1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
ordered_tree_search(struct btrfs_inode * inode,u64 file_offset)127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 u64 file_offset)
129 {
130 struct rb_node *prev = NULL;
131 struct rb_node *ret;
132 struct btrfs_ordered_extent *entry;
133
134 if (inode->ordered_tree_last) {
135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 rb_node);
137 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 return inode->ordered_tree_last;
139 }
140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 if (!ret)
142 ret = prev;
143 if (ret)
144 inode->ordered_tree_last = ret;
145 return ret;
146 }
147
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 u64 offset, unsigned long flags, int compress_type)
152 {
153 struct btrfs_ordered_extent *entry;
154 int ret;
155 u64 qgroup_rsv = 0;
156 const bool is_nocow = (flags &
157 ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
158
159 if (is_nocow) {
160 /* For nocow write, we can release the qgroup rsv right now */
161 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162 if (ret < 0)
163 return ERR_PTR(ret);
164 } else {
165 /*
166 * The ordered extent has reserved qgroup space, release now
167 * and pass the reserved number for qgroup_record to free.
168 */
169 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170 if (ret < 0)
171 return ERR_PTR(ret);
172 }
173 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174 if (!entry) {
175 if (!is_nocow)
176 btrfs_qgroup_free_refroot(inode->root->fs_info,
177 btrfs_root_id(inode->root),
178 qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
179 return ERR_PTR(-ENOMEM);
180 }
181
182 entry->file_offset = file_offset;
183 entry->num_bytes = num_bytes;
184 entry->ram_bytes = ram_bytes;
185 entry->disk_bytenr = disk_bytenr;
186 entry->disk_num_bytes = disk_num_bytes;
187 entry->offset = offset;
188 entry->bytes_left = num_bytes;
189 entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
190 entry->compress_type = compress_type;
191 entry->truncated_len = (u64)-1;
192 entry->qgroup_rsv = qgroup_rsv;
193 entry->flags = flags;
194 refcount_set(&entry->refs, 1);
195 init_waitqueue_head(&entry->wait);
196 INIT_LIST_HEAD(&entry->list);
197 INIT_LIST_HEAD(&entry->log_list);
198 INIT_LIST_HEAD(&entry->root_extent_list);
199 INIT_LIST_HEAD(&entry->work_list);
200 INIT_LIST_HEAD(&entry->bioc_list);
201 init_completion(&entry->completion);
202
203 /*
204 * We don't need the count_max_extents here, we can assume that all of
205 * that work has been done at higher layers, so this is truly the
206 * smallest the extent is going to get.
207 */
208 spin_lock(&inode->lock);
209 btrfs_mod_outstanding_extents(inode, 1);
210 spin_unlock(&inode->lock);
211
212 return entry;
213 }
214
insert_ordered_extent(struct btrfs_ordered_extent * entry)215 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
216 {
217 struct btrfs_inode *inode = entry->inode;
218 struct btrfs_root *root = inode->root;
219 struct btrfs_fs_info *fs_info = root->fs_info;
220 struct rb_node *node;
221
222 trace_btrfs_ordered_extent_add(inode, entry);
223
224 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
225 fs_info->delalloc_batch);
226
227 /* One ref for the tree. */
228 refcount_inc(&entry->refs);
229
230 spin_lock_irq(&inode->ordered_tree_lock);
231 node = tree_insert(&inode->ordered_tree, entry->file_offset,
232 &entry->rb_node);
233 if (unlikely(node))
234 btrfs_panic(fs_info, -EEXIST,
235 "inconsistency in ordered tree at offset %llu",
236 entry->file_offset);
237 spin_unlock_irq(&inode->ordered_tree_lock);
238
239 spin_lock(&root->ordered_extent_lock);
240 list_add_tail(&entry->root_extent_list,
241 &root->ordered_extents);
242 root->nr_ordered_extents++;
243 if (root->nr_ordered_extents == 1) {
244 spin_lock(&fs_info->ordered_root_lock);
245 BUG_ON(!list_empty(&root->ordered_root));
246 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
247 spin_unlock(&fs_info->ordered_root_lock);
248 }
249 spin_unlock(&root->ordered_extent_lock);
250 }
251
252 /*
253 * Add an ordered extent to the per-inode tree.
254 *
255 * @inode: Inode that this extent is for.
256 * @file_offset: Logical offset in file where the extent starts.
257 * @num_bytes: Logical length of extent in file.
258 * @ram_bytes: Full length of unencoded data.
259 * @disk_bytenr: Offset of extent on disk.
260 * @disk_num_bytes: Size of extent on disk.
261 * @offset: Offset into unencoded data where file data starts.
262 * @flags: Flags specifying type of extent (1U << BTRFS_ORDERED_*).
263 * @compress_type: Compression algorithm used for data.
