414 if (!path) {
3415 path = btrfs_alloc_path();
3416 if (!path) {
3417 ret = -ENOMEM;
3418 goto out;
3419 }
3420 }
3421
3422 /*
3423 * cache_write_mutex is here only to save us from balance or automatic
3424 * removal of empty block groups deleting this block group while we are
3425 * writing out the cache
3426 */
3427 mutex_lock(&trans->transaction->cache_write_mutex);
3428 while (!list_empty(&dirty)) {
3429 bool drop_reserve = true;
3430
3431 cache = list_first_entry(&dirty, struct btrfs_block_group,
3432 dirty_list);
3433 /*
3434 * This can happen if something re-dirties a block group that
3435 * is already under IO. Just wait for it to finish and then do
3436 * it all again
3437 */
3438 if (!list_empty(&cache->io_list)) {
3439 list_del_init(&cache->io_list);
3440 btrfs_wait_cache_io(trans, cache, path);
3441 btrfs_put_block_group(cache);
3442 }
3443
3444
3445 /*
3446 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3447 * it should update the cache_state. Don't delete until after
3448 * we wait.
3449 *
3450 * Since we're not running in the commit critical section
3451 * we need the dirty_bgs_lock to protect from update_block_group
3452 */
3453 spin_lock(&cur_trans->dirty_bgs_lock);
3454 list_del_init(&cache->dirty_list);
3455 spin_unlock(&cur_trans->dirty_bgs_lock);
3456
3457 should_put = 1;
3458
3459 cache_save_setup(cache, trans, path);
3460
3461 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3462 cache->io_ctl.inode = NULL;
3463 ret = btrfs_write_out_cache(trans, cache, path);
3464 if (ret == 0 && cache->io_ctl.inode) {
3465 should_put = 0;
3466
3467 /*
3468 * The cache_write_mutex is protecting the
3469 * io_list, also refer to the definition of
3470 * btrfs_transaction::io_bgs for more details
3471 */
3472 list_add_tail(&cache->io_list, io);
3473 } else {
3474 /*
3475 * If we failed to write the cache, the
3476 * generation will be bad and life goes on
3477 */
3478 ret = 0;
3479 }
3480 }
3481 if (!ret) {
3482 ret = update_block_group_item(trans, path, cache);
3483 /*
3484 * Our block group might still be attached to the list
3485 * of new block groups in the transaction handle of some
3486 * other task (struct btrfs_trans_handle->new_bgs). This
3487 * means its block group item isn't yet in the extent
3488 * tree. If this happens ignore the error, as we will
3489 * try again later in the critical section of the
3490 * transaction commit.
3491 */
3492 if (ret == -ENOENT) {
3493 ret = 0;
3494 spin_lock(&cur_trans->dirty_bgs_lock);
3495 if (list_empty(&cache->dirty_list)) {
3496 list_add_tail(&cache->dirty_list,
3497 &cur_trans->dirty_bgs);
3498 btrfs_get_block_group(cache);
3499 drop_reserve = false;
3500 }
3501 spin_unlock(&cur_trans->dirty_bgs_lock);
3502 } else if (ret) {
3503 btrfs_abort_transaction(trans, ret);
3504 }
3505 }
3506
3507 /* If it's not on the io list, we need to put the block group */
3508 if (should_put)
3509 btrfs_put_block_group(cache);
3510 if (drop_reserve)
3511 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3512 /*
3513 * Avoid blocking other tasks for too long. It might even save
3514 * us from writing caches for block groups that are going to be
3515 * removed.
3516 */
3517 mutex_unlock(&trans->transaction->cache_write_mutex);
3518 if (ret)
3519 goto out;
3520 mutex_lock(&trans->transaction->cache_write_mutex);
3521 }
3522 mutex_unlock(&trans->transaction->cache_write_mutex);
3523
3524 /*
3525 * Go through delayed refs for all the stuff we've just kicked off
3526 * and then loop back (just once)
3527 */
3528 if (!ret)
3529 ret = btrfs_run_delayed_refs(trans, 0);
3530 if (!ret && loops == 0) {
3531 loops++;
3532 spin_lock(&cur_trans->dirty_bgs_lock);
3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3534 /*
3535 * dirty_bgs_lock protects us from concurrent block group
3536 * deletes too (not just cache_write_mutex).
3537 */
3538 if (!list_empty(&dirty)) {
3539 spin_unlock(&cur_trans->dirty_bgs_lock);
3540 goto again;
3541 }
3542 spin_unlock(&cur_trans->dirty_bgs_lock);
3543 }
3544 out:
3545 if (ret < 0) {
3546 spin_lock(&cur_trans->dirty_bgs_lock);
3547 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3548 spin_unlock(&cur_trans->dirty_bgs_lock);
3549 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3550 }
3551
3552 btrfs_free_path(path);
3553 return ret;
3554 }
3555
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3556 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3557 {
3558 struct btrfs_fs_info *fs_info = trans->fs_info;
3559 struct btrfs_block_group *cache;
3560 struct btrfs_transaction *cur_trans = trans->transaction;
3561 int ret = 0;
3562 int should_put;
3563 struct btrfs_path *path;
3564 struct list_head *io = &cur_trans->io_bgs;
3565
3566 path = btrfs_alloc_path();
3567 if (!path)
3568 return -ENOMEM;
3569
3570 /*
3571 * Even though we are in the critical section of the transaction commit,
3572 * we can still have concurrent tasks adding elements to this
3573 * transaction's list of dirty block groups. These tasks correspond to
3574 * endio free space workers started when writeback finishes for a
3575 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3576 * allocate new block groups as a result of COWing nodes of the root
3577 * tree when updating the free space inode. The writeback for the space
3578 * caches is triggered by an earlier call to
3579 * btrfs_start_dirty_block_groups() and iterations of the following
3580 * loop.
