1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40
41 /*
42 * Relocation overview
43 *
44 * [What does relocation do]
45 *
46 * The objective of relocation is to relocate all extents of the target block
47 * group to other block groups.
48 * This is utilized by resize (shrink only), profile converting, compacting
49 * space, or balance routine to spread chunks over devices.
50 *
51 * Before | After
52 * ------------------------------------------------------------------
53 * BG A: 10 data extents | BG A: deleted
54 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
55 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
56 *
57 * [How does relocation work]
58 *
59 * 1. Mark the target block group read-only
60 * New extents won't be allocated from the target block group.
61 *
62 * 2.1 Record each extent in the target block group
63 * To build a proper map of extents to be relocated.
64 *
65 * 2.2 Build data reloc tree and reloc trees
66 * Data reloc tree will contain an inode, recording all newly relocated
67 * data extents.
68 * There will be only one data reloc tree for one data block group.
69 *
70 * Reloc tree will be a special snapshot of its source tree, containing
71 * relocated tree blocks.
72 * Each tree referring to a tree block in target block group will get its
73 * reloc tree built.
74 *
75 * 2.3 Swap source tree with its corresponding reloc tree
76 * Each involved tree only refers to new extents after swap.
77 *
78 * 3. Cleanup reloc trees and data reloc tree.
79 * As old extents in the target block group are still referenced by reloc
80 * trees, we need to clean them up before really freeing the target block
81 * group.
82 *
83 * The main complexity is in steps 2.2 and 2.3.
84 *
85 * The entry point of relocation is relocate_block_group() function.
86 */
87
88 #define RELOCATION_RESERVED_NODES 256
89 /*
90 * map address of tree root to tree
91 */
92 struct mapping_node {
93 struct {
94 struct rb_node rb_node;
95 u64 bytenr;
96 }; /* Use rb_simle_node for search/insert */
97 void *data;
98 };
99
100 struct mapping_tree {
101 struct rb_root rb_root;
102 spinlock_t lock;
103 };
104
105 /*
106 * present a tree block to process
107 */
108 struct tree_block {
109 struct {
110 struct rb_node rb_node;
111 u64 bytenr;
112 }; /* Use rb_simple_node for search/insert */
113 u64 owner;
114 struct btrfs_key key;
115 u8 level;
116 bool key_ready;
117 };
118
119 #define MAX_EXTENTS 128
120
121 struct file_extent_cluster {
122 u64 start;
123 u64 end;
124 u64 boundary[MAX_EXTENTS];
125 unsigned int nr;
126 u64 owning_root;
127 };
128
129 /* Stages of data relocation. */
130 enum reloc_stage {
131 MOVE_DATA_EXTENTS,
132 UPDATE_DATA_PTRS
133 };
134
135 struct reloc_control {
136 /* block group to relocate */
137 struct btrfs_block_group *block_group;
138 /* extent tree */
139 struct btrfs_root *extent_root;
140 /* inode for moving data */
141 struct inode *data_inode;
142
143 struct btrfs_block_rsv *block_rsv;
144
145 struct btrfs_backref_cache backref_cache;
146
147 struct file_extent_cluster cluster;
148 /* tree blocks have been processed */
149 struct extent_io_tree processed_blocks;
150 /* map start of tree root to corresponding reloc tree */
151 struct mapping_tree reloc_root_tree;
152 /* list of reloc trees */
153 struct list_head reloc_roots;
154 /* list of subvolume trees that get relocated */
155 struct list_head dirty_subvol_roots;
156 /* size of metadata reservation for merging reloc trees */
157 u64 merging_rsv_size;
158 /* size of relocated tree nodes */
159 u64 nodes_relocated;
160 /* reserved size for block group relocation*/
161 u64 reserved_bytes;
162
163 u64 search_start;
164 u64 extents_found;
165
166 enum reloc_stage stage;
167 bool create_reloc_tree;
168 bool merge_reloc_tree;
169 bool found_file_extent;
170 };
171
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)172 static void mark_block_processed(struct reloc_control *rc,
173 struct btrfs_backref_node *node)
174 {
175 u32 blocksize;
176
177 if (node->level == 0 ||
178 in_range(node->bytenr, rc->block_group->start,
179 rc->block_group->length)) {
180 blocksize = rc->extent_root->fs_info->nodesize;
181 set_extent_bit(&rc->processed_blocks, node->bytenr,
182 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183 }
184 node->processed = 1;
185 }
186
187 /*
188 * walk up backref nodes until reach node presents tree root
189 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)190 static struct btrfs_backref_node *walk_up_backref(
191 struct btrfs_backref_node *node,
192 struct btrfs_backref_edge *edges[], int *index)
193 {
194 struct btrfs_backref_edge *edge;
195 int idx = *index;
196
197 while (!list_empty(&node->upper)) {
198 edge = list_entry(node->upper.next,
199 struct btrfs_backref_edge, list[LOWER]);
200 edges[idx++] = edge;
201 node = edge->node[UPPER];
202 }
203 BUG_ON(node->detached);
204 *index = idx;
205 return node;
206 }
207
208 /*
209 * walk down backref nodes to find start of next reference path
210 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)211 static struct btrfs_backref_node *walk_down_backref(
212 struct btrfs_backref_edge *edges[], int *index)
213 {
214 struct btrfs_backref_edge *edge;
215 struct btrfs_backref_node *lower;
216 int idx = *index;
217
218 while (idx > 0) {
219 edge = edges[idx - 1];
220 lower = edge->node[LOWER];
221 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222 idx--;
223 continue;
224 }
225 edge = list_entry(edge->list[LOWER].next,
226 struct btrfs_backref_edge, list[LOWER]);
227 edges[idx - 1] = edge;
228 *index = idx;
229 return edge->node[UPPER];
230 }
231 *index = 0;
232 return NULL;
233 }
234
reloc_root_is_dead(const struct btrfs_root * root)235 static bool reloc_root_is_dead(const struct btrfs_root *root)
236 {
237 /*
238 * Pair with set_bit/clear_bit in clean_dirty_subvols and
239 * btrfs_update_reloc_root. We need to see the updated bit before
240 * trying to access reloc_root
241 */
242 smp_rmb();
243 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244 return true;
245 return false;
246 }
247
248 /*
249 * Check if this subvolume tree has valid reloc tree.
250 *
251 * Reloc tree after swap is considered dead, thus not considered as valid.
252 * This is enough for most callers, as they don't distinguish dead reloc root
253 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
254 * special case.
255 */
have_reloc_root(const struct btrfs_root * root)256 static bool have_reloc_root(const struct btrfs_root *root)
257 {
258 if (reloc_root_is_dead(root))
259 return false;
260 if (!root->reloc_root)
261 return false;
262 return true;
263 }
264
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266 {
267 struct btrfs_root *reloc_root;
268
269 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270 return false;
271
272 /* This root has been merged with its reloc tree, we can ignore it */
273 if (reloc_root_is_dead(root))
274 return true;
275
276 reloc_root = root->reloc_root;
277 if (!reloc_root)
278 return false;
279
280 if (btrfs_header_generation(reloc_root->commit_root) ==
281 root->fs_info->running_transaction->transid)
282 return false;
283 /*
284 * If there is reloc tree and it was created in previous transaction
285 * backref lookup can find the reloc tree, so backref node for the fs
286 * tree root is useless for relocation.
287 */
288 return true;
289 }
290
291 /*
292 * find reloc tree by address of tree root
293 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)294 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295 {
296 struct reloc_control *rc = fs_info->reloc_ctl;
297 struct rb_node *rb_node;
298 struct mapping_node *node;
299 struct btrfs_root *root = NULL;
300
301 ASSERT(rc);
302 spin_lock(&rc->reloc_root_tree.lock);
303 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304 if (rb_node) {
305 node = rb_entry(rb_node, struct mapping_node, rb_node);
306 root = node->data;
307 }
308 spin_unlock(&rc->reloc_root_tree.lock);
309 return btrfs_grab_root(root);
310 }
311
312 /*
313 * For useless nodes, do two major clean ups:
314 *
315 * - Cleanup the children edges and nodes
316 * If child node is also orphan (no parent) during cleanup, then the child
317 * node will also be cleaned up.
318 *
319 * - Freeing up leaves (level 0), keeps nodes detached
320 * For nodes, the node is still cached as "detached"
321 *
322 * Return false if @node is not in the @useless_nodes list.
323 * Return true if @node is in the @useless_nodes list.
324 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)325 static bool handle_useless_nodes(struct reloc_control *rc,
326 struct btrfs_backref_node *node)
327 {
328 struct btrfs_backref_cache *cache = &rc->backref_cache;
329 struct list_head *useless_node = &cache->useless_node;
330 bool ret = false;
331
332 while (!list_empty(useless_node)) {
333 struct btrfs_backref_node *cur;
334
335 cur = list_first_entry(useless_node, struct btrfs_backref_node,
336 list);
337 list_del_init(&cur->list);
338
339 /* Only tree root nodes can be added to @useless_nodes */
340 ASSERT(list_empty(&cur->upper));
341
342 if (cur == node)
343 ret = true;
344
345 /* The node is the lowest node */
346 if (cur->lowest) {
347 list_del_init(&cur->lower);
348 cur->lowest = 0;
349 }
350
351 /* Cleanup the lower edges */
352 while (!list_empty(&cur->lower)) {
353 struct btrfs_backref_edge *edge;
354 struct btrfs_backref_node *lower;
355
356 edge = list_entry(cur->lower.next,
357 struct btrfs_backref_edge, list[UPPER]);
358 list_del(&edge->list[UPPER]);
359 list_del(&edge->list[LOWER]);
360 lower = edge->node[LOWER];
361 btrfs_backref_free_edge(cache, edge);
362
363 /* Child node is also orphan, queue for cleanup */
364 if (list_empty(&lower->upper))
365 list_add(&lower->list, useless_node);
366 }
367 /* Mark this block processed for relocation */
368 mark_block_processed(rc, cur);
369
370 /*
371 * Backref nodes for tree leaves are deleted from the cache.
372 * Backref nodes for upper level tree blocks are left in the
373 * cache to avoid unnecessary backref lookup.
374 */
375 if (cur->level > 0) {
376 list_add(&cur->list, &cache->detached);
377 cur->detached = 1;
378 } else {
379 rb_erase(&cur->rb_node, &cache->rb_root);
380 btrfs_backref_free_node(cache, cur);
381 }
382 }
383 return ret;
384 }
385
386 /*
387 * Build backref tree for a given tree block. Root of the backref tree
388 * corresponds the tree block, leaves of the backref tree correspond roots of
389 * b-trees that reference the tree block.
390 *
391 * The basic idea of this function is check backrefs of a given block to find
392 * upper level blocks that reference the block, and then check backrefs of
393 * these upper level blocks recursively. The recursion stops when tree root is
394 * reached or backrefs for the block is cached.
395 *
396 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
397 * all upper level blocks that directly/indirectly reference the block are also
398 * cached.
399 */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)400 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
401 struct btrfs_trans_handle *trans,
402 struct reloc_control *rc, struct btrfs_key *node_key,
403 int level, u64 bytenr)
404 {
405 struct btrfs_backref_iter *iter;
406 struct btrfs_backref_cache *cache = &rc->backref_cache;
407 /* For searching parent of TREE_BLOCK_REF */
408 struct btrfs_path *path;
409 struct btrfs_backref_node *cur;
410 struct btrfs_backref_node *node = NULL;
411 struct btrfs_backref_edge *edge;
412 int ret;
413
414 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
415 if (!iter)
416 return ERR_PTR(-ENOMEM);
417 path = btrfs_alloc_path();
418 if (!path) {
419 ret = -ENOMEM;
420 goto out;
421 }
422
423 node = btrfs_backref_alloc_node(cache, bytenr, level);
424 if (!node) {
425 ret = -ENOMEM;
426 goto out;
427 }
428
429 node->lowest = 1;
430 cur = node;
431
432 /* Breadth-first search to build backref cache */
433 do {
434 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
435 node_key, cur);
436 if (ret < 0)
437 goto out;
438
439 edge = list_first_entry_or_null(&cache->pending_edge,
440 struct btrfs_backref_edge, list[UPPER]);
441 /*
442 * The pending list isn't empty, take the first block to
443 * process
444 */
445 if (edge) {
446 list_del_init(&edge->list[UPPER]);
447 cur = edge->node[UPPER];
448 }
449 } while (edge);
450
451 /* Finish the upper linkage of newly added edges/nodes */
452 ret = btrfs_backref_finish_upper_links(cache, node);
453 if (ret < 0)
454 goto out;
455
456 if (handle_useless_nodes(rc, node))
457 node = NULL;
458 out:
459 btrfs_free_path(iter->path);
460 kfree(iter);
461 btrfs_free_path(path);
462 if (ret) {
463 btrfs_backref_error_cleanup(cache, node);
464 return ERR_PTR(ret);
465 }
466 ASSERT(!node || !node->detached);
467 ASSERT(list_empty(&cache->useless_node) &&
468 list_empty(&cache->pending_edge));
469 return node;
470 }
471
472 /*
473 * helper to add backref node for the newly created snapshot.
474 * the backref node is created by cloning backref node that
475 * corresponds to root of source tree
476 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,const struct btrfs_root * src,struct btrfs_root * dest)477 static int clone_backref_node(struct btrfs_trans_handle *trans,
478 struct reloc_control *rc,
479 const struct btrfs_root *src,
480 struct btrfs_root *dest)
481 {
482 struct btrfs_root *reloc_root = src->reloc_root;
483 struct btrfs_backref_cache *cache = &rc->backref_cache;
484 struct btrfs_backref_node *node = NULL;
485 struct btrfs_backref_node *new_node;
486 struct btrfs_backref_edge *edge;
487 struct btrfs_backref_edge *new_edge;
488 struct rb_node *rb_node;
489
490 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
491 if (rb_node) {
492 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
493 if (node->detached)
494 node = NULL;
495 else
496 BUG_ON(node->new_bytenr != reloc_root->node->start);
497 }
498
499 if (!node) {
500 rb_node = rb_simple_search(&cache->rb_root,
501 reloc_root->commit_root->start);
502 if (rb_node) {
503 node = rb_entry(rb_node, struct btrfs_backref_node,
504 rb_node);
505 BUG_ON(node->detached);
506 }
507 }
508
509 if (!node)
510 return 0;
511
512 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
513 node->level);
514 if (!new_node)
515 return -ENOMEM;
516
517 new_node->lowest = node->lowest;
518 new_node->checked = 1;
519 new_node->root = btrfs_grab_root(dest);
520 ASSERT(new_node->root);
521
522 if (!node->lowest) {
523 list_for_each_entry(edge, &node->lower, list[UPPER]) {
524 new_edge = btrfs_backref_alloc_edge(cache);
525 if (!new_edge)
526 goto fail;
527
528 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
529 new_node, LINK_UPPER);
530 }
531 } else {
532 list_add_tail(&new_node->lower, &cache->leaves);
533 }
534
535 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
536 &new_node->rb_node);
537 if (rb_node)
538 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
539
540 if (!new_node->lowest) {
541 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
542 list_add_tail(&new_edge->list[LOWER],
543 &new_edge->node[LOWER]->upper);
544 }
545 }
546 return 0;
547 fail:
548 while (!list_empty(&new_node->lower)) {
549 new_edge = list_entry(new_node->lower.next,
550 struct btrfs_backref_edge, list[UPPER]);
551 list_del(&new_edge->list[UPPER]);
552 btrfs_backref_free_edge(cache, new_edge);
553 }
554 btrfs_backref_free_node(cache, new_node);
555 return -ENOMEM;
556 }
557
558 /*
559 * helper to add 'address of tree root -> reloc tree' mapping
560 */
__add_reloc_root(struct btrfs_root * root)561 static int __add_reloc_root(struct btrfs_root *root)
562 {
563 struct btrfs_fs_info *fs_info = root->fs_info;
564 struct rb_node *rb_node;
565 struct mapping_node *node;
566 struct reloc_control *rc = fs_info->reloc_ctl;
567
568 node = kmalloc(sizeof(*node), GFP_NOFS);
569 if (!node)
570 return -ENOMEM;
571
572 node->bytenr = root->commit_root->start;
573 node->data = root;
574
575 spin_lock(&rc->reloc_root_tree.lock);
576 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
577 node->bytenr, &node->rb_node);
578 spin_unlock(&rc->reloc_root_tree.lock);
579 if (rb_node) {
580 btrfs_err(fs_info,
581 "Duplicate root found for start=%llu while inserting into relocation tree",
582 node->bytenr);
583 return -EEXIST;
584 }
585
586 list_add_tail(&root->root_list, &rc->reloc_roots);
587 return 0;
588 }
589
590 /*
591 * helper to delete the 'address of tree root -> reloc tree'
592 * mapping
593 */
__del_reloc_root(struct btrfs_root * root)594 static void __del_reloc_root(struct btrfs_root *root)
595 {
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 struct rb_node *rb_node;
598 struct mapping_node *node = NULL;
599 struct reloc_control *rc = fs_info->reloc_ctl;
600 bool put_ref = false;
601
602 if (rc && root->node) {
603 spin_lock(&rc->reloc_root_tree.lock);
604 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
605 root->commit_root->start);
606 if (rb_node) {
607 node = rb_entry(rb_node, struct mapping_node, rb_node);
608 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
609 RB_CLEAR_NODE(&node->rb_node);
610 }
611 spin_unlock(&rc->reloc_root_tree.lock);
612 ASSERT(!node || (struct btrfs_root *)node->data == root);
613 }
614
615 /*
616 * We only put the reloc root here if it's on the list. There's a lot
617 * of places where the pattern is to splice the rc->reloc_roots, process
618 * the reloc roots, and then add the reloc root back onto
619 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
620 * list we don't want the reference being dropped, because the guy
621 * messing with the list is in charge of the reference.