264 *
265 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
266 * tree is given a single reference on the ordered extent that was inserted, and
267 * the returned pointer is given a second reference.
268 *
269 * Return: the new ordered extent or error pointer.
270 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,const struct btrfs_file_extent * file_extent,unsigned long flags)271 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
272 struct btrfs_inode *inode, u64 file_offset,
273 const struct btrfs_file_extent *file_extent, unsigned long flags)
274 {
275 struct btrfs_ordered_extent *entry;
276
277 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
278
279 /*
280 * For regular writes, we just use the members in @file_extent.
281 *
282 * For NOCOW, we don't really care about the numbers except @start and
283 * file_extent->num_bytes, as we won't insert a file extent item at all.
284 *
285 * For PREALLOC, we do not use ordered extent members, but
286 * btrfs_mark_extent_written() handles everything.
287 *
288 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
289 * or btrfs_split_ordered_extent() cannot handle it correctly.
290 */
291 if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
292 entry = alloc_ordered_extent(inode, file_offset,
293 file_extent->num_bytes,
294 file_extent->num_bytes,
295 file_extent->disk_bytenr + file_extent->offset,
296 file_extent->num_bytes, 0, flags,
297 file_extent->compression);
298 else
299 entry = alloc_ordered_extent(inode, file_offset,
300 file_extent->num_bytes,
301 file_extent->ram_bytes,
302 file_extent->disk_bytenr,
303 file_extent->disk_num_bytes,
304 file_extent->offset, flags,
305 file_extent->compression);
306 if (!IS_ERR(entry))
307 insert_ordered_extent(entry);
308 return entry;
309 }
310
311 /*
312 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
313 * when an ordered extent is finished. If the list covers more than one
314 * ordered extent, it is split across multiples.
315 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)316 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
317 struct btrfs_ordered_sum *sum)
318 {
319 struct btrfs_inode *inode = entry->inode;
320
321 spin_lock_irq(&inode->ordered_tree_lock);
322 list_add_tail(&sum->list, &entry->list);
323 spin_unlock_irq(&inode->ordered_tree_lock);
324 }
325
btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent * ordered)326 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
327 {
328 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
329 mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
330 }
331
finish_ordered_fn(struct btrfs_work * work)332 static void finish_ordered_fn(struct btrfs_work *work)
333 {
334 struct btrfs_ordered_extent *ordered_extent;
335
336 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
337 btrfs_finish_ordered_io(ordered_extent);
338 }
339
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)340 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
341 struct folio *folio, u64 file_offset,
342 u64 len, bool uptodate)
343 {
344 struct btrfs_inode *inode = ordered->inode;
345 struct btrfs_fs_info *fs_info = inode->root->fs_info;
346
347 lockdep_assert_held(&inode->ordered_tree_lock);
348
349 if (folio) {
350 ASSERT(folio->mapping);
351 ASSERT(folio_pos(folio) <= file_offset);
352 ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
353
354 /*
355 * Ordered (Private2) bit indicates whether we still have
356 * pending io unfinished for the ordered extent.
357 *
358 * If there's no such bit, we need to skip to next range.
359 */
360 if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
361 return false;
362 btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
363 }
364
365 /* Now we're fine to update the accounting. */
366 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
367 btrfs_crit(fs_info,
368 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
369 btrfs_root_id(inode->root), btrfs_ino(inode),
370 ordered->file_offset, ordered->num_bytes,
371 len, ordered->bytes_left);
372 ordered->bytes_left = 0;
373 } else {
374 ordered->bytes_left -= len;
375 }
376
377 if (!uptodate)
378 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
379
380 if (ordered->bytes_left)
381 return false;
382
383 /*
384 * All the IO of the ordered extent is finished, we need to queue
385 * the finish_func to be executed.
386 */
387 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
388 cond_wake_up(&ordered->wait);
389 refcount_inc(&ordered->refs);
390 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
391 return true;
392 }
393
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)394 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
395 {
396 struct btrfs_inode *inode = ordered->inode;
397 struct btrfs_fs_info *fs_info = inode->root->fs_info;
398 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
399 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
400
401 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
402 btrfs_queue_work(wq, &ordered->work);
403 }
404
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)405 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
406 struct folio *folio, u64 file_offset, u64 len,
407 bool uptodate)
408 {
409 struct btrfs_inode *inode = ordered->inode;
410 unsigned long flags;
411 bool ret;
412
413 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
414
415 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416 ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
417 uptodate);
418 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
419
420 /*
421 * If this is a COW write it means we created new extent maps for the
422 * range and they point to unwritten locations if we got an error either
423 * before submitting a bio or during IO.
424 *
425 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
426 * are queuing its completion below. During completion, at
427 * btrfs_finish_one_ordered(), we will drop the extent maps for the
428 * unwritten extents.
