1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /* simple helper to fault in pages and copy.  This should go away
41  * and be replaced with calls into generic code.
42  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 					 struct page **prepared_pages,
45 					 struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int pg = 0;
50 	int offset = offset_in_page(pos);
51 
52 	while (write_bytes > 0) {
53 		size_t count = min_t(size_t,
54 				     PAGE_SIZE - offset, write_bytes);
55 		struct page *page = prepared_pages[pg];
56 		/*
57 		 * Copy data from userspace to the current page
58 		 */
59 		copied = copy_page_from_iter_atomic(page, offset, count, i);
60 
61 		/* Flush processor's dcache for this page */
62 		flush_dcache_page(page);
63 
64 		/*
65 		 * if we get a partial write, we can end up with
66 		 * partially up to date pages.  These add
67 		 * a lot of complexity, so make sure they don't
68 		 * happen by forcing this copy to be retried.
69 		 *
70 		 * The rest of the btrfs_file_write code will fall
71 		 * back to page at a time copies after we return 0.
72 		 */
73 		if (unlikely(copied < count)) {
74 			if (!PageUptodate(page)) {
75 				iov_iter_revert(i, copied);
76 				copied = 0;
77 			}
78 			if (!copied)
79 				break;
80 		}
81 
82 		write_bytes -= copied;
83 		total_copied += copied;
84 		offset += copied;
85 		if (offset == PAGE_SIZE) {
86 			pg++;
87 			offset = 0;
88 		}
89 	}
90 	return total_copied;
91 }
92 
93 /*
94  * unlocks pages after btrfs_file_write is done with them
95  */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 			     struct page **pages, size_t num_pages,
98 			     u64 pos, u64 copied)
99 {
100 	size_t i;
101 	u64 block_start = round_down(pos, fs_info->sectorsize);
102 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103 
104 	ASSERT(block_len <= U32_MAX);
105 	for (i = 0; i < num_pages; i++) {
106 		/* page checked is some magic around finding pages that
107 		 * have been modified without going through btrfs_set_page_dirty
108 		 * clear it here. There should be no need to mark the pages
109 		 * accessed as prepare_pages should have marked them accessed
110 		 * in prepare_pages via find_or_create_page()
111 		 */
112 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 						block_start, block_len);
114 		unlock_page(pages[i]);
115 		put_page(pages[i]);
116 	}
117 }
118 
119 /*
120  * After btrfs_copy_from_user(), update the following things for delalloc:
121  * - Mark newly dirtied pages as DELALLOC in the io tree.
122  *   Used to advise which range is to be written back.
123  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124  * - Update inode size for past EOF write
125  */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 		      size_t num_pages, loff_t pos, size_t write_bytes,
128 		      struct extent_state **cached, bool noreserve)
129 {
130 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
131 	int ret = 0;
132 	int i;
133 	u64 num_bytes;
134 	u64 start_pos;
135 	u64 end_of_last_block;
136 	u64 end_pos = pos + write_bytes;
137 	loff_t isize = i_size_read(&inode->vfs_inode);
138 	unsigned int extra_bits = 0;
139 
140 	if (write_bytes == 0)
141 		return 0;
142 
143 	if (noreserve)
144 		extra_bits |= EXTENT_NORESERVE;
145 
146 	start_pos = round_down(pos, fs_info->sectorsize);
147 	num_bytes = round_up(write_bytes + pos - start_pos,
148 			     fs_info->sectorsize);
149 	ASSERT(num_bytes <= U32_MAX);
150 
151 	end_of_last_block = start_pos + num_bytes - 1;
152 
153 	/*
154 	 * The pages may have already been dirty, clear out old accounting so
155 	 * we can set things up properly
156 	 */
157 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
159 			 cached);
160 
161 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
162 					extra_bits, cached);
163 	if (ret)
164 		return ret;
165 
166 	for (i = 0; i < num_pages; i++) {
167 		struct page *p = pages[i];
168 
169 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 					       start_pos, num_bytes);
171 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 						start_pos, num_bytes);
173 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 					    start_pos, num_bytes);
175 	}
176 
177 	/*
178 	 * we've only changed i_size in ram, and we haven't updated
179 	 * the disk i_size.  There is no need to log the inode
180 	 * at this time.
181 	 */
182 	if (end_pos > isize)
183 		i_size_write(&inode->vfs_inode, end_pos);
184 	return 0;
185 }
186 
187 /*
188  * this is very complex, but the basic idea is to drop all extents
189  * in the range start - end.  hint_block is filled in with a block number
190  * that would be a good hint to the block allocator for this file.
191  *
192  * If an extent intersects the range but is not entirely inside the range
193  * it is either truncated or split.  Anything entirely inside the range
194  * is deleted from the tree.
195  *
196  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197  * to deal with that. We set the field 'bytes_found' of the arguments structure
198  * with the number of allocated bytes found in the target range, so that the
199  * caller can update the inode's number of bytes in an atomic way when
200  * replacing extents in a range to avoid races with stat(2).
201  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 		       struct btrfs_root *root, struct btrfs_inode *inode,
204 		       struct btrfs_drop_extents_args *args)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	struct extent_buffer *leaf;
208 	struct btrfs_file_extent_item *fi;
209 	struct btrfs_key key;
210 	struct btrfs_key new_key;
211 	u64 ino = btrfs_ino(inode);
212 	u64 search_start = args->start;
213 	u64 disk_bytenr = 0;
214 	u64 num_bytes = 0;
215 	u64 extent_offset = 0;
216 	u64 extent_end = 0;
217 	u64 last_end = args->start;
218 	int del_nr = 0;
219 	int del_slot = 0;
220 	int extent_type;
221 	int recow;
222 	int ret;
223 	int modify_tree = -1;
224 	int update_refs;
225 	int found = 0;
226 	struct btrfs_path *path = args->path;
227 
228 	args->bytes_found = 0;
229 	args->extent_inserted = false;
230 
231 	/* Must always have a path if ->replace_extent is true */
232 	ASSERT(!(args->replace_extent && !args->path));
233 
234 	if (!path) {
235 		path = btrfs_alloc_path();
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto out;
239 		}
240 	}
241 
242 	if (args->drop_cache)
243 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 
245 	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
246 		modify_tree = 0;
247 
248 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
249 	while (1) {
250 		recow = 0;
251 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 					       search_start, modify_tree);
253 		if (ret < 0)
254 			break;
255 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 			leaf = path->nodes[0];
257 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 			if (key.objectid == ino &&
259 			    key.type == BTRFS_EXTENT_DATA_KEY)
260 				path->slots[0]--;
261 		}
262 		ret = 0;
263 next_slot:
264 		leaf = path->nodes[0];
265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 			BUG_ON(del_nr > 0);
267 			ret = btrfs_next_leaf(root, path);
268 			if (ret < 0)
269 				break;
270 			if (ret > 0) {
271 				ret = 0;
272 				break;
273 			}
274 			leaf = path->nodes[0];
275 			recow = 1;
276 		}
277 
278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 
280 		if (key.objectid > ino)
281 			break;
282 		if (WARN_ON_ONCE(key.objectid < ino) ||
283 		    key.type < BTRFS_EXTENT_DATA_KEY) {
284 			ASSERT(del_nr == 0);
285 			path->slots[0]++;
286 			goto next_slot;
287 		}
288 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 			break;
290 
291 		fi = btrfs_item_ptr(leaf, path->slots[0],
292 				    struct btrfs_file_extent_item);
293 		extent_type = btrfs_file_extent_type(leaf, fi);
294 
295 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 			extent_offset = btrfs_file_extent_offset(leaf, fi);
300 			extent_end = key.offset +
301 				btrfs_file_extent_num_bytes(leaf, fi);
302 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 			extent_end = key.offset +
304 				btrfs_file_extent_ram_bytes(leaf, fi);
305 		} else {
306 			/* can't happen */
307 			BUG();
308 		}
309 
310 		/*
311 		 * Don't skip extent items representing 0 byte lengths. They
312 		 * used to be created (bug) if while punching holes we hit
313 		 * -ENOSPC condition. So if we find one here, just ensure we
314 		 * delete it, otherwise we would insert a new file extent item
315 		 * with the same key (offset) as that 0 bytes length file
316 		 * extent item in the call to setup_items_for_insert() later
317 		 * in this function.
318 		 */
319 		if (extent_end == key.offset && extent_end >= search_start) {
320 			last_end = extent_end;
321 			goto delete_extent_item;
322 		}
323 
324 		if (extent_end <= search_start) {
325 			path->slots[0]++;
326 			goto next_slot;
327 		}
328 
329 		found = 1;
330 		search_start = max(key.offset, args->start);
331 		if (recow || !modify_tree) {
332 			modify_tree = -1;
333 			btrfs_release_path(path);
334 			continue;
335 		}
336 
337 		/*
338 		 *     | - range to drop - |
339 		 *  | -------- extent -------- |
340 		 */
341 		if (args->start > key.offset && args->end < extent_end) {
342 			BUG_ON(del_nr > 0);
343 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 				ret = -EOPNOTSUPP;
345 				break;
346 			}
347 
348 			memcpy(&new_key, &key, sizeof(new_key));
349 			new_key.offset = args->start;
350 			ret = btrfs_duplicate_item(trans, root, path,
351 						   &new_key);
352 			if (ret == -EAGAIN) {
353 				btrfs_release_path(path);
354 				continue;
355 			}
356 			if (ret < 0)
357 				break;
358 
359 			leaf = path->nodes[0];
360 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 					    struct btrfs_file_extent_item);
362 			btrfs_set_file_extent_num_bytes(leaf, fi,
363 							args->start - key.offset);
364 
365 			fi = btrfs_item_ptr(leaf, path->slots[0],
366 					    struct btrfs_file_extent_item);
367 
368 			extent_offset += args->start - key.offset;
369 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 			btrfs_set_file_extent_num_bytes(leaf, fi,
371 							extent_end - args->start);
372 			btrfs_mark_buffer_dirty(trans, leaf);
373 
374 			if (update_refs && disk_bytenr > 0) {
375 				struct btrfs_ref ref = {
376 					.action = BTRFS_ADD_DELAYED_REF,
377 					.bytenr = disk_bytenr,
378 					.num_bytes = num_bytes,
379 					.parent = 0,
380 					.owning_root = btrfs_root_id(root),
381 					.ref_root = btrfs_root_id(root),
382 				};
383 				btrfs_init_data_ref(&ref, new_key.objectid,
384 						    args->start - extent_offset,
385 						    0, false);
386 				ret = btrfs_inc_extent_ref(trans, &ref);
387 				if (ret) {
388 					btrfs_abort_transaction(trans, ret);
389 					break;
390 				}
391 			}
392 			key.offset = args->start;
393 		}
394 		/*
395 		 * From here on out we will have actually dropped something, so
396 		 * last_end can be updated.
397 		 */
398 		last_end = extent_end;
399 
400 		/*
401 		 *  | ---- range to drop ----- |
402 		 *      | -------- extent -------- |
403 		 */
404 		if (args->start <= key.offset && args->end < extent_end) {
405 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
406 				ret = -EOPNOTSUPP;
407 				break;
408 			}
409 
410 			memcpy(&new_key, &key, sizeof(new_key));
411 			new_key.offset = args->end;
412 			btrfs_set_item_key_safe(trans, path, &new_key);
413 
414 			extent_offset += args->end - key.offset;
415 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 			btrfs_set_file_extent_num_bytes(leaf, fi,
417 							extent_end - args->end);
418 			btrfs_mark_buffer_dirty(trans, leaf);
419 			if (update_refs && disk_bytenr > 0)
420 				args->bytes_found += args->end - key.offset;
421 			break;
422 		}
423 
424 		search_start = extent_end;
425 		/*
426 		 *       | ---- range to drop ----- |
427 		 *  | -------- extent -------- |
428 		 */
429 		if (args->start > key.offset && args->end >= extent_end) {
430 			BUG_ON(del_nr > 0);
431 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
432 				ret = -EOPNOTSUPP;
433 				break;
434 			}
435 
436 			btrfs_set_file_extent_num_bytes(leaf, fi,
437 							args->start - key.offset);
438 			btrfs_mark_buffer_dirty(trans, leaf);
439 			if (update_refs && disk_bytenr > 0)
440 				args->bytes_found += extent_end - args->start;
441 			if (args->end == extent_end)
442 				break;
443 
444 			path->slots[0]++;
445 			goto next_slot;
446 		}
447 
448 		/*
449 		 *  | ---- range to drop ----- |
450 		 *    | ------ extent ------ |
451 		 */
452 		if (args->start <= key.offset && args->end >= extent_end) {
453 delete_extent_item:
454 			if (del_nr == 0) {
455 				del_slot = path->slots[0];
456 				del_nr = 1;
457 			} else {
458 				BUG_ON(del_slot + del_nr != path->slots[0]);
459 				del_nr++;
460 			}
461 
462 			if (update_refs &&
463 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 				args->bytes_found += extent_end - key.offset;
465 				extent_end = ALIGN(extent_end,
466 						   fs_info->sectorsize);
467 			} else if (update_refs && disk_bytenr > 0) {
468 				struct btrfs_ref ref = {
469 					.action = BTRFS_DROP_DELAYED_REF,
470 					.bytenr = disk_bytenr,
471 					.num_bytes = num_bytes,
472 					.parent = 0,
473 					.owning_root = btrfs_root_id(root),
474 					.ref_root = btrfs_root_id(root),
475 				};
476 				btrfs_init_data_ref(&ref, key.objectid,
477 						    key.offset - extent_offset,
478 						    0, false);
479 				ret = btrfs_free_extent(trans, &ref);
480 				if (ret) {
481 					btrfs_abort_transaction(trans, ret);
482 					break;
483 				}
484 				args->bytes_found += extent_end - key.offset;
485 			}
486 
487 			if (args->end == extent_end)
488 				break;
489 
490 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
491 				path->slots[0]++;
492 				goto next_slot;
493 			}
494 
495 			ret = btrfs_del_items(trans, root, path, del_slot,
496 					      del_nr);
497 			if (ret) {
498 				btrfs_abort_transaction(trans, ret);
499 				break;
500 			}
501 
502 			del_nr = 0;
503 			del_slot = 0;
504 
505 			btrfs_release_path(path);
506 			continue;
507 		}
508 
509 		BUG();
510 	}
511 
512 	if (!ret && del_nr > 0) {
513 		/*
514 		 * Set path->slots[0] to first slot, so that after the delete
515 		 * if items are move off from our leaf to its immediate left or
516 		 * right neighbor leafs, we end up with a correct and adjusted
517 		 * path->slots[0] for our insertion (if args->replace_extent).
518 		 */
519 		path->slots[0] = del_slot;
520 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
521 		if (ret)
522 			btrfs_abort_transaction(trans, ret);
523 	}
524 
525 	leaf = path->nodes[0];
526 	/*
527 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 	 * which case it unlocked our path, so check path->locks[0] matches a
529 	 * write lock.
