1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42 u16 size;
43 const char name[10];
44 const char driver[12];
45 } btrfs_csums[] = {
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
51 };
52
53 /*
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
56 */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 u32 nr = btrfs_header_nritems(leaf);
60
61 if (nr == 0)
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
68 *
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
73 *
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
78 */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
82 unsigned long len)
83 {
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89 * Copy item data from @src into @dst at the given @offset.
90 *
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
96 *
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
101 */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
106 {
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112 * Move items in a @leaf (using memmove).
113 *
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
118 *
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
121 */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
124 {
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131 * Copy items from @src into @dst at the given @offset.
132 *
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
138 *
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
141 */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
145 {
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 return btrfs_csums[type].size;
155 }
156
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 u16 t = btrfs_super_csum_type(s);
160 /*
161 * csum type is validated at mount time
162 */
163 return btrfs_csum_type_size(t);
164 }
165
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
170 }
171
172 /*
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
175 */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
182 }
183
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 return ARRAY_SIZE(btrfs_csums);
187 }
188
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 might_sleep();
192
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 if (!p)
200 return;
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
208 *
209 * It is safe to call this on paths that no locks or extent buffers held.
210 */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 int i;
214
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 p->slots[i] = 0;
217 if (!p->nodes[i])
218 continue;
219 if (p->locks[i]) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 p->locks[i] = 0;
222 }
223 free_extent_buffer(p->nodes[i]);
224 p->nodes[i] = NULL;
225 }
226 }
227
228 /*
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
232 */
abort_should_print_stack(int error)233 bool __cold abort_should_print_stack(int error)
234 {
235 switch (error) {
236 case -EIO:
237 case -EROFS:
238 case -ENOMEM:
239 return false;
240 }
241 return true;
242 }
243
244 /*
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
248 * looping required.
249 *
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
253 */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 struct extent_buffer *eb;
257
258 while (1) {
259 rcu_read_lock();
260 eb = rcu_dereference(root->node);
261
262 /*
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
267 */
268 if (atomic_inc_not_zero(&eb->refs)) {
269 rcu_read_unlock();
270 break;
271 }
272 rcu_read_unlock();
273 synchronize_rcu();
274 }
275 return eb;
276 }
277
278 /*
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
282 */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 struct btrfs_fs_info *fs_info = root->fs_info;
286
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 return;
290
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
297 else
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
300 }
301 spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
308 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
316 int ret = 0;
317 int level;
318 struct btrfs_disk_key disk_key;
319 u64 reloc_src_root = 0;
320
321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 trans->transid != fs_info->running_transaction->transid);
323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 trans->transid != btrfs_get_root_last_trans(root));
325
326 level = btrfs_header_level(buf);
327 if (level == 0)
328 btrfs_item_key(buf, &disk_key, 0);
329 else
330 btrfs_node_key(buf, &disk_key, 0);
331
332 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 reloc_src_root = btrfs_header_owner(buf);
334 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 &disk_key, level, buf->start, 0,
336 reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 if (IS_ERR(cow))
338 return PTR_ERR(cow);
339
340 copy_extent_buffer_full(cow, buf);
341 btrfs_set_header_bytenr(cow, cow->start);
342 btrfs_set_header_generation(cow, trans->transid);
343 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 BTRFS_HEADER_FLAG_RELOC);
346 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 else
349 btrfs_set_header_owner(cow, new_root_objectid);
350
351 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352
353 if (unlikely(btrfs_header_generation(buf) > trans->transid)) {
354 btrfs_tree_unlock(cow);
355 free_extent_buffer(cow);
356 ret = -EUCLEAN;
357 btrfs_abort_transaction(trans, ret);
358 return ret;
359 }
360
361 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
362 ret = btrfs_inc_ref(trans, root, cow, 1);
363 else
364 ret = btrfs_inc_ref(trans, root, cow, 0);
365 if (ret) {
366 btrfs_tree_unlock(cow);
367 free_extent_buffer(cow);
368 btrfs_abort_transaction(trans, ret);
369 return ret;
370 }
371
372 btrfs_mark_buffer_dirty(trans, cow);
373 *cow_ret = cow;
374 return 0;
375 }
376
377 /*
378 * check if the tree block can be shared by multiple trees
379 */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)380 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
381 struct btrfs_root *root,
382 struct extent_buffer *buf)
383 {
384 const u64 buf_gen = btrfs_header_generation(buf);
385
386 /*
387 * Tree blocks not in shareable trees and tree roots are never shared.
388 * If a block was allocated after the last snapshot and the block was
389 * not allocated by tree relocation, we know the block is not shared.
390 */
391
392 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
393 return false;
394
395 if (buf == root->node)
396 return false;
397
398 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
399 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
400 return false;
401
402 if (buf != root->commit_root)
403 return true;
404
405 /*
406 * An extent buffer that used to be the commit root may still be shared
407 * because the tree height may have increased and it became a child of a
408 * higher level root. This can happen when snapshotting a subvolume
409 * created in the current transaction.
410 */
411 if (buf_gen == trans->transid)
412 return true;
413
414 return false;
415 }
416
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)417 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root,
419 struct extent_buffer *buf,
420 struct extent_buffer *cow,
421 int *last_ref)
422 {
423 struct btrfs_fs_info *fs_info = root->fs_info;
424 u64 refs;
425 u64 owner;
426 u64 flags;
427 int ret;
428
429 /*
430 * Backrefs update rules:
431 *
432 * Always use full backrefs for extent pointers in tree block
433 * allocated by tree relocation.
434 *
435 * If a shared tree block is no longer referenced by its owner
436 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
437 * use full backrefs for extent pointers in tree block.
438 *
439 * If a tree block is been relocating
440 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
441 * use full backrefs for extent pointers in tree block.
442 * The reason for this is some operations (such as drop tree)
443 * are only allowed for blocks use full backrefs.
444 */
445
446 if (btrfs_block_can_be_shared(trans, root, buf)) {
447 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
448 btrfs_header_level(buf), 1,
449 &refs, &flags, NULL);
450 if (ret)
451 return ret;
452 if (unlikely(refs == 0)) {
453 btrfs_crit(fs_info,
454 "found 0 references for tree block at bytenr %llu level %d root %llu",
455 buf->start, btrfs_header_level(buf),
456 btrfs_root_id(root));
457 ret = -EUCLEAN;
458 btrfs_abort_transaction(trans, ret);
459 return ret;
460 }
461 } else {
462 refs = 1;
463 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
464 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
465 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
466 else
467 flags = 0;
468 }
469
470 owner = btrfs_header_owner(buf);
471 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
472 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
473 btrfs_crit(fs_info,
474 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
475 buf->start, btrfs_header_level(buf),
476 btrfs_root_id(root), refs, flags);
477 ret = -EUCLEAN;
478 btrfs_abort_transaction(trans, ret);
479 return ret;
480 }
481
482 if (refs > 1) {
483 if ((owner == btrfs_root_id(root) ||
484 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
485 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
486 ret = btrfs_inc_ref(trans, root, buf, 1);
487 if (ret)
488 return ret;
489
490 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
491 ret = btrfs_dec_ref(trans, root, buf, 0);
492 if (ret)
493 return ret;
494 ret = btrfs_inc_ref(trans, root, cow, 1);
495 if (ret)
496 return ret;
497 }
498 ret = btrfs_set_disk_extent_flags(trans, buf,
499 BTRFS_BLOCK_FLAG_FULL_BACKREF);
500 if (ret)
501 return ret;
502 } else {
503
504 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
505 ret = btrfs_inc_ref(trans, root, cow, 1);
506 else
507 ret = btrfs_inc_ref(trans, root, cow, 0);
508 if (ret)
509 return ret;
510 }
511 } else {
512 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
513 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
514 ret = btrfs_inc_ref(trans, root, cow, 1);
515 else
516 ret = btrfs_inc_ref(trans, root, cow, 0);
517 if (ret)
518 return ret;
519 ret = btrfs_dec_ref(trans, root, buf, 1);
520 if (ret)
521 return ret;
522 }
523 btrfs_clear_buffer_dirty(trans, buf);
524 *last_ref = 1;
525 }
526 return 0;
527 }
528
529 /*
530 * does the dirty work in cow of a single block. The parent block (if
531 * supplied) is updated to point to the new cow copy. The new buffer is marked
532 * dirty and returned locked. If you modify the block it needs to be marked
533 * dirty again.
534 *
535 * search_start -- an allocation hint for the new block
536 *
537 * empty_size -- a hint that you plan on doing more cow. This is the size in
538 * bytes the allocator should try to find free next to the block it returns.
539 * This is just a hint and may be ignored by the allocator.
540 */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)541 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
542 struct btrfs_root *root,
543 struct extent_buffer *buf,
544 struct extent_buffer *parent, int parent_slot,
545 struct extent_buffer **cow_ret,
546 u64 search_start, u64 empty_size,
547 enum btrfs_lock_nesting nest)
548 {
549 struct btrfs_fs_info *fs_info = root->fs_info;
550 struct btrfs_disk_key disk_key;
551 struct extent_buffer *cow;
552 int level, ret;
553 int last_ref = 0;
554 int unlock_orig = 0;
555 u64 parent_start = 0;
556 u64 reloc_src_root = 0;
557
558 if (*cow_ret == buf)
559 unlock_orig = 1;
560
561 btrfs_assert_tree_write_locked(buf);
562
563 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
564 trans->transid != fs_info->running_transaction->transid);
565 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
566 trans->transid != btrfs_get_root_last_trans(root));
567
568 level = btrfs_header_level(buf);
569
570 if (level == 0)
571 btrfs_item_key(buf, &disk_key, 0);
572 else
573 btrfs_node_key(buf, &disk_key, 0);
574
575 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
576 if (parent)
577 parent_start = parent->start;
578 reloc_src_root = btrfs_header_owner(buf);
579 }
580 cow = btrfs_alloc_tree_block(trans, root, parent_start,
581 btrfs_root_id(root), &disk_key, level,
582 search_start, empty_size, reloc_src_root, nest);
583 if (IS_ERR(cow))
584 return PTR_ERR(cow);
585
586 /* cow is set to blocking by btrfs_init_new_buffer */
587
588 copy_extent_buffer_full(cow, buf);
589 btrfs_set_header_bytenr(cow, cow->start);
590 btrfs_set_header_generation(cow, trans->transid);
591 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
592 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
593 BTRFS_HEADER_FLAG_RELOC);
594 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
595 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
596 else
597 btrfs_set_header_owner(cow, btrfs_root_id(root));
598
599 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
600
601 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
602 if (ret) {
603 btrfs_abort_transaction(trans, ret);
604 goto error_unlock_cow;
605 }
606
607 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
608 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
609 if (ret) {
610 btrfs_abort_transaction(trans, ret);
611 goto error_unlock_cow;
612 }
613 }
614
615 if (buf == root->node) {
616 WARN_ON(parent && parent != buf);
617 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
618 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
619 parent_start = buf->start;
620
621 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
622 if (ret < 0) {
623 btrfs_abort_transaction(trans, ret);
624 goto error_unlock_cow;
625 }
626 atomic_inc(&cow->refs);
627 rcu_assign_pointer(root->node, cow);
628
629 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
630 parent_start, last_ref);
631 free_extent_buffer(buf);
632 add_root_to_dirty_list(root);
633 if (ret < 0) {
634 btrfs_abort_transaction(trans, ret);
635 goto error_unlock_cow;
636 }
637 } else {
638 WARN_ON(trans->transid != btrfs_header_generation(parent));
639 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
640 BTRFS_MOD_LOG_KEY_REPLACE);
641 if (ret) {
642 btrfs_abort_transaction(trans, ret);
643 goto error_unlock_cow;
644 }
645 btrfs_set_node_blockptr(parent, parent_slot,
646 cow->start);
647 btrfs_set_node_ptr_generation(parent, parent_slot,
648 trans->transid);
649 btrfs_mark_buffer_dirty(trans, parent);
650 if (last_ref) {
651 ret = btrfs_tree_mod_log_free_eb(buf);
652 if (ret) {
653 btrfs_abort_transaction(trans, ret);
654 goto error_unlock_cow;
655 }
656 }
657 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
658 parent_start, last_ref);
659 if (ret < 0) {
660 btrfs_abort_transaction(trans, ret);
661 goto error_unlock_cow;
662 }
663 }
664
665 trace_btrfs_cow_block(root, buf, cow);
666 if (unlock_orig)
667 btrfs_tree_unlock(buf);
668 free_extent_buffer_stale(buf);
669 btrfs_mark_buffer_dirty(trans, cow);
670 *cow_ret = cow;
671 return 0;
672
673 error_unlock_cow:
674 btrfs_tree_unlock(cow);
675 free_extent_buffer(cow);
676 return ret;
677 }
678
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)679 static inline int should_cow_block(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root,
681 struct extent_buffer *buf)
682 {
683 if (btrfs_is_testing(root->fs_info))
684 return 0;
685
686 /* Ensure we can see the FORCE_COW bit */
687 smp_mb__before_atomic();
688
689 /*
690 * We do not need to cow a block if
691 * 1) this block is not created or changed in this transaction;
692 * 2) this block does not belong to TREE_RELOC tree;
693 * 3) the root is not forced COW.
694 *
695 * What is forced COW:
696 * when we create snapshot during committing the transaction,
697 * after we've finished copying src root, we must COW the shared
698 * block to ensure the metadata consistency.
699 */
700 if (btrfs_header_generation(buf) == trans->transid &&
701 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
702 !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
703 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
704 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
705 return 0;
706 return 1;
707 }
708
709 /*
710 * COWs a single block, see btrfs_force_cow_block() for the real work.
711 * This version of it has extra checks so that a block isn't COWed more than
712 * once per transaction, as long as it hasn't been written yet
713 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)714 int btrfs_cow_block(struct btrfs_trans_handle *trans,
715 struct btrfs_root *root, struct extent_buffer *buf,
716 struct extent_buffer *parent, int parent_slot,
717 struct extent_buffer **cow_ret,
718 enum btrfs_lock_nesting nest)
719 {
720 struct btrfs_fs_info *fs_info = root->fs_info;
721 u64 search_start;
722
723 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
724 btrfs_abort_transaction(trans, -EUCLEAN);
725 btrfs_crit(fs_info,
726 "attempt to COW block %llu on root %llu that is being deleted",
727 buf->start, btrfs_root_id(root));
728 return -EUCLEAN;
729 }
730
731 /*
732 * COWing must happen through a running transaction, which always
733 * matches the current fs generation (it's a transaction with a state
734 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
735 * into error state to prevent the commit of any transaction.
736 */
737 if (unlikely(trans->transaction != fs_info->running_transaction ||
738 trans->transid != fs_info->generation)) {
739 btrfs_abort_transaction(trans, -EUCLEAN);
740 btrfs_crit(fs_info,
741 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
742 buf->start, btrfs_root_id(root), trans->transid,
743 fs_info->running_transaction->transid,
744 fs_info->generation);
745 return -EUCLEAN;
746 }
747
748 if (!should_cow_block(trans, root, buf)) {
749 *cow_ret = buf;
750 return 0;
751 }
752
753 search_start = round_down(buf->start, SZ_1G);
754
755 /*
756 * Before CoWing this block for later modification, check if it's
757 * the subtree root and do the delayed subtree trace if needed.
758 *
759 * Also We don't care about the error, as it's handled internally.
760 */
761 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
762 return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
763 cow_ret, search_start, 0, nest);
764 }
765 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
766
767 /*
768 * same as comp_keys only with two btrfs_key's
769 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)770 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
771 {
772 if (k1->objectid > k2->objectid)
773 return 1;
774 if (k1->objectid < k2->objectid)
775 return -1;
776 if (k1->type > k2->type)
777 return 1;
778 if (k1->type < k2->type)
779 return -1;
780 if (k1->offset > k2->offset)
781 return 1;
782 if (k1->offset < k2->offset)
783 return -1;
784 return 0;
785 }
786
787 /*
788 * Search for a key in the given extent_buffer.
789 *
790 * The lower boundary for the search is specified by the slot number @first_slot.
791 * Use a value of 0 to search over the whole extent buffer. Works for both
792 * leaves and nodes.
793 *
794 * The slot in the extent buffer is returned via @slot. If the key exists in the
795 * extent buffer, then @slot will point to the slot where the key is, otherwise
796 * it points to the slot where you would insert the key.
797 *
798 * Slot may point to the total number of items (i.e. one position beyond the last
799 * key) if the key is bigger than the last key in the extent buffer.
800 */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)801 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
802 const struct btrfs_key *key, int *slot)
803 {
804 unsigned long p;
805 int item_size;
806 /*
807 * Use unsigned types for the low and high slots, so that we get a more
808 * efficient division in the search loop below.
809 */
810 u32 low = first_slot;
811 u32 high = btrfs_header_nritems(eb);
812 int ret;
813 const int key_size = sizeof(struct btrfs_disk_key);
814
815 if (unlikely(low > high)) {
816 btrfs_err(eb->fs_info,
817 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
818 __func__, low, high, eb->start,
819 btrfs_header_owner(eb), btrfs_header_level(eb));
820 return -EINVAL;
821 }
822
823 if (btrfs_header_level(eb) == 0) {
824 p = offsetof(struct btrfs_leaf, items);
825 item_size = sizeof(struct btrfs_item);
826 } else {
827 p = offsetof(struct btrfs_node, ptrs);
828 item_size = sizeof(struct btrfs_key_ptr);
829 }
830
831 while (low < high) {
832 const int unit_size = eb->folio_size;
833 unsigned long oil;
834 unsigned long offset;
835 struct btrfs_disk_key *tmp;
836 struct btrfs_disk_key unaligned;
837 int mid;
838
839 mid = (low + high) / 2;
840 offset = p + mid * item_size;
841 oil = get_eb_offset_in_folio(eb, offset);
842
843 if (oil + key_size <= unit_size) {
844 const unsigned long idx = get_eb_folio_index(eb, offset);
845 char *kaddr = folio_address(eb->folios[idx]);
846
847 oil = get_eb_offset_in_folio(eb, offset);
848 tmp = (struct btrfs_disk_key *)(kaddr + oil);
849 } else {
850 read_extent_buffer(eb, &unaligned, offset, key_size);
851 tmp = &unaligned;
852 }
853
854 ret = btrfs_comp_keys(tmp, key);
855
856 if (ret < 0)
857 low = mid + 1;
858 else if (ret > 0)
859 high = mid;
860 else {
861 *slot = mid;
862 return 0;
863 }
864 }
865 *slot = low;
866 return 1;
867 }
868
root_add_used_bytes(struct btrfs_root * root)869 static void root_add_used_bytes(struct btrfs_root *root)
870 {
871 spin_lock(&root->accounting_lock);
872 btrfs_set_root_used(&root->root_item,
873 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
874 spin_unlock(&root->accounting_lock);
875 }
876
root_sub_used_bytes(struct btrfs_root * root)877 static void root_sub_used_bytes(struct btrfs_root *root)
878 {
879 spin_lock(&root->accounting_lock);
880 btrfs_set_root_used(&root->root_item,
881 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
882 spin_unlock(&root->accounting_lock);
883 }
884
885 /* given a node and slot number, this reads the blocks it points to. The
886 * extent buffer is returned with a reference taken (but unlocked).