429 *
430 * However because completion runs in a work queue we can end up having
431 * a fast fsync running before that. In the case of direct IO, once we
432 * unlock the inode the fsync might start, and we queue the completion
433 * before unlocking the inode. In the case of buffered IO when writeback
434 * finishes (end_bbio_data_write()) we queue the completion, so if the
435 * writeback was triggered by a fast fsync, the fsync might start
436 * logging before ordered extent completion runs in the work queue.
437 *
438 * The fast fsync will log file extent items based on the extent maps it
439 * finds, so if by the time it collects extent maps the ordered extent
440 * completion didn't happen yet, it will log file extent items that
441 * point to unwritten extents, resulting in a corruption if a crash
442 * happens and the log tree is replayed. Note that a fast fsync does not
443 * wait for completion of ordered extents in order to reduce latency.
444 *
445 * Set a flag in the inode so that the next fast fsync will wait for
446 * ordered extents to complete before starting to log.
447 */
448 if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
449 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
450
451 if (ret)
452 btrfs_queue_ordered_fn(ordered);
453 }
454
455 /*
456 * Mark all ordered extents io inside the specified range finished.
457 *
458 * @folio: The involved folio for the operation.
459 * For uncompressed buffered IO, the folio status also needs to be
460 * updated to indicate whether the pending ordered io is finished.
461 * Can be NULL for direct IO and compressed write.
462 * For these cases, callers are ensured they won't execute the
463 * endio function twice.
464 *
465 * This function is called for endio, thus the range must have ordered
466 * extent(s) covering it.
467 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct folio * folio,u64 file_offset,u64 num_bytes,bool uptodate)468 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
469 struct folio *folio, u64 file_offset,
470 u64 num_bytes, bool uptodate)
471 {
472 struct rb_node *node;
473 struct btrfs_ordered_extent *entry = NULL;
474 unsigned long flags;
475 u64 cur = file_offset;
476
477 trace_btrfs_writepage_end_io_hook(inode, file_offset,
478 file_offset + num_bytes - 1,
479 uptodate);
480
481 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
482 while (cur < file_offset + num_bytes) {
483 u64 entry_end;
484 u64 end;
485 u32 len;
486
487 node = ordered_tree_search(inode, cur);
488 /* No ordered extents at all */
489 if (!node)
490 break;
491
492 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
493 entry_end = entry->file_offset + entry->num_bytes;
494 /*
495 * |<-- OE --->| |
496 * cur
497 * Go to next OE.
498 */
499 if (cur >= entry_end) {
500 node = rb_next(node);
501 /* No more ordered extents, exit */
502 if (!node)
503 break;
504 entry = rb_entry(node, struct btrfs_ordered_extent,
505 rb_node);
506
507 /* Go to next ordered extent and continue */
508 cur = entry->file_offset;
509 continue;
510 }
511 /*
512 * | |<--- OE --->|
513 * cur
514 * Go to the start of OE.
515 */
516 if (cur < entry->file_offset) {
517 cur = entry->file_offset;
518 continue;
519 }
520
521 /*
522 * Now we are definitely inside one ordered extent.
523 *
524 * |<--- OE --->|
525 * |
526 * cur
527 */
528 end = min(entry->file_offset + entry->num_bytes,
529 file_offset + num_bytes) - 1;
530 ASSERT(end + 1 - cur < U32_MAX);
531 len = end + 1 - cur;
532
533 if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
534 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
535 btrfs_queue_ordered_fn(entry);
536 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
537 }
538 cur += len;
539 }
540 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
541 }
542
543 /*
544 * Finish IO for one ordered extent across a given range. The range can only
545 * contain one ordered extent.
546 *
547 * @cached: The cached ordered extent. If not NULL, we can skip the tree
548 * search and use the ordered extent directly.
549 * Will be also used to store the finished ordered extent.
550 * @file_offset: File offset for the finished IO
551 * @io_size: Length of the finish IO range
552 *
553 * Return true if the ordered extent is finished in the range, and update
554 * @cached.
555 * Return false otherwise.
556 *
557 * NOTE: The range can NOT cross multiple ordered extents.
558 * Thus caller should ensure the range doesn't cross ordered extents.