530 	 */
531 	if (!ret && args->replace_extent &&
532 	    path->locks[0] == BTRFS_WRITE_LOCK &&
533 	    btrfs_leaf_free_space(leaf) >=
534 	    sizeof(struct btrfs_item) + args->extent_item_size) {
535 
536 		key.objectid = ino;
537 		key.type = BTRFS_EXTENT_DATA_KEY;
538 		key.offset = args->start;
539 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 			struct btrfs_key slot_key;
541 
542 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
544 				path->slots[0]++;
545 		}
546 		btrfs_setup_item_for_insert(trans, root, path, &key,
547 					    args->extent_item_size);
548 		args->extent_inserted = true;
549 	}
550 
551 	if (!args->path)
552 		btrfs_free_path(path);
553 	else if (!args->extent_inserted)
554 		btrfs_release_path(path);
555 out:
556 	args->drop_end = found ? min(args->end, last_end) : args->end;
557 
558 	return ret;
559 }
560 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 			    u64 objectid, u64 bytenr, u64 orig_offset,
563 			    u64 *start, u64 *end)
564 {
565 	struct btrfs_file_extent_item *fi;
566 	struct btrfs_key key;
567 	u64 extent_end;
568 
569 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
570 		return 0;
571 
572 	btrfs_item_key_to_cpu(leaf, &key, slot);
573 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
574 		return 0;
575 
576 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 	    btrfs_file_extent_compression(leaf, fi) ||
581 	    btrfs_file_extent_encryption(leaf, fi) ||
582 	    btrfs_file_extent_other_encoding(leaf, fi))
583 		return 0;
584 
585 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
587 		return 0;
588 
589 	*start = key.offset;
590 	*end = extent_end;
591 	return 1;
592 }
593 
594 /*
595  * Mark extent in the range start - end as written.
596  *
597  * This changes extent type from 'pre-allocated' to 'regular'. If only
598  * part of extent is marked as written, the extent will be split into
599  * two or three.
600  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 			      struct btrfs_inode *inode, u64 start, u64 end)
603 {
604 	struct btrfs_root *root = inode->root;
605 	struct extent_buffer *leaf;
606 	struct btrfs_path *path;
607 	struct btrfs_file_extent_item *fi;
608 	struct btrfs_ref ref = { 0 };
609 	struct btrfs_key key;
610 	struct btrfs_key new_key;
611 	u64 bytenr;
612 	u64 num_bytes;
613 	u64 extent_end;
614 	u64 orig_offset;
615 	u64 other_start;
616 	u64 other_end;
617 	u64 split;
618 	int del_nr = 0;
619 	int del_slot = 0;
620 	int recow;
621 	int ret = 0;
622 	u64 ino = btrfs_ino(inode);
623 
624 	path = btrfs_alloc_path();
625 	if (!path)
626 		return -ENOMEM;
627 again:
628 	recow = 0;
629 	split = start;
630 	key.objectid = ino;
631 	key.type = BTRFS_EXTENT_DATA_KEY;
632 	key.offset = split;
633 
634 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
635 	if (ret < 0)
636 		goto out;
637 	if (ret > 0 && path->slots[0] > 0)
638 		path->slots[0]--;
639 
640 	leaf = path->nodes[0];
641 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 	if (key.objectid != ino ||
643 	    key.type != BTRFS_EXTENT_DATA_KEY) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	fi = btrfs_item_ptr(leaf, path->slots[0],
649 			    struct btrfs_file_extent_item);
650 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
651 		ret = -EINVAL;
652 		btrfs_abort_transaction(trans, ret);
653 		goto out;
654 	}
655 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 	if (key.offset > start || extent_end < end) {
657 		ret = -EINVAL;
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 	memcpy(&new_key, &key, sizeof(new_key));
666 
667 	if (start == key.offset && end < extent_end) {
668 		other_start = 0;
669 		other_end = start;
670 		if (extent_mergeable(leaf, path->slots[0] - 1,
671 				     ino, bytenr, orig_offset,
672 				     &other_start, &other_end)) {
673 			new_key.offset = end;
674 			btrfs_set_item_key_safe(trans, path, &new_key);
675 			fi = btrfs_item_ptr(leaf, path->slots[0],
676 					    struct btrfs_file_extent_item);
677 			btrfs_set_file_extent_generation(leaf, fi,
678 							 trans->transid);
679 			btrfs_set_file_extent_num_bytes(leaf, fi,
680 							extent_end - end);
681 			btrfs_set_file_extent_offset(leaf, fi,
682 						     end - orig_offset);
683 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 					    struct btrfs_file_extent_item);
685 			btrfs_set_file_extent_generation(leaf, fi,
686 							 trans->transid);
687 			btrfs_set_file_extent_num_bytes(leaf, fi,
688 							end - other_start);
689 			btrfs_mark_buffer_dirty(trans, leaf);
690 			goto out;
691 		}
692 	}
693 
694 	if (start > key.offset && end == extent_end) {
695 		other_start = end;
696 		other_end = 0;
697 		if (extent_mergeable(leaf, path->slots[0] + 1,
698 				     ino, bytenr, orig_offset,
699 				     &other_start, &other_end)) {
700 			fi = btrfs_item_ptr(leaf, path->slots[0],
701 					    struct btrfs_file_extent_item);
702 			btrfs_set_file_extent_num_bytes(leaf, fi,
703 							start - key.offset);
704 			btrfs_set_file_extent_generation(leaf, fi,
705 							 trans->transid);
706 			path->slots[0]++;
707 			new_key.offset = start;
708 			btrfs_set_item_key_safe(trans, path, &new_key);
709 
710 			fi = btrfs_item_ptr(leaf, path->slots[0],
711 					    struct btrfs_file_extent_item);
712 			btrfs_set_file_extent_generation(leaf, fi,
713 							 trans->transid);
714 			btrfs_set_file_extent_num_bytes(leaf, fi,
715 							other_end - start);
716 			btrfs_set_file_extent_offset(leaf, fi,
717 						     start - orig_offset);
718 			btrfs_mark_buffer_dirty(trans, leaf);
719 			goto out;
720 		}
721 	}
722 
723 	while (start > key.offset || end < extent_end) {
724 		if (key.offset == start)
725 			split = end;
726 
727 		new_key.offset = split;
728 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 		if (ret == -EAGAIN) {
730 			btrfs_release_path(path);
731 			goto again;
732 		}
733 		if (ret < 0) {
734 			btrfs_abort_transaction(trans, ret);
735 			goto out;
736 		}
737 
738 		leaf = path->nodes[0];
739 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 				    struct btrfs_file_extent_item);
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_num_bytes(leaf, fi,
743 						split - key.offset);
744 
745 		fi = btrfs_item_ptr(leaf, path->slots[0],
746 				    struct btrfs_file_extent_item);
747 
748 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 		btrfs_set_file_extent_num_bytes(leaf, fi,
751 						extent_end - split);
752 		btrfs_mark_buffer_dirty(trans, leaf);
753 
754 		ref.action = BTRFS_ADD_DELAYED_REF;
755 		ref.bytenr = bytenr;
756 		ref.num_bytes = num_bytes;
757 		ref.parent = 0;
758 		ref.owning_root = btrfs_root_id(root);
759 		ref.ref_root = btrfs_root_id(root);
760 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 		ret = btrfs_inc_extent_ref(trans, &ref);
762 		if (ret) {
763 			btrfs_abort_transaction(trans, ret);
764 			goto out;
765 		}
766 
767 		if (split == start) {
768 			key.offset = start;
769 		} else {
770 			if (start != key.offset) {
771 				ret = -EINVAL;
772 				btrfs_abort_transaction(trans, ret);
773 				goto out;
774 			}
775 			path->slots[0]--;
776 			extent_end = end;
777 		}
778 		recow = 1;
779 	}
780 
781 	other_start = end;
782 	other_end = 0;
783 
784 	ref.action = BTRFS_DROP_DELAYED_REF;
785 	ref.bytenr = bytenr;
786 	ref.num_bytes = num_bytes;
787 	ref.parent = 0;
788 	ref.owning_root = btrfs_root_id(root);
789 	ref.ref_root = btrfs_root_id(root);
790 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 	if (extent_mergeable(leaf, path->slots[0] + 1,
792 			     ino, bytenr, orig_offset,
793 			     &other_start, &other_end)) {
794 		if (recow) {
795 			btrfs_release_path(path);
796 			goto again;
797 		}
798 		extent_end = other_end;
799 		del_slot = path->slots[0] + 1;
800 		del_nr++;
801 		ret = btrfs_free_extent(trans, &ref);
802 		if (ret) {
803 			btrfs_abort_transaction(trans, ret);
804 			goto out;
805 		}
806 	}
807 	other_start = 0;
808 	other_end = start;
809 	if (extent_mergeable(leaf, path->slots[0] - 1,
810 			     ino, bytenr, orig_offset,
811 			     &other_start, &other_end)) {
812 		if (recow) {
813 			btrfs_release_path(path);
814 			goto again;
815 		}
816 		key.offset = other_start;
817 		del_slot = path->slots[0];
818 		del_nr++;
819 		ret = btrfs_free_extent(trans, &ref);
820 		if (ret) {
821 			btrfs_abort_transaction(trans, ret);
822 			goto out;
823 		}
824 	}
825 	if (del_nr == 0) {
826 		fi = btrfs_item_ptr(leaf, path->slots[0],
827 			   struct btrfs_file_extent_item);
828 		btrfs_set_file_extent_type(leaf, fi,
829 					   BTRFS_FILE_EXTENT_REG);
830 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 		btrfs_mark_buffer_dirty(trans, leaf);
832 	} else {
833 		fi = btrfs_item_ptr(leaf, del_slot - 1,
834 			   struct btrfs_file_extent_item);
835 		btrfs_set_file_extent_type(leaf, fi,
836 					   BTRFS_FILE_EXTENT_REG);
837 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 		btrfs_set_file_extent_num_bytes(leaf, fi,
839 						extent_end - key.offset);
840 		btrfs_mark_buffer_dirty(trans, leaf);
841 
842 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
843 		if (ret < 0) {
844 			btrfs_abort_transaction(trans, ret);
845 			goto out;
846 		}
847 	}
848 out:
849 	btrfs_free_path(path);
850 	return ret;
851 }
852 
853 /*
854  * on error we return an unlocked page and the error value
855  * on success we return a locked page and 0
856  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)857 static int prepare_uptodate_page(struct inode *inode,
858 				 struct page *page, u64 pos,
859 				 bool force_uptodate)
860 {
861 	struct folio *folio = page_folio(page);
862 	int ret = 0;
863 
864 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 	    !PageUptodate(page)) {
866 		ret = btrfs_read_folio(NULL, folio);
867 		if (ret)
868 			return ret;
869 		lock_page(page);
870 		if (!PageUptodate(page)) {
871 			unlock_page(page);
872 			return -EIO;
873 		}
874 
875 		/*
876 		 * Since btrfs_read_folio() will unlock the folio before it
877 		 * returns, there is a window where btrfs_release_folio() can be
878 		 * called to release the page.  Here we check both inode
879 		 * mapping and PagePrivate() to make sure the page was not
880 		 * released.
881 		 *
882 		 * The private flag check is essential for subpage as we need
883 		 * to store extra bitmap using folio private.
884 		 */
885 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
886 			unlock_page(page);
887 			return -EAGAIN;
888 		}
889 	}
890 	return 0;
891 }
892 
get_prepare_fgp_flags(bool nowait)893 static fgf_t get_prepare_fgp_flags(bool nowait)
894 {
895 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
896 
897 	if (nowait)
898 		fgp_flags |= FGP_NOWAIT;
899 
900 	return fgp_flags;
901 }
902 
get_prepare_gfp_flags(struct inode * inode,bool nowait)903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
904 {
905 	gfp_t gfp;
906 
907 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
908 	if (nowait) {
909 		gfp &= ~__GFP_DIRECT_RECLAIM;
910 		gfp |= GFP_NOWAIT;
911 	}
912 
913 	return gfp;
914 }
915 
916 /*
917  * this just gets pages into the page cache and locks them down.
918  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 				  size_t num_pages, loff_t pos,
921 				  size_t write_bytes, bool force_uptodate,
922 				  bool nowait)
923 {
924 	int i;
925 	unsigned long index = pos >> PAGE_SHIFT;
926 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
928 	int ret = 0;
929 	int faili;
930 
931 	for (i = 0; i < num_pages; i++) {
932 again:
933 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 					      fgp_flags, mask | __GFP_WRITE);
935 		if (!pages[i]) {
936 			faili = i - 1;
937 			if (nowait)
938 				ret = -EAGAIN;
939 			else
940 				ret = -ENOMEM;
941 			goto fail;
942 		}
943 
944 		ret = set_page_extent_mapped(pages[i]);
945 		if (ret < 0) {
946 			faili = i;
947 			goto fail;
948 		}
949 
950 		if (i == 0)
951 			ret = prepare_uptodate_page(inode, pages[i], pos,
952 						    force_uptodate);
953 		if (!ret && i == num_pages - 1)
954 			ret = prepare_uptodate_page(inode, pages[i],
955 						    pos + write_bytes, false);
956 		if (ret) {
957 			put_page(pages[i]);
958 			if (!nowait && ret == -EAGAIN) {
959 				ret = 0;
960 				goto again;
961 			}
962 			faili = i - 1;
963 			goto fail;
964 		}
965 		wait_on_page_writeback(pages[i]);
966 	}
967 
968 	return 0;
969 fail:
970 	while (faili >= 0) {
971 		unlock_page(pages[faili]);
972 		put_page(pages[faili]);
973 		faili--;
974 	}
975 	return ret;
976 
977 }
978 
979 /*
980  * This function locks the extent and properly waits for data=ordered extents
981  * to finish before allowing the pages to be modified if need.
982  *
983  * The return value:
984  * 1 - the extent is locked
985  * 0 - the extent is not locked, and everything is OK
986  * -EAGAIN - need re-prepare the pages
987  * the other < 0 number - Something wrong happens
988  */
989 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 				size_t num_pages, loff_t pos,
992 				size_t write_bytes,
993 				u64 *lockstart, u64 *lockend, bool nowait,
994 				struct extent_state **cached_state)
995 {
996 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
997 	u64 start_pos;
998 	u64 last_pos;
999 	int i;
1000 	int ret = 0;
1001 
1002 	start_pos = round_down(pos, fs_info->sectorsize);
1003 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1004 
1005 	if (start_pos < inode->vfs_inode.i_size) {
1006 		struct btrfs_ordered_extent *ordered;
1007 
1008 		if (nowait) {
1009 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1010 					     cached_state)) {
1011 				for (i = 0; i < num_pages; i++) {
1012 					unlock_page(pages[i]);
1013 					put_page(pages[i]);
1014 					pages[i] = NULL;
1015 				}
1016 
1017 				return -EAGAIN;
1018 			}
1019 		} else {
1020 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1021 		}
1022 
1023 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 						     last_pos - start_pos + 1);
1025 		if (ordered &&
1026 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1027 		    ordered->file_offset <= last_pos) {
1028 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1029 				      cached_state);
1030 			for (i = 0; i < num_pages; i++) {
1031 				unlock_page(pages[i]);
1032 				put_page(pages[i]);
1033 			}
1034 			btrfs_start_ordered_extent(ordered);
1035 			btrfs_put_ordered_extent(ordered);
1036 			return -EAGAIN;
1037 		}
1038 		if (ordered)
1039 			btrfs_put_ordered_extent(ordered);
1040 
1041 		*lockstart = start_pos;
1042 		*lockend = last_pos;
1043 		ret = 1;
1044 	}
1045 
1046 	/*
1047 	 * We should be called after prepare_pages() which should have locked
1048 	 * all pages in the range.
