1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/falloc.h>
8 #include <linux/fs.h>
9 #include <linux/file.h>
10 #include <linux/sort.h>
11 #include <linux/mount.h>
12 #include <linux/xattr.h>
13 #include <linux/posix_acl_xattr.h>
14 #include <linux/radix-tree.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/compat.h>
18 #include <linux/crc32c.h>
19 #include <linux/fsverity.h>
20
21 #include "send.h"
22 #include "ctree.h"
23 #include "backref.h"
24 #include "locking.h"
25 #include "disk-io.h"
26 #include "btrfs_inode.h"
27 #include "transaction.h"
28 #include "compression.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36
37 /*
38 * Maximum number of references an extent can have in order for us to attempt to
39 * issue clone operations instead of write operations. This currently exists to
40 * avoid hitting limitations of the backreference walking code (taking a lot of
41 * time and using too much memory for extents with large number of references).
42 */
43 #define SEND_MAX_EXTENT_REFS 1024
44
45 /*
46 * A fs_path is a helper to dynamically build path names with unknown size.
47 * It reallocates the internal buffer on demand.
48 * It allows fast adding of path elements on the right side (normal path) and
49 * fast adding to the left side (reversed path). A reversed path can also be
50 * unreversed if needed.
51 */
52 struct fs_path {
53 union {
54 struct {
55 char *start;
56 char *end;
57
58 char *buf;
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
61 char inline_buf[];
62 };
63 /*
64 * Average path length does not exceed 200 bytes, we'll have
65 * better packing in the slab and higher chance to satisfy
66 * an allocation later during send.
67 */
68 char pad[256];
69 };
70 };
71 #define FS_PATH_INLINE_SIZE \
72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73
74
75 /* reused for each extent */
76 struct clone_root {
77 struct btrfs_root *root;
78 u64 ino;
79 u64 offset;
80 u64 num_bytes;
81 bool found_ref;
82 };
83
84 #define SEND_MAX_NAME_CACHE_SIZE 256
85
86 /*
87 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89 * can be satisfied from the kmalloc-192 slab, without wasting any space.
90 * The most common case is to have a single root for cloning, which corresponds
91 * to the send root. Having the user specify more than 16 clone roots is not
92 * common, and in such rare cases we simply don't use caching if the number of
93 * cloning roots that lead down to a leaf is more than 17.
94 */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
96
97 /*
98 * Max number of entries in the cache.
99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100 * maple tree's internal nodes, is 24K.
101 */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103
104 /*
105 * A backref cache entry maps a leaf to a list of IDs of roots from which the
106 * leaf is accessible and we can use for clone operations.
107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108 * x86_64).
109 */
110 struct backref_cache_entry {
111 struct btrfs_lru_cache_entry entry;
112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 /* Number of valid elements in the root_ids array. */
114 int num_roots;
115 };
116
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119
120 /*
121 * Max number of entries in the cache that stores directories that were already
122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125 */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
127
128 /*
129 * Max number of entries in the cache that stores directories that were already
130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133 */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
135
136 struct send_ctx {
137 struct file *send_filp;
138 loff_t send_off;
139 char *send_buf;
140 u32 send_size;
141 u32 send_max_size;
142 /*
143 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 * command (since protocol v2, data must be the last attribute).
145 */
146 bool put_data;
147 struct page **send_buf_pages;
148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
149 /* Protocol version compatibility requested */
150 u32 proto;
151
152 struct btrfs_root *send_root;
153 struct btrfs_root *parent_root;
154 struct clone_root *clone_roots;
155 int clone_roots_cnt;
156
157 /* current state of the compare_tree call */
158 struct btrfs_path *left_path;
159 struct btrfs_path *right_path;
160 struct btrfs_key *cmp_key;
161
162 /*
163 * Keep track of the generation of the last transaction that was used
164 * for relocating a block group. This is periodically checked in order
165 * to detect if a relocation happened since the last check, so that we
166 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 * stale disk_bytenr values of file extent items.
168 */
169 u64 last_reloc_trans;
170
171 /*
172 * infos of the currently processed inode. In case of deleted inodes,
173 * these are the values from the deleted inode.
174 */
175 u64 cur_ino;
176 u64 cur_inode_gen;
177 u64 cur_inode_size;
178 u64 cur_inode_mode;
179 u64 cur_inode_rdev;
180 u64 cur_inode_last_extent;
181 u64 cur_inode_next_write_offset;
182 struct fs_path cur_inode_path;
183 bool cur_inode_new;
184 bool cur_inode_new_gen;
185 bool cur_inode_deleted;
186 bool ignore_cur_inode;
187 bool cur_inode_needs_verity;
188 void *verity_descriptor;
189
190 u64 send_progress;
191
192 struct list_head new_refs;
193 struct list_head deleted_refs;
194
195 struct btrfs_lru_cache name_cache;
196
197 /*
198 * The inode we are currently processing. It's not NULL only when we
199 * need to issue write commands for data extents from this inode.
200 */
201 struct inode *cur_inode;
202 struct file_ra_state ra;
203 u64 page_cache_clear_start;
204 bool clean_page_cache;
205
206 /*
207 * We process inodes by their increasing order, so if before an
208 * incremental send we reverse the parent/child relationship of
209 * directories such that a directory with a lower inode number was
210 * the parent of a directory with a higher inode number, and the one
211 * becoming the new parent got renamed too, we can't rename/move the
212 * directory with lower inode number when we finish processing it - we
213 * must process the directory with higher inode number first, then
214 * rename/move it and then rename/move the directory with lower inode
215 * number. Example follows.
216 *
217 * Tree state when the first send was performed:
218 *
219 * .
220 * |-- a (ino 257)
221 * |-- b (ino 258)
222 * |
223 * |
224 * |-- c (ino 259)
225 * | |-- d (ino 260)
226 * |
227 * |-- c2 (ino 261)
228 *
229 * Tree state when the second (incremental) send is performed:
230 *
231 * .
232 * |-- a (ino 257)
233 * |-- b (ino 258)
234 * |-- c2 (ino 261)
235 * |-- d2 (ino 260)
236 * |-- cc (ino 259)
237 *
238 * The sequence of steps that lead to the second state was:
239 *
240 * mv /a/b/c/d /a/b/c2/d2
241 * mv /a/b/c /a/b/c2/d2/cc
242 *
243 * "c" has lower inode number, but we can't move it (2nd mv operation)
244 * before we move "d", which has higher inode number.
245 *
246 * So we just memorize which move/rename operations must be performed
247 * later when their respective parent is processed and moved/renamed.
248 */
249
250 /* Indexed by parent directory inode number. */
251 struct rb_root pending_dir_moves;
252
253 /*
254 * Reverse index, indexed by the inode number of a directory that
255 * is waiting for the move/rename of its immediate parent before its
256 * own move/rename can be performed.
257 */
258 struct rb_root waiting_dir_moves;
259
260 /*
261 * A directory that is going to be rm'ed might have a child directory
262 * which is in the pending directory moves index above. In this case,
263 * the directory can only be removed after the move/rename of its child
264 * is performed. Example:
265 *
266 * Parent snapshot:
267 *
268 * . (ino 256)
269 * |-- a/ (ino 257)
270 * |-- b/ (ino 258)
271 * |-- c/ (ino 259)
272 * | |-- x/ (ino 260)
273 * |
274 * |-- y/ (ino 261)
275 *
276 * Send snapshot:
277 *
278 * . (ino 256)
279 * |-- a/ (ino 257)
280 * |-- b/ (ino 258)
281 * |-- YY/ (ino 261)
282 * |-- x/ (ino 260)
283 *
284 * Sequence of steps that lead to the send snapshot:
285 * rm -f /a/b/c/foo.txt
286 * mv /a/b/y /a/b/YY
287 * mv /a/b/c/x /a/b/YY
288 * rmdir /a/b/c
289 *
290 * When the child is processed, its move/rename is delayed until its
291 * parent is processed (as explained above), but all other operations
292 * like update utimes, chown, chgrp, etc, are performed and the paths
293 * that it uses for those operations must use the orphanized name of
294 * its parent (the directory we're going to rm later), so we need to
295 * memorize that name.
296 *
297 * Indexed by the inode number of the directory to be deleted.
298 */
299 struct rb_root orphan_dirs;
300
301 struct rb_root rbtree_new_refs;
302 struct rb_root rbtree_deleted_refs;
303
304 struct btrfs_lru_cache backref_cache;
305 u64 backref_cache_last_reloc_trans;
306
307 struct btrfs_lru_cache dir_created_cache;
308 struct btrfs_lru_cache dir_utimes_cache;
309 };
310
311 struct pending_dir_move {
312 struct rb_node node;
313 struct list_head list;
314 u64 parent_ino;
315 u64 ino;
316 u64 gen;
317 struct list_head update_refs;
318 };
319
320 struct waiting_dir_move {
321 struct rb_node node;
322 u64 ino;
323 /*
324 * There might be some directory that could not be removed because it
325 * was waiting for this directory inode to be moved first. Therefore
326 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
327 */
328 u64 rmdir_ino;
329 u64 rmdir_gen;
330 bool orphanized;
331 };
332
333 struct orphan_dir_info {
334 struct rb_node node;
335 u64 ino;
336 u64 gen;
337 u64 last_dir_index_offset;
338 u64 dir_high_seq_ino;
339 };
340
341 struct name_cache_entry {
342 /*
343 * The key in the entry is an inode number, and the generation matches
344 * the inode's generation.
345 */
346 struct btrfs_lru_cache_entry entry;
347 u64 parent_ino;
348 u64 parent_gen;
349 int ret;
350 int need_later_update;
351 /* Name length without NUL terminator. */
352 int name_len;
353 /* Not NUL terminated. */
354 char name[] __counted_by(name_len) __nonstring;
355 };
356
357 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
358 static_assert(offsetof(struct name_cache_entry, entry) == 0);
359
360 #define ADVANCE 1
361 #define ADVANCE_ONLY_NEXT -1
362
363 enum btrfs_compare_tree_result {
364 BTRFS_COMPARE_TREE_NEW,
365 BTRFS_COMPARE_TREE_DELETED,
366 BTRFS_COMPARE_TREE_CHANGED,
367 BTRFS_COMPARE_TREE_SAME,
368 };
369
370 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)371 static void inconsistent_snapshot_error(struct send_ctx *sctx,
372 enum btrfs_compare_tree_result result,
373 const char *what)
374 {
375 const char *result_string;
376
377 switch (result) {
378 case BTRFS_COMPARE_TREE_NEW:
379 result_string = "new";
380 break;
381 case BTRFS_COMPARE_TREE_DELETED:
382 result_string = "deleted";
383 break;
384 case BTRFS_COMPARE_TREE_CHANGED:
385 result_string = "updated";
386 break;
387 case BTRFS_COMPARE_TREE_SAME:
388 ASSERT(0);
389 result_string = "unchanged";
390 break;
391 default:
392 ASSERT(0);
393 result_string = "unexpected";
394 }
395
396 btrfs_err(sctx->send_root->fs_info,
397 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
398 result_string, what, sctx->cmp_key->objectid,
399 btrfs_root_id(sctx->send_root),
400 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
401 }
402
403 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)404 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
405 {
406 switch (sctx->proto) {
407 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
408 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
409 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
410 default: return false;
411 }
412 }
413
414 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
415
416 static struct waiting_dir_move *
417 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
418
419 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
420
need_send_hole(struct send_ctx * sctx)421 static int need_send_hole(struct send_ctx *sctx)
422 {
423 return (sctx->parent_root && !sctx->cur_inode_new &&
424 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
425 S_ISREG(sctx->cur_inode_mode));
426 }
427
fs_path_reset(struct fs_path * p)428 static void fs_path_reset(struct fs_path *p)
429 {
430 if (p->reversed) {
431 p->start = p->buf + p->buf_len - 1;
432 p->end = p->start;
433 *p->start = 0;
434 } else {
435 p->start = p->buf;
436 p->end = p->start;
437 *p->start = 0;
438 }
439 }
440
init_path(struct fs_path * p)441 static void init_path(struct fs_path *p)
442 {
443 p->reversed = 0;
444 p->buf = p->inline_buf;
445 p->buf_len = FS_PATH_INLINE_SIZE;
446 fs_path_reset(p);
447 }
448
fs_path_alloc(void)449 static struct fs_path *fs_path_alloc(void)
450 {
451 struct fs_path *p;
452
453 p = kmalloc(sizeof(*p), GFP_KERNEL);
454 if (!p)
455 return NULL;
456 init_path(p);
457 return p;
458 }
459
fs_path_alloc_reversed(void)460 static struct fs_path *fs_path_alloc_reversed(void)
461 {
462 struct fs_path *p;
463
464 p = fs_path_alloc();
465 if (!p)
466 return NULL;
467 p->reversed = 1;
468 fs_path_reset(p);
469 return p;
470 }
471
fs_path_free(struct fs_path * p)472 static void fs_path_free(struct fs_path *p)
473 {
474 if (!p)
475 return;
476 if (p->buf != p->inline_buf)
477 kfree(p->buf);
478 kfree(p);
479 }
480
fs_path_len(const struct fs_path * p)481 static inline int fs_path_len(const struct fs_path *p)
482 {
483 return p->end - p->start;
484 }
485
fs_path_ensure_buf(struct fs_path * p,int len)486 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 {
488 char *tmp_buf;
489 int path_len;
490 int old_buf_len;
491
492 len++;
493
494 if (p->buf_len >= len)
495 return 0;
496
497 if (WARN_ON(len > PATH_MAX))
498 return -ENAMETOOLONG;
499
500 path_len = p->end - p->start;
501 old_buf_len = p->buf_len;
502
503 /*
504 * Allocate to the next largest kmalloc bucket size, to let
505 * the fast path happen most of the time.
506 */
507 len = kmalloc_size_roundup(len);
508 /*
509 * First time the inline_buf does not suffice
510 */
511 if (p->buf == p->inline_buf) {
512 tmp_buf = kmalloc(len, GFP_KERNEL);
513 if (tmp_buf)
514 memcpy(tmp_buf, p->buf, old_buf_len);
515 } else {
516 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
517 }
518 if (!tmp_buf)
519 return -ENOMEM;
520 p->buf = tmp_buf;
521 p->buf_len = len;
522
523 if (p->reversed) {
524 tmp_buf = p->buf + old_buf_len - path_len - 1;
525 p->end = p->buf + p->buf_len - 1;
526 p->start = p->end - path_len;
527 memmove(p->start, tmp_buf, path_len + 1);
528 } else {
529 p->start = p->buf;
530 p->end = p->start + path_len;
531 }
532 return 0;
533 }
534
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)535 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 char **prepared)
537 {
538 int ret;
539 int new_len;
540
541 new_len = p->end - p->start + name_len;
542 if (p->start != p->end)
543 new_len++;
544 ret = fs_path_ensure_buf(p, new_len);
545 if (ret < 0)
546 goto out;
547
548 if (p->reversed) {
549 if (p->start != p->end)
550 *--p->start = '/';
551 p->start -= name_len;
552 *prepared = p->start;
553 } else {
554 if (p->start != p->end)
555 *p->end++ = '/';
556 *prepared = p->end;
557 p->end += name_len;
558 *p->end = 0;
559 }
560
561 out:
562 return ret;
563 }
564
fs_path_add(struct fs_path * p,const char * name,int name_len)565 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
566 {
567 int ret;
568 char *prepared;
569
570 ret = fs_path_prepare_for_add(p, name_len, &prepared);
571 if (ret < 0)
572 goto out;
573 memcpy(prepared, name, name_len);
574
575 out:
576 return ret;
577 }
578
fs_path_add_path(struct fs_path * p,struct fs_path * p2)579 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
580 {
581 int ret;
582 char *prepared;
583
584 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
585 if (ret < 0)
586 goto out;
587 memcpy(prepared, p2->start, p2->end - p2->start);
588
589 out:
590 return ret;
591 }
592
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)593 static int fs_path_add_from_extent_buffer(struct fs_path *p,
594 struct extent_buffer *eb,
595 unsigned long off, int len)
596 {
597 int ret;
598 char *prepared;
599
600 ret = fs_path_prepare_for_add(p, len, &prepared);
601 if (ret < 0)
602 goto out;
603
604 read_extent_buffer(eb, prepared, off, len);
605
606 out:
607 return ret;
608 }
609
fs_path_copy(struct fs_path * p,struct fs_path * from)610 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
611 {
612 p->reversed = from->reversed;
613 fs_path_reset(p);
614
615 return fs_path_add_path(p, from);
616 }
617
fs_path_unreverse(struct fs_path * p)618 static void fs_path_unreverse(struct fs_path *p)
619 {
620 char *tmp;
621 int len;
622
623 if (!p->reversed)
624 return;
625
626 tmp = p->start;
627 len = p->end - p->start;
628 p->start = p->buf;
629 p->end = p->start + len;
630 memmove(p->start, tmp, len + 1);
631 p->reversed = 0;
632 }
633
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)634 static inline bool is_current_inode_path(const struct send_ctx *sctx,
635 const struct fs_path *path)
636 {
637 const struct fs_path *cur = &sctx->cur_inode_path;
638
639 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
640 }
641
alloc_path_for_send(void)642 static struct btrfs_path *alloc_path_for_send(void)
643 {
644 struct btrfs_path *path;
645
646 path = btrfs_alloc_path();
647 if (!path)
648 return NULL;
649 path->search_commit_root = 1;
650 path->skip_locking = 1;
651 path->need_commit_sem = 1;
652 return path;
653 }
654
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)655 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
656 {
657 int ret;
658 u32 pos = 0;
659
660 while (pos < len) {
661 ret = kernel_write(filp, buf + pos, len - pos, off);
662 if (ret < 0)
663 return ret;
664 if (ret == 0)
665 return -EIO;
666 pos += ret;
667 }
668
669 return 0;
670 }
671
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)672 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
673 {
674 struct btrfs_tlv_header *hdr;
675 int total_len = sizeof(*hdr) + len;
676 int left = sctx->send_max_size - sctx->send_size;
677
678 if (WARN_ON_ONCE(sctx->put_data))
679 return -EINVAL;
680
681 if (unlikely(left < total_len))
682 return -EOVERFLOW;
683
684 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
685 put_unaligned_le16(attr, &hdr->tlv_type);
686 put_unaligned_le16(len, &hdr->tlv_len);
687 memcpy(hdr + 1, data, len);
688 sctx->send_size += total_len;
689
690 return 0;
691 }
692
693 #define TLV_PUT_DEFINE_INT(bits) \
694 static int tlv_put_u##bits(struct send_ctx *sctx, \
695 u##bits attr, u##bits value) \
696 { \
697 __le##bits __tmp = cpu_to_le##bits(value); \
698 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
699 }
700
701 TLV_PUT_DEFINE_INT(8)
702 TLV_PUT_DEFINE_INT(32)
703 TLV_PUT_DEFINE_INT(64)
704
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)705 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
706 const char *str, int len)
707 {
708 if (len == -1)
709 len = strlen(str);
710 return tlv_put(sctx, attr, str, len);
711 }
712
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)713 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
714 const u8 *uuid)
715 {
716 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
717 }
718
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)719 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
720 struct extent_buffer *eb,
721 struct btrfs_timespec *ts)
722 {
723 struct btrfs_timespec bts;
724 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
725 return tlv_put(sctx, attr, &bts, sizeof(bts));
726 }
727
728
729 #define TLV_PUT(sctx, attrtype, data, attrlen) \
730 do { \
731 ret = tlv_put(sctx, attrtype, data, attrlen); \
732 if (ret < 0) \
733 goto tlv_put_failure; \
734 } while (0)
735
736 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
737 do { \
738 ret = tlv_put_u##bits(sctx, attrtype, value); \
739 if (ret < 0) \
740 goto tlv_put_failure; \
741 } while (0)
742
743 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
744 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
745 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
746 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
747 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
748 do { \
749 ret = tlv_put_string(sctx, attrtype, str, len); \
750 if (ret < 0) \
751 goto tlv_put_failure; \
752 } while (0)
753 #define TLV_PUT_PATH(sctx, attrtype, p) \
754 do { \
755 ret = tlv_put_string(sctx, attrtype, p->start, \
756 p->end - p->start); \
757 if (ret < 0) \
758 goto tlv_put_failure; \
759 } while(0)
760 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
761 do { \
762 ret = tlv_put_uuid(sctx, attrtype, uuid); \
763 if (ret < 0) \
764 goto tlv_put_failure; \
765 } while (0)
766 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
767 do { \
768 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
769 if (ret < 0) \
770 goto tlv_put_failure; \
771 } while (0)
772
send_header(struct send_ctx * sctx)773 static int send_header(struct send_ctx *sctx)
774 {
775 struct btrfs_stream_header hdr;
776
777 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
778 hdr.version = cpu_to_le32(sctx->proto);
779 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
780 &sctx->send_off);
781 }
782
783 /*
784 * For each command/item we want to send to userspace, we call this function.