622 */
623 spin_lock(&fs_info->trans_lock);
624 if (!list_empty(&root->root_list)) {
625 put_ref = true;
626 list_del_init(&root->root_list);
627 }
628 spin_unlock(&fs_info->trans_lock);
629 if (put_ref)
630 btrfs_put_root(root);
631 kfree(node);
632 }
633
634 /*
635 * helper to update the 'address of tree root -> reloc tree'
636 * mapping
637 */
__update_reloc_root(struct btrfs_root * root)638 static int __update_reloc_root(struct btrfs_root *root)
639 {
640 struct btrfs_fs_info *fs_info = root->fs_info;
641 struct rb_node *rb_node;
642 struct mapping_node *node = NULL;
643 struct reloc_control *rc = fs_info->reloc_ctl;
644
645 spin_lock(&rc->reloc_root_tree.lock);
646 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
647 root->commit_root->start);
648 if (rb_node) {
649 node = rb_entry(rb_node, struct mapping_node, rb_node);
650 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
651 }
652 spin_unlock(&rc->reloc_root_tree.lock);
653
654 if (!node)
655 return 0;
656 BUG_ON((struct btrfs_root *)node->data != root);
657
658 spin_lock(&rc->reloc_root_tree.lock);
659 node->bytenr = root->node->start;
660 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
661 node->bytenr, &node->rb_node);
662 spin_unlock(&rc->reloc_root_tree.lock);
663 if (rb_node)
664 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
665 return 0;
666 }
667
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)668 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
669 struct btrfs_root *root, u64 objectid)
670 {
671 struct btrfs_fs_info *fs_info = root->fs_info;
672 struct btrfs_root *reloc_root;
673 struct extent_buffer *eb;
674 struct btrfs_root_item *root_item;
675 struct btrfs_key root_key;
676 int ret = 0;
677 bool must_abort = false;
678
679 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
680 if (!root_item)
681 return ERR_PTR(-ENOMEM);
682
683 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
684 root_key.type = BTRFS_ROOT_ITEM_KEY;
685 root_key.offset = objectid;
686
687 if (btrfs_root_id(root) == objectid) {
688 u64 commit_root_gen;
689
690 /*
691 * Relocation will wait for cleaner thread, and any half-dropped
692 * subvolume will be fully cleaned up at mount time.
693 * So here we shouldn't hit a subvolume with non-zero drop_progress.
694 *
695 * If this isn't the case, error out since it can make us attempt to
696 * drop references for extents that were already dropped before.
697 */
698 if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) {
699 struct btrfs_key cpu_key;
700
701 btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress);
702 btrfs_err(fs_info,
703 "cannot relocate partially dropped subvolume %llu, drop progress key (%llu %u %llu)",
704 objectid, cpu_key.objectid, cpu_key.type, cpu_key.offset);
705 ret = -EUCLEAN;
706 goto fail;
707 }
708
709 /* called by btrfs_init_reloc_root */
710 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
711 BTRFS_TREE_RELOC_OBJECTID);
712 if (ret)
713 goto fail;
714
715 /*
716 * Set the last_snapshot field to the generation of the commit
717 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
718 * correctly (returns true) when the relocation root is created
719 * either inside the critical section of a transaction commit
720 * (through transaction.c:qgroup_account_snapshot()) and when
721 * it's created before the transaction commit is started.
722 */
723 commit_root_gen = btrfs_header_generation(root->commit_root);
724 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
725 } else {
726 /*
727 * called by btrfs_reloc_post_snapshot_hook.
728 * the source tree is a reloc tree, all tree blocks
729 * modified after it was created have RELOC flag
730 * set in their headers. so it's OK to not update
731 * the 'last_snapshot'.
732 */
733 ret = btrfs_copy_root(trans, root, root->node, &eb,
734 BTRFS_TREE_RELOC_OBJECTID);
735 if (ret)
736 goto fail;
737 }
738
739 /*
740 * We have changed references at this point, we must abort the
741 * transaction if anything fails.
742 */
743 must_abort = true;
744
745 memcpy(root_item, &root->root_item, sizeof(*root_item));
746 btrfs_set_root_bytenr(root_item, eb->start);
747 btrfs_set_root_level(root_item, btrfs_header_level(eb));
748 btrfs_set_root_generation(root_item, trans->transid);
749
750 if (btrfs_root_id(root) == objectid) {
751 btrfs_set_root_refs(root_item, 0);
752 memset(&root_item->drop_progress, 0,
753 sizeof(struct btrfs_disk_key));
754 btrfs_set_root_drop_level(root_item, 0);
755 }
756
757 btrfs_tree_unlock(eb);
758 free_extent_buffer(eb);
759
760 ret = btrfs_insert_root(trans, fs_info->tree_root,
761 &root_key, root_item);
762 if (ret)
763 goto fail;
764
765 kfree(root_item);
766
767 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
768 if (IS_ERR(reloc_root)) {
769 ret = PTR_ERR(reloc_root);
770 goto abort;
771 }
772 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
773 btrfs_set_root_last_trans(reloc_root, trans->transid);
774 return reloc_root;
775 fail:
776 kfree(root_item);
777 abort:
778 if (must_abort)
779 btrfs_abort_transaction(trans, ret);
780 return ERR_PTR(ret);
781 }
782
783 /*
784 * create reloc tree for a given fs tree. reloc tree is just a
785 * snapshot of the fs tree with special root objectid.
786 *
787 * The reloc_root comes out of here with two references, one for
788 * root->reloc_root, and another for being on the rc->reloc_roots list.
789 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)790 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792 {
793 struct btrfs_fs_info *fs_info = root->fs_info;
794 struct btrfs_root *reloc_root;
795 struct reloc_control *rc = fs_info->reloc_ctl;
796 struct btrfs_block_rsv *rsv;
797 int clear_rsv = 0;
798 int ret;
799
800 if (!rc)
801 return 0;
802
803 /*
804 * The subvolume has reloc tree but the swap is finished, no need to
805 * create/update the dead reloc tree
806 */
807 if (reloc_root_is_dead(root))
808 return 0;
809
810 /*
811 * This is subtle but important. We do not do
812 * record_root_in_transaction for reloc roots, instead we record their
813 * corresponding fs root, and then here we update the last trans for the
814 * reloc root. This means that we have to do this for the entire life
815 * of the reloc root, regardless of which stage of the relocation we are
816 * in.
817 */
818 if (root->reloc_root) {
819 reloc_root = root->reloc_root;
820 btrfs_set_root_last_trans(reloc_root, trans->transid);
821 return 0;
822 }
823
824 /*
825 * We are merging reloc roots, we do not need new reloc trees. Also
826 * reloc trees never need their own reloc tree.
827 */
828 if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
829 return 0;
830
831 if (!trans->reloc_reserved) {
832 rsv = trans->block_rsv;
833 trans->block_rsv = rc->block_rsv;
834 clear_rsv = 1;
835 }
836 reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
837 if (clear_rsv)
838 trans->block_rsv = rsv;
839 if (IS_ERR(reloc_root))
840 return PTR_ERR(reloc_root);
841
842 ret = __add_reloc_root(reloc_root);
843 ASSERT(ret != -EEXIST);
844 if (ret) {
845 /* Pairs with create_reloc_root */
846 btrfs_put_root(reloc_root);
847 return ret;
848 }
849 root->reloc_root = btrfs_grab_root(reloc_root);
850 return 0;
851 }
852
853 /*
854 * update root item of reloc tree
855 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)856 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
857 struct btrfs_root *root)
858 {
859 struct btrfs_fs_info *fs_info = root->fs_info;
860 struct btrfs_root *reloc_root;
861 struct btrfs_root_item *root_item;
862 int ret;
863
864 if (!have_reloc_root(root))
865 return 0;
866
867 reloc_root = root->reloc_root;
868 root_item = &reloc_root->root_item;
869
870 /*
871 * We are probably ok here, but __del_reloc_root() will drop its ref of
872 * the root. We have the ref for root->reloc_root, but just in case
873 * hold it while we update the reloc root.
874 */
875 btrfs_grab_root(reloc_root);
876
877 /* root->reloc_root will stay until current relocation finished */
878 if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
879 btrfs_root_refs(root_item) == 0) {
880 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
881 /*
882 * Mark the tree as dead before we change reloc_root so
883 * have_reloc_root will not touch it from now on.
884 */
885 smp_wmb();
886 __del_reloc_root(reloc_root);
887 }
888
889 if (reloc_root->commit_root != reloc_root->node) {
890 __update_reloc_root(reloc_root);
891 btrfs_set_root_node(root_item, reloc_root->node);
892 free_extent_buffer(reloc_root->commit_root);
893 reloc_root->commit_root = btrfs_root_node(reloc_root);
894 }
895
896 ret = btrfs_update_root(trans, fs_info->tree_root,
897 &reloc_root->root_key, root_item);
898 btrfs_put_root(reloc_root);
899 return ret;
900 }
901
902 /*
903 * get new location of data
904 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)905 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
906 u64 bytenr, u64 num_bytes)
907 {
908 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
909 struct btrfs_path *path;
910 struct btrfs_file_extent_item *fi;
911 struct extent_buffer *leaf;
912 int ret;
913
914 path = btrfs_alloc_path();
915 if (!path)
916 return -ENOMEM;
917
918 bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
919 ret = btrfs_lookup_file_extent(NULL, root, path,
920 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
921 if (ret < 0)
922 goto out;
923 if (ret > 0) {
924 ret = -ENOENT;
925 goto out;
926 }
927
928 leaf = path->nodes[0];
929 fi = btrfs_item_ptr(leaf, path->slots[0],
930 struct btrfs_file_extent_item);
931
932 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
933 btrfs_file_extent_compression(leaf, fi) ||
934 btrfs_file_extent_encryption(leaf, fi) ||
935 btrfs_file_extent_other_encoding(leaf, fi));
936
937 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
938 ret = -EINVAL;
939 goto out;
940 }
941
942 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
943 ret = 0;
944 out:
945 btrfs_free_path(path);
946 return ret;
947 }
948
949 /*
950 * update file extent items in the tree leaf to point to
951 * the new locations.
952 */
953 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)954 int replace_file_extents(struct btrfs_trans_handle *trans,
955 struct reloc_control *rc,
956 struct btrfs_root *root,
957 struct extent_buffer *leaf)
958 {
959 struct btrfs_fs_info *fs_info = root->fs_info;
960 struct btrfs_key key;
961 struct btrfs_file_extent_item *fi;
962 struct btrfs_inode *inode = NULL;
963 u64 parent;
964 u64 bytenr;
965 u64 new_bytenr = 0;
966 u64 num_bytes;
967 u64 end;
968 u32 nritems;
969 u32 i;
970 int ret = 0;
971 int first = 1;
972 int dirty = 0;
973
974 if (rc->stage != UPDATE_DATA_PTRS)
975 return 0;
976
977 /* reloc trees always use full backref */
978 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
979 parent = leaf->start;
980 else
981 parent = 0;
982
983 nritems = btrfs_header_nritems(leaf);
984 for (i = 0; i < nritems; i++) {
985 struct btrfs_ref ref = { 0 };
986
987 cond_resched();
988 btrfs_item_key_to_cpu(leaf, &key, i);
989 if (key.type != BTRFS_EXTENT_DATA_KEY)
990 continue;
991 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
992 if (btrfs_file_extent_type(leaf, fi) ==
993 BTRFS_FILE_EXTENT_INLINE)
994 continue;
995 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
996 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
997 if (bytenr == 0)
998 continue;
999 if (!in_range(bytenr, rc->block_group->start,
1000 rc->block_group->length))
1001 continue;
1002
1003 /*
1004 * if we are modifying block in fs tree, wait for read_folio
1005 * to complete and drop the extent cache
1006 */
1007 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1008 if (first) {
1009 inode = btrfs_find_first_inode(root, key.objectid);
1010 first = 0;
1011 } else if (inode && btrfs_ino(inode) < key.objectid) {
1012 btrfs_add_delayed_iput(inode);
1013 inode = btrfs_find_first_inode(root, key.objectid);
1014 }
1015 if (inode && btrfs_ino(inode) == key.objectid) {
1016 struct extent_state *cached_state = NULL;
1017
1018 end = key.offset +
1019 btrfs_file_extent_num_bytes(leaf, fi);
1020 WARN_ON(!IS_ALIGNED(key.offset,
1021 fs_info->sectorsize));
1022 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1023 end--;
1024 /* Take mmap lock to serialize with reflinks. */
1025 if (!down_read_trylock(&inode->i_mmap_lock))
1026 continue;
1027 ret = try_lock_extent(&inode->io_tree, key.offset,
1028 end, &cached_state);
1029 if (!ret) {
1030 up_read(&inode->i_mmap_lock);
1031 continue;
1032 }
1033
1034 btrfs_drop_extent_map_range(inode, key.offset, end, true);
1035 unlock_extent(&inode->io_tree, key.offset, end,
1036 &cached_state);
1037 up_read(&inode->i_mmap_lock);
1038 }
1039 }
1040
1041 ret = get_new_location(rc->data_inode, &new_bytenr,
1042 bytenr, num_bytes);
1043 if (ret) {
1044 /*
1045 * Don't have to abort since we've not changed anything
1046 * in the file extent yet.
1047 */
1048 break;
1049 }
1050
1051 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1052 dirty = 1;
1053
1054 key.offset -= btrfs_file_extent_offset(leaf, fi);
1055 ref.action = BTRFS_ADD_DELAYED_REF;
1056 ref.bytenr = new_bytenr;
1057 ref.num_bytes = num_bytes;
1058 ref.parent = parent;
1059 ref.owning_root = btrfs_root_id(root);
1060 ref.ref_root = btrfs_header_owner(leaf);
1061 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1062 btrfs_root_id(root), false);
1063 ret = btrfs_inc_extent_ref(trans, &ref);
1064 if (ret) {
1065 btrfs_abort_transaction(trans, ret);
1066 break;
1067 }
1068
1069 ref.action = BTRFS_DROP_DELAYED_REF;
1070 ref.bytenr = bytenr;
1071 ref.num_bytes = num_bytes;
1072 ref.parent = parent;
1073 ref.owning_root = btrfs_root_id(root);
1074 ref.ref_root = btrfs_header_owner(leaf);
1075 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1076 btrfs_root_id(root), false);
1077 ret = btrfs_free_extent(trans, &ref);
1078 if (ret) {
1079 btrfs_abort_transaction(trans, ret);
1080 break;
1081 }
1082 }
1083 if (dirty)
1084 btrfs_mark_buffer_dirty(trans, leaf);
1085 if (inode)
1086 btrfs_add_delayed_iput(inode);
1087 return ret;
1088 }
1089
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)1090 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1091 int slot, const struct btrfs_path *path,
1092 int level)
1093 {
1094 struct btrfs_disk_key key1;
1095 struct btrfs_disk_key key2;
1096 btrfs_node_key(eb, &key1, slot);
1097 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1098 return memcmp(&key1, &key2, sizeof(key1));
1099 }
1100
1101 /*
1102 * try to replace tree blocks in fs tree with the new blocks
1103 * in reloc tree. tree blocks haven't been modified since the
1104 * reloc tree was create can be replaced.
1105 *
1106 * if a block was replaced, level of the block + 1 is returned.
1107 * if no block got replaced, 0 is returned. if there are other
1108 * errors, a negative error number is returned.