887 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)888 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
889 int slot)
890 {
891 int level = btrfs_header_level(parent);
892 struct btrfs_tree_parent_check check = { 0 };
893 struct extent_buffer *eb;
894
895 if (slot < 0 || slot >= btrfs_header_nritems(parent))
896 return ERR_PTR(-ENOENT);
897
898 ASSERT(level);
899
900 check.level = level - 1;
901 check.transid = btrfs_node_ptr_generation(parent, slot);
902 check.owner_root = btrfs_header_owner(parent);
903 check.has_first_key = true;
904 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
905
906 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
907 &check);
908 if (IS_ERR(eb))
909 return eb;
910 if (!extent_buffer_uptodate(eb)) {
911 free_extent_buffer(eb);
912 return ERR_PTR(-EIO);
913 }
914
915 return eb;
916 }
917
918 /*
919 * node level balancing, used to make sure nodes are in proper order for
920 * item deletion. We balance from the top down, so we have to make sure
921 * that a deletion won't leave an node completely empty later on.
922 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)923 static noinline int balance_level(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root,
925 struct btrfs_path *path, int level)
926 {
927 struct btrfs_fs_info *fs_info = root->fs_info;
928 struct extent_buffer *right = NULL;
929 struct extent_buffer *mid;
930 struct extent_buffer *left = NULL;
931 struct extent_buffer *parent = NULL;
932 int ret = 0;
933 int wret;
934 int pslot;
935 int orig_slot = path->slots[level];
936 u64 orig_ptr;
937
938 ASSERT(level > 0);
939
940 mid = path->nodes[level];
941
942 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
943 WARN_ON(btrfs_header_generation(mid) != trans->transid);
944
945 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
946
947 if (level < BTRFS_MAX_LEVEL - 1) {
948 parent = path->nodes[level + 1];
949 pslot = path->slots[level + 1];
950 }
951
952 /*
953 * deal with the case where there is only one pointer in the root
954 * by promoting the node below to a root
955 */
956 if (!parent) {
957 struct extent_buffer *child;
958
959 if (btrfs_header_nritems(mid) != 1)
960 return 0;
961
962 /* promote the child to a root */
963 child = btrfs_read_node_slot(mid, 0);
964 if (IS_ERR(child)) {
965 ret = PTR_ERR(child);
966 goto out;
967 }
968
969 btrfs_tree_lock(child);
970 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
971 BTRFS_NESTING_COW);
972 if (ret) {
973 btrfs_tree_unlock(child);
974 free_extent_buffer(child);
975 goto out;
976 }
977
978 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
979 if (ret < 0) {
980 btrfs_tree_unlock(child);
981 free_extent_buffer(child);
982 btrfs_abort_transaction(trans, ret);
983 goto out;
984 }
985 rcu_assign_pointer(root->node, child);
986
987 add_root_to_dirty_list(root);
988 btrfs_tree_unlock(child);
989
990 path->locks[level] = 0;
991 path->nodes[level] = NULL;
992 btrfs_clear_buffer_dirty(trans, mid);
993 btrfs_tree_unlock(mid);
994 /* once for the path */
995 free_extent_buffer(mid);
996
997 root_sub_used_bytes(root);
998 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
999 /* once for the root ptr */
1000 free_extent_buffer_stale(mid);
1001 if (ret < 0) {
1002 btrfs_abort_transaction(trans, ret);
1003 goto out;
1004 }
1005 return 0;
1006 }
1007 if (btrfs_header_nritems(mid) >
1008 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1009 return 0;
1010
1011 if (pslot) {
1012 left = btrfs_read_node_slot(parent, pslot - 1);
1013 if (IS_ERR(left)) {
1014 ret = PTR_ERR(left);
1015 left = NULL;
1016 goto out;
1017 }
1018
1019 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1020 wret = btrfs_cow_block(trans, root, left,
1021 parent, pslot - 1, &left,
1022 BTRFS_NESTING_LEFT_COW);
1023 if (wret) {
1024 ret = wret;
1025 goto out;
1026 }
1027 }
1028
1029 if (pslot + 1 < btrfs_header_nritems(parent)) {
1030 right = btrfs_read_node_slot(parent, pslot + 1);
1031 if (IS_ERR(right)) {
1032 ret = PTR_ERR(right);
1033 right = NULL;
1034 goto out;
1035 }
1036
1037 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1038 wret = btrfs_cow_block(trans, root, right,
1039 parent, pslot + 1, &right,
1040 BTRFS_NESTING_RIGHT_COW);
1041 if (wret) {
1042 ret = wret;
1043 goto out;
1044 }
1045 }
1046
1047 /* first, try to make some room in the middle buffer */
1048 if (left) {
1049 orig_slot += btrfs_header_nritems(left);
1050 wret = push_node_left(trans, left, mid, 1);
1051 if (wret < 0)
1052 ret = wret;
1053 }
1054
1055 /*
1056 * then try to empty the right most buffer into the middle
1057 */
1058 if (right) {
1059 wret = push_node_left(trans, mid, right, 1);
1060 if (wret < 0 && wret != -ENOSPC)
1061 ret = wret;
1062 if (btrfs_header_nritems(right) == 0) {
1063 btrfs_clear_buffer_dirty(trans, right);
1064 btrfs_tree_unlock(right);
1065 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1066 if (ret < 0) {
1067 free_extent_buffer_stale(right);
1068 right = NULL;
1069 goto out;
1070 }
1071 root_sub_used_bytes(root);
1072 ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1073 right, 0, 1);
1074 free_extent_buffer_stale(right);
1075 right = NULL;
1076 if (ret < 0) {
1077 btrfs_abort_transaction(trans, ret);
1078 goto out;
1079 }
1080 } else {
1081 struct btrfs_disk_key right_key;
1082 btrfs_node_key(right, &right_key, 0);
1083 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1084 BTRFS_MOD_LOG_KEY_REPLACE);
1085 if (ret < 0) {
1086 btrfs_abort_transaction(trans, ret);
1087 goto out;
1088 }
1089 btrfs_set_node_key(parent, &right_key, pslot + 1);
1090 btrfs_mark_buffer_dirty(trans, parent);
1091 }
1092 }
1093 if (btrfs_header_nritems(mid) == 1) {
1094 /*
1095 * we're not allowed to leave a node with one item in the
1096 * tree during a delete. A deletion from lower in the tree
1097 * could try to delete the only pointer in this node.
1098 * So, pull some keys from the left.
1099 * There has to be a left pointer at this point because
1100 * otherwise we would have pulled some pointers from the
1101 * right
1102 */
1103 if (unlikely(!left)) {
1104 btrfs_crit(fs_info,
1105 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1106 parent->start, btrfs_header_level(parent),
1107 mid->start, btrfs_root_id(root));
1108 ret = -EUCLEAN;
1109 btrfs_abort_transaction(trans, ret);
1110 goto out;
1111 }
1112 wret = balance_node_right(trans, mid, left);
1113 if (wret < 0) {
1114 ret = wret;
1115 goto out;
1116 }
1117 if (wret == 1) {
1118 wret = push_node_left(trans, left, mid, 1);
1119 if (wret < 0)
1120 ret = wret;
1121 }
1122 BUG_ON(wret == 1);
1123 }
1124 if (btrfs_header_nritems(mid) == 0) {
1125 btrfs_clear_buffer_dirty(trans, mid);
1126 btrfs_tree_unlock(mid);
1127 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1128 if (ret < 0) {
1129 free_extent_buffer_stale(mid);
1130 mid = NULL;
1131 goto out;
1132 }
1133 root_sub_used_bytes(root);
1134 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1135 free_extent_buffer_stale(mid);
1136 mid = NULL;
1137 if (ret < 0) {
1138 btrfs_abort_transaction(trans, ret);
1139 goto out;
1140 }
1141 } else {
1142 /* update the parent key to reflect our changes */
1143 struct btrfs_disk_key mid_key;
1144 btrfs_node_key(mid, &mid_key, 0);
1145 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1146 BTRFS_MOD_LOG_KEY_REPLACE);
1147 if (ret < 0) {
1148 btrfs_abort_transaction(trans, ret);
1149 goto out;
1150 }
1151 btrfs_set_node_key(parent, &mid_key, pslot);
1152 btrfs_mark_buffer_dirty(trans, parent);
1153 }
1154
1155 /* update the path */
1156 if (left) {
1157 if (btrfs_header_nritems(left) > orig_slot) {
1158 atomic_inc(&left->refs);
1159 /* left was locked after cow */
1160 path->nodes[level] = left;
1161 path->slots[level + 1] -= 1;
1162 path->slots[level] = orig_slot;
1163 if (mid) {
1164 btrfs_tree_unlock(mid);
1165 free_extent_buffer(mid);
1166 }
1167 } else {
1168 orig_slot -= btrfs_header_nritems(left);
1169 path->slots[level] = orig_slot;
1170 }
1171 }
1172 /* double check we haven't messed things up */
1173 if (orig_ptr !=
1174 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1175 BUG();
1176 out:
1177 if (right) {
1178 btrfs_tree_unlock(right);
1179 free_extent_buffer(right);
1180 }
1181 if (left) {
1182 if (path->nodes[level] != left)
1183 btrfs_tree_unlock(left);
1184 free_extent_buffer(left);
1185 }
1186 return ret;
1187 }
1188
1189 /* Node balancing for insertion. Here we only split or push nodes around
1190 * when they are completely full. This is also done top down, so we
1191 * have to be pessimistic.
1192 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1193 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root,
1195 struct btrfs_path *path, int level)
1196 {
1197 struct btrfs_fs_info *fs_info = root->fs_info;
1198 struct extent_buffer *right = NULL;
1199 struct extent_buffer *mid;
1200 struct extent_buffer *left = NULL;
1201 struct extent_buffer *parent = NULL;
1202 int ret = 0;
1203 int wret;
1204 int pslot;
1205 int orig_slot = path->slots[level];
1206
1207 if (level == 0)
1208 return 1;
1209
1210 mid = path->nodes[level];
1211 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1212
1213 if (level < BTRFS_MAX_LEVEL - 1) {
1214 parent = path->nodes[level + 1];
1215 pslot = path->slots[level + 1];
1216 }
1217
1218 if (!parent)
1219 return 1;
1220
1221 /* first, try to make some room in the middle buffer */
1222 if (pslot) {
1223 u32 left_nr;
1224
1225 left = btrfs_read_node_slot(parent, pslot - 1);
1226 if (IS_ERR(left))
1227 return PTR_ERR(left);
1228
1229 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1230
1231 left_nr = btrfs_header_nritems(left);
1232 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1233 wret = 1;
1234 } else {
1235 ret = btrfs_cow_block(trans, root, left, parent,
1236 pslot - 1, &left,
1237 BTRFS_NESTING_LEFT_COW);
1238 if (ret)
1239 wret = 1;
1240 else {
1241 wret = push_node_left(trans, left, mid, 0);
1242 }
1243 }
1244 if (wret < 0)
1245 ret = wret;
1246 if (wret == 0) {
1247 struct btrfs_disk_key disk_key;
1248 orig_slot += left_nr;
1249 btrfs_node_key(mid, &disk_key, 0);
1250 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1251 BTRFS_MOD_LOG_KEY_REPLACE);
1252 if (ret < 0) {
1253 btrfs_tree_unlock(left);
1254 free_extent_buffer(left);
1255 btrfs_abort_transaction(trans, ret);
1256 return ret;
1257 }
1258 btrfs_set_node_key(parent, &disk_key, pslot);
1259 btrfs_mark_buffer_dirty(trans, parent);
1260 if (btrfs_header_nritems(left) > orig_slot) {
1261 path->nodes[level] = left;
1262 path->slots[level + 1] -= 1;
1263 path->slots[level] = orig_slot;
1264 btrfs_tree_unlock(mid);
1265 free_extent_buffer(mid);
1266 } else {
1267 orig_slot -=
1268 btrfs_header_nritems(left);
1269 path->slots[level] = orig_slot;
1270 btrfs_tree_unlock(left);
1271 free_extent_buffer(left);
1272 }
1273 return 0;
1274 }
1275 btrfs_tree_unlock(left);
1276 free_extent_buffer(left);
1277 }
1278
1279 /*
1280 * then try to empty the right most buffer into the middle
1281 */
1282 if (pslot + 1 < btrfs_header_nritems(parent)) {
1283 u32 right_nr;
1284
1285 right = btrfs_read_node_slot(parent, pslot + 1);
1286 if (IS_ERR(right))
1287 return PTR_ERR(right);
1288
1289 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1290
1291 right_nr = btrfs_header_nritems(right);
1292 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1293 wret = 1;
1294 } else {
1295 ret = btrfs_cow_block(trans, root, right,
1296 parent, pslot + 1,
1297 &right, BTRFS_NESTING_RIGHT_COW);
1298 if (ret)
1299 wret = 1;
1300 else {
1301 wret = balance_node_right(trans, right, mid);
1302 }
1303 }
1304 if (wret < 0)
1305 ret = wret;
1306 if (wret == 0) {
1307 struct btrfs_disk_key disk_key;
1308
1309 btrfs_node_key(right, &disk_key, 0);
1310 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1311 BTRFS_MOD_LOG_KEY_REPLACE);
1312 if (ret < 0) {
1313 btrfs_tree_unlock(right);
1314 free_extent_buffer(right);
1315 btrfs_abort_transaction(trans, ret);
1316 return ret;
1317 }
1318 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1319 btrfs_mark_buffer_dirty(trans, parent);
1320
1321 if (btrfs_header_nritems(mid) <= orig_slot) {
1322 path->nodes[level] = right;
1323 path->slots[level + 1] += 1;
1324 path->slots[level] = orig_slot -
1325 btrfs_header_nritems(mid);
1326 btrfs_tree_unlock(mid);
1327 free_extent_buffer(mid);
1328 } else {
1329 btrfs_tree_unlock(right);
1330 free_extent_buffer(right);
1331 }
1332 return 0;
1333 }
1334 btrfs_tree_unlock(right);
1335 free_extent_buffer(right);
1336 }
1337 return 1;
1338 }
1339
1340 /*
1341 * readahead one full node of leaves, finding things that are close
1342 * to the block in 'slot', and triggering ra on them.
1343 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1344 static void reada_for_search(struct btrfs_fs_info *fs_info,
1345 struct btrfs_path *path,
1346 int level, int slot, u64 objectid)
1347 {
1348 struct extent_buffer *node;
1349 struct btrfs_disk_key disk_key;
1350 u32 nritems;
1351 u64 search;
1352 u64 target;
1353 u64 nread = 0;
1354 u64 nread_max;
1355 u32 nr;
1356 u32 blocksize;
1357 u32 nscan = 0;
1358
1359 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1360 return;
1361
1362 if (!path->nodes[level])
1363 return;
1364
1365 node = path->nodes[level];
1366
1367 /*
1368 * Since the time between visiting leaves is much shorter than the time
1369 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1370 * much IO at once (possibly random).
1371 */
1372 if (path->reada == READA_FORWARD_ALWAYS) {
1373 if (level > 1)
1374 nread_max = node->fs_info->nodesize;
1375 else
1376 nread_max = SZ_128K;
1377 } else {
1378 nread_max = SZ_64K;
1379 }
1380
1381 search = btrfs_node_blockptr(node, slot);
1382 blocksize = fs_info->nodesize;
1383 if (path->reada != READA_FORWARD_ALWAYS) {
1384 struct extent_buffer *eb;
1385
1386 eb = find_extent_buffer(fs_info, search);
1387 if (eb) {
1388 free_extent_buffer(eb);
1389 return;
1390 }
1391 }
1392
1393 target = search;
1394
1395 nritems = btrfs_header_nritems(node);
1396 nr = slot;
1397
1398 while (1) {
1399 if (path->reada == READA_BACK) {
1400 if (nr == 0)
1401 break;
1402 nr--;
1403 } else if (path->reada == READA_FORWARD ||
1404 path->reada == READA_FORWARD_ALWAYS) {
1405 nr++;
1406 if (nr >= nritems)
1407 break;
1408 }
1409 if (path->reada == READA_BACK && objectid) {
1410 btrfs_node_key(node, &disk_key, nr);
1411 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1412 break;
1413 }
1414 search = btrfs_node_blockptr(node, nr);
1415 if (path->reada == READA_FORWARD_ALWAYS ||
1416 (search <= target && target - search <= 65536) ||
1417 (search > target && search - target <= 65536)) {
1418 btrfs_readahead_node_child(node, nr);
1419 nread += blocksize;
1420 }
1421 nscan++;
1422 if (nread > nread_max || nscan > 32)
1423 break;
1424 }
1425 }
1426
reada_for_balance(struct btrfs_path * path,int level)1427 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1428 {
1429 struct extent_buffer *parent;
1430 int slot;
1431 int nritems;
1432
1433 parent = path->nodes[level + 1];
1434 if (!parent)
1435 return;
1436
1437 nritems = btrfs_header_nritems(parent);
1438 slot = path->slots[level + 1];
1439
1440 if (slot > 0)
1441 btrfs_readahead_node_child(parent, slot - 1);
1442 if (slot + 1 < nritems)
1443 btrfs_readahead_node_child(parent, slot + 1);
1444 }
1445
1446
1447 /*
1448 * when we walk down the tree, it is usually safe to unlock the higher layers
1449 * in the tree. The exceptions are when our path goes through slot 0, because
1450 * operations on the tree might require changing key pointers higher up in the
1451 * tree.
1452 *
1453 * callers might also have set path->keep_locks, which tells this code to keep
1454 * the lock if the path points to the last slot in the block. This is part of
1455 * walking through the tree, and selecting the next slot in the higher block.