785 */
begin_cmd(struct send_ctx * sctx,int cmd)786 static int begin_cmd(struct send_ctx *sctx, int cmd)
787 {
788 struct btrfs_cmd_header *hdr;
789
790 if (WARN_ON(!sctx->send_buf))
791 return -EINVAL;
792
793 if (unlikely(sctx->send_size != 0)) {
794 btrfs_err(sctx->send_root->fs_info,
795 "send: command header buffer not empty cmd %d offset %llu",
796 cmd, sctx->send_off);
797 return -EINVAL;
798 }
799
800 sctx->send_size += sizeof(*hdr);
801 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
802 put_unaligned_le16(cmd, &hdr->cmd);
803
804 return 0;
805 }
806
send_cmd(struct send_ctx * sctx)807 static int send_cmd(struct send_ctx *sctx)
808 {
809 int ret;
810 struct btrfs_cmd_header *hdr;
811 u32 crc;
812
813 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
814 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
815 put_unaligned_le32(0, &hdr->crc);
816
817 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
818 put_unaligned_le32(crc, &hdr->crc);
819
820 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
821 &sctx->send_off);
822
823 sctx->send_size = 0;
824 sctx->put_data = false;
825
826 return ret;
827 }
828
829 /*
830 * Sends a move instruction to user space
831 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)832 static int send_rename(struct send_ctx *sctx,
833 struct fs_path *from, struct fs_path *to)
834 {
835 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
836 int ret;
837
838 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
839
840 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
841 if (ret < 0)
842 goto out;
843
844 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
845 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
846
847 ret = send_cmd(sctx);
848
849 tlv_put_failure:
850 out:
851 return ret;
852 }
853
854 /*
855 * Sends a link instruction to user space
856 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)857 static int send_link(struct send_ctx *sctx,
858 struct fs_path *path, struct fs_path *lnk)
859 {
860 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
861 int ret;
862
863 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
864
865 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
866 if (ret < 0)
867 goto out;
868
869 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
871
872 ret = send_cmd(sctx);
873
874 tlv_put_failure:
875 out:
876 return ret;
877 }
878
879 /*
880 * Sends an unlink instruction to user space
881 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)882 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
883 {
884 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
885 int ret;
886
887 btrfs_debug(fs_info, "send_unlink %s", path->start);
888
889 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
890 if (ret < 0)
891 goto out;
892
893 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
894
895 ret = send_cmd(sctx);
896
897 tlv_put_failure:
898 out:
899 return ret;
900 }
901
902 /*
903 * Sends a rmdir instruction to user space
904 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)905 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
906 {
907 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
908 int ret;
909
910 btrfs_debug(fs_info, "send_rmdir %s", path->start);
911
912 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
913 if (ret < 0)
914 goto out;
915
916 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
917
918 ret = send_cmd(sctx);
919
920 tlv_put_failure:
921 out:
922 return ret;
923 }
924
925 struct btrfs_inode_info {
926 u64 size;
927 u64 gen;
928 u64 mode;
929 u64 uid;
930 u64 gid;
931 u64 rdev;
932 u64 fileattr;
933 u64 nlink;
934 };
935
936 /*
937 * Helper function to retrieve some fields from an inode item.
938 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)939 static int get_inode_info(struct btrfs_root *root, u64 ino,
940 struct btrfs_inode_info *info)
941 {
942 int ret;
943 struct btrfs_path *path;
944 struct btrfs_inode_item *ii;
945 struct btrfs_key key;
946
947 path = alloc_path_for_send();
948 if (!path)
949 return -ENOMEM;
950
951 key.objectid = ino;
952 key.type = BTRFS_INODE_ITEM_KEY;
953 key.offset = 0;
954 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
955 if (ret) {
956 if (ret > 0)
957 ret = -ENOENT;
958 goto out;
959 }
960
961 if (!info)
962 goto out;
963
964 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
965 struct btrfs_inode_item);
966 info->size = btrfs_inode_size(path->nodes[0], ii);
967 info->gen = btrfs_inode_generation(path->nodes[0], ii);
968 info->mode = btrfs_inode_mode(path->nodes[0], ii);
969 info->uid = btrfs_inode_uid(path->nodes[0], ii);
970 info->gid = btrfs_inode_gid(path->nodes[0], ii);
971 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
972 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
973 /*
974 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
975 * otherwise logically split to 32/32 parts.
976 */
977 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
978
979 out:
980 btrfs_free_path(path);
981 return ret;
982 }
983
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)984 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
985 {
986 int ret;
987 struct btrfs_inode_info info = { 0 };
988
989 ASSERT(gen);
990
991 ret = get_inode_info(root, ino, &info);
992 *gen = info.gen;
993 return ret;
994 }
995
996 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
997 struct fs_path *p,
998 void *ctx);
999
1000 /*
1001 * Helper function to iterate the entries in ONE btrfs_inode_ref or
1002 * btrfs_inode_extref.
1003 * The iterate callback may return a non zero value to stop iteration. This can
1004 * be a negative value for error codes or 1 to simply stop it.
1005 *
1006 * path must point to the INODE_REF or INODE_EXTREF when called.
1007 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)1008 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
1009 struct btrfs_key *found_key, int resolve,
1010 iterate_inode_ref_t iterate, void *ctx)
1011 {
1012 struct extent_buffer *eb = path->nodes[0];
1013 struct btrfs_inode_ref *iref;
1014 struct btrfs_inode_extref *extref;
1015 struct btrfs_path *tmp_path;
1016 struct fs_path *p;
1017 u32 cur = 0;
1018 u32 total;
1019 int slot = path->slots[0];
1020 u32 name_len;
1021 char *start;
1022 int ret = 0;
1023 int num = 0;
1024 int index;
1025 u64 dir;
1026 unsigned long name_off;
1027 unsigned long elem_size;
1028 unsigned long ptr;
1029
1030 p = fs_path_alloc_reversed();
1031 if (!p)
1032 return -ENOMEM;
1033
1034 tmp_path = alloc_path_for_send();
1035 if (!tmp_path) {
1036 fs_path_free(p);
1037 return -ENOMEM;
1038 }
1039
1040
1041 if (found_key->type == BTRFS_INODE_REF_KEY) {
1042 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1043 struct btrfs_inode_ref);
1044 total = btrfs_item_size(eb, slot);
1045 elem_size = sizeof(*iref);
1046 } else {
1047 ptr = btrfs_item_ptr_offset(eb, slot);
1048 total = btrfs_item_size(eb, slot);
1049 elem_size = sizeof(*extref);
1050 }
1051
1052 while (cur < total) {
1053 fs_path_reset(p);
1054
1055 if (found_key->type == BTRFS_INODE_REF_KEY) {
1056 iref = (struct btrfs_inode_ref *)(ptr + cur);
1057 name_len = btrfs_inode_ref_name_len(eb, iref);
1058 name_off = (unsigned long)(iref + 1);
1059 index = btrfs_inode_ref_index(eb, iref);
1060 dir = found_key->offset;
1061 } else {
1062 extref = (struct btrfs_inode_extref *)(ptr + cur);
1063 name_len = btrfs_inode_extref_name_len(eb, extref);
1064 name_off = (unsigned long)&extref->name;
1065 index = btrfs_inode_extref_index(eb, extref);
1066 dir = btrfs_inode_extref_parent(eb, extref);
1067 }
1068
1069 if (resolve) {
1070 start = btrfs_ref_to_path(root, tmp_path, name_len,
1071 name_off, eb, dir,
1072 p->buf, p->buf_len);
1073 if (IS_ERR(start)) {
1074 ret = PTR_ERR(start);
1075 goto out;
1076 }
1077 if (start < p->buf) {
1078 /* overflow , try again with larger buffer */
1079 ret = fs_path_ensure_buf(p,
1080 p->buf_len + p->buf - start);
1081 if (ret < 0)
1082 goto out;
1083 start = btrfs_ref_to_path(root, tmp_path,
1084 name_len, name_off,
1085 eb, dir,
1086 p->buf, p->buf_len);
1087 if (IS_ERR(start)) {
1088 ret = PTR_ERR(start);
1089 goto out;
1090 }
1091 if (unlikely(start < p->buf)) {
1092 btrfs_err(root->fs_info,
1093 "send: path ref buffer underflow for key (%llu %u %llu)",
1094 found_key->objectid,
1095 found_key->type,
1096 found_key->offset);
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100 }
1101 p->start = start;
1102 } else {
1103 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1104 name_len);
1105 if (ret < 0)
1106 goto out;
1107 }
1108
1109 cur += elem_size + name_len;
1110 ret = iterate(num, dir, index, p, ctx);
1111 if (ret)
1112 goto out;
1113 num++;
1114 }
1115
1116 out:
1117 btrfs_free_path(tmp_path);
1118 fs_path_free(p);
1119 return ret;
1120 }
1121
1122 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1123 const char *name, int name_len,
1124 const char *data, int data_len,
1125 void *ctx);
1126
1127 /*
1128 * Helper function to iterate the entries in ONE btrfs_dir_item.
1129 * The iterate callback may return a non zero value to stop iteration. This can
1130 * be a negative value for error codes or 1 to simply stop it.
1131 *
1132 * path must point to the dir item when called.
1133 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1134 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1135 iterate_dir_item_t iterate, void *ctx)
1136 {
1137 int ret = 0;
1138 struct extent_buffer *eb;
1139 struct btrfs_dir_item *di;
1140 struct btrfs_key di_key;
1141 char *buf = NULL;
1142 int buf_len;
1143 u32 name_len;
1144 u32 data_len;
1145 u32 cur;
1146 u32 len;
1147 u32 total;
1148 int slot;
1149 int num;
1150
1151 /*
1152 * Start with a small buffer (1 page). If later we end up needing more
1153 * space, which can happen for xattrs on a fs with a leaf size greater
1154 * than the page size, attempt to increase the buffer. Typically xattr
1155 * values are small.
1156 */
1157 buf_len = PATH_MAX;
1158 buf = kmalloc(buf_len, GFP_KERNEL);
1159 if (!buf) {
1160 ret = -ENOMEM;
1161 goto out;
1162 }
1163
1164 eb = path->nodes[0];
1165 slot = path->slots[0];
1166 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1167 cur = 0;
1168 len = 0;
1169 total = btrfs_item_size(eb, slot);
1170
1171 num = 0;
1172 while (cur < total) {
1173 name_len = btrfs_dir_name_len(eb, di);
1174 data_len = btrfs_dir_data_len(eb, di);
1175 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1176
1177 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1178 if (name_len > XATTR_NAME_MAX) {
1179 ret = -ENAMETOOLONG;
1180 goto out;
1181 }
1182 if (name_len + data_len >
1183 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1184 ret = -E2BIG;
1185 goto out;
1186 }
1187 } else {
1188 /*
1189 * Path too long
1190 */
1191 if (name_len + data_len > PATH_MAX) {
1192 ret = -ENAMETOOLONG;
1193 goto out;
1194 }
1195 }
1196
1197 if (name_len + data_len > buf_len) {
1198 buf_len = name_len + data_len;
1199 if (is_vmalloc_addr(buf)) {
1200 vfree(buf);
1201 buf = NULL;
1202 } else {
1203 char *tmp = krealloc(buf, buf_len,
1204 GFP_KERNEL | __GFP_NOWARN);
1205
1206 if (!tmp)
1207 kfree(buf);
1208 buf = tmp;
1209 }
1210 if (!buf) {
1211 buf = kvmalloc(buf_len, GFP_KERNEL);
1212 if (!buf) {
1213 ret = -ENOMEM;
1214 goto out;
1215 }
1216 }
1217 }
1218
1219 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1220 name_len + data_len);
1221
1222 len = sizeof(*di) + name_len + data_len;
1223 di = (struct btrfs_dir_item *)((char *)di + len);
1224 cur += len;
1225
1226 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1227 data_len, ctx);
1228 if (ret < 0)
1229 goto out;
1230 if (ret) {
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 num++;
1236 }
1237
1238 out:
1239 kvfree(buf);
1240 return ret;
1241 }
1242
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1243 static int __copy_first_ref(int num, u64 dir, int index,
1244 struct fs_path *p, void *ctx)
1245 {
1246 int ret;
1247 struct fs_path *pt = ctx;
1248
1249 ret = fs_path_copy(pt, p);
1250 if (ret < 0)
1251 return ret;
1252
1253 /* we want the first only */
1254 return 1;
1255 }
1256
1257 /*
1258 * Retrieve the first path of an inode. If an inode has more then one
1259 * ref/hardlink, this is ignored.
1260 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1261 static int get_inode_path(struct btrfs_root *root,
1262 u64 ino, struct fs_path *path)
1263 {
1264 int ret;
1265 struct btrfs_key key, found_key;
1266 struct btrfs_path *p;
1267
1268 p = alloc_path_for_send();
1269 if (!p)
1270 return -ENOMEM;
1271
1272 fs_path_reset(path);
1273
1274 key.objectid = ino;
1275 key.type = BTRFS_INODE_REF_KEY;
1276 key.offset = 0;
1277
1278 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1279 if (ret < 0)
1280 goto out;
1281 if (ret) {
1282 ret = 1;
1283 goto out;
1284 }
1285 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1286 if (found_key.objectid != ino ||
1287 (found_key.type != BTRFS_INODE_REF_KEY &&
1288 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1289 ret = -ENOENT;
1290 goto out;
1291 }
1292
1293 ret = iterate_inode_ref(root, p, &found_key, 1,
1294 __copy_first_ref, path);
1295 if (ret < 0)
1296 goto out;
1297 ret = 0;
1298
1299 out:
1300 btrfs_free_path(p);
1301 return ret;
1302 }
1303
1304 struct backref_ctx {
1305 struct send_ctx *sctx;
1306
1307 /* number of total found references */
1308 u64 found;
1309
1310 /*
1311 * used for clones found in send_root. clones found behind cur_objectid
1312 * and cur_offset are not considered as allowed clones.
1313 */
1314 u64 cur_objectid;
1315 u64 cur_offset;
1316
1317 /* may be truncated in case it's the last extent in a file */
1318 u64 extent_len;
1319
1320 /* The bytenr the file extent item we are processing refers to. */
1321 u64 bytenr;
1322 /* The owner (root id) of the data backref for the current extent. */
1323 u64 backref_owner;
1324 /* The offset of the data backref for the current extent. */
1325 u64 backref_offset;
1326 };
1327
__clone_root_cmp_bsearch(const void * key,const void * elt)1328 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1329 {
1330 u64 root = (u64)(uintptr_t)key;
1331 const struct clone_root *cr = elt;
1332
1333 if (root < btrfs_root_id(cr->root))
1334 return -1;
1335 if (root > btrfs_root_id(cr->root))
1336 return 1;
1337 return 0;
1338 }
1339
__clone_root_cmp_sort(const void * e1,const void * e2)1340 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1341 {
1342 const struct clone_root *cr1 = e1;
1343 const struct clone_root *cr2 = e2;
1344
1345 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1346 return -1;
1347 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1348 return 1;
1349 return 0;
1350 }
1351
1352 /*
1353 * Called for every backref that is found for the current extent.
1354 * Results are collected in sctx->clone_roots->ino/offset.
1355 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1356 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1357 void *ctx_)
1358 {
1359 struct backref_ctx *bctx = ctx_;
1360 struct clone_root *clone_root;
1361
1362 /* First check if the root is in the list of accepted clone sources */
1363 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1364 bctx->sctx->clone_roots_cnt,
1365 sizeof(struct clone_root),
1366 __clone_root_cmp_bsearch);
1367 if (!clone_root)
1368 return 0;
1369
1370 /* This is our own reference, bail out as we can't clone from it. */
1371 if (clone_root->root == bctx->sctx->send_root &&
1372 ino == bctx->cur_objectid &&
1373 offset == bctx->cur_offset)
1374 return 0;
1375
1376 /*
1377 * Make sure we don't consider clones from send_root that are
1378 * behind the current inode/offset.
1379 */
1380 if (clone_root->root == bctx->sctx->send_root) {
1381 /*
1382 * If the source inode was not yet processed we can't issue a
1383 * clone operation, as the source extent does not exist yet at
1384 * the destination of the stream.
1385 */
1386 if (ino > bctx->cur_objectid)
1387 return 0;
1388 /*
1389 * We clone from the inode currently being sent as long as the
1390 * source extent is already processed, otherwise we could try
1391 * to clone from an extent that does not exist yet at the
1392 * destination of the stream.
1393 */
1394 if (ino == bctx->cur_objectid &&
1395 offset + bctx->extent_len >
1396 bctx->sctx->cur_inode_next_write_offset)
1397 return 0;
1398 }
1399
1400 bctx->found++;
1401 clone_root->found_ref = true;
1402
1403 /*
1404 * If the given backref refers to a file extent item with a larger
1405 * number of bytes than what we found before, use the new one so that
1406 * we clone more optimally and end up doing less writes and getting
1407 * less exclusive, non-shared extents at the destination.