1109 */
1110 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1111 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1112 struct btrfs_root *dest, struct btrfs_root *src,
1113 struct btrfs_path *path, struct btrfs_key *next_key,
1114 int lowest_level, int max_level)
1115 {
1116 struct btrfs_fs_info *fs_info = dest->fs_info;
1117 struct extent_buffer *eb;
1118 struct extent_buffer *parent;
1119 struct btrfs_ref ref = { 0 };
1120 struct btrfs_key key;
1121 u64 old_bytenr;
1122 u64 new_bytenr;
1123 u64 old_ptr_gen;
1124 u64 new_ptr_gen;
1125 u64 last_snapshot;
1126 u32 blocksize;
1127 int cow = 0;
1128 int level;
1129 int ret;
1130 int slot;
1131
1132 ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1133 ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1134
1135 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1136 again:
1137 slot = path->slots[lowest_level];
1138 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1139
1140 eb = btrfs_lock_root_node(dest);
1141 level = btrfs_header_level(eb);
1142
1143 if (level < lowest_level) {
1144 btrfs_tree_unlock(eb);
1145 free_extent_buffer(eb);
1146 return 0;
1147 }
1148
1149 if (cow) {
1150 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1151 BTRFS_NESTING_COW);
1152 if (ret) {
1153 btrfs_tree_unlock(eb);
1154 free_extent_buffer(eb);
1155 return ret;
1156 }
1157 }
1158
1159 if (next_key) {
1160 next_key->objectid = (u64)-1;
1161 next_key->type = (u8)-1;
1162 next_key->offset = (u64)-1;
1163 }
1164
1165 parent = eb;
1166 while (1) {
1167 level = btrfs_header_level(parent);
1168 ASSERT(level >= lowest_level);
1169
1170 ret = btrfs_bin_search(parent, 0, &key, &slot);
1171 if (ret < 0)
1172 break;
1173 if (ret && slot > 0)
1174 slot--;
1175
1176 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1177 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1178
1179 old_bytenr = btrfs_node_blockptr(parent, slot);
1180 blocksize = fs_info->nodesize;
1181 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1182
1183 if (level <= max_level) {
1184 eb = path->nodes[level];
1185 new_bytenr = btrfs_node_blockptr(eb,
1186 path->slots[level]);
1187 new_ptr_gen = btrfs_node_ptr_generation(eb,
1188 path->slots[level]);
1189 } else {
1190 new_bytenr = 0;
1191 new_ptr_gen = 0;
1192 }
1193
1194 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1195 ret = level;
1196 break;
1197 }
1198
1199 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1200 memcmp_node_keys(parent, slot, path, level)) {
1201 if (level <= lowest_level) {
1202 ret = 0;
1203 break;
1204 }
1205
1206 eb = btrfs_read_node_slot(parent, slot);
1207 if (IS_ERR(eb)) {
1208 ret = PTR_ERR(eb);
1209 break;
1210 }
1211 btrfs_tree_lock(eb);
1212 if (cow) {
1213 ret = btrfs_cow_block(trans, dest, eb, parent,
1214 slot, &eb,
1215 BTRFS_NESTING_COW);
1216 if (ret) {
1217 btrfs_tree_unlock(eb);
1218 free_extent_buffer(eb);
1219 break;
1220 }
1221 }
1222
1223 btrfs_tree_unlock(parent);
1224 free_extent_buffer(parent);
1225
1226 parent = eb;
1227 continue;
1228 }
1229
1230 if (!cow) {
1231 btrfs_tree_unlock(parent);
1232 free_extent_buffer(parent);
1233 cow = 1;
1234 goto again;
1235 }
1236
1237 btrfs_node_key_to_cpu(path->nodes[level], &key,
1238 path->slots[level]);
1239 btrfs_release_path(path);
1240
1241 path->lowest_level = level;
1242 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1243 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1244 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1245 path->lowest_level = 0;
1246 if (ret) {
1247 if (ret > 0)
1248 ret = -ENOENT;
1249 break;
1250 }
1251
1252 /*
1253 * Info qgroup to trace both subtrees.
1254 *
1255 * We must trace both trees.
1256 * 1) Tree reloc subtree
1257 * If not traced, we will leak data numbers
1258 * 2) Fs subtree
1259 * If not traced, we will double count old data
1260 *
1261 * We don't scan the subtree right now, but only record
1262 * the swapped tree blocks.
1263 * The real subtree rescan is delayed until we have new
1264 * CoW on the subtree root node before transaction commit.
1265 */
1266 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1267 rc->block_group, parent, slot,
1268 path->nodes[level], path->slots[level],
1269 last_snapshot);
1270 if (ret < 0)
1271 break;
1272 /*
1273 * swap blocks in fs tree and reloc tree.
1274 */
1275 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1276 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1277 btrfs_mark_buffer_dirty(trans, parent);
1278
1279 btrfs_set_node_blockptr(path->nodes[level],
1280 path->slots[level], old_bytenr);
1281 btrfs_set_node_ptr_generation(path->nodes[level],
1282 path->slots[level], old_ptr_gen);
1283 btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1284
1285 ref.action = BTRFS_ADD_DELAYED_REF;
1286 ref.bytenr = old_bytenr;
1287 ref.num_bytes = blocksize;
1288 ref.parent = path->nodes[level]->start;
1289 ref.owning_root = btrfs_root_id(src);
1290 ref.ref_root = btrfs_root_id(src);
1291 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1292 ret = btrfs_inc_extent_ref(trans, &ref);
1293 if (ret) {
1294 btrfs_abort_transaction(trans, ret);
1295 break;
1296 }
1297
1298 ref.action = BTRFS_ADD_DELAYED_REF;
1299 ref.bytenr = new_bytenr;
1300 ref.num_bytes = blocksize;
1301 ref.parent = 0;
1302 ref.owning_root = btrfs_root_id(dest);
1303 ref.ref_root = btrfs_root_id(dest);
1304 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1305 ret = btrfs_inc_extent_ref(trans, &ref);
1306 if (ret) {
1307 btrfs_abort_transaction(trans, ret);
1308 break;
1309 }
1310
1311 /* We don't know the real owning_root, use 0. */
1312 ref.action = BTRFS_DROP_DELAYED_REF;
1313 ref.bytenr = new_bytenr;
1314 ref.num_bytes = blocksize;
1315 ref.parent = path->nodes[level]->start;
1316 ref.owning_root = 0;
1317 ref.ref_root = btrfs_root_id(src);
1318 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1319 ret = btrfs_free_extent(trans, &ref);
1320 if (ret) {
1321 btrfs_abort_transaction(trans, ret);
1322 break;
1323 }
1324
1325 /* We don't know the real owning_root, use 0. */
1326 ref.action = BTRFS_DROP_DELAYED_REF;
1327 ref.bytenr = old_bytenr;
1328 ref.num_bytes = blocksize;
1329 ref.parent = 0;
1330 ref.owning_root = 0;
1331 ref.ref_root = btrfs_root_id(dest);
1332 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1333 ret = btrfs_free_extent(trans, &ref);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, ret);
1336 break;
1337 }
1338
1339 btrfs_unlock_up_safe(path, 0);
1340
1341 ret = level;
1342 break;
1343 }
1344 btrfs_tree_unlock(parent);
1345 free_extent_buffer(parent);
1346 return ret;
1347 }
1348
1349 /*
1350 * helper to find next relocated block in reloc tree
1351 */
1352 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1353 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1354 int *level)
1355 {
1356 struct extent_buffer *eb;
1357 int i;
1358 u64 last_snapshot;
1359 u32 nritems;
1360
1361 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1362
1363 for (i = 0; i < *level; i++) {
1364 free_extent_buffer(path->nodes[i]);
1365 path->nodes[i] = NULL;
1366 }
1367
1368 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1369 eb = path->nodes[i];
1370 nritems = btrfs_header_nritems(eb);
1371 while (path->slots[i] + 1 < nritems) {
1372 path->slots[i]++;
1373 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1374 last_snapshot)
1375 continue;
1376
1377 *level = i;
1378 return 0;
1379 }
1380 free_extent_buffer(path->nodes[i]);
1381 path->nodes[i] = NULL;
1382 }
1383 return 1;
1384 }
1385
1386 /*
1387 * walk down reloc tree to find relocated block of lowest level
1388 */
1389 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1390 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1391 int *level)
1392 {
1393 struct extent_buffer *eb = NULL;
1394 int i;
1395 u64 ptr_gen = 0;
1396 u64 last_snapshot;
1397 u32 nritems;
1398
1399 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1400
1401 for (i = *level; i > 0; i--) {
1402 eb = path->nodes[i];
1403 nritems = btrfs_header_nritems(eb);
1404 while (path->slots[i] < nritems) {
1405 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1406 if (ptr_gen > last_snapshot)
1407 break;
1408 path->slots[i]++;
1409 }
1410 if (path->slots[i] >= nritems) {
1411 if (i == *level)
1412 break;
1413 *level = i + 1;
1414 return 0;
1415 }
1416 if (i == 1) {
1417 *level = i;
1418 return 0;
1419 }
1420
1421 eb = btrfs_read_node_slot(eb, path->slots[i]);
1422 if (IS_ERR(eb))
1423 return PTR_ERR(eb);
1424 BUG_ON(btrfs_header_level(eb) != i - 1);
1425 path->nodes[i - 1] = eb;
1426 path->slots[i - 1] = 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * invalidate extent cache for file extents whose key in range of
1433 * [min_key, max_key)
1434 */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1435 static int invalidate_extent_cache(struct btrfs_root *root,
1436 const struct btrfs_key *min_key,
1437 const struct btrfs_key *max_key)
1438 {
1439 struct btrfs_fs_info *fs_info = root->fs_info;
1440 struct btrfs_inode *inode = NULL;
1441 u64 objectid;
1442 u64 start, end;
1443 u64 ino;
1444
1445 objectid = min_key->objectid;
1446 while (1) {
1447 struct extent_state *cached_state = NULL;
1448
1449 cond_resched();
1450 if (inode)
1451 iput(&inode->vfs_inode);
1452
1453 if (objectid > max_key->objectid)
1454 break;
1455
1456 inode = btrfs_find_first_inode(root, objectid);
1457 if (!inode)
1458 break;
1459 ino = btrfs_ino(inode);
1460
1461 if (ino > max_key->objectid) {
1462 iput(&inode->vfs_inode);
1463 break;
1464 }
1465
1466 objectid = ino + 1;
1467 if (!S_ISREG(inode->vfs_inode.i_mode))
1468 continue;
1469
1470 if (unlikely(min_key->objectid == ino)) {
1471 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1472 continue;
1473 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1474 start = 0;
1475 else {
1476 start = min_key->offset;
1477 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1478 }
1479 } else {
1480 start = 0;
1481 }
1482
1483 if (unlikely(max_key->objectid == ino)) {
1484 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1485 continue;
1486 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1487 end = (u64)-1;
1488 } else {
1489 if (max_key->offset == 0)
1490 continue;
1491 end = max_key->offset;
1492 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1493 end--;
1494 }
1495 } else {
1496 end = (u64)-1;
1497 }
1498
1499 /* the lock_extent waits for read_folio to complete */
1500 lock_extent(&inode->io_tree, start, end, &cached_state);
1501 btrfs_drop_extent_map_range(inode, start, end, true);
1502 unlock_extent(&inode->io_tree, start, end, &cached_state);
1503 }
1504 return 0;
1505 }
1506
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1507 static int find_next_key(struct btrfs_path *path, int level,
1508 struct btrfs_key *key)
1509
1510 {
1511 while (level < BTRFS_MAX_LEVEL) {
1512 if (!path->nodes[level])
1513 break;
1514 if (path->slots[level] + 1 <
1515 btrfs_header_nritems(path->nodes[level])) {
1516 btrfs_node_key_to_cpu(path->nodes[level], key,
1517 path->slots[level] + 1);
1518 return 0;
1519 }
1520 level++;
1521 }
1522 return 1;
1523 }
1524
1525 /*
1526 * Insert current subvolume into reloc_control::dirty_subvol_roots
1527 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1528 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1529 struct reloc_control *rc,
1530 struct btrfs_root *root)
1531 {
1532 struct btrfs_root *reloc_root = root->reloc_root;
1533 struct btrfs_root_item *reloc_root_item;
1534 int ret;
1535
1536 /* @root must be a subvolume tree root with a valid reloc tree */
1537 ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1538 ASSERT(reloc_root);
1539
1540 reloc_root_item = &reloc_root->root_item;
1541 memset(&reloc_root_item->drop_progress, 0,
1542 sizeof(reloc_root_item->drop_progress));
1543 btrfs_set_root_drop_level(reloc_root_item, 0);
1544 btrfs_set_root_refs(reloc_root_item, 0);
1545 ret = btrfs_update_reloc_root(trans, root);
1546 if (ret)
1547 return ret;
1548
1549 if (list_empty(&root->reloc_dirty_list)) {
1550 btrfs_grab_root(root);
1551 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1552 }
1553
1554 return 0;
1555 }
1556
clean_dirty_subvols(struct reloc_control * rc)1557 static int clean_dirty_subvols(struct reloc_control *rc)
1558 {
1559 struct btrfs_root *root;
1560 struct btrfs_root *next;
1561 int ret = 0;
1562 int ret2;
1563
1564 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1565 reloc_dirty_list) {
1566 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1567 /* Merged subvolume, cleanup its reloc root */
1568 struct btrfs_root *reloc_root = root->reloc_root;
1569
1570 list_del_init(&root->reloc_dirty_list);
1571 root->reloc_root = NULL;
1572 /*
1573 * Need barrier to ensure clear_bit() only happens after
1574 * root->reloc_root = NULL. Pairs with have_reloc_root.
1575 */
1576 smp_wmb();
1577 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1578 if (reloc_root) {
1579 /*
1580 * btrfs_drop_snapshot drops our ref we hold for
1581 * ->reloc_root. If it fails however we must
1582 * drop the ref ourselves.
1583 */
1584 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1585 if (ret2 < 0) {
1586 btrfs_put_root(reloc_root);
1587 if (!ret)
1588 ret = ret2;
1589 }
1590 }
1591 btrfs_put_root(root);
1592 } else {
1593 /* Orphan reloc tree, just clean it up */
1594 ret2 = btrfs_drop_snapshot(root, 0, 1);
1595 if (ret2 < 0) {
1596 btrfs_put_root(root);
1597 if (!ret)
1598 ret = ret2;
1599 }
1600 }
1601 }
1602 return ret;
1603 }
1604
1605 /*
1606 * merge the relocated tree blocks in reloc tree with corresponding
1607 * fs tree.
1608 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1609 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1610 struct btrfs_root *root)
1611 {
1612 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1613 struct btrfs_key key;
1614 struct btrfs_key next_key;
1615 struct btrfs_trans_handle *trans = NULL;
1616 struct btrfs_root *reloc_root;
1617 struct btrfs_root_item *root_item;
1618 struct btrfs_path *path;
1619 struct extent_buffer *leaf;
1620 int reserve_level;
1621 int level;
1622 int max_level;
1623 int replaced = 0;
1624 int ret = 0;
1625 u32 min_reserved;
1626
1627 path = btrfs_alloc_path();
1628 if (!path)
1629 return -ENOMEM;
1630 path->reada = READA_FORWARD;
1631
1632 reloc_root = root->reloc_root;
1633 root_item = &reloc_root->root_item;
1634
1635 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1636 level = btrfs_root_level(root_item);
1637 atomic_inc(&reloc_root->node->refs);
1638 path->nodes[level] = reloc_root->node;
1639 path->slots[level] = 0;
1640 } else {
1641 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1642
1643 level = btrfs_root_drop_level(root_item);
1644 BUG_ON(level == 0);
1645 path->lowest_level = level;
1646 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1647 path->lowest_level = 0;
1648 if (ret < 0) {
1649 btrfs_free_path(path);
1650 return ret;
1651 }
1652
1653 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1654 path->slots[level]);
1655 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1656
1657 btrfs_unlock_up_safe(path, 0);
1658 }
1659
1660 /*
1661 * In merge_reloc_root(), we modify the upper level pointer to swap the
1662 * tree blocks between reloc tree and subvolume tree. Thus for tree
1663 * block COW, we COW at most from level 1 to root level for each tree.
1664 *
1665 * Thus the needed metadata size is at most root_level * nodesize,
1666 * and * 2 since we have two trees to COW.
1667 */
1668 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1669 min_reserved = fs_info->nodesize * reserve_level * 2;
1670 memset(&next_key, 0, sizeof(next_key));
1671
1672 while (1) {
1673 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1674 min_reserved,
1675 BTRFS_RESERVE_FLUSH_LIMIT);
1676 if (ret)
1677 goto out;
1678 trans = btrfs_start_transaction(root, 0);
1679 if (IS_ERR(trans)) {
1680 ret = PTR_ERR(trans);
1681 trans = NULL;
1682 goto out;
1683 }
1684
1685 /*
1686 * At this point we no longer have a reloc_control, so we can't
1687 * depend on btrfs_init_reloc_root to update our last_trans.
1688 *
1689 * But that's ok, we started the trans handle on our
1690 * corresponding fs_root, which means it's been added to the
1691 * dirty list. At commit time we'll still call
1692 * btrfs_update_reloc_root() and update our root item
1693 * appropriately.
1694 */
1695 btrfs_set_root_last_trans(reloc_root, trans->transid);
1696 trans->block_rsv = rc->block_rsv;
1697
1698 replaced = 0;
1699 max_level = level;
1700
1701 ret = walk_down_reloc_tree(reloc_root, path, &level);
1702 if (ret < 0)
1703 goto out;
1704 if (ret > 0)
1705 break;
1706
1707 if (!find_next_key(path, level, &key) &&
1708 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1709 ret = 0;
1710 } else {
1711 ret = replace_path(trans, rc, root, reloc_root, path,
1712 &next_key, level, max_level);
1713 }
1714 if (ret < 0)
1715 goto out;
1716 if (ret > 0) {
1717 level = ret;
1718 btrfs_node_key_to_cpu(path->nodes[level], &key,
1719 path->slots[level]);
1720 replaced = 1;
1721 }
1722
1723 ret = walk_up_reloc_tree(reloc_root, path, &level);
1724 if (ret > 0)
1725 break;
1726
1727 BUG_ON(level == 0);
1728 /*
1729 * save the merging progress in the drop_progress.
1730 * this is OK since root refs == 1 in this case.
1731 */
1732 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1733 path->slots[level]);
1734 btrfs_set_root_drop_level(root_item, level);
1735
1736 btrfs_end_transaction_throttle(trans);
1737 trans = NULL;
1738
1739 btrfs_btree_balance_dirty(fs_info);
1740
1741 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1742 invalidate_extent_cache(root, &key, &next_key);
1743 }
1744
1745 /*
1746 * handle the case only one block in the fs tree need to be
1747 * relocated and the block is tree root.