3581 * Also we want to do the cache_save_setup first and then run the
3582 * delayed refs to make sure we have the best chance at doing this all
3583 * in one shot.
3584 */
3585 spin_lock(&cur_trans->dirty_bgs_lock);
3586 while (!list_empty(&cur_trans->dirty_bgs)) {
3587 cache = list_first_entry(&cur_trans->dirty_bgs,
3588 struct btrfs_block_group,
3589 dirty_list);
3590
3591 /*
3592 * This can happen if cache_save_setup re-dirties a block group
3593 * that is already under IO. Just wait for it to finish and
3594 * then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 spin_unlock(&cur_trans->dirty_bgs_lock);
3598 list_del_init(&cache->io_list);
3599 btrfs_wait_cache_io(trans, cache, path);
3600 btrfs_put_block_group(cache);
3601 spin_lock(&cur_trans->dirty_bgs_lock);
3602 }
3603
3604 /*
3605 * Don't remove from the dirty list until after we've waited on
3606 * any pending IO
3607 */
3608 list_del_init(&cache->dirty_list);
3609 spin_unlock(&cur_trans->dirty_bgs_lock);
3610 should_put = 1;
3611
3612 cache_save_setup(cache, trans, path);
3613
3614 if (!ret)
3615 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3616
3617 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3621 should_put = 0;
3622 list_add_tail(&cache->io_list, io);
3623 } else {
3624 /*
3625 * If we failed to write the cache, the
3626 * generation will be bad and life goes on
3627 */
3628 ret = 0;
3629 }
3630 }
3631 if (!ret) {
3632 ret = update_block_group_item(trans, path, cache);
3633 /*
3634 * One of the free space endio workers might have
3635 * created a new block group while updating a free space
3636 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3637 * and hasn't released its transaction handle yet, in
3638 * which case the new block group is still attached to
3639 * its transaction handle and its creation has not
3640 * finished yet (no block group item in the extent tree
3641 * yet, etc). If this is the case, wait for all free
3642 * space endio workers to finish and retry. This is a
3643 * very rare case so no need for a more efficient and
3644 * complex approach.
3645 */
3646 if (ret == -ENOENT) {
3647 wait_event(cur_trans->writer_wait,
3648 atomic_read(&cur_trans->num_writers) == 1);
3649 ret = update_block_group_item(trans, path, cache);
3650 }
3651 if (ret)
3652 btrfs_abort_transaction(trans, ret);
3653 }
3654
3655 /* If its not on the io list, we need to put the block group */
3656 if (should_put)
3657 btrfs_put_block_group(cache);
3658 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 }
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662
3663 /*
3664 * Refer to the definition of io_bgs member for details why it's safe
3665 * to use it without any locking
3666 */
3667 while (!list_empty(io)) {
3668 cache = list_first_entry(io, struct btrfs_block_group,
3669 io_list);
3670 list_del_init(&cache->io_list);
3671 btrfs_wait_cache_io(trans, cache, path);
3672 btrfs_put_block_group(cache);
3673 }
3674
3675 btrfs_free_path(path);
3676 return ret;
3677 }
3678
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3679 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3680 u64 bytenr, u64 num_bytes, bool alloc)
3681 {
3682 struct btrfs_fs_info *info = trans->fs_info;
3683 struct btrfs_space_info *space_info;
3684 struct btrfs_block_group *cache;
3685 u64 old_val;
3686 bool reclaim = false;
3687 bool bg_already_dirty = true;
3688 int factor;
3689
3690 /* Block accounting for super block */
3691 spin_lock(&info->delalloc_root_lock);
3692 old_val = btrfs_super_bytes_used(info->super_copy);
3693 if (alloc)
3694 old_val += num_bytes;
3695 else
3696 old_val -= num_bytes;
3697 btrfs_set_super_bytes_used(info->super_copy, old_val);
3698 spin_unlock(&info->delalloc_root_lock);
3699
3700 cache = btrfs_lookup_block_group(info, bytenr);
3701 if (!cache)
3702 return -ENOENT;
3703
3704 /* An extent can not span multiple block groups. */
3705 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3706
3707 space_info = cache->space_info;
3708 factor = btrfs_bg_type_to_factor(cache->flags);
3709
3710 /*
3711 * If this block group has free space cache written out, we need to make
3712 * sure to load it if we are removing space. This is because we need
3713 * the unpinning stage to actually add the space back to the block group,
3714 * otherwise we will leak space.
3715 */
3716 if (!alloc && !btrfs_block_group_done(cache))
3717 btrfs_cache_block_group(cache, true);
3718
3719 spin_lock(&space_info->lock);
3720 spin_lock(&cache->lock);
3721
3722 if (btrfs_test_opt(info, SPACE_CACHE) &&
3723 cache->disk_cache_state < BTRFS_DC_CLEAR)
3724 cache->disk_cache_state = BTRFS_DC_CLEAR;
3725
3726 old_val = cache->used;
3727 if (alloc) {
3728 old_val += num_bytes;
3729 cache->used = old_val;
3730 cache->reserved -= num_bytes;
3731 cache->reclaim_mark = 0;
3732 space_info->bytes_reserved -= num_bytes;
3733 space_info->bytes_used += num_bytes;
3734 space_info->disk_used += num_bytes * factor;
3735 if (READ_ONCE(space_info->periodic_reclaim))
3736 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3737 spin_unlock(&cache->lock);
3738 spin_unlock(&space_info->lock);
3739 } else {
3740 old_val -= num_bytes;
3741 cache->used = old_val;
3742 cache->pinned += num_bytes;
3743 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3744 space_info->bytes_used -= num_bytes;
3745 space_info->disk_used -= num_bytes * factor;
3746 if (READ_ONCE(space_info->periodic_reclaim))
3747 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3748 else
3749 reclaim = should_reclaim_block_group(cache, num_bytes);
3750
3751 spin_unlock(&cache->lock);
3752 spin_unlock(&space_info->lock);
3753
3754 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3755 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3756 }
3757
3758 spin_lock(&trans->transaction->dirty_bgs_lock);
3759 if (list_empty(&cache->dirty_list)) {
3760 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3761 bg_already_dirty = false;
3762 btrfs_get_block_group(cache);
3763 }
3764 spin_unlock(&trans->transaction->dirty_bgs_lock);
3765
3766 /*
3767 * No longer have used bytes in this block group, queue it for deletion.