1408 */
1409 if (num_bytes > clone_root->num_bytes) {
1410 clone_root->ino = ino;
1411 clone_root->offset = offset;
1412 clone_root->num_bytes = num_bytes;
1413
1414 /*
1415 * Found a perfect candidate, so there's no need to continue
1416 * backref walking.
1417 */
1418 if (num_bytes >= bctx->extent_len)
1419 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1420 }
1421
1422 return 0;
1423 }
1424
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1425 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1426 const u64 **root_ids_ret, int *root_count_ret)
1427 {
1428 struct backref_ctx *bctx = ctx;
1429 struct send_ctx *sctx = bctx->sctx;
1430 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1431 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1432 struct btrfs_lru_cache_entry *raw_entry;
1433 struct backref_cache_entry *entry;
1434
1435 if (sctx->backref_cache.size == 0)
1436 return false;
1437
1438 /*
1439 * If relocation happened since we first filled the cache, then we must
1440 * empty the cache and can not use it, because even though we operate on
1441 * read-only roots, their leaves and nodes may have been reallocated and
1442 * now be used for different nodes/leaves of the same tree or some other
1443 * tree.
1444 *
1445 * We are called from iterate_extent_inodes() while either holding a
1446 * transaction handle or holding fs_info->commit_root_sem, so no need
1447 * to take any lock here.
1448 */
1449 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1450 btrfs_lru_cache_clear(&sctx->backref_cache);
1451 return false;
1452 }
1453
1454 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1455 if (!raw_entry)
1456 return false;
1457
1458 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1459 *root_ids_ret = entry->root_ids;
1460 *root_count_ret = entry->num_roots;
1461
1462 return true;
1463 }
1464
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1465 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1466 void *ctx)
1467 {
1468 struct backref_ctx *bctx = ctx;
1469 struct send_ctx *sctx = bctx->sctx;
1470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1471 struct backref_cache_entry *new_entry;
1472 struct ulist_iterator uiter;
1473 struct ulist_node *node;
1474 int ret;
1475
1476 /*
1477 * We're called while holding a transaction handle or while holding
1478 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1479 * NOFS allocation.
1480 */
1481 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1482 /* No worries, cache is optional. */
1483 if (!new_entry)
1484 return;
1485
1486 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1487 new_entry->entry.gen = 0;
1488 new_entry->num_roots = 0;
1489 ULIST_ITER_INIT(&uiter);
1490 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1491 const u64 root_id = node->val;
1492 struct clone_root *root;
1493
1494 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1495 sctx->clone_roots_cnt, sizeof(struct clone_root),
1496 __clone_root_cmp_bsearch);
1497 if (!root)
1498 continue;
1499
1500 /* Too many roots, just exit, no worries as caching is optional. */
1501 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1502 kfree(new_entry);
1503 return;
1504 }
1505
1506 new_entry->root_ids[new_entry->num_roots] = root_id;
1507 new_entry->num_roots++;
1508 }
1509
1510 /*
1511 * We may have not added any roots to the new cache entry, which means
1512 * none of the roots is part of the list of roots from which we are
1513 * allowed to clone. Cache the new entry as it's still useful to avoid
1514 * backref walking to determine which roots have a path to the leaf.
1515 *
1516 * Also use GFP_NOFS because we're called while holding a transaction
1517 * handle or while holding fs_info->commit_root_sem.
1518 */
1519 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1520 GFP_NOFS);
1521 ASSERT(ret == 0 || ret == -ENOMEM);
1522 if (ret) {
1523 /* Caching is optional, no worries. */
1524 kfree(new_entry);
1525 return;
1526 }
1527
1528 /*
1529 * We are called from iterate_extent_inodes() while either holding a
1530 * transaction handle or holding fs_info->commit_root_sem, so no need
1531 * to take any lock here.
1532 */
1533 if (sctx->backref_cache.size == 1)
1534 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1535 }
1536
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1537 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1538 const struct extent_buffer *leaf, void *ctx)
1539 {
1540 const u64 refs = btrfs_extent_refs(leaf, ei);
1541 const struct backref_ctx *bctx = ctx;
1542 const struct send_ctx *sctx = bctx->sctx;
1543
1544 if (bytenr == bctx->bytenr) {
1545 const u64 flags = btrfs_extent_flags(leaf, ei);
1546
1547 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1548 return -EUCLEAN;
1549
1550 /*
1551 * If we have only one reference and only the send root as a
1552 * clone source - meaning no clone roots were given in the
1553 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1554 * it's our reference and there's no point in doing backref
1555 * walking which is expensive, so exit early.
1556 */
1557 if (refs == 1 && sctx->clone_roots_cnt == 1)
1558 return -ENOENT;
1559 }
1560
1561 /*
1562 * Backreference walking (iterate_extent_inodes() below) is currently
1563 * too expensive when an extent has a large number of references, both
1564 * in time spent and used memory. So for now just fallback to write
1565 * operations instead of clone operations when an extent has more than
1566 * a certain amount of references.
1567 */
1568 if (refs > SEND_MAX_EXTENT_REFS)
1569 return -ENOENT;
1570
1571 return 0;
1572 }
1573
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1574 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1575 {
1576 const struct backref_ctx *bctx = ctx;
1577
1578 if (ino == bctx->cur_objectid &&
1579 root == bctx->backref_owner &&
1580 offset == bctx->backref_offset)
1581 return true;
1582
1583 return false;
1584 }
1585
1586 /*
1587 * Given an inode, offset and extent item, it finds a good clone for a clone
1588 * instruction. Returns -ENOENT when none could be found. The function makes
1589 * sure that the returned clone is usable at the point where sending is at the
1590 * moment. This means, that no clones are accepted which lie behind the current
1591 * inode+offset.
1592 *
1593 * path must point to the extent item when called.
1594 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1595 static int find_extent_clone(struct send_ctx *sctx,
1596 struct btrfs_path *path,
1597 u64 ino, u64 data_offset,
1598 u64 ino_size,
1599 struct clone_root **found)
1600 {
1601 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1602 int ret;
1603 int extent_type;
1604 u64 logical;
1605 u64 disk_byte;
1606 u64 num_bytes;
1607 struct btrfs_file_extent_item *fi;
1608 struct extent_buffer *eb = path->nodes[0];
1609 struct backref_ctx backref_ctx = { 0 };
1610 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1611 struct clone_root *cur_clone_root;
1612 int compressed;
1613 u32 i;
1614
1615 /*
1616 * With fallocate we can get prealloc extents beyond the inode's i_size,
1617 * so we don't do anything here because clone operations can not clone
1618 * to a range beyond i_size without increasing the i_size of the
1619 * destination inode.
1620 */
1621 if (data_offset >= ino_size)
1622 return 0;
1623
1624 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1625 extent_type = btrfs_file_extent_type(eb, fi);
1626 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1627 return -ENOENT;
1628
1629 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1630 if (disk_byte == 0)
1631 return -ENOENT;
1632
1633 compressed = btrfs_file_extent_compression(eb, fi);
1634 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1635 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1636
1637 /*
1638 * Setup the clone roots.
1639 */
1640 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1641 cur_clone_root = sctx->clone_roots + i;
1642 cur_clone_root->ino = (u64)-1;
1643 cur_clone_root->offset = 0;
1644 cur_clone_root->num_bytes = 0;
1645 cur_clone_root->found_ref = false;
1646 }
1647
1648 backref_ctx.sctx = sctx;
1649 backref_ctx.cur_objectid = ino;
1650 backref_ctx.cur_offset = data_offset;
1651 backref_ctx.bytenr = disk_byte;
1652 /*
1653 * Use the header owner and not the send root's id, because in case of a
1654 * snapshot we can have shared subtrees.
1655 */
1656 backref_ctx.backref_owner = btrfs_header_owner(eb);
1657 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1658
1659 /*
1660 * The last extent of a file may be too large due to page alignment.
1661 * We need to adjust extent_len in this case so that the checks in
1662 * iterate_backrefs() work.
1663 */
1664 if (data_offset + num_bytes >= ino_size)
1665 backref_ctx.extent_len = ino_size - data_offset;
1666 else
1667 backref_ctx.extent_len = num_bytes;
1668
1669 /*
1670 * Now collect all backrefs.
1671 */
1672 backref_walk_ctx.bytenr = disk_byte;
1673 if (compressed == BTRFS_COMPRESS_NONE)
1674 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1675 backref_walk_ctx.fs_info = fs_info;
1676 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1677 backref_walk_ctx.cache_store = store_backref_cache;
1678 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1679 backref_walk_ctx.check_extent_item = check_extent_item;
1680 backref_walk_ctx.user_ctx = &backref_ctx;
1681
1682 /*
1683 * If have a single clone root, then it's the send root and we can tell
1684 * the backref walking code to skip our own backref and not resolve it,
1685 * since we can not use it for cloning - the source and destination
1686 * ranges can't overlap and in case the leaf is shared through a subtree
1687 * due to snapshots, we can't use those other roots since they are not
1688 * in the list of clone roots.
1689 */
1690 if (sctx->clone_roots_cnt == 1)
1691 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1692
1693 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1694 &backref_ctx);
1695 if (ret < 0)
1696 return ret;
1697
1698 down_read(&fs_info->commit_root_sem);
1699 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1700 /*
1701 * A transaction commit for a transaction in which block group
1702 * relocation was done just happened.
1703 * The disk_bytenr of the file extent item we processed is
1704 * possibly stale, referring to the extent's location before
1705 * relocation. So act as if we haven't found any clone sources
1706 * and fallback to write commands, which will read the correct
1707 * data from the new extent location. Otherwise we will fail
1708 * below because we haven't found our own back reference or we
1709 * could be getting incorrect sources in case the old extent
1710 * was already reallocated after the relocation.
1711 */
1712 up_read(&fs_info->commit_root_sem);
1713 return -ENOENT;
1714 }
1715 up_read(&fs_info->commit_root_sem);
1716
1717 btrfs_debug(fs_info,
1718 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1719 data_offset, ino, num_bytes, logical);
1720
1721 if (!backref_ctx.found) {
1722 btrfs_debug(fs_info, "no clones found");
1723 return -ENOENT;
1724 }
1725
1726 cur_clone_root = NULL;
1727 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1728 struct clone_root *clone_root = &sctx->clone_roots[i];
1729
1730 if (!clone_root->found_ref)
1731 continue;
1732
1733 /*
1734 * Choose the root from which we can clone more bytes, to
1735 * minimize write operations and therefore have more extent
1736 * sharing at the destination (the same as in the source).
1737 */
1738 if (!cur_clone_root ||
1739 clone_root->num_bytes > cur_clone_root->num_bytes) {
1740 cur_clone_root = clone_root;
1741
1742 /*
1743 * We found an optimal clone candidate (any inode from
1744 * any root is fine), so we're done.
1745 */
1746 if (clone_root->num_bytes >= backref_ctx.extent_len)
1747 break;
1748 }
1749 }
1750
1751 if (cur_clone_root) {
1752 *found = cur_clone_root;
1753 ret = 0;
1754 } else {
1755 ret = -ENOENT;
1756 }
1757
1758 return ret;
1759 }
1760
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1761 static int read_symlink(struct btrfs_root *root,
1762 u64 ino,
1763 struct fs_path *dest)
1764 {
1765 int ret;
1766 struct btrfs_path *path;
1767 struct btrfs_key key;
1768 struct btrfs_file_extent_item *ei;
1769 u8 type;
1770 u8 compression;
1771 unsigned long off;
1772 int len;
1773
1774 path = alloc_path_for_send();
1775 if (!path)
1776 return -ENOMEM;
1777
1778 key.objectid = ino;
1779 key.type = BTRFS_EXTENT_DATA_KEY;
1780 key.offset = 0;
1781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1782 if (ret < 0)
1783 goto out;
1784 if (ret) {
1785 /*
1786 * An empty symlink inode. Can happen in rare error paths when
1787 * creating a symlink (transaction committed before the inode
1788 * eviction handler removed the symlink inode items and a crash
1789 * happened in between or the subvol was snapshoted in between).
1790 * Print an informative message to dmesg/syslog so that the user
1791 * can delete the symlink.
1792 */
1793 btrfs_err(root->fs_info,
1794 "Found empty symlink inode %llu at root %llu",
1795 ino, btrfs_root_id(root));
1796 ret = -EIO;
1797 goto out;
1798 }
1799
1800 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1801 struct btrfs_file_extent_item);
1802 type = btrfs_file_extent_type(path->nodes[0], ei);
1803 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1804 ret = -EUCLEAN;
1805 btrfs_crit(root->fs_info,
1806 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1807 ino, btrfs_root_id(root), type);
1808 goto out;
1809 }
1810 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1811 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1812 ret = -EUCLEAN;
1813 btrfs_crit(root->fs_info,
1814 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1815 ino, btrfs_root_id(root), compression);
1816 goto out;
1817 }
1818
1819 off = btrfs_file_extent_inline_start(ei);
1820 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1821
1822 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1823
1824 out:
1825 btrfs_free_path(path);
1826 return ret;
1827 }
1828
1829 /*
1830 * Helper function to generate a file name that is unique in the root of
1831 * send_root and parent_root. This is used to generate names for orphan inodes.
1832 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1833 static int gen_unique_name(struct send_ctx *sctx,
1834 u64 ino, u64 gen,
1835 struct fs_path *dest)
1836 {
1837 int ret = 0;
1838 struct btrfs_path *path;
1839 struct btrfs_dir_item *di;
1840 char tmp[64];
1841 int len;
1842 u64 idx = 0;
1843
1844 path = alloc_path_for_send();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 while (1) {
1849 struct fscrypt_str tmp_name;
1850
1851 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1852 ino, gen, idx);
1853 ASSERT(len < sizeof(tmp));
1854 tmp_name.name = tmp;
1855 tmp_name.len = strlen(tmp);
1856
1857 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1858 path, BTRFS_FIRST_FREE_OBJECTID,
1859 &tmp_name, 0);
1860 btrfs_release_path(path);
1861 if (IS_ERR(di)) {
1862 ret = PTR_ERR(di);
1863 goto out;
1864 }
1865 if (di) {
1866 /* not unique, try again */
1867 idx++;
1868 continue;
1869 }
1870
1871 if (!sctx->parent_root) {
1872 /* unique */
1873 ret = 0;
1874 break;
1875 }
1876
1877 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1878 path, BTRFS_FIRST_FREE_OBJECTID,
1879 &tmp_name, 0);
1880 btrfs_release_path(path);
1881 if (IS_ERR(di)) {
1882 ret = PTR_ERR(di);
1883 goto out;
1884 }
1885 if (di) {
1886 /* not unique, try again */
1887 idx++;
1888 continue;
1889 }
1890 /* unique */
1891 break;
1892 }
1893
1894 ret = fs_path_add(dest, tmp, strlen(tmp));
1895
1896 out:
1897 btrfs_free_path(path);
1898 return ret;
1899 }
1900
1901 enum inode_state {
1902 inode_state_no_change,
1903 inode_state_will_create,
1904 inode_state_did_create,
1905 inode_state_will_delete,
1906 inode_state_did_delete,
1907 };
1908
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1909 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1910 u64 *send_gen, u64 *parent_gen)
1911 {
1912 int ret;
1913 int left_ret;
1914 int right_ret;
1915 u64 left_gen;
1916 u64 right_gen = 0;
1917 struct btrfs_inode_info info;
1918
1919 ret = get_inode_info(sctx->send_root, ino, &info);
1920 if (ret < 0 && ret != -ENOENT)
1921 goto out;
1922 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1923 left_gen = info.gen;
1924 if (send_gen)
1925 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1926
1927 if (!sctx->parent_root) {
1928 right_ret = -ENOENT;
1929 } else {
1930 ret = get_inode_info(sctx->parent_root, ino, &info);
1931 if (ret < 0 && ret != -ENOENT)
1932 goto out;
1933 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1934 right_gen = info.gen;
1935 if (parent_gen)
1936 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1937 }
1938
1939 if (!left_ret && !right_ret) {
1940 if (left_gen == gen && right_gen == gen) {
1941 ret = inode_state_no_change;
1942 } else if (left_gen == gen) {
1943 if (ino < sctx->send_progress)
1944 ret = inode_state_did_create;
1945 else
1946 ret = inode_state_will_create;
1947 } else if (right_gen == gen) {
1948 if (ino < sctx->send_progress)
1949 ret = inode_state_did_delete;
1950 else
1951 ret = inode_state_will_delete;
1952 } else {
1953 ret = -ENOENT;
1954 }
1955 } else if (!left_ret) {
1956 if (left_gen == gen) {
1957 if (ino < sctx->send_progress)
1958 ret = inode_state_did_create;
1959 else
1960 ret = inode_state_will_create;
1961 } else {
1962 ret = -ENOENT;
1963 }
1964 } else if (!right_ret) {
1965 if (right_gen == gen) {
1966 if (ino < sctx->send_progress)
1967 ret = inode_state_did_delete;
1968 else
1969 ret = inode_state_will_delete;
1970 } else {
1971 ret = -ENOENT;
1972 }
1973 } else {
1974 ret = -ENOENT;
1975 }
1976
1977 out:
1978 return ret;
1979 }
1980
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1981 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1982 u64 *send_gen, u64 *parent_gen)
1983 {
1984 int ret;
1985
1986 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1987 return 1;
1988
1989 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1990 if (ret < 0)
1991 goto out;
1992
1993 if (ret == inode_state_no_change ||
1994 ret == inode_state_did_create ||
1995 ret == inode_state_will_delete)
1996 ret = 1;
1997 else
1998 ret = 0;
1999
2000 out:
2001 return ret;
2002 }
2003
2004 /*
2005 * Helper function to lookup a dir item in a dir.
2006 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)2007 static int lookup_dir_item_inode(struct btrfs_root *root,
2008 u64 dir, const char *name, int name_len,
2009 u64 *found_inode)
2010 {
2011 int ret = 0;
2012 struct btrfs_dir_item *di;
2013 struct btrfs_key key;
2014 struct btrfs_path *path;
2015 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2016
2017 path = alloc_path_for_send();
2018 if (!path)
2019 return -ENOMEM;
2020
2021 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2022 if (IS_ERR_OR_NULL(di)) {
2023 ret = di ? PTR_ERR(di) : -ENOENT;
2024 goto out;
2025 }
2026 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2027 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2028 ret = -ENOENT;
2029 goto out;
2030 }
2031 *found_inode = key.objectid;
2032
2033 out:
2034 btrfs_free_path(path);
2035 return ret;
2036 }
2037
2038 /*
2039 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2040 * generation of the parent dir and the name of the dir entry.