1748 */
1749 leaf = btrfs_lock_root_node(root);
1750 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1751 BTRFS_NESTING_COW);
1752 btrfs_tree_unlock(leaf);
1753 free_extent_buffer(leaf);
1754 out:
1755 btrfs_free_path(path);
1756
1757 if (ret == 0) {
1758 ret = insert_dirty_subvol(trans, rc, root);
1759 if (ret)
1760 btrfs_abort_transaction(trans, ret);
1761 }
1762
1763 if (trans)
1764 btrfs_end_transaction_throttle(trans);
1765
1766 btrfs_btree_balance_dirty(fs_info);
1767
1768 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1769 invalidate_extent_cache(root, &key, &next_key);
1770
1771 return ret;
1772 }
1773
1774 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1775 int prepare_to_merge(struct reloc_control *rc, int err)
1776 {
1777 struct btrfs_root *root = rc->extent_root;
1778 struct btrfs_fs_info *fs_info = root->fs_info;
1779 struct btrfs_root *reloc_root;
1780 struct btrfs_trans_handle *trans;
1781 LIST_HEAD(reloc_roots);
1782 u64 num_bytes = 0;
1783 int ret;
1784
1785 mutex_lock(&fs_info->reloc_mutex);
1786 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1787 rc->merging_rsv_size += rc->nodes_relocated * 2;
1788 mutex_unlock(&fs_info->reloc_mutex);
1789
1790 again:
1791 if (!err) {
1792 num_bytes = rc->merging_rsv_size;
1793 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1794 BTRFS_RESERVE_FLUSH_ALL);
1795 if (ret)
1796 err = ret;
1797 }
1798
1799 trans = btrfs_join_transaction(rc->extent_root);
1800 if (IS_ERR(trans)) {
1801 if (!err)
1802 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1803 num_bytes, NULL);
1804 return PTR_ERR(trans);
1805 }
1806
1807 if (!err) {
1808 if (num_bytes != rc->merging_rsv_size) {
1809 btrfs_end_transaction(trans);
1810 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1811 num_bytes, NULL);
1812 goto again;
1813 }
1814 }
1815
1816 rc->merge_reloc_tree = true;
1817
1818 while (!list_empty(&rc->reloc_roots)) {
1819 reloc_root = list_entry(rc->reloc_roots.next,
1820 struct btrfs_root, root_list);
1821 list_del_init(&reloc_root->root_list);
1822
1823 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1824 false);
1825 if (IS_ERR(root)) {
1826 /*
1827 * Even if we have an error we need this reloc root
1828 * back on our list so we can clean up properly.
1829 */
1830 list_add(&reloc_root->root_list, &reloc_roots);
1831 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1832 if (!err)
1833 err = PTR_ERR(root);
1834 break;
1835 }
1836
1837 if (unlikely(root->reloc_root != reloc_root)) {
1838 if (root->reloc_root) {
1839 btrfs_err(fs_info,
1840 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1841 btrfs_root_id(root),
1842 btrfs_root_id(root->reloc_root),
1843 root->reloc_root->root_key.type,
1844 root->reloc_root->root_key.offset,
1845 btrfs_root_generation(
1846 &root->reloc_root->root_item),
1847 btrfs_root_id(reloc_root),
1848 reloc_root->root_key.type,
1849 reloc_root->root_key.offset,
1850 btrfs_root_generation(
1851 &reloc_root->root_item));
1852 } else {
1853 btrfs_err(fs_info,
1854 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1855 btrfs_root_id(root),
1856 btrfs_root_id(reloc_root),
1857 reloc_root->root_key.type,
1858 reloc_root->root_key.offset,
1859 btrfs_root_generation(
1860 &reloc_root->root_item));
1861 }
1862 list_add(&reloc_root->root_list, &reloc_roots);
1863 btrfs_put_root(root);
1864 btrfs_abort_transaction(trans, -EUCLEAN);
1865 if (!err)
1866 err = -EUCLEAN;
1867 break;
1868 }
1869
1870 /*
1871 * set reference count to 1, so btrfs_recover_relocation
1872 * knows it should resumes merging
1873 */
1874 if (!err)
1875 btrfs_set_root_refs(&reloc_root->root_item, 1);
1876 ret = btrfs_update_reloc_root(trans, root);
1877
1878 /*
1879 * Even if we have an error we need this reloc root back on our
1880 * list so we can clean up properly.
1881 */
1882 list_add(&reloc_root->root_list, &reloc_roots);
1883 btrfs_put_root(root);
1884
1885 if (ret) {
1886 btrfs_abort_transaction(trans, ret);
1887 if (!err)
1888 err = ret;
1889 break;
1890 }
1891 }
1892
1893 list_splice(&reloc_roots, &rc->reloc_roots);
1894
1895 if (!err)
1896 err = btrfs_commit_transaction(trans);
1897 else
1898 btrfs_end_transaction(trans);
1899 return err;
1900 }
1901
1902 static noinline_for_stack
free_reloc_roots(struct list_head * list)1903 void free_reloc_roots(struct list_head *list)
1904 {
1905 struct btrfs_root *reloc_root, *tmp;
1906
1907 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1908 __del_reloc_root(reloc_root);
1909 }
1910
1911 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1912 void merge_reloc_roots(struct reloc_control *rc)
1913 {
1914 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1915 struct btrfs_root *root;
1916 struct btrfs_root *reloc_root;
1917 LIST_HEAD(reloc_roots);
1918 int found = 0;
1919 int ret = 0;
1920 again:
1921 root = rc->extent_root;
1922
1923 /*
1924 * this serializes us with btrfs_record_root_in_transaction,
1925 * we have to make sure nobody is in the middle of
1926 * adding their roots to the list while we are
1927 * doing this splice
1928 */
1929 mutex_lock(&fs_info->reloc_mutex);
1930 list_splice_init(&rc->reloc_roots, &reloc_roots);
1931 mutex_unlock(&fs_info->reloc_mutex);
1932
1933 while (!list_empty(&reloc_roots)) {
1934 found = 1;
1935 reloc_root = list_entry(reloc_roots.next,
1936 struct btrfs_root, root_list);
1937
1938 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1939 false);
1940 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1941 if (WARN_ON(IS_ERR(root))) {
1942 /*
1943 * For recovery we read the fs roots on mount,
1944 * and if we didn't find the root then we marked
1945 * the reloc root as a garbage root. For normal
1946 * relocation obviously the root should exist in
1947 * memory. However there's no reason we can't
1948 * handle the error properly here just in case.
1949 */
1950 ret = PTR_ERR(root);
1951 goto out;
1952 }
1953 if (WARN_ON(root->reloc_root != reloc_root)) {
1954 /*
1955 * This can happen if on-disk metadata has some
1956 * corruption, e.g. bad reloc tree key offset.
1957 */
1958 ret = -EINVAL;
1959 goto out;
1960 }
1961 ret = merge_reloc_root(rc, root);
1962 btrfs_put_root(root);
1963 if (ret) {
1964 if (list_empty(&reloc_root->root_list))
1965 list_add_tail(&reloc_root->root_list,
1966 &reloc_roots);
1967 goto out;
1968 }
1969 } else {
1970 if (!IS_ERR(root)) {
1971 if (root->reloc_root == reloc_root) {
1972 root->reloc_root = NULL;
1973 btrfs_put_root(reloc_root);
1974 }
1975 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1976 &root->state);
1977 btrfs_put_root(root);
1978 }
1979
1980 list_del_init(&reloc_root->root_list);
1981 /* Don't forget to queue this reloc root for cleanup */
1982 list_add_tail(&reloc_root->reloc_dirty_list,
1983 &rc->dirty_subvol_roots);
1984 }
1985 }
1986
1987 if (found) {
1988 found = 0;
1989 goto again;
1990 }
1991 out:
1992 if (ret) {
1993 btrfs_handle_fs_error(fs_info, ret, NULL);
1994 free_reloc_roots(&reloc_roots);
1995
1996 /* new reloc root may be added */
1997 mutex_lock(&fs_info->reloc_mutex);
1998 list_splice_init(&rc->reloc_roots, &reloc_roots);
1999 mutex_unlock(&fs_info->reloc_mutex);
2000 free_reloc_roots(&reloc_roots);
2001 }
2002
2003 /*
2004 * We used to have
2005 *
2006 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2007 *
2008 * here, but it's wrong. If we fail to start the transaction in
2009 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2010 * have actually been removed from the reloc_root_tree rb tree. This is
2011 * fine because we're bailing here, and we hold a reference on the root
2012 * for the list that holds it, so these roots will be cleaned up when we
2013 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2014 * will be cleaned up on unmount.
2015 *
2016 * The remaining nodes will be cleaned up by free_reloc_control.
2017 */
2018 }
2019
free_block_list(struct rb_root * blocks)2020 static void free_block_list(struct rb_root *blocks)
2021 {
2022 struct tree_block *block;
2023 struct rb_node *rb_node;
2024 while ((rb_node = rb_first(blocks))) {
2025 block = rb_entry(rb_node, struct tree_block, rb_node);
2026 rb_erase(rb_node, blocks);
2027 kfree(block);
2028 }
2029 }
2030
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2031 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2032 struct btrfs_root *reloc_root)
2033 {
2034 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2035 struct btrfs_root *root;
2036 int ret;
2037
2038 if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
2039 return 0;
2040
2041 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2042
2043 /*
2044 * This should succeed, since we can't have a reloc root without having
2045 * already looked up the actual root and created the reloc root for this
2046 * root.
2047 *
2048 * However if there's some sort of corruption where we have a ref to a
2049 * reloc root without a corresponding root this could return ENOENT.
2050 */
2051 if (IS_ERR(root)) {
2052 ASSERT(0);
2053 return PTR_ERR(root);
2054 }
2055 if (root->reloc_root != reloc_root) {
2056 ASSERT(0);
2057 btrfs_err(fs_info,
2058 "root %llu has two reloc roots associated with it",
2059 reloc_root->root_key.offset);
2060 btrfs_put_root(root);
2061 return -EUCLEAN;
2062 }
2063 ret = btrfs_record_root_in_trans(trans, root);
2064 btrfs_put_root(root);
2065
2066 return ret;
2067 }
2068
2069 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2070 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2071 struct reloc_control *rc,
2072 struct btrfs_backref_node *node,
2073 struct btrfs_backref_edge *edges[])
2074 {
2075 struct btrfs_backref_node *next;
2076 struct btrfs_root *root;
2077 int index = 0;
2078 int ret;
2079
2080 next = node;
2081 while (1) {
2082 cond_resched();
2083 next = walk_up_backref(next, edges, &index);
2084 root = next->root;
2085
2086 /*
2087 * If there is no root, then our references for this block are
2088 * incomplete, as we should be able to walk all the way up to a
2089 * block that is owned by a root.
2090 *
2091 * This path is only for SHAREABLE roots, so if we come upon a
2092 * non-SHAREABLE root then we have backrefs that resolve
2093 * improperly.
2094 *
2095 * Both of these cases indicate file system corruption, or a bug
2096 * in the backref walking code.
2097 */
2098 if (!root) {
2099 ASSERT(0);
2100 btrfs_err(trans->fs_info,
2101 "bytenr %llu doesn't have a backref path ending in a root",
2102 node->bytenr);
2103 return ERR_PTR(-EUCLEAN);
2104 }
2105 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2106 ASSERT(0);
2107 btrfs_err(trans->fs_info,
2108 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2109 node->bytenr);
2110 return ERR_PTR(-EUCLEAN);
2111 }
2112
2113 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2114 ret = record_reloc_root_in_trans(trans, root);
2115 if (ret)
2116 return ERR_PTR(ret);
2117 break;
2118 }
2119
2120 ret = btrfs_record_root_in_trans(trans, root);
2121 if (ret)
2122 return ERR_PTR(ret);
2123 root = root->reloc_root;
2124
2125 /*
2126 * We could have raced with another thread which failed, so
2127 * root->reloc_root may not be set, return ENOENT in this case.
2128 */
2129 if (!root)
2130 return ERR_PTR(-ENOENT);
2131
2132 if (next->new_bytenr != root->node->start) {
2133 /*
2134 * We just created the reloc root, so we shouldn't have
2135 * ->new_bytenr set and this shouldn't be in the changed
2136 * list. If it is then we have multiple roots pointing
2137 * at the same bytenr which indicates corruption, or
2138 * we've made a mistake in the backref walking code.
2139 */
2140 ASSERT(next->new_bytenr == 0);
2141 ASSERT(list_empty(&next->list));
2142 if (next->new_bytenr || !list_empty(&next->list)) {
2143 btrfs_err(trans->fs_info,
2144 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2145 node->bytenr, next->bytenr);
2146 return ERR_PTR(-EUCLEAN);
2147 }
2148
2149 next->new_bytenr = root->node->start;
2150 btrfs_put_root(next->root);
2151 next->root = btrfs_grab_root(root);
2152 ASSERT(next->root);
2153 list_add_tail(&next->list,
2154 &rc->backref_cache.changed);
2155 mark_block_processed(rc, next);
2156 break;
2157 }
2158
2159 WARN_ON(1);
2160 root = NULL;
2161 next = walk_down_backref(edges, &index);
2162 if (!next || next->level <= node->level)
2163 break;
2164 }
2165 if (!root) {
2166 /*
2167 * This can happen if there's fs corruption or if there's a bug
2168 * in the backref lookup code.
2169 */
2170 ASSERT(0);
2171 return ERR_PTR(-ENOENT);
2172 }
2173
2174 next = node;
2175 /* setup backref node path for btrfs_reloc_cow_block */
2176 while (1) {
2177 rc->backref_cache.path[next->level] = next;
2178 if (--index < 0)
2179 break;
2180 next = edges[index]->node[UPPER];
2181 }
2182 return root;
2183 }
2184
2185 /*
2186 * Select a tree root for relocation.
2187 *
2188 * Return NULL if the block is not shareable. We should use do_relocation() in
2189 * this case.
2190 *
2191 * Return a tree root pointer if the block is shareable.
2192 * Return -ENOENT if the block is root of reloc tree.
2193 */
2194 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2195 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2196 {
2197 struct btrfs_backref_node *next;
2198 struct btrfs_root *root;
2199 struct btrfs_root *fs_root = NULL;
2200 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2201 int index = 0;
2202
2203 next = node;
2204 while (1) {
2205 cond_resched();
2206 next = walk_up_backref(next, edges, &index);
2207 root = next->root;
2208
2209 /*
2210 * This can occur if we have incomplete extent refs leading all
2211 * the way up a particular path, in this case return -EUCLEAN.
2212 */
2213 if (!root)
2214 return ERR_PTR(-EUCLEAN);
2215
2216 /* No other choice for non-shareable tree */
2217 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2218 return root;
2219
2220 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2221 fs_root = root;
2222
2223 if (next != node)
2224 return NULL;
2225
2226 next = walk_down_backref(edges, &index);
2227 if (!next || next->level <= node->level)
2228 break;
2229 }
2230
2231 if (!fs_root)
2232 return ERR_PTR(-ENOENT);
2233 return fs_root;
2234 }
2235
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2236 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2237 struct btrfs_backref_node *node)
2238 {
2239 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2240 struct btrfs_backref_node *next = node;
2241 struct btrfs_backref_edge *edge;
2242 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2243 u64 num_bytes = 0;
2244 int index = 0;
2245
2246 BUG_ON(node->processed);
2247
2248 while (next) {
2249 cond_resched();
2250 while (1) {
2251 if (next->processed)
2252 break;
2253
2254 num_bytes += fs_info->nodesize;
2255
2256 if (list_empty(&next->upper))
2257 break;
2258
2259 edge = list_entry(next->upper.next,
2260 struct btrfs_backref_edge, list[LOWER]);
2261 edges[index++] = edge;
2262 next = edge->node[UPPER];
2263 }
2264 next = walk_down_backref(edges, &index);
2265 }
2266 return num_bytes;
2267 }
2268
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2269 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2270 struct reloc_control *rc,
2271 struct btrfs_backref_node *node)
2272 {
2273 struct btrfs_root *root = rc->extent_root;
2274 struct btrfs_fs_info *fs_info = root->fs_info;
2275 u64 num_bytes;
2276 int ret;
2277 u64 tmp;
2278
2279 num_bytes = calcu_metadata_size(rc, node) * 2;
2280
2281 trans->block_rsv = rc->block_rsv;
2282 rc->reserved_bytes += num_bytes;
2283
2284 /*
2285 * We are under a transaction here so we can only do limited flushing.
2286 * If we get an enospc just kick back -EAGAIN so we know to drop the
2287 * transaction and try to refill when we can flush all the things.
2288 */
2289 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2290 BTRFS_RESERVE_FLUSH_LIMIT);
2291 if (ret) {
2292 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2293 while (tmp <= rc->reserved_bytes)
2294 tmp <<= 1;
2295 /*
2296 * only one thread can access block_rsv at this point,
2297 * so we don't need hold lock to protect block_rsv.
2298 * we expand more reservation size here to allow enough
2299 * space for relocation and we will return earlier in
2300 * enospc case.
2301 */
2302 rc->block_rsv->size = tmp + fs_info->nodesize *
2303 RELOCATION_RESERVED_NODES;
2304 return -EAGAIN;
2305 }
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * relocate a block tree, and then update pointers in upper level
2312 * blocks that reference the block to point to the new location.