3768 * We do this after adding the block group to the dirty list to avoid
3769 * races between cleaner kthread and space cache writeout.
3770 */
3771 if (!alloc && old_val == 0) {
3772 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3773 btrfs_mark_bg_unused(cache);
3774 } else if (!alloc && reclaim) {
3775 btrfs_mark_bg_to_reclaim(cache);
3776 }
3777
3778 btrfs_put_block_group(cache);
3779
3780 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3781 if (!bg_already_dirty)
3782 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3783
3784 return 0;
3785 }
3786
3787 /*
3788 * Update the block_group and space info counters.
3789 *
3790 * @cache: The cache we are manipulating
3791 * @ram_bytes: The number of bytes of file content, and will be same to
3792 * @num_bytes except for the compress path.
3793 * @num_bytes: The number of bytes in question
3794 * @delalloc: The blocks are allocated for the delalloc write
3795 *
3796 * This is called by the allocator when it reserves space. If this is a
3797 * reservation and the block group has become read only we cannot make the
3798 * reservation and return -EAGAIN, otherwise this function always succeeds.
3799 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3800 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3801 u64 ram_bytes, u64 num_bytes, int delalloc,
3802 bool force_wrong_size_class)
3803 {
3804 struct btrfs_space_info *space_info = cache->space_info;
3805 enum btrfs_block_group_size_class size_class;
3806 int ret = 0;
3807
3808 spin_lock(&space_info->lock);
3809 spin_lock(&cache->lock);
3810 if (cache->ro) {
3811 ret = -EAGAIN;
3812 goto out;
3813 }
3814
3815 if (btrfs_block_group_should_use_size_class(cache)) {
3816 size_class = btrfs_calc_block_group_size_class(num_bytes);
3817 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3818 if (ret)
3819 goto out;
3820 }
3821 cache->reserved += num_bytes;
3822 space_info->bytes_reserved += num_bytes;
3823 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3824 space_info->flags, num_bytes, 1);
3825 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3826 space_info, -ram_bytes);
3827 if (delalloc)
3828 cache->delalloc_bytes += num_bytes;
3829
3830 /*
3831 * Compression can use less space than we reserved, so wake tickets if
3832 * that happens.
3833 */
3834 if (num_bytes < ram_bytes)
3835 btrfs_try_granting_tickets(cache->fs_info, space_info);
3836 out:
3837 spin_unlock(&cache->lock);
3838 spin_unlock(&space_info->lock);
3839 return ret;
3840 }
3841
3842 /*
3843 * Update the block_group and space info counters.
3844 *
3845 * @cache: The cache we are manipulating
3846 * @num_bytes: The number of bytes in question
3847 * @delalloc: The blocks are allocated for the delalloc write
3848 *
3849 * This is called by somebody who is freeing space that was never actually used
3850 * on disk. For example if you reserve some space for a new leaf in transaction
3851 * A and before transaction A commits you free that leaf, you call this with
3852 * reserve set to 0 in order to clear the reservation.
3853 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3854 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3855 u64 num_bytes, int delalloc)
3856 {
3857 struct btrfs_space_info *space_info = cache->space_info;
3858
3859 spin_lock(&space_info->lock);
3860 spin_lock(&cache->lock);
3861 if (cache->ro)
3862 space_info->bytes_readonly += num_bytes;
3863 else if (btrfs_is_zoned(cache->fs_info))
3864 space_info->bytes_zone_unusable += num_bytes;
3865 cache->reserved -= num_bytes;
3866 space_info->bytes_reserved -= num_bytes;
3867 space_info->max_extent_size = 0;
3868
3869 if (delalloc)
3870 cache->delalloc_bytes -= num_bytes;
3871 spin_unlock(&cache->lock);
3872
3873 btrfs_try_granting_tickets(cache->fs_info, space_info);
3874 spin_unlock(&space_info->lock);
3875 }
3876
force_metadata_allocation(struct btrfs_fs_info * info)3877 static void force_metadata_allocation(struct btrfs_fs_info *info)
3878 {
3879 struct list_head *head = &info->space_info;
3880 struct btrfs_space_info *found;
3881
3882 list_for_each_entry(found, head, list) {
3883 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3884 found->force_alloc = CHUNK_ALLOC_FORCE;
3885 }
3886 }
3887
should_alloc_chunk(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * sinfo,int force)3888 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3889 const struct btrfs_space_info *sinfo, int force)
3890 {
3891 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3892 u64 thresh;
3893
3894 if (force == CHUNK_ALLOC_FORCE)
3895 return 1;
3896
3897 /*
3898 * in limited mode, we want to have some free space up to
3899 * about 1% of the FS size.