1456 *
1457 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1458 * if lowest_unlock is 1, level 0 won't be unlocked
1459 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1460 static noinline void unlock_up(struct btrfs_path *path, int level,
1461 int lowest_unlock, int min_write_lock_level,
1462 int *write_lock_level)
1463 {
1464 int i;
1465 int skip_level = level;
1466 bool check_skip = true;
1467
1468 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1469 if (!path->nodes[i])
1470 break;
1471 if (!path->locks[i])
1472 break;
1473
1474 if (check_skip) {
1475 if (path->slots[i] == 0) {
1476 skip_level = i + 1;
1477 continue;
1478 }
1479
1480 if (path->keep_locks) {
1481 u32 nritems;
1482
1483 nritems = btrfs_header_nritems(path->nodes[i]);
1484 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1485 skip_level = i + 1;
1486 continue;
1487 }
1488 }
1489 }
1490
1491 if (i >= lowest_unlock && i > skip_level) {
1492 check_skip = false;
1493 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1494 path->locks[i] = 0;
1495 if (write_lock_level &&
1496 i > min_write_lock_level &&
1497 i <= *write_lock_level) {
1498 *write_lock_level = i - 1;
1499 }
1500 }
1501 }
1502 }
1503
1504 /*
1505 * Helper function for btrfs_search_slot() and other functions that do a search
1506 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1507 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1508 * its pages from disk.
1509 *
1510 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1511 * whole btree search, starting again from the current root node.
1512 */
1513 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1514 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1515 struct extent_buffer **eb_ret, int level, int slot,
1516 const struct btrfs_key *key)
1517 {
1518 struct btrfs_fs_info *fs_info = root->fs_info;
1519 struct btrfs_tree_parent_check check = { 0 };
1520 u64 blocknr;
1521 u64 gen;
1522 struct extent_buffer *tmp;
1523 int ret;
1524 int parent_level;
1525 bool unlock_up;
1526
1527 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1528 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1529 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1530 parent_level = btrfs_header_level(*eb_ret);
1531 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1532 check.has_first_key = true;
1533 check.level = parent_level - 1;
1534 check.transid = gen;
1535 check.owner_root = btrfs_root_id(root);
1536
1537 /*
1538 * If we need to read an extent buffer from disk and we are holding locks
1539 * on upper level nodes, we unlock all the upper nodes before reading the
1540 * extent buffer, and then return -EAGAIN to the caller as it needs to
1541 * restart the search. We don't release the lock on the current level
1542 * because we need to walk this node to figure out which blocks to read.
1543 */
1544 tmp = find_extent_buffer(fs_info, blocknr);
1545 if (tmp) {
1546 if (p->reada == READA_FORWARD_ALWAYS)
1547 reada_for_search(fs_info, p, level, slot, key->objectid);
1548
1549 /* first we do an atomic uptodate check */
1550 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1551 /*
1552 * Do extra check for first_key, eb can be stale due to
1553 * being cached, read from scrub, or have multiple
1554 * parents (shared tree blocks).
1555 */
1556 if (btrfs_verify_level_key(tmp,
1557 parent_level - 1, &check.first_key, gen)) {
1558 free_extent_buffer(tmp);
1559 return -EUCLEAN;
1560 }
1561 *eb_ret = tmp;
1562 return 0;
1563 }
1564
1565 if (p->nowait) {
1566 free_extent_buffer(tmp);
1567 return -EAGAIN;
1568 }
1569
1570 if (unlock_up)
1571 btrfs_unlock_up_safe(p, level + 1);
1572
1573 /* now we're allowed to do a blocking uptodate check */
1574 ret = btrfs_read_extent_buffer(tmp, &check);
1575 if (ret) {
1576 free_extent_buffer(tmp);
1577 btrfs_release_path(p);
1578 return ret;
1579 }
1580
1581 if (unlock_up)
1582 ret = -EAGAIN;
1583
1584 goto out;
1585 } else if (p->nowait) {
1586 return -EAGAIN;
1587 }
1588
1589 if (unlock_up) {
1590 btrfs_unlock_up_safe(p, level + 1);
1591 ret = -EAGAIN;
1592 } else {
1593 ret = 0;
1594 }
1595
1596 if (p->reada != READA_NONE)
1597 reada_for_search(fs_info, p, level, slot, key->objectid);
1598
1599 tmp = read_tree_block(fs_info, blocknr, &check);
1600 if (IS_ERR(tmp)) {
1601 btrfs_release_path(p);
1602 return PTR_ERR(tmp);
1603 }
1604 /*
1605 * If the read above didn't mark this buffer up to date,
1606 * it will never end up being up to date. Set ret to EIO now
1607 * and give up so that our caller doesn't loop forever
1608 * on our EAGAINs.
1609 */
1610 if (!extent_buffer_uptodate(tmp))
1611 ret = -EIO;
1612
1613 out:
1614 if (ret == 0) {
1615 *eb_ret = tmp;
1616 } else {
1617 free_extent_buffer(tmp);
1618 btrfs_release_path(p);
1619 }
1620
1621 return ret;
1622 }
1623
1624 /*
1625 * helper function for btrfs_search_slot. This does all of the checks
1626 * for node-level blocks and does any balancing required based on
1627 * the ins_len.
1628 *
1629 * If no extra work was required, zero is returned. If we had to
1630 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1631 * start over
1632 */
1633 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1634 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1635 struct btrfs_root *root, struct btrfs_path *p,
1636 struct extent_buffer *b, int level, int ins_len,
1637 int *write_lock_level)
1638 {
1639 struct btrfs_fs_info *fs_info = root->fs_info;
1640 int ret = 0;
1641
1642 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1643 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1644
1645 if (*write_lock_level < level + 1) {
1646 *write_lock_level = level + 1;
1647 btrfs_release_path(p);
1648 return -EAGAIN;
1649 }
1650
1651 reada_for_balance(p, level);
1652 ret = split_node(trans, root, p, level);
1653
1654 b = p->nodes[level];
1655 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1656 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1657
1658 if (*write_lock_level < level + 1) {
1659 *write_lock_level = level + 1;
1660 btrfs_release_path(p);
1661 return -EAGAIN;
1662 }
1663
1664 reada_for_balance(p, level);
1665 ret = balance_level(trans, root, p, level);
1666 if (ret)
1667 return ret;
1668
1669 b = p->nodes[level];
1670 if (!b) {
1671 btrfs_release_path(p);
1672 return -EAGAIN;
1673 }
1674 BUG_ON(btrfs_header_nritems(b) == 1);
1675 }
1676 return ret;
1677 }
1678
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1679 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1680 u64 iobjectid, u64 ioff, u8 key_type,
1681 struct btrfs_key *found_key)
1682 {
1683 int ret;
1684 struct btrfs_key key;
1685 struct extent_buffer *eb;
1686
1687 ASSERT(path);
1688 ASSERT(found_key);
1689
1690 key.type = key_type;
1691 key.objectid = iobjectid;
1692 key.offset = ioff;
1693
1694 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1695 if (ret < 0)
1696 return ret;
1697
1698 eb = path->nodes[0];
1699 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1700 ret = btrfs_next_leaf(fs_root, path);
1701 if (ret)
1702 return ret;
1703 eb = path->nodes[0];
1704 }
1705
1706 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1707 if (found_key->type != key.type ||
1708 found_key->objectid != key.objectid)
1709 return 1;
1710
1711 return 0;
1712 }
1713
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1714 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1715 struct btrfs_path *p,
1716 int write_lock_level)
1717 {
1718 struct extent_buffer *b;
1719 int root_lock = 0;
1720 int level = 0;
1721
1722 if (p->search_commit_root) {
1723 b = root->commit_root;
1724 atomic_inc(&b->refs);
1725 level = btrfs_header_level(b);
1726 /*
1727 * Ensure that all callers have set skip_locking when
1728 * p->search_commit_root = 1.
1729 */
1730 ASSERT(p->skip_locking == 1);
1731
1732 goto out;
1733 }
1734
1735 if (p->skip_locking) {
1736 b = btrfs_root_node(root);
1737 level = btrfs_header_level(b);
1738 goto out;
1739 }
1740
1741 /* We try very hard to do read locks on the root */
1742 root_lock = BTRFS_READ_LOCK;
1743
1744 /*
1745 * If the level is set to maximum, we can skip trying to get the read
1746 * lock.
1747 */
1748 if (write_lock_level < BTRFS_MAX_LEVEL) {
1749 /*
1750 * We don't know the level of the root node until we actually
1751 * have it read locked
1752 */
1753 if (p->nowait) {
1754 b = btrfs_try_read_lock_root_node(root);
1755 if (IS_ERR(b))
1756 return b;
1757 } else {
1758 b = btrfs_read_lock_root_node(root);
1759 }
1760 level = btrfs_header_level(b);
1761 if (level > write_lock_level)
1762 goto out;
1763
1764 /* Whoops, must trade for write lock */
1765 btrfs_tree_read_unlock(b);
1766 free_extent_buffer(b);
1767 }
1768
1769 b = btrfs_lock_root_node(root);
1770 root_lock = BTRFS_WRITE_LOCK;
1771
1772 /* The level might have changed, check again */
1773 level = btrfs_header_level(b);
1774
1775 out:
1776 /*
1777 * The root may have failed to write out at some point, and thus is no
1778 * longer valid, return an error in this case.
1779 */
1780 if (!extent_buffer_uptodate(b)) {
1781 if (root_lock)
1782 btrfs_tree_unlock_rw(b, root_lock);
1783 free_extent_buffer(b);
1784 return ERR_PTR(-EIO);
1785 }
1786
1787 p->nodes[level] = b;
1788 if (!p->skip_locking)
1789 p->locks[level] = root_lock;
1790 /*
1791 * Callers are responsible for dropping b's references.
1792 */
1793 return b;
1794 }
1795
1796 /*
1797 * Replace the extent buffer at the lowest level of the path with a cloned
1798 * version. The purpose is to be able to use it safely, after releasing the
1799 * commit root semaphore, even if relocation is happening in parallel, the
1800 * transaction used for relocation is committed and the extent buffer is
1801 * reallocated in the next transaction.
1802 *
1803 * This is used in a context where the caller does not prevent transaction
1804 * commits from happening, either by holding a transaction handle or holding
1805 * some lock, while it's doing searches through a commit root.
1806 * At the moment it's only used for send operations.
1807 */
finish_need_commit_sem_search(struct btrfs_path * path)1808 static int finish_need_commit_sem_search(struct btrfs_path *path)
1809 {
1810 const int i = path->lowest_level;
1811 const int slot = path->slots[i];
1812 struct extent_buffer *lowest = path->nodes[i];
1813 struct extent_buffer *clone;
1814
1815 ASSERT(path->need_commit_sem);
1816
1817 if (!lowest)
1818 return 0;
1819
1820 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1821
1822 clone = btrfs_clone_extent_buffer(lowest);
1823 if (!clone)
1824 return -ENOMEM;
1825
1826 btrfs_release_path(path);
1827 path->nodes[i] = clone;
1828 path->slots[i] = slot;
1829
1830 return 0;
1831 }
1832
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1833 static inline int search_for_key_slot(struct extent_buffer *eb,
1834 int search_low_slot,
1835 const struct btrfs_key *key,
1836 int prev_cmp,
1837 int *slot)
1838 {
1839 /*
1840 * If a previous call to btrfs_bin_search() on a parent node returned an
1841 * exact match (prev_cmp == 0), we can safely assume the target key will
1842 * always be at slot 0 on lower levels, since each key pointer
1843 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1844 * subtree it points to. Thus we can skip searching lower levels.
1845 */
1846 if (prev_cmp == 0) {
1847 *slot = 0;
1848 return 0;
1849 }
1850
1851 return btrfs_bin_search(eb, search_low_slot, key, slot);
1852 }
1853
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1854 static int search_leaf(struct btrfs_trans_handle *trans,
1855 struct btrfs_root *root,
1856 const struct btrfs_key *key,
1857 struct btrfs_path *path,
1858 int ins_len,
1859 int prev_cmp)
1860 {
1861 struct extent_buffer *leaf = path->nodes[0];
1862 int leaf_free_space = -1;
1863 int search_low_slot = 0;
1864 int ret;
1865 bool do_bin_search = true;
1866
1867 /*
1868 * If we are doing an insertion, the leaf has enough free space and the
1869 * destination slot for the key is not slot 0, then we can unlock our
1870 * write lock on the parent, and any other upper nodes, before doing the
1871 * binary search on the leaf (with search_for_key_slot()), allowing other
1872 * tasks to lock the parent and any other upper nodes.
1873 */
1874 if (ins_len > 0) {
1875 /*
1876 * Cache the leaf free space, since we will need it later and it
1877 * will not change until then.
1878 */
1879 leaf_free_space = btrfs_leaf_free_space(leaf);
1880
1881 /*
1882 * !path->locks[1] means we have a single node tree, the leaf is
1883 * the root of the tree.
1884 */
1885 if (path->locks[1] && leaf_free_space >= ins_len) {
1886 struct btrfs_disk_key first_key;
1887
1888 ASSERT(btrfs_header_nritems(leaf) > 0);
1889 btrfs_item_key(leaf, &first_key, 0);
1890
1891 /*
1892 * Doing the extra comparison with the first key is cheap,
1893 * taking into account that the first key is very likely
1894 * already in a cache line because it immediately follows
1895 * the extent buffer's header and we have recently accessed
1896 * the header's level field.
1897 */
1898 ret = btrfs_comp_keys(&first_key, key);
1899 if (ret < 0) {
1900 /*
1901 * The first key is smaller than the key we want
1902 * to insert, so we are safe to unlock all upper
1903 * nodes and we have to do the binary search.
1904 *
1905 * We do use btrfs_unlock_up_safe() and not
1906 * unlock_up() because the later does not unlock
1907 * nodes with a slot of 0 - we can safely unlock
1908 * any node even if its slot is 0 since in this
1909 * case the key does not end up at slot 0 of the
1910 * leaf and there's no need to split the leaf.
1911 */
1912 btrfs_unlock_up_safe(path, 1);
1913 search_low_slot = 1;
1914 } else {
1915 /*
1916 * The first key is >= then the key we want to
1917 * insert, so we can skip the binary search as
1918 * the target key will be at slot 0.
1919 *
1920 * We can not unlock upper nodes when the key is
1921 * less than the first key, because we will need
1922 * to update the key at slot 0 of the parent node
1923 * and possibly of other upper nodes too.
1924 * If the key matches the first key, then we can
1925 * unlock all the upper nodes, using
1926 * btrfs_unlock_up_safe() instead of unlock_up()
1927 * as stated above.
1928 */
1929 if (ret == 0)
1930 btrfs_unlock_up_safe(path, 1);
1931 /*
1932 * ret is already 0 or 1, matching the result of
1933 * a btrfs_bin_search() call, so there is no need
1934 * to adjust it.
1935 */
1936 do_bin_search = false;
1937 path->slots[0] = 0;
1938 }
1939 }
1940 }
1941
1942 if (do_bin_search) {
1943 ret = search_for_key_slot(leaf, search_low_slot, key,
1944 prev_cmp, &path->slots[0]);
1945 if (ret < 0)
1946 return ret;
1947 }
1948
1949 if (ins_len > 0) {
1950 /*
1951 * Item key already exists. In this case, if we are allowed to
1952 * insert the item (for example, in dir_item case, item key
1953 * collision is allowed), it will be merged with the original
1954 * item. Only the item size grows, no new btrfs item will be
1955 * added. If search_for_extension is not set, ins_len already
1956 * accounts the size btrfs_item, deduct it here so leaf space
1957 * check will be correct.
1958 */
1959 if (ret == 0 && !path->search_for_extension) {
1960 ASSERT(ins_len >= sizeof(struct btrfs_item));
1961 ins_len -= sizeof(struct btrfs_item);
1962 }
1963
1964 ASSERT(leaf_free_space >= 0);
1965
1966 if (leaf_free_space < ins_len) {
1967 int err;
1968
1969 err = split_leaf(trans, root, key, path, ins_len,
1970 (ret == 0));
1971 ASSERT(err <= 0);
1972 if (WARN_ON(err > 0))
1973 err = -EUCLEAN;
1974 if (err)
1975 ret = err;
1976 }
1977 }
1978
1979 return ret;
1980 }
1981
1982 /*
1983 * Look for a key in a tree and perform necessary modifications to preserve
1984 * tree invariants.
1985 *
1986 * @trans: Handle of transaction, used when modifying the tree
1987 * @p: Holds all btree nodes along the search path
1988 * @root: The root node of the tree
1989 * @key: The key we are looking for
1990 * @ins_len: Indicates purpose of search:
1991 * >0 for inserts it's size of item inserted (*)
1992 * <0 for deletions
1993 * 0 for plain searches, not modifying the tree
1994 *
1995 * (*) If size of item inserted doesn't include
1996 * sizeof(struct btrfs_item), then p->search_for_extension must
1997 * be set.
1998 * @cow: boolean should CoW operations be performed. Must always be 1
1999 * when modifying the tree.
2000 *
2001 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2002 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2003 *
2004 * If @key is found, 0 is returned and you can find the item in the leaf level
2005 * of the path (level 0)
2006 *
2007 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2008 * points to the slot where it should be inserted
2009 *
2010 * If an error is encountered while searching the tree a negative error number
2011 * is returned
2012 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2013 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2014 const struct btrfs_key *key, struct btrfs_path *p,
2015 int ins_len, int cow)
2016 {
2017 struct btrfs_fs_info *fs_info;
2018 struct extent_buffer *b;
2019 int slot;
2020 int ret;
2021 int err;
2022 int level;
2023 int lowest_unlock = 1;
2024 /* everything at write_lock_level or lower must be write locked */
2025 int write_lock_level = 0;
2026 u8 lowest_level = 0;
2027 int min_write_lock_level;
2028 int prev_cmp;
2029
2030 if (!root)
2031 return -EINVAL;
2032
2033 fs_info = root->fs_info;
2034 might_sleep();
2035
2036 lowest_level = p->lowest_level;
2037 WARN_ON(lowest_level && ins_len > 0);
2038 WARN_ON(p->nodes[0] != NULL);
2039 BUG_ON(!cow && ins_len);
2040
2041 /*
2042 * For now only allow nowait for read only operations. There's no
2043 * strict reason why we can't, we just only need it for reads so it's
2044 * only implemented for reads.