1049 	 */
1050 	for (i = 0; i < num_pages; i++)
1051 		WARN_ON(!PageLocked(pages[i]));
1052 
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1058  *
1059  * @pos:         File offset.
1060  * @write_bytes: The length to write, will be updated to the nocow writeable
1061  *               range.
1062  *
1063  * This function will flush ordered extents in the range to ensure proper
1064  * nocow checks.
1065  *
1066  * Return:
1067  * > 0          If we can nocow, and updates @write_bytes.
1068  *  0           If we can't do a nocow write.
1069  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1070  *              root is in progress.
1071  * < 0          If an error happened.
1072  *
1073  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1074  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 			   size_t *write_bytes, bool nowait)
1077 {
1078 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 	struct btrfs_root *root = inode->root;
1080 	struct extent_state *cached_state = NULL;
1081 	u64 lockstart, lockend;
1082 	u64 num_bytes;
1083 	int ret;
1084 
1085 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1086 		return 0;
1087 
1088 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1089 		return -EAGAIN;
1090 
1091 	lockstart = round_down(pos, fs_info->sectorsize);
1092 	lockend = round_up(pos + *write_bytes,
1093 			   fs_info->sectorsize) - 1;
1094 	num_bytes = lockend - lockstart + 1;
1095 
1096 	if (nowait) {
1097 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1098 						  &cached_state)) {
1099 			btrfs_drew_write_unlock(&root->snapshot_lock);
1100 			return -EAGAIN;
1101 		}
1102 	} else {
1103 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1104 						   &cached_state);
1105 	}
1106 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 			       NULL, nowait, false);
1108 	if (ret <= 0)
1109 		btrfs_drew_write_unlock(&root->snapshot_lock);
1110 	else
1111 		*write_bytes = min_t(size_t, *write_bytes ,
1112 				     num_bytes - pos + lockstart);
1113 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1114 
1115 	return ret;
1116 }
1117 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1119 {
1120 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1121 }
1122 
update_time_for_write(struct inode * inode)1123 static void update_time_for_write(struct inode *inode)
1124 {
1125 	struct timespec64 now, ts;
1126 
1127 	if (IS_NOCMTIME(inode))
1128 		return;
1129 
1130 	now = current_time(inode);
1131 	ts = inode_get_mtime(inode);
1132 	if (!timespec64_equal(&ts, &now))
1133 		inode_set_mtime_to_ts(inode, now);
1134 
1135 	ts = inode_get_ctime(inode);
1136 	if (!timespec64_equal(&ts, &now))
1137 		inode_set_ctime_to_ts(inode, now);
1138 
1139 	if (IS_I_VERSION(inode))
1140 		inode_inc_iversion(inode);
1141 }
1142 
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count)
1144 {
1145 	struct file *file = iocb->ki_filp;
1146 	struct inode *inode = file_inode(file);
1147 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1148 	loff_t pos = iocb->ki_pos;
1149 	int ret;
1150 	loff_t oldsize;
1151 
1152 	/*
1153 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1154 	 * prealloc flags, as without those flags we always have to COW. We will
1155 	 * later check if we can really COW into the target range (using
1156 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1157 	 */
1158 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1159 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1160 		return -EAGAIN;
1161 
1162 	ret = file_remove_privs(file);
1163 	if (ret)
1164 		return ret;
1165 
1166 	/*
1167 	 * We reserve space for updating the inode when we reserve space for the
1168 	 * extent we are going to write, so we will enospc out there.  We don't
1169 	 * need to start yet another transaction to update the inode as we will
1170 	 * update the inode when we finish writing whatever data we write.
1171 	 */
1172 	update_time_for_write(inode);
1173 
1174 	oldsize = i_size_read(inode);
1175 	if (pos > oldsize) {
1176 		/* Expand hole size to cover write data, preventing empty gap */
1177 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1178 
1179 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1180 		if (ret)
1181 			return ret;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1187 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1188 {
1189 	struct file *file = iocb->ki_filp;
1190 	loff_t pos;
1191 	struct inode *inode = file_inode(file);
1192 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1193 	struct page **pages = NULL;
1194 	struct extent_changeset *data_reserved = NULL;
1195 	u64 release_bytes = 0;
1196 	u64 lockstart;
1197 	u64 lockend;
1198 	size_t num_written = 0;
1199 	int nrptrs;
1200 	ssize_t ret;
1201 	bool only_release_metadata = false;
1202 	bool force_page_uptodate = false;
1203 	loff_t old_isize;
1204 	unsigned int ilock_flags = 0;
1205 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1206 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1207 
1208 	if (nowait)
1209 		ilock_flags |= BTRFS_ILOCK_TRY;
1210 
1211 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1212 	if (ret < 0)
1213 		return ret;
1214 
1215 	/*
1216 	 * We can only trust the isize with inode lock held, or it can race with
1217 	 * other buffered writes and cause incorrect call of
1218 	 * pagecache_isize_extended() to overwrite existing data.
1219 	 */
1220 	old_isize = i_size_read(inode);
1221 
1222 	ret = generic_write_checks(iocb, i);
1223 	if (ret <= 0)
1224 		goto out;
1225 
1226 	ret = btrfs_write_check(iocb, i, ret);
1227 	if (ret < 0)
1228 		goto out;
1229 
1230 	pos = iocb->ki_pos;
1231 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1232 			PAGE_SIZE / (sizeof(struct page *)));
1233 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1234 	nrptrs = max(nrptrs, 8);
1235 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1236 	if (!pages) {
1237 		ret = -ENOMEM;
1238 		goto out;
1239 	}
1240 
1241 	while (iov_iter_count(i) > 0) {
1242 		struct extent_state *cached_state = NULL;
1243 		size_t offset = offset_in_page(pos);
1244 		size_t sector_offset;
1245 		size_t write_bytes = min(iov_iter_count(i),
1246 					 nrptrs * (size_t)PAGE_SIZE -
1247 					 offset);
1248 		size_t num_pages;
1249 		size_t reserve_bytes;
1250 		size_t dirty_pages;
1251 		size_t copied;
1252 		size_t dirty_sectors;
1253 		size_t num_sectors;
1254 		int extents_locked;
1255 
1256 		/*
1257 		 * Fault pages before locking them in prepare_pages
1258 		 * to avoid recursive lock
1259 		 */
1260 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1261 			ret = -EFAULT;
1262 			break;
1263 		}
1264 
1265 		only_release_metadata = false;
1266 		sector_offset = pos & (fs_info->sectorsize - 1);
1267 
1268 		extent_changeset_release(data_reserved);
1269 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1270 						  &data_reserved, pos,
1271 						  write_bytes, nowait);
1272 		if (ret < 0) {
1273 			int can_nocow;
1274 
1275 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1276 				ret = -EAGAIN;
1277 				break;
1278 			}
1279 
1280 			/*
1281 			 * If we don't have to COW at the offset, reserve
1282 			 * metadata only. write_bytes may get smaller than
1283 			 * requested here.
1284 			 */
1285 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1286 							   &write_bytes, nowait);
1287 			if (can_nocow < 0)
1288 				ret = can_nocow;
1289 			if (can_nocow > 0)
1290 				ret = 0;
1291 			if (ret)
1292 				break;
1293 			only_release_metadata = true;
1294 		}
1295 
1296 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1297 		WARN_ON(num_pages > nrptrs);
1298 		reserve_bytes = round_up(write_bytes + sector_offset,
1299 					 fs_info->sectorsize);
1300 		WARN_ON(reserve_bytes == 0);
1301 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1302 						      reserve_bytes,
1303 						      reserve_bytes, nowait);
1304 		if (ret) {
1305 			if (!only_release_metadata)
1306 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1307 						data_reserved, pos,
1308 						write_bytes);
1309 			else
1310 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1311 
1312 			if (nowait && ret == -ENOSPC)
1313 				ret = -EAGAIN;
1314 			break;
1315 		}
1316 
1317 		release_bytes = reserve_bytes;
1318 again:
1319 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1320 		if (ret) {
1321 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1322 			break;
1323 		}
1324 
1325 		/*
1326 		 * This is going to setup the pages array with the number of
1327 		 * pages we want, so we don't really need to worry about the
1328 		 * contents of pages from loop to loop
1329 		 */
1330 		ret = prepare_pages(inode, pages, num_pages,
1331 				    pos, write_bytes, force_page_uptodate, false);
1332 		if (ret) {
1333 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1334 						       reserve_bytes);
1335 			break;
1336 		}
1337 
1338 		extents_locked = lock_and_cleanup_extent_if_need(
1339 				BTRFS_I(inode), pages,
1340 				num_pages, pos, write_bytes, &lockstart,
1341 				&lockend, nowait, &cached_state);
1342 		if (extents_locked < 0) {
1343 			if (!nowait && extents_locked == -EAGAIN)
1344 				goto again;
1345 
1346 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1347 						       reserve_bytes);
1348 			ret = extents_locked;
1349 			break;
1350 		}
1351 
1352 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1353 
1354 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1355 		dirty_sectors = round_up(copied + sector_offset,
1356 					fs_info->sectorsize);
1357 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1358 
1359 		/*
1360 		 * if we have trouble faulting in the pages, fall
1361 		 * back to one page at a time
1362 		 */
1363 		if (copied < write_bytes)
1364 			nrptrs = 1;
1365 
1366 		if (copied == 0) {
1367 			force_page_uptodate = true;
1368 			dirty_sectors = 0;
1369 			dirty_pages = 0;
1370 		} else {
1371 			force_page_uptodate = false;
1372 			dirty_pages = DIV_ROUND_UP(copied + offset,
1373 						   PAGE_SIZE);
1374 		}
1375 
1376 		if (num_sectors > dirty_sectors) {
1377 			/* release everything except the sectors we dirtied */
1378 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1379 			if (only_release_metadata) {
1380 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1381 							release_bytes, true);
1382 			} else {
1383 				u64 __pos;
1384 
1385 				__pos = round_down(pos,
1386 						   fs_info->sectorsize) +
1387 					(dirty_pages << PAGE_SHIFT);
1388 				btrfs_delalloc_release_space(BTRFS_I(inode),
1389 						data_reserved, __pos,
1390 						release_bytes, true);
1391 			}
1392 		}
1393 
1394 		release_bytes = round_up(copied + sector_offset,
1395 					fs_info->sectorsize);
1396 
1397 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1398 					dirty_pages, pos, copied,
1399 					&cached_state, only_release_metadata);
1400 
1401 		/*
1402 		 * If we have not locked the extent range, because the range's
1403 		 * start offset is >= i_size, we might still have a non-NULL
1404 		 * cached extent state, acquired while marking the extent range
1405 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1406 		 * possible cached extent state to avoid a memory leak.
1407 		 */
1408 		if (extents_locked)
1409 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1410 				      lockend, &cached_state);
1411 		else
1412 			free_extent_state(cached_state);
1413 
1414 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1415 		if (ret) {
1416 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1417 			break;
1418 		}
1419 
1420 		release_bytes = 0;
1421 		if (only_release_metadata)
1422 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1423 
1424 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1425 
1426 		cond_resched();
1427 
1428 		pos += copied;
1429 		num_written += copied;
1430 	}
1431 
1432 	kfree(pages);
1433 
1434 	if (release_bytes) {
1435 		if (only_release_metadata) {
1436 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1437 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1438 					release_bytes, true);
1439 		} else {
1440 			btrfs_delalloc_release_space(BTRFS_I(inode),
1441 					data_reserved,
1442 					round_down(pos, fs_info->sectorsize),
1443 					release_bytes, true);
1444 		}
1445 	}
1446 
1447 	extent_changeset_free(data_reserved);
1448 	if (num_written > 0) {
1449 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1450 		iocb->ki_pos += num_written;
1451 	}
1452 out:
1453 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1454 	return num_written ? num_written : ret;
1455 }
1456 
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1457 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1458 			const struct btrfs_ioctl_encoded_io_args *encoded)
1459 {
1460 	struct file *file = iocb->ki_filp;
1461 	struct inode *inode = file_inode(file);
1462 	loff_t count;
1463 	ssize_t ret;
1464 
1465 	btrfs_inode_lock(BTRFS_I(inode), 0);
1466 	count = encoded->len;
1467 	ret = generic_write_checks_count(iocb, &count);
1468 	if (ret == 0 && count != encoded->len) {
1469 		/*
1470 		 * The write got truncated by generic_write_checks_count(). We
1471 		 * can't do a partial encoded write.
1472 		 */
1473 		ret = -EFBIG;
1474 	}
1475 	if (ret || encoded->len == 0)
1476 		goto out;
1477 
1478 	ret = btrfs_write_check(iocb, from, encoded->len);
1479 	if (ret < 0)
1480 		goto out;
1481 
1482 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1483 out:
1484 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1485 	return ret;
1486 }
1487 
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1488 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1489 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1490 {
1491 	struct file *file = iocb->ki_filp;
1492 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1493 	ssize_t num_written, num_sync;
1494 
1495 	/*
1496 	 * If the fs flips readonly due to some impossible error, although we
1497 	 * have opened a file as writable, we have to stop this write operation
1498 	 * to ensure consistency.
1499 	 */
1500 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1501 		return -EROFS;
1502 
1503 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1504 		return -EOPNOTSUPP;
1505 
1506 	if (encoded) {
1507 		num_written = btrfs_encoded_write(iocb, from, encoded);
1508 		num_sync = encoded->len;
1509 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1510 		num_written = btrfs_direct_write(iocb, from);
1511 		num_sync = num_written;
1512 	} else {
1513 		num_written = btrfs_buffered_write(iocb, from);
1514 		num_sync = num_written;
1515 	}
1516 
1517 	btrfs_set_inode_last_sub_trans(inode);
1518 
1519 	if (num_sync > 0) {
1520 		num_sync = generic_write_sync(iocb, num_sync);
1521 		if (num_sync < 0)
1522 			num_written = num_sync;
1523 	}
1524 
1525 	return num_written;
1526 }
1527 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1528 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1529 {
1530 	return btrfs_do_write_iter(iocb, from, NULL);
1531 }
1532 
btrfs_release_file(struct inode * inode,struct file * filp)1533 int btrfs_release_file(struct inode *inode, struct file *filp)
1534 {
1535 	struct btrfs_file_private *private = filp->private_data;
1536 
1537 	if (private) {
1538 		kfree(private->filldir_buf);
1539 		free_extent_state(private->llseek_cached_state);
1540 		kfree(private);
1541 		filp->private_data = NULL;
1542 	}
1543 
1544 	/*
1545 	 * Set by setattr when we are about to truncate a file from a non-zero
1546 	 * size to a zero size.  This tries to flush down new bytes that may
1547 	 * have been written if the application were using truncate to replace
1548 	 * a file in place.