2313 *
2314 * if called by link_to_upper, the block has already been relocated.
2315 * in that case this function just updates pointers.
2316 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2317 static int do_relocation(struct btrfs_trans_handle *trans,
2318 struct reloc_control *rc,
2319 struct btrfs_backref_node *node,
2320 struct btrfs_key *key,
2321 struct btrfs_path *path, int lowest)
2322 {
2323 struct btrfs_backref_node *upper;
2324 struct btrfs_backref_edge *edge;
2325 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2326 struct btrfs_root *root;
2327 struct extent_buffer *eb;
2328 u32 blocksize;
2329 u64 bytenr;
2330 int slot;
2331 int ret = 0;
2332
2333 /*
2334 * If we are lowest then this is the first time we're processing this
2335 * block, and thus shouldn't have an eb associated with it yet.
2336 */
2337 ASSERT(!lowest || !node->eb);
2338
2339 path->lowest_level = node->level + 1;
2340 rc->backref_cache.path[node->level] = node;
2341 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2342 cond_resched();
2343
2344 upper = edge->node[UPPER];
2345 root = select_reloc_root(trans, rc, upper, edges);
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
2348 goto next;
2349 }
2350
2351 if (upper->eb && !upper->locked) {
2352 if (!lowest) {
2353 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2354 if (ret < 0)
2355 goto next;
2356 BUG_ON(ret);
2357 bytenr = btrfs_node_blockptr(upper->eb, slot);
2358 if (node->eb->start == bytenr)
2359 goto next;
2360 }
2361 btrfs_backref_drop_node_buffer(upper);
2362 }
2363
2364 if (!upper->eb) {
2365 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2366 if (ret) {
2367 if (ret > 0)
2368 ret = -ENOENT;
2369
2370 btrfs_release_path(path);
2371 break;
2372 }
2373
2374 if (!upper->eb) {
2375 upper->eb = path->nodes[upper->level];
2376 path->nodes[upper->level] = NULL;
2377 } else {
2378 BUG_ON(upper->eb != path->nodes[upper->level]);
2379 }
2380
2381 upper->locked = 1;
2382 path->locks[upper->level] = 0;
2383
2384 slot = path->slots[upper->level];
2385 btrfs_release_path(path);
2386 } else {
2387 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2388 if (ret < 0)
2389 goto next;
2390 BUG_ON(ret);
2391 }
2392
2393 bytenr = btrfs_node_blockptr(upper->eb, slot);
2394 if (lowest) {
2395 if (bytenr != node->bytenr) {
2396 btrfs_err(root->fs_info,
2397 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2398 bytenr, node->bytenr, slot,
2399 upper->eb->start);
2400 ret = -EIO;
2401 goto next;
2402 }
2403 } else {
2404 if (node->eb->start == bytenr)
2405 goto next;
2406 }
2407
2408 blocksize = root->fs_info->nodesize;
2409 eb = btrfs_read_node_slot(upper->eb, slot);
2410 if (IS_ERR(eb)) {
2411 ret = PTR_ERR(eb);
2412 goto next;
2413 }
2414 btrfs_tree_lock(eb);
2415
2416 if (!node->eb) {
2417 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2418 slot, &eb, BTRFS_NESTING_COW);
2419 btrfs_tree_unlock(eb);
2420 free_extent_buffer(eb);
2421 if (ret < 0)
2422 goto next;
2423 /*
2424 * We've just COWed this block, it should have updated
2425 * the correct backref node entry.
2426 */
2427 ASSERT(node->eb == eb);
2428 } else {
2429 struct btrfs_ref ref = {
2430 .action = BTRFS_ADD_DELAYED_REF,
2431 .bytenr = node->eb->start,
2432 .num_bytes = blocksize,
2433 .parent = upper->eb->start,
2434 .owning_root = btrfs_header_owner(upper->eb),
2435 .ref_root = btrfs_header_owner(upper->eb),
2436 };
2437
2438 btrfs_set_node_blockptr(upper->eb, slot,
2439 node->eb->start);
2440 btrfs_set_node_ptr_generation(upper->eb, slot,
2441 trans->transid);
2442 btrfs_mark_buffer_dirty(trans, upper->eb);
2443
2444 btrfs_init_tree_ref(&ref, node->level,
2445 btrfs_root_id(root), false);
2446 ret = btrfs_inc_extent_ref(trans, &ref);
2447 if (!ret)
2448 ret = btrfs_drop_subtree(trans, root, eb,
2449 upper->eb);
2450 if (ret)
2451 btrfs_abort_transaction(trans, ret);
2452 }
2453 next:
2454 if (!upper->pending)
2455 btrfs_backref_drop_node_buffer(upper);
2456 else
2457 btrfs_backref_unlock_node_buffer(upper);
2458 if (ret)
2459 break;
2460 }
2461
2462 if (!ret && node->pending) {
2463 btrfs_backref_drop_node_buffer(node);
2464 list_move_tail(&node->list, &rc->backref_cache.changed);
2465 node->pending = 0;
2466 }
2467
2468 path->lowest_level = 0;
2469
2470 /*
2471 * We should have allocated all of our space in the block rsv and thus
2472 * shouldn't ENOSPC.
2473 */
2474 ASSERT(ret != -ENOSPC);
2475 return ret;
2476 }
2477
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2478 static int link_to_upper(struct btrfs_trans_handle *trans,
2479 struct reloc_control *rc,
2480 struct btrfs_backref_node *node,
2481 struct btrfs_path *path)
2482 {
2483 struct btrfs_key key;
2484
2485 btrfs_node_key_to_cpu(node->eb, &key, 0);
2486 return do_relocation(trans, rc, node, &key, path, 0);
2487 }
2488
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2489 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2490 struct reloc_control *rc,
2491 struct btrfs_path *path, int err)
2492 {
2493 LIST_HEAD(list);
2494 struct btrfs_backref_cache *cache = &rc->backref_cache;
2495 struct btrfs_backref_node *node;
2496 int level;
2497 int ret;
2498
2499 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2500 while (!list_empty(&cache->pending[level])) {
2501 node = list_entry(cache->pending[level].next,
2502 struct btrfs_backref_node, list);
2503 list_move_tail(&node->list, &list);
2504 BUG_ON(!node->pending);
2505
2506 if (!err) {
2507 ret = link_to_upper(trans, rc, node, path);
2508 if (ret < 0)
2509 err = ret;
2510 }
2511 }
2512 list_splice_init(&list, &cache->pending[level]);
2513 }
2514 return err;
2515 }
2516
2517 /*
2518 * mark a block and all blocks directly/indirectly reference the block
2519 * as processed.
2520 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2521 static void update_processed_blocks(struct reloc_control *rc,
2522 struct btrfs_backref_node *node)
2523 {
2524 struct btrfs_backref_node *next = node;
2525 struct btrfs_backref_edge *edge;
2526 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2527 int index = 0;
2528
2529 while (next) {
2530 cond_resched();
2531 while (1) {
2532 if (next->processed)
2533 break;
2534
2535 mark_block_processed(rc, next);
2536
2537 if (list_empty(&next->upper))
2538 break;
2539
2540 edge = list_entry(next->upper.next,
2541 struct btrfs_backref_edge, list[LOWER]);
2542 edges[index++] = edge;
2543 next = edge->node[UPPER];
2544 }
2545 next = walk_down_backref(edges, &index);
2546 }
2547 }
2548
tree_block_processed(u64 bytenr,struct reloc_control * rc)2549 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2550 {
2551 u32 blocksize = rc->extent_root->fs_info->nodesize;
2552
2553 if (test_range_bit(&rc->processed_blocks, bytenr,
2554 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2555 return 1;
2556 return 0;
2557 }
2558
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2559 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2560 struct tree_block *block)
2561 {
2562 struct btrfs_tree_parent_check check = {
2563 .level = block->level,
2564 .owner_root = block->owner,
2565 .transid = block->key.offset
2566 };
2567 struct extent_buffer *eb;
2568
2569 eb = read_tree_block(fs_info, block->bytenr, &check);
2570 if (IS_ERR(eb))
2571 return PTR_ERR(eb);
2572 if (!extent_buffer_uptodate(eb)) {
2573 free_extent_buffer(eb);
2574 return -EIO;
2575 }
2576 if (block->level == 0)
2577 btrfs_item_key_to_cpu(eb, &block->key, 0);
2578 else
2579 btrfs_node_key_to_cpu(eb, &block->key, 0);
2580 free_extent_buffer(eb);
2581 block->key_ready = true;
2582 return 0;
2583 }
2584
2585 /*
2586 * helper function to relocate a tree block
2587 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2588 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2589 struct reloc_control *rc,
2590 struct btrfs_backref_node *node,
2591 struct btrfs_key *key,
2592 struct btrfs_path *path)
2593 {
2594 struct btrfs_root *root;
2595 int ret = 0;
2596
2597 if (!node)
2598 return 0;
2599
2600 /*
2601 * If we fail here we want to drop our backref_node because we are going
2602 * to start over and regenerate the tree for it.
2603 */
2604 ret = reserve_metadata_space(trans, rc, node);
2605 if (ret)
2606 goto out;
2607
2608 BUG_ON(node->processed);
2609 root = select_one_root(node);
2610 if (IS_ERR(root)) {
2611 ret = PTR_ERR(root);
2612
2613 /* See explanation in select_one_root for the -EUCLEAN case. */
2614 ASSERT(ret == -ENOENT);
2615 if (ret == -ENOENT) {
2616 ret = 0;
2617 update_processed_blocks(rc, node);
2618 }
2619 goto out;
2620 }
2621
2622 if (root) {
2623 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2624 /*
2625 * This block was the root block of a root, and this is
2626 * the first time we're processing the block and thus it
2627 * should not have had the ->new_bytenr modified and
2628 * should have not been included on the changed list.
2629 *
2630 * However in the case of corruption we could have
2631 * multiple refs pointing to the same block improperly,
2632 * and thus we would trip over these checks. ASSERT()
2633 * for the developer case, because it could indicate a
2634 * bug in the backref code, however error out for a
2635 * normal user in the case of corruption.
2636 */
2637 ASSERT(node->new_bytenr == 0);
2638 ASSERT(list_empty(&node->list));
2639 if (node->new_bytenr || !list_empty(&node->list)) {
2640 btrfs_err(root->fs_info,
2641 "bytenr %llu has improper references to it",
2642 node->bytenr);
2643 ret = -EUCLEAN;
2644 goto out;
2645 }
2646 ret = btrfs_record_root_in_trans(trans, root);
2647 if (ret)
2648 goto out;
2649 /*
2650 * Another thread could have failed, need to check if we
2651 * have reloc_root actually set.
2652 */
2653 if (!root->reloc_root) {
2654 ret = -ENOENT;
2655 goto out;
2656 }
2657 root = root->reloc_root;
2658 node->new_bytenr = root->node->start;
2659 btrfs_put_root(node->root);
2660 node->root = btrfs_grab_root(root);
2661 ASSERT(node->root);
2662 list_add_tail(&node->list, &rc->backref_cache.changed);
2663 } else {
2664 path->lowest_level = node->level;
2665 if (root == root->fs_info->chunk_root)
2666 btrfs_reserve_chunk_metadata(trans, false);
2667 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2668 btrfs_release_path(path);
2669 if (root == root->fs_info->chunk_root)
2670 btrfs_trans_release_chunk_metadata(trans);
2671 if (ret > 0)
2672 ret = 0;
2673 }
2674 if (!ret)
2675 update_processed_blocks(rc, node);
2676 } else {
2677 ret = do_relocation(trans, rc, node, key, path, 1);
2678 }
2679 out:
2680 if (ret || node->level == 0 || node->cowonly)
2681 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2682 return ret;
2683 }
2684
2685 /*
2686 * relocate a list of blocks
2687 */
2688 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2689 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2690 struct reloc_control *rc, struct rb_root *blocks)
2691 {
2692 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693 struct btrfs_backref_node *node;
2694 struct btrfs_path *path;
2695 struct tree_block *block;
2696 struct tree_block *next;
2697 int ret = 0;
2698
2699 path = btrfs_alloc_path();
2700 if (!path) {
2701 ret = -ENOMEM;
2702 goto out_free_blocks;
2703 }
2704
2705 /* Kick in readahead for tree blocks with missing keys */
2706 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2707 if (!block->key_ready)
2708 btrfs_readahead_tree_block(fs_info, block->bytenr,
2709 block->owner, 0,
2710 block->level);
2711 }
2712
2713 /* Get first keys */
2714 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2715 if (!block->key_ready) {
2716 ret = get_tree_block_key(fs_info, block);
2717 if (ret)
2718 goto out_free_path;
2719 }
2720 }
2721
2722 /* Do tree relocation */
2723 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2724 node = build_backref_tree(trans, rc, &block->key,
2725 block->level, block->bytenr);
2726 if (IS_ERR(node)) {
2727 ret = PTR_ERR(node);
2728 goto out;
2729 }
2730
2731 ret = relocate_tree_block(trans, rc, node, &block->key,
2732 path);
2733 if (ret < 0)
2734 break;
2735 }
2736 out:
2737 ret = finish_pending_nodes(trans, rc, path, ret);
2738
2739 out_free_path:
2740 btrfs_free_path(path);
2741 out_free_blocks:
2742 free_block_list(blocks);
2743 return ret;
2744 }
2745
prealloc_file_extent_cluster(struct reloc_control * rc)2746 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2747 {
2748 const struct file_extent_cluster *cluster = &rc->cluster;
2749 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2750 u64 alloc_hint = 0;
2751 u64 start;
2752 u64 end;
2753 u64 offset = inode->reloc_block_group_start;
2754 u64 num_bytes;
2755 int nr;
2756 int ret = 0;
2757 u64 i_size = i_size_read(&inode->vfs_inode);
2758 u64 prealloc_start = cluster->start - offset;
2759 u64 prealloc_end = cluster->end - offset;
2760 u64 cur_offset = prealloc_start;
2761
2762 /*
2763 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2764 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2765 * btrfs_do_readpage() call of previously relocated file cluster.
2766 *
2767 * If the current cluster starts in the above range, btrfs_do_readpage()
2768 * will skip the read, and relocate_one_folio() will later writeback
2769 * the padding zeros as new data, causing data corruption.
2770 *
2771 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2772 */
2773 if (!PAGE_ALIGNED(i_size)) {
2774 struct address_space *mapping = inode->vfs_inode.i_mapping;
2775 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2776 const u32 sectorsize = fs_info->sectorsize;
2777 struct folio *folio;
2778
2779 ASSERT(sectorsize < PAGE_SIZE);
2780 ASSERT(IS_ALIGNED(i_size, sectorsize));
2781
2782 /*
2783 * Subpage can't handle page with DIRTY but without UPTODATE
2784 * bit as it can lead to the following deadlock:
2785 *
2786 * btrfs_read_folio()
2787 * | Page already *locked*
2788 * |- btrfs_lock_and_flush_ordered_range()
2789 * |- btrfs_start_ordered_extent()
2790 * |- extent_write_cache_pages()
2791 * |- lock_page()
2792 * We try to lock the page we already hold.
2793 *
2794 * Here we just writeback the whole data reloc inode, so that
2795 * we will be ensured to have no dirty range in the page, and
2796 * are safe to clear the uptodate bits.
2797 *
2798 * This shouldn't cause too much overhead, as we need to write
2799 * the data back anyway.
2800 */
2801 ret = filemap_write_and_wait(mapping);
2802 if (ret < 0)
2803 return ret;
2804
2805 clear_extent_bits(&inode->io_tree, i_size,
2806 round_up(i_size, PAGE_SIZE) - 1,
2807 EXTENT_UPTODATE);
2808 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2809 /*
2810 * If page is freed we don't need to do anything then, as we
2811 * will re-read the whole page anyway.