3900 */
3901 if (force == CHUNK_ALLOC_LIMITED) {
3902 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3903 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3904
3905 if (sinfo->total_bytes - bytes_used < thresh)
3906 return 1;
3907 }
3908
3909 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3910 return 0;
3911 return 1;
3912 }
3913
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3914 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3915 {
3916 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3917
3918 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3919 }
3920
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3921 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3922 {
3923 struct btrfs_block_group *bg;
3924 int ret;
3925
3926 /*
3927 * Check if we have enough space in the system space info because we
3928 * will need to update device items in the chunk btree and insert a new
3929 * chunk item in the chunk btree as well. This will allocate a new
3930 * system block group if needed.
3931 */
3932 check_system_chunk(trans, flags);
3933
3934 bg = btrfs_create_chunk(trans, flags);
3935 if (IS_ERR(bg)) {
3936 ret = PTR_ERR(bg);
3937 goto out;
3938 }
3939
3940 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3941 /*
3942 * Normally we are not expected to fail with -ENOSPC here, since we have
3943 * previously reserved space in the system space_info and allocated one
3944 * new system chunk if necessary. However there are three exceptions:
3945 *
3946 * 1) We may have enough free space in the system space_info but all the
3947 * existing system block groups have a profile which can not be used
3948 * for extent allocation.
3949 *
3950 * This happens when mounting in degraded mode. For example we have a
3951 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3952 * using the other device in degraded mode. If we then allocate a chunk,
3953 * we may have enough free space in the existing system space_info, but
3954 * none of the block groups can be used for extent allocation since they
3955 * have a RAID1 profile, and because we are in degraded mode with a
3956 * single device, we are forced to allocate a new system chunk with a
3957 * SINGLE profile. Making check_system_chunk() iterate over all system
3958 * block groups and check if they have a usable profile and enough space
3959 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3960 * try again after forcing allocation of a new system chunk. Like this
3961 * we avoid paying the cost of that search in normal circumstances, when
3962 * we were not mounted in degraded mode;
3963 *
3964 * 2) We had enough free space info the system space_info, and one suitable
3965 * block group to allocate from when we called check_system_chunk()
3966 * above. However right after we called it, the only system block group
3967 * with enough free space got turned into RO mode by a running scrub,
3968 * and in this case we have to allocate a new one and retry. We only
3969 * need do this allocate and retry once, since we have a transaction
3970 * handle and scrub uses the commit root to search for block groups;
3971 *
3972 * 3) We had one system block group with enough free space when we called
3973 * check_system_chunk(), but after that, right before we tried to
3974 * allocate the last extent buffer we needed, a discard operation came
3975 * in and it temporarily removed the last free space entry from the
3976 * block group (discard removes a free space entry, discards it, and
3977 * then adds back the entry to the block group cache).
3978 */
3979 if (ret == -ENOSPC) {
3980 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3981 struct btrfs_block_group *sys_bg;
3982
3983 sys_bg = btrfs_create_chunk(trans, sys_flags);
3984 if (IS_ERR(sys_bg)) {
3985 ret = PTR_ERR(sys_bg);
3986 btrfs_abort_transaction(trans, ret);
3987 goto out;
3988 }
3989
3990 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3991 if (ret) {
3992 btrfs_abort_transaction(trans, ret);
3993 goto out;
3994 }
3995
3996 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3997 if (ret) {
3998 btrfs_abort_transaction(trans, ret);
3999 goto out;
4000 }
4001 } else if (ret) {
4002 btrfs_abort_transaction(trans, ret);
4003 goto out;
4004 }
4005 out:
4006 btrfs_trans_release_chunk_metadata(trans);
4007
4008 if (ret)
4009 return ERR_PTR(ret);
4010
4011 btrfs_get_block_group(bg);
4012 return bg;
4013 }
4014
4015 /*
4016 * Chunk allocation is done in 2 phases:
4017 *
4018 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4019 * the chunk, the chunk mapping, create its block group and add the items
4020 * that belong in the chunk btree to it - more specifically, we need to
4021 * update device items in the chunk btree and add a new chunk item to it.
4022 *
4023 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4024 * group item to the extent btree and the device extent items to the devices
4025 * btree.
4026 *
4027 * This is done to prevent deadlocks. For example when COWing a node from the
4028 * extent btree we are holding a write lock on the node's parent and if we
4029 * trigger chunk allocation and attempted to insert the new block group item
4030 * in the extent btree right way, we could deadlock because the path for the
4031 * insertion can include that parent node. At first glance it seems impossible
4032 * to trigger chunk allocation after starting a transaction since tasks should
4033 * reserve enough transaction units (metadata space), however while that is true
4034 * most of the time, chunk allocation may still be triggered for several reasons:
4035 *
4036 * 1) When reserving metadata, we check if there is enough free space in the
4037 * metadata space_info and therefore don't trigger allocation of a new chunk.
4038 * However later when the task actually tries to COW an extent buffer from
4039 * the extent btree or from the device btree for example, it is forced to
4040 * allocate a new block group (chunk) because the only one that had enough
4041 * free space was just turned to RO mode by a running scrub for example (or
4042 * device replace, block group reclaim thread, etc), so we can not use it
4043 * for allocating an extent and end up being forced to allocate a new one;
4044 *
4045 * 2) Because we only check that the metadata space_info has enough free bytes,
4046 * we end up not allocating a new metadata chunk in that case. However if
4047 * the filesystem was mounted in degraded mode, none of the existing block
4048 * groups might be suitable for extent allocation due to their incompatible
4049 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4050 * use a RAID1 profile, in degraded mode using a single device). In this case
4051 * when the task attempts to COW some extent buffer of the extent btree for
4052 * example, it will trigger allocation of a new metadata block group with a
4053 * suitable profile (SINGLE profile in the example of the degraded mount of
4054 * the RAID1 filesystem);
4055 *
4056 * 3) The task has reserved enough transaction units / metadata space, but when
4057 * it attempts to COW an extent buffer from the extent or device btree for
4058 * example, it does not find any free extent in any metadata block group,
4059 * therefore forced to try to allocate a new metadata block group.