1549 	 */
1550 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1551 			       &BTRFS_I(inode)->runtime_flags))
1552 			filemap_flush(inode->i_mapping);
1553 	return 0;
1554 }
1555 
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1556 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1557 {
1558 	int ret;
1559 	struct blk_plug plug;
1560 
1561 	/*
1562 	 * This is only called in fsync, which would do synchronous writes, so
1563 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1564 	 * multiple disks using raid profile, a large IO can be split to
1565 	 * several segments of stripe length (currently 64K).
1566 	 */
1567 	blk_start_plug(&plug);
1568 	ret = btrfs_fdatawrite_range(inode, start, end);
1569 	blk_finish_plug(&plug);
1570 
1571 	return ret;
1572 }
1573 
skip_inode_logging(const struct btrfs_log_ctx * ctx)1574 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1575 {
1576 	struct btrfs_inode *inode = ctx->inode;
1577 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1578 
1579 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1580 	    list_empty(&ctx->ordered_extents))
1581 		return true;
1582 
1583 	/*
1584 	 * If we are doing a fast fsync we can not bail out if the inode's
1585 	 * last_trans is <= then the last committed transaction, because we only
1586 	 * update the last_trans of the inode during ordered extent completion,
1587 	 * and for a fast fsync we don't wait for that, we only wait for the
1588 	 * writeback to complete.
1589 	 */
1590 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1591 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1592 	     list_empty(&ctx->ordered_extents)))
1593 		return true;
1594 
1595 	return false;
1596 }
1597 
1598 /*
1599  * fsync call for both files and directories.  This logs the inode into
1600  * the tree log instead of forcing full commits whenever possible.
1601  *
1602  * It needs to call filemap_fdatawait so that all ordered extent updates are
1603  * in the metadata btree are up to date for copying to the log.
1604  *
1605  * It drops the inode mutex before doing the tree log commit.  This is an
1606  * important optimization for directories because holding the mutex prevents
1607  * new operations on the dir while we write to disk.
1608  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1609 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1610 {
1611 	struct dentry *dentry = file_dentry(file);
1612 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1613 	struct btrfs_root *root = inode->root;
1614 	struct btrfs_fs_info *fs_info = root->fs_info;
1615 	struct btrfs_trans_handle *trans;
1616 	struct btrfs_log_ctx ctx;
1617 	int ret = 0, err;
1618 	u64 len;
1619 	bool full_sync;
1620 	bool skip_ilock = false;
1621 
1622 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1623 		skip_ilock = true;
1624 		current->journal_info = NULL;
1625 		btrfs_assert_inode_locked(inode);
1626 	}
1627 
1628 	trace_btrfs_sync_file(file, datasync);
1629 
1630 	btrfs_init_log_ctx(&ctx, inode);
1631 
1632 	/*
1633 	 * Always set the range to a full range, otherwise we can get into
1634 	 * several problems, from missing file extent items to represent holes
1635 	 * when not using the NO_HOLES feature, to log tree corruption due to
1636 	 * races between hole detection during logging and completion of ordered
1637 	 * extents outside the range, to missing checksums due to ordered extents
1638 	 * for which we flushed only a subset of their pages.
1639 	 */
1640 	start = 0;
1641 	end = LLONG_MAX;
1642 	len = (u64)LLONG_MAX + 1;
1643 
1644 	/*
1645 	 * We write the dirty pages in the range and wait until they complete
1646 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1647 	 * multi-task, and make the performance up.  See
1648 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1649 	 */
1650 	ret = start_ordered_ops(inode, start, end);
1651 	if (ret)
1652 		goto out;
1653 
1654 	if (skip_ilock)
1655 		down_write(&inode->i_mmap_lock);
1656 	else
1657 		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1658 
1659 	atomic_inc(&root->log_batch);
1660 
1661 	/*
1662 	 * Before we acquired the inode's lock and the mmap lock, someone may
1663 	 * have dirtied more pages in the target range. We need to make sure
1664 	 * that writeback for any such pages does not start while we are logging
1665 	 * the inode, because if it does, any of the following might happen when
1666 	 * we are not doing a full inode sync:
1667 	 *
1668 	 * 1) We log an extent after its writeback finishes but before its
1669 	 *    checksums are added to the csum tree, leading to -EIO errors
1670 	 *    when attempting to read the extent after a log replay.
1671 	 *
1672 	 * 2) We can end up logging an extent before its writeback finishes.
1673 	 *    Therefore after the log replay we will have a file extent item
1674 	 *    pointing to an unwritten extent (and no data checksums as well).
1675 	 *
1676 	 * So trigger writeback for any eventual new dirty pages and then we
1677 	 * wait for all ordered extents to complete below.
1678 	 */
1679 	ret = start_ordered_ops(inode, start, end);
1680 	if (ret) {
1681 		if (skip_ilock)
1682 			up_write(&inode->i_mmap_lock);
1683 		else
1684 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1685 		goto out;
1686 	}
1687 
1688 	/*
1689 	 * Always check for the full sync flag while holding the inode's lock,
1690 	 * to avoid races with other tasks. The flag must be either set all the
1691 	 * time during logging or always off all the time while logging.
1692 	 * We check the flag here after starting delalloc above, because when
1693 	 * running delalloc the full sync flag may be set if we need to drop
1694 	 * extra extent map ranges due to temporary memory allocation failures.
1695 	 */
1696 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1697 
1698 	/*
1699 	 * We have to do this here to avoid the priority inversion of waiting on
1700 	 * IO of a lower priority task while holding a transaction open.
1701 	 *
1702 	 * For a full fsync we wait for the ordered extents to complete while
1703 	 * for a fast fsync we wait just for writeback to complete, and then
1704 	 * attach the ordered extents to the transaction so that a transaction
1705 	 * commit waits for their completion, to avoid data loss if we fsync,
1706 	 * the current transaction commits before the ordered extents complete
1707 	 * and a power failure happens right after that.
1708 	 *
1709 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1710 	 * logical address recorded in the ordered extent may change. We need
1711 	 * to wait for the IO to stabilize the logical address.
1712 	 */
1713 	if (full_sync || btrfs_is_zoned(fs_info)) {
1714 		ret = btrfs_wait_ordered_range(inode, start, len);
1715 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1716 	} else {
1717 		/*
1718 		 * Get our ordered extents as soon as possible to avoid doing
1719 		 * checksum lookups in the csum tree, and use instead the
1720 		 * checksums attached to the ordered extents.
1721 		 */
1722 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1723 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1724 		if (ret)
1725 			goto out_release_extents;
1726 
1727 		/*
1728 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1729 		 * starting and waiting for writeback, because for buffered IO
1730 		 * it may have been set during the end IO callback
1731 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1732 		 * case an error happened and we need to wait for ordered
1733 		 * extents to complete so that any extent maps that point to
1734 		 * unwritten locations are dropped and we don't log them.
1735 		 */
1736 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1737 			ret = btrfs_wait_ordered_range(inode, start, len);
1738 	}
1739 
1740 	if (ret)
1741 		goto out_release_extents;
1742 
1743 	atomic_inc(&root->log_batch);
1744 
1745 	if (skip_inode_logging(&ctx)) {
1746 		/*
1747 		 * We've had everything committed since the last time we were
1748 		 * modified so clear this flag in case it was set for whatever
1749 		 * reason, it's no longer relevant.
1750 		 */
1751 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1752 		/*
1753 		 * An ordered extent might have started before and completed
1754 		 * already with io errors, in which case the inode was not
1755 		 * updated and we end up here. So check the inode's mapping
1756 		 * for any errors that might have happened since we last
1757 		 * checked called fsync.
1758 		 */
1759 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1760 		goto out_release_extents;
1761 	}
1762 
1763 	btrfs_init_log_ctx_scratch_eb(&ctx);
1764 
1765 	/*
1766 	 * We use start here because we will need to wait on the IO to complete
1767 	 * in btrfs_sync_log, which could require joining a transaction (for
1768 	 * example checking cross references in the nocow path).  If we use join
1769 	 * here we could get into a situation where we're waiting on IO to
1770 	 * happen that is blocked on a transaction trying to commit.  With start
1771 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1772 	 * before we start blocking joiners.  This comment is to keep somebody
1773 	 * from thinking they are super smart and changing this to
1774 	 * btrfs_join_transaction *cough*Josef*cough*.
1775 	 */
1776 	trans = btrfs_start_transaction(root, 0);
1777 	if (IS_ERR(trans)) {
1778 		ret = PTR_ERR(trans);
1779 		goto out_release_extents;
1780 	}
1781 	trans->in_fsync = true;
1782 
1783 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1784 	/*
1785 	 * Scratch eb no longer needed, release before syncing log or commit
1786 	 * transaction, to avoid holding unnecessary memory during such long
1787 	 * operations.
1788 	 */
1789 	if (ctx.scratch_eb) {
1790 		free_extent_buffer(ctx.scratch_eb);
1791 		ctx.scratch_eb = NULL;
1792 	}
1793 	btrfs_release_log_ctx_extents(&ctx);
1794 	if (ret < 0) {
1795 		/* Fallthrough and commit/free transaction. */
1796 		ret = BTRFS_LOG_FORCE_COMMIT;
1797 	}
1798 
1799 	/* we've logged all the items and now have a consistent
1800 	 * version of the file in the log.  It is possible that
1801 	 * someone will come in and modify the file, but that's
1802 	 * fine because the log is consistent on disk, and we
1803 	 * have references to all of the file's extents
1804 	 *
1805 	 * It is possible that someone will come in and log the
1806 	 * file again, but that will end up using the synchronization
1807 	 * inside btrfs_sync_log to keep things safe.
1808 	 */
1809 	if (skip_ilock)
1810 		up_write(&inode->i_mmap_lock);
1811 	else
1812 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1813 
1814 	if (ret == BTRFS_NO_LOG_SYNC) {
1815 		ret = btrfs_end_transaction(trans);
1816 		goto out;
1817 	}
1818 
1819 	/* We successfully logged the inode, attempt to sync the log. */
1820 	if (!ret) {
1821 		ret = btrfs_sync_log(trans, root, &ctx);
1822 		if (!ret) {
1823 			ret = btrfs_end_transaction(trans);
1824 			goto out;
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * At this point we need to commit the transaction because we had
1830 	 * btrfs_need_log_full_commit() or some other error.
1831 	 *
1832 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1833 	 * the ordered extents, start it again and commit the transaction.  If
1834 	 * we attempt to wait on the ordered extents here we could deadlock with
1835 	 * something like fallocate() that is holding the extent lock trying to
1836 	 * start a transaction while some other thread is trying to commit the
1837 	 * transaction while we (fsync) are currently holding the transaction
1838 	 * open.
1839 	 */
1840 	if (!full_sync) {
1841 		ret = btrfs_end_transaction(trans);
1842 		if (ret)
1843 			goto out;
1844 		ret = btrfs_wait_ordered_range(inode, start, len);
1845 		if (ret)
1846 			goto out;
1847 
1848 		/*
1849 		 * This is safe to use here because we're only interested in
1850 		 * making sure the transaction that had the ordered extents is
1851 		 * committed.  We aren't waiting on anything past this point,
1852 		 * we're purely getting the transaction and committing it.
1853 		 */
1854 		trans = btrfs_attach_transaction_barrier(root);
1855 		if (IS_ERR(trans)) {
1856 			ret = PTR_ERR(trans);
1857 
1858 			/*
1859 			 * We committed the transaction and there's no currently
1860 			 * running transaction, this means everything we care
1861 			 * about made it to disk and we are done.
1862 			 */
1863 			if (ret == -ENOENT)
1864 				ret = 0;
1865 			goto out;
1866 		}
1867 	}
1868 
1869 	ret = btrfs_commit_transaction(trans);
1870 out:
1871 	free_extent_buffer(ctx.scratch_eb);
1872 	ASSERT(list_empty(&ctx.list));
1873 	ASSERT(list_empty(&ctx.conflict_inodes));
1874 	err = file_check_and_advance_wb_err(file);
1875 	if (!ret)
1876 		ret = err;
1877 	return ret > 0 ? -EIO : ret;
1878 
1879 out_release_extents:
1880 	btrfs_release_log_ctx_extents(&ctx);
1881 	if (skip_ilock)
1882 		up_write(&inode->i_mmap_lock);
1883 	else
1884 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1885 	goto out;
1886 }
1887 
1888 /*
1889  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1890  * called from a page fault handler when a page is first dirtied. Hence we must
1891  * be careful to check for EOF conditions here. We set the page up correctly
1892  * for a written page which means we get ENOSPC checking when writing into
1893  * holes and correct delalloc and unwritten extent mapping on filesystems that
1894  * support these features.
1895  *
1896  * We are not allowed to take the i_mutex here so we have to play games to
1897  * protect against truncate races as the page could now be beyond EOF.  Because
1898  * truncate_setsize() writes the inode size before removing pages, once we have
1899  * the page lock we can determine safely if the page is beyond EOF. If it is not
1900  * beyond EOF, then the page is guaranteed safe against truncation until we
1901  * unlock the page.
1902  */
btrfs_page_mkwrite(struct vm_fault * vmf)1903 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1904 {
1905 	struct page *page = vmf->page;
1906 	struct folio *folio = page_folio(page);
1907 	struct inode *inode = file_inode(vmf->vma->vm_file);
1908 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1909 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1910 	struct btrfs_ordered_extent *ordered;
1911 	struct extent_state *cached_state = NULL;
1912 	struct extent_changeset *data_reserved = NULL;
1913 	unsigned long zero_start;
1914 	loff_t size;
1915 	size_t fsize = folio_size(folio);
1916 	vm_fault_t ret;
1917 	int ret2;
1918 	int reserved = 0;
1919 	u64 reserved_space;
1920 	u64 page_start;
1921 	u64 page_end;
1922 	u64 end;
1923 
1924 	ASSERT(folio_order(folio) == 0);
1925 
1926 	reserved_space = fsize;
1927 
1928 	sb_start_pagefault(inode->i_sb);
1929 	page_start = folio_pos(folio);
1930 	page_end = page_start + folio_size(folio) - 1;
1931 	end = page_end;
1932 
1933 	/*
1934 	 * Reserving delalloc space after obtaining the page lock can lead to
1935 	 * deadlock. For example, if a dirty page is locked by this function
1936 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1937 	 * dirty page write out, then the btrfs_writepages() function could
1938 	 * end up waiting indefinitely to get a lock on the page currently
1939 	 * being processed by btrfs_page_mkwrite() function.