2041 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2042 static int get_first_ref(struct btrfs_root *root, u64 ino,
2043 u64 *dir, u64 *dir_gen, struct fs_path *name)
2044 {
2045 int ret;
2046 struct btrfs_key key;
2047 struct btrfs_key found_key;
2048 struct btrfs_path *path;
2049 int len;
2050 u64 parent_dir;
2051
2052 path = alloc_path_for_send();
2053 if (!path)
2054 return -ENOMEM;
2055
2056 key.objectid = ino;
2057 key.type = BTRFS_INODE_REF_KEY;
2058 key.offset = 0;
2059
2060 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2061 if (ret < 0)
2062 goto out;
2063 if (!ret)
2064 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2065 path->slots[0]);
2066 if (ret || found_key.objectid != ino ||
2067 (found_key.type != BTRFS_INODE_REF_KEY &&
2068 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2069 ret = -ENOENT;
2070 goto out;
2071 }
2072
2073 if (found_key.type == BTRFS_INODE_REF_KEY) {
2074 struct btrfs_inode_ref *iref;
2075 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2076 struct btrfs_inode_ref);
2077 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2078 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2079 (unsigned long)(iref + 1),
2080 len);
2081 parent_dir = found_key.offset;
2082 } else {
2083 struct btrfs_inode_extref *extref;
2084 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2085 struct btrfs_inode_extref);
2086 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2087 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2088 (unsigned long)&extref->name, len);
2089 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2090 }
2091 if (ret < 0)
2092 goto out;
2093 btrfs_release_path(path);
2094
2095 if (dir_gen) {
2096 ret = get_inode_gen(root, parent_dir, dir_gen);
2097 if (ret < 0)
2098 goto out;
2099 }
2100
2101 *dir = parent_dir;
2102
2103 out:
2104 btrfs_free_path(path);
2105 return ret;
2106 }
2107
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2108 static int is_first_ref(struct btrfs_root *root,
2109 u64 ino, u64 dir,
2110 const char *name, int name_len)
2111 {
2112 int ret;
2113 struct fs_path *tmp_name;
2114 u64 tmp_dir;
2115
2116 tmp_name = fs_path_alloc();
2117 if (!tmp_name)
2118 return -ENOMEM;
2119
2120 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2121 if (ret < 0)
2122 goto out;
2123
2124 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2125 ret = 0;
2126 goto out;
2127 }
2128
2129 ret = !memcmp(tmp_name->start, name, name_len);
2130
2131 out:
2132 fs_path_free(tmp_name);
2133 return ret;
2134 }
2135
2136 /*
2137 * Used by process_recorded_refs to determine if a new ref would overwrite an
2138 * already existing ref. In case it detects an overwrite, it returns the
2139 * inode/gen in who_ino/who_gen.
2140 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2141 * to make sure later references to the overwritten inode are possible.
2142 * Orphanizing is however only required for the first ref of an inode.
2143 * process_recorded_refs does an additional is_first_ref check to see if
2144 * orphanizing is really required.
2145 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2146 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2147 const char *name, int name_len,
2148 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2149 {
2150 int ret;
2151 u64 parent_root_dir_gen;
2152 u64 other_inode = 0;
2153 struct btrfs_inode_info info;
2154
2155 if (!sctx->parent_root)
2156 return 0;
2157
2158 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2159 if (ret <= 0)
2160 return 0;
2161
2162 /*
2163 * If we have a parent root we need to verify that the parent dir was
2164 * not deleted and then re-created, if it was then we have no overwrite
2165 * and we can just unlink this entry.
2166 *
2167 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2168 * parent root.
2169 */
2170 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2171 parent_root_dir_gen != dir_gen)
2172 return 0;
2173
2174 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2175 &other_inode);
2176 if (ret == -ENOENT)
2177 return 0;
2178 else if (ret < 0)
2179 return ret;
2180
2181 /*
2182 * Check if the overwritten ref was already processed. If yes, the ref
2183 * was already unlinked/moved, so we can safely assume that we will not
2184 * overwrite anything at this point in time.
2185 */
2186 if (other_inode > sctx->send_progress ||
2187 is_waiting_for_move(sctx, other_inode)) {
2188 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2189 if (ret < 0)
2190 return ret;
2191
2192 *who_ino = other_inode;
2193 *who_gen = info.gen;
2194 *who_mode = info.mode;
2195 return 1;
2196 }
2197
2198 return 0;
2199 }
2200
2201 /*
2202 * Checks if the ref was overwritten by an already processed inode. This is
2203 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2204 * thus the orphan name needs be used.
2205 * process_recorded_refs also uses it to avoid unlinking of refs that were
2206 * overwritten.
2207 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2208 static int did_overwrite_ref(struct send_ctx *sctx,
2209 u64 dir, u64 dir_gen,
2210 u64 ino, u64 ino_gen,
2211 const char *name, int name_len)
2212 {
2213 int ret;
2214 u64 ow_inode;
2215 u64 ow_gen = 0;
2216 u64 send_root_dir_gen;
2217
2218 if (!sctx->parent_root)
2219 return 0;
2220
2221 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2222 if (ret <= 0)
2223 return ret;
2224
2225 /*
2226 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2227 * send root.
2228 */
2229 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2230 return 0;
2231
2232 /* check if the ref was overwritten by another ref */
2233 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2234 &ow_inode);
2235 if (ret == -ENOENT) {
2236 /* was never and will never be overwritten */
2237 return 0;
2238 } else if (ret < 0) {
2239 return ret;
2240 }
2241
2242 if (ow_inode == ino) {
2243 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2244 if (ret < 0)
2245 return ret;
2246
2247 /* It's the same inode, so no overwrite happened. */
2248 if (ow_gen == ino_gen)
2249 return 0;
2250 }
2251
2252 /*
2253 * We know that it is or will be overwritten. Check this now.
2254 * The current inode being processed might have been the one that caused
2255 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2256 * the current inode being processed.
2257 */
2258 if (ow_inode < sctx->send_progress)
2259 return 1;
2260
2261 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2262 if (ow_gen == 0) {
2263 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2264 if (ret < 0)
2265 return ret;
2266 }
2267 if (ow_gen == sctx->cur_inode_gen)
2268 return 1;
2269 }
2270
2271 return 0;
2272 }
2273
2274 /*
2275 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2276 * that got overwritten. This is used by process_recorded_refs to determine
2277 * if it has to use the path as returned by get_cur_path or the orphan name.
2278 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2279 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2280 {
2281 int ret = 0;
2282 struct fs_path *name = NULL;
2283 u64 dir;
2284 u64 dir_gen;
2285
2286 if (!sctx->parent_root)
2287 goto out;
2288
2289 name = fs_path_alloc();
2290 if (!name)
2291 return -ENOMEM;
2292
2293 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2294 if (ret < 0)
2295 goto out;
2296
2297 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2298 name->start, fs_path_len(name));
2299
2300 out:
2301 fs_path_free(name);
2302 return ret;
2303 }
2304
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2305 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2306 u64 ino, u64 gen)
2307 {
2308 struct btrfs_lru_cache_entry *entry;
2309
2310 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2311 if (!entry)
2312 return NULL;
2313
2314 return container_of(entry, struct name_cache_entry, entry);
2315 }
2316
2317 /*
2318 * Used by get_cur_path for each ref up to the root.
2319 * Returns 0 if it succeeded.
2320 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2321 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2322 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2323 * Returns <0 in case of error.
2324 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2325 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2326 u64 ino, u64 gen,
2327 u64 *parent_ino,
2328 u64 *parent_gen,
2329 struct fs_path *dest)
2330 {
2331 int ret;
2332 int nce_ret;
2333 struct name_cache_entry *nce;
2334
2335 /*
2336 * First check if we already did a call to this function with the same
2337 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2338 * return the cached result.
2339 */
2340 nce = name_cache_search(sctx, ino, gen);
2341 if (nce) {
2342 if (ino < sctx->send_progress && nce->need_later_update) {
2343 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2344 nce = NULL;
2345 } else {
2346 *parent_ino = nce->parent_ino;
2347 *parent_gen = nce->parent_gen;
2348 ret = fs_path_add(dest, nce->name, nce->name_len);
2349 if (ret < 0)
2350 goto out;
2351 ret = nce->ret;
2352 goto out;
2353 }
2354 }
2355
2356 /*
2357 * If the inode is not existent yet, add the orphan name and return 1.
2358 * This should only happen for the parent dir that we determine in
2359 * record_new_ref_if_needed().
2360 */
2361 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2362 if (ret < 0)
2363 goto out;
2364
2365 if (!ret) {
2366 ret = gen_unique_name(sctx, ino, gen, dest);
2367 if (ret < 0)
2368 goto out;
2369 ret = 1;
2370 goto out_cache;
2371 }
2372
2373 /*
2374 * Depending on whether the inode was already processed or not, use
2375 * send_root or parent_root for ref lookup.
2376 */
2377 if (ino < sctx->send_progress)
2378 ret = get_first_ref(sctx->send_root, ino,
2379 parent_ino, parent_gen, dest);
2380 else
2381 ret = get_first_ref(sctx->parent_root, ino,
2382 parent_ino, parent_gen, dest);
2383 if (ret < 0)
2384 goto out;
2385
2386 /*
2387 * Check if the ref was overwritten by an inode's ref that was processed
2388 * earlier. If yes, treat as orphan and return 1.
2389 */
2390 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2391 dest->start, dest->end - dest->start);
2392 if (ret < 0)
2393 goto out;
2394 if (ret) {
2395 fs_path_reset(dest);
2396 ret = gen_unique_name(sctx, ino, gen, dest);
2397 if (ret < 0)
2398 goto out;
2399 ret = 1;
2400 }
2401
2402 out_cache:
2403 /*
2404 * Store the result of the lookup in the name cache.
2405 */
2406 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2407 if (!nce) {
2408 ret = -ENOMEM;
2409 goto out;
2410 }
2411
2412 nce->entry.key = ino;
2413 nce->entry.gen = gen;
2414 nce->parent_ino = *parent_ino;
2415 nce->parent_gen = *parent_gen;
2416 nce->name_len = fs_path_len(dest);
2417 nce->ret = ret;
2418 memcpy(nce->name, dest->start, nce->name_len);
2419
2420 if (ino < sctx->send_progress)
2421 nce->need_later_update = 0;
2422 else
2423 nce->need_later_update = 1;
2424
2425 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2426 if (nce_ret < 0) {
2427 kfree(nce);
2428 ret = nce_ret;
2429 }
2430
2431 out:
2432 return ret;
2433 }
2434
2435 /*
2436 * Magic happens here. This function returns the first ref to an inode as it
2437 * would look like while receiving the stream at this point in time.
2438 * We walk the path up to the root. For every inode in between, we check if it
2439 * was already processed/sent. If yes, we continue with the parent as found
2440 * in send_root. If not, we continue with the parent as found in parent_root.
2441 * If we encounter an inode that was deleted at this point in time, we use the
2442 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2443 * that were not created yet and overwritten inodes/refs.
2444 *
2445 * When do we have orphan inodes:
2446 * 1. When an inode is freshly created and thus no valid refs are available yet
2447 * 2. When a directory lost all it's refs (deleted) but still has dir items
2448 * inside which were not processed yet (pending for move/delete). If anyone
2449 * tried to get the path to the dir items, it would get a path inside that
2450 * orphan directory.
2451 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2452 * of an unprocessed inode. If in that case the first ref would be
2453 * overwritten, the overwritten inode gets "orphanized". Later when we
2454 * process this overwritten inode, it is restored at a new place by moving
2455 * the orphan inode.
2456 *
2457 * sctx->send_progress tells this function at which point in time receiving
2458 * would be.
2459 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2460 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2461 struct fs_path *dest)
2462 {
2463 int ret = 0;
2464 struct fs_path *name = NULL;
2465 u64 parent_inode = 0;
2466 u64 parent_gen = 0;
2467 int stop = 0;
2468 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2469
2470 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2471 if (dest != &sctx->cur_inode_path)
2472 return fs_path_copy(dest, &sctx->cur_inode_path);
2473
2474 return 0;
2475 }
2476
2477 name = fs_path_alloc();
2478 if (!name) {
2479 ret = -ENOMEM;
2480 goto out;
2481 }
2482
2483 dest->reversed = 1;
2484 fs_path_reset(dest);
2485
2486 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2487 struct waiting_dir_move *wdm;
2488
2489 fs_path_reset(name);
2490
2491 if (is_waiting_for_rm(sctx, ino, gen)) {
2492 ret = gen_unique_name(sctx, ino, gen, name);
2493 if (ret < 0)
2494 goto out;
2495 ret = fs_path_add_path(dest, name);
2496 break;
2497 }
2498
2499 wdm = get_waiting_dir_move(sctx, ino);
2500 if (wdm && wdm->orphanized) {
2501 ret = gen_unique_name(sctx, ino, gen, name);
2502 stop = 1;
2503 } else if (wdm) {
2504 ret = get_first_ref(sctx->parent_root, ino,
2505 &parent_inode, &parent_gen, name);
2506 } else {
2507 ret = __get_cur_name_and_parent(sctx, ino, gen,
2508 &parent_inode,
2509 &parent_gen, name);
2510 if (ret)
2511 stop = 1;
2512 }
2513
2514 if (ret < 0)
2515 goto out;
2516
2517 ret = fs_path_add_path(dest, name);
2518 if (ret < 0)
2519 goto out;
2520
2521 ino = parent_inode;
2522 gen = parent_gen;
2523 }
2524
2525 out:
2526 fs_path_free(name);
2527 if (!ret) {
2528 fs_path_unreverse(dest);
2529 if (is_cur_inode && dest != &sctx->cur_inode_path)
2530 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2531 }
2532
2533 return ret;
2534 }
2535
2536 /*
2537 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2538 */
send_subvol_begin(struct send_ctx * sctx)2539 static int send_subvol_begin(struct send_ctx *sctx)
2540 {
2541 int ret;
2542 struct btrfs_root *send_root = sctx->send_root;
2543 struct btrfs_root *parent_root = sctx->parent_root;
2544 struct btrfs_path *path;
2545 struct btrfs_key key;
2546 struct btrfs_root_ref *ref;
2547 struct extent_buffer *leaf;
2548 char *name = NULL;
2549 int namelen;
2550
2551 path = btrfs_alloc_path();
2552 if (!path)
2553 return -ENOMEM;
2554
2555 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2556 if (!name) {
2557 btrfs_free_path(path);
2558 return -ENOMEM;
2559 }
2560
2561 key.objectid = btrfs_root_id(send_root);
2562 key.type = BTRFS_ROOT_BACKREF_KEY;
2563 key.offset = 0;
2564
2565 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2566 &key, path, 1, 0);
2567 if (ret < 0)
2568 goto out;
2569 if (ret) {
2570 ret = -ENOENT;
2571 goto out;
2572 }
2573
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2577 key.objectid != btrfs_root_id(send_root)) {
2578 ret = -ENOENT;
2579 goto out;
2580 }
2581 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2582 namelen = btrfs_root_ref_name_len(leaf, ref);
2583 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2584 btrfs_release_path(path);
2585
2586 if (parent_root) {
2587 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2588 if (ret < 0)
2589 goto out;
2590 } else {
2591 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2592 if (ret < 0)
2593 goto out;
2594 }
2595
2596 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2597
2598 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2599 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2600 sctx->send_root->root_item.received_uuid);
2601 else
2602 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2603 sctx->send_root->root_item.uuid);
2604
2605 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2606 btrfs_root_ctransid(&sctx->send_root->root_item));
2607 if (parent_root) {
2608 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2609 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2610 parent_root->root_item.received_uuid);
2611 else
2612 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2613 parent_root->root_item.uuid);
2614 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2615 btrfs_root_ctransid(&sctx->parent_root->root_item));
2616 }
2617
2618 ret = send_cmd(sctx);
2619
2620 tlv_put_failure:
2621 out:
2622 btrfs_free_path(path);
2623 kfree(name);
2624 return ret;
2625 }
2626
get_cur_inode_path(struct send_ctx * sctx)2627 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2628 {
2629 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2630 int ret;
2631
2632 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2633 &sctx->cur_inode_path);
2634 if (ret < 0)
2635 return ERR_PTR(ret);
2636 }
2637
2638 return &sctx->cur_inode_path;
2639 }
2640
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2641 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2642 {
2643 struct fs_path *path;
2644 int ret;
2645
2646 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2647 return get_cur_inode_path(sctx);
2648
2649 path = fs_path_alloc();
2650 if (!path)
2651 return ERR_PTR(-ENOMEM);
2652
2653 ret = get_cur_path(sctx, ino, gen, path);
2654 if (ret < 0) {
2655 fs_path_free(path);
2656 return ERR_PTR(ret);
2657 }
2658
2659 return path;
2660 }
2661
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2662 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2663 {
2664 if (path != &sctx->cur_inode_path)
2665 fs_path_free(path);
2666 }
2667
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2668 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2669 {
2670 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2671 int ret = 0;
2672 struct fs_path *p;
2673
2674 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2675
2676 p = get_path_for_command(sctx, ino, gen);
2677 if (IS_ERR(p))
2678 return PTR_ERR(p);
2679
2680 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2681 if (ret < 0)
2682 goto out;
2683
2684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2686
2687 ret = send_cmd(sctx);
2688
2689 tlv_put_failure:
2690 out:
2691 free_path_for_command(sctx, p);
2692 return ret;
2693 }
2694
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2695 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2696 {
2697 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2698 int ret = 0;
2699 struct fs_path *p;
2700
2701 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2702
2703 p = get_path_for_command(sctx, ino, gen);
2704 if (IS_ERR(p))
2705 return PTR_ERR(p);
2706
2707 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2708 if (ret < 0)
2709 goto out;
2710
2711 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2712 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2713
2714 ret = send_cmd(sctx);
2715
2716 tlv_put_failure:
2717 out:
2718 free_path_for_command(sctx, p);
2719 return ret;
2720 }
2721
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2722 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2723 {
2724 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2725 int ret = 0;
2726 struct fs_path *p;
2727
2728 if (sctx->proto < 2)
2729 return 0;
2730
2731 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2732
2733 p = get_path_for_command(sctx, ino, gen);
2734 if (IS_ERR(p))
2735 return PTR_ERR(p);
2736
2737 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2738 if (ret < 0)
2739 goto out;
2740
2741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2742 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2743
2744 ret = send_cmd(sctx);
2745
2746 tlv_put_failure:
2747 out:
2748 free_path_for_command(sctx, p);
2749 return ret;
2750 }
2751
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2752 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2753 {
2754 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2755 int ret = 0;
2756 struct fs_path *p;
2757
2758 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2759 ino, uid, gid);
2760
2761 p = get_path_for_command(sctx, ino, gen);
2762 if (IS_ERR(p))
2763 return PTR_ERR(p);
2764
2765 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2766 if (ret < 0)
2767 goto out;
2768
2769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2770 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2771 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2772
2773 ret = send_cmd(sctx);
2774
2775 tlv_put_failure:
2776 out:
2777 free_path_for_command(sctx, p);
2778 return ret;
2779 }
2780
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2781 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2782 {
2783 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2784 int ret = 0;
2785 struct fs_path *p = NULL;
2786 struct btrfs_inode_item *ii;
2787 struct btrfs_path *path = NULL;
2788 struct extent_buffer *eb;
2789 struct btrfs_key key;
2790 int slot;
2791
2792 btrfs_debug(fs_info, "send_utimes %llu", ino);
2793
2794 p = get_path_for_command(sctx, ino, gen);
2795 if (IS_ERR(p))
2796 return PTR_ERR(p);
2797
2798 path = alloc_path_for_send();
2799 if (!path) {
2800 ret = -ENOMEM;
2801 goto out;
2802 }
2803
2804 key.objectid = ino;
2805 key.type = BTRFS_INODE_ITEM_KEY;
2806 key.offset = 0;
2807 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2808 if (ret > 0)
2809 ret = -ENOENT;
2810 if (ret < 0)
2811 goto out;
2812
2813 eb = path->nodes[0];
2814 slot = path->slots[0];
2815 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2816
2817 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2818 if (ret < 0)
2819 goto out;
2820
2821 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2822 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2823 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2824 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2825 if (sctx->proto >= 2)
2826 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2827
2828 ret = send_cmd(sctx);
2829
2830 tlv_put_failure:
2831 out:
2832 free_path_for_command(sctx, p);
2833 btrfs_free_path(path);
2834 return ret;
2835 }
2836
2837 /*
2838 * If the cache is full, we can't remove entries from it and do a call to
2839 * send_utimes() for each respective inode, because we might be finishing
2840 * processing an inode that is a directory and it just got renamed, and existing
2841 * entries in the cache may refer to inodes that have the directory in their
2842 * full path - in which case we would generate outdated paths (pre-rename)
2843 * for the inodes that the cache entries point to. Instead of prunning the
2844 * cache when inserting, do it after we finish processing each inode at
2845 * finish_inode_if_needed().