2045 */
2046 ASSERT(!p->nowait || !cow);
2047
2048 if (ins_len < 0) {
2049 lowest_unlock = 2;
2050
2051 /* when we are removing items, we might have to go up to level
2052 * two as we update tree pointers Make sure we keep write
2053 * for those levels as well
2054 */
2055 write_lock_level = 2;
2056 } else if (ins_len > 0) {
2057 /*
2058 * for inserting items, make sure we have a write lock on
2059 * level 1 so we can update keys
2060 */
2061 write_lock_level = 1;
2062 }
2063
2064 if (!cow)
2065 write_lock_level = -1;
2066
2067 if (cow && (p->keep_locks || p->lowest_level))
2068 write_lock_level = BTRFS_MAX_LEVEL;
2069
2070 min_write_lock_level = write_lock_level;
2071
2072 if (p->need_commit_sem) {
2073 ASSERT(p->search_commit_root);
2074 if (p->nowait) {
2075 if (!down_read_trylock(&fs_info->commit_root_sem))
2076 return -EAGAIN;
2077 } else {
2078 down_read(&fs_info->commit_root_sem);
2079 }
2080 }
2081
2082 again:
2083 prev_cmp = -1;
2084 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2085 if (IS_ERR(b)) {
2086 ret = PTR_ERR(b);
2087 goto done;
2088 }
2089
2090 while (b) {
2091 int dec = 0;
2092
2093 level = btrfs_header_level(b);
2094
2095 if (cow) {
2096 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2097
2098 /*
2099 * if we don't really need to cow this block
2100 * then we don't want to set the path blocking,
2101 * so we test it here
2102 */
2103 if (!should_cow_block(trans, root, b))
2104 goto cow_done;
2105
2106 /*
2107 * must have write locks on this node and the
2108 * parent
2109 */
2110 if (level > write_lock_level ||
2111 (level + 1 > write_lock_level &&
2112 level + 1 < BTRFS_MAX_LEVEL &&
2113 p->nodes[level + 1])) {
2114 write_lock_level = level + 1;
2115 btrfs_release_path(p);
2116 goto again;
2117 }
2118
2119 if (last_level)
2120 err = btrfs_cow_block(trans, root, b, NULL, 0,
2121 &b,
2122 BTRFS_NESTING_COW);
2123 else
2124 err = btrfs_cow_block(trans, root, b,
2125 p->nodes[level + 1],
2126 p->slots[level + 1], &b,
2127 BTRFS_NESTING_COW);
2128 if (err) {
2129 ret = err;
2130 goto done;
2131 }
2132 }
2133 cow_done:
2134 p->nodes[level] = b;
2135
2136 /*
2137 * we have a lock on b and as long as we aren't changing
2138 * the tree, there is no way to for the items in b to change.
2139 * It is safe to drop the lock on our parent before we
2140 * go through the expensive btree search on b.
2141 *
2142 * If we're inserting or deleting (ins_len != 0), then we might
2143 * be changing slot zero, which may require changing the parent.
2144 * So, we can't drop the lock until after we know which slot
2145 * we're operating on.
2146 */
2147 if (!ins_len && !p->keep_locks) {
2148 int u = level + 1;
2149
2150 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2151 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2152 p->locks[u] = 0;
2153 }
2154 }
2155
2156 if (level == 0) {
2157 if (ins_len > 0)
2158 ASSERT(write_lock_level >= 1);
2159
2160 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2161 if (!p->search_for_split)
2162 unlock_up(p, level, lowest_unlock,
2163 min_write_lock_level, NULL);
2164 goto done;
2165 }
2166
2167 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2168 if (ret < 0)
2169 goto done;
2170 prev_cmp = ret;
2171
2172 if (ret && slot > 0) {
2173 dec = 1;
2174 slot--;
2175 }
2176 p->slots[level] = slot;
2177 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2178 &write_lock_level);
2179 if (err == -EAGAIN)
2180 goto again;
2181 if (err) {
2182 ret = err;
2183 goto done;
2184 }
2185 b = p->nodes[level];
2186 slot = p->slots[level];
2187
2188 /*
2189 * Slot 0 is special, if we change the key we have to update
2190 * the parent pointer which means we must have a write lock on
2191 * the parent
2192 */
2193 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2194 write_lock_level = level + 1;
2195 btrfs_release_path(p);
2196 goto again;
2197 }
2198
2199 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2200 &write_lock_level);
2201
2202 if (level == lowest_level) {
2203 if (dec)
2204 p->slots[level]++;
2205 goto done;
2206 }
2207
2208 err = read_block_for_search(root, p, &b, level, slot, key);
2209 if (err == -EAGAIN)
2210 goto again;
2211 if (err) {
2212 ret = err;
2213 goto done;
2214 }
2215
2216 if (!p->skip_locking) {
2217 level = btrfs_header_level(b);
2218
2219 btrfs_maybe_reset_lockdep_class(root, b);
2220
2221 if (level <= write_lock_level) {
2222 btrfs_tree_lock(b);
2223 p->locks[level] = BTRFS_WRITE_LOCK;
2224 } else {
2225 if (p->nowait) {
2226 if (!btrfs_try_tree_read_lock(b)) {
2227 free_extent_buffer(b);
2228 ret = -EAGAIN;
2229 goto done;
2230 }
2231 } else {
2232 btrfs_tree_read_lock(b);
2233 }
2234 p->locks[level] = BTRFS_READ_LOCK;
2235 }
2236 p->nodes[level] = b;
2237 }
2238 }
2239 ret = 1;
2240 done:
2241 if (ret < 0 && !p->skip_release_on_error)
2242 btrfs_release_path(p);
2243
2244 if (p->need_commit_sem) {
2245 int ret2;
2246
2247 ret2 = finish_need_commit_sem_search(p);
2248 up_read(&fs_info->commit_root_sem);
2249 if (ret2)
2250 ret = ret2;
2251 }
2252
2253 return ret;
2254 }
2255 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2256
2257 /*
2258 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2259 * current state of the tree together with the operations recorded in the tree
2260 * modification log to search for the key in a previous version of this tree, as
2261 * denoted by the time_seq parameter.
2262 *
2263 * Naturally, there is no support for insert, delete or cow operations.
2264 *
2265 * The resulting path and return value will be set up as if we called
2266 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2267 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2268 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2269 struct btrfs_path *p, u64 time_seq)
2270 {
2271 struct btrfs_fs_info *fs_info = root->fs_info;
2272 struct extent_buffer *b;
2273 int slot;
2274 int ret;
2275 int err;
2276 int level;
2277 int lowest_unlock = 1;
2278 u8 lowest_level = 0;
2279
2280 lowest_level = p->lowest_level;
2281 WARN_ON(p->nodes[0] != NULL);
2282 ASSERT(!p->nowait);
2283
2284 if (p->search_commit_root) {
2285 BUG_ON(time_seq);
2286 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2287 }
2288
2289 again:
2290 b = btrfs_get_old_root(root, time_seq);
2291 if (!b) {
2292 ret = -EIO;
2293 goto done;
2294 }
2295 level = btrfs_header_level(b);
2296 p->locks[level] = BTRFS_READ_LOCK;
2297
2298 while (b) {
2299 int dec = 0;
2300
2301 level = btrfs_header_level(b);
2302 p->nodes[level] = b;
2303
2304 /*
2305 * we have a lock on b and as long as we aren't changing
2306 * the tree, there is no way to for the items in b to change.
2307 * It is safe to drop the lock on our parent before we
2308 * go through the expensive btree search on b.
2309 */
2310 btrfs_unlock_up_safe(p, level + 1);
2311
2312 ret = btrfs_bin_search(b, 0, key, &slot);
2313 if (ret < 0)
2314 goto done;
2315
2316 if (level == 0) {
2317 p->slots[level] = slot;
2318 unlock_up(p, level, lowest_unlock, 0, NULL);
2319 goto done;
2320 }
2321
2322 if (ret && slot > 0) {
2323 dec = 1;
2324 slot--;
2325 }
2326 p->slots[level] = slot;
2327 unlock_up(p, level, lowest_unlock, 0, NULL);
2328
2329 if (level == lowest_level) {
2330 if (dec)
2331 p->slots[level]++;
2332 goto done;
2333 }
2334
2335 err = read_block_for_search(root, p, &b, level, slot, key);
2336 if (err == -EAGAIN)
2337 goto again;
2338 if (err) {
2339 ret = err;
2340 goto done;
2341 }
2342
2343 level = btrfs_header_level(b);
2344 btrfs_tree_read_lock(b);
2345 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2346 if (!b) {
2347 ret = -ENOMEM;
2348 goto done;
2349 }
2350 p->locks[level] = BTRFS_READ_LOCK;
2351 p->nodes[level] = b;
2352 }
2353 ret = 1;
2354 done:
2355 if (ret < 0)
2356 btrfs_release_path(p);
2357
2358 return ret;
2359 }
2360
2361 /*
2362 * Search the tree again to find a leaf with smaller keys.
2363 * Returns 0 if it found something.
2364 * Returns 1 if there are no smaller keys.
2365 * Returns < 0 on error.
2366 *
2367 * This may release the path, and so you may lose any locks held at the
2368 * time you call it.
2369 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2370 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2371 {
2372 struct btrfs_key key;
2373 struct btrfs_key orig_key;
2374 struct btrfs_disk_key found_key;
2375 int ret;
2376
2377 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2378 orig_key = key;
2379
2380 if (key.offset > 0) {
2381 key.offset--;
2382 } else if (key.type > 0) {
2383 key.type--;
2384 key.offset = (u64)-1;
2385 } else if (key.objectid > 0) {
2386 key.objectid--;
2387 key.type = (u8)-1;
2388 key.offset = (u64)-1;
2389 } else {
2390 return 1;
2391 }
2392
2393 btrfs_release_path(path);
2394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2395 if (ret <= 0)
2396 return ret;
2397
2398 /*
2399 * Previous key not found. Even if we were at slot 0 of the leaf we had
2400 * before releasing the path and calling btrfs_search_slot(), we now may
2401 * be in a slot pointing to the same original key - this can happen if
2402 * after we released the path, one of more items were moved from a
2403 * sibling leaf into the front of the leaf we had due to an insertion
2404 * (see push_leaf_right()).
2405 * If we hit this case and our slot is > 0 and just decrement the slot
2406 * so that the caller does not process the same key again, which may or
2407 * may not break the caller, depending on its logic.
2408 */
2409 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2410 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2411 ret = btrfs_comp_keys(&found_key, &orig_key);
2412 if (ret == 0) {
2413 if (path->slots[0] > 0) {
2414 path->slots[0]--;
2415 return 0;
2416 }
2417 /*
2418 * At slot 0, same key as before, it means orig_key is
2419 * the lowest, leftmost, key in the tree. We're done.
2420 */
2421 return 1;
2422 }
2423 }
2424
2425 btrfs_item_key(path->nodes[0], &found_key, 0);
2426 ret = btrfs_comp_keys(&found_key, &key);
2427 /*
2428 * We might have had an item with the previous key in the tree right
2429 * before we released our path. And after we released our path, that
2430 * item might have been pushed to the first slot (0) of the leaf we
2431 * were holding due to a tree balance. Alternatively, an item with the
2432 * previous key can exist as the only element of a leaf (big fat item).
2433 * Therefore account for these 2 cases, so that our callers (like
2434 * btrfs_previous_item) don't miss an existing item with a key matching
2435 * the previous key we computed above.
2436 */
2437 if (ret <= 0)
2438 return 0;
2439 return 1;
2440 }
2441
2442 /*
2443 * helper to use instead of search slot if no exact match is needed but
2444 * instead the next or previous item should be returned.
2445 * When find_higher is true, the next higher item is returned, the next lower
2446 * otherwise.
2447 * When return_any and find_higher are both true, and no higher item is found,
2448 * return the next lower instead.
2449 * When return_any is true and find_higher is false, and no lower item is found,
2450 * return the next higher instead.
2451 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2452 * < 0 on error
2453 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2454 int btrfs_search_slot_for_read(struct btrfs_root *root,
2455 const struct btrfs_key *key,
2456 struct btrfs_path *p, int find_higher,
2457 int return_any)
2458 {
2459 int ret;
2460 struct extent_buffer *leaf;
2461
2462 again:
2463 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2464 if (ret <= 0)
2465 return ret;
2466 /*
2467 * a return value of 1 means the path is at the position where the
2468 * item should be inserted. Normally this is the next bigger item,
2469 * but in case the previous item is the last in a leaf, path points
2470 * to the first free slot in the previous leaf, i.e. at an invalid
2471 * item.
2472 */
2473 leaf = p->nodes[0];
2474
2475 if (find_higher) {
2476 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2477 ret = btrfs_next_leaf(root, p);
2478 if (ret <= 0)
2479 return ret;
2480 if (!return_any)
2481 return 1;
2482 /*
2483 * no higher item found, return the next
2484 * lower instead
2485 */
2486 return_any = 0;
2487 find_higher = 0;
2488 btrfs_release_path(p);
2489 goto again;
2490 }
2491 } else {
2492 if (p->slots[0] == 0) {
2493 ret = btrfs_prev_leaf(root, p);
2494 if (ret < 0)
2495 return ret;
2496 if (!ret) {
2497 leaf = p->nodes[0];
2498 if (p->slots[0] == btrfs_header_nritems(leaf))
2499 p->slots[0]--;
2500 return 0;
2501 }
2502 if (!return_any)
2503 return 1;
2504 /*
2505 * no lower item found, return the next
2506 * higher instead
2507 */
2508 return_any = 0;
2509 find_higher = 1;
2510 btrfs_release_path(p);
2511 goto again;
2512 } else {
2513 --p->slots[0];
2514 }
2515 }
2516 return 0;
2517 }
2518
2519 /*
2520 * Execute search and call btrfs_previous_item to traverse backwards if the item
2521 * was not found.
2522 *
2523 * Return 0 if found, 1 if not found and < 0 if error.
2524 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2525 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2526 struct btrfs_path *path)
2527 {
2528 int ret;
2529
2530 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2531 if (ret > 0)
2532 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2533
2534 if (ret == 0)
2535 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2536
2537 return ret;
2538 }
2539
2540 /*
2541 * Search for a valid slot for the given path.
2542 *
2543 * @root: The root node of the tree.
2544 * @key: Will contain a valid item if found.
2545 * @path: The starting point to validate the slot.
2546 *
2547 * Return: 0 if the item is valid
2548 * 1 if not found
2549 * <0 if error.
2550 */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2551 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2552 struct btrfs_path *path)
2553 {
2554 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2555 int ret;
2556
2557 ret = btrfs_next_leaf(root, path);
2558 if (ret)
2559 return ret;
2560 }
2561
2562 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2563 return 0;
2564 }
2565
2566 /*
2567 * adjust the pointers going up the tree, starting at level
2568 * making sure the right key of each node is points to 'key'.
2569 * This is used after shifting pointers to the left, so it stops
2570 * fixing up pointers when a given leaf/node is not in slot 0 of the
2571 * higher levels
2572 *
2573 */
fixup_low_keys(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,int level)2574 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2575 const struct btrfs_path *path,
2576 const struct btrfs_disk_key *key, int level)
2577 {
2578 int i;
2579 struct extent_buffer *t;
2580 int ret;
2581
2582 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2583 int tslot = path->slots[i];
2584
2585 if (!path->nodes[i])
2586 break;
2587 t = path->nodes[i];
2588 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2589 BTRFS_MOD_LOG_KEY_REPLACE);
2590 BUG_ON(ret < 0);
2591 btrfs_set_node_key(t, key, tslot);
2592 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2593 if (tslot != 0)
2594 break;
2595 }
2596 }
2597
2598 /*
2599 * update item key.
2600 *
2601 * This function isn't completely safe. It's the caller's responsibility
2602 * that the new key won't break the order
2603 */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_key * new_key)2604 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2605 const struct btrfs_path *path,
2606 const struct btrfs_key *new_key)
2607 {
2608 struct btrfs_fs_info *fs_info = trans->fs_info;
2609 struct btrfs_disk_key disk_key;
2610 struct extent_buffer *eb;
2611 int slot;
2612
2613 eb = path->nodes[0];
2614 slot = path->slots[0];
2615 if (slot > 0) {
2616 btrfs_item_key(eb, &disk_key, slot - 1);
2617 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2618 btrfs_print_leaf(eb);
2619 btrfs_crit(fs_info,
2620 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2621 slot, btrfs_disk_key_objectid(&disk_key),
2622 btrfs_disk_key_type(&disk_key),
2623 btrfs_disk_key_offset(&disk_key),
2624 new_key->objectid, new_key->type,
2625 new_key->offset);
2626 BUG();
2627 }
2628 }
2629 if (slot < btrfs_header_nritems(eb) - 1) {
2630 btrfs_item_key(eb, &disk_key, slot + 1);
2631 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2632 btrfs_print_leaf(eb);
2633 btrfs_crit(fs_info,
2634 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2635 slot, btrfs_disk_key_objectid(&disk_key),
2636 btrfs_disk_key_type(&disk_key),
2637 btrfs_disk_key_offset(&disk_key),
2638 new_key->objectid, new_key->type,
2639 new_key->offset);
2640 BUG();
2641 }
2642 }
2643
2644 btrfs_cpu_key_to_disk(&disk_key, new_key);
2645 btrfs_set_item_key(eb, &disk_key, slot);
2646 btrfs_mark_buffer_dirty(trans, eb);
2647 if (slot == 0)
2648 fixup_low_keys(trans, path, &disk_key, 1);
2649 }
2650
2651 /*
2652 * Check key order of two sibling extent buffers.
2653 *
2654 * Return true if something is wrong.
2655 * Return false if everything is fine.
2656 *
2657 * Tree-checker only works inside one tree block, thus the following
2658 * corruption can not be detected by tree-checker:
2659 *
2660 * Leaf @left | Leaf @right
2661 * --------------------------------------------------------------
2662 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2663 *
2664 * Key f6 in leaf @left itself is valid, but not valid when the next
2665 * key in leaf @right is 7.
2666 * This can only be checked at tree block merge time.
2667 * And since tree checker has ensured all key order in each tree block
2668 * is correct, we only need to bother the last key of @left and the first
2669 * key of @right.
2670 */
check_sibling_keys(const struct extent_buffer * left,const struct extent_buffer * right)2671 static bool check_sibling_keys(const struct extent_buffer *left,
2672 const struct extent_buffer *right)
2673 {
2674 struct btrfs_key left_last;
2675 struct btrfs_key right_first;
2676 int level = btrfs_header_level(left);
2677 int nr_left = btrfs_header_nritems(left);
2678 int nr_right = btrfs_header_nritems(right);
2679
2680 /* No key to check in one of the tree blocks */
2681 if (!nr_left || !nr_right)
2682 return false;
2683
2684 if (level) {
2685 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2686 btrfs_node_key_to_cpu(right, &right_first, 0);
2687 } else {
2688 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2689 btrfs_item_key_to_cpu(right, &right_first, 0);
2690 }
2691
2692 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2693 btrfs_crit(left->fs_info, "left extent buffer:");
2694 btrfs_print_tree(left, false);
2695 btrfs_crit(left->fs_info, "right extent buffer:");
2696 btrfs_print_tree(right, false);
2697 btrfs_crit(left->fs_info,
2698 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2699 left_last.objectid, left_last.type,
2700 left_last.offset, right_first.objectid,
2701 right_first.type, right_first.offset);
2702 return true;
2703 }
2704 return false;
2705 }
2706
2707 /*
2708 * try to push data from one node into the next node left in the
2709 * tree.