1940 	 */
1941 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1942 					    page_start, reserved_space);
1943 	if (!ret2) {
1944 		ret2 = file_update_time(vmf->vma->vm_file);
1945 		reserved = 1;
1946 	}
1947 	if (ret2) {
1948 		ret = vmf_error(ret2);
1949 		if (reserved)
1950 			goto out;
1951 		goto out_noreserve;
1952 	}
1953 
1954 	/* Make the VM retry the fault. */
1955 	ret = VM_FAULT_NOPAGE;
1956 again:
1957 	down_read(&BTRFS_I(inode)->i_mmap_lock);
1958 	folio_lock(folio);
1959 	size = i_size_read(inode);
1960 
1961 	if ((folio->mapping != inode->i_mapping) ||
1962 	    (page_start >= size)) {
1963 		/* Page got truncated out from underneath us. */
1964 		goto out_unlock;
1965 	}
1966 	folio_wait_writeback(folio);
1967 
1968 	lock_extent(io_tree, page_start, page_end, &cached_state);
1969 	ret2 = set_folio_extent_mapped(folio);
1970 	if (ret2 < 0) {
1971 		ret = vmf_error(ret2);
1972 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1973 		goto out_unlock;
1974 	}
1975 
1976 	/*
1977 	 * We can't set the delalloc bits if there are pending ordered
1978 	 * extents.  Drop our locks and wait for them to finish.
1979 	 */
1980 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, fsize);
1981 	if (ordered) {
1982 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1983 		folio_unlock(folio);
1984 		up_read(&BTRFS_I(inode)->i_mmap_lock);
1985 		btrfs_start_ordered_extent(ordered);
1986 		btrfs_put_ordered_extent(ordered);
1987 		goto again;
1988 	}
1989 
1990 	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1991 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1992 		if (reserved_space < fsize) {
1993 			end = page_start + reserved_space - 1;
1994 			btrfs_delalloc_release_space(BTRFS_I(inode),
1995 					data_reserved, end + 1,
1996 					fsize - reserved_space, true);
1997 		}
1998 	}
1999 
2000 	/*
2001 	 * page_mkwrite gets called when the page is firstly dirtied after it's
2002 	 * faulted in, but write(2) could also dirty a page and set delalloc
2003 	 * bits, thus in this case for space account reason, we still need to
2004 	 * clear any delalloc bits within this page range since we have to
2005 	 * reserve data&meta space before lock_page() (see above comments).
2006 	 */
2007 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
2008 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
2009 			  EXTENT_DEFRAG, &cached_state);
2010 
2011 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
2012 					&cached_state);
2013 	if (ret2) {
2014 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2015 		ret = VM_FAULT_SIGBUS;
2016 		goto out_unlock;
2017 	}
2018 
2019 	/* Page is wholly or partially inside EOF. */
2020 	if (page_start + folio_size(folio) > size)
2021 		zero_start = offset_in_folio(folio, size);
2022 	else
2023 		zero_start = fsize;
2024 
2025 	if (zero_start != fsize)
2026 		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
2027 
2028 	btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
2029 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2030 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2031 
2032 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2033 
2034 	unlock_extent(io_tree, page_start, page_end, &cached_state);
2035 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2036 
2037 	btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
2038 	sb_end_pagefault(inode->i_sb);
2039 	extent_changeset_free(data_reserved);
2040 	return VM_FAULT_LOCKED;
2041 
2042 out_unlock:
2043 	folio_unlock(folio);
2044 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2045 out:
2046 	btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
2047 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2048 				     reserved_space, (ret != 0));
2049 out_noreserve:
2050 	sb_end_pagefault(inode->i_sb);
2051 	extent_changeset_free(data_reserved);
2052 	return ret;
2053 }
2054 
2055 static const struct vm_operations_struct btrfs_file_vm_ops = {
2056 	.fault		= filemap_fault,
2057 	.map_pages	= filemap_map_pages,
2058 	.page_mkwrite	= btrfs_page_mkwrite,
2059 };
2060 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2061 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2062 {
2063 	struct address_space *mapping = filp->f_mapping;
2064 
2065 	if (!mapping->a_ops->read_folio)
2066 		return -ENOEXEC;
2067 
2068 	file_accessed(filp);
2069 	vma->vm_ops = &btrfs_file_vm_ops;
2070 
2071 	return 0;
2072 }
2073 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2074 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2075 			  int slot, u64 start, u64 end)
2076 {
2077 	struct btrfs_file_extent_item *fi;
2078 	struct btrfs_key key;
2079 
2080 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2081 		return 0;
2082 
2083 	btrfs_item_key_to_cpu(leaf, &key, slot);
2084 	if (key.objectid != btrfs_ino(inode) ||
2085 	    key.type != BTRFS_EXTENT_DATA_KEY)
2086 		return 0;
2087 
2088 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2089 
2090 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2091 		return 0;
2092 
2093 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2094 		return 0;
2095 
2096 	if (key.offset == end)
2097 		return 1;
2098 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2099 		return 1;
2100 	return 0;
2101 }
2102 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2103 static int fill_holes(struct btrfs_trans_handle *trans,
2104 		struct btrfs_inode *inode,
2105 		struct btrfs_path *path, u64 offset, u64 end)
2106 {
2107 	struct btrfs_fs_info *fs_info = trans->fs_info;
2108 	struct btrfs_root *root = inode->root;
2109 	struct extent_buffer *leaf;
2110 	struct btrfs_file_extent_item *fi;
2111 	struct extent_map *hole_em;
2112 	struct btrfs_key key;
2113 	int ret;
2114 
2115 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2116 		goto out;
2117 
2118 	key.objectid = btrfs_ino(inode);
2119 	key.type = BTRFS_EXTENT_DATA_KEY;
2120 	key.offset = offset;
2121 
2122 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2123 	if (ret <= 0) {
2124 		/*
2125 		 * We should have dropped this offset, so if we find it then
2126 		 * something has gone horribly wrong.
2127 		 */
2128 		if (ret == 0)
2129 			ret = -EINVAL;
2130 		return ret;
2131 	}
2132 
2133 	leaf = path->nodes[0];
2134 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2135 		u64 num_bytes;
2136 
2137 		path->slots[0]--;
2138 		fi = btrfs_item_ptr(leaf, path->slots[0],
2139 				    struct btrfs_file_extent_item);
2140 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2141 			end - offset;
2142 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2144 		btrfs_set_file_extent_offset(leaf, fi, 0);
2145 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 		btrfs_mark_buffer_dirty(trans, leaf);
2147 		goto out;
2148 	}
2149 
2150 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2151 		u64 num_bytes;
2152 
2153 		key.offset = offset;
2154 		btrfs_set_item_key_safe(trans, path, &key);
2155 		fi = btrfs_item_ptr(leaf, path->slots[0],
2156 				    struct btrfs_file_extent_item);
2157 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2158 			offset;
2159 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2160 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2161 		btrfs_set_file_extent_offset(leaf, fi, 0);
2162 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2163 		btrfs_mark_buffer_dirty(trans, leaf);
2164 		goto out;
2165 	}
2166 	btrfs_release_path(path);
2167 
2168 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2169 				       end - offset);
2170 	if (ret)
2171 		return ret;
2172 
2173 out:
2174 	btrfs_release_path(path);
2175 
2176 	hole_em = alloc_extent_map();
2177 	if (!hole_em) {
2178 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2179 		btrfs_set_inode_full_sync(inode);
2180 	} else {
2181 		hole_em->start = offset;
2182 		hole_em->len = end - offset;
2183 		hole_em->ram_bytes = hole_em->len;
2184 
2185 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2186 		hole_em->disk_num_bytes = 0;
2187 		hole_em->generation = trans->transid;
2188 
2189 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2190 		free_extent_map(hole_em);
2191 		if (ret)
2192 			btrfs_set_inode_full_sync(inode);
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /*
2199  * Find a hole extent on given inode and change start/len to the end of hole
2200  * extent.(hole/vacuum extent whose em->start <= start &&
2201  *	   em->start + em->len > start)
2202  * When a hole extent is found, return 1 and modify start/len.
2203  */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2204 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2205 {
2206 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2207 	struct extent_map *em;
2208 	int ret = 0;
2209 
2210 	em = btrfs_get_extent(inode, NULL,
2211 			      round_down(*start, fs_info->sectorsize),
2212 			      round_up(*len, fs_info->sectorsize));
2213 	if (IS_ERR(em))
2214 		return PTR_ERR(em);
2215 
2216 	/* Hole or vacuum extent(only exists in no-hole mode) */
2217 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2218 		ret = 1;
2219 		*len = em->start + em->len > *start + *len ?
2220 		       0 : *start + *len - em->start - em->len;
2221 		*start = em->start + em->len;
2222 	}
2223 	free_extent_map(em);
2224 	return ret;
2225 }
2226 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2227 static void btrfs_punch_hole_lock_range(struct inode *inode,
2228 					const u64 lockstart,
2229 					const u64 lockend,
2230 					struct extent_state **cached_state)
2231 {
2232 	/*
2233 	 * For subpage case, if the range is not at page boundary, we could
2234 	 * have pages at the leading/tailing part of the range.
2235 	 * This could lead to dead loop since filemap_range_has_page()
2236 	 * will always return true.
2237 	 * So here we need to do extra page alignment for
2238 	 * filemap_range_has_page().
2239 	 *
2240 	 * And do not decrease page_lockend right now, as it can be 0.
2241 	 */
2242 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2243 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE);
2244 
2245 	while (1) {
2246 		truncate_pagecache_range(inode, lockstart, lockend);
2247 
2248 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2249 			    cached_state);
2250 		/* The same page or adjacent pages. */
2251 		if (page_lockend <= page_lockstart)
2252 			break;
2253 		/*
2254 		 * We can't have ordered extents in the range, nor dirty/writeback
2255 		 * pages, because we have locked the inode's VFS lock in exclusive
2256 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2257 		 * we have flushed all delalloc in the range and we have waited
2258 		 * for any ordered extents in the range to complete.
2259 		 * We can race with anyone reading pages from this range, so after
2260 		 * locking the range check if we have pages in the range, and if
2261 		 * we do, unlock the range and retry.
2262 		 */
2263 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2264 					    page_lockend - 1))
2265 			break;
2266 
2267 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2268 			      cached_state);
2269 	}
2270 
2271 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2272 }
2273 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2274 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2275 				     struct btrfs_inode *inode,
2276 				     struct btrfs_path *path,
2277 				     struct btrfs_replace_extent_info *extent_info,
2278 				     const u64 replace_len,
2279 				     const u64 bytes_to_drop)
2280 {
2281 	struct btrfs_fs_info *fs_info = trans->fs_info;
2282 	struct btrfs_root *root = inode->root;
2283 	struct btrfs_file_extent_item *extent;
2284 	struct extent_buffer *leaf;
2285 	struct btrfs_key key;
2286 	int slot;
2287 	int ret;
2288 
2289 	if (replace_len == 0)
2290 		return 0;
2291 
2292 	if (extent_info->disk_offset == 0 &&
2293 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2294 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2295 		return 0;
2296 	}
2297 
2298 	key.objectid = btrfs_ino(inode);
2299 	key.type = BTRFS_EXTENT_DATA_KEY;
2300 	key.offset = extent_info->file_offset;
2301 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2302 				      sizeof(struct btrfs_file_extent_item));
2303 	if (ret)
2304 		return ret;
2305 	leaf = path->nodes[0];
2306 	slot = path->slots[0];
2307 	write_extent_buffer(leaf, extent_info->extent_buf,
2308 			    btrfs_item_ptr_offset(leaf, slot),
2309 			    sizeof(struct btrfs_file_extent_item));
2310 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2311 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2312 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2313 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2314 	if (extent_info->is_new_extent)
2315 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2316 	btrfs_mark_buffer_dirty(trans, leaf);
2317 	btrfs_release_path(path);
2318 
2319 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2320 						replace_len);
2321 	if (ret)
2322 		return ret;
2323 
2324 	/* If it's a hole, nothing more needs to be done. */
2325 	if (extent_info->disk_offset == 0) {
2326 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2327 		return 0;
2328 	}
2329 
2330 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2331 
2332 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2333 		key.objectid = extent_info->disk_offset;
2334 		key.type = BTRFS_EXTENT_ITEM_KEY;
2335 		key.offset = extent_info->disk_len;
2336 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2337 						       btrfs_ino(inode),
2338 						       extent_info->file_offset,
2339 						       extent_info->qgroup_reserved,
2340 						       &key);
2341 	} else {
2342 		struct btrfs_ref ref = {
2343 			.action = BTRFS_ADD_DELAYED_REF,
2344 			.bytenr = extent_info->disk_offset,
2345 			.num_bytes = extent_info->disk_len,
2346 			.owning_root = btrfs_root_id(root),
2347 			.ref_root = btrfs_root_id(root),
2348 		};
2349 		u64 ref_offset;
2350 
2351 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2352 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2353 		ret = btrfs_inc_extent_ref(trans, &ref);
2354 	}
2355 
2356 	extent_info->insertions++;
2357 
2358 	return ret;
2359 }
2360 
2361 /*
2362  * The respective range must have been previously locked, as well as the inode.
2363  * The end offset is inclusive (last byte of the range).
2364  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2365  * the file range with an extent.
2366  * When not punching a hole, we don't want to end up in a state where we dropped
2367  * extents without inserting a new one, so we must abort the transaction to avoid
2368  * a corruption.
2369  */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2370 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2371 			       struct btrfs_path *path, const u64 start,
2372 			       const u64 end,
2373 			       struct btrfs_replace_extent_info *extent_info,
2374 			       struct btrfs_trans_handle **trans_out)
2375 {
2376 	struct btrfs_drop_extents_args drop_args = { 0 };
2377 	struct btrfs_root *root = inode->root;
2378 	struct btrfs_fs_info *fs_info = root->fs_info;
2379 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2380 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2381 	struct btrfs_trans_handle *trans = NULL;
2382 	struct btrfs_block_rsv *rsv;
2383 	unsigned int rsv_count;
2384 	u64 cur_offset;
2385 	u64 len = end - start;
2386 	int ret = 0;
2387 
2388 	if (end <= start)
2389 		return -EINVAL;
2390 
2391 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2392 	if (!rsv) {
2393 		ret = -ENOMEM;
2394 		goto out;
2395 	}
2396 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2397 	rsv->failfast = true;
2398 
2399 	/*
2400 	 * 1 - update the inode
2401 	 * 1 - removing the extents in the range
2402 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2403 	 *     replacing the range with a new extent
2404 	 */
2405 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2406 		rsv_count = 3;
2407 	else
2408 		rsv_count = 2;
2409 
2410 	trans = btrfs_start_transaction(root, rsv_count);
2411 	if (IS_ERR(trans)) {
2412 		ret = PTR_ERR(trans);
2413 		trans = NULL;
2414 		goto out_free;
2415 	}
2416 
2417 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2418 				      min_size, false);
2419 	if (WARN_ON(ret))
2420 		goto out_trans;
2421 	trans->block_rsv = rsv;
2422 
2423 	cur_offset = start;
2424 	drop_args.path = path;
2425 	drop_args.end = end + 1;
2426 	drop_args.drop_cache = true;
2427 	while (cur_offset < end) {
2428 		drop_args.start = cur_offset;
2429 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2430 		/* If we are punching a hole decrement the inode's byte count */
2431 		if (!extent_info)
2432 			btrfs_update_inode_bytes(inode, 0,
2433 						 drop_args.bytes_found);
2434 		if (ret != -ENOSPC) {
2435 			/*
2436 			 * The only time we don't want to abort is if we are
2437 			 * attempting to clone a partial inline extent, in which
2438 			 * case we'll get EOPNOTSUPP.  However if we aren't
2439 			 * clone we need to abort no matter what, because if we
2440 			 * got EOPNOTSUPP via prealloc then we messed up and
2441 			 * need to abort.