2846 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2847 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2848 {
2849 struct btrfs_lru_cache_entry *entry;
2850 int ret;
2851
2852 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2853 if (entry != NULL)
2854 return 0;
2855
2856 /* Caching is optional, don't fail if we can't allocate memory. */
2857 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2858 if (!entry)
2859 return send_utimes(sctx, dir, gen);
2860
2861 entry->key = dir;
2862 entry->gen = gen;
2863
2864 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2865 ASSERT(ret != -EEXIST);
2866 if (ret) {
2867 kfree(entry);
2868 return send_utimes(sctx, dir, gen);
2869 }
2870
2871 return 0;
2872 }
2873
trim_dir_utimes_cache(struct send_ctx * sctx)2874 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2875 {
2876 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2877 struct btrfs_lru_cache_entry *lru;
2878 int ret;
2879
2880 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2881 ASSERT(lru != NULL);
2882
2883 ret = send_utimes(sctx, lru->key, lru->gen);
2884 if (ret)
2885 return ret;
2886
2887 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2888 }
2889
2890 return 0;
2891 }
2892
2893 /*
2894 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2895 * a valid path yet because we did not process the refs yet. So, the inode
2896 * is created as orphan.
2897 */
send_create_inode(struct send_ctx * sctx,u64 ino)2898 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2899 {
2900 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2901 int ret = 0;
2902 struct fs_path *p;
2903 int cmd;
2904 struct btrfs_inode_info info;
2905 u64 gen;
2906 u64 mode;
2907 u64 rdev;
2908
2909 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2910
2911 p = fs_path_alloc();
2912 if (!p)
2913 return -ENOMEM;
2914
2915 if (ino != sctx->cur_ino) {
2916 ret = get_inode_info(sctx->send_root, ino, &info);
2917 if (ret < 0)
2918 goto out;
2919 gen = info.gen;
2920 mode = info.mode;
2921 rdev = info.rdev;
2922 } else {
2923 gen = sctx->cur_inode_gen;
2924 mode = sctx->cur_inode_mode;
2925 rdev = sctx->cur_inode_rdev;
2926 }
2927
2928 if (S_ISREG(mode)) {
2929 cmd = BTRFS_SEND_C_MKFILE;
2930 } else if (S_ISDIR(mode)) {
2931 cmd = BTRFS_SEND_C_MKDIR;
2932 } else if (S_ISLNK(mode)) {
2933 cmd = BTRFS_SEND_C_SYMLINK;
2934 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2935 cmd = BTRFS_SEND_C_MKNOD;
2936 } else if (S_ISFIFO(mode)) {
2937 cmd = BTRFS_SEND_C_MKFIFO;
2938 } else if (S_ISSOCK(mode)) {
2939 cmd = BTRFS_SEND_C_MKSOCK;
2940 } else {
2941 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2942 (int)(mode & S_IFMT));
2943 ret = -EOPNOTSUPP;
2944 goto out;
2945 }
2946
2947 ret = begin_cmd(sctx, cmd);
2948 if (ret < 0)
2949 goto out;
2950
2951 ret = gen_unique_name(sctx, ino, gen, p);
2952 if (ret < 0)
2953 goto out;
2954
2955 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2956 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2957
2958 if (S_ISLNK(mode)) {
2959 fs_path_reset(p);
2960 ret = read_symlink(sctx->send_root, ino, p);
2961 if (ret < 0)
2962 goto out;
2963 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2964 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2965 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2966 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2967 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2968 }
2969
2970 ret = send_cmd(sctx);
2971 if (ret < 0)
2972 goto out;
2973
2974
2975 tlv_put_failure:
2976 out:
2977 fs_path_free(p);
2978 return ret;
2979 }
2980
cache_dir_created(struct send_ctx * sctx,u64 dir)2981 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2982 {
2983 struct btrfs_lru_cache_entry *entry;
2984 int ret;
2985
2986 /* Caching is optional, ignore any failures. */
2987 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2988 if (!entry)
2989 return;
2990
2991 entry->key = dir;
2992 entry->gen = 0;
2993 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2994 if (ret < 0)
2995 kfree(entry);
2996 }
2997
2998 /*
2999 * We need some special handling for inodes that get processed before the parent
3000 * directory got created. See process_recorded_refs for details.
3001 * This function does the check if we already created the dir out of order.
3002 */
did_create_dir(struct send_ctx * sctx,u64 dir)3003 static int did_create_dir(struct send_ctx *sctx, u64 dir)
3004 {
3005 int ret = 0;
3006 int iter_ret = 0;
3007 struct btrfs_path *path = NULL;
3008 struct btrfs_key key;
3009 struct btrfs_key found_key;
3010 struct btrfs_key di_key;
3011 struct btrfs_dir_item *di;
3012
3013 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
3014 return 1;
3015
3016 path = alloc_path_for_send();
3017 if (!path)
3018 return -ENOMEM;
3019
3020 key.objectid = dir;
3021 key.type = BTRFS_DIR_INDEX_KEY;
3022 key.offset = 0;
3023
3024 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
3025 struct extent_buffer *eb = path->nodes[0];
3026
3027 if (found_key.objectid != key.objectid ||
3028 found_key.type != key.type) {
3029 ret = 0;
3030 break;
3031 }
3032
3033 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
3034 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
3035
3036 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3037 di_key.objectid < sctx->send_progress) {
3038 ret = 1;
3039 cache_dir_created(sctx, dir);
3040 break;
3041 }
3042 }
3043 /* Catch error found during iteration */
3044 if (iter_ret < 0)
3045 ret = iter_ret;
3046
3047 btrfs_free_path(path);
3048 return ret;
3049 }
3050
3051 /*
3052 * Only creates the inode if it is:
3053 * 1. Not a directory
3054 * 2. Or a directory which was not created already due to out of order
3055 * directories. See did_create_dir and process_recorded_refs for details.
3056 */
send_create_inode_if_needed(struct send_ctx * sctx)3057 static int send_create_inode_if_needed(struct send_ctx *sctx)
3058 {
3059 int ret;
3060
3061 if (S_ISDIR(sctx->cur_inode_mode)) {
3062 ret = did_create_dir(sctx, sctx->cur_ino);
3063 if (ret < 0)
3064 return ret;
3065 else if (ret > 0)
3066 return 0;
3067 }
3068
3069 ret = send_create_inode(sctx, sctx->cur_ino);
3070
3071 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3072 cache_dir_created(sctx, sctx->cur_ino);
3073
3074 return ret;
3075 }
3076
3077 struct recorded_ref {
3078 struct list_head list;
3079 char *name;
3080 struct fs_path *full_path;
3081 u64 dir;
3082 u64 dir_gen;
3083 int name_len;
3084 struct rb_node node;
3085 struct rb_root *root;
3086 };
3087
recorded_ref_alloc(void)3088 static struct recorded_ref *recorded_ref_alloc(void)
3089 {
3090 struct recorded_ref *ref;
3091
3092 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3093 if (!ref)
3094 return NULL;
3095 RB_CLEAR_NODE(&ref->node);
3096 INIT_LIST_HEAD(&ref->list);
3097 return ref;
3098 }
3099
recorded_ref_free(struct recorded_ref * ref)3100 static void recorded_ref_free(struct recorded_ref *ref)
3101 {
3102 if (!ref)
3103 return;
3104 if (!RB_EMPTY_NODE(&ref->node))
3105 rb_erase(&ref->node, ref->root);
3106 list_del(&ref->list);
3107 fs_path_free(ref->full_path);
3108 kfree(ref);
3109 }
3110
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3111 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3112 {
3113 ref->full_path = path;
3114 ref->name = (char *)kbasename(ref->full_path->start);
3115 ref->name_len = ref->full_path->end - ref->name;
3116 }
3117
dup_ref(struct recorded_ref * ref,struct list_head * list)3118 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3119 {
3120 struct recorded_ref *new;
3121
3122 new = recorded_ref_alloc();
3123 if (!new)
3124 return -ENOMEM;
3125
3126 new->dir = ref->dir;
3127 new->dir_gen = ref->dir_gen;
3128 list_add_tail(&new->list, list);
3129 return 0;
3130 }
3131
__free_recorded_refs(struct list_head * head)3132 static void __free_recorded_refs(struct list_head *head)
3133 {
3134 struct recorded_ref *cur;
3135
3136 while (!list_empty(head)) {
3137 cur = list_entry(head->next, struct recorded_ref, list);
3138 recorded_ref_free(cur);
3139 }
3140 }
3141
free_recorded_refs(struct send_ctx * sctx)3142 static void free_recorded_refs(struct send_ctx *sctx)
3143 {
3144 __free_recorded_refs(&sctx->new_refs);
3145 __free_recorded_refs(&sctx->deleted_refs);
3146 }
3147
3148 /*
3149 * Renames/moves a file/dir to its orphan name. Used when the first
3150 * ref of an unprocessed inode gets overwritten and for all non empty
3151 * directories.
3152 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3153 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3154 struct fs_path *path)
3155 {
3156 int ret;
3157 struct fs_path *orphan;
3158
3159 orphan = fs_path_alloc();
3160 if (!orphan)
3161 return -ENOMEM;
3162
3163 ret = gen_unique_name(sctx, ino, gen, orphan);
3164 if (ret < 0)
3165 goto out;
3166
3167 ret = send_rename(sctx, path, orphan);
3168 if (ret < 0)
3169 goto out;
3170
3171 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3172 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3173
3174 out:
3175 fs_path_free(orphan);
3176 return ret;
3177 }
3178
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3179 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3180 u64 dir_ino, u64 dir_gen)
3181 {
3182 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3183 struct rb_node *parent = NULL;
3184 struct orphan_dir_info *entry, *odi;
3185
3186 while (*p) {
3187 parent = *p;
3188 entry = rb_entry(parent, struct orphan_dir_info, node);
3189 if (dir_ino < entry->ino)
3190 p = &(*p)->rb_left;
3191 else if (dir_ino > entry->ino)
3192 p = &(*p)->rb_right;
3193 else if (dir_gen < entry->gen)
3194 p = &(*p)->rb_left;
3195 else if (dir_gen > entry->gen)
3196 p = &(*p)->rb_right;
3197 else
3198 return entry;
3199 }
3200
3201 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3202 if (!odi)
3203 return ERR_PTR(-ENOMEM);
3204 odi->ino = dir_ino;
3205 odi->gen = dir_gen;
3206 odi->last_dir_index_offset = 0;
3207 odi->dir_high_seq_ino = 0;
3208
3209 rb_link_node(&odi->node, parent, p);
3210 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3211 return odi;
3212 }
3213
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3214 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3215 u64 dir_ino, u64 gen)
3216 {
3217 struct rb_node *n = sctx->orphan_dirs.rb_node;
3218 struct orphan_dir_info *entry;
3219
3220 while (n) {
3221 entry = rb_entry(n, struct orphan_dir_info, node);
3222 if (dir_ino < entry->ino)
3223 n = n->rb_left;
3224 else if (dir_ino > entry->ino)
3225 n = n->rb_right;
3226 else if (gen < entry->gen)
3227 n = n->rb_left;
3228 else if (gen > entry->gen)
3229 n = n->rb_right;
3230 else
3231 return entry;
3232 }
3233 return NULL;
3234 }
3235
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3236 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3237 {
3238 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3239
3240 return odi != NULL;
3241 }
3242
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3243 static void free_orphan_dir_info(struct send_ctx *sctx,
3244 struct orphan_dir_info *odi)
3245 {
3246 if (!odi)
3247 return;
3248 rb_erase(&odi->node, &sctx->orphan_dirs);
3249 kfree(odi);
3250 }
3251
3252 /*
3253 * Returns 1 if a directory can be removed at this point in time.
3254 * We check this by iterating all dir items and checking if the inode behind
3255 * the dir item was already processed.
3256 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3257 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3258 {
3259 int ret = 0;
3260 int iter_ret = 0;
3261 struct btrfs_root *root = sctx->parent_root;
3262 struct btrfs_path *path;
3263 struct btrfs_key key;
3264 struct btrfs_key found_key;
3265 struct btrfs_key loc;
3266 struct btrfs_dir_item *di;
3267 struct orphan_dir_info *odi = NULL;
3268 u64 dir_high_seq_ino = 0;
3269 u64 last_dir_index_offset = 0;
3270
3271 /*
3272 * Don't try to rmdir the top/root subvolume dir.
3273 */
3274 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3275 return 0;
3276
3277 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3278 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3279 return 0;
3280
3281 path = alloc_path_for_send();
3282 if (!path)
3283 return -ENOMEM;
3284
3285 if (!odi) {
3286 /*
3287 * Find the inode number associated with the last dir index
3288 * entry. This is very likely the inode with the highest number
3289 * of all inodes that have an entry in the directory. We can
3290 * then use it to avoid future calls to can_rmdir(), when
3291 * processing inodes with a lower number, from having to search
3292 * the parent root b+tree for dir index keys.