2710 *
2711 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2712 * error, and > 0 if there was no room in the left hand block.
2713 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2714 static int push_node_left(struct btrfs_trans_handle *trans,
2715 struct extent_buffer *dst,
2716 struct extent_buffer *src, int empty)
2717 {
2718 struct btrfs_fs_info *fs_info = trans->fs_info;
2719 int push_items = 0;
2720 int src_nritems;
2721 int dst_nritems;
2722 int ret = 0;
2723
2724 src_nritems = btrfs_header_nritems(src);
2725 dst_nritems = btrfs_header_nritems(dst);
2726 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2727 WARN_ON(btrfs_header_generation(src) != trans->transid);
2728 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2729
2730 if (!empty && src_nritems <= 8)
2731 return 1;
2732
2733 if (push_items <= 0)
2734 return 1;
2735
2736 if (empty) {
2737 push_items = min(src_nritems, push_items);
2738 if (push_items < src_nritems) {
2739 /* leave at least 8 pointers in the node if
2740 * we aren't going to empty it
2741 */
2742 if (src_nritems - push_items < 8) {
2743 if (push_items <= 8)
2744 return 1;
2745 push_items -= 8;
2746 }
2747 }
2748 } else
2749 push_items = min(src_nritems - 8, push_items);
2750
2751 /* dst is the left eb, src is the middle eb */
2752 if (check_sibling_keys(dst, src)) {
2753 ret = -EUCLEAN;
2754 btrfs_abort_transaction(trans, ret);
2755 return ret;
2756 }
2757 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2758 if (ret) {
2759 btrfs_abort_transaction(trans, ret);
2760 return ret;
2761 }
2762 copy_extent_buffer(dst, src,
2763 btrfs_node_key_ptr_offset(dst, dst_nritems),
2764 btrfs_node_key_ptr_offset(src, 0),
2765 push_items * sizeof(struct btrfs_key_ptr));
2766
2767 if (push_items < src_nritems) {
2768 /*
2769 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2770 * don't need to do an explicit tree mod log operation for it.
2771 */
2772 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2773 btrfs_node_key_ptr_offset(src, push_items),
2774 (src_nritems - push_items) *
2775 sizeof(struct btrfs_key_ptr));
2776 }
2777 btrfs_set_header_nritems(src, src_nritems - push_items);
2778 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2779 btrfs_mark_buffer_dirty(trans, src);
2780 btrfs_mark_buffer_dirty(trans, dst);
2781
2782 return ret;
2783 }
2784
2785 /*
2786 * try to push data from one node into the next node right in the
2787 * tree.
2788 *
2789 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2790 * error, and > 0 if there was no room in the right hand block.
2791 *
2792 * this will only push up to 1/2 the contents of the left node over
2793 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2794 static int balance_node_right(struct btrfs_trans_handle *trans,
2795 struct extent_buffer *dst,
2796 struct extent_buffer *src)
2797 {
2798 struct btrfs_fs_info *fs_info = trans->fs_info;
2799 int push_items = 0;
2800 int max_push;
2801 int src_nritems;
2802 int dst_nritems;
2803 int ret = 0;
2804
2805 WARN_ON(btrfs_header_generation(src) != trans->transid);
2806 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2807
2808 src_nritems = btrfs_header_nritems(src);
2809 dst_nritems = btrfs_header_nritems(dst);
2810 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2811 if (push_items <= 0)
2812 return 1;
2813
2814 if (src_nritems < 4)
2815 return 1;
2816
2817 max_push = src_nritems / 2 + 1;
2818 /* don't try to empty the node */
2819 if (max_push >= src_nritems)
2820 return 1;
2821
2822 if (max_push < push_items)
2823 push_items = max_push;
2824
2825 /* dst is the right eb, src is the middle eb */
2826 if (check_sibling_keys(src, dst)) {
2827 ret = -EUCLEAN;
2828 btrfs_abort_transaction(trans, ret);
2829 return ret;
2830 }
2831
2832 /*
2833 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2834 * need to do an explicit tree mod log operation for it.
2835 */
2836 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2837 btrfs_node_key_ptr_offset(dst, 0),
2838 (dst_nritems) *
2839 sizeof(struct btrfs_key_ptr));
2840
2841 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2842 push_items);
2843 if (ret) {
2844 btrfs_abort_transaction(trans, ret);
2845 return ret;
2846 }
2847 copy_extent_buffer(dst, src,
2848 btrfs_node_key_ptr_offset(dst, 0),
2849 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2850 push_items * sizeof(struct btrfs_key_ptr));
2851
2852 btrfs_set_header_nritems(src, src_nritems - push_items);
2853 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2854
2855 btrfs_mark_buffer_dirty(trans, src);
2856 btrfs_mark_buffer_dirty(trans, dst);
2857
2858 return ret;
2859 }
2860
2861 /*
2862 * helper function to insert a new root level in the tree.
2863 * A new node is allocated, and a single item is inserted to
2864 * point to the existing root
2865 *
2866 * returns zero on success or < 0 on failure.
2867 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2868 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path, int level)
2871 {
2872 u64 lower_gen;
2873 struct extent_buffer *lower;
2874 struct extent_buffer *c;
2875 struct extent_buffer *old;
2876 struct btrfs_disk_key lower_key;
2877 int ret;
2878
2879 BUG_ON(path->nodes[level]);
2880 BUG_ON(path->nodes[level-1] != root->node);
2881
2882 lower = path->nodes[level-1];
2883 if (level == 1)
2884 btrfs_item_key(lower, &lower_key, 0);
2885 else
2886 btrfs_node_key(lower, &lower_key, 0);
2887
2888 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2889 &lower_key, level, root->node->start, 0,
2890 0, BTRFS_NESTING_NEW_ROOT);
2891 if (IS_ERR(c))
2892 return PTR_ERR(c);
2893
2894 root_add_used_bytes(root);
2895
2896 btrfs_set_header_nritems(c, 1);
2897 btrfs_set_node_key(c, &lower_key, 0);
2898 btrfs_set_node_blockptr(c, 0, lower->start);
2899 lower_gen = btrfs_header_generation(lower);
2900 WARN_ON(lower_gen != trans->transid);
2901
2902 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2903
2904 btrfs_mark_buffer_dirty(trans, c);
2905
2906 old = root->node;
2907 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2908 if (ret < 0) {
2909 int ret2;
2910
2911 btrfs_clear_buffer_dirty(trans, c);
2912 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2913 if (ret2 < 0)
2914 btrfs_abort_transaction(trans, ret2);
2915 btrfs_tree_unlock(c);
2916 free_extent_buffer(c);
2917 return ret;
2918 }
2919 rcu_assign_pointer(root->node, c);
2920
2921 /* the super has an extra ref to root->node */
2922 free_extent_buffer(old);
2923
2924 add_root_to_dirty_list(root);
2925 atomic_inc(&c->refs);
2926 path->nodes[level] = c;
2927 path->locks[level] = BTRFS_WRITE_LOCK;
2928 path->slots[level] = 0;
2929 return 0;
2930 }
2931
2932 /*
2933 * worker function to insert a single pointer in a node.
2934 * the node should have enough room for the pointer already
2935 *
2936 * slot and level indicate where you want the key to go, and
2937 * blocknr is the block the key points to.
2938 */
insert_ptr(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2939 static int insert_ptr(struct btrfs_trans_handle *trans,
2940 const struct btrfs_path *path,
2941 const struct btrfs_disk_key *key, u64 bytenr,
2942 int slot, int level)
2943 {
2944 struct extent_buffer *lower;
2945 int nritems;
2946 int ret;
2947
2948 BUG_ON(!path->nodes[level]);
2949 btrfs_assert_tree_write_locked(path->nodes[level]);
2950 lower = path->nodes[level];
2951 nritems = btrfs_header_nritems(lower);
2952 BUG_ON(slot > nritems);
2953 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2954 if (slot != nritems) {
2955 if (level) {
2956 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2957 slot, nritems - slot);
2958 if (ret < 0) {
2959 btrfs_abort_transaction(trans, ret);
2960 return ret;
2961 }
2962 }
2963 memmove_extent_buffer(lower,
2964 btrfs_node_key_ptr_offset(lower, slot + 1),
2965 btrfs_node_key_ptr_offset(lower, slot),
2966 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2967 }
2968 if (level) {
2969 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2970 BTRFS_MOD_LOG_KEY_ADD);
2971 if (ret < 0) {
2972 btrfs_abort_transaction(trans, ret);
2973 return ret;
2974 }
2975 }
2976 btrfs_set_node_key(lower, key, slot);
2977 btrfs_set_node_blockptr(lower, slot, bytenr);
2978 WARN_ON(trans->transid == 0);
2979 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2980 btrfs_set_header_nritems(lower, nritems + 1);
2981 btrfs_mark_buffer_dirty(trans, lower);
2982
2983 return 0;
2984 }
2985
2986 /*
2987 * split the node at the specified level in path in two.
2988 * The path is corrected to point to the appropriate node after the split
2989 *
2990 * Before splitting this tries to make some room in the node by pushing
2991 * left and right, if either one works, it returns right away.
2992 *
2993 * returns 0 on success and < 0 on failure
2994 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2995 static noinline int split_node(struct btrfs_trans_handle *trans,
2996 struct btrfs_root *root,
2997 struct btrfs_path *path, int level)
2998 {
2999 struct btrfs_fs_info *fs_info = root->fs_info;
3000 struct extent_buffer *c;
3001 struct extent_buffer *split;
3002 struct btrfs_disk_key disk_key;
3003 int mid;
3004 int ret;
3005 u32 c_nritems;
3006
3007 c = path->nodes[level];
3008 WARN_ON(btrfs_header_generation(c) != trans->transid);
3009 if (c == root->node) {
3010 /*
3011 * trying to split the root, lets make a new one
3012 *
3013 * tree mod log: We don't log_removal old root in
3014 * insert_new_root, because that root buffer will be kept as a
3015 * normal node. We are going to log removal of half of the
3016 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3017 * holding a tree lock on the buffer, which is why we cannot
3018 * race with other tree_mod_log users.
3019 */
3020 ret = insert_new_root(trans, root, path, level + 1);
3021 if (ret)
3022 return ret;
3023 } else {
3024 ret = push_nodes_for_insert(trans, root, path, level);
3025 c = path->nodes[level];
3026 if (!ret && btrfs_header_nritems(c) <
3027 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3028 return 0;
3029 if (ret < 0)
3030 return ret;
3031 }
3032
3033 c_nritems = btrfs_header_nritems(c);
3034 mid = (c_nritems + 1) / 2;
3035 btrfs_node_key(c, &disk_key, mid);
3036
3037 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3038 &disk_key, level, c->start, 0,
3039 0, BTRFS_NESTING_SPLIT);
3040 if (IS_ERR(split))
3041 return PTR_ERR(split);
3042
3043 root_add_used_bytes(root);
3044 ASSERT(btrfs_header_level(c) == level);
3045
3046 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3047 if (ret) {
3048 btrfs_tree_unlock(split);
3049 free_extent_buffer(split);
3050 btrfs_abort_transaction(trans, ret);
3051 return ret;
3052 }
3053 copy_extent_buffer(split, c,
3054 btrfs_node_key_ptr_offset(split, 0),
3055 btrfs_node_key_ptr_offset(c, mid),
3056 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3057 btrfs_set_header_nritems(split, c_nritems - mid);
3058 btrfs_set_header_nritems(c, mid);
3059
3060 btrfs_mark_buffer_dirty(trans, c);
3061 btrfs_mark_buffer_dirty(trans, split);
3062
3063 ret = insert_ptr(trans, path, &disk_key, split->start,
3064 path->slots[level + 1] + 1, level + 1);
3065 if (ret < 0) {
3066 btrfs_tree_unlock(split);
3067 free_extent_buffer(split);
3068 return ret;
3069 }
3070
3071 if (path->slots[level] >= mid) {
3072 path->slots[level] -= mid;
3073 btrfs_tree_unlock(c);
3074 free_extent_buffer(c);
3075 path->nodes[level] = split;
3076 path->slots[level + 1] += 1;
3077 } else {
3078 btrfs_tree_unlock(split);
3079 free_extent_buffer(split);
3080 }
3081 return 0;
3082 }
3083
3084 /*
3085 * how many bytes are required to store the items in a leaf. start
3086 * and nr indicate which items in the leaf to check. This totals up the
3087 * space used both by the item structs and the item data
3088 */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3089 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3090 {
3091 int data_len;
3092 int nritems = btrfs_header_nritems(l);
3093 int end = min(nritems, start + nr) - 1;
3094
3095 if (!nr)
3096 return 0;
3097 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3098 data_len = data_len - btrfs_item_offset(l, end);
3099 data_len += sizeof(struct btrfs_item) * nr;
3100 WARN_ON(data_len < 0);
3101 return data_len;
3102 }
3103
3104 /*
3105 * The space between the end of the leaf items and
3106 * the start of the leaf data. IOW, how much room
3107 * the leaf has left for both items and data
3108 */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3109 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3110 {
3111 struct btrfs_fs_info *fs_info = leaf->fs_info;
3112 int nritems = btrfs_header_nritems(leaf);
3113 int ret;
3114
3115 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3116 if (ret < 0) {
3117 btrfs_crit(fs_info,
3118 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3119 ret,
3120 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3121 leaf_space_used(leaf, 0, nritems), nritems);
3122 }
3123 return ret;
3124 }
3125
3126 /*
3127 * min slot controls the lowest index we're willing to push to the
3128 * right. We'll push up to and including min_slot, but no lower
3129 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3130 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3131 struct btrfs_path *path,
3132 int data_size, int empty,
3133 struct extent_buffer *right,
3134 int free_space, u32 left_nritems,
3135 u32 min_slot)
3136 {
3137 struct btrfs_fs_info *fs_info = right->fs_info;
3138 struct extent_buffer *left = path->nodes[0];
3139 struct extent_buffer *upper = path->nodes[1];
3140 struct btrfs_map_token token;
3141 struct btrfs_disk_key disk_key;
3142 int slot;
3143 u32 i;
3144 int push_space = 0;
3145 int push_items = 0;
3146 u32 nr;
3147 u32 right_nritems;
3148 u32 data_end;
3149 u32 this_item_size;
3150
3151 if (empty)
3152 nr = 0;
3153 else
3154 nr = max_t(u32, 1, min_slot);
3155
3156 if (path->slots[0] >= left_nritems)
3157 push_space += data_size;
3158
3159 slot = path->slots[1];
3160 i = left_nritems - 1;
3161 while (i >= nr) {
3162 if (!empty && push_items > 0) {
3163 if (path->slots[0] > i)
3164 break;
3165 if (path->slots[0] == i) {
3166 int space = btrfs_leaf_free_space(left);
3167
3168 if (space + push_space * 2 > free_space)
3169 break;
3170 }
3171 }
3172
3173 if (path->slots[0] == i)
3174 push_space += data_size;
3175
3176 this_item_size = btrfs_item_size(left, i);
3177 if (this_item_size + sizeof(struct btrfs_item) +
3178 push_space > free_space)
3179 break;
3180
3181 push_items++;
3182 push_space += this_item_size + sizeof(struct btrfs_item);
3183 if (i == 0)
3184 break;
3185 i--;
3186 }
3187
3188 if (push_items == 0)
3189 goto out_unlock;
3190
3191 WARN_ON(!empty && push_items == left_nritems);
3192
3193 /* push left to right */
3194 right_nritems = btrfs_header_nritems(right);
3195
3196 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3197 push_space -= leaf_data_end(left);
3198
3199 /* make room in the right data area */
3200 data_end = leaf_data_end(right);
3201 memmove_leaf_data(right, data_end - push_space, data_end,
3202 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3203
3204 /* copy from the left data area */
3205 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3206 leaf_data_end(left), push_space);
3207
3208 memmove_leaf_items(right, push_items, 0, right_nritems);
3209
3210 /* copy the items from left to right */
3211 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3212
3213 /* update the item pointers */
3214 btrfs_init_map_token(&token, right);
3215 right_nritems += push_items;
3216 btrfs_set_header_nritems(right, right_nritems);
3217 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3218 for (i = 0; i < right_nritems; i++) {
3219 push_space -= btrfs_token_item_size(&token, i);
3220 btrfs_set_token_item_offset(&token, i, push_space);
3221 }
3222
3223 left_nritems -= push_items;
3224 btrfs_set_header_nritems(left, left_nritems);
3225
3226 if (left_nritems)
3227 btrfs_mark_buffer_dirty(trans, left);
3228 else
3229 btrfs_clear_buffer_dirty(trans, left);
3230
3231 btrfs_mark_buffer_dirty(trans, right);
3232
3233 btrfs_item_key(right, &disk_key, 0);
3234 btrfs_set_node_key(upper, &disk_key, slot + 1);
3235 btrfs_mark_buffer_dirty(trans, upper);
3236
3237 /* then fixup the leaf pointer in the path */
3238 if (path->slots[0] >= left_nritems) {
3239 path->slots[0] -= left_nritems;
3240 if (btrfs_header_nritems(path->nodes[0]) == 0)
3241 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3242 btrfs_tree_unlock(path->nodes[0]);
3243 free_extent_buffer(path->nodes[0]);
3244 path->nodes[0] = right;
3245 path->slots[1] += 1;
3246 } else {
3247 btrfs_tree_unlock(right);
3248 free_extent_buffer(right);
3249 }
3250 return 0;
3251
3252 out_unlock:
3253 btrfs_tree_unlock(right);
3254 free_extent_buffer(right);
3255 return 1;
3256 }
3257
3258 /*
3259 * push some data in the path leaf to the right, trying to free up at
3260 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3261 *
3262 * returns 1 if the push failed because the other node didn't have enough
3263 * room, 0 if everything worked out and < 0 if there were major errors.