2442 			 */
2443 			if (ret &&
2444 			    (ret != -EOPNOTSUPP ||
2445 			     (extent_info && extent_info->is_new_extent)))
2446 				btrfs_abort_transaction(trans, ret);
2447 			break;
2448 		}
2449 
2450 		trans->block_rsv = &fs_info->trans_block_rsv;
2451 
2452 		if (!extent_info && cur_offset < drop_args.drop_end &&
2453 		    cur_offset < ino_size) {
2454 			ret = fill_holes(trans, inode, path, cur_offset,
2455 					 drop_args.drop_end);
2456 			if (ret) {
2457 				/*
2458 				 * If we failed then we didn't insert our hole
2459 				 * entries for the area we dropped, so now the
2460 				 * fs is corrupted, so we must abort the
2461 				 * transaction.
2462 				 */
2463 				btrfs_abort_transaction(trans, ret);
2464 				break;
2465 			}
2466 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2467 			/*
2468 			 * We are past the i_size here, but since we didn't
2469 			 * insert holes we need to clear the mapped area so we
2470 			 * know to not set disk_i_size in this area until a new
2471 			 * file extent is inserted here.
2472 			 */
2473 			ret = btrfs_inode_clear_file_extent_range(inode,
2474 					cur_offset,
2475 					drop_args.drop_end - cur_offset);
2476 			if (ret) {
2477 				/*
2478 				 * We couldn't clear our area, so we could
2479 				 * presumably adjust up and corrupt the fs, so
2480 				 * we need to abort.
2481 				 */
2482 				btrfs_abort_transaction(trans, ret);
2483 				break;
2484 			}
2485 		}
2486 
2487 		if (extent_info &&
2488 		    drop_args.drop_end > extent_info->file_offset) {
2489 			u64 replace_len = drop_args.drop_end -
2490 					  extent_info->file_offset;
2491 
2492 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2493 					extent_info, replace_len,
2494 					drop_args.bytes_found);
2495 			if (ret) {
2496 				btrfs_abort_transaction(trans, ret);
2497 				break;
2498 			}
2499 			extent_info->data_len -= replace_len;
2500 			extent_info->data_offset += replace_len;
2501 			extent_info->file_offset += replace_len;
2502 		}
2503 
2504 		/*
2505 		 * We are releasing our handle on the transaction, balance the
2506 		 * dirty pages of the btree inode and flush delayed items, and
2507 		 * then get a new transaction handle, which may now point to a
2508 		 * new transaction in case someone else may have committed the
2509 		 * transaction we used to replace/drop file extent items. So
2510 		 * bump the inode's iversion and update mtime and ctime except
2511 		 * if we are called from a dedupe context. This is because a
2512 		 * power failure/crash may happen after the transaction is
2513 		 * committed and before we finish replacing/dropping all the
2514 		 * file extent items we need.
2515 		 */
2516 		inode_inc_iversion(&inode->vfs_inode);
2517 
2518 		if (!extent_info || extent_info->update_times)
2519 			inode_set_mtime_to_ts(&inode->vfs_inode,
2520 					      inode_set_ctime_current(&inode->vfs_inode));
2521 
2522 		ret = btrfs_update_inode(trans, inode);
2523 		if (ret)
2524 			break;
2525 
2526 		btrfs_end_transaction(trans);
2527 		btrfs_btree_balance_dirty(fs_info);
2528 
2529 		trans = btrfs_start_transaction(root, rsv_count);
2530 		if (IS_ERR(trans)) {
2531 			ret = PTR_ERR(trans);
2532 			trans = NULL;
2533 			break;
2534 		}
2535 
2536 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2537 					      rsv, min_size, false);
2538 		if (WARN_ON(ret))
2539 			break;
2540 		trans->block_rsv = rsv;
2541 
2542 		cur_offset = drop_args.drop_end;
2543 		len = end - cur_offset;
2544 		if (!extent_info && len) {
2545 			ret = find_first_non_hole(inode, &cur_offset, &len);
2546 			if (unlikely(ret < 0))
2547 				break;
2548 			if (ret && !len) {
2549 				ret = 0;
2550 				break;
2551 			}
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * If we were cloning, force the next fsync to be a full one since we
2557 	 * we replaced (or just dropped in the case of cloning holes when
2558 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2559 	 * maps for the replacement extents (or holes).
2560 	 */
2561 	if (extent_info && !extent_info->is_new_extent)
2562 		btrfs_set_inode_full_sync(inode);
2563 
2564 	if (ret)
2565 		goto out_trans;
2566 
2567 	trans->block_rsv = &fs_info->trans_block_rsv;
2568 	/*
2569 	 * If we are using the NO_HOLES feature we might have had already an
2570 	 * hole that overlaps a part of the region [lockstart, lockend] and
2571 	 * ends at (or beyond) lockend. Since we have no file extent items to
2572 	 * represent holes, drop_end can be less than lockend and so we must
2573 	 * make sure we have an extent map representing the existing hole (the
2574 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2575 	 * map representing the existing hole), otherwise the fast fsync path
2576 	 * will not record the existence of the hole region
2577 	 * [existing_hole_start, lockend].
2578 	 */
2579 	if (drop_args.drop_end <= end)
2580 		drop_args.drop_end = end + 1;
2581 	/*
2582 	 * Don't insert file hole extent item if it's for a range beyond eof
2583 	 * (because it's useless) or if it represents a 0 bytes range (when
2584 	 * cur_offset == drop_end).
2585 	 */
2586 	if (!extent_info && cur_offset < ino_size &&
2587 	    cur_offset < drop_args.drop_end) {
2588 		ret = fill_holes(trans, inode, path, cur_offset,
2589 				 drop_args.drop_end);
2590 		if (ret) {
2591 			/* Same comment as above. */
2592 			btrfs_abort_transaction(trans, ret);
2593 			goto out_trans;
2594 		}
2595 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2596 		/* See the comment in the loop above for the reasoning here. */
2597 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2598 					drop_args.drop_end - cur_offset);
2599 		if (ret) {
2600 			btrfs_abort_transaction(trans, ret);
2601 			goto out_trans;
2602 		}
2603 
2604 	}
2605 	if (extent_info) {
2606 		ret = btrfs_insert_replace_extent(trans, inode, path,
2607 				extent_info, extent_info->data_len,
2608 				drop_args.bytes_found);
2609 		if (ret) {
2610 			btrfs_abort_transaction(trans, ret);
2611 			goto out_trans;
2612 		}
2613 	}
2614 
2615 out_trans:
2616 	if (!trans)
2617 		goto out_free;
2618 
2619 	trans->block_rsv = &fs_info->trans_block_rsv;
2620 	if (ret)
2621 		btrfs_end_transaction(trans);
2622 	else
2623 		*trans_out = trans;
2624 out_free:
2625 	btrfs_free_block_rsv(fs_info, rsv);
2626 out:
2627 	return ret;
2628 }
2629 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2630 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2631 {
2632 	struct inode *inode = file_inode(file);
2633 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2634 	struct btrfs_root *root = BTRFS_I(inode)->root;
2635 	struct extent_state *cached_state = NULL;
2636 	struct btrfs_path *path;
2637 	struct btrfs_trans_handle *trans = NULL;
2638 	u64 lockstart;
2639 	u64 lockend;
2640 	u64 tail_start;
2641 	u64 tail_len;
2642 	u64 orig_start = offset;
2643 	int ret = 0;
2644 	bool same_block;
2645 	u64 ino_size;
2646 	bool truncated_block = false;
2647 	bool updated_inode = false;
2648 
2649 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2650 
2651 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2652 	if (ret)
2653 		goto out_only_mutex;
2654 
2655 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2656 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2657 	if (ret < 0)
2658 		goto out_only_mutex;
2659 	if (ret && !len) {
2660 		/* Already in a large hole */
2661 		ret = 0;
2662 		goto out_only_mutex;
2663 	}
2664 
2665 	ret = file_modified(file);
2666 	if (ret)
2667 		goto out_only_mutex;
2668 
2669 	lockstart = round_up(offset, fs_info->sectorsize);
2670 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2671 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2672 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2673 	/*
2674 	 * We needn't truncate any block which is beyond the end of the file
2675 	 * because we are sure there is no data there.
2676 	 */
2677 	/*
2678 	 * Only do this if we are in the same block and we aren't doing the
2679 	 * entire block.
2680 	 */
2681 	if (same_block && len < fs_info->sectorsize) {
2682 		if (offset < ino_size) {
2683 			truncated_block = true;
2684 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2685 						   0);
2686 		} else {
2687 			ret = 0;
2688 		}
2689 		goto out_only_mutex;
2690 	}
2691 
2692 	/* zero back part of the first block */
2693 	if (offset < ino_size) {
2694 		truncated_block = true;
2695 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2696 		if (ret) {
2697 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2698 			return ret;
2699 		}
2700 	}
2701 
2702 	/* Check the aligned pages after the first unaligned page,
2703 	 * if offset != orig_start, which means the first unaligned page
2704 	 * including several following pages are already in holes,
2705 	 * the extra check can be skipped */
2706 	if (offset == orig_start) {
2707 		/* after truncate page, check hole again */
2708 		len = offset + len - lockstart;
2709 		offset = lockstart;
2710 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2711 		if (ret < 0)
2712 			goto out_only_mutex;
2713 		if (ret && !len) {
2714 			ret = 0;
2715 			goto out_only_mutex;
2716 		}
2717 		lockstart = offset;
2718 	}
2719 
2720 	/* Check the tail unaligned part is in a hole */
2721 	tail_start = lockend + 1;
2722 	tail_len = offset + len - tail_start;
2723 	if (tail_len) {
2724 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2725 		if (unlikely(ret < 0))
2726 			goto out_only_mutex;
2727 		if (!ret) {
2728 			/* zero the front end of the last page */
2729 			if (tail_start + tail_len < ino_size) {
2730 				truncated_block = true;
2731 				ret = btrfs_truncate_block(BTRFS_I(inode),
2732 							tail_start + tail_len,
2733 							0, 1);
2734 				if (ret)
2735 					goto out_only_mutex;
2736 			}
2737 		}
2738 	}
2739 
2740 	if (lockend < lockstart) {
2741 		ret = 0;
2742 		goto out_only_mutex;
2743 	}
2744 
2745 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2746 
2747 	path = btrfs_alloc_path();
2748 	if (!path) {
2749 		ret = -ENOMEM;
2750 		goto out;
2751 	}
2752 
2753 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2754 					 lockend, NULL, &trans);
2755 	btrfs_free_path(path);
2756 	if (ret)
2757 		goto out;
2758 
2759 	ASSERT(trans != NULL);
2760 	inode_inc_iversion(inode);
2761 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2762 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2763 	updated_inode = true;
2764 	btrfs_end_transaction(trans);
2765 	btrfs_btree_balance_dirty(fs_info);
2766 out:
2767 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2768 		      &cached_state);
2769 out_only_mutex:
2770 	if (!updated_inode && truncated_block && !ret) {
2771 		/*
2772 		 * If we only end up zeroing part of a page, we still need to
2773 		 * update the inode item, so that all the time fields are
2774 		 * updated as well as the necessary btrfs inode in memory fields
2775 		 * for detecting, at fsync time, if the inode isn't yet in the
2776 		 * log tree or it's there but not up to date.
2777 		 */
2778 		struct timespec64 now = inode_set_ctime_current(inode);
2779 
2780 		inode_inc_iversion(inode);
2781 		inode_set_mtime_to_ts(inode, now);
2782 		trans = btrfs_start_transaction(root, 1);
2783 		if (IS_ERR(trans)) {
2784 			ret = PTR_ERR(trans);
2785 		} else {
2786 			int ret2;
2787 
2788 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2789 			ret2 = btrfs_end_transaction(trans);
2790 			if (!ret)
2791 				ret = ret2;
2792 		}
2793 	}
2794 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2795 	return ret;
2796 }
2797 
2798 /* Helper structure to record which range is already reserved */
2799 struct falloc_range {
2800 	struct list_head list;
2801 	u64 start;
2802 	u64 len;
2803 };
2804 
2805 /*
2806  * Helper function to add falloc range
2807  *
2808  * Caller should have locked the larger range of extent containing
2809  * [start, len)
2810  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2811 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2812 {
2813 	struct falloc_range *range = NULL;
2814 
2815 	if (!list_empty(head)) {
2816 		/*
2817 		 * As fallocate iterates by bytenr order, we only need to check
2818 		 * the last range.
2819 		 */
2820 		range = list_last_entry(head, struct falloc_range, list);
2821 		if (range->start + range->len == start) {
2822 			range->len += len;
2823 			return 0;
2824 		}
2825 	}
2826 
2827 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2828 	if (!range)
2829 		return -ENOMEM;
2830 	range->start = start;
2831 	range->len = len;
2832 	list_add_tail(&range->list, head);
2833 	return 0;
2834 }
2835 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2836 static int btrfs_fallocate_update_isize(struct inode *inode,
2837 					const u64 end,
2838 					const int mode)
2839 {
2840 	struct btrfs_trans_handle *trans;
2841 	struct btrfs_root *root = BTRFS_I(inode)->root;
2842 	int ret;
2843 	int ret2;
2844 
2845 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2846 		return 0;
2847 
2848 	trans = btrfs_start_transaction(root, 1);
2849 	if (IS_ERR(trans))
2850 		return PTR_ERR(trans);
2851 
2852 	inode_set_ctime_current(inode);
2853 	i_size_write(inode, end);
2854 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2855 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2856 	ret2 = btrfs_end_transaction(trans);
2857 
2858 	return ret ? ret : ret2;
2859 }
2860 
2861 enum {
2862 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2863 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2864 	RANGE_BOUNDARY_HOLE,
2865 };
2866 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2867 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2868 						 u64 offset)
2869 {
2870 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2871 	struct extent_map *em;
2872 	int ret;
2873 
2874 	offset = round_down(offset, sectorsize);
2875 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2876 	if (IS_ERR(em))
2877 		return PTR_ERR(em);
2878 
2879 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2880 		ret = RANGE_BOUNDARY_HOLE;
2881 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2882 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2883 	else
2884 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2885 
2886 	free_extent_map(em);
2887 	return ret;
2888 }
2889 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2890 static int btrfs_zero_range(struct inode *inode,
2891 			    loff_t offset,
2892 			    loff_t len,
2893 			    const int mode)
2894 {
2895 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2896 	struct extent_map *em;
2897 	struct extent_changeset *data_reserved = NULL;
2898 	int ret;
2899 	u64 alloc_hint = 0;
2900 	const u64 sectorsize = fs_info->sectorsize;
2901 	u64 alloc_start = round_down(offset, sectorsize);
2902 	u64 alloc_end = round_up(offset + len, sectorsize);
2903 	u64 bytes_to_reserve = 0;
2904 	bool space_reserved = false;
2905 
2906 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2907 			      alloc_end - alloc_start);
2908 	if (IS_ERR(em)) {
2909 		ret = PTR_ERR(em);
2910 		goto out;
2911 	}
2912 
2913 	/*
2914 	 * Avoid hole punching and extent allocation for some cases. More cases
2915 	 * could be considered, but these are unlikely common and we keep things
2916 	 * as simple as possible for now. Also, intentionally, if the target
2917 	 * range contains one or more prealloc extents together with regular
2918 	 * extents and holes, we drop all the existing extents and allocate a
2919 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2920 	 */
2921 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2922 		const u64 em_end = em->start + em->len;
2923 
2924 		if (em_end >= offset + len) {
2925 			/*
2926 			 * The whole range is already a prealloc extent,
2927 			 * do nothing except updating the inode's i_size if
2928 			 * needed.