4060 * This is because some other task allocated all available extents in the
4061 * meanwhile - this typically happens with tasks that don't reserve space
4062 * properly, either intentionally or as a bug. One example where this is
4063 * done intentionally is fsync, as it does not reserve any transaction units
4064 * and ends up allocating a variable number of metadata extents for log
4065 * tree extent buffers;
4066 *
4067 * 4) The task has reserved enough transaction units / metadata space, but right
4068 * before it tries to allocate the last extent buffer it needs, a discard
4069 * operation comes in and, temporarily, removes the last free space entry from
4070 * the only metadata block group that had free space (discard starts by
4071 * removing a free space entry from a block group, then does the discard
4072 * operation and, once it's done, it adds back the free space entry to the
4073 * block group).
4074 *
4075 * We also need this 2 phases setup when adding a device to a filesystem with
4076 * a seed device - we must create new metadata and system chunks without adding
4077 * any of the block group items to the chunk, extent and device btrees. If we
4078 * did not do it this way, we would get ENOSPC when attempting to update those
4079 * btrees, since all the chunks from the seed device are read-only.
4080 *
4081 * Phase 1 does the updates and insertions to the chunk btree because if we had
4082 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4083 * parallel, we risk having too many system chunks allocated by many tasks if
4084 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4085 * extreme case this leads to exhaustion of the system chunk array in the
4086 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4087 * and with RAID filesystems (so we have more device items in the chunk btree).
4088 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4089 * the system chunk array due to concurrent allocations") provides more details.
4090 *
4091 * Allocation of system chunks does not happen through this function. A task that
4092 * needs to update the chunk btree (the only btree that uses system chunks), must
4093 * preallocate chunk space by calling either check_system_chunk() or
4094 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4095 * metadata chunk or when removing a chunk, while the later is used before doing
4096 * a modification to the chunk btree - use cases for the later are adding,
4097 * removing and resizing a device as well as relocation of a system chunk.
4098 * See the comment below for more details.
4099 *
4100 * The reservation of system space, done through check_system_chunk(), as well
4101 * as all the updates and insertions into the chunk btree must be done while
4102 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4103 * an extent buffer from the chunks btree we never trigger allocation of a new
4104 * system chunk, which would result in a deadlock (trying to lock twice an
4105 * extent buffer of the chunk btree, first time before triggering the chunk
4106 * allocation and the second time during chunk allocation while attempting to
4107 * update the chunks btree). The system chunk array is also updated while holding
4108 * that mutex. The same logic applies to removing chunks - we must reserve system
4109 * space, update the chunk btree and the system chunk array in the superblock
4110 * while holding fs_info->chunk_mutex.
4111 *
4112 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4113 *
4114 * If @force is CHUNK_ALLOC_FORCE:
4115 * - return 1 if it successfully allocates a chunk,
4116 * - return errors including -ENOSPC otherwise.
4117 * If @force is NOT CHUNK_ALLOC_FORCE:
4118 * - return 0 if it doesn't need to allocate a new chunk,
4119 * - return 1 if it successfully allocates a chunk,
4120 * - return errors including -ENOSPC otherwise.
4121 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4122 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4123 enum btrfs_chunk_alloc_enum force)
4124 {
4125 struct btrfs_fs_info *fs_info = trans->fs_info;
4126 struct btrfs_space_info *space_info;
4127 struct btrfs_block_group *ret_bg;
4128 bool wait_for_alloc = false;
4129 bool should_alloc = false;
4130 bool from_extent_allocation = false;
4131 int ret = 0;
4132
4133 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4134 from_extent_allocation = true;
4135 force = CHUNK_ALLOC_FORCE;
4136 }
4137
4138 /* Don't re-enter if we're already allocating a chunk */
4139 if (trans->allocating_chunk)
4140 return -ENOSPC;
4141 /*
4142 * Allocation of system chunks can not happen through this path, as we
4143 * could end up in a deadlock if we are allocating a data or metadata
4144 * chunk and there is another task modifying the chunk btree.
4145 *
4146 * This is because while we are holding the chunk mutex, we will attempt
4147 * to add the new chunk item to the chunk btree or update an existing
4148 * device item in the chunk btree, while the other task that is modifying
4149 * the chunk btree is attempting to COW an extent buffer while holding a
4150 * lock on it and on its parent - if the COW operation triggers a system
4151 * chunk allocation, then we can deadlock because we are holding the
4152 * chunk mutex and we may need to access that extent buffer or its parent
4153 * in order to add the chunk item or update a device item.
4154 *
4155 * Tasks that want to modify the chunk tree should reserve system space
4156 * before updating the chunk btree, by calling either
4157 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4158 * It's possible that after a task reserves the space, it still ends up
4159 * here - this happens in the cases described above at do_chunk_alloc().
4160 * The task will have to either retry or fail.
4161 */
4162 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4163 return -ENOSPC;
4164
4165 space_info = btrfs_find_space_info(fs_info, flags);
4166 ASSERT(space_info);
4167
4168 do {
4169 spin_lock(&space_info->lock);
4170 if (force < space_info->force_alloc)
4171 force = space_info->force_alloc;
4172 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4173 if (space_info->full) {
4174 /* No more free physical space */
4175 if (should_alloc)
4176 ret = -ENOSPC;
4177 else
4178 ret = 0;
4179 spin_unlock(&space_info->lock);
4180 return ret;
4181 } else if (!should_alloc) {
4182 spin_unlock(&space_info->lock);
4183 return 0;
4184 } else if (space_info->chunk_alloc) {
4185 /*
4186 * Someone is already allocating, so we need to block
4187 * until this someone is finished and then loop to
4188 * recheck if we should continue with our allocation
4189 * attempt.