559 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)560 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
561 struct btrfs_ordered_extent **cached,
562 u64 file_offset, u64 io_size)
563 {
564 struct rb_node *node;
565 struct btrfs_ordered_extent *entry = NULL;
566 unsigned long flags;
567 bool finished = false;
568
569 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
570 if (cached && *cached) {
571 entry = *cached;
572 goto have_entry;
573 }
574
575 node = ordered_tree_search(inode, file_offset);
576 if (!node)
577 goto out;
578
579 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
580 have_entry:
581 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
582 goto out;
583
584 if (io_size > entry->bytes_left)
585 btrfs_crit(inode->root->fs_info,
586 "bad ordered accounting left %llu size %llu",
587 entry->bytes_left, io_size);
588
589 entry->bytes_left -= io_size;
590
591 if (entry->bytes_left == 0) {
592 /*
593 * Ensure only one caller can set the flag and finished_ret
594 * accordingly
595 */
596 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
597 /* test_and_set_bit implies a barrier */
598 cond_wake_up_nomb(&entry->wait);
599 }
600 out:
601 if (finished && cached && entry) {
602 *cached = entry;
603 refcount_inc(&entry->refs);
604 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
605 }
606 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
607 return finished;
608 }
609
610 /*
611 * used to drop a reference on an ordered extent. This will free
612 * the extent if the last reference is dropped
613 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)614 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
615 {
616 struct list_head *cur;
617 struct btrfs_ordered_sum *sum;
618
619 trace_btrfs_ordered_extent_put(entry->inode, entry);
620
621 if (refcount_dec_and_test(&entry->refs)) {
622 ASSERT(list_empty(&entry->root_extent_list));
623 ASSERT(list_empty(&entry->log_list));
624 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
625 if (entry->inode)
626 btrfs_add_delayed_iput(entry->inode);
627 while (!list_empty(&entry->list)) {
628 cur = entry->list.next;
629 sum = list_entry(cur, struct btrfs_ordered_sum, list);
630 list_del(&sum->list);
631 kvfree(sum);
632 }
633 kmem_cache_free(btrfs_ordered_extent_cache, entry);
634 }
635 }
636
637 /*
638 * remove an ordered extent from the tree. No references are dropped
639 * and waiters are woken up.
640 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)641 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
642 struct btrfs_ordered_extent *entry)
643 {
644 struct btrfs_root *root = btrfs_inode->root;
645 struct btrfs_fs_info *fs_info = root->fs_info;
646 struct rb_node *node;
647 bool pending;
648 bool freespace_inode;
649
650 /*
651 * If this is a free space inode the thread has not acquired the ordered
652 * extents lockdep map.
653 */
654 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
655
656 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
657 /* This is paired with alloc_ordered_extent(). */
658 spin_lock(&btrfs_inode->lock);
659 btrfs_mod_outstanding_extents(btrfs_inode, -1);
660 spin_unlock(&btrfs_inode->lock);
661 if (root != fs_info->tree_root) {
662 u64 release;
663
664 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
665 release = entry->disk_num_bytes;
666 else
667 release = entry->num_bytes;
668 btrfs_delalloc_release_metadata(btrfs_inode, release,
669 test_bit(BTRFS_ORDERED_IOERR,
670 &entry->flags));
671 }
672
673 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
674 fs_info->delalloc_batch);
675
676 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
677 node = &entry->rb_node;
678 rb_erase(node, &btrfs_inode->ordered_tree);
679 RB_CLEAR_NODE(node);
680 if (btrfs_inode->ordered_tree_last == node)
681 btrfs_inode->ordered_tree_last = NULL;
682 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
683 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
684 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
685
686 /*
687 * The current running transaction is waiting on us, we need to let it
688 * know that we're complete and wake it up.
689 */
690 if (pending) {
691 struct btrfs_transaction *trans;
692
693 /*
694 * The checks for trans are just a formality, it should be set,
695 * but if it isn't we don't want to deref/assert under the spin
696 * lock, so be nice and check if trans is set, but ASSERT() so
697 * if it isn't set a developer will notice.
698 */
699 spin_lock(&fs_info->trans_lock);
700 trans = fs_info->running_transaction;
701 if (trans)
702 refcount_inc(&trans->use_count);
703 spin_unlock(&fs_info->trans_lock);
704
705 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
706 if (trans) {
707 if (atomic_dec_and_test(&trans->pending_ordered))
708 wake_up(&trans->pending_wait);
709 btrfs_put_transaction(trans);
710 }
711 }
712
713 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
714
715 spin_lock(&root->ordered_extent_lock);
716 list_del_init(&entry->root_extent_list);
717 root->nr_ordered_extents--;
718
719 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
720
721 if (!root->nr_ordered_extents) {
722 spin_lock(&fs_info->ordered_root_lock);
723 BUG_ON(list_empty(&root->ordered_root));
724 list_del_init(&root->ordered_root);
725 spin_unlock(&fs_info->ordered_root_lock);
726 }
727 spin_unlock(&root->ordered_extent_lock);
728 wake_up(&entry->wait);
729 if (!freespace_inode)
730 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
731 }
732
btrfs_run_ordered_extent_work(struct btrfs_work * work)733 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
734 {
735 struct btrfs_ordered_extent *ordered;
736
737 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
738 btrfs_start_ordered_extent(ordered);
739 complete(&ordered->completion);
740 }
741
742 /*
743 * Wait for all the ordered extents in a root. Use @bg as range or do whole
744 * range if it's NULL.