2812 */
2813 if (!IS_ERR(folio)) {
2814 btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2815 round_up(i_size, PAGE_SIZE) - i_size);
2816 folio_unlock(folio);
2817 folio_put(folio);
2818 }
2819 }
2820
2821 BUG_ON(cluster->start != cluster->boundary[0]);
2822 ret = btrfs_alloc_data_chunk_ondemand(inode,
2823 prealloc_end + 1 - prealloc_start);
2824 if (ret)
2825 return ret;
2826
2827 btrfs_inode_lock(inode, 0);
2828 for (nr = 0; nr < cluster->nr; nr++) {
2829 struct extent_state *cached_state = NULL;
2830
2831 start = cluster->boundary[nr] - offset;
2832 if (nr + 1 < cluster->nr)
2833 end = cluster->boundary[nr + 1] - 1 - offset;
2834 else
2835 end = cluster->end - offset;
2836
2837 lock_extent(&inode->io_tree, start, end, &cached_state);
2838 num_bytes = end + 1 - start;
2839 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2840 num_bytes, num_bytes,
2841 end + 1, &alloc_hint);
2842 cur_offset = end + 1;
2843 unlock_extent(&inode->io_tree, start, end, &cached_state);
2844 if (ret)
2845 break;
2846 }
2847 btrfs_inode_unlock(inode, 0);
2848
2849 if (cur_offset < prealloc_end)
2850 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2851 prealloc_end + 1 - cur_offset);
2852 return ret;
2853 }
2854
setup_relocation_extent_mapping(struct reloc_control * rc)2855 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2856 {
2857 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2858 struct extent_map *em;
2859 struct extent_state *cached_state = NULL;
2860 u64 offset = inode->reloc_block_group_start;
2861 u64 start = rc->cluster.start - offset;
2862 u64 end = rc->cluster.end - offset;
2863 int ret = 0;
2864
2865 em = alloc_extent_map();
2866 if (!em)
2867 return -ENOMEM;
2868
2869 em->start = start;
2870 em->len = end + 1 - start;
2871 em->disk_bytenr = rc->cluster.start;
2872 em->disk_num_bytes = em->len;
2873 em->ram_bytes = em->len;
2874 em->flags |= EXTENT_FLAG_PINNED;
2875
2876 lock_extent(&inode->io_tree, start, end, &cached_state);
2877 ret = btrfs_replace_extent_map_range(inode, em, false);
2878 unlock_extent(&inode->io_tree, start, end, &cached_state);
2879 free_extent_map(em);
2880
2881 return ret;
2882 }
2883
2884 /*
2885 * Allow error injection to test balance/relocation cancellation
2886 */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2887 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2888 {
2889 return atomic_read(&fs_info->balance_cancel_req) ||
2890 atomic_read(&fs_info->reloc_cancel_req) ||
2891 fatal_signal_pending(current);
2892 }
2893 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2894
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2895 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2896 int cluster_nr)
2897 {
2898 /* Last extent, use cluster end directly */
2899 if (cluster_nr >= cluster->nr - 1)
2900 return cluster->end;
2901
2902 /* Use next boundary start*/
2903 return cluster->boundary[cluster_nr + 1] - 1;
2904 }
2905
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,unsigned long index)2906 static int relocate_one_folio(struct reloc_control *rc,
2907 struct file_ra_state *ra,
2908 int *cluster_nr, unsigned long index)
2909 {
2910 const struct file_extent_cluster *cluster = &rc->cluster;
2911 struct inode *inode = rc->data_inode;
2912 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2913 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2914 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2915 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2916 struct folio *folio;
2917 u64 folio_start;
2918 u64 folio_end;
2919 u64 cur;
2920 int ret;
2921 const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2922
2923 ASSERT(index <= last_index);
2924 again:
2925 folio = filemap_lock_folio(inode->i_mapping, index);
2926 if (IS_ERR(folio)) {
2927
2928 /*
2929 * On relocation we're doing readahead on the relocation inode,
2930 * but if the filesystem is backed by a RAID stripe tree we can
2931 * get ENOENT (e.g. due to preallocated extents not being
2932 * mapped in the RST) from the lookup.
2933 *
2934 * But readahead doesn't handle the error and submits invalid
2935 * reads to the device, causing a assertion failures.
2936 */
2937 if (!use_rst)
2938 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2939 index, last_index + 1 - index);
2940 folio = __filemap_get_folio(inode->i_mapping, index,
2941 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2942 mask);
2943 if (IS_ERR(folio))
2944 return PTR_ERR(folio);
2945 }
2946
2947 WARN_ON(folio_order(folio));
2948
2949 if (folio_test_readahead(folio) && !use_rst)
2950 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2951 folio, last_index + 1 - index);
2952
2953 if (!folio_test_uptodate(folio)) {
2954 btrfs_read_folio(NULL, folio);
2955 folio_lock(folio);
2956 if (!folio_test_uptodate(folio)) {
2957 ret = -EIO;
2958 goto release_folio;
2959 }
2960 if (folio->mapping != inode->i_mapping) {
2961 folio_unlock(folio);
2962 folio_put(folio);
2963 goto again;
2964 }
2965 }
2966
2967 /*
2968 * We could have lost folio private when we dropped the lock to read the
2969 * folio above, make sure we set_page_extent_mapped here so we have any
2970 * of the subpage blocksize stuff we need in place.
2971 */
2972 ret = set_folio_extent_mapped(folio);
2973 if (ret < 0)
2974 goto release_folio;
2975
2976 folio_start = folio_pos(folio);
2977 folio_end = folio_start + PAGE_SIZE - 1;
2978
2979 /*
2980 * Start from the cluster, as for subpage case, the cluster can start
2981 * inside the folio.
2982 */
2983 cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2984 while (cur <= folio_end) {
2985 struct extent_state *cached_state = NULL;
2986 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2987 u64 extent_end = get_cluster_boundary_end(cluster,
2988 *cluster_nr) - offset;
2989 u64 clamped_start = max(folio_start, extent_start);
2990 u64 clamped_end = min(folio_end, extent_end);
2991 u32 clamped_len = clamped_end + 1 - clamped_start;
2992
2993 /* Reserve metadata for this range */
2994 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2995 clamped_len, clamped_len,
2996 false);
2997 if (ret)
2998 goto release_folio;
2999
3000 /* Mark the range delalloc and dirty for later writeback */
3001 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3002 &cached_state);
3003 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3004 clamped_end, 0, &cached_state);
3005 if (ret) {
3006 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3007 clamped_start, clamped_end,
3008 EXTENT_LOCKED | EXTENT_BOUNDARY,
3009 &cached_state);
3010 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3011 clamped_len, true);
3012 btrfs_delalloc_release_extents(BTRFS_I(inode),
3013 clamped_len);
3014 goto release_folio;
3015 }
3016 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
3017
3018 /*
3019 * Set the boundary if it's inside the folio.
3020 * Data relocation requires the destination extents to have the
3021 * same size as the source.
3022 * EXTENT_BOUNDARY bit prevents current extent from being merged
3023 * with previous extent.
3024 */
3025 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3026 u64 boundary_start = cluster->boundary[*cluster_nr] -
3027 offset;
3028 u64 boundary_end = boundary_start +
3029 fs_info->sectorsize - 1;
3030
3031 set_extent_bit(&BTRFS_I(inode)->io_tree,
3032 boundary_start, boundary_end,
3033 EXTENT_BOUNDARY, NULL);
3034 }
3035 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3036 &cached_state);
3037 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3038 cur += clamped_len;
3039
3040 /* Crossed extent end, go to next extent */
3041 if (cur >= extent_end) {
3042 (*cluster_nr)++;
3043 /* Just finished the last extent of the cluster, exit. */
3044 if (*cluster_nr >= cluster->nr)
3045 break;
3046 }
3047 }
3048 folio_unlock(folio);
3049 folio_put(folio);
3050
3051 balance_dirty_pages_ratelimited(inode->i_mapping);
3052 btrfs_throttle(fs_info);
3053 if (btrfs_should_cancel_balance(fs_info))
3054 ret = -ECANCELED;
3055 return ret;
3056
3057 release_folio:
3058 folio_unlock(folio);
3059 folio_put(folio);
3060 return ret;
3061 }
3062
relocate_file_extent_cluster(struct reloc_control * rc)3063 static int relocate_file_extent_cluster(struct reloc_control *rc)
3064 {
3065 struct inode *inode = rc->data_inode;
3066 const struct file_extent_cluster *cluster = &rc->cluster;
3067 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
3068 unsigned long index;
3069 unsigned long last_index;
3070 struct file_ra_state *ra;
3071 int cluster_nr = 0;
3072 int ret = 0;
3073
3074 if (!cluster->nr)
3075 return 0;
3076
3077 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3078 if (!ra)
3079 return -ENOMEM;
3080
3081 ret = prealloc_file_extent_cluster(rc);
3082 if (ret)
3083 goto out;
3084
3085 file_ra_state_init(ra, inode->i_mapping);
3086
3087 ret = setup_relocation_extent_mapping(rc);
3088 if (ret)
3089 goto out;
3090
3091 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3092 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3093 index <= last_index && !ret; index++)
3094 ret = relocate_one_folio(rc, ra, &cluster_nr, index);
3095 if (ret == 0)
3096 WARN_ON(cluster_nr != cluster->nr);
3097 out:
3098 kfree(ra);
3099 return ret;
3100 }
3101
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)3102 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3103 const struct btrfs_key *extent_key)
3104 {
3105 struct inode *inode = rc->data_inode;
3106 struct file_extent_cluster *cluster = &rc->cluster;
3107 int ret;
3108 struct btrfs_root *root = BTRFS_I(inode)->root;
3109
3110 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3111 ret = relocate_file_extent_cluster(rc);
3112 if (ret)
3113 return ret;
3114 cluster->nr = 0;
3115 }
3116
3117 /*
3118 * Under simple quotas, we set root->relocation_src_root when we find
3119 * the extent. If adjacent extents have different owners, we can't merge
3120 * them while relocating. Handle this by storing the owning root that
3121 * started a cluster and if we see an extent from a different root break
3122 * cluster formation (just like the above case of non-adjacent extents).
3123 *
3124 * Without simple quotas, relocation_src_root is always 0, so we should
3125 * never see a mismatch, and it should have no effect on relocation
3126 * clusters.
3127 */
3128 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3129 u64 tmp = root->relocation_src_root;
3130
3131 /*
3132 * root->relocation_src_root is the state that actually affects
3133 * the preallocation we do here, so set it to the root owning
3134 * the cluster we need to relocate.
3135 */
3136 root->relocation_src_root = cluster->owning_root;
3137 ret = relocate_file_extent_cluster(rc);
3138 if (ret)
3139 return ret;
3140 cluster->nr = 0;
3141 /* And reset it back for the current extent's owning root. */
3142 root->relocation_src_root = tmp;
3143 }
3144
3145 if (!cluster->nr) {
3146 cluster->start = extent_key->objectid;
3147 cluster->owning_root = root->relocation_src_root;
3148 }
3149 else
3150 BUG_ON(cluster->nr >= MAX_EXTENTS);
3151 cluster->end = extent_key->objectid + extent_key->offset - 1;
3152 cluster->boundary[cluster->nr] = extent_key->objectid;
3153 cluster->nr++;
3154
3155 if (cluster->nr >= MAX_EXTENTS) {
3156 ret = relocate_file_extent_cluster(rc);
3157 if (ret)
3158 return ret;
3159 cluster->nr = 0;
3160 }
3161 return 0;
3162 }
3163
3164 /*
3165 * helper to add a tree block to the list.
3166 * the major work is getting the generation and level of the block
3167 */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3168 static int add_tree_block(struct reloc_control *rc,
3169 const struct btrfs_key *extent_key,
3170 struct btrfs_path *path,
3171 struct rb_root *blocks)
3172 {
3173 struct extent_buffer *eb;
3174 struct btrfs_extent_item *ei;
3175 struct btrfs_tree_block_info *bi;
3176 struct tree_block *block;
3177 struct rb_node *rb_node;
3178 u32 item_size;
3179 int level = -1;
3180 u64 generation;
3181 u64 owner = 0;
3182
3183 eb = path->nodes[0];
3184 item_size = btrfs_item_size(eb, path->slots[0]);
3185
3186 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3187 item_size >= sizeof(*ei) + sizeof(*bi)) {
3188 unsigned long ptr = 0, end;
3189
3190 ei = btrfs_item_ptr(eb, path->slots[0],
3191 struct btrfs_extent_item);
3192 end = (unsigned long)ei + item_size;
3193 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3194 bi = (struct btrfs_tree_block_info *)(ei + 1);
3195 level = btrfs_tree_block_level(eb, bi);
3196 ptr = (unsigned long)(bi + 1);
3197 } else {
3198 level = (int)extent_key->offset;
3199 ptr = (unsigned long)(ei + 1);
3200 }
3201 generation = btrfs_extent_generation(eb, ei);
3202
3203 /*
3204 * We're reading random blocks without knowing their owner ahead
3205 * of time. This is ok most of the time, as all reloc roots and
3206 * fs roots have the same lock type. However normal trees do
3207 * not, and the only way to know ahead of time is to read the
3208 * inline ref offset. We know it's an fs root if
3209 *
3210 * 1. There's more than one ref.
3211 * 2. There's a SHARED_DATA_REF_KEY set.
3212 * 3. FULL_BACKREF is set on the flags.
3213 *
3214 * Otherwise it's safe to assume that the ref offset == the
3215 * owner of this block, so we can use that when calling
3216 * read_tree_block.
3217 */
3218 if (btrfs_extent_refs(eb, ei) == 1 &&
3219 !(btrfs_extent_flags(eb, ei) &
3220 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3221 ptr < end) {
3222 struct btrfs_extent_inline_ref *iref;
3223 int type;
3224
3225 iref = (struct btrfs_extent_inline_ref *)ptr;
3226 type = btrfs_get_extent_inline_ref_type(eb, iref,
3227 BTRFS_REF_TYPE_BLOCK);
3228 if (type == BTRFS_REF_TYPE_INVALID)
3229 return -EINVAL;
3230 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3231 owner = btrfs_extent_inline_ref_offset(eb, iref);
3232 }
3233 } else {
3234 btrfs_print_leaf(eb);
3235 btrfs_err(rc->block_group->fs_info,
3236 "unrecognized tree backref at tree block %llu slot %u",
3237 eb->start, path->slots[0]);
3238 btrfs_release_path(path);
3239 return -EUCLEAN;
3240 }
3241
3242 btrfs_release_path(path);
3243
3244 BUG_ON(level == -1);
3245
3246 block = kmalloc(sizeof(*block), GFP_NOFS);
3247 if (!block)
3248 return -ENOMEM;
3249
3250 block->bytenr = extent_key->objectid;
3251 block->key.objectid = rc->extent_root->fs_info->nodesize;
3252 block->key.offset = generation;
3253 block->level = level;
3254 block->key_ready = false;
3255 block->owner = owner;
3256
3257 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3258 if (rb_node)
3259 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3260 -EEXIST);
3261
3262 return 0;
3263 }
3264
3265 /*
3266 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3267 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3268 static int __add_tree_block(struct reloc_control *rc,
3269 u64 bytenr, u32 blocksize,
3270 struct rb_root *blocks)
3271 {
3272 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3273 struct btrfs_path *path;
3274 struct btrfs_key key;
3275 int ret;
3276 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3277
3278 if (tree_block_processed(bytenr, rc))
3279 return 0;
3280
3281 if (rb_simple_search(blocks, bytenr))
3282 return 0;
3283
3284 path = btrfs_alloc_path();
3285 if (!path)
3286 return -ENOMEM;
3287 again:
3288 key.objectid = bytenr;
3289 if (skinny) {
3290 key.type = BTRFS_METADATA_ITEM_KEY;
3291 key.offset = (u64)-1;
3292 } else {
3293 key.type = BTRFS_EXTENT_ITEM_KEY;
3294 key.offset = blocksize;
3295 }
3296
3297 path->search_commit_root = 1;
3298 path->skip_locking = 1;
3299 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3300 if (ret < 0)
3301 goto out;
3302
3303 if (ret > 0 && skinny) {
3304 if (path->slots[0]) {
3305 path->slots[0]--;
3306 btrfs_item_key_to_cpu(path->nodes[0], &key,
3307 path->slots[0]);
3308 if (key.objectid == bytenr &&
3309 (key.type == BTRFS_METADATA_ITEM_KEY ||
3310 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3311 key.offset == blocksize)))
3312 ret = 0;
3313 }
3314
3315 if (ret) {
3316 skinny = false;
3317 btrfs_release_path(path);
3318 goto again;
3319 }
3320 }
3321 if (ret) {
3322 ASSERT(ret == 1);
3323 btrfs_print_leaf(path->nodes[0]);
3324 btrfs_err(fs_info,
3325 "tree block extent item (%llu) is not found in extent tree",
3326 bytenr);
3327 WARN_ON(1);
3328 ret = -EINVAL;
3329 goto out;
3330 }
3331
3332 ret = add_tree_block(rc, &key, path, blocks);
3333 out:
3334 btrfs_free_path(path);
3335 return ret;
3336 }
3337
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3338 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3339 struct btrfs_block_group *block_group,
3340 struct inode *inode,
3341 u64 ino)
3342 {
3343 struct btrfs_root *root = fs_info->tree_root;
3344 struct btrfs_trans_handle *trans;
3345 int ret = 0;
3346
3347 if (inode)
3348 goto truncate;
3349
3350 inode = btrfs_iget(ino, root);
3351 if (IS_ERR(inode))
3352 return -ENOENT;
3353
3354 truncate:
3355 ret = btrfs_check_trunc_cache_free_space(fs_info,
3356 &fs_info->global_block_rsv);
3357 if (ret)
3358 goto out;
3359
3360 trans = btrfs_join_transaction(root);
3361 if (IS_ERR(trans)) {
3362 ret = PTR_ERR(trans);
3363 goto out;
3364 }
3365
3366 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3367
3368 btrfs_end_transaction(trans);
3369 btrfs_btree_balance_dirty(fs_info);
3370 out:
3371 iput(inode);
3372 return ret;
3373 }
3374
3375 /*
3376 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3377 * cache inode, to avoid free space cache data extent blocking data relocation.