4190 */
4191 wait_for_alloc = true;
4192 force = CHUNK_ALLOC_NO_FORCE;
4193 spin_unlock(&space_info->lock);
4194 mutex_lock(&fs_info->chunk_mutex);
4195 mutex_unlock(&fs_info->chunk_mutex);
4196 } else {
4197 /* Proceed with allocation */
4198 space_info->chunk_alloc = 1;
4199 wait_for_alloc = false;
4200 spin_unlock(&space_info->lock);
4201 }
4202
4203 cond_resched();
4204 } while (wait_for_alloc);
4205
4206 mutex_lock(&fs_info->chunk_mutex);
4207 trans->allocating_chunk = true;
4208
4209 /*
4210 * If we have mixed data/metadata chunks we want to make sure we keep
4211 * allocating mixed chunks instead of individual chunks.
4212 */
4213 if (btrfs_mixed_space_info(space_info))
4214 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4215
4216 /*
4217 * if we're doing a data chunk, go ahead and make sure that
4218 * we keep a reasonable number of metadata chunks allocated in the
4219 * FS as well.
4220 */
4221 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4222 fs_info->data_chunk_allocations++;
4223 if (!(fs_info->data_chunk_allocations %
4224 fs_info->metadata_ratio))
4225 force_metadata_allocation(fs_info);
4226 }
4227
4228 ret_bg = do_chunk_alloc(trans, flags);
4229 trans->allocating_chunk = false;
4230
4231 if (IS_ERR(ret_bg)) {
4232 ret = PTR_ERR(ret_bg);
4233 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4234 /*
4235 * New block group is likely to be used soon. Try to activate
4236 * it now. Failure is OK for now.
4237 */
4238 btrfs_zone_activate(ret_bg);
4239 }
4240
4241 if (!ret)
4242 btrfs_put_block_group(ret_bg);
4243
4244 spin_lock(&space_info->lock);
4245 if (ret < 0) {
4246 if (ret == -ENOSPC)
4247 space_info->full = 1;
4248 else
4249 goto out;
4250 } else {
4251 ret = 1;
4252 space_info->max_extent_size = 0;
4253 }
4254
4255 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4256 out:
4257 space_info->chunk_alloc = 0;
4258 spin_unlock(&space_info->lock);
4259 mutex_unlock(&fs_info->chunk_mutex);
4260
4261 return ret;
4262 }
4263
get_profile_num_devs(const struct btrfs_fs_info * fs_info,u64 type)4264 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4265 {
4266 u64 num_dev;
4267
4268 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4269 if (!num_dev)
4270 num_dev = fs_info->fs_devices->rw_devices;
4271
4272 return num_dev;
4273 }
4274
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4275 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4276 u64 bytes,
4277 u64 type)
4278 {
4279 struct btrfs_fs_info *fs_info = trans->fs_info;
4280 struct btrfs_space_info *info;
4281 u64 left;
4282 int ret = 0;
4283
4284 /*
4285 * Needed because we can end up allocating a system chunk and for an
4286 * atomic and race free space reservation in the chunk block reserve.
4287 */
4288 lockdep_assert_held(&fs_info->chunk_mutex);
4289
4290 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4291 spin_lock(&info->lock);
4292 left = info->total_bytes - btrfs_space_info_used(info, true);
4293 spin_unlock(&info->lock);
4294
4295 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4296 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4297 left, bytes, type);
4298 btrfs_dump_space_info(fs_info, info, 0, 0);
4299 }
4300
4301 if (left < bytes) {
4302 u64 flags = btrfs_system_alloc_profile(fs_info);
4303 struct btrfs_block_group *bg;
4304
4305 /*
4306 * Ignore failure to create system chunk. We might end up not
4307 * needing it, as we might not need to COW all nodes/leafs from
4308 * the paths we visit in the chunk tree (they were already COWed
4309 * or created in the current transaction for example).
4310 */
4311 bg = btrfs_create_chunk(trans, flags);
4312 if (IS_ERR(bg)) {
4313 ret = PTR_ERR(bg);
4314 } else {
4315 /*
4316 * We have a new chunk. We also need to activate it for
4317 * zoned filesystem.
4318 */
4319 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4320 if (ret < 0)
4321 return;
4322
4323 /*
4324 * If we fail to add the chunk item here, we end up
4325 * trying again at phase 2 of chunk allocation, at
4326 * btrfs_create_pending_block_groups(). So ignore
4327 * any error here. An ENOSPC here could happen, due to
4328 * the cases described at do_chunk_alloc() - the system
4329 * block group we just created was just turned into RO
4330 * mode by a scrub for example, or a running discard
4331 * temporarily removed its free space entries, etc.
4332 */
4333 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4334 }
4335 }
4336
4337 if (!ret) {
4338 ret = btrfs_block_rsv_add(fs_info,
4339 &fs_info->chunk_block_rsv,
4340 bytes, BTRFS_RESERVE_NO_FLUSH);
4341 if (!ret)
4342 trans->chunk_bytes_reserved += bytes;
4343 }
4344 }
4345
4346 /*
4347 * Reserve space in the system space for allocating or removing a chunk.
4348 * The caller must be holding fs_info->chunk_mutex.