3293 */
3294 key.objectid = dir;
3295 key.type = BTRFS_DIR_INDEX_KEY;
3296 key.offset = (u64)-1;
3297
3298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3299 if (ret < 0) {
3300 goto out;
3301 } else if (ret > 0) {
3302 /* Can't happen, the root is never empty. */
3303 ASSERT(path->slots[0] > 0);
3304 if (WARN_ON(path->slots[0] == 0)) {
3305 ret = -EUCLEAN;
3306 goto out;
3307 }
3308 path->slots[0]--;
3309 }
3310
3311 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3312 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3313 /* No index keys, dir can be removed. */
3314 ret = 1;
3315 goto out;
3316 }
3317
3318 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3319 struct btrfs_dir_item);
3320 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3321 dir_high_seq_ino = loc.objectid;
3322 if (sctx->cur_ino < dir_high_seq_ino) {
3323 ret = 0;
3324 goto out;
3325 }
3326
3327 btrfs_release_path(path);
3328 }
3329
3330 key.objectid = dir;
3331 key.type = BTRFS_DIR_INDEX_KEY;
3332 key.offset = (odi ? odi->last_dir_index_offset : 0);
3333
3334 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3335 struct waiting_dir_move *dm;
3336
3337 if (found_key.objectid != key.objectid ||
3338 found_key.type != key.type)
3339 break;
3340
3341 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3342 struct btrfs_dir_item);
3343 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3344
3345 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3346 last_dir_index_offset = found_key.offset;
3347
3348 dm = get_waiting_dir_move(sctx, loc.objectid);
3349 if (dm) {
3350 dm->rmdir_ino = dir;
3351 dm->rmdir_gen = dir_gen;
3352 ret = 0;
3353 goto out;
3354 }
3355
3356 if (loc.objectid > sctx->cur_ino) {
3357 ret = 0;
3358 goto out;
3359 }
3360 }
3361 if (iter_ret < 0) {
3362 ret = iter_ret;
3363 goto out;
3364 }
3365 free_orphan_dir_info(sctx, odi);
3366
3367 ret = 1;
3368
3369 out:
3370 btrfs_free_path(path);
3371
3372 if (ret)
3373 return ret;
3374
3375 if (!odi) {
3376 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3377 if (IS_ERR(odi))
3378 return PTR_ERR(odi);
3379
3380 odi->gen = dir_gen;
3381 }
3382
3383 odi->last_dir_index_offset = last_dir_index_offset;
3384 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3385
3386 return 0;
3387 }
3388
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3389 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3390 {
3391 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3392
3393 return entry != NULL;
3394 }
3395
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3396 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3397 {
3398 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3399 struct rb_node *parent = NULL;
3400 struct waiting_dir_move *entry, *dm;
3401
3402 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3403 if (!dm)
3404 return -ENOMEM;
3405 dm->ino = ino;
3406 dm->rmdir_ino = 0;
3407 dm->rmdir_gen = 0;
3408 dm->orphanized = orphanized;
3409
3410 while (*p) {
3411 parent = *p;
3412 entry = rb_entry(parent, struct waiting_dir_move, node);
3413 if (ino < entry->ino) {
3414 p = &(*p)->rb_left;
3415 } else if (ino > entry->ino) {
3416 p = &(*p)->rb_right;
3417 } else {
3418 kfree(dm);
3419 return -EEXIST;
3420 }
3421 }
3422
3423 rb_link_node(&dm->node, parent, p);
3424 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3425 return 0;
3426 }
3427
3428 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3429 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3430 {
3431 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3432 struct waiting_dir_move *entry;
3433
3434 while (n) {
3435 entry = rb_entry(n, struct waiting_dir_move, node);
3436 if (ino < entry->ino)
3437 n = n->rb_left;
3438 else if (ino > entry->ino)
3439 n = n->rb_right;
3440 else
3441 return entry;
3442 }
3443 return NULL;
3444 }
3445
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3446 static void free_waiting_dir_move(struct send_ctx *sctx,
3447 struct waiting_dir_move *dm)
3448 {
3449 if (!dm)
3450 return;
3451 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3452 kfree(dm);
3453 }
3454
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3455 static int add_pending_dir_move(struct send_ctx *sctx,
3456 u64 ino,
3457 u64 ino_gen,
3458 u64 parent_ino,
3459 struct list_head *new_refs,
3460 struct list_head *deleted_refs,
3461 const bool is_orphan)
3462 {
3463 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3464 struct rb_node *parent = NULL;
3465 struct pending_dir_move *entry = NULL, *pm;
3466 struct recorded_ref *cur;
3467 int exists = 0;
3468 int ret;
3469
3470 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3471 if (!pm)
3472 return -ENOMEM;
3473 pm->parent_ino = parent_ino;
3474 pm->ino = ino;
3475 pm->gen = ino_gen;
3476 INIT_LIST_HEAD(&pm->list);
3477 INIT_LIST_HEAD(&pm->update_refs);
3478 RB_CLEAR_NODE(&pm->node);
3479
3480 while (*p) {
3481 parent = *p;
3482 entry = rb_entry(parent, struct pending_dir_move, node);
3483 if (parent_ino < entry->parent_ino) {
3484 p = &(*p)->rb_left;
3485 } else if (parent_ino > entry->parent_ino) {
3486 p = &(*p)->rb_right;
3487 } else {
3488 exists = 1;
3489 break;
3490 }
3491 }
3492
3493 list_for_each_entry(cur, deleted_refs, list) {
3494 ret = dup_ref(cur, &pm->update_refs);
3495 if (ret < 0)
3496 goto out;
3497 }
3498 list_for_each_entry(cur, new_refs, list) {
3499 ret = dup_ref(cur, &pm->update_refs);
3500 if (ret < 0)
3501 goto out;
3502 }
3503
3504 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3505 if (ret)
3506 goto out;
3507
3508 if (exists) {
3509 list_add_tail(&pm->list, &entry->list);
3510 } else {
3511 rb_link_node(&pm->node, parent, p);
3512 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3513 }
3514 ret = 0;
3515 out:
3516 if (ret) {
3517 __free_recorded_refs(&pm->update_refs);
3518 kfree(pm);
3519 }
3520 return ret;
3521 }
3522
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3523 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3524 u64 parent_ino)
3525 {
3526 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3527 struct pending_dir_move *entry;
3528
3529 while (n) {
3530 entry = rb_entry(n, struct pending_dir_move, node);
3531 if (parent_ino < entry->parent_ino)
3532 n = n->rb_left;
3533 else if (parent_ino > entry->parent_ino)
3534 n = n->rb_right;
3535 else
3536 return entry;
3537 }
3538 return NULL;
3539 }
3540
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3541 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3542 u64 ino, u64 gen, u64 *ancestor_ino)
3543 {
3544 int ret = 0;
3545 u64 parent_inode = 0;
3546 u64 parent_gen = 0;
3547 u64 start_ino = ino;
3548
3549 *ancestor_ino = 0;
3550 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3551 fs_path_reset(name);
3552
3553 if (is_waiting_for_rm(sctx, ino, gen))
3554 break;
3555 if (is_waiting_for_move(sctx, ino)) {
3556 if (*ancestor_ino == 0)
3557 *ancestor_ino = ino;
3558 ret = get_first_ref(sctx->parent_root, ino,
3559 &parent_inode, &parent_gen, name);
3560 } else {
3561 ret = __get_cur_name_and_parent(sctx, ino, gen,
3562 &parent_inode,
3563 &parent_gen, name);
3564 if (ret > 0) {
3565 ret = 0;
3566 break;
3567 }
3568 }
3569 if (ret < 0)
3570 break;
3571 if (parent_inode == start_ino) {
3572 ret = 1;
3573 if (*ancestor_ino == 0)
3574 *ancestor_ino = ino;
3575 break;
3576 }
3577 ino = parent_inode;
3578 gen = parent_gen;
3579 }
3580 return ret;
3581 }
3582
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3583 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3584 {
3585 struct fs_path *from_path = NULL;
3586 struct fs_path *to_path = NULL;
3587 struct fs_path *name = NULL;
3588 u64 orig_progress = sctx->send_progress;
3589 struct recorded_ref *cur;
3590 u64 parent_ino, parent_gen;
3591 struct waiting_dir_move *dm = NULL;
3592 u64 rmdir_ino = 0;
3593 u64 rmdir_gen;
3594 u64 ancestor;
3595 bool is_orphan;
3596 int ret;
3597
3598 name = fs_path_alloc();
3599 from_path = fs_path_alloc();
3600 if (!name || !from_path) {
3601 ret = -ENOMEM;
3602 goto out;
3603 }
3604
3605 dm = get_waiting_dir_move(sctx, pm->ino);
3606 ASSERT(dm);
3607 rmdir_ino = dm->rmdir_ino;
3608 rmdir_gen = dm->rmdir_gen;
3609 is_orphan = dm->orphanized;
3610 free_waiting_dir_move(sctx, dm);
3611
3612 if (is_orphan) {
3613 ret = gen_unique_name(sctx, pm->ino,
3614 pm->gen, from_path);
3615 } else {
3616 ret = get_first_ref(sctx->parent_root, pm->ino,
3617 &parent_ino, &parent_gen, name);
3618 if (ret < 0)
3619 goto out;
3620 ret = get_cur_path(sctx, parent_ino, parent_gen,
3621 from_path);
3622 if (ret < 0)
3623 goto out;
3624 ret = fs_path_add_path(from_path, name);
3625 }
3626 if (ret < 0)
3627 goto out;
3628
3629 sctx->send_progress = sctx->cur_ino + 1;
3630 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3631 if (ret < 0)
3632 goto out;
3633 if (ret) {
3634 LIST_HEAD(deleted_refs);
3635 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3636 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3637 &pm->update_refs, &deleted_refs,
3638 is_orphan);
3639 if (ret < 0)
3640 goto out;
3641 if (rmdir_ino) {
3642 dm = get_waiting_dir_move(sctx, pm->ino);
3643 ASSERT(dm);
3644 dm->rmdir_ino = rmdir_ino;
3645 dm->rmdir_gen = rmdir_gen;
3646 }
3647 goto out;
3648 }
3649 fs_path_reset(name);
3650 to_path = name;
3651 name = NULL;
3652 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3653 if (ret < 0)
3654 goto out;
3655
3656 ret = send_rename(sctx, from_path, to_path);
3657 if (ret < 0)
3658 goto out;
3659
3660 if (rmdir_ino) {
3661 struct orphan_dir_info *odi;
3662 u64 gen;
3663
3664 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3665 if (!odi) {
3666 /* already deleted */
3667 goto finish;
3668 }
3669 gen = odi->gen;
3670
3671 ret = can_rmdir(sctx, rmdir_ino, gen);
3672 if (ret < 0)
3673 goto out;
3674 if (!ret)
3675 goto finish;
3676
3677 name = fs_path_alloc();
3678 if (!name) {
3679 ret = -ENOMEM;
3680 goto out;
3681 }
3682 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3683 if (ret < 0)
3684 goto out;
3685 ret = send_rmdir(sctx, name);
3686 if (ret < 0)
3687 goto out;
3688 }
3689
3690 finish:
3691 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3692 if (ret < 0)
3693 goto out;
3694
3695 /*
3696 * After rename/move, need to update the utimes of both new parent(s)
3697 * and old parent(s).
3698 */
3699 list_for_each_entry(cur, &pm->update_refs, list) {
3700 /*
3701 * The parent inode might have been deleted in the send snapshot
3702 */
3703 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3704 if (ret == -ENOENT) {
3705 ret = 0;
3706 continue;
3707 }
3708 if (ret < 0)
3709 goto out;
3710
3711 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3712 if (ret < 0)
3713 goto out;
3714 }
3715
3716 out:
3717 fs_path_free(name);
3718 fs_path_free(from_path);
3719 fs_path_free(to_path);
3720 sctx->send_progress = orig_progress;
3721
3722 return ret;
3723 }
3724
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3725 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3726 {
3727 if (!list_empty(&m->list))
3728 list_del(&m->list);
3729 if (!RB_EMPTY_NODE(&m->node))
3730 rb_erase(&m->node, &sctx->pending_dir_moves);
3731 __free_recorded_refs(&m->update_refs);
3732 kfree(m);
3733 }
3734
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3735 static void tail_append_pending_moves(struct send_ctx *sctx,
3736 struct pending_dir_move *moves,
3737 struct list_head *stack)
3738 {
3739 if (list_empty(&moves->list)) {
3740 list_add_tail(&moves->list, stack);
3741 } else {
3742 LIST_HEAD(list);
3743 list_splice_init(&moves->list, &list);
3744 list_add_tail(&moves->list, stack);
3745 list_splice_tail(&list, stack);
3746 }
3747 if (!RB_EMPTY_NODE(&moves->node)) {
3748 rb_erase(&moves->node, &sctx->pending_dir_moves);
3749 RB_CLEAR_NODE(&moves->node);
3750 }
3751 }
3752
apply_children_dir_moves(struct send_ctx * sctx)3753 static int apply_children_dir_moves(struct send_ctx *sctx)
3754 {
3755 struct pending_dir_move *pm;
3756 LIST_HEAD(stack);
3757 u64 parent_ino = sctx->cur_ino;
3758 int ret = 0;
3759
3760 pm = get_pending_dir_moves(sctx, parent_ino);
3761 if (!pm)
3762 return 0;
3763
3764 tail_append_pending_moves(sctx, pm, &stack);
3765
3766 while (!list_empty(&stack)) {
3767 pm = list_first_entry(&stack, struct pending_dir_move, list);
3768 parent_ino = pm->ino;
3769 ret = apply_dir_move(sctx, pm);
3770 free_pending_move(sctx, pm);
3771 if (ret)
3772 goto out;
3773 pm = get_pending_dir_moves(sctx, parent_ino);
3774 if (pm)
3775 tail_append_pending_moves(sctx, pm, &stack);
3776 }
3777 return 0;
3778
3779 out:
3780 while (!list_empty(&stack)) {
3781 pm = list_first_entry(&stack, struct pending_dir_move, list);
3782 free_pending_move(sctx, pm);
3783 }
3784 return ret;
3785 }
3786
3787 /*
3788 * We might need to delay a directory rename even when no ancestor directory
3789 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3790 * renamed. This happens when we rename a directory to the old name (the name
3791 * in the parent root) of some other unrelated directory that got its rename
3792 * delayed due to some ancestor with higher number that got renamed.
3793 *
3794 * Example:
3795 *
3796 * Parent snapshot:
3797 * . (ino 256)
3798 * |---- a/ (ino 257)
3799 * | |---- file (ino 260)
3800 * |
3801 * |---- b/ (ino 258)
3802 * |---- c/ (ino 259)
3803 *
3804 * Send snapshot:
3805 * . (ino 256)
3806 * |---- a/ (ino 258)
3807 * |---- x/ (ino 259)
3808 * |---- y/ (ino 257)
3809 * |----- file (ino 260)
3810 *
3811 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3812 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3813 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3814 * must issue is:
3815 *
3816 * 1 - rename 259 from 'c' to 'x'
3817 * 2 - rename 257 from 'a' to 'x/y'
3818 * 3 - rename 258 from 'b' to 'a'
3819 *
3820 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3821 * be done right away and < 0 on error.
3822 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3823 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3824 struct recorded_ref *parent_ref,
3825 const bool is_orphan)
3826 {
3827 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3828 struct btrfs_path *path;
3829 struct btrfs_key key;
3830 struct btrfs_key di_key;
3831 struct btrfs_dir_item *di;
3832 u64 left_gen;
3833 u64 right_gen;
3834 int ret = 0;
3835 struct waiting_dir_move *wdm;
3836
3837 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3838 return 0;
3839
3840 path = alloc_path_for_send();
3841 if (!path)
3842 return -ENOMEM;
3843
3844 key.objectid = parent_ref->dir;
3845 key.type = BTRFS_DIR_ITEM_KEY;
3846 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3847
3848 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3849 if (ret < 0) {
3850 goto out;
3851 } else if (ret > 0) {
3852 ret = 0;
3853 goto out;
3854 }
3855
3856 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3857 parent_ref->name_len);
3858 if (!di) {
3859 ret = 0;
3860 goto out;
3861 }
3862 /*
3863 * di_key.objectid has the number of the inode that has a dentry in the
3864 * parent directory with the same name that sctx->cur_ino is being
3865 * renamed to. We need to check if that inode is in the send root as
3866 * well and if it is currently marked as an inode with a pending rename,
3867 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3868 * that it happens after that other inode is renamed.
3869 */
3870 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3871 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3872 ret = 0;
3873 goto out;
3874 }
3875
3876 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3877 if (ret < 0)
3878 goto out;
3879 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3880 if (ret < 0) {
3881 if (ret == -ENOENT)
3882 ret = 0;
3883 goto out;
3884 }
3885
3886 /* Different inode, no need to delay the rename of sctx->cur_ino */
3887 if (right_gen != left_gen) {
3888 ret = 0;
3889 goto out;
3890 }
3891
3892 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3893 if (wdm && !wdm->orphanized) {
3894 ret = add_pending_dir_move(sctx,
3895 sctx->cur_ino,
3896 sctx->cur_inode_gen,
3897 di_key.objectid,
3898 &sctx->new_refs,
3899 &sctx->deleted_refs,
3900 is_orphan);
3901 if (!ret)
3902 ret = 1;
3903 }
3904 out:
3905 btrfs_free_path(path);
3906 return ret;
3907 }
3908
3909 /*
3910 * Check if inode ino2, or any of its ancestors, is inode ino1.
3911 * Return 1 if true, 0 if false and < 0 on error.
3912 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3913 static int check_ino_in_path(struct btrfs_root *root,
3914 const u64 ino1,
3915 const u64 ino1_gen,
3916 const u64 ino2,
3917 const u64 ino2_gen,
3918 struct fs_path *fs_path)
3919 {
3920 u64 ino = ino2;
3921
3922 if (ino1 == ino2)
3923 return ino1_gen == ino2_gen;
3924
3925 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3926 u64 parent;
3927 u64 parent_gen;
3928 int ret;
3929
3930 fs_path_reset(fs_path);
3931 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3932 if (ret < 0)
3933 return ret;
3934 if (parent == ino1)
3935 return parent_gen == ino1_gen;
3936 ino = parent;
3937 }
3938 return 0;
3939 }
3940
3941 /*
3942 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3943 * possible path (in case ino2 is not a directory and has multiple hard links).
3944 * Return 1 if true, 0 if false and < 0 on error.
3945 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3946 static int is_ancestor(struct btrfs_root *root,
3947 const u64 ino1,
3948 const u64 ino1_gen,
3949 const u64 ino2,
3950 struct fs_path *fs_path)
3951 {
3952 bool free_fs_path = false;
3953 int ret = 0;
3954 int iter_ret = 0;
3955 struct btrfs_path *path = NULL;
3956 struct btrfs_key key;
3957
3958 if (!fs_path) {
3959 fs_path = fs_path_alloc();
3960 if (!fs_path)
3961 return -ENOMEM;
3962 free_fs_path = true;
3963 }
3964
3965 path = alloc_path_for_send();
3966 if (!path) {
3967 ret = -ENOMEM;
3968 goto out;
3969 }
3970
3971 key.objectid = ino2;
3972 key.type = BTRFS_INODE_REF_KEY;
3973 key.offset = 0;
3974
3975 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3976 struct extent_buffer *leaf = path->nodes[0];
3977 int slot = path->slots[0];
3978 u32 cur_offset = 0;
3979 u32 item_size;
3980
3981 if (key.objectid != ino2)
3982 break;
3983 if (key.type != BTRFS_INODE_REF_KEY &&
3984 key.type != BTRFS_INODE_EXTREF_KEY)
3985 break;
3986
3987 item_size = btrfs_item_size(leaf, slot);
3988 while (cur_offset < item_size) {
3989 u64 parent;
3990 u64 parent_gen;
3991
3992 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3993 unsigned long ptr;
3994 struct btrfs_inode_extref *extref;
3995
3996 ptr = btrfs_item_ptr_offset(leaf, slot);
3997 extref = (struct btrfs_inode_extref *)
3998 (ptr + cur_offset);
3999 parent = btrfs_inode_extref_parent(leaf,
4000 extref);
4001 cur_offset += sizeof(*extref);
4002 cur_offset += btrfs_inode_extref_name_len(leaf,
4003 extref);
4004 } else {
4005 parent = key.offset;
4006 cur_offset = item_size;
4007 }
4008
4009 ret = get_inode_gen(root, parent, &parent_gen);
4010 if (ret < 0)
4011 goto out;
4012 ret = check_ino_in_path(root, ino1, ino1_gen,
4013 parent, parent_gen, fs_path);
4014 if (ret)
4015 goto out;
4016 }
4017 }
4018 ret = 0;
4019 if (iter_ret < 0)
4020 ret = iter_ret;
4021
4022 out:
4023 btrfs_free_path(path);
4024 if (free_fs_path)
4025 fs_path_free(fs_path);
4026 return ret;
4027 }
4028
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)4029 static int wait_for_parent_move(struct send_ctx *sctx,
4030 struct recorded_ref *parent_ref,
4031 const bool is_orphan)
4032 {
4033 int ret = 0;
4034 u64 ino = parent_ref->dir;
4035 u64 ino_gen = parent_ref->dir_gen;
4036 u64 parent_ino_before, parent_ino_after;
4037 struct fs_path *path_before = NULL;
4038 struct fs_path *path_after = NULL;
4039 int len1, len2;
4040
4041 path_after = fs_path_alloc();
4042 path_before = fs_path_alloc();
4043 if (!path_after || !path_before) {
4044 ret = -ENOMEM;
4045 goto out;
4046 }
4047
4048 /*
4049 * Our current directory inode may not yet be renamed/moved because some
4050 * ancestor (immediate or not) has to be renamed/moved first. So find if
4051 * such ancestor exists and make sure our own rename/move happens after
4052 * that ancestor is processed to avoid path build infinite loops (done
4053 * at get_cur_path()).
4054 */
4055 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4056 u64 parent_ino_after_gen;
4057
4058 if (is_waiting_for_move(sctx, ino)) {
4059 /*
4060 * If the current inode is an ancestor of ino in the
4061 * parent root, we need to delay the rename of the
4062 * current inode, otherwise don't delayed the rename
4063 * because we can end up with a circular dependency
4064 * of renames, resulting in some directories never
4065 * getting the respective rename operations issued in
4066 * the send stream or getting into infinite path build
4067 * loops.
4068 */
4069 ret = is_ancestor(sctx->parent_root,
4070 sctx->cur_ino, sctx->cur_inode_gen,
4071 ino, path_before);
4072 if (ret)
4073 break;
4074 }
4075
4076 fs_path_reset(path_before);
4077 fs_path_reset(path_after);
4078
4079 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4080 &parent_ino_after_gen, path_after);
4081 if (ret < 0)
4082 goto out;
4083 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4084 NULL, path_before);
4085 if (ret < 0 && ret != -ENOENT) {
4086 goto out;
4087 } else if (ret == -ENOENT) {
4088 ret = 0;
4089 break;
4090 }
4091
4092 len1 = fs_path_len(path_before);
4093 len2 = fs_path_len(path_after);
4094 if (ino > sctx->cur_ino &&
4095 (parent_ino_before != parent_ino_after || len1 != len2 ||
4096 memcmp(path_before->start, path_after->start, len1))) {
4097 u64 parent_ino_gen;
4098
4099 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4100 if (ret < 0)
4101 goto out;
4102 if (ino_gen == parent_ino_gen) {
4103 ret = 1;
4104 break;
4105 }
4106 }
4107 ino = parent_ino_after;
4108 ino_gen = parent_ino_after_gen;
4109 }
4110
4111 out:
4112 fs_path_free(path_before);
4113 fs_path_free(path_after);
4114
4115 if (ret == 1) {
4116 ret = add_pending_dir_move(sctx,
4117 sctx->cur_ino,
4118 sctx->cur_inode_gen,
4119 ino,
4120 &sctx->new_refs,
4121 &sctx->deleted_refs,
4122 is_orphan);
4123 if (!ret)
4124 ret = 1;
4125 }
4126
4127 return ret;
4128 }
4129
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4130 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4131 {
4132 int ret;
4133 struct fs_path *new_path;
4134
4135 /*
4136 * Our reference's name member points to its full_path member string, so
4137 * we use here a new path.