3378 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3379 static int delete_v1_space_cache(struct extent_buffer *leaf,
3380 struct btrfs_block_group *block_group,
3381 u64 data_bytenr)
3382 {
3383 u64 space_cache_ino;
3384 struct btrfs_file_extent_item *ei;
3385 struct btrfs_key key;
3386 bool found = false;
3387 int i;
3388 int ret;
3389
3390 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3391 return 0;
3392
3393 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3394 u8 type;
3395
3396 btrfs_item_key_to_cpu(leaf, &key, i);
3397 if (key.type != BTRFS_EXTENT_DATA_KEY)
3398 continue;
3399 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3400 type = btrfs_file_extent_type(leaf, ei);
3401
3402 if ((type == BTRFS_FILE_EXTENT_REG ||
3403 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3404 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3405 found = true;
3406 space_cache_ino = key.objectid;
3407 break;
3408 }
3409 }
3410 if (!found)
3411 return -ENOENT;
3412 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3413 space_cache_ino);
3414 return ret;
3415 }
3416
3417 /*
3418 * helper to find all tree blocks that reference a given data extent
3419 */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3420 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3421 const struct btrfs_key *extent_key,
3422 struct btrfs_path *path,
3423 struct rb_root *blocks)
3424 {
3425 struct btrfs_backref_walk_ctx ctx = { 0 };
3426 struct ulist_iterator leaf_uiter;
3427 struct ulist_node *ref_node = NULL;
3428 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3429 int ret = 0;
3430
3431 btrfs_release_path(path);
3432
3433 ctx.bytenr = extent_key->objectid;
3434 ctx.skip_inode_ref_list = true;
3435 ctx.fs_info = rc->extent_root->fs_info;
3436
3437 ret = btrfs_find_all_leafs(&ctx);
3438 if (ret < 0)
3439 return ret;
3440
3441 ULIST_ITER_INIT(&leaf_uiter);
3442 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3443 struct btrfs_tree_parent_check check = { 0 };
3444 struct extent_buffer *eb;
3445
3446 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3447 if (IS_ERR(eb)) {
3448 ret = PTR_ERR(eb);
3449 break;
3450 }
3451 ret = delete_v1_space_cache(eb, rc->block_group,
3452 extent_key->objectid);
3453 free_extent_buffer(eb);
3454 if (ret < 0)
3455 break;
3456 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3457 if (ret < 0)
3458 break;
3459 }
3460 if (ret < 0)
3461 free_block_list(blocks);
3462 ulist_free(ctx.refs);
3463 return ret;
3464 }
3465
3466 /*
3467 * helper to find next unprocessed extent
3468 */
3469 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3470 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3471 struct btrfs_key *extent_key)
3472 {
3473 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3474 struct btrfs_key key;
3475 struct extent_buffer *leaf;
3476 u64 start, end, last;
3477 int ret;
3478
3479 last = rc->block_group->start + rc->block_group->length;
3480 while (1) {
3481 bool block_found;
3482
3483 cond_resched();
3484 if (rc->search_start >= last) {
3485 ret = 1;
3486 break;
3487 }
3488
3489 key.objectid = rc->search_start;
3490 key.type = BTRFS_EXTENT_ITEM_KEY;
3491 key.offset = 0;
3492
3493 path->search_commit_root = 1;
3494 path->skip_locking = 1;
3495 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3496 0, 0);
3497 if (ret < 0)
3498 break;
3499 next:
3500 leaf = path->nodes[0];
3501 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3502 ret = btrfs_next_leaf(rc->extent_root, path);
3503 if (ret != 0)
3504 break;
3505 leaf = path->nodes[0];
3506 }
3507
3508 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3509 if (key.objectid >= last) {
3510 ret = 1;
3511 break;
3512 }
3513
3514 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3515 key.type != BTRFS_METADATA_ITEM_KEY) {
3516 path->slots[0]++;
3517 goto next;
3518 }
3519
3520 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3521 key.objectid + key.offset <= rc->search_start) {
3522 path->slots[0]++;
3523 goto next;
3524 }
3525
3526 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3527 key.objectid + fs_info->nodesize <=
3528 rc->search_start) {
3529 path->slots[0]++;
3530 goto next;
3531 }
3532
3533 block_found = find_first_extent_bit(&rc->processed_blocks,
3534 key.objectid, &start, &end,
3535 EXTENT_DIRTY, NULL);
3536
3537 if (block_found && start <= key.objectid) {
3538 btrfs_release_path(path);
3539 rc->search_start = end + 1;
3540 } else {
3541 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3542 rc->search_start = key.objectid + key.offset;
3543 else
3544 rc->search_start = key.objectid +
3545 fs_info->nodesize;
3546 memcpy(extent_key, &key, sizeof(key));
3547 return 0;
3548 }
3549 }
3550 btrfs_release_path(path);
3551 return ret;
3552 }
3553
set_reloc_control(struct reloc_control * rc)3554 static void set_reloc_control(struct reloc_control *rc)
3555 {
3556 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3557
3558 mutex_lock(&fs_info->reloc_mutex);
3559 fs_info->reloc_ctl = rc;
3560 mutex_unlock(&fs_info->reloc_mutex);
3561 }
3562
unset_reloc_control(struct reloc_control * rc)3563 static void unset_reloc_control(struct reloc_control *rc)
3564 {
3565 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566
3567 mutex_lock(&fs_info->reloc_mutex);
3568 fs_info->reloc_ctl = NULL;
3569 mutex_unlock(&fs_info->reloc_mutex);
3570 }
3571
3572 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3573 int prepare_to_relocate(struct reloc_control *rc)
3574 {
3575 struct btrfs_trans_handle *trans;
3576 int ret;
3577
3578 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3579 BTRFS_BLOCK_RSV_TEMP);
3580 if (!rc->block_rsv)
3581 return -ENOMEM;
3582
3583 memset(&rc->cluster, 0, sizeof(rc->cluster));
3584 rc->search_start = rc->block_group->start;
3585 rc->extents_found = 0;
3586 rc->nodes_relocated = 0;
3587 rc->merging_rsv_size = 0;
3588 rc->reserved_bytes = 0;
3589 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3590 RELOCATION_RESERVED_NODES;
3591 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3592 rc->block_rsv, rc->block_rsv->size,
3593 BTRFS_RESERVE_FLUSH_ALL);
3594 if (ret)
3595 return ret;
3596
3597 rc->create_reloc_tree = true;
3598 set_reloc_control(rc);
3599
3600 trans = btrfs_join_transaction(rc->extent_root);
3601 if (IS_ERR(trans)) {
3602 unset_reloc_control(rc);
3603 /*
3604 * extent tree is not a ref_cow tree and has no reloc_root to
3605 * cleanup. And callers are responsible to free the above
3606 * block rsv.
3607 */
3608 return PTR_ERR(trans);
3609 }
3610
3611 ret = btrfs_commit_transaction(trans);
3612 if (ret)
3613 unset_reloc_control(rc);
3614
3615 return ret;
3616 }
3617
relocate_block_group(struct reloc_control * rc)3618 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3619 {
3620 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3621 struct rb_root blocks = RB_ROOT;
3622 struct btrfs_key key;
3623 struct btrfs_trans_handle *trans = NULL;
3624 struct btrfs_path *path;
3625 struct btrfs_extent_item *ei;
3626 u64 flags;
3627 int ret;
3628 int err = 0;
3629 int progress = 0;
3630
3631 path = btrfs_alloc_path();
3632 if (!path)
3633 return -ENOMEM;
3634 path->reada = READA_FORWARD;
3635
3636 ret = prepare_to_relocate(rc);
3637 if (ret) {
3638 err = ret;
3639 goto out_free;
3640 }
3641
3642 while (1) {
3643 rc->reserved_bytes = 0;
3644 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3645 rc->block_rsv->size,
3646 BTRFS_RESERVE_FLUSH_ALL);
3647 if (ret) {
3648 err = ret;
3649 break;
3650 }
3651 progress++;
3652 trans = btrfs_start_transaction(rc->extent_root, 0);
3653 if (IS_ERR(trans)) {
3654 err = PTR_ERR(trans);
3655 trans = NULL;
3656 break;
3657 }
3658 restart:
3659 if (rc->backref_cache.last_trans != trans->transid)
3660 btrfs_backref_release_cache(&rc->backref_cache);
3661 rc->backref_cache.last_trans = trans->transid;
3662
3663 ret = find_next_extent(rc, path, &key);
3664 if (ret < 0)
3665 err = ret;
3666 if (ret != 0)
3667 break;
3668
3669 rc->extents_found++;
3670
3671 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3672 struct btrfs_extent_item);
3673 flags = btrfs_extent_flags(path->nodes[0], ei);
3674
3675 /*
3676 * If we are relocating a simple quota owned extent item, we
3677 * need to note the owner on the reloc data root so that when
3678 * we allocate the replacement item, we can attribute it to the
3679 * correct eventual owner (rather than the reloc data root).
3680 */
3681 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3682 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3683 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3684 path->nodes[0],
3685 path->slots[0]);
3686
3687 root->relocation_src_root = owning_root_id;
3688 }
3689
3690 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3691 ret = add_tree_block(rc, &key, path, &blocks);
3692 } else if (rc->stage == UPDATE_DATA_PTRS &&
3693 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3694 ret = add_data_references(rc, &key, path, &blocks);
3695 } else {
3696 btrfs_release_path(path);
3697 ret = 0;
3698 }
3699 if (ret < 0) {
3700 err = ret;
3701 break;
3702 }
3703
3704 if (!RB_EMPTY_ROOT(&blocks)) {
3705 ret = relocate_tree_blocks(trans, rc, &blocks);
3706 if (ret < 0) {
3707 if (ret != -EAGAIN) {
3708 err = ret;
3709 break;
3710 }
3711 rc->extents_found--;
3712 rc->search_start = key.objectid;
3713 }
3714 }
3715
3716 btrfs_end_transaction_throttle(trans);
3717 btrfs_btree_balance_dirty(fs_info);
3718 trans = NULL;
3719
3720 if (rc->stage == MOVE_DATA_EXTENTS &&
3721 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3722 rc->found_file_extent = true;
3723 ret = relocate_data_extent(rc, &key);
3724 if (ret < 0) {
3725 err = ret;
3726 break;
3727 }
3728 }
3729 if (btrfs_should_cancel_balance(fs_info)) {
3730 err = -ECANCELED;
3731 break;
3732 }
3733 }
3734 if (trans && progress && err == -ENOSPC) {
3735 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3736 if (ret == 1) {
3737 err = 0;
3738 progress = 0;
3739 goto restart;
3740 }
3741 }
3742
3743 btrfs_release_path(path);
3744 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3745
3746 if (trans) {
3747 btrfs_end_transaction_throttle(trans);
3748 btrfs_btree_balance_dirty(fs_info);
3749 }
3750
3751 if (!err) {
3752 ret = relocate_file_extent_cluster(rc);
3753 if (ret < 0)
3754 err = ret;
3755 }
3756
3757 rc->create_reloc_tree = false;
3758 set_reloc_control(rc);
3759
3760 btrfs_backref_release_cache(&rc->backref_cache);
3761 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3762
3763 /*
3764 * Even in the case when the relocation is cancelled, we should all go
3765 * through prepare_to_merge() and merge_reloc_roots().
3766 *
3767 * For error (including cancelled balance), prepare_to_merge() will
3768 * mark all reloc trees orphan, then queue them for cleanup in
3769 * merge_reloc_roots()
3770 */
3771 err = prepare_to_merge(rc, err);
3772
3773 merge_reloc_roots(rc);
3774
3775 rc->merge_reloc_tree = false;
3776 unset_reloc_control(rc);
3777 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3778
3779 /* get rid of pinned extents */
3780 trans = btrfs_join_transaction(rc->extent_root);
3781 if (IS_ERR(trans)) {
3782 err = PTR_ERR(trans);
3783 goto out_free;
3784 }
3785 ret = btrfs_commit_transaction(trans);
3786 if (ret && !err)
3787 err = ret;
3788 out_free:
3789 ret = clean_dirty_subvols(rc);
3790 if (ret < 0 && !err)
3791 err = ret;
3792 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3793 btrfs_free_path(path);
3794 return err;
3795 }
3796
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3797 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3798 struct btrfs_root *root, u64 objectid)
3799 {
3800 struct btrfs_path *path;
3801 struct btrfs_inode_item *item;
3802 struct extent_buffer *leaf;
3803 int ret;
3804
3805 path = btrfs_alloc_path();
3806 if (!path)
3807 return -ENOMEM;
3808
3809 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3810 if (ret)
3811 goto out;
3812
3813 leaf = path->nodes[0];
3814 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3815 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3816 btrfs_set_inode_generation(leaf, item, 1);
3817 btrfs_set_inode_size(leaf, item, 0);
3818 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3819 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3820 BTRFS_INODE_PREALLOC);
3821 btrfs_mark_buffer_dirty(trans, leaf);
3822 out:
3823 btrfs_free_path(path);
3824 return ret;
3825 }
3826
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3827 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3828 struct btrfs_root *root, u64 objectid)
3829 {
3830 struct btrfs_path *path;
3831 struct btrfs_key key;
3832 int ret = 0;
3833
3834 path = btrfs_alloc_path();
3835 if (!path) {
3836 ret = -ENOMEM;
3837 goto out;
3838 }
3839
3840 key.objectid = objectid;
3841 key.type = BTRFS_INODE_ITEM_KEY;
3842 key.offset = 0;
3843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3844 if (ret) {
3845 if (ret > 0)
3846 ret = -ENOENT;
3847 goto out;
3848 }
3849 ret = btrfs_del_item(trans, root, path);
3850 out:
3851 if (ret)
3852 btrfs_abort_transaction(trans, ret);
3853 btrfs_free_path(path);
3854 }
3855
3856 /*
3857 * helper to create inode for data relocation.
3858 * the inode is in data relocation tree and its link count is 0
3859 */
create_reloc_inode(struct btrfs_fs_info * fs_info,const struct btrfs_block_group * group)3860 static noinline_for_stack struct inode *create_reloc_inode(
3861 struct btrfs_fs_info *fs_info,
3862 const struct btrfs_block_group *group)
3863 {
3864 struct inode *inode = NULL;
3865 struct btrfs_trans_handle *trans;
3866 struct btrfs_root *root;
3867 u64 objectid;
3868 int ret = 0;
3869
3870 root = btrfs_grab_root(fs_info->data_reloc_root);
3871 trans = btrfs_start_transaction(root, 6);
3872 if (IS_ERR(trans)) {
3873 btrfs_put_root(root);
3874 return ERR_CAST(trans);
3875 }
3876
3877 ret = btrfs_get_free_objectid(root, &objectid);
3878 if (ret)
3879 goto out;
3880
3881 ret = __insert_orphan_inode(trans, root, objectid);
3882 if (ret)
3883 goto out;
3884
3885 inode = btrfs_iget(objectid, root);
3886 if (IS_ERR(inode)) {
3887 delete_orphan_inode(trans, root, objectid);
3888 ret = PTR_ERR(inode);
3889 inode = NULL;
3890 goto out;
3891 }
3892 BTRFS_I(inode)->reloc_block_group_start = group->start;
3893
3894 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3895 out:
3896 btrfs_put_root(root);
3897 btrfs_end_transaction(trans);
3898 btrfs_btree_balance_dirty(fs_info);
3899 if (ret) {
3900 iput(inode);
3901 inode = ERR_PTR(ret);
3902 }
3903 return inode;
3904 }
3905
3906 /*
3907 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3908 * has been requested meanwhile and don't start in that case.
3909 *
3910 * Return:
3911 * 0 success
3912 * -EINPROGRESS operation is already in progress, that's probably a bug
3913 * -ECANCELED cancellation request was set before the operation started
3914 */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3915 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3916 {
3917 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3918 /* This should not happen */
3919 btrfs_err(fs_info, "reloc already running, cannot start");
3920 return -EINPROGRESS;
3921 }
3922
3923 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3924 btrfs_info(fs_info, "chunk relocation canceled on start");
3925 /*
3926 * On cancel, clear all requests but let the caller mark
3927 * the end after cleanup operations.
3928 */
3929 atomic_set(&fs_info->reloc_cancel_req, 0);
3930 return -ECANCELED;
3931 }
3932 return 0;
3933 }
3934
3935 /*
3936 * Mark end of chunk relocation that is cancellable and wake any waiters.
3937 */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3938 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3939 {
3940 /* Requested after start, clear bit first so any waiters can continue */
3941 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3942 btrfs_info(fs_info, "chunk relocation canceled during operation");
3943 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3944 atomic_set(&fs_info->reloc_cancel_req, 0);
3945 }
3946
alloc_reloc_control(struct btrfs_fs_info * fs_info)3947 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3948 {
3949 struct reloc_control *rc;
3950
3951 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3952 if (!rc)
3953 return NULL;
3954
3955 INIT_LIST_HEAD(&rc->reloc_roots);
3956 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3957 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3958 rc->reloc_root_tree.rb_root = RB_ROOT;
3959 spin_lock_init(&rc->reloc_root_tree.lock);
3960 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3961 return rc;
3962 }
3963
free_reloc_control(struct reloc_control * rc)3964 static void free_reloc_control(struct reloc_control *rc)
3965 {
3966 struct mapping_node *node, *tmp;
3967
3968 free_reloc_roots(&rc->reloc_roots);
3969 rbtree_postorder_for_each_entry_safe(node, tmp,
3970 &rc->reloc_root_tree.rb_root, rb_node)
3971 kfree(node);
3972
3973 kfree(rc);
3974 }
3975
3976 /*
3977 * Print the block group being relocated
3978 */
describe_relocation(struct btrfs_block_group * block_group)3979 static void describe_relocation(struct btrfs_block_group *block_group)
3980 {
3981 char buf[128] = {'\0'};
3982
3983 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3984
3985 btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3986 block_group->start, buf);
3987 }
3988
stage_to_string(enum reloc_stage stage)3989 static const char *stage_to_string(enum reloc_stage stage)
3990 {
3991 if (stage == MOVE_DATA_EXTENTS)
3992 return "move data extents";
3993 if (stage == UPDATE_DATA_PTRS)
3994 return "update data pointers";
3995 return "unknown";
3996 }
3997
3998 /*
3999 * function to relocate all extents in a block group.