4349 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4350 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4351 {
4352 struct btrfs_fs_info *fs_info = trans->fs_info;
4353 const u64 num_devs = get_profile_num_devs(fs_info, type);
4354 u64 bytes;
4355
4356 /* num_devs device items to update and 1 chunk item to add or remove. */
4357 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4358 btrfs_calc_insert_metadata_size(fs_info, 1);
4359
4360 reserve_chunk_space(trans, bytes, type);
4361 }
4362
4363 /*
4364 * Reserve space in the system space, if needed, for doing a modification to the
4365 * chunk btree.
4366 *
4367 * @trans: A transaction handle.
4368 * @is_item_insertion: Indicate if the modification is for inserting a new item
4369 * in the chunk btree or if it's for the deletion or update
4370 * of an existing item.
4371 *
4372 * This is used in a context where we need to update the chunk btree outside
4373 * block group allocation and removal, to avoid a deadlock with a concurrent
4374 * task that is allocating a metadata or data block group and therefore needs to
4375 * update the chunk btree while holding the chunk mutex. After the update to the
4376 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4377 *
4378 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4379 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4380 bool is_item_insertion)
4381 {
4382 struct btrfs_fs_info *fs_info = trans->fs_info;
4383 u64 bytes;
4384
4385 if (is_item_insertion)
4386 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4387 else
4388 bytes = btrfs_calc_metadata_size(fs_info, 1);
4389
4390 mutex_lock(&fs_info->chunk_mutex);
4391 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4392 mutex_unlock(&fs_info->chunk_mutex);
4393 }
4394
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4395 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4396 {
4397 struct btrfs_block_group *block_group;
4398
4399 block_group = btrfs_lookup_first_block_group(info, 0);
4400 while (block_group) {
4401 btrfs_wait_block_group_cache_done(block_group);
4402 spin_lock(&block_group->lock);
4403 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4404 &block_group->runtime_flags)) {
4405 struct btrfs_inode *inode = block_group->inode;
4406
4407 block_group->inode = NULL;
4408 spin_unlock(&block_group->lock);
4409
4410 ASSERT(block_group->io_ctl.inode == NULL);
4411 iput(&inode->vfs_inode);
4412 } else {
4413 spin_unlock(&block_group->lock);
4414 }
4415 block_group = btrfs_next_block_group(block_group);
4416 }
4417 }
4418
4419 /*
4420 * Must be called only after stopping all workers, since we could have block
4421 * group caching kthreads running, and therefore they could race with us if we
4422 * freed the block groups before stopping them.
4423 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4424 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4425 {
4426 struct btrfs_block_group *block_group;
4427 struct btrfs_space_info *space_info;
4428 struct btrfs_caching_control *caching_ctl;
4429 struct rb_node *n;
4430
4431 if (btrfs_is_zoned(info)) {
4432 if (info->active_meta_bg) {
4433 btrfs_put_block_group(info->active_meta_bg);
4434 info->active_meta_bg = NULL;
4435 }
4436 if (info->active_system_bg) {
4437 btrfs_put_block_group(info->active_system_bg);
4438 info->active_system_bg = NULL;
4439 }
4440 }
4441
4442 write_lock(&info->block_group_cache_lock);
4443 while (!list_empty(&info->caching_block_groups)) {
4444 caching_ctl = list_entry(info->caching_block_groups.next,
4445 struct btrfs_caching_control, list);
4446 list_del(&caching_ctl->list);
4447 btrfs_put_caching_control(caching_ctl);
4448 }
4449 write_unlock(&info->block_group_cache_lock);
4450
4451 spin_lock(&info->unused_bgs_lock);
4452 while (!list_empty(&info->unused_bgs)) {
4453 block_group = list_first_entry(&info->unused_bgs,
4454 struct btrfs_block_group,
4455 bg_list);
4456 list_del_init(&block_group->bg_list);
4457 btrfs_put_block_group(block_group);
4458 }
4459
4460 while (!list_empty(&info->reclaim_bgs)) {
4461 block_group = list_first_entry(&info->reclaim_bgs,
4462 struct btrfs_block_group,
4463 bg_list);
4464 list_del_init(&block_group->bg_list);
4465 btrfs_put_block_group(block_group);
4466 }
4467 spin_unlock(&info->unused_bgs_lock);
4468
4469 spin_lock(&info->zone_active_bgs_lock);
4470 while (!list_empty(&info->zone_active_bgs)) {
4471 block_group = list_first_entry(&info->zone_active_bgs,
4472 struct btrfs_block_group,
4473 active_bg_list);
4474 list_del_init(&block_group->active_bg_list);
4475 btrfs_put_block_group(block_group);
4476 }
4477 spin_unlock(&info->zone_active_bgs_lock);
4478
4479 write_lock(&info->block_group_cache_lock);
4480 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4481 block_group = rb_entry(n, struct btrfs_block_group,
4482 cache_node);
4483 rb_erase_cached(&block_group->cache_node,
4484 &info->block_group_cache_tree);
4485 RB_CLEAR_NODE(&block_group->cache_node);
4486 write_unlock(&info->block_group_cache_lock);
4487
4488 down_write(&block_group->space_info->groups_sem);
4489 list_del(&block_group->list);
4490 up_write(&block_group->space_info->groups_sem);
4491
4492 /*
4493 * We haven't cached this block group, which means we could
4494 * possibly have excluded extents on this block group.