3264 *
3265 * this will push starting from min_slot to the end of the leaf. It won't
3266 * push any slot lower than min_slot
3267 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3268 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3269 *root, struct btrfs_path *path,
3270 int min_data_size, int data_size,
3271 int empty, u32 min_slot)
3272 {
3273 struct extent_buffer *left = path->nodes[0];
3274 struct extent_buffer *right;
3275 struct extent_buffer *upper;
3276 int slot;
3277 int free_space;
3278 u32 left_nritems;
3279 int ret;
3280
3281 if (!path->nodes[1])
3282 return 1;
3283
3284 slot = path->slots[1];
3285 upper = path->nodes[1];
3286 if (slot >= btrfs_header_nritems(upper) - 1)
3287 return 1;
3288
3289 btrfs_assert_tree_write_locked(path->nodes[1]);
3290
3291 right = btrfs_read_node_slot(upper, slot + 1);
3292 if (IS_ERR(right))
3293 return PTR_ERR(right);
3294
3295 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3296
3297 free_space = btrfs_leaf_free_space(right);
3298 if (free_space < data_size)
3299 goto out_unlock;
3300
3301 ret = btrfs_cow_block(trans, root, right, upper,
3302 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3303 if (ret)
3304 goto out_unlock;
3305
3306 left_nritems = btrfs_header_nritems(left);
3307 if (left_nritems == 0)
3308 goto out_unlock;
3309
3310 if (check_sibling_keys(left, right)) {
3311 ret = -EUCLEAN;
3312 btrfs_abort_transaction(trans, ret);
3313 btrfs_tree_unlock(right);
3314 free_extent_buffer(right);
3315 return ret;
3316 }
3317 if (path->slots[0] == left_nritems && !empty) {
3318 /* Key greater than all keys in the leaf, right neighbor has
3319 * enough room for it and we're not emptying our leaf to delete
3320 * it, therefore use right neighbor to insert the new item and
3321 * no need to touch/dirty our left leaf. */
3322 btrfs_tree_unlock(left);
3323 free_extent_buffer(left);
3324 path->nodes[0] = right;
3325 path->slots[0] = 0;
3326 path->slots[1]++;
3327 return 0;
3328 }
3329
3330 return __push_leaf_right(trans, path, min_data_size, empty, right,
3331 free_space, left_nritems, min_slot);
3332 out_unlock:
3333 btrfs_tree_unlock(right);
3334 free_extent_buffer(right);
3335 return 1;
3336 }
3337
3338 /*
3339 * push some data in the path leaf to the left, trying to free up at
3340 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3341 *
3342 * max_slot can put a limit on how far into the leaf we'll push items. The
3343 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3344 * items
3345 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3346 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3347 struct btrfs_path *path, int data_size,
3348 int empty, struct extent_buffer *left,
3349 int free_space, u32 right_nritems,
3350 u32 max_slot)
3351 {
3352 struct btrfs_fs_info *fs_info = left->fs_info;
3353 struct btrfs_disk_key disk_key;
3354 struct extent_buffer *right = path->nodes[0];
3355 int i;
3356 int push_space = 0;
3357 int push_items = 0;
3358 u32 old_left_nritems;
3359 u32 nr;
3360 int ret = 0;
3361 u32 this_item_size;
3362 u32 old_left_item_size;
3363 struct btrfs_map_token token;
3364
3365 if (empty)
3366 nr = min(right_nritems, max_slot);
3367 else
3368 nr = min(right_nritems - 1, max_slot);
3369
3370 for (i = 0; i < nr; i++) {
3371 if (!empty && push_items > 0) {
3372 if (path->slots[0] < i)
3373 break;
3374 if (path->slots[0] == i) {
3375 int space = btrfs_leaf_free_space(right);
3376
3377 if (space + push_space * 2 > free_space)
3378 break;
3379 }
3380 }
3381
3382 if (path->slots[0] == i)
3383 push_space += data_size;
3384
3385 this_item_size = btrfs_item_size(right, i);
3386 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3387 free_space)
3388 break;
3389
3390 push_items++;
3391 push_space += this_item_size + sizeof(struct btrfs_item);
3392 }
3393
3394 if (push_items == 0) {
3395 ret = 1;
3396 goto out;
3397 }
3398 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3399
3400 /* push data from right to left */
3401 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3402
3403 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3404 btrfs_item_offset(right, push_items - 1);
3405
3406 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3407 btrfs_item_offset(right, push_items - 1), push_space);
3408 old_left_nritems = btrfs_header_nritems(left);
3409 BUG_ON(old_left_nritems <= 0);
3410
3411 btrfs_init_map_token(&token, left);
3412 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3413 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3414 u32 ioff;
3415
3416 ioff = btrfs_token_item_offset(&token, i);
3417 btrfs_set_token_item_offset(&token, i,
3418 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3419 }
3420 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3421
3422 /* fixup right node */
3423 if (push_items > right_nritems)
3424 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3425 right_nritems);
3426
3427 if (push_items < right_nritems) {
3428 push_space = btrfs_item_offset(right, push_items - 1) -
3429 leaf_data_end(right);
3430 memmove_leaf_data(right,
3431 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3432 leaf_data_end(right), push_space);
3433
3434 memmove_leaf_items(right, 0, push_items,
3435 btrfs_header_nritems(right) - push_items);
3436 }
3437
3438 btrfs_init_map_token(&token, right);
3439 right_nritems -= push_items;
3440 btrfs_set_header_nritems(right, right_nritems);
3441 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3442 for (i = 0; i < right_nritems; i++) {
3443 push_space = push_space - btrfs_token_item_size(&token, i);
3444 btrfs_set_token_item_offset(&token, i, push_space);
3445 }
3446
3447 btrfs_mark_buffer_dirty(trans, left);
3448 if (right_nritems)
3449 btrfs_mark_buffer_dirty(trans, right);
3450 else
3451 btrfs_clear_buffer_dirty(trans, right);
3452
3453 btrfs_item_key(right, &disk_key, 0);
3454 fixup_low_keys(trans, path, &disk_key, 1);
3455
3456 /* then fixup the leaf pointer in the path */
3457 if (path->slots[0] < push_items) {
3458 path->slots[0] += old_left_nritems;
3459 btrfs_tree_unlock(path->nodes[0]);
3460 free_extent_buffer(path->nodes[0]);
3461 path->nodes[0] = left;
3462 path->slots[1] -= 1;
3463 } else {
3464 btrfs_tree_unlock(left);
3465 free_extent_buffer(left);
3466 path->slots[0] -= push_items;
3467 }
3468 BUG_ON(path->slots[0] < 0);
3469 return ret;
3470 out:
3471 btrfs_tree_unlock(left);
3472 free_extent_buffer(left);
3473 return ret;
3474 }
3475
3476 /*
3477 * push some data in the path leaf to the left, trying to free up at
3478 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3479 *
3480 * max_slot can put a limit on how far into the leaf we'll push items. The
3481 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3482 * items
3483 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3484 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3485 *root, struct btrfs_path *path, int min_data_size,
3486 int data_size, int empty, u32 max_slot)
3487 {
3488 struct extent_buffer *right = path->nodes[0];
3489 struct extent_buffer *left;
3490 int slot;
3491 int free_space;
3492 u32 right_nritems;
3493 int ret = 0;
3494
3495 slot = path->slots[1];
3496 if (slot == 0)
3497 return 1;
3498 if (!path->nodes[1])
3499 return 1;
3500
3501 right_nritems = btrfs_header_nritems(right);
3502 if (right_nritems == 0)
3503 return 1;
3504
3505 btrfs_assert_tree_write_locked(path->nodes[1]);
3506
3507 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3508 if (IS_ERR(left))
3509 return PTR_ERR(left);
3510
3511 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3512
3513 free_space = btrfs_leaf_free_space(left);
3514 if (free_space < data_size) {
3515 ret = 1;
3516 goto out;
3517 }
3518
3519 ret = btrfs_cow_block(trans, root, left,
3520 path->nodes[1], slot - 1, &left,
3521 BTRFS_NESTING_LEFT_COW);
3522 if (ret) {
3523 /* we hit -ENOSPC, but it isn't fatal here */
3524 if (ret == -ENOSPC)
3525 ret = 1;
3526 goto out;
3527 }
3528
3529 if (check_sibling_keys(left, right)) {
3530 ret = -EUCLEAN;
3531 btrfs_abort_transaction(trans, ret);
3532 goto out;
3533 }
3534 return __push_leaf_left(trans, path, min_data_size, empty, left,
3535 free_space, right_nritems, max_slot);
3536 out:
3537 btrfs_tree_unlock(left);
3538 free_extent_buffer(left);
3539 return ret;
3540 }
3541
3542 /*
3543 * split the path's leaf in two, making sure there is at least data_size
3544 * available for the resulting leaf level of the path.
3545 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3546 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3547 struct btrfs_path *path,
3548 struct extent_buffer *l,
3549 struct extent_buffer *right,
3550 int slot, int mid, int nritems)
3551 {
3552 struct btrfs_fs_info *fs_info = trans->fs_info;
3553 int data_copy_size;
3554 int rt_data_off;
3555 int i;
3556 int ret;
3557 struct btrfs_disk_key disk_key;
3558 struct btrfs_map_token token;
3559
3560 nritems = nritems - mid;
3561 btrfs_set_header_nritems(right, nritems);
3562 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3563
3564 copy_leaf_items(right, l, 0, mid, nritems);
3565
3566 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3567 leaf_data_end(l), data_copy_size);
3568
3569 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3570
3571 btrfs_init_map_token(&token, right);
3572 for (i = 0; i < nritems; i++) {
3573 u32 ioff;
3574
3575 ioff = btrfs_token_item_offset(&token, i);
3576 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3577 }
3578
3579 btrfs_set_header_nritems(l, mid);
3580 btrfs_item_key(right, &disk_key, 0);
3581 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3582 if (ret < 0)
3583 return ret;
3584
3585 btrfs_mark_buffer_dirty(trans, right);
3586 btrfs_mark_buffer_dirty(trans, l);
3587 BUG_ON(path->slots[0] != slot);
3588
3589 if (mid <= slot) {
3590 btrfs_tree_unlock(path->nodes[0]);
3591 free_extent_buffer(path->nodes[0]);
3592 path->nodes[0] = right;
3593 path->slots[0] -= mid;
3594 path->slots[1] += 1;
3595 } else {
3596 btrfs_tree_unlock(right);
3597 free_extent_buffer(right);
3598 }
3599
3600 BUG_ON(path->slots[0] < 0);
3601
3602 return 0;
3603 }
3604
3605 /*
3606 * double splits happen when we need to insert a big item in the middle
3607 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3608 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3609 * A B C
3610 *
3611 * We avoid this by trying to push the items on either side of our target
3612 * into the adjacent leaves. If all goes well we can avoid the double split
3613 * completely.
3614 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3615 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3616 struct btrfs_root *root,
3617 struct btrfs_path *path,
3618 int data_size)
3619 {
3620 int ret;
3621 int progress = 0;
3622 int slot;
3623 u32 nritems;
3624 int space_needed = data_size;
3625
3626 slot = path->slots[0];
3627 if (slot < btrfs_header_nritems(path->nodes[0]))
3628 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3629
3630 /*
3631 * try to push all the items after our slot into the
3632 * right leaf
3633 */
3634 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3635 if (ret < 0)
3636 return ret;
3637
3638 if (ret == 0)
3639 progress++;
3640
3641 nritems = btrfs_header_nritems(path->nodes[0]);
3642 /*
3643 * our goal is to get our slot at the start or end of a leaf. If
3644 * we've done so we're done
3645 */
3646 if (path->slots[0] == 0 || path->slots[0] == nritems)
3647 return 0;
3648
3649 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3650 return 0;
3651
3652 /* try to push all the items before our slot into the next leaf */
3653 slot = path->slots[0];
3654 space_needed = data_size;
3655 if (slot > 0)
3656 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3657 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3658 if (ret < 0)
3659 return ret;
3660
3661 if (ret == 0)
3662 progress++;
3663
3664 if (progress)
3665 return 0;
3666 return 1;
3667 }
3668
3669 /*
3670 * split the path's leaf in two, making sure there is at least data_size
3671 * available for the resulting leaf level of the path.
3672 *
3673 * returns 0 if all went well and < 0 on failure.
3674 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3675 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3676 struct btrfs_root *root,
3677 const struct btrfs_key *ins_key,
3678 struct btrfs_path *path, int data_size,
3679 int extend)
3680 {
3681 struct btrfs_disk_key disk_key;
3682 struct extent_buffer *l;
3683 u32 nritems;
3684 int mid;
3685 int slot;
3686 struct extent_buffer *right;
3687 struct btrfs_fs_info *fs_info = root->fs_info;
3688 int ret = 0;
3689 int wret;
3690 int split;
3691 int num_doubles = 0;
3692 int tried_avoid_double = 0;
3693
3694 l = path->nodes[0];
3695 slot = path->slots[0];
3696 if (extend && data_size + btrfs_item_size(l, slot) +
3697 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3698 return -EOVERFLOW;
3699
3700 /* first try to make some room by pushing left and right */
3701 if (data_size && path->nodes[1]) {
3702 int space_needed = data_size;
3703
3704 if (slot < btrfs_header_nritems(l))
3705 space_needed -= btrfs_leaf_free_space(l);
3706
3707 wret = push_leaf_right(trans, root, path, space_needed,
3708 space_needed, 0, 0);
3709 if (wret < 0)
3710 return wret;
3711 if (wret) {
3712 space_needed = data_size;
3713 if (slot > 0)
3714 space_needed -= btrfs_leaf_free_space(l);
3715 wret = push_leaf_left(trans, root, path, space_needed,
3716 space_needed, 0, (u32)-1);
3717 if (wret < 0)
3718 return wret;
3719 }
3720 l = path->nodes[0];
3721
3722 /* did the pushes work? */
3723 if (btrfs_leaf_free_space(l) >= data_size)
3724 return 0;
3725 }
3726
3727 if (!path->nodes[1]) {
3728 ret = insert_new_root(trans, root, path, 1);
3729 if (ret)
3730 return ret;
3731 }
3732 again:
3733 split = 1;
3734 l = path->nodes[0];
3735 slot = path->slots[0];
3736 nritems = btrfs_header_nritems(l);
3737 mid = (nritems + 1) / 2;
3738
3739 if (mid <= slot) {
3740 if (nritems == 1 ||
3741 leaf_space_used(l, mid, nritems - mid) + data_size >
3742 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3743 if (slot >= nritems) {
3744 split = 0;
3745 } else {
3746 mid = slot;
3747 if (mid != nritems &&
3748 leaf_space_used(l, mid, nritems - mid) +
3749 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3750 if (data_size && !tried_avoid_double)
3751 goto push_for_double;
3752 split = 2;
3753 }
3754 }
3755 }
3756 } else {
3757 if (leaf_space_used(l, 0, mid) + data_size >
3758 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3759 if (!extend && data_size && slot == 0) {
3760 split = 0;
3761 } else if ((extend || !data_size) && slot == 0) {
3762 mid = 1;
3763 } else {
3764 mid = slot;
3765 if (mid != nritems &&
3766 leaf_space_used(l, mid, nritems - mid) +
3767 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3768 if (data_size && !tried_avoid_double)
3769 goto push_for_double;
3770 split = 2;
3771 }
3772 }
3773 }
3774 }
3775
3776 if (split == 0)
3777 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3778 else
3779 btrfs_item_key(l, &disk_key, mid);
3780
3781 /*
3782 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3783 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3784 * subclasses, which is 8 at the time of this patch, and we've maxed it
3785 * out. In the future we could add a
3786 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3787 * use BTRFS_NESTING_NEW_ROOT.
3788 */
3789 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3790 &disk_key, 0, l->start, 0, 0,
3791 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3792 BTRFS_NESTING_SPLIT);
3793 if (IS_ERR(right))
3794 return PTR_ERR(right);
3795
3796 root_add_used_bytes(root);
3797
3798 if (split == 0) {
3799 if (mid <= slot) {
3800 btrfs_set_header_nritems(right, 0);
3801 ret = insert_ptr(trans, path, &disk_key,
3802 right->start, path->slots[1] + 1, 1);
3803 if (ret < 0) {
3804 btrfs_tree_unlock(right);
3805 free_extent_buffer(right);
3806 return ret;
3807 }
3808 btrfs_tree_unlock(path->nodes[0]);
3809 free_extent_buffer(path->nodes[0]);
3810 path->nodes[0] = right;
3811 path->slots[0] = 0;
3812 path->slots[1] += 1;
3813 } else {
3814 btrfs_set_header_nritems(right, 0);
3815 ret = insert_ptr(trans, path, &disk_key,
3816 right->start, path->slots[1], 1);
3817 if (ret < 0) {
3818 btrfs_tree_unlock(right);
3819 free_extent_buffer(right);
3820 return ret;
3821 }
3822 btrfs_tree_unlock(path->nodes[0]);
3823 free_extent_buffer(path->nodes[0]);
3824 path->nodes[0] = right;
3825 path->slots[0] = 0;
3826 if (path->slots[1] == 0)
3827 fixup_low_keys(trans, path, &disk_key, 1);
3828 }
3829 /*
3830 * We create a new leaf 'right' for the required ins_len and
3831 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3832 * the content of ins_len to 'right'.
3833 */
3834 return ret;
3835 }
3836
3837 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3838 if (ret < 0) {
3839 btrfs_tree_unlock(right);
3840 free_extent_buffer(right);
3841 return ret;
3842 }
3843
3844 if (split == 2) {
3845 BUG_ON(num_doubles != 0);
3846 num_doubles++;
3847 goto again;
3848 }
3849
3850 return 0;
3851
3852 push_for_double:
3853 push_for_double_split(trans, root, path, data_size);
3854 tried_avoid_double = 1;
3855 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3856 return 0;
3857 goto again;
3858 }
3859
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3860 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3861 struct btrfs_root *root,
3862 struct btrfs_path *path, int ins_len)
3863 {
3864 struct btrfs_key key;
3865 struct extent_buffer *leaf;
3866 struct btrfs_file_extent_item *fi;
3867 u64 extent_len = 0;
3868 u32 item_size;
3869 int ret;
3870
3871 leaf = path->nodes[0];
3872 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3873
3874 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3875 key.type != BTRFS_EXTENT_CSUM_KEY);
3876
3877 if (btrfs_leaf_free_space(leaf) >= ins_len)
3878 return 0;
3879
3880 item_size = btrfs_item_size(leaf, path->slots[0]);
3881 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3882 fi = btrfs_item_ptr(leaf, path->slots[0],
3883 struct btrfs_file_extent_item);
3884 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3885 }
3886 btrfs_release_path(path);
3887
3888 path->keep_locks = 1;
3889 path->search_for_split = 1;
3890 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3891 path->search_for_split = 0;
3892 if (ret > 0)
3893 ret = -EAGAIN;
3894 if (ret < 0)
3895 goto err;
3896
3897 ret = -EAGAIN;
3898 leaf = path->nodes[0];
3899 /* if our item isn't there, return now */
3900 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3901 goto err;
3902
3903 /* the leaf has changed, it now has room. return now */
3904 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3905 goto err;
3906
3907 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3908 fi = btrfs_item_ptr(leaf, path->slots[0],
3909 struct btrfs_file_extent_item);
3910 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3911 goto err;
3912 }
3913
3914 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3915 if (ret)
3916 goto err;
3917
3918 path->keep_locks = 0;
3919 btrfs_unlock_up_safe(path, 1);
3920 return 0;
3921 err:
3922 path->keep_locks = 0;
3923 return ret;
3924 }
3925
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3926 static noinline int split_item(struct btrfs_trans_handle *trans,
3927 struct btrfs_path *path,
3928 const struct btrfs_key *new_key,
3929 unsigned long split_offset)
3930 {
3931 struct extent_buffer *leaf;
3932 int orig_slot, slot;
3933 char *buf;
3934 u32 nritems;
3935 u32 item_size;
3936 u32 orig_offset;
3937 struct btrfs_disk_key disk_key;
3938
3939 leaf = path->nodes[0];
3940 /*
3941 * Shouldn't happen because the caller must have previously called
3942 * setup_leaf_for_split() to make room for the new item in the leaf.