4000 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4001 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4002 {
4003 struct btrfs_block_group *bg;
4004 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4005 struct reloc_control *rc;
4006 struct inode *inode;
4007 struct btrfs_path *path;
4008 int ret;
4009 int rw = 0;
4010 int err = 0;
4011
4012 /*
4013 * This only gets set if we had a half-deleted snapshot on mount. We
4014 * cannot allow relocation to start while we're still trying to clean up
4015 * these pending deletions.
4016 */
4017 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4018 if (ret)
4019 return ret;
4020
4021 /* We may have been woken up by close_ctree, so bail if we're closing. */
4022 if (btrfs_fs_closing(fs_info))
4023 return -EINTR;
4024
4025 bg = btrfs_lookup_block_group(fs_info, group_start);
4026 if (!bg)
4027 return -ENOENT;
4028
4029 /*
4030 * Relocation of a data block group creates ordered extents. Without
4031 * sb_start_write(), we can freeze the filesystem while unfinished
4032 * ordered extents are left. Such ordered extents can cause a deadlock
4033 * e.g. when syncfs() is waiting for their completion but they can't
4034 * finish because they block when joining a transaction, due to the
4035 * fact that the freeze locks are being held in write mode.
4036 */
4037 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4038 ASSERT(sb_write_started(fs_info->sb));
4039
4040 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4041 btrfs_put_block_group(bg);
4042 return -ETXTBSY;
4043 }
4044
4045 rc = alloc_reloc_control(fs_info);
4046 if (!rc) {
4047 btrfs_put_block_group(bg);
4048 return -ENOMEM;
4049 }
4050
4051 ret = reloc_chunk_start(fs_info);
4052 if (ret < 0) {
4053 err = ret;
4054 goto out_put_bg;
4055 }
4056
4057 rc->extent_root = extent_root;
4058 rc->block_group = bg;
4059
4060 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4061 if (ret) {
4062 err = ret;
4063 goto out;
4064 }
4065 rw = 1;
4066
4067 path = btrfs_alloc_path();
4068 if (!path) {
4069 err = -ENOMEM;
4070 goto out;
4071 }
4072
4073 inode = lookup_free_space_inode(rc->block_group, path);
4074 btrfs_free_path(path);
4075
4076 if (!IS_ERR(inode))
4077 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4078 else
4079 ret = PTR_ERR(inode);
4080
4081 if (ret && ret != -ENOENT) {
4082 err = ret;
4083 goto out;
4084 }
4085
4086 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4087 if (IS_ERR(rc->data_inode)) {
4088 err = PTR_ERR(rc->data_inode);
4089 rc->data_inode = NULL;
4090 goto out;
4091 }
4092
4093 describe_relocation(rc->block_group);
4094
4095 btrfs_wait_block_group_reservations(rc->block_group);
4096 btrfs_wait_nocow_writers(rc->block_group);
4097 btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4098
4099 ret = btrfs_zone_finish(rc->block_group);
4100 WARN_ON(ret && ret != -EAGAIN);
4101
4102 while (1) {
4103 enum reloc_stage finishes_stage;
4104
4105 mutex_lock(&fs_info->cleaner_mutex);
4106 ret = relocate_block_group(rc);
4107 mutex_unlock(&fs_info->cleaner_mutex);
4108 if (ret < 0)
4109 err = ret;
4110
4111 finishes_stage = rc->stage;
4112 /*
4113 * We may have gotten ENOSPC after we already dirtied some
4114 * extents. If writeout happens while we're relocating a
4115 * different block group we could end up hitting the
4116 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4117 * btrfs_reloc_cow_block. Make sure we write everything out
4118 * properly so we don't trip over this problem, and then break
4119 * out of the loop if we hit an error.
4120 */
4121 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4122 ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4123 (u64)-1);
4124 if (ret)
4125 err = ret;
4126 invalidate_mapping_pages(rc->data_inode->i_mapping,
4127 0, -1);
4128 rc->stage = UPDATE_DATA_PTRS;
4129 }
4130
4131 if (err < 0)
4132 goto out;
4133
4134 if (rc->extents_found == 0)
4135 break;
4136
4137 btrfs_info(fs_info, "found %llu extents, stage: %s",
4138 rc->extents_found, stage_to_string(finishes_stage));
4139 }
4140
4141 WARN_ON(rc->block_group->pinned > 0);
4142 WARN_ON(rc->block_group->reserved > 0);
4143 WARN_ON(rc->block_group->used > 0);
4144 out:
4145 if (err && rw)
4146 btrfs_dec_block_group_ro(rc->block_group);
4147 iput(rc->data_inode);
4148 out_put_bg:
4149 btrfs_put_block_group(bg);
4150 reloc_chunk_end(fs_info);
4151 free_reloc_control(rc);
4152 return err;
4153 }
4154
mark_garbage_root(struct btrfs_root * root)4155 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4156 {
4157 struct btrfs_fs_info *fs_info = root->fs_info;
4158 struct btrfs_trans_handle *trans;
4159 int ret, err;
4160
4161 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4162 if (IS_ERR(trans))
4163 return PTR_ERR(trans);
4164
4165 memset(&root->root_item.drop_progress, 0,
4166 sizeof(root->root_item.drop_progress));
4167 btrfs_set_root_drop_level(&root->root_item, 0);
4168 btrfs_set_root_refs(&root->root_item, 0);
4169 ret = btrfs_update_root(trans, fs_info->tree_root,
4170 &root->root_key, &root->root_item);
4171
4172 err = btrfs_end_transaction(trans);
4173 if (err)
4174 return err;
4175 return ret;
4176 }
4177
4178 /*
4179 * recover relocation interrupted by system crash.
4180 *
4181 * this function resumes merging reloc trees with corresponding fs trees.
4182 * this is important for keeping the sharing of tree blocks
4183 */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4184 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4185 {
4186 LIST_HEAD(reloc_roots);
4187 struct btrfs_key key;
4188 struct btrfs_root *fs_root;
4189 struct btrfs_root *reloc_root;
4190 struct btrfs_path *path;
4191 struct extent_buffer *leaf;
4192 struct reloc_control *rc = NULL;
4193 struct btrfs_trans_handle *trans;
4194 int ret2;
4195 int ret = 0;
4196
4197 path = btrfs_alloc_path();
4198 if (!path)
4199 return -ENOMEM;
4200 path->reada = READA_BACK;
4201
4202 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4203 key.type = BTRFS_ROOT_ITEM_KEY;
4204 key.offset = (u64)-1;
4205
4206 while (1) {
4207 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4208 path, 0, 0);
4209 if (ret < 0)
4210 goto out;
4211 if (ret > 0) {
4212 if (path->slots[0] == 0)
4213 break;
4214 path->slots[0]--;
4215 }
4216 ret = 0;
4217 leaf = path->nodes[0];
4218 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4219 btrfs_release_path(path);
4220
4221 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4222 key.type != BTRFS_ROOT_ITEM_KEY)
4223 break;
4224
4225 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4226 if (IS_ERR(reloc_root)) {
4227 ret = PTR_ERR(reloc_root);
4228 goto out;
4229 }
4230
4231 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4232 list_add(&reloc_root->root_list, &reloc_roots);
4233
4234 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4235 fs_root = btrfs_get_fs_root(fs_info,
4236 reloc_root->root_key.offset, false);
4237 if (IS_ERR(fs_root)) {
4238 ret = PTR_ERR(fs_root);
4239 if (ret != -ENOENT)
4240 goto out;
4241 ret = mark_garbage_root(reloc_root);
4242 if (ret < 0)
4243 goto out;
4244 ret = 0;
4245 } else {
4246 btrfs_put_root(fs_root);
4247 }
4248 }
4249
4250 if (key.offset == 0)
4251 break;
4252
4253 key.offset--;
4254 }
4255 btrfs_release_path(path);
4256
4257 if (list_empty(&reloc_roots))
4258 goto out;
4259
4260 rc = alloc_reloc_control(fs_info);
4261 if (!rc) {
4262 ret = -ENOMEM;
4263 goto out;
4264 }
4265
4266 ret = reloc_chunk_start(fs_info);
4267 if (ret < 0)
4268 goto out_end;
4269
4270 rc->extent_root = btrfs_extent_root(fs_info, 0);
4271
4272 set_reloc_control(rc);
4273
4274 trans = btrfs_join_transaction(rc->extent_root);
4275 if (IS_ERR(trans)) {
4276 ret = PTR_ERR(trans);
4277 goto out_unset;
4278 }
4279
4280 rc->merge_reloc_tree = true;
4281
4282 while (!list_empty(&reloc_roots)) {
4283 reloc_root = list_entry(reloc_roots.next,
4284 struct btrfs_root, root_list);
4285 list_del(&reloc_root->root_list);
4286
4287 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4288 list_add_tail(&reloc_root->root_list,
4289 &rc->reloc_roots);
4290 continue;
4291 }
4292
4293 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4294 false);
4295 if (IS_ERR(fs_root)) {
4296 ret = PTR_ERR(fs_root);
4297 list_add_tail(&reloc_root->root_list, &reloc_roots);
4298 btrfs_end_transaction(trans);
4299 goto out_unset;
4300 }
4301
4302 ret = __add_reloc_root(reloc_root);
4303 ASSERT(ret != -EEXIST);
4304 if (ret) {
4305 list_add_tail(&reloc_root->root_list, &reloc_roots);
4306 btrfs_put_root(fs_root);
4307 btrfs_end_transaction(trans);
4308 goto out_unset;
4309 }
4310 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4311 btrfs_put_root(fs_root);
4312 }
4313
4314 ret = btrfs_commit_transaction(trans);
4315 if (ret)
4316 goto out_unset;
4317
4318 merge_reloc_roots(rc);
4319
4320 unset_reloc_control(rc);
4321
4322 trans = btrfs_join_transaction(rc->extent_root);
4323 if (IS_ERR(trans)) {
4324 ret = PTR_ERR(trans);
4325 goto out_clean;
4326 }
4327 ret = btrfs_commit_transaction(trans);
4328 out_clean:
4329 ret2 = clean_dirty_subvols(rc);
4330 if (ret2 < 0 && !ret)
4331 ret = ret2;
4332 out_unset:
4333 unset_reloc_control(rc);
4334 out_end:
4335 reloc_chunk_end(fs_info);
4336 free_reloc_control(rc);
4337 out:
4338 free_reloc_roots(&reloc_roots);
4339
4340 btrfs_free_path(path);
4341
4342 if (ret == 0) {
4343 /* cleanup orphan inode in data relocation tree */
4344 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4345 ASSERT(fs_root);
4346 ret = btrfs_orphan_cleanup(fs_root);
4347 btrfs_put_root(fs_root);
4348 }
4349 return ret;
4350 }
4351
4352 /*
4353 * helper to add ordered checksum for data relocation.
4354 *
4355 * cloning checksum properly handles the nodatasum extents.
4356 * it also saves CPU time to re-calculate the checksum.
4357 */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4358 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4359 {
4360 struct btrfs_inode *inode = ordered->inode;
4361 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4362 u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4363 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4364 LIST_HEAD(list);
4365 int ret;
4366
4367 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4368 disk_bytenr + ordered->num_bytes - 1,
4369 &list, false);
4370 if (ret < 0) {
4371 btrfs_mark_ordered_extent_error(ordered);
4372 return ret;
4373 }
4374
4375 while (!list_empty(&list)) {
4376 struct btrfs_ordered_sum *sums =
4377 list_entry(list.next, struct btrfs_ordered_sum, list);
4378
4379 list_del_init(&sums->list);
4380
4381 /*
4382 * We need to offset the new_bytenr based on where the csum is.
4383 * We need to do this because we will read in entire prealloc
4384 * extents but we may have written to say the middle of the
4385 * prealloc extent, so we need to make sure the csum goes with
4386 * the right disk offset.
4387 *
4388 * We can do this because the data reloc inode refers strictly
4389 * to the on disk bytes, so we don't have to worry about
4390 * disk_len vs real len like with real inodes since it's all
4391 * disk length.
4392 */
4393 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4394 btrfs_add_ordered_sum(ordered, sums);
4395 }
4396
4397 return 0;
4398 }
4399
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4400 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *root,
4402 const struct extent_buffer *buf,
4403 struct extent_buffer *cow)
4404 {
4405 struct btrfs_fs_info *fs_info = root->fs_info;
4406 struct reloc_control *rc;
4407 struct btrfs_backref_node *node;
4408 int first_cow = 0;
4409 int level;
4410 int ret = 0;
4411
4412 rc = fs_info->reloc_ctl;
4413 if (!rc)
4414 return 0;
4415
4416 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4417
4418 level = btrfs_header_level(buf);
4419 if (btrfs_header_generation(buf) <=
4420 btrfs_root_last_snapshot(&root->root_item))
4421 first_cow = 1;
4422
4423 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4424 WARN_ON(!first_cow && level == 0);
4425
4426 node = rc->backref_cache.path[level];
4427
4428 /*
4429 * If node->bytenr != buf->start and node->new_bytenr !=
4430 * buf->start then we've got the wrong backref node for what we
4431 * expected to see here and the cache is incorrect.
4432 */
4433 if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4434 btrfs_err(fs_info,
4435 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4436 buf->start, node->bytenr, node->new_bytenr);
4437 return -EUCLEAN;
4438 }
4439
4440 btrfs_backref_drop_node_buffer(node);
4441 atomic_inc(&cow->refs);
4442 node->eb = cow;
4443 node->new_bytenr = cow->start;
4444
4445 if (!node->pending) {
4446 list_move_tail(&node->list,
4447 &rc->backref_cache.pending[level]);
4448 node->pending = 1;
4449 }
4450
4451 if (first_cow)
4452 mark_block_processed(rc, node);
4453
4454 if (first_cow && level > 0)
4455 rc->nodes_relocated += buf->len;
4456 }
4457
4458 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4459 ret = replace_file_extents(trans, rc, root, cow);
4460 return ret;
4461 }
4462
4463 /*
4464 * called before creating snapshot. it calculates metadata reservation
4465 * required for relocating tree blocks in the snapshot
4466 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4467 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4468 u64 *bytes_to_reserve)
4469 {
4470 struct btrfs_root *root = pending->root;
4471 struct reloc_control *rc = root->fs_info->reloc_ctl;
4472
4473 if (!rc || !have_reloc_root(root))
4474 return;
4475
4476 if (!rc->merge_reloc_tree)
4477 return;
4478
4479 root = root->reloc_root;
4480 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4481 /*
4482 * relocation is in the stage of merging trees. the space
4483 * used by merging a reloc tree is twice the size of
4484 * relocated tree nodes in the worst case. half for cowing
4485 * the reloc tree, half for cowing the fs tree. the space
4486 * used by cowing the reloc tree will be freed after the
4487 * tree is dropped. if we create snapshot, cowing the fs
4488 * tree may use more space than it frees. so we need
4489 * reserve extra space.
4490 */
4491 *bytes_to_reserve += rc->nodes_relocated;
4492 }
4493
4494 /*
4495 * called after snapshot is created. migrate block reservation
4496 * and create reloc root for the newly created snapshot
4497 *
4498 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4499 * references held on the reloc_root, one for root->reloc_root and one for
4500 * rc->reloc_roots.
4501 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4502 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4503 struct btrfs_pending_snapshot *pending)
4504 {
4505 struct btrfs_root *root = pending->root;
4506 struct btrfs_root *reloc_root;
4507 struct btrfs_root *new_root;
4508 struct reloc_control *rc = root->fs_info->reloc_ctl;
4509 int ret;
4510
4511 if (!rc || !have_reloc_root(root))
4512 return 0;
4513
4514 rc = root->fs_info->reloc_ctl;
4515 rc->merging_rsv_size += rc->nodes_relocated;
4516
4517 if (rc->merge_reloc_tree) {
4518 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4519 rc->block_rsv,
4520 rc->nodes_relocated, true);
4521 if (ret)
4522 return ret;
4523 }
4524
4525 new_root = pending->snap;
4526 reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4527 if (IS_ERR(reloc_root))
4528 return PTR_ERR(reloc_root);
4529
4530 ret = __add_reloc_root(reloc_root);
4531 ASSERT(ret != -EEXIST);
4532 if (ret) {
4533 /* Pairs with create_reloc_root */
4534 btrfs_put_root(reloc_root);
4535 return ret;
4536 }
4537 new_root->reloc_root = btrfs_grab_root(reloc_root);
4538
4539 if (rc->create_reloc_tree)
4540 ret = clone_backref_node(trans, rc, root, reloc_root);
4541 return ret;
4542 }
4543
4544 /*
4545 * Get the current bytenr for the block group which is being relocated.
4546 *
4547 * Return U64_MAX if no running relocation.
4548 */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4549 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4550 {
4551 u64 logical = U64_MAX;
4552
4553 lockdep_assert_held(&fs_info->reloc_mutex);
4554
4555 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4556 logical = fs_info->reloc_ctl->block_group->start;
4557 return logical;
4558 }
4559