745 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const struct btrfs_block_group * bg)746 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
747 const struct btrfs_block_group *bg)
748 {
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 LIST_HEAD(splice);
751 LIST_HEAD(skipped);
752 LIST_HEAD(works);
753 struct btrfs_ordered_extent *ordered, *next;
754 u64 count = 0;
755 u64 range_start, range_len;
756 u64 range_end;
757
758 if (bg) {
759 range_start = bg->start;
760 range_len = bg->length;
761 } else {
762 range_start = 0;
763 range_len = U64_MAX;
764 }
765 range_end = range_start + range_len;
766
767 mutex_lock(&root->ordered_extent_mutex);
768 spin_lock(&root->ordered_extent_lock);
769 list_splice_init(&root->ordered_extents, &splice);
770 while (!list_empty(&splice) && nr) {
771 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
772 root_extent_list);
773
774 if (range_end <= ordered->disk_bytenr ||
775 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
776 list_move_tail(&ordered->root_extent_list, &skipped);
777 cond_resched_lock(&root->ordered_extent_lock);
778 continue;
779 }
780
781 list_move_tail(&ordered->root_extent_list,
782 &root->ordered_extents);
783 refcount_inc(&ordered->refs);
784 spin_unlock(&root->ordered_extent_lock);
785
786 btrfs_init_work(&ordered->flush_work,
787 btrfs_run_ordered_extent_work, NULL);
788 list_add_tail(&ordered->work_list, &works);
789 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
790
791 cond_resched();
792 if (nr != U64_MAX)
793 nr--;
794 count++;
795 spin_lock(&root->ordered_extent_lock);
796 }
797 list_splice_tail(&skipped, &root->ordered_extents);
798 list_splice_tail(&splice, &root->ordered_extents);
799 spin_unlock(&root->ordered_extent_lock);
800
801 list_for_each_entry_safe(ordered, next, &works, work_list) {
802 list_del_init(&ordered->work_list);
803 wait_for_completion(&ordered->completion);
804 btrfs_put_ordered_extent(ordered);
805 cond_resched();
806 }
807 mutex_unlock(&root->ordered_extent_mutex);
808
809 return count;
810 }
811
812 /*
813 * Wait for @nr ordered extents that intersect the @bg, or the whole range of
814 * the filesystem if @bg is NULL.
815 */
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const struct btrfs_block_group * bg)816 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
817 const struct btrfs_block_group *bg)
818 {
819 struct btrfs_root *root;
820 LIST_HEAD(splice);
821 u64 done;
822
823 mutex_lock(&fs_info->ordered_operations_mutex);
824 spin_lock(&fs_info->ordered_root_lock);
825 list_splice_init(&fs_info->ordered_roots, &splice);
826 while (!list_empty(&splice) && nr) {
827 root = list_first_entry(&splice, struct btrfs_root,
828 ordered_root);
829 root = btrfs_grab_root(root);
830 BUG_ON(!root);
831 list_move_tail(&root->ordered_root,
832 &fs_info->ordered_roots);
833 spin_unlock(&fs_info->ordered_root_lock);
834
835 done = btrfs_wait_ordered_extents(root, nr, bg);
836 btrfs_put_root(root);
837
838 if (nr != U64_MAX)
839 nr -= done;
840
841 spin_lock(&fs_info->ordered_root_lock);
842 }
843 list_splice_tail(&splice, &fs_info->ordered_roots);
844 spin_unlock(&fs_info->ordered_root_lock);
845 mutex_unlock(&fs_info->ordered_operations_mutex);
846 }
847
848 /*
849 * Start IO and wait for a given ordered extent to finish.
850 *
851 * Wait on page writeback for all the pages in the extent and the IO completion
852 * code to insert metadata into the btree corresponding to the extent.
853 */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)854 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
855 {
856 u64 start = entry->file_offset;
857 u64 end = start + entry->num_bytes - 1;
858 struct btrfs_inode *inode = entry->inode;
859 bool freespace_inode;
860
861 trace_btrfs_ordered_extent_start(inode, entry);
862
863 /*
864 * If this is a free space inode do not take the ordered extents lockdep
865 * map.
866 */
867 freespace_inode = btrfs_is_free_space_inode(inode);
868
869 /*
870 * pages in the range can be dirty, clean or writeback. We
871 * start IO on any dirty ones so the wait doesn't stall waiting
872 * for the flusher thread to find them
873 */
874 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
875 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
876
877 if (!freespace_inode)
878 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
879 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
880 }
881
882 /*
883 * Used to wait on ordered extents across a large range of bytes.