3943 */
3944 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3945 return -ENOSPC;
3946
3947 orig_slot = path->slots[0];
3948 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3949 item_size = btrfs_item_size(leaf, path->slots[0]);
3950
3951 buf = kmalloc(item_size, GFP_NOFS);
3952 if (!buf)
3953 return -ENOMEM;
3954
3955 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3956 path->slots[0]), item_size);
3957
3958 slot = path->slots[0] + 1;
3959 nritems = btrfs_header_nritems(leaf);
3960 if (slot != nritems) {
3961 /* shift the items */
3962 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3963 }
3964
3965 btrfs_cpu_key_to_disk(&disk_key, new_key);
3966 btrfs_set_item_key(leaf, &disk_key, slot);
3967
3968 btrfs_set_item_offset(leaf, slot, orig_offset);
3969 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3970
3971 btrfs_set_item_offset(leaf, orig_slot,
3972 orig_offset + item_size - split_offset);
3973 btrfs_set_item_size(leaf, orig_slot, split_offset);
3974
3975 btrfs_set_header_nritems(leaf, nritems + 1);
3976
3977 /* write the data for the start of the original item */
3978 write_extent_buffer(leaf, buf,
3979 btrfs_item_ptr_offset(leaf, path->slots[0]),
3980 split_offset);
3981
3982 /* write the data for the new item */
3983 write_extent_buffer(leaf, buf + split_offset,
3984 btrfs_item_ptr_offset(leaf, slot),
3985 item_size - split_offset);
3986 btrfs_mark_buffer_dirty(trans, leaf);
3987
3988 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3989 kfree(buf);
3990 return 0;
3991 }
3992
3993 /*
3994 * This function splits a single item into two items,
3995 * giving 'new_key' to the new item and splitting the
3996 * old one at split_offset (from the start of the item).
3997 *
3998 * The path may be released by this operation. After
3999 * the split, the path is pointing to the old item. The
4000 * new item is going to be in the same node as the old one.
4001 *
4002 * Note, the item being split must be smaller enough to live alone on
4003 * a tree block with room for one extra struct btrfs_item
4004 *
4005 * This allows us to split the item in place, keeping a lock on the
4006 * leaf the entire time.
4007 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4008 int btrfs_split_item(struct btrfs_trans_handle *trans,
4009 struct btrfs_root *root,
4010 struct btrfs_path *path,
4011 const struct btrfs_key *new_key,
4012 unsigned long split_offset)
4013 {
4014 int ret;
4015 ret = setup_leaf_for_split(trans, root, path,
4016 sizeof(struct btrfs_item));
4017 if (ret)
4018 return ret;
4019
4020 ret = split_item(trans, path, new_key, split_offset);
4021 return ret;
4022 }
4023
4024 /*
4025 * make the item pointed to by the path smaller. new_size indicates
4026 * how small to make it, and from_end tells us if we just chop bytes
4027 * off the end of the item or if we shift the item to chop bytes off
4028 * the front.
4029 */
btrfs_truncate_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 new_size,int from_end)4030 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4031 const struct btrfs_path *path, u32 new_size, int from_end)
4032 {
4033 int slot;
4034 struct extent_buffer *leaf;
4035 u32 nritems;
4036 unsigned int data_end;
4037 unsigned int old_data_start;
4038 unsigned int old_size;
4039 unsigned int size_diff;
4040 int i;
4041 struct btrfs_map_token token;
4042
4043 leaf = path->nodes[0];
4044 slot = path->slots[0];
4045
4046 old_size = btrfs_item_size(leaf, slot);
4047 if (old_size == new_size)
4048 return;
4049
4050 nritems = btrfs_header_nritems(leaf);
4051 data_end = leaf_data_end(leaf);
4052
4053 old_data_start = btrfs_item_offset(leaf, slot);
4054
4055 size_diff = old_size - new_size;
4056
4057 BUG_ON(slot < 0);
4058 BUG_ON(slot >= nritems);
4059
4060 /*
4061 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4062 */
4063 /* first correct the data pointers */
4064 btrfs_init_map_token(&token, leaf);
4065 for (i = slot; i < nritems; i++) {
4066 u32 ioff;
4067
4068 ioff = btrfs_token_item_offset(&token, i);
4069 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4070 }
4071
4072 /* shift the data */
4073 if (from_end) {
4074 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4075 old_data_start + new_size - data_end);
4076 } else {
4077 struct btrfs_disk_key disk_key;
4078 u64 offset;
4079
4080 btrfs_item_key(leaf, &disk_key, slot);
4081
4082 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4083 unsigned long ptr;
4084 struct btrfs_file_extent_item *fi;
4085
4086 fi = btrfs_item_ptr(leaf, slot,
4087 struct btrfs_file_extent_item);
4088 fi = (struct btrfs_file_extent_item *)(
4089 (unsigned long)fi - size_diff);
4090
4091 if (btrfs_file_extent_type(leaf, fi) ==
4092 BTRFS_FILE_EXTENT_INLINE) {
4093 ptr = btrfs_item_ptr_offset(leaf, slot);
4094 memmove_extent_buffer(leaf, ptr,
4095 (unsigned long)fi,
4096 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4097 }
4098 }
4099
4100 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4101 old_data_start - data_end);
4102
4103 offset = btrfs_disk_key_offset(&disk_key);
4104 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4105 btrfs_set_item_key(leaf, &disk_key, slot);
4106 if (slot == 0)
4107 fixup_low_keys(trans, path, &disk_key, 1);
4108 }
4109
4110 btrfs_set_item_size(leaf, slot, new_size);
4111 btrfs_mark_buffer_dirty(trans, leaf);
4112
4113 if (btrfs_leaf_free_space(leaf) < 0) {
4114 btrfs_print_leaf(leaf);
4115 BUG();
4116 }
4117 }
4118
4119 /*
4120 * make the item pointed to by the path bigger, data_size is the added size.
4121 */
btrfs_extend_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 data_size)4122 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4123 const struct btrfs_path *path, u32 data_size)
4124 {
4125 int slot;
4126 struct extent_buffer *leaf;
4127 u32 nritems;
4128 unsigned int data_end;
4129 unsigned int old_data;
4130 unsigned int old_size;
4131 int i;
4132 struct btrfs_map_token token;
4133
4134 leaf = path->nodes[0];
4135
4136 nritems = btrfs_header_nritems(leaf);
4137 data_end = leaf_data_end(leaf);
4138
4139 if (btrfs_leaf_free_space(leaf) < data_size) {
4140 btrfs_print_leaf(leaf);
4141 BUG();
4142 }
4143 slot = path->slots[0];
4144 old_data = btrfs_item_data_end(leaf, slot);
4145
4146 BUG_ON(slot < 0);
4147 if (slot >= nritems) {
4148 btrfs_print_leaf(leaf);
4149 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4150 slot, nritems);
4151 BUG();
4152 }
4153
4154 /*
4155 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4156 */
4157 /* first correct the data pointers */
4158 btrfs_init_map_token(&token, leaf);
4159 for (i = slot; i < nritems; i++) {
4160 u32 ioff;
4161
4162 ioff = btrfs_token_item_offset(&token, i);
4163 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4164 }
4165
4166 /* shift the data */
4167 memmove_leaf_data(leaf, data_end - data_size, data_end,
4168 old_data - data_end);
4169
4170 data_end = old_data;
4171 old_size = btrfs_item_size(leaf, slot);
4172 btrfs_set_item_size(leaf, slot, old_size + data_size);
4173 btrfs_mark_buffer_dirty(trans, leaf);
4174
4175 if (btrfs_leaf_free_space(leaf) < 0) {
4176 btrfs_print_leaf(leaf);
4177 BUG();
4178 }
4179 }
4180
4181 /*
4182 * Make space in the node before inserting one or more items.
4183 *
4184 * @trans: transaction handle
4185 * @root: root we are inserting items to
4186 * @path: points to the leaf/slot where we are going to insert new items
4187 * @batch: information about the batch of items to insert
4188 *
4189 * Main purpose is to save stack depth by doing the bulk of the work in a
4190 * function that doesn't call btrfs_search_slot
4191 */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4192 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4193 struct btrfs_root *root, struct btrfs_path *path,
4194 const struct btrfs_item_batch *batch)
4195 {
4196 struct btrfs_fs_info *fs_info = root->fs_info;
4197 int i;
4198 u32 nritems;
4199 unsigned int data_end;
4200 struct btrfs_disk_key disk_key;
4201 struct extent_buffer *leaf;
4202 int slot;
4203 struct btrfs_map_token token;
4204 u32 total_size;
4205
4206 /*
4207 * Before anything else, update keys in the parent and other ancestors
4208 * if needed, then release the write locks on them, so that other tasks
4209 * can use them while we modify the leaf.
4210 */
4211 if (path->slots[0] == 0) {
4212 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4213 fixup_low_keys(trans, path, &disk_key, 1);
4214 }
4215 btrfs_unlock_up_safe(path, 1);
4216
4217 leaf = path->nodes[0];
4218 slot = path->slots[0];
4219
4220 nritems = btrfs_header_nritems(leaf);
4221 data_end = leaf_data_end(leaf);
4222 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4223
4224 if (btrfs_leaf_free_space(leaf) < total_size) {
4225 btrfs_print_leaf(leaf);
4226 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4227 total_size, btrfs_leaf_free_space(leaf));
4228 BUG();
4229 }
4230
4231 btrfs_init_map_token(&token, leaf);
4232 if (slot != nritems) {
4233 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4234
4235 if (old_data < data_end) {
4236 btrfs_print_leaf(leaf);
4237 btrfs_crit(fs_info,
4238 "item at slot %d with data offset %u beyond data end of leaf %u",
4239 slot, old_data, data_end);
4240 BUG();
4241 }
4242 /*
4243 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4244 */
4245 /* first correct the data pointers */
4246 for (i = slot; i < nritems; i++) {
4247 u32 ioff;
4248
4249 ioff = btrfs_token_item_offset(&token, i);
4250 btrfs_set_token_item_offset(&token, i,
4251 ioff - batch->total_data_size);
4252 }
4253 /* shift the items */
4254 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4255
4256 /* shift the data */
4257 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4258 data_end, old_data - data_end);
4259 data_end = old_data;
4260 }
4261
4262 /* setup the item for the new data */
4263 for (i = 0; i < batch->nr; i++) {
4264 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4265 btrfs_set_item_key(leaf, &disk_key, slot + i);
4266 data_end -= batch->data_sizes[i];
4267 btrfs_set_token_item_offset(&token, slot + i, data_end);
4268 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4269 }
4270
4271 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4272 btrfs_mark_buffer_dirty(trans, leaf);
4273
4274 if (btrfs_leaf_free_space(leaf) < 0) {
4275 btrfs_print_leaf(leaf);
4276 BUG();
4277 }
4278 }
4279
4280 /*
4281 * Insert a new item into a leaf.
4282 *
4283 * @trans: Transaction handle.
4284 * @root: The root of the btree.
4285 * @path: A path pointing to the target leaf and slot.
4286 * @key: The key of the new item.
4287 * @data_size: The size of the data associated with the new key.
4288 */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4289 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4290 struct btrfs_root *root,
4291 struct btrfs_path *path,
4292 const struct btrfs_key *key,
4293 u32 data_size)
4294 {
4295 struct btrfs_item_batch batch;
4296
4297 batch.keys = key;
4298 batch.data_sizes = &data_size;
4299 batch.total_data_size = data_size;
4300 batch.nr = 1;
4301
4302 setup_items_for_insert(trans, root, path, &batch);
4303 }
4304
4305 /*
4306 * Given a key and some data, insert items into the tree.
4307 * This does all the path init required, making room in the tree if needed.
4308 *
4309 * Returns: 0 on success
4310 * -EEXIST if the first key already exists
4311 * < 0 on other errors
4312 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4313 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4314 struct btrfs_root *root,
4315 struct btrfs_path *path,
4316 const struct btrfs_item_batch *batch)
4317 {
4318 int ret = 0;
4319 int slot;
4320 u32 total_size;
4321
4322 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4323 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4324 if (ret == 0)
4325 return -EEXIST;
4326 if (ret < 0)
4327 return ret;
4328
4329 slot = path->slots[0];
4330 BUG_ON(slot < 0);
4331
4332 setup_items_for_insert(trans, root, path, batch);
4333 return 0;
4334 }
4335
4336 /*
4337 * Given a key and some data, insert an item into the tree.
4338 * This does all the path init required, making room in the tree if needed.
4339 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4340 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4341 const struct btrfs_key *cpu_key, void *data,
4342 u32 data_size)
4343 {
4344 int ret = 0;
4345 struct btrfs_path *path;
4346 struct extent_buffer *leaf;
4347 unsigned long ptr;
4348
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
4352 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4353 if (!ret) {
4354 leaf = path->nodes[0];
4355 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4356 write_extent_buffer(leaf, data, ptr, data_size);
4357 btrfs_mark_buffer_dirty(trans, leaf);
4358 }
4359 btrfs_free_path(path);
4360 return ret;
4361 }
4362
4363 /*
4364 * This function duplicates an item, giving 'new_key' to the new item.
4365 * It guarantees both items live in the same tree leaf and the new item is
4366 * contiguous with the original item.
4367 *
4368 * This allows us to split a file extent in place, keeping a lock on the leaf
4369 * the entire time.
4370 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4371 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4372 struct btrfs_root *root,
4373 struct btrfs_path *path,
4374 const struct btrfs_key *new_key)
4375 {
4376 struct extent_buffer *leaf;
4377 int ret;
4378 u32 item_size;
4379
4380 leaf = path->nodes[0];
4381 item_size = btrfs_item_size(leaf, path->slots[0]);
4382 ret = setup_leaf_for_split(trans, root, path,
4383 item_size + sizeof(struct btrfs_item));
4384 if (ret)
4385 return ret;
4386
4387 path->slots[0]++;
4388 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4389 leaf = path->nodes[0];
4390 memcpy_extent_buffer(leaf,
4391 btrfs_item_ptr_offset(leaf, path->slots[0]),
4392 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4393 item_size);
4394 return 0;
4395 }
4396
4397 /*
4398 * delete the pointer from a given node.
4399 *
4400 * the tree should have been previously balanced so the deletion does not
4401 * empty a node.
4402 *
4403 * This is exported for use inside btrfs-progs, don't un-export it.
4404 */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4405 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4406 struct btrfs_path *path, int level, int slot)
4407 {
4408 struct extent_buffer *parent = path->nodes[level];
4409 u32 nritems;
4410 int ret;
4411
4412 nritems = btrfs_header_nritems(parent);
4413 if (slot != nritems - 1) {
4414 if (level) {
4415 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4416 slot + 1, nritems - slot - 1);
4417 if (ret < 0) {
4418 btrfs_abort_transaction(trans, ret);
4419 return ret;
4420 }
4421 }
4422 memmove_extent_buffer(parent,
4423 btrfs_node_key_ptr_offset(parent, slot),
4424 btrfs_node_key_ptr_offset(parent, slot + 1),
4425 sizeof(struct btrfs_key_ptr) *
4426 (nritems - slot - 1));
4427 } else if (level) {
4428 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4429 BTRFS_MOD_LOG_KEY_REMOVE);
4430 if (ret < 0) {
4431 btrfs_abort_transaction(trans, ret);
4432 return ret;
4433 }
4434 }
4435
4436 nritems--;
4437 btrfs_set_header_nritems(parent, nritems);
4438 if (nritems == 0 && parent == root->node) {
4439 BUG_ON(btrfs_header_level(root->node) != 1);
4440 /* just turn the root into a leaf and break */
4441 btrfs_set_header_level(root->node, 0);
4442 } else if (slot == 0) {
4443 struct btrfs_disk_key disk_key;
4444
4445 btrfs_node_key(parent, &disk_key, 0);
4446 fixup_low_keys(trans, path, &disk_key, level + 1);
4447 }
4448 btrfs_mark_buffer_dirty(trans, parent);
4449 return 0;
4450 }
4451
4452 /*
4453 * a helper function to delete the leaf pointed to by path->slots[1] and
4454 * path->nodes[1].
4455 *
4456 * This deletes the pointer in path->nodes[1] and frees the leaf
4457 * block extent. zero is returned if it all worked out, < 0 otherwise.
4458 *
4459 * The path must have already been setup for deleting the leaf, including
4460 * all the proper balancing. path->nodes[1] must be locked.
4461 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4462 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4463 struct btrfs_root *root,
4464 struct btrfs_path *path,
4465 struct extent_buffer *leaf)
4466 {
4467 int ret;
4468
4469 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4470 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4471 if (ret < 0)
4472 return ret;
4473
4474 /*
4475 * btrfs_free_extent is expensive, we want to make sure we
4476 * aren't holding any locks when we call it
4477 */
4478 btrfs_unlock_up_safe(path, 0);
4479
4480 root_sub_used_bytes(root);
4481
4482 atomic_inc(&leaf->refs);
4483 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4484 free_extent_buffer_stale(leaf);
4485 if (ret < 0)
4486 btrfs_abort_transaction(trans, ret);
4487
4488 return ret;
4489 }
4490 /*
4491 * delete the item at the leaf level in path. If that empties
4492 * the leaf, remove it from the tree
4493 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4494 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4495 struct btrfs_path *path, int slot, int nr)
4496 {
4497 struct btrfs_fs_info *fs_info = root->fs_info;
4498 struct extent_buffer *leaf;
4499 int ret = 0;
4500 int wret;
4501 u32 nritems;
4502
4503 leaf = path->nodes[0];
4504 nritems = btrfs_header_nritems(leaf);
4505
4506 if (slot + nr != nritems) {
4507 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4508 const int data_end = leaf_data_end(leaf);
4509 struct btrfs_map_token token;
4510 u32 dsize = 0;
4511 int i;
4512
4513 for (i = 0; i < nr; i++)
4514 dsize += btrfs_item_size(leaf, slot + i);
4515
4516 memmove_leaf_data(leaf, data_end + dsize, data_end,
4517 last_off - data_end);
4518
4519 btrfs_init_map_token(&token, leaf);
4520 for (i = slot + nr; i < nritems; i++) {
4521 u32 ioff;
4522
4523 ioff = btrfs_token_item_offset(&token, i);
4524 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4525 }
4526
4527 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4528 }
4529 btrfs_set_header_nritems(leaf, nritems - nr);
4530 nritems -= nr;
4531
4532 /* delete the leaf if we've emptied it */
4533 if (nritems == 0) {
4534 if (leaf == root->node) {
4535 btrfs_set_header_level(leaf, 0);
4536 } else {
4537 btrfs_clear_buffer_dirty(trans, leaf);
4538 ret = btrfs_del_leaf(trans, root, path, leaf);
4539 if (ret < 0)
4540 return ret;
4541 }
4542 } else {
4543 int used = leaf_space_used(leaf, 0, nritems);
4544 if (slot == 0) {
4545 struct btrfs_disk_key disk_key;
4546
4547 btrfs_item_key(leaf, &disk_key, 0);
4548 fixup_low_keys(trans, path, &disk_key, 1);
4549 }
4550
4551 /*
4552 * Try to delete the leaf if it is mostly empty. We do this by
4553 * trying to move all its items into its left and right neighbours.