4138 */
4139 new_path = fs_path_alloc();
4140 if (!new_path)
4141 return -ENOMEM;
4142
4143 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4144 if (ret < 0) {
4145 fs_path_free(new_path);
4146 return ret;
4147 }
4148 ret = fs_path_add(new_path, ref->name, ref->name_len);
4149 if (ret < 0) {
4150 fs_path_free(new_path);
4151 return ret;
4152 }
4153
4154 fs_path_free(ref->full_path);
4155 set_ref_path(ref, new_path);
4156
4157 return 0;
4158 }
4159
4160 /*
4161 * When processing the new references for an inode we may orphanize an existing
4162 * directory inode because its old name conflicts with one of the new references
4163 * of the current inode. Later, when processing another new reference of our
4164 * inode, we might need to orphanize another inode, but the path we have in the
4165 * reference reflects the pre-orphanization name of the directory we previously
4166 * orphanized. For example:
4167 *
4168 * parent snapshot looks like:
4169 *
4170 * . (ino 256)
4171 * |----- f1 (ino 257)
4172 * |----- f2 (ino 258)
4173 * |----- d1/ (ino 259)
4174 * |----- d2/ (ino 260)
4175 *
4176 * send snapshot looks like:
4177 *
4178 * . (ino 256)
4179 * |----- d1 (ino 258)
4180 * |----- f2/ (ino 259)
4181 * |----- f2_link/ (ino 260)
4182 * | |----- f1 (ino 257)
4183 * |
4184 * |----- d2 (ino 258)
4185 *
4186 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4187 * cache it in the name cache. Later when we start processing inode 258, when
4188 * collecting all its new references we set a full path of "d1/d2" for its new
4189 * reference with name "d2". When we start processing the new references we
4190 * start by processing the new reference with name "d1", and this results in
4191 * orphanizing inode 259, since its old reference causes a conflict. Then we
4192 * move on the next new reference, with name "d2", and we find out we must
4193 * orphanize inode 260, as its old reference conflicts with ours - but for the
4194 * orphanization we use a source path corresponding to the path we stored in the
4195 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4196 * receiver fail since the path component "d1/" no longer exists, it was renamed
4197 * to "o259-6-0/" when processing the previous new reference. So in this case we
4198 * must recompute the path in the new reference and use it for the new
4199 * orphanization operation.
4200 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4201 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4202 {
4203 char *name;
4204 int ret;
4205
4206 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4207 if (!name)
4208 return -ENOMEM;
4209
4210 fs_path_reset(ref->full_path);
4211 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4212 if (ret < 0)
4213 goto out;
4214
4215 ret = fs_path_add(ref->full_path, name, ref->name_len);
4216 if (ret < 0)
4217 goto out;
4218
4219 /* Update the reference's base name pointer. */
4220 set_ref_path(ref, ref->full_path);
4221 out:
4222 kfree(name);
4223 return ret;
4224 }
4225
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4226 static int rename_current_inode(struct send_ctx *sctx,
4227 struct fs_path *current_path,
4228 struct fs_path *new_path)
4229 {
4230 int ret;
4231
4232 ret = send_rename(sctx, current_path, new_path);
4233 if (ret < 0)
4234 return ret;
4235
4236 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4237 if (ret < 0)
4238 return ret;
4239
4240 return fs_path_copy(current_path, new_path);
4241 }
4242
4243 /*
4244 * This does all the move/link/unlink/rmdir magic.
4245 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4246 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4247 {
4248 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4249 int ret = 0;
4250 struct recorded_ref *cur;
4251 struct recorded_ref *cur2;
4252 LIST_HEAD(check_dirs);
4253 struct fs_path *valid_path = NULL;
4254 u64 ow_inode = 0;
4255 u64 ow_gen;
4256 u64 ow_mode;
4257 u64 last_dir_ino_rm = 0;
4258 bool did_overwrite = false;
4259 bool is_orphan = false;
4260 bool can_rename = true;
4261 bool orphanized_dir = false;
4262 bool orphanized_ancestor = false;
4263
4264 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4265
4266 /*
4267 * This should never happen as the root dir always has the same ref
4268 * which is always '..'
4269 */
4270 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4271 btrfs_err(fs_info,
4272 "send: unexpected inode %llu in process_recorded_refs()",
4273 sctx->cur_ino);
4274 ret = -EINVAL;
4275 goto out;
4276 }
4277
4278 valid_path = fs_path_alloc();
4279 if (!valid_path) {
4280 ret = -ENOMEM;
4281 goto out;
4282 }
4283
4284 /*
4285 * First, check if the first ref of the current inode was overwritten
4286 * before. If yes, we know that the current inode was already orphanized
4287 * and thus use the orphan name. If not, we can use get_cur_path to
4288 * get the path of the first ref as it would like while receiving at
4289 * this point in time.
4290 * New inodes are always orphan at the beginning, so force to use the
4291 * orphan name in this case.
4292 * The first ref is stored in valid_path and will be updated if it
4293 * gets moved around.
4294 */
4295 if (!sctx->cur_inode_new) {
4296 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4297 sctx->cur_inode_gen);
4298 if (ret < 0)
4299 goto out;
4300 if (ret)
4301 did_overwrite = true;
4302 }
4303 if (sctx->cur_inode_new || did_overwrite) {
4304 ret = gen_unique_name(sctx, sctx->cur_ino,
4305 sctx->cur_inode_gen, valid_path);
4306 if (ret < 0)
4307 goto out;
4308 is_orphan = true;
4309 } else {
4310 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4311 valid_path);
4312 if (ret < 0)
4313 goto out;
4314 }
4315
4316 /*
4317 * Before doing any rename and link operations, do a first pass on the
4318 * new references to orphanize any unprocessed inodes that may have a
4319 * reference that conflicts with one of the new references of the current
4320 * inode. This needs to happen first because a new reference may conflict
4321 * with the old reference of a parent directory, so we must make sure
4322 * that the path used for link and rename commands don't use an
4323 * orphanized name when an ancestor was not yet orphanized.
4324 *
4325 * Example:
4326 *
4327 * Parent snapshot:
4328 *
4329 * . (ino 256)
4330 * |----- testdir/ (ino 259)
4331 * | |----- a (ino 257)
4332 * |
4333 * |----- b (ino 258)
4334 *
4335 * Send snapshot:
4336 *
4337 * . (ino 256)
4338 * |----- testdir_2/ (ino 259)
4339 * | |----- a (ino 260)
4340 * |
4341 * |----- testdir (ino 257)
4342 * |----- b (ino 257)
4343 * |----- b2 (ino 258)
4344 *
4345 * Processing the new reference for inode 257 with name "b" may happen
4346 * before processing the new reference with name "testdir". If so, we
4347 * must make sure that by the time we send a link command to create the
4348 * hard link "b", inode 259 was already orphanized, since the generated
4349 * path in "valid_path" already contains the orphanized name for 259.
4350 * We are processing inode 257, so only later when processing 259 we do
4351 * the rename operation to change its temporary (orphanized) name to
4352 * "testdir_2".
4353 */
4354 list_for_each_entry(cur, &sctx->new_refs, list) {
4355 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4356 if (ret < 0)
4357 goto out;
4358 if (ret == inode_state_will_create)
4359 continue;
4360
4361 /*
4362 * Check if this new ref would overwrite the first ref of another
4363 * unprocessed inode. If yes, orphanize the overwritten inode.
4364 * If we find an overwritten ref that is not the first ref,
4365 * simply unlink it.
4366 */
4367 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4368 cur->name, cur->name_len,
4369 &ow_inode, &ow_gen, &ow_mode);
4370 if (ret < 0)
4371 goto out;
4372 if (ret) {
4373 ret = is_first_ref(sctx->parent_root,
4374 ow_inode, cur->dir, cur->name,
4375 cur->name_len);
4376 if (ret < 0)
4377 goto out;
4378 if (ret) {
4379 struct name_cache_entry *nce;
4380 struct waiting_dir_move *wdm;
4381
4382 if (orphanized_dir) {
4383 ret = refresh_ref_path(sctx, cur);
4384 if (ret < 0)
4385 goto out;
4386 }
4387
4388 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4389 cur->full_path);
4390 if (ret < 0)
4391 goto out;
4392 if (S_ISDIR(ow_mode))
4393 orphanized_dir = true;
4394
4395 /*
4396 * If ow_inode has its rename operation delayed
4397 * make sure that its orphanized name is used in
4398 * the source path when performing its rename
4399 * operation.
4400 */
4401 wdm = get_waiting_dir_move(sctx, ow_inode);
4402 if (wdm)
4403 wdm->orphanized = true;
4404
4405 /*
4406 * Make sure we clear our orphanized inode's
4407 * name from the name cache. This is because the
4408 * inode ow_inode might be an ancestor of some
4409 * other inode that will be orphanized as well
4410 * later and has an inode number greater than
4411 * sctx->send_progress. We need to prevent
4412 * future name lookups from using the old name
4413 * and get instead the orphan name.
4414 */
4415 nce = name_cache_search(sctx, ow_inode, ow_gen);
4416 if (nce)
4417 btrfs_lru_cache_remove(&sctx->name_cache,
4418 &nce->entry);
4419
4420 /*
4421 * ow_inode might currently be an ancestor of
4422 * cur_ino, therefore compute valid_path (the
4423 * current path of cur_ino) again because it
4424 * might contain the pre-orphanization name of
4425 * ow_inode, which is no longer valid.
4426 */
4427 ret = is_ancestor(sctx->parent_root,
4428 ow_inode, ow_gen,
4429 sctx->cur_ino, NULL);
4430 if (ret > 0) {
4431 orphanized_ancestor = true;
4432 fs_path_reset(valid_path);
4433 fs_path_reset(&sctx->cur_inode_path);
4434 ret = get_cur_path(sctx, sctx->cur_ino,
4435 sctx->cur_inode_gen,
4436 valid_path);
4437 }
4438 if (ret < 0)
4439 goto out;
4440 } else {
4441 /*
4442 * If we previously orphanized a directory that
4443 * collided with a new reference that we already
4444 * processed, recompute the current path because
4445 * that directory may be part of the path.
4446 */
4447 if (orphanized_dir) {
4448 ret = refresh_ref_path(sctx, cur);
4449 if (ret < 0)
4450 goto out;
4451 }
4452 ret = send_unlink(sctx, cur->full_path);
4453 if (ret < 0)
4454 goto out;
4455 }
4456 }
4457
4458 }
4459
4460 list_for_each_entry(cur, &sctx->new_refs, list) {
4461 /*
4462 * We may have refs where the parent directory does not exist
4463 * yet. This happens if the parent directories inum is higher
4464 * than the current inum. To handle this case, we create the
4465 * parent directory out of order. But we need to check if this
4466 * did already happen before due to other refs in the same dir.
4467 */
4468 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4469 if (ret < 0)
4470 goto out;
4471 if (ret == inode_state_will_create) {
4472 ret = 0;
4473 /*
4474 * First check if any of the current inodes refs did
4475 * already create the dir.
4476 */
4477 list_for_each_entry(cur2, &sctx->new_refs, list) {
4478 if (cur == cur2)
4479 break;
4480 if (cur2->dir == cur->dir) {
4481 ret = 1;
4482 break;
4483 }
4484 }
4485
4486 /*
4487 * If that did not happen, check if a previous inode
4488 * did already create the dir.
4489 */
4490 if (!ret)
4491 ret = did_create_dir(sctx, cur->dir);
4492 if (ret < 0)
4493 goto out;
4494 if (!ret) {
4495 ret = send_create_inode(sctx, cur->dir);
4496 if (ret < 0)
4497 goto out;
4498 cache_dir_created(sctx, cur->dir);
4499 }
4500 }
4501
4502 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4503 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4504 if (ret < 0)
4505 goto out;
4506 if (ret == 1) {
4507 can_rename = false;
4508 *pending_move = 1;
4509 }
4510 }
4511
4512 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4513 can_rename) {
4514 ret = wait_for_parent_move(sctx, cur, is_orphan);
4515 if (ret < 0)
4516 goto out;
4517 if (ret == 1) {
4518 can_rename = false;
4519 *pending_move = 1;
4520 }
4521 }
4522
4523 /*
4524 * link/move the ref to the new place. If we have an orphan
4525 * inode, move it and update valid_path. If not, link or move
4526 * it depending on the inode mode.
4527 */
4528 if (is_orphan && can_rename) {
4529 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4530 if (ret < 0)
4531 goto out;
4532 is_orphan = false;
4533 } else if (can_rename) {
4534 if (S_ISDIR(sctx->cur_inode_mode)) {
4535 /*
4536 * Dirs can't be linked, so move it. For moved
4537 * dirs, we always have one new and one deleted
4538 * ref. The deleted ref is ignored later.
4539 */
4540 ret = rename_current_inode(sctx, valid_path,
4541 cur->full_path);
4542 if (ret < 0)
4543 goto out;
4544 } else {
4545 /*
4546 * We might have previously orphanized an inode
4547 * which is an ancestor of our current inode,
4548 * so our reference's full path, which was
4549 * computed before any such orphanizations, must
4550 * be updated.
4551 */
4552 if (orphanized_dir) {
4553 ret = update_ref_path(sctx, cur);
4554 if (ret < 0)
4555 goto out;
4556 }
4557 ret = send_link(sctx, cur->full_path,
4558 valid_path);
4559 if (ret < 0)
4560 goto out;
4561 }
4562 }
4563 ret = dup_ref(cur, &check_dirs);
4564 if (ret < 0)
4565 goto out;
4566 }
4567
4568 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4569 /*
4570 * Check if we can already rmdir the directory. If not,
4571 * orphanize it. For every dir item inside that gets deleted
4572 * later, we do this check again and rmdir it then if possible.
4573 * See the use of check_dirs for more details.
4574 */
4575 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4576 if (ret < 0)
4577 goto out;
4578 if (ret) {
4579 ret = send_rmdir(sctx, valid_path);
4580 if (ret < 0)
4581 goto out;
4582 } else if (!is_orphan) {
4583 ret = orphanize_inode(sctx, sctx->cur_ino,
4584 sctx->cur_inode_gen, valid_path);
4585 if (ret < 0)
4586 goto out;
4587 is_orphan = true;
4588 }
4589
4590 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4591 ret = dup_ref(cur, &check_dirs);
4592 if (ret < 0)
4593 goto out;
4594 }
4595 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4596 !list_empty(&sctx->deleted_refs)) {
4597 /*
4598 * We have a moved dir. Add the old parent to check_dirs
4599 */
4600 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4601 list);
4602 ret = dup_ref(cur, &check_dirs);
4603 if (ret < 0)
4604 goto out;
4605 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4606 /*
4607 * We have a non dir inode. Go through all deleted refs and
4608 * unlink them if they were not already overwritten by other
4609 * inodes.
4610 */
4611 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4612 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4613 sctx->cur_ino, sctx->cur_inode_gen,
4614 cur->name, cur->name_len);
4615 if (ret < 0)
4616 goto out;
4617 if (!ret) {
4618 /*
4619 * If we orphanized any ancestor before, we need
4620 * to recompute the full path for deleted names,
4621 * since any such path was computed before we
4622 * processed any references and orphanized any
4623 * ancestor inode.
4624 */
4625 if (orphanized_ancestor) {
4626 ret = update_ref_path(sctx, cur);
4627 if (ret < 0)
4628 goto out;
4629 }
4630 ret = send_unlink(sctx, cur->full_path);
4631 if (ret < 0)
4632 goto out;
4633 if (is_current_inode_path(sctx, cur->full_path))
4634 fs_path_reset(&sctx->cur_inode_path);
4635 }
4636 ret = dup_ref(cur, &check_dirs);
4637 if (ret < 0)
4638 goto out;
4639 }
4640 /*
4641 * If the inode is still orphan, unlink the orphan. This may
4642 * happen when a previous inode did overwrite the first ref
4643 * of this inode and no new refs were added for the current
4644 * inode. Unlinking does not mean that the inode is deleted in
4645 * all cases. There may still be links to this inode in other
4646 * places.
4647 */
4648 if (is_orphan) {
4649 ret = send_unlink(sctx, valid_path);
4650 if (ret < 0)
4651 goto out;
4652 }
4653 }
4654
4655 /*
4656 * We did collect all parent dirs where cur_inode was once located. We
4657 * now go through all these dirs and check if they are pending for
4658 * deletion and if it's finally possible to perform the rmdir now.
4659 * We also update the inode stats of the parent dirs here.
4660 */
4661 list_for_each_entry(cur, &check_dirs, list) {
4662 /*
4663 * In case we had refs into dirs that were not processed yet,
4664 * we don't need to do the utime and rmdir logic for these dirs.
4665 * The dir will be processed later.