2929 			 */
2930 			free_extent_map(em);
2931 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2932 							   mode);
2933 			goto out;
2934 		}
2935 		/*
2936 		 * Part of the range is already a prealloc extent, so operate
2937 		 * only on the remaining part of the range.
2938 		 */
2939 		alloc_start = em_end;
2940 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2941 		len = offset + len - alloc_start;
2942 		offset = alloc_start;
2943 		alloc_hint = extent_map_block_start(em) + em->len;
2944 	}
2945 	free_extent_map(em);
2946 
2947 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2948 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2949 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2950 		if (IS_ERR(em)) {
2951 			ret = PTR_ERR(em);
2952 			goto out;
2953 		}
2954 
2955 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2956 			free_extent_map(em);
2957 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2958 							   mode);
2959 			goto out;
2960 		}
2961 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2962 			free_extent_map(em);
2963 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2964 						   0);
2965 			if (!ret)
2966 				ret = btrfs_fallocate_update_isize(inode,
2967 								   offset + len,
2968 								   mode);
2969 			return ret;
2970 		}
2971 		free_extent_map(em);
2972 		alloc_start = round_down(offset, sectorsize);
2973 		alloc_end = alloc_start + sectorsize;
2974 		goto reserve_space;
2975 	}
2976 
2977 	alloc_start = round_up(offset, sectorsize);
2978 	alloc_end = round_down(offset + len, sectorsize);
2979 
2980 	/*
2981 	 * For unaligned ranges, check the pages at the boundaries, they might
2982 	 * map to an extent, in which case we need to partially zero them, or
2983 	 * they might map to a hole, in which case we need our allocation range
2984 	 * to cover them.
2985 	 */
2986 	if (!IS_ALIGNED(offset, sectorsize)) {
2987 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2988 							    offset);
2989 		if (ret < 0)
2990 			goto out;
2991 		if (ret == RANGE_BOUNDARY_HOLE) {
2992 			alloc_start = round_down(offset, sectorsize);
2993 			ret = 0;
2994 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2995 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2996 			if (ret)
2997 				goto out;
2998 		} else {
2999 			ret = 0;
3000 		}
3001 	}
3002 
3003 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3004 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3005 							    offset + len);
3006 		if (ret < 0)
3007 			goto out;
3008 		if (ret == RANGE_BOUNDARY_HOLE) {
3009 			alloc_end = round_up(offset + len, sectorsize);
3010 			ret = 0;
3011 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3012 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3013 						   0, 1);
3014 			if (ret)
3015 				goto out;
3016 		} else {
3017 			ret = 0;
3018 		}
3019 	}
3020 
3021 reserve_space:
3022 	if (alloc_start < alloc_end) {
3023 		struct extent_state *cached_state = NULL;
3024 		const u64 lockstart = alloc_start;
3025 		const u64 lockend = alloc_end - 1;
3026 
3027 		bytes_to_reserve = alloc_end - alloc_start;
3028 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3029 						      bytes_to_reserve);
3030 		if (ret < 0)
3031 			goto out;
3032 		space_reserved = true;
3033 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3034 					    &cached_state);
3035 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3036 						alloc_start, bytes_to_reserve);
3037 		if (ret) {
3038 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3039 				      lockend, &cached_state);
3040 			goto out;
3041 		}
3042 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3043 						alloc_end - alloc_start,
3044 						fs_info->sectorsize,
3045 						offset + len, &alloc_hint);
3046 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3047 			      &cached_state);
3048 		/* btrfs_prealloc_file_range releases reserved space on error */
3049 		if (ret) {
3050 			space_reserved = false;
3051 			goto out;
3052 		}
3053 	}
3054 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3055  out:
3056 	if (ret && space_reserved)
3057 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3058 					       alloc_start, bytes_to_reserve);
3059 	extent_changeset_free(data_reserved);
3060 
3061 	return ret;
3062 }
3063 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3064 static long btrfs_fallocate(struct file *file, int mode,
3065 			    loff_t offset, loff_t len)
3066 {
3067 	struct inode *inode = file_inode(file);
3068 	struct extent_state *cached_state = NULL;
3069 	struct extent_changeset *data_reserved = NULL;
3070 	struct falloc_range *range;
3071 	struct falloc_range *tmp;
3072 	LIST_HEAD(reserve_list);
3073 	u64 cur_offset;
3074 	u64 last_byte;
3075 	u64 alloc_start;
3076 	u64 alloc_end;
3077 	u64 alloc_hint = 0;
3078 	u64 locked_end;
3079 	u64 actual_end = 0;
3080 	u64 data_space_needed = 0;
3081 	u64 data_space_reserved = 0;
3082 	u64 qgroup_reserved = 0;
3083 	struct extent_map *em;
3084 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3085 	int ret;
3086 
3087 	/* Do not allow fallocate in ZONED mode */
3088 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3089 		return -EOPNOTSUPP;
3090 
3091 	alloc_start = round_down(offset, blocksize);
3092 	alloc_end = round_up(offset + len, blocksize);
3093 	cur_offset = alloc_start;
3094 
3095 	/* Make sure we aren't being give some crap mode */
3096 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3097 		     FALLOC_FL_ZERO_RANGE))
3098 		return -EOPNOTSUPP;
3099 
3100 	if (mode & FALLOC_FL_PUNCH_HOLE)
3101 		return btrfs_punch_hole(file, offset, len);
3102 
3103 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3104 
3105 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3106 		ret = inode_newsize_ok(inode, offset + len);
3107 		if (ret)
3108 			goto out;
3109 	}
3110 
3111 	ret = file_modified(file);
3112 	if (ret)
3113 		goto out;
3114 
3115 	/*
3116 	 * TODO: Move these two operations after we have checked
3117 	 * accurate reserved space, or fallocate can still fail but
3118 	 * with page truncated or size expanded.
3119 	 *
3120 	 * But that's a minor problem and won't do much harm BTW.
3121 	 */
3122 	if (alloc_start > inode->i_size) {
3123 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3124 					alloc_start);
3125 		if (ret)
3126 			goto out;
3127 	} else if (offset + len > inode->i_size) {
3128 		/*
3129 		 * If we are fallocating from the end of the file onward we
3130 		 * need to zero out the end of the block if i_size lands in the
3131 		 * middle of a block.
3132 		 */
3133 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3134 		if (ret)
3135 			goto out;
3136 	}
3137 
3138 	/*
3139 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3140 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3141 	 * locking the file range, flush all dealloc in the range and wait for
3142 	 * all ordered extents in the range to complete. After this we can lock
3143 	 * the file range and, due to the previous locking we did, we know there
3144 	 * can't be more delalloc or ordered extents in the range.
3145 	 */
3146 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3147 				       alloc_end - alloc_start);
3148 	if (ret)
3149 		goto out;
3150 
3151 	if (mode & FALLOC_FL_ZERO_RANGE) {
3152 		ret = btrfs_zero_range(inode, offset, len, mode);
3153 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3154 		return ret;
3155 	}
3156 
3157 	locked_end = alloc_end - 1;
3158 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3159 		    &cached_state);
3160 
3161 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3162 
3163 	/* First, check if we exceed the qgroup limit */
3164 	while (cur_offset < alloc_end) {
3165 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3166 				      alloc_end - cur_offset);
3167 		if (IS_ERR(em)) {
3168 			ret = PTR_ERR(em);
3169 			break;
3170 		}
3171 		last_byte = min(extent_map_end(em), alloc_end);
3172 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3173 		last_byte = ALIGN(last_byte, blocksize);
3174 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3175 		    (cur_offset >= inode->i_size &&
3176 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3177 			const u64 range_len = last_byte - cur_offset;
3178 
3179 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3180 			if (ret < 0) {
3181 				free_extent_map(em);
3182 				break;
3183 			}
3184 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3185 					&data_reserved, cur_offset, range_len);
3186 			if (ret < 0) {
3187 				free_extent_map(em);
3188 				break;
3189 			}
3190 			qgroup_reserved += range_len;
3191 			data_space_needed += range_len;
3192 		}
3193 		free_extent_map(em);
3194 		cur_offset = last_byte;
3195 	}
3196 
3197 	if (!ret && data_space_needed > 0) {
3198 		/*
3199 		 * We are safe to reserve space here as we can't have delalloc
3200 		 * in the range, see above.
3201 		 */
3202 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3203 						      data_space_needed);
3204 		if (!ret)
3205 			data_space_reserved = data_space_needed;
3206 	}
3207 
3208 	/*
3209 	 * If ret is still 0, means we're OK to fallocate.
3210 	 * Or just cleanup the list and exit.
3211 	 */
3212 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3213 		if (!ret) {
3214 			ret = btrfs_prealloc_file_range(inode, mode,
3215 					range->start,
3216 					range->len, blocksize,
3217 					offset + len, &alloc_hint);
3218 			/*
3219 			 * btrfs_prealloc_file_range() releases space even
3220 			 * if it returns an error.
3221 			 */
3222 			data_space_reserved -= range->len;
3223 			qgroup_reserved -= range->len;
3224 		} else if (data_space_reserved > 0) {
3225 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3226 					       data_reserved, range->start,
3227 					       range->len);
3228 			data_space_reserved -= range->len;
3229 			qgroup_reserved -= range->len;
3230 		} else if (qgroup_reserved > 0) {
3231 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3232 					       range->start, range->len, NULL);
3233 			qgroup_reserved -= range->len;
3234 		}
3235 		list_del(&range->list);
3236 		kfree(range);
3237 	}
3238 	if (ret < 0)
3239 		goto out_unlock;
3240 
3241 	/*
3242 	 * We didn't need to allocate any more space, but we still extended the
3243 	 * size of the file so we need to update i_size and the inode item.
3244 	 */
3245 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3246 out_unlock:
3247 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3248 		      &cached_state);
3249 out:
3250 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3251 	extent_changeset_free(data_reserved);
3252 	return ret;
3253 }
3254 
3255 /*
3256  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3257  * that has unflushed and/or flushing delalloc. There might be other adjacent
3258  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3259  * looping while it gets adjacent subranges, and merging them together.
3260  */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3261 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3262 				   struct extent_state **cached_state,
3263 				   bool *search_io_tree,
3264 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3265 {
3266 	u64 len = end + 1 - start;
3267 	u64 delalloc_len = 0;
3268 	struct btrfs_ordered_extent *oe;
3269 	u64 oe_start;
3270 	u64 oe_end;
3271 
3272 	/*
3273 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3274 	 * means we have delalloc (dirty pages) for which writeback has not
3275 	 * started yet.
3276 	 */
3277 	if (*search_io_tree) {
3278 		spin_lock(&inode->lock);
3279 		if (inode->delalloc_bytes > 0) {
3280 			spin_unlock(&inode->lock);
3281 			*delalloc_start_ret = start;
3282 			delalloc_len = count_range_bits(&inode->io_tree,
3283 							delalloc_start_ret, end,
3284 							len, EXTENT_DELALLOC, 1,
3285 							cached_state);
3286 		} else {
3287 			spin_unlock(&inode->lock);
3288 		}
3289 	}
3290 
3291 	if (delalloc_len > 0) {
3292 		/*
3293 		 * If delalloc was found then *delalloc_start_ret has a sector size
3294 		 * aligned value (rounded down).
3295 		 */
3296 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3297 
3298 		if (*delalloc_start_ret == start) {
3299 			/* Delalloc for the whole range, nothing more to do. */
3300 			if (*delalloc_end_ret == end)
3301 				return true;
3302 			/* Else trim our search range for ordered extents. */
3303 			start = *delalloc_end_ret + 1;
3304 			len = end + 1 - start;
3305 		}
3306 	} else {
3307 		/* No delalloc, future calls don't need to search again. */
3308 		*search_io_tree = false;
3309 	}
3310 
3311 	/*
3312 	 * Now also check if there's any ordered extent in the range.
3313 	 * We do this because:
3314 	 *
3315 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3316 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3317 	 *    an ordered extent for the write. So we might just have been called
3318 	 *    after delalloc is flushed and before the ordered extent completes
3319 	 *    and inserts the new file extent item in the subvolume's btree;
3320 	 *
3321 	 * 2) We may have an ordered extent created by flushing delalloc for a
3322 	 *    subrange that starts before the subrange we found marked with
3323 	 *    EXTENT_DELALLOC in the io tree.
3324 	 *
3325 	 * We could also use the extent map tree to find such delalloc that is
3326 	 * being flushed, but using the ordered extents tree is more efficient
3327 	 * because it's usually much smaller as ordered extents are removed from
3328 	 * the tree once they complete. With the extent maps, we mau have them
3329 	 * in the extent map tree for a very long time, and they were either
3330 	 * created by previous writes or loaded by read operations.
3331 	 */
3332 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3333 	if (!oe)
3334 		return (delalloc_len > 0);
3335 
3336 	/* The ordered extent may span beyond our search range. */
3337 	oe_start = max(oe->file_offset, start);
3338 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3339 
3340 	btrfs_put_ordered_extent(oe);
3341 
3342 	/* Don't have unflushed delalloc, return the ordered extent range. */
3343 	if (delalloc_len == 0) {
3344 		*delalloc_start_ret = oe_start;
3345 		*delalloc_end_ret = oe_end;
3346 		return true;
3347 	}
3348 
3349 	/*
3350 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3351 	 * If the ranges are adjacent returned a combined range, otherwise
3352 	 * return the leftmost range.
3353 	 */
3354 	if (oe_start < *delalloc_start_ret) {
3355 		if (oe_end < *delalloc_start_ret)
3356 			*delalloc_end_ret = oe_end;
3357 		*delalloc_start_ret = oe_start;
3358 	} else if (*delalloc_end_ret + 1 == oe_start) {
3359 		*delalloc_end_ret = oe_end;
3360 	}
3361 
3362 	return true;
3363 }
3364 
3365 /*
3366  * Check if there's delalloc in a given range.
3367  *
3368  * @inode:               The inode.
3369  * @start:               The start offset of the range. It does not need to be
3370  *                       sector size aligned.
3371  * @end:                 The end offset (inclusive value) of the search range.
3372  *                       It does not need to be sector size aligned.