4554 * If we can't move all the items, then we don't delete it - it's
4555 * not ideal, but future insertions might fill the leaf with more
4556 * items, or items from other leaves might be moved later into our
4557 * leaf due to deletions on those leaves.
4558 */
4559 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4560 u32 min_push_space;
4561
4562 /* push_leaf_left fixes the path.
4563 * make sure the path still points to our leaf
4564 * for possible call to btrfs_del_ptr below
4565 */
4566 slot = path->slots[1];
4567 atomic_inc(&leaf->refs);
4568 /*
4569 * We want to be able to at least push one item to the
4570 * left neighbour leaf, and that's the first item.
4571 */
4572 min_push_space = sizeof(struct btrfs_item) +
4573 btrfs_item_size(leaf, 0);
4574 wret = push_leaf_left(trans, root, path, 0,
4575 min_push_space, 1, (u32)-1);
4576 if (wret < 0 && wret != -ENOSPC)
4577 ret = wret;
4578
4579 if (path->nodes[0] == leaf &&
4580 btrfs_header_nritems(leaf)) {
4581 /*
4582 * If we were not able to push all items from our
4583 * leaf to its left neighbour, then attempt to
4584 * either push all the remaining items to the
4585 * right neighbour or none. There's no advantage
4586 * in pushing only some items, instead of all, as
4587 * it's pointless to end up with a leaf having
4588 * too few items while the neighbours can be full
4589 * or nearly full.
4590 */
4591 nritems = btrfs_header_nritems(leaf);
4592 min_push_space = leaf_space_used(leaf, 0, nritems);
4593 wret = push_leaf_right(trans, root, path, 0,
4594 min_push_space, 1, 0);
4595 if (wret < 0 && wret != -ENOSPC)
4596 ret = wret;
4597 }
4598
4599 if (btrfs_header_nritems(leaf) == 0) {
4600 path->slots[1] = slot;
4601 ret = btrfs_del_leaf(trans, root, path, leaf);
4602 if (ret < 0)
4603 return ret;
4604 free_extent_buffer(leaf);
4605 ret = 0;
4606 } else {
4607 /* if we're still in the path, make sure
4608 * we're dirty. Otherwise, one of the
4609 * push_leaf functions must have already
4610 * dirtied this buffer
4611 */
4612 if (path->nodes[0] == leaf)
4613 btrfs_mark_buffer_dirty(trans, leaf);
4614 free_extent_buffer(leaf);
4615 }
4616 } else {
4617 btrfs_mark_buffer_dirty(trans, leaf);
4618 }
4619 }
4620 return ret;
4621 }
4622
4623 /*
4624 * A helper function to walk down the tree starting at min_key, and looking
4625 * for nodes or leaves that are have a minimum transaction id.
4626 * This is used by the btree defrag code, and tree logging
4627 *
4628 * This does not cow, but it does stuff the starting key it finds back
4629 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4630 * key and get a writable path.
4631 *
4632 * This honors path->lowest_level to prevent descent past a given level
4633 * of the tree.
4634 *
4635 * min_trans indicates the oldest transaction that you are interested
4636 * in walking through. Any nodes or leaves older than min_trans are
4637 * skipped over (without reading them).
4638 *
4639 * returns zero if something useful was found, < 0 on error and 1 if there
4640 * was nothing in the tree that matched the search criteria.
4641 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4642 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4643 struct btrfs_path *path,
4644 u64 min_trans)
4645 {
4646 struct extent_buffer *cur;
4647 struct btrfs_key found_key;
4648 int slot;
4649 int sret;
4650 u32 nritems;
4651 int level;
4652 int ret = 1;
4653 int keep_locks = path->keep_locks;
4654
4655 ASSERT(!path->nowait);
4656 path->keep_locks = 1;
4657 again:
4658 cur = btrfs_read_lock_root_node(root);
4659 level = btrfs_header_level(cur);
4660 WARN_ON(path->nodes[level]);
4661 path->nodes[level] = cur;
4662 path->locks[level] = BTRFS_READ_LOCK;
4663
4664 if (btrfs_header_generation(cur) < min_trans) {
4665 ret = 1;
4666 goto out;
4667 }
4668 while (1) {
4669 nritems = btrfs_header_nritems(cur);
4670 level = btrfs_header_level(cur);
4671 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4672 if (sret < 0) {
4673 ret = sret;
4674 goto out;
4675 }
4676
4677 /* at the lowest level, we're done, setup the path and exit */
4678 if (level == path->lowest_level) {
4679 if (slot >= nritems)
4680 goto find_next_key;
4681 ret = 0;
4682 path->slots[level] = slot;
4683 btrfs_item_key_to_cpu(cur, &found_key, slot);
4684 goto out;
4685 }
4686 if (sret && slot > 0)
4687 slot--;
4688 /*
4689 * check this node pointer against the min_trans parameters.
4690 * If it is too old, skip to the next one.
4691 */
4692 while (slot < nritems) {
4693 u64 gen;
4694
4695 gen = btrfs_node_ptr_generation(cur, slot);
4696 if (gen < min_trans) {
4697 slot++;
4698 continue;
4699 }
4700 break;
4701 }
4702 find_next_key:
4703 /*
4704 * we didn't find a candidate key in this node, walk forward
4705 * and find another one
4706 */
4707 if (slot >= nritems) {
4708 path->slots[level] = slot;
4709 sret = btrfs_find_next_key(root, path, min_key, level,
4710 min_trans);
4711 if (sret == 0) {
4712 btrfs_release_path(path);
4713 goto again;
4714 } else {
4715 goto out;
4716 }
4717 }
4718 /* save our key for returning back */
4719 btrfs_node_key_to_cpu(cur, &found_key, slot);
4720 path->slots[level] = slot;
4721 if (level == path->lowest_level) {
4722 ret = 0;
4723 goto out;
4724 }
4725 cur = btrfs_read_node_slot(cur, slot);
4726 if (IS_ERR(cur)) {
4727 ret = PTR_ERR(cur);
4728 goto out;
4729 }
4730
4731 btrfs_tree_read_lock(cur);
4732
4733 path->locks[level - 1] = BTRFS_READ_LOCK;
4734 path->nodes[level - 1] = cur;
4735 unlock_up(path, level, 1, 0, NULL);
4736 }
4737 out:
4738 path->keep_locks = keep_locks;
4739 if (ret == 0) {
4740 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4741 memcpy(min_key, &found_key, sizeof(found_key));
4742 }
4743 return ret;
4744 }
4745
4746 /*
4747 * this is similar to btrfs_next_leaf, but does not try to preserve
4748 * and fixup the path. It looks for and returns the next key in the
4749 * tree based on the current path and the min_trans parameters.
4750 *
4751 * 0 is returned if another key is found, < 0 if there are any errors
4752 * and 1 is returned if there are no higher keys in the tree
4753 *
4754 * path->keep_locks should be set to 1 on the search made before
4755 * calling this function.
4756 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4757 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4758 struct btrfs_key *key, int level, u64 min_trans)
4759 {
4760 int slot;
4761 struct extent_buffer *c;
4762
4763 WARN_ON(!path->keep_locks && !path->skip_locking);
4764 while (level < BTRFS_MAX_LEVEL) {
4765 if (!path->nodes[level])
4766 return 1;
4767
4768 slot = path->slots[level] + 1;
4769 c = path->nodes[level];
4770 next:
4771 if (slot >= btrfs_header_nritems(c)) {
4772 int ret;
4773 int orig_lowest;
4774 struct btrfs_key cur_key;
4775 if (level + 1 >= BTRFS_MAX_LEVEL ||
4776 !path->nodes[level + 1])
4777 return 1;
4778
4779 if (path->locks[level + 1] || path->skip_locking) {
4780 level++;
4781 continue;
4782 }
4783
4784 slot = btrfs_header_nritems(c) - 1;
4785 if (level == 0)
4786 btrfs_item_key_to_cpu(c, &cur_key, slot);
4787 else
4788 btrfs_node_key_to_cpu(c, &cur_key, slot);
4789
4790 orig_lowest = path->lowest_level;
4791 btrfs_release_path(path);
4792 path->lowest_level = level;
4793 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4794 0, 0);
4795 path->lowest_level = orig_lowest;
4796 if (ret < 0)
4797 return ret;
4798
4799 c = path->nodes[level];
4800 slot = path->slots[level];
4801 if (ret == 0)
4802 slot++;
4803 goto next;
4804 }
4805
4806 if (level == 0)
4807 btrfs_item_key_to_cpu(c, key, slot);
4808 else {
4809 u64 gen = btrfs_node_ptr_generation(c, slot);
4810
4811 if (gen < min_trans) {
4812 slot++;
4813 goto next;
4814 }
4815 btrfs_node_key_to_cpu(c, key, slot);
4816 }
4817 return 0;
4818 }
4819 return 1;
4820 }
4821
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4822 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4823 u64 time_seq)
4824 {
4825 int slot;
4826 int level;
4827 struct extent_buffer *c;
4828 struct extent_buffer *next;
4829 struct btrfs_fs_info *fs_info = root->fs_info;
4830 struct btrfs_key key;
4831 bool need_commit_sem = false;
4832 u32 nritems;
4833 int ret;
4834 int i;
4835
4836 /*
4837 * The nowait semantics are used only for write paths, where we don't
4838 * use the tree mod log and sequence numbers.
4839 */
4840 if (time_seq)
4841 ASSERT(!path->nowait);
4842
4843 nritems = btrfs_header_nritems(path->nodes[0]);
4844 if (nritems == 0)
4845 return 1;
4846
4847 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4848 again:
4849 level = 1;
4850 next = NULL;
4851 btrfs_release_path(path);
4852
4853 path->keep_locks = 1;
4854
4855 if (time_seq) {
4856 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4857 } else {
4858 if (path->need_commit_sem) {
4859 path->need_commit_sem = 0;
4860 need_commit_sem = true;
4861 if (path->nowait) {
4862 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4863 ret = -EAGAIN;
4864 goto done;
4865 }
4866 } else {
4867 down_read(&fs_info->commit_root_sem);
4868 }
4869 }
4870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4871 }
4872 path->keep_locks = 0;
4873
4874 if (ret < 0)
4875 goto done;
4876
4877 nritems = btrfs_header_nritems(path->nodes[0]);
4878 /*
4879 * by releasing the path above we dropped all our locks. A balance
4880 * could have added more items next to the key that used to be
4881 * at the very end of the block. So, check again here and
4882 * advance the path if there are now more items available.
4883 */
4884 if (nritems > 0 && path->slots[0] < nritems - 1) {
4885 if (ret == 0)
4886 path->slots[0]++;
4887 ret = 0;
4888 goto done;
4889 }
4890 /*
4891 * So the above check misses one case:
4892 * - after releasing the path above, someone has removed the item that
4893 * used to be at the very end of the block, and balance between leafs
4894 * gets another one with bigger key.offset to replace it.
4895 *
4896 * This one should be returned as well, or we can get leaf corruption
4897 * later(esp. in __btrfs_drop_extents()).
4898 *
4899 * And a bit more explanation about this check,
4900 * with ret > 0, the key isn't found, the path points to the slot
4901 * where it should be inserted, so the path->slots[0] item must be the
4902 * bigger one.
4903 */
4904 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4905 ret = 0;
4906 goto done;
4907 }
4908
4909 while (level < BTRFS_MAX_LEVEL) {
4910 if (!path->nodes[level]) {
4911 ret = 1;
4912 goto done;
4913 }
4914
4915 slot = path->slots[level] + 1;
4916 c = path->nodes[level];
4917 if (slot >= btrfs_header_nritems(c)) {
4918 level++;
4919 if (level == BTRFS_MAX_LEVEL) {
4920 ret = 1;
4921 goto done;
4922 }
4923 continue;
4924 }
4925
4926
4927 /*
4928 * Our current level is where we're going to start from, and to
4929 * make sure lockdep doesn't complain we need to drop our locks
4930 * and nodes from 0 to our current level.
4931 */
4932 for (i = 0; i < level; i++) {
4933 if (path->locks[level]) {
4934 btrfs_tree_read_unlock(path->nodes[i]);
4935 path->locks[i] = 0;
4936 }
4937 free_extent_buffer(path->nodes[i]);
4938 path->nodes[i] = NULL;
4939 }
4940
4941 next = c;
4942 ret = read_block_for_search(root, path, &next, level,
4943 slot, &key);
4944 if (ret == -EAGAIN && !path->nowait)
4945 goto again;
4946
4947 if (ret < 0) {
4948 btrfs_release_path(path);
4949 goto done;
4950 }
4951
4952 if (!path->skip_locking) {
4953 ret = btrfs_try_tree_read_lock(next);
4954 if (!ret && path->nowait) {
4955 ret = -EAGAIN;
4956 goto done;
4957 }
4958 if (!ret && time_seq) {
4959 /*
4960 * If we don't get the lock, we may be racing
4961 * with push_leaf_left, holding that lock while
4962 * itself waiting for the leaf we've currently
4963 * locked. To solve this situation, we give up
4964 * on our lock and cycle.
4965 */
4966 free_extent_buffer(next);
4967 btrfs_release_path(path);
4968 cond_resched();
4969 goto again;
4970 }
4971 if (!ret)
4972 btrfs_tree_read_lock(next);
4973 }
4974 break;
4975 }
4976 path->slots[level] = slot;
4977 while (1) {
4978 level--;
4979 path->nodes[level] = next;
4980 path->slots[level] = 0;
4981 if (!path->skip_locking)
4982 path->locks[level] = BTRFS_READ_LOCK;
4983 if (!level)
4984 break;
4985
4986 ret = read_block_for_search(root, path, &next, level,
4987 0, &key);
4988 if (ret == -EAGAIN && !path->nowait)
4989 goto again;
4990
4991 if (ret < 0) {
4992 btrfs_release_path(path);
4993 goto done;
4994 }
4995
4996 if (!path->skip_locking) {
4997 if (path->nowait) {
4998 if (!btrfs_try_tree_read_lock(next)) {
4999 ret = -EAGAIN;
5000 goto done;
5001 }
5002 } else {
5003 btrfs_tree_read_lock(next);
5004 }
5005 }
5006 }
5007 ret = 0;
5008 done:
5009 unlock_up(path, 0, 1, 0, NULL);
5010 if (need_commit_sem) {
5011 int ret2;
5012
5013 path->need_commit_sem = 1;
5014 ret2 = finish_need_commit_sem_search(path);
5015 up_read(&fs_info->commit_root_sem);
5016 if (ret2)
5017 ret = ret2;
5018 }
5019
5020 return ret;
5021 }
5022
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5023 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5024 {
5025 path->slots[0]++;
5026 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5027 return btrfs_next_old_leaf(root, path, time_seq);
5028 return 0;
5029 }
5030
5031 /*
5032 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5033 * searching until it gets past min_objectid or finds an item of 'type'
5034 *
5035 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5036 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5037 int btrfs_previous_item(struct btrfs_root *root,
5038 struct btrfs_path *path, u64 min_objectid,
5039 int type)
5040 {
5041 struct btrfs_key found_key;
5042 struct extent_buffer *leaf;
5043 u32 nritems;
5044 int ret;
5045
5046 while (1) {
5047 if (path->slots[0] == 0) {
5048 ret = btrfs_prev_leaf(root, path);
5049 if (ret != 0)
5050 return ret;
5051 } else {
5052 path->slots[0]--;
5053 }
5054 leaf = path->nodes[0];
5055 nritems = btrfs_header_nritems(leaf);
5056 if (nritems == 0)
5057 return 1;
5058 if (path->slots[0] == nritems)
5059 path->slots[0]--;
5060
5061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5062 if (found_key.objectid < min_objectid)
5063 break;
5064 if (found_key.type == type)
5065 return 0;
5066 if (found_key.objectid == min_objectid &&
5067 found_key.type < type)
5068 break;
5069 }
5070 return 1;
5071 }
5072
5073 /*
5074 * search in extent tree to find a previous Metadata/Data extent item with
5075 * min objecitd.
5076 *
5077 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5078 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5079 int btrfs_previous_extent_item(struct btrfs_root *root,
5080 struct btrfs_path *path, u64 min_objectid)
5081 {
5082 struct btrfs_key found_key;
5083 struct extent_buffer *leaf;
5084 u32 nritems;
5085 int ret;
5086
5087 while (1) {
5088 if (path->slots[0] == 0) {
5089 ret = btrfs_prev_leaf(root, path);
5090 if (ret != 0)
5091 return ret;
5092 } else {
5093 path->slots[0]--;
5094 }
5095 leaf = path->nodes[0];
5096 nritems = btrfs_header_nritems(leaf);
5097 if (nritems == 0)
5098 return 1;
5099 if (path->slots[0] == nritems)
5100 path->slots[0]--;
5101
5102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5103 if (found_key.objectid < min_objectid)
5104 break;
5105 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5106 found_key.type == BTRFS_METADATA_ITEM_KEY)
5107 return 0;
5108 if (found_key.objectid == min_objectid &&
5109 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5110 break;
5111 }
5112 return 1;
5113 }
5114
btrfs_ctree_init(void)5115 int __init btrfs_ctree_init(void)
5116 {
5117 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5118 if (!btrfs_path_cachep)
5119 return -ENOMEM;
5120 return 0;
5121 }
5122
btrfs_ctree_exit(void)5123 void __cold btrfs_ctree_exit(void)
5124 {
5125 kmem_cache_destroy(btrfs_path_cachep);
5126 }
5127