4495 */
4496 if (block_group->cached == BTRFS_CACHE_NO ||
4497 block_group->cached == BTRFS_CACHE_ERROR)
4498 btrfs_free_excluded_extents(block_group);
4499
4500 btrfs_remove_free_space_cache(block_group);
4501 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4502 ASSERT(list_empty(&block_group->dirty_list));
4503 ASSERT(list_empty(&block_group->io_list));
4504 ASSERT(list_empty(&block_group->bg_list));
4505 ASSERT(refcount_read(&block_group->refs) == 1);
4506 ASSERT(block_group->swap_extents == 0);
4507 btrfs_put_block_group(block_group);
4508
4509 write_lock(&info->block_group_cache_lock);
4510 }
4511 write_unlock(&info->block_group_cache_lock);
4512
4513 btrfs_release_global_block_rsv(info);
4514
4515 while (!list_empty(&info->space_info)) {
4516 space_info = list_entry(info->space_info.next,
4517 struct btrfs_space_info,
4518 list);
4519
4520 /*
4521 * Do not hide this behind enospc_debug, this is actually
4522 * important and indicates a real bug if this happens.
4523 */
4524 if (WARN_ON(space_info->bytes_pinned > 0 ||
4525 space_info->bytes_may_use > 0))
4526 btrfs_dump_space_info(info, space_info, 0, 0);
4527
4528 /*
4529 * If there was a failure to cleanup a log tree, very likely due
4530 * to an IO failure on a writeback attempt of one or more of its
4531 * extent buffers, we could not do proper (and cheap) unaccounting
4532 * of their reserved space, so don't warn on bytes_reserved > 0 in
4533 * that case.
4534 */
4535 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4536 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4537 if (WARN_ON(space_info->bytes_reserved > 0))
4538 btrfs_dump_space_info(info, space_info, 0, 0);
4539 }
4540
4541 WARN_ON(space_info->reclaim_size > 0);
4542 list_del(&space_info->list);
4543 btrfs_sysfs_remove_space_info(space_info);
4544 }
4545 return 0;
4546 }
4547
btrfs_freeze_block_group(struct btrfs_block_group * cache)4548 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4549 {
4550 atomic_inc(&cache->frozen);
4551 }
4552
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4553 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4554 {
4555 struct btrfs_fs_info *fs_info = block_group->fs_info;
4556 bool cleanup;
4557
4558 spin_lock(&block_group->lock);
4559 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4560 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4561 spin_unlock(&block_group->lock);
4562
4563 if (cleanup) {
4564 struct btrfs_chunk_map *map;
4565
4566 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4567 /* Logic error, can't happen. */
4568 ASSERT(map);
4569
4570 btrfs_remove_chunk_map(fs_info, map);
4571
4572 /* Once for our lookup reference. */
4573 btrfs_free_chunk_map(map);
4574
4575 /*
4576 * We may have left one free space entry and other possible
4577 * tasks trimming this block group have left 1 entry each one.
4578 * Free them if any.
4579 */
4580 btrfs_remove_free_space_cache(block_group);
4581 }
4582 }
4583
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4584 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4585 {
4586 bool ret = true;
4587
4588 spin_lock(&bg->lock);
4589 if (bg->ro)
4590 ret = false;
4591 else
4592 bg->swap_extents++;
4593 spin_unlock(&bg->lock);
4594
4595 return ret;
4596 }
4597
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4598 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4599 {
4600 spin_lock(&bg->lock);
4601 ASSERT(!bg->ro);
4602 ASSERT(bg->swap_extents >= amount);
4603 bg->swap_extents -= amount;
4604 spin_unlock(&bg->lock);
4605 }
4606
btrfs_calc_block_group_size_class(u64 size)4607 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4608 {
4609 if (size <= SZ_128K)
4610 return BTRFS_BG_SZ_SMALL;
4611 if (size <= SZ_8M)
4612 return BTRFS_BG_SZ_MEDIUM;
4613 return BTRFS_BG_SZ_LARGE;
4614 }
4615
4616 /*
4617 * Handle a block group allocating an extent in a size class
4618 *
4619 * @bg: The block group we allocated in.
4620 * @size_class: The size class of the allocation.
4621 * @force_wrong_size_class: Whether we are desperate enough to allow
4622 * mismatched size classes.
4623 *
4624 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4625 * case of a race that leads to the wrong size class without
4626 * force_wrong_size_class set.
4627 *
4628 * find_free_extent will skip block groups with a mismatched size class until
4629 * it really needs to avoid ENOSPC. In that case it will set
4630 * force_wrong_size_class. However, if a block group is newly allocated and
4631 * doesn't yet have a size class, then it is possible for two allocations of
4632 * different sizes to race and both try to use it. The loser is caught here and
4633 * has to retry.
4634 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4635 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4636 enum btrfs_block_group_size_class size_class,
4637 bool force_wrong_size_class)
4638 {
4639 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4640
4641 /* The new allocation is in the right size class, do nothing */
4642 if (bg->size_class == size_class)
4643 return 0;
4644 /*
4645 * The new allocation is in a mismatched size class.
4646 * This means one of two things:
4647 *
4648 * 1. Two tasks in find_free_extent for different size_classes raced
4649 * and hit the same empty block_group. Make the loser try again.
4650 * 2. A call to find_free_extent got desperate enough to set
4651 * 'force_wrong_slab'. Don't change the size_class, but allow the
4652 * allocation.
4653 */
4654 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4655 if (force_wrong_size_class)
4656 return 0;
4657 return -EAGAIN;
4658 }
4659 /*
4660 * The happy new block group case: the new allocation is the first
4661 * one in the block_group so we set size_class.
4662 */
4663 bg->size_class = size_class;
4664
4665 return 0;
4666 }
4667
btrfs_block_group_should_use_size_class(const struct btrfs_block_group * bg)4668 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4669 {
4670 if (btrfs_is_zoned(bg->fs_info))
4671 return false;
4672 if (!btrfs_is_block_group_data_only(bg))
4673 return false;
4674 return true;
4675 }
4676