884 */
btrfs_wait_ordered_range(struct btrfs_inode * inode,u64 start,u64 len)885 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
886 {
887 int ret = 0;
888 int ret_wb = 0;
889 u64 end;
890 u64 orig_end;
891 struct btrfs_ordered_extent *ordered;
892
893 if (start + len < start) {
894 orig_end = OFFSET_MAX;
895 } else {
896 orig_end = start + len - 1;
897 if (orig_end > OFFSET_MAX)
898 orig_end = OFFSET_MAX;
899 }
900
901 /* start IO across the range first to instantiate any delalloc
902 * extents
903 */
904 ret = btrfs_fdatawrite_range(inode, start, orig_end);
905 if (ret)
906 return ret;
907
908 /*
909 * If we have a writeback error don't return immediately. Wait first
910 * for any ordered extents that haven't completed yet. This is to make
911 * sure no one can dirty the same page ranges and call writepages()
912 * before the ordered extents complete - to avoid failures (-EEXIST)
913 * when adding the new ordered extents to the ordered tree.
914 */
915 ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
916
917 end = orig_end;
918 while (1) {
919 ordered = btrfs_lookup_first_ordered_extent(inode, end);
920 if (!ordered)
921 break;
922 if (ordered->file_offset > orig_end) {
923 btrfs_put_ordered_extent(ordered);
924 break;
925 }
926 if (ordered->file_offset + ordered->num_bytes <= start) {
927 btrfs_put_ordered_extent(ordered);
928 break;
929 }
930 btrfs_start_ordered_extent(ordered);
931 end = ordered->file_offset;
932 /*
933 * If the ordered extent had an error save the error but don't
934 * exit without waiting first for all other ordered extents in
935 * the range to complete.
936 */
937 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
938 ret = -EIO;
939 btrfs_put_ordered_extent(ordered);
940 if (end == 0 || end == start)
941 break;
942 end--;
943 }
944 return ret_wb ? ret_wb : ret;
945 }
946
947 /*
948 * find an ordered extent corresponding to file_offset. return NULL if
949 * nothing is found, otherwise take a reference on the extent and return it
950 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)951 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
952 u64 file_offset)
953 {
954 struct rb_node *node;
955 struct btrfs_ordered_extent *entry = NULL;
956 unsigned long flags;
957
958 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
959 node = ordered_tree_search(inode, file_offset);
960 if (!node)
961 goto out;
962
963 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
964 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
965 entry = NULL;
966 if (entry) {
967 refcount_inc(&entry->refs);
968 trace_btrfs_ordered_extent_lookup(inode, entry);
969 }
970 out:
971 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
972 return entry;
973 }
974
975 /* Since the DIO code tries to lock a wide area we need to look for any ordered
976 * extents that exist in the range, rather than just the start of the range.
977 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)978 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
979 struct btrfs_inode *inode, u64 file_offset, u64 len)
980 {
981 struct rb_node *node;
982 struct btrfs_ordered_extent *entry = NULL;
983
984 spin_lock_irq(&inode->ordered_tree_lock);
985 node = ordered_tree_search(inode, file_offset);
986 if (!node) {
987 node = ordered_tree_search(inode, file_offset + len);
988 if (!node)
989 goto out;
990 }
991
992 while (1) {
993 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
994 if (range_overlaps(entry, file_offset, len))
995 break;
996
997 if (entry->file_offset >= file_offset + len) {
998 entry = NULL;
999 break;
1000 }
1001 entry = NULL;
1002 node = rb_next(node);
1003 if (!node)
1004 break;
1005 }
1006 out:
1007 if (entry) {
1008 refcount_inc(&entry->refs);
1009 trace_btrfs_ordered_extent_lookup_range(inode, entry);
1010 }
1011 spin_unlock_irq(&inode->ordered_tree_lock);
1012 return entry;
1013 }
1014
1015 /*
1016 * Adds all ordered extents to the given list. The list ends up sorted by the
1017 * file_offset of the ordered extents.
1018 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)1019 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1020 struct list_head *list)
1021 {
1022 struct rb_node *n;
1023
1024 btrfs_assert_inode_locked(inode);
1025
1026 spin_lock_irq(&inode->ordered_tree_lock);
1027 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1028 struct btrfs_ordered_extent *ordered;
1029
1030 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1031
1032 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1033 continue;
1034
1035 ASSERT(list_empty(&ordered->log_list));
1036 list_add_tail(&ordered->log_list, list);
1037 refcount_inc(&ordered->refs);
1038 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1039 }
1040 spin_unlock_irq(&inode->ordered_tree_lock);
1041 }
1042
1043 /*
1044 * lookup and return any extent before 'file_offset'. NULL is returned
1045 * if none is found
1046 */
1047 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)1048 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1049 {
1050 struct rb_node *node;
1051 struct btrfs_ordered_extent *entry = NULL;
1052
1053 spin_lock_irq(&inode->ordered_tree_lock);
1054 node = ordered_tree_search(inode, file_offset);
1055 if (!node)
1056 goto out;
1057
1058 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1059 refcount_inc(&entry->refs);
1060 trace_btrfs_ordered_extent_lookup_first(inode, entry);
1061 out:
1062 spin_unlock_irq(&inode->ordered_tree_lock);
1063 return entry;
1064 }
1065
1066 /*
1067 * Lookup the first ordered extent that overlaps the range
1068 * [@file_offset, @file_offset + @len).