3373  * @cached_state:        Extent state record used for speeding up delalloc
3374  *                       searches in the inode's io_tree. Can be NULL.
3375  * @delalloc_start_ret:  Output argument, set to the start offset of the
3376  *                       subrange found with delalloc (may not be sector size
3377  *                       aligned).
3378  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3379  *                       of the subrange found with delalloc.
3380  *
3381  * Returns true if a subrange with delalloc is found within the given range, and
3382  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3383  * end offsets of the subrange.
3384  */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3385 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3386 				  struct extent_state **cached_state,
3387 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3388 {
3389 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3390 	u64 prev_delalloc_end = 0;
3391 	bool search_io_tree = true;
3392 	bool ret = false;
3393 
3394 	while (cur_offset <= end) {
3395 		u64 delalloc_start;
3396 		u64 delalloc_end;
3397 		bool delalloc;
3398 
3399 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3400 						  cached_state, &search_io_tree,
3401 						  &delalloc_start,
3402 						  &delalloc_end);
3403 		if (!delalloc)
3404 			break;
3405 
3406 		if (prev_delalloc_end == 0) {
3407 			/* First subrange found. */
3408 			*delalloc_start_ret = max(delalloc_start, start);
3409 			*delalloc_end_ret = delalloc_end;
3410 			ret = true;
3411 		} else if (delalloc_start == prev_delalloc_end + 1) {
3412 			/* Subrange adjacent to the previous one, merge them. */
3413 			*delalloc_end_ret = delalloc_end;
3414 		} else {
3415 			/* Subrange not adjacent to the previous one, exit. */
3416 			break;
3417 		}
3418 
3419 		prev_delalloc_end = delalloc_end;
3420 		cur_offset = delalloc_end + 1;
3421 		cond_resched();
3422 	}
3423 
3424 	return ret;
3425 }
3426 
3427 /*
3428  * Check if there's a hole or delalloc range in a range representing a hole (or
3429  * prealloc extent) found in the inode's subvolume btree.
3430  *
3431  * @inode:      The inode.
3432  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3433  * @start:      Start offset of the hole region. It does not need to be sector
3434  *              size aligned.
3435  * @end:        End offset (inclusive value) of the hole region. It does not
3436  *              need to be sector size aligned.
3437  * @start_ret:  Return parameter, used to set the start of the subrange in the
3438  *              hole that matches the search criteria (seek mode), if such
3439  *              subrange is found (return value of the function is true).
3440  *              The value returned here may not be sector size aligned.
3441  *
3442  * Returns true if a subrange matching the given seek mode is found, and if one
3443  * is found, it updates @start_ret with the start of the subrange.
3444  */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3445 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3446 					struct extent_state **cached_state,
3447 					u64 start, u64 end, u64 *start_ret)
3448 {
3449 	u64 delalloc_start;
3450 	u64 delalloc_end;
3451 	bool delalloc;
3452 
3453 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3454 						&delalloc_start, &delalloc_end);
3455 	if (delalloc && whence == SEEK_DATA) {
3456 		*start_ret = delalloc_start;
3457 		return true;
3458 	}
3459 
3460 	if (delalloc && whence == SEEK_HOLE) {
3461 		/*
3462 		 * We found delalloc but it starts after out start offset. So we
3463 		 * have a hole between our start offset and the delalloc start.
3464 		 */
3465 		if (start < delalloc_start) {
3466 			*start_ret = start;
3467 			return true;
3468 		}
3469 		/*
3470 		 * Delalloc range starts at our start offset.
3471 		 * If the delalloc range's length is smaller than our range,
3472 		 * then it means we have a hole that starts where the delalloc
3473 		 * subrange ends.
3474 		 */
3475 		if (delalloc_end < end) {
3476 			*start_ret = delalloc_end + 1;
3477 			return true;
3478 		}
3479 
3480 		/* There's delalloc for the whole range. */
3481 		return false;
3482 	}
3483 
3484 	if (!delalloc && whence == SEEK_HOLE) {
3485 		*start_ret = start;
3486 		return true;
3487 	}
3488 
3489 	/*
3490 	 * No delalloc in the range and we are seeking for data. The caller has
3491 	 * to iterate to the next extent item in the subvolume btree.
3492 	 */
3493 	return false;
3494 }
3495 
find_desired_extent(struct file * file,loff_t offset,int whence)3496 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3497 {
3498 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3499 	struct btrfs_file_private *private;
3500 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3501 	struct extent_state *cached_state = NULL;
3502 	struct extent_state **delalloc_cached_state;
3503 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3504 	const u64 ino = btrfs_ino(inode);
3505 	struct btrfs_root *root = inode->root;
3506 	struct btrfs_path *path;
3507 	struct btrfs_key key;
3508 	u64 last_extent_end;
3509 	u64 lockstart;
3510 	u64 lockend;
3511 	u64 start;
3512 	int ret;
3513 	bool found = false;
3514 
3515 	if (i_size == 0 || offset >= i_size)
3516 		return -ENXIO;
3517 
3518 	/*
3519 	 * Quick path. If the inode has no prealloc extents and its number of
3520 	 * bytes used matches its i_size, then it can not have holes.
3521 	 */
3522 	if (whence == SEEK_HOLE &&
3523 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3524 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3525 		return i_size;
3526 
3527 	spin_lock(&inode->lock);
3528 	private = file->private_data;
3529 	spin_unlock(&inode->lock);
3530 
3531 	if (private && private->owner_task != current) {
3532 		/*
3533 		 * Not allocated by us, don't use it as its cached state is used
3534 		 * by the task that allocated it and we don't want neither to
3535 		 * mess with it nor get incorrect results because it reflects an
3536 		 * invalid state for the current task.
3537 		 */
3538 		private = NULL;
3539 	} else if (!private) {
3540 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3541 		/*
3542 		 * No worries if memory allocation failed.
3543 		 * The private structure is used only for speeding up multiple
3544 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3545 		 * so everything will still be correct.
3546 		 */
3547 		if (private) {
3548 			bool free = false;
3549 
3550 			private->owner_task = current;
3551 
3552 			spin_lock(&inode->lock);
3553 			if (file->private_data)
3554 				free = true;
3555 			else
3556 				file->private_data = private;
3557 			spin_unlock(&inode->lock);
3558 
3559 			if (free) {
3560 				kfree(private);
3561 				private = NULL;
3562 			}
3563 		}
3564 	}
3565 
3566 	if (private)
3567 		delalloc_cached_state = &private->llseek_cached_state;
3568 	else
3569 		delalloc_cached_state = NULL;
3570 
3571 	/*
3572 	 * offset can be negative, in this case we start finding DATA/HOLE from
3573 	 * the very start of the file.
3574 	 */
3575 	start = max_t(loff_t, 0, offset);
3576 
3577 	lockstart = round_down(start, fs_info->sectorsize);
3578 	lockend = round_up(i_size, fs_info->sectorsize);
3579 	if (lockend <= lockstart)
3580 		lockend = lockstart + fs_info->sectorsize;
3581 	lockend--;
3582 
3583 	path = btrfs_alloc_path();
3584 	if (!path)
3585 		return -ENOMEM;
3586 	path->reada = READA_FORWARD;
3587 
3588 	key.objectid = ino;
3589 	key.type = BTRFS_EXTENT_DATA_KEY;
3590 	key.offset = start;
3591 
3592 	last_extent_end = lockstart;
3593 
3594 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3595 
3596 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3597 	if (ret < 0) {
3598 		goto out;
3599 	} else if (ret > 0 && path->slots[0] > 0) {
3600 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3601 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3602 			path->slots[0]--;
3603 	}
3604 
3605 	while (start < i_size) {
3606 		struct extent_buffer *leaf = path->nodes[0];
3607 		struct btrfs_file_extent_item *extent;
3608 		u64 extent_end;
3609 		u8 type;
3610 
3611 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3612 			ret = btrfs_next_leaf(root, path);
3613 			if (ret < 0)
3614 				goto out;
3615 			else if (ret > 0)
3616 				break;
3617 
3618 			leaf = path->nodes[0];
3619 		}
3620 
3621 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3622 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3623 			break;
3624 
3625 		extent_end = btrfs_file_extent_end(path);
3626 
3627 		/*
3628 		 * In the first iteration we may have a slot that points to an
3629 		 * extent that ends before our start offset, so skip it.
3630 		 */
3631 		if (extent_end <= start) {
3632 			path->slots[0]++;
3633 			continue;
3634 		}
3635 
3636 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3637 		if (last_extent_end < key.offset) {
3638 			u64 search_start = last_extent_end;
3639 			u64 found_start;
3640 
3641 			/*
3642 			 * First iteration, @start matches @offset and it's
3643 			 * within the hole.
3644 			 */
3645 			if (start == offset)
3646 				search_start = offset;
3647 
3648 			found = find_desired_extent_in_hole(inode, whence,
3649 							    delalloc_cached_state,
3650 							    search_start,
3651 							    key.offset - 1,
3652 							    &found_start);
3653 			if (found) {
3654 				start = found_start;
3655 				break;
3656 			}
3657 			/*
3658 			 * Didn't find data or a hole (due to delalloc) in the
3659 			 * implicit hole range, so need to analyze the extent.
3660 			 */
3661 		}
3662 
3663 		extent = btrfs_item_ptr(leaf, path->slots[0],
3664 					struct btrfs_file_extent_item);
3665 		type = btrfs_file_extent_type(leaf, extent);
3666 
3667 		/*
3668 		 * Can't access the extent's disk_bytenr field if this is an
3669 		 * inline extent, since at that offset, it's where the extent
3670 		 * data starts.
3671 		 */
3672 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3673 		    (type == BTRFS_FILE_EXTENT_REG &&
3674 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3675 			/*
3676 			 * Explicit hole or prealloc extent, search for delalloc.
3677 			 * A prealloc extent is treated like a hole.
3678 			 */
3679 			u64 search_start = key.offset;
3680 			u64 found_start;
3681 
3682 			/*
3683 			 * First iteration, @start matches @offset and it's
3684 			 * within the hole.
3685 			 */
3686 			if (start == offset)
3687 				search_start = offset;
3688 
3689 			found = find_desired_extent_in_hole(inode, whence,
3690 							    delalloc_cached_state,
3691 							    search_start,
3692 							    extent_end - 1,
3693 							    &found_start);
3694 			if (found) {
3695 				start = found_start;
3696 				break;
3697 			}
3698 			/*
3699 			 * Didn't find data or a hole (due to delalloc) in the
3700 			 * implicit hole range, so need to analyze the next
3701 			 * extent item.
3702 			 */
3703 		} else {
3704 			/*
3705 			 * Found a regular or inline extent.
3706 			 * If we are seeking for data, adjust the start offset
3707 			 * and stop, we're done.
3708 			 */
3709 			if (whence == SEEK_DATA) {
3710 				start = max_t(u64, key.offset, offset);
3711 				found = true;
3712 				break;
3713 			}
3714 			/*
3715 			 * Else, we are seeking for a hole, check the next file
3716 			 * extent item.
3717 			 */
3718 		}
3719 
3720 		start = extent_end;
3721 		last_extent_end = extent_end;
3722 		path->slots[0]++;
3723 		if (fatal_signal_pending(current)) {
3724 			ret = -EINTR;
3725 			goto out;
3726 		}
3727 		cond_resched();
3728 	}
3729 
3730 	/* We have an implicit hole from the last extent found up to i_size. */
3731 	if (!found && start < i_size) {
3732 		found = find_desired_extent_in_hole(inode, whence,
3733 						    delalloc_cached_state, start,
3734 						    i_size - 1, &start);
3735 		if (!found)
3736 			start = i_size;
3737 	}
3738 
3739 out:
3740 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3741 	btrfs_free_path(path);
3742 
3743 	if (ret < 0)
3744 		return ret;
3745 
3746 	if (whence == SEEK_DATA && start >= i_size)
3747 		return -ENXIO;
3748 
3749 	return min_t(loff_t, start, i_size);
3750 }
3751 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3752 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3753 {
3754 	struct inode *inode = file->f_mapping->host;
3755 
3756 	switch (whence) {
3757 	default:
3758 		return generic_file_llseek(file, offset, whence);
3759 	case SEEK_DATA:
3760 	case SEEK_HOLE:
3761 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3762 		offset = find_desired_extent(file, offset, whence);
3763 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3764 		break;
3765 	}
3766 
3767 	if (offset < 0)
3768 		return offset;
3769 
3770 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3771 }
3772 
btrfs_file_open(struct inode * inode,struct file * filp)3773 static int btrfs_file_open(struct inode *inode, struct file *filp)
3774 {
3775 	int ret;
3776 
3777 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3778 
3779 	ret = fsverity_file_open(inode, filp);
3780 	if (ret)
3781 		return ret;
3782 	return generic_file_open(inode, filp);
3783 }
3784 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3785 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3786 {
3787 	ssize_t ret = 0;
3788 
3789 	if (iocb->ki_flags & IOCB_DIRECT) {
3790 		ret = btrfs_direct_read(iocb, to);
3791 		if (ret < 0 || !iov_iter_count(to) ||
3792 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3793 			return ret;
3794 	}
3795 
3796 	return filemap_read(iocb, to, ret);
3797 }
3798 
3799 const struct file_operations btrfs_file_operations = {
3800 	.llseek		= btrfs_file_llseek,
3801 	.read_iter      = btrfs_file_read_iter,
3802 	.splice_read	= filemap_splice_read,
3803 	.write_iter	= btrfs_file_write_iter,
3804 	.splice_write	= iter_file_splice_write,
3805 	.mmap		= btrfs_file_mmap,
3806 	.open		= btrfs_file_open,
3807 	.release	= btrfs_release_file,
3808 	.get_unmapped_area = thp_get_unmapped_area,
3809 	.fsync		= btrfs_sync_file,
3810 	.fallocate	= btrfs_fallocate,
3811 	.unlocked_ioctl	= btrfs_ioctl,
3812 #ifdef CONFIG_COMPAT
3813 	.compat_ioctl	= btrfs_compat_ioctl,
3814 #endif
3815 	.remap_file_range = btrfs_remap_file_range,
3816 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3817 };
3818 
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3819 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3820 {
3821 	struct address_space *mapping = inode->vfs_inode.i_mapping;
3822 	int ret;
3823 
3824 	/*
3825 	 * So with compression we will find and lock a dirty page and clear the
3826 	 * first one as dirty, setup an async extent, and immediately return
3827 	 * with the entire range locked but with nobody actually marked with
3828 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3829 	 * expect it to work since it will just kick off a thread to do the
3830 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3831 	 * since it will wait on the page lock, which won't be unlocked until
3832 	 * after the pages have been marked as writeback and so we're good to go
3833 	 * from there.  We have to do this otherwise we'll miss the ordered
3834 	 * extents and that results in badness.  Please Josef, do not think you
3835 	 * know better and pull this out at some point in the future, it is
3836 	 * right and you are wrong.
3837 	 */
3838 	ret = filemap_fdatawrite_range(mapping, start, end);
3839 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3840 		ret = filemap_fdatawrite_range(mapping, start, end);
3841 
3842 	return ret;
3843 }
3844