1069 *
1070 * The difference between this and btrfs_lookup_first_ordered_extent() is
1071 * that this one won't return any ordered extent that does not overlap the range.
1072 * And the difference against btrfs_lookup_ordered_extent() is, this function
1073 * ensures the first ordered extent gets returned.
1074 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1075 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1076 struct btrfs_inode *inode, u64 file_offset, u64 len)
1077 {
1078 struct rb_node *node;
1079 struct rb_node *cur;
1080 struct rb_node *prev;
1081 struct rb_node *next;
1082 struct btrfs_ordered_extent *entry = NULL;
1083
1084 spin_lock_irq(&inode->ordered_tree_lock);
1085 node = inode->ordered_tree.rb_node;
1086 /*
1087 * Here we don't want to use tree_search() which will use tree->last
1088 * and screw up the search order.
1089 * And __tree_search() can't return the adjacent ordered extents
1090 * either, thus here we do our own search.
1091 */
1092 while (node) {
1093 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1094
1095 if (file_offset < entry->file_offset) {
1096 node = node->rb_left;
1097 } else if (file_offset >= entry_end(entry)) {
1098 node = node->rb_right;
1099 } else {
1100 /*
1101 * Direct hit, got an ordered extent that starts at
1102 * @file_offset
1103 */
1104 goto out;
1105 }
1106 }
1107 if (!entry) {
1108 /* Empty tree */
1109 goto out;
1110 }
1111
1112 cur = &entry->rb_node;
1113 /* We got an entry around @file_offset, check adjacent entries */
1114 if (entry->file_offset < file_offset) {
1115 prev = cur;
1116 next = rb_next(cur);
1117 } else {
1118 prev = rb_prev(cur);
1119 next = cur;
1120 }
1121 if (prev) {
1122 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1123 if (range_overlaps(entry, file_offset, len))
1124 goto out;
1125 }
1126 if (next) {
1127 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1128 if (range_overlaps(entry, file_offset, len))
1129 goto out;
1130 }
1131 /* No ordered extent in the range */
1132 entry = NULL;
1133 out:
1134 if (entry) {
1135 refcount_inc(&entry->refs);
1136 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1137 }
1138
1139 spin_unlock_irq(&inode->ordered_tree_lock);
1140 return entry;
1141 }
1142
1143 /*
1144 * Lock the passed range and ensures all pending ordered extents in it are run
1145 * to completion.
1146 *
1147 * @inode: Inode whose ordered tree is to be searched
1148 * @start: Beginning of range to flush
1149 * @end: Last byte of range to lock
1150 * @cached_state: If passed, will return the extent state responsible for the
1151 * locked range. It's the caller's responsibility to free the
1152 * cached state.
1153 *
1154 * Always return with the given range locked, ensuring after it's called no
1155 * order extent can be pending.
1156 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1157 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1158 u64 end,
1159 struct extent_state **cached_state)
1160 {
1161 struct btrfs_ordered_extent *ordered;
1162 struct extent_state *cache = NULL;
1163 struct extent_state **cachedp = &cache;
1164
1165 if (cached_state)
1166 cachedp = cached_state;
1167
1168 while (1) {
1169 lock_extent(&inode->io_tree, start, end, cachedp);
1170 ordered = btrfs_lookup_ordered_range(inode, start,
1171 end - start + 1);
1172 if (!ordered) {
1173 /*
1174 * If no external cached_state has been passed then
1175 * decrement the extra ref taken for cachedp since we
1176 * aren't exposing it outside of this function
1177 */
1178 if (!cached_state)
1179 refcount_dec(&cache->refs);
1180 break;
1181 }
1182 unlock_extent(&inode->io_tree, start, end, cachedp);
1183 btrfs_start_ordered_extent(ordered);
1184 btrfs_put_ordered_extent(ordered);
1185 }
1186 }
1187
1188 /*
1189 * Lock the passed range and ensure all pending ordered extents in it are run
1190 * to completion in nowait mode.
1191 *
1192 * Return true if btrfs_lock_ordered_range does not return any extents,
1193 * otherwise false.
1194 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1195 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1196 struct extent_state **cached_state)
1197 {
1198 struct btrfs_ordered_extent *ordered;
1199
1200 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1201 return false;
1202
1203 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1204 if (!ordered)
1205 return true;
1206
1207 btrfs_put_ordered_extent(ordered);
1208 unlock_extent(&inode->io_tree, start, end, cached_state);
1209
1210 return false;
1211 }
1212
1213 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1214 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1215 struct btrfs_ordered_extent *ordered, u64 len)
1216 {
1217 struct btrfs_inode *inode = ordered->inode;
1218 struct btrfs_root *root = inode->root;
1219 struct btrfs_fs_info *fs_info = root->fs_info;
1220 u64 file_offset = ordered->file_offset;
1221 u64 disk_bytenr = ordered->disk_bytenr;
1222 unsigned long flags = ordered->flags;
1223 struct btrfs_ordered_sum *sum, *tmpsum;
1224 struct btrfs_ordered_extent *new;
1225 struct rb_node *node;
1226 u64 offset = 0;
1227
1228 trace_btrfs_ordered_extent_split(inode, ordered);
1229
1230 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1231
1232 /*
1233 * The entire bio must be covered by the ordered extent, but we can't
1234 * reduce the original extent to a zero length either.
1235 */
1236 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1237 return ERR_PTR(-EINVAL);
1238 /*
1239 * If our ordered extent had an error there's no point in continuing.
1240 * The error may have come from a transaction abort done either by this
1241 * task or some other concurrent task, and the transaction abort path
1242 * iterates over all existing ordered extents and sets the flag
1243 * BTRFS_ORDERED_IOERR on them.
1244 */
1245 if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1246 const int fs_error = BTRFS_FS_ERROR(fs_info);
1247
1248 return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1249 }
1250 /* We cannot split partially completed ordered extents. */
1251 if (ordered->bytes_left) {
1252 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1253 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1254 return ERR_PTR(-EINVAL);
1255 }
1256 /* We cannot split a compressed ordered extent. */
1257 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1258 return ERR_PTR(-EINVAL);
1259
1260 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1261 len, 0, flags, ordered->compress_type);
1262 if (IS_ERR(new))
1263 return new;
1264
1265 /* One ref for the tree. */
1266 refcount_inc(&new->refs);
1267
1268 /*
1269 * Take the root's ordered_extent_lock to avoid a race with
1270 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1271 * disk_num_bytes fields of the ordered extent below. And we disable
1272 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1273 * elsewhere.
1274 *
1275 * There's no concern about a previous caller of
1276 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1277 * before we insert the new one, because even if it gets the ordered
1278 * extent before it's trimmed and the new one inserted, right before it
1279 * uses it or during its use, the ordered extent might have been
1280 * trimmed in the meanwhile, and it missed the new ordered extent.
1281 * There's no way around this and it's harmless for current use cases,
1282 * so we take the root's ordered_extent_lock to fix that race during
1283 * trimming and silence tools like KCSAN.
1284 */
1285 spin_lock_irq(&root->ordered_extent_lock);
1286 spin_lock(&inode->ordered_tree_lock);
1287
1288 /*
1289 * We don't have overlapping ordered extents (that would imply double
1290 * allocation of extents) and we checked above that the split length
1291 * does not cross the ordered extent's num_bytes field, so there's
1292 * no need to remove it and re-insert it in the tree.
1293 */
1294 ordered->file_offset += len;
1295 ordered->disk_bytenr += len;
1296 ordered->num_bytes -= len;
1297 ordered->disk_num_bytes -= len;
1298 ordered->ram_bytes -= len;
1299
1300 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1301 ASSERT(ordered->bytes_left == 0);
1302 new->bytes_left = 0;
1303 } else {
1304 ordered->bytes_left -= len;
1305 }
1306
1307 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1308 if (ordered->truncated_len > len) {
1309 ordered->truncated_len -= len;
1310 } else {
1311 new->truncated_len = ordered->truncated_len;
1312 ordered->truncated_len = 0;
1313 }
1314 }
1315
1316 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1317 if (offset == len)
1318 break;
1319 list_move_tail(&sum->list, &new->list);
1320 offset += sum->len;
1321 }
1322
1323 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1324 if (unlikely(node))
1325 btrfs_panic(fs_info, -EEXIST,
1326 "inconsistency in ordered tree at offset %llu after split",
1327 new->file_offset);
1328 spin_unlock(&inode->ordered_tree_lock);
1329
1330 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1331 root->nr_ordered_extents++;
1332 spin_unlock_irq(&root->ordered_extent_lock);
1333 return new;
1334 }
1335
ordered_data_init(void)1336 int __init ordered_data_init(void)
1337 {
1338 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1339 if (!btrfs_ordered_extent_cache)
1340 return -ENOMEM;
1341
1342 return 0;
1343 }
1344
ordered_data_exit(void)1345 void __cold ordered_data_exit(void)
1346 {
1347 kmem_cache_destroy(btrfs_ordered_extent_cache);
1348 }
1349