4666 */
4667 if (cur->dir > sctx->cur_ino)
4668 continue;
4669
4670 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4671 if (ret < 0)
4672 goto out;
4673
4674 if (ret == inode_state_did_create ||
4675 ret == inode_state_no_change) {
4676 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4677 if (ret < 0)
4678 goto out;
4679 } else if (ret == inode_state_did_delete &&
4680 cur->dir != last_dir_ino_rm) {
4681 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4682 if (ret < 0)
4683 goto out;
4684 if (ret) {
4685 ret = get_cur_path(sctx, cur->dir,
4686 cur->dir_gen, valid_path);
4687 if (ret < 0)
4688 goto out;
4689 ret = send_rmdir(sctx, valid_path);
4690 if (ret < 0)
4691 goto out;
4692 last_dir_ino_rm = cur->dir;
4693 }
4694 }
4695 }
4696
4697 ret = 0;
4698
4699 out:
4700 __free_recorded_refs(&check_dirs);
4701 free_recorded_refs(sctx);
4702 fs_path_free(valid_path);
4703 return ret;
4704 }
4705
rbtree_ref_comp(const void * k,const struct rb_node * node)4706 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4707 {
4708 const struct recorded_ref *data = k;
4709 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4710 int result;
4711
4712 if (data->dir > ref->dir)
4713 return 1;
4714 if (data->dir < ref->dir)
4715 return -1;
4716 if (data->dir_gen > ref->dir_gen)
4717 return 1;
4718 if (data->dir_gen < ref->dir_gen)
4719 return -1;
4720 if (data->name_len > ref->name_len)
4721 return 1;
4722 if (data->name_len < ref->name_len)
4723 return -1;
4724 result = strcmp(data->name, ref->name);
4725 if (result > 0)
4726 return 1;
4727 if (result < 0)
4728 return -1;
4729 return 0;
4730 }
4731
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4732 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4733 {
4734 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4735
4736 return rbtree_ref_comp(entry, parent) < 0;
4737 }
4738
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4739 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4740 struct fs_path *name, u64 dir, u64 dir_gen,
4741 struct send_ctx *sctx)
4742 {
4743 int ret = 0;
4744 struct fs_path *path = NULL;
4745 struct recorded_ref *ref = NULL;
4746
4747 path = fs_path_alloc();
4748 if (!path) {
4749 ret = -ENOMEM;
4750 goto out;
4751 }
4752
4753 ref = recorded_ref_alloc();
4754 if (!ref) {
4755 ret = -ENOMEM;
4756 goto out;
4757 }
4758
4759 ret = get_cur_path(sctx, dir, dir_gen, path);
4760 if (ret < 0)
4761 goto out;
4762 ret = fs_path_add_path(path, name);
4763 if (ret < 0)
4764 goto out;
4765
4766 ref->dir = dir;
4767 ref->dir_gen = dir_gen;
4768 set_ref_path(ref, path);
4769 list_add_tail(&ref->list, refs);
4770 rb_add(&ref->node, root, rbtree_ref_less);
4771 ref->root = root;
4772 out:
4773 if (ret) {
4774 if (path && (!ref || !ref->full_path))
4775 fs_path_free(path);
4776 recorded_ref_free(ref);
4777 }
4778 return ret;
4779 }
4780
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4781 static int record_new_ref_if_needed(int num, u64 dir, int index,
4782 struct fs_path *name, void *ctx)
4783 {
4784 int ret = 0;
4785 struct send_ctx *sctx = ctx;
4786 struct rb_node *node = NULL;
4787 struct recorded_ref data;
4788 struct recorded_ref *ref;
4789 u64 dir_gen;
4790
4791 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4792 if (ret < 0)
4793 goto out;
4794
4795 data.dir = dir;
4796 data.dir_gen = dir_gen;
4797 set_ref_path(&data, name);
4798 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4799 if (node) {
4800 ref = rb_entry(node, struct recorded_ref, node);
4801 recorded_ref_free(ref);
4802 } else {
4803 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4804 &sctx->new_refs, name, dir, dir_gen,
4805 sctx);
4806 }
4807 out:
4808 return ret;
4809 }
4810
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4811 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4812 struct fs_path *name, void *ctx)
4813 {
4814 int ret = 0;
4815 struct send_ctx *sctx = ctx;
4816 struct rb_node *node = NULL;
4817 struct recorded_ref data;
4818 struct recorded_ref *ref;
4819 u64 dir_gen;
4820
4821 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4822 if (ret < 0)
4823 goto out;
4824
4825 data.dir = dir;
4826 data.dir_gen = dir_gen;
4827 set_ref_path(&data, name);
4828 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4829 if (node) {
4830 ref = rb_entry(node, struct recorded_ref, node);
4831 recorded_ref_free(ref);
4832 } else {
4833 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4834 &sctx->deleted_refs, name, dir,
4835 dir_gen, sctx);
4836 }
4837 out:
4838 return ret;
4839 }
4840
record_new_ref(struct send_ctx * sctx)4841 static int record_new_ref(struct send_ctx *sctx)
4842 {
4843 int ret;
4844
4845 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4846 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4847 if (ret < 0)
4848 goto out;
4849 ret = 0;
4850
4851 out:
4852 return ret;
4853 }
4854
record_deleted_ref(struct send_ctx * sctx)4855 static int record_deleted_ref(struct send_ctx *sctx)
4856 {
4857 int ret;
4858
4859 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4860 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4861 sctx);
4862 if (ret < 0)
4863 goto out;
4864 ret = 0;
4865
4866 out:
4867 return ret;
4868 }
4869
record_changed_ref(struct send_ctx * sctx)4870 static int record_changed_ref(struct send_ctx *sctx)
4871 {
4872 int ret = 0;
4873
4874 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4875 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4876 if (ret < 0)
4877 goto out;
4878 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4879 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4880 if (ret < 0)
4881 goto out;
4882 ret = 0;
4883
4884 out:
4885 return ret;
4886 }
4887
4888 /*
4889 * Record and process all refs at once. Needed when an inode changes the
4890 * generation number, which means that it was deleted and recreated.
4891 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4892 static int process_all_refs(struct send_ctx *sctx,
4893 enum btrfs_compare_tree_result cmd)
4894 {
4895 int ret = 0;
4896 int iter_ret = 0;
4897 struct btrfs_root *root;
4898 struct btrfs_path *path;
4899 struct btrfs_key key;
4900 struct btrfs_key found_key;
4901 iterate_inode_ref_t cb;
4902 int pending_move = 0;
4903
4904 path = alloc_path_for_send();
4905 if (!path)
4906 return -ENOMEM;
4907
4908 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4909 root = sctx->send_root;
4910 cb = record_new_ref_if_needed;
4911 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4912 root = sctx->parent_root;
4913 cb = record_deleted_ref_if_needed;
4914 } else {
4915 btrfs_err(sctx->send_root->fs_info,
4916 "Wrong command %d in process_all_refs", cmd);
4917 ret = -EINVAL;
4918 goto out;
4919 }
4920
4921 key.objectid = sctx->cmp_key->objectid;
4922 key.type = BTRFS_INODE_REF_KEY;
4923 key.offset = 0;
4924 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4925 if (found_key.objectid != key.objectid ||
4926 (found_key.type != BTRFS_INODE_REF_KEY &&
4927 found_key.type != BTRFS_INODE_EXTREF_KEY))
4928 break;
4929
4930 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4931 if (ret < 0)
4932 goto out;
4933 }
4934 /* Catch error found during iteration */
4935 if (iter_ret < 0) {
4936 ret = iter_ret;
4937 goto out;
4938 }
4939 btrfs_release_path(path);
4940
4941 /*
4942 * We don't actually care about pending_move as we are simply
4943 * re-creating this inode and will be rename'ing it into place once we
4944 * rename the parent directory.
4945 */
4946 ret = process_recorded_refs(sctx, &pending_move);
4947 out:
4948 btrfs_free_path(path);
4949 return ret;
4950 }
4951
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4952 static int send_set_xattr(struct send_ctx *sctx,
4953 const char *name, int name_len,
4954 const char *data, int data_len)
4955 {
4956 struct fs_path *path;
4957 int ret;
4958
4959 path = get_cur_inode_path(sctx);
4960 if (IS_ERR(path))
4961 return PTR_ERR(path);
4962
4963 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4964 if (ret < 0)
4965 goto out;
4966
4967 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4968 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4969 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4970
4971 ret = send_cmd(sctx);
4972
4973 tlv_put_failure:
4974 out:
4975 return ret;
4976 }
4977
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4978 static int send_remove_xattr(struct send_ctx *sctx,
4979 struct fs_path *path,
4980 const char *name, int name_len)
4981 {
4982 int ret = 0;
4983
4984 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4985 if (ret < 0)
4986 goto out;
4987
4988 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4989 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4990
4991 ret = send_cmd(sctx);
4992
4993 tlv_put_failure:
4994 out:
4995 return ret;
4996 }
4997
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4998 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4999 const char *name, int name_len, const char *data,
5000 int data_len, void *ctx)
5001 {
5002 struct send_ctx *sctx = ctx;
5003 struct posix_acl_xattr_header dummy_acl;
5004
5005 /* Capabilities are emitted by finish_inode_if_needed */
5006 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
5007 return 0;
5008
5009 /*
5010 * This hack is needed because empty acls are stored as zero byte
5011 * data in xattrs. Problem with that is, that receiving these zero byte
5012 * acls will fail later. To fix this, we send a dummy acl list that
5013 * only contains the version number and no entries.
5014 */
5015 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
5016 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
5017 if (data_len == 0) {
5018 dummy_acl.a_version =
5019 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
5020 data = (char *)&dummy_acl;
5021 data_len = sizeof(dummy_acl);
5022 }
5023 }
5024
5025 return send_set_xattr(sctx, name, name_len, data, data_len);
5026 }
5027
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5028 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
5029 const char *name, int name_len,
5030 const char *data, int data_len, void *ctx)
5031 {
5032 struct send_ctx *sctx = ctx;
5033 struct fs_path *p;
5034
5035 p = get_cur_inode_path(sctx);
5036 if (IS_ERR(p))
5037 return PTR_ERR(p);
5038
5039 return send_remove_xattr(sctx, p, name, name_len);
5040 }
5041
process_new_xattr(struct send_ctx * sctx)5042 static int process_new_xattr(struct send_ctx *sctx)
5043 {
5044 int ret = 0;
5045
5046 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5047 __process_new_xattr, sctx);
5048
5049 return ret;
5050 }
5051
process_deleted_xattr(struct send_ctx * sctx)5052 static int process_deleted_xattr(struct send_ctx *sctx)
5053 {
5054 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5055 __process_deleted_xattr, sctx);
5056 }
5057
5058 struct find_xattr_ctx {
5059 const char *name;
5060 int name_len;
5061 int found_idx;
5062 char *found_data;
5063 int found_data_len;
5064 };
5065
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5066 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5067 int name_len, const char *data, int data_len, void *vctx)
5068 {
5069 struct find_xattr_ctx *ctx = vctx;
5070
5071 if (name_len == ctx->name_len &&
5072 strncmp(name, ctx->name, name_len) == 0) {
5073 ctx->found_idx = num;
5074 ctx->found_data_len = data_len;
5075 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5076 if (!ctx->found_data)
5077 return -ENOMEM;
5078 return 1;
5079 }
5080 return 0;
5081 }
5082
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5083 static int find_xattr(struct btrfs_root *root,
5084 struct btrfs_path *path,
5085 struct btrfs_key *key,
5086 const char *name, int name_len,
5087 char **data, int *data_len)
5088 {
5089 int ret;
5090 struct find_xattr_ctx ctx;
5091
5092 ctx.name = name;
5093 ctx.name_len = name_len;
5094 ctx.found_idx = -1;
5095 ctx.found_data = NULL;
5096 ctx.found_data_len = 0;
5097
5098 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5099 if (ret < 0)
5100 return ret;
5101
5102 if (ctx.found_idx == -1)
5103 return -ENOENT;
5104 if (data) {
5105 *data = ctx.found_data;
5106 *data_len = ctx.found_data_len;
5107 } else {
5108 kfree(ctx.found_data);
5109 }
5110 return ctx.found_idx;
5111 }
5112
5113
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5114 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5115 const char *name, int name_len,
5116 const char *data, int data_len,
5117 void *ctx)
5118 {
5119 int ret;
5120 struct send_ctx *sctx = ctx;
5121 char *found_data = NULL;
5122 int found_data_len = 0;
5123
5124 ret = find_xattr(sctx->parent_root, sctx->right_path,
5125 sctx->cmp_key, name, name_len, &found_data,
5126 &found_data_len);
5127 if (ret == -ENOENT) {
5128 ret = __process_new_xattr(num, di_key, name, name_len, data,
5129 data_len, ctx);
5130 } else if (ret >= 0) {
5131 if (data_len != found_data_len ||
5132 memcmp(data, found_data, data_len)) {
5133 ret = __process_new_xattr(num, di_key, name, name_len,
5134 data, data_len, ctx);
5135 } else {
5136 ret = 0;
5137 }
5138 }
5139
5140 kfree(found_data);
5141 return ret;
5142 }
5143
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5144 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5145 const char *name, int name_len,
5146 const char *data, int data_len,
5147 void *ctx)
5148 {
5149 int ret;
5150 struct send_ctx *sctx = ctx;
5151
5152 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5153 name, name_len, NULL, NULL);
5154 if (ret == -ENOENT)
5155 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5156 data_len, ctx);
5157 else if (ret >= 0)
5158 ret = 0;
5159
5160 return ret;
5161 }
5162
process_changed_xattr(struct send_ctx * sctx)5163 static int process_changed_xattr(struct send_ctx *sctx)
5164 {
5165 int ret = 0;
5166
5167 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5168 __process_changed_new_xattr, sctx);
5169 if (ret < 0)
5170 goto out;
5171 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5172 __process_changed_deleted_xattr, sctx);
5173
5174 out:
5175 return ret;
5176 }
5177
process_all_new_xattrs(struct send_ctx * sctx)5178 static int process_all_new_xattrs(struct send_ctx *sctx)
5179 {
5180 int ret = 0;
5181 int iter_ret = 0;
5182 struct btrfs_root *root;
5183 struct btrfs_path *path;
5184 struct btrfs_key key;
5185 struct btrfs_key found_key;
5186
5187 path = alloc_path_for_send();
5188 if (!path)
5189 return -ENOMEM;
5190
5191 root = sctx->send_root;
5192
5193 key.objectid = sctx->cmp_key->objectid;
5194 key.type = BTRFS_XATTR_ITEM_KEY;
5195 key.offset = 0;
5196 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5197 if (found_key.objectid != key.objectid ||
5198 found_key.type != key.type) {
5199 ret = 0;
5200 break;
5201 }
5202
5203 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5204 if (ret < 0)
5205 break;
5206 }
5207 /* Catch error found during iteration */
5208 if (iter_ret < 0)
5209 ret = iter_ret;
5210
5211 btrfs_free_path(path);
5212 return ret;
5213 }
5214
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5215 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5216 struct fsverity_descriptor *desc)
5217 {
5218 int ret;
5219
5220 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5221 if (ret < 0)
5222 goto out;
5223
5224 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5225 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5226 le8_to_cpu(desc->hash_algorithm));
5227 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5228 1U << le8_to_cpu(desc->log_blocksize));
5229 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5230 le8_to_cpu(desc->salt_size));
5231 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5232 le32_to_cpu(desc->sig_size));
5233
5234 ret = send_cmd(sctx);
5235
5236 tlv_put_failure:
5237 out:
5238 return ret;
5239 }
5240
process_verity(struct send_ctx * sctx)5241 static int process_verity(struct send_ctx *sctx)
5242 {
5243 int ret = 0;
5244 struct inode *inode;
5245 struct fs_path *p;
5246
5247 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5248 if (IS_ERR(inode))
5249 return PTR_ERR(inode);
5250
5251 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5252 if (ret < 0)
5253 goto iput;
5254
5255 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5256 ret = -EMSGSIZE;
5257 goto iput;
5258 }
5259 if (!sctx->verity_descriptor) {
5260 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5261 GFP_KERNEL);
5262 if (!sctx->verity_descriptor) {
5263 ret = -ENOMEM;
5264 goto iput;
5265 }
5266 }
5267
5268 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5269 if (ret < 0)
5270 goto iput;
5271
5272 p = get_cur_inode_path(sctx);
5273 if (IS_ERR(p)) {
5274 ret = PTR_ERR(p);
5275 goto iput;
5276 }
5277
5278 ret = send_verity(sctx, p, sctx->verity_descriptor);
5279 iput:
5280 iput(inode);
5281 return ret;
5282 }
5283
max_send_read_size(const struct send_ctx * sctx)5284 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5285 {
5286 return sctx->send_max_size - SZ_16K;
5287 }
5288
put_data_header(struct send_ctx * sctx,u32 len)5289 static int put_data_header(struct send_ctx *sctx, u32 len)
5290 {
5291 if (WARN_ON_ONCE(sctx->put_data))
5292 return -EINVAL;
5293 sctx->put_data = true;
5294 if (sctx->proto >= 2) {
5295 /*
5296 * Since v2, the data attribute header doesn't include a length,
5297 * it is implicitly to the end of the command.
5298 */
5299 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5300 return -EOVERFLOW;
5301 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5302 sctx->send_size += sizeof(__le16);
5303 } else {
5304 struct btrfs_tlv_header *hdr;
5305
5306 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5307 return -EOVERFLOW;
5308 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5309 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5310 put_unaligned_le16(len, &hdr->tlv_len);
5311 sctx->send_size += sizeof(*hdr);
5312 }
5313 return 0;
5314 }
5315
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5316 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5317 {
5318 struct btrfs_root *root = sctx->send_root;
5319 struct btrfs_fs_info *fs_info = root->fs_info;
5320 struct folio *folio;
5321 pgoff_t index = offset >> PAGE_SHIFT;
5322 pgoff_t last_index;
5323 unsigned pg_offset = offset_in_page(offset);
5324 struct address_space *mapping = sctx->cur_inode->i_mapping;
5325 int ret;
5326
5327 ret = put_data_header(sctx, len);
5328 if (ret)
5329 return ret;
5330
5331 last_index = (offset + len - 1) >> PAGE_SHIFT;
5332
5333 while (index <= last_index) {
5334 unsigned cur_len = min_t(unsigned, len,
5335 PAGE_SIZE - pg_offset);
5336
5337 again:
5338 folio = filemap_lock_folio(mapping, index);
5339 if (IS_ERR(folio)) {
5340 page_cache_sync_readahead(mapping,
5341 &sctx->ra, NULL, index,
5342 last_index + 1 - index);
5343
5344 folio = filemap_grab_folio(mapping, index);
5345 if (IS_ERR(folio)) {
5346 ret = PTR_ERR(folio);
5347 break;
5348 }
5349 }
5350
5351 WARN_ON(folio_order(folio));
5352
5353 if (folio_test_readahead(folio))
5354 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5355 last_index + 1 - index);
5356
5357 if (!folio_test_uptodate(folio)) {
5358 btrfs_read_folio(NULL, folio);
5359 folio_lock(folio);
5360 if (!folio_test_uptodate(folio)) {
5361 folio_unlock(folio);
5362 btrfs_err(fs_info,
5363 "send: IO error at offset %llu for inode %llu root %llu",
5364 folio_pos(folio), sctx->cur_ino,
5365 btrfs_root_id(sctx->send_root));
5366 folio_put(folio);
5367 ret = -EIO;
5368 break;
5369 }
5370 if (folio->mapping != mapping) {
5371 folio_unlock(folio);
5372 folio_put(folio);
5373 goto again;
5374 }
5375 }
5376
5377 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5378 pg_offset, cur_len);
5379 folio_unlock(folio);
5380 folio_put(folio);
5381 index++;
5382 pg_offset = 0;
5383 len -= cur_len;
5384 sctx->send_size += cur_len;
5385 }
5386
5387 return ret;
5388 }
5389
5390 /*
5391 * Read some bytes from the current inode/file and send a write command to
5392 * user space.
5393 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5394 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5395 {
5396 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5397 int ret = 0;
5398 struct fs_path *p;
5399
5400 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5401
5402 p = get_cur_inode_path(sctx);
5403 if (IS_ERR(p))
5404 return PTR_ERR(p);
5405
5406 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5407 if (ret < 0)
5408 return ret;
5409
5410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5411 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5412 ret = put_file_data(sctx, offset, len);
5413 if (ret < 0)
5414 return ret;
5415
5416 ret = send_cmd(sctx);
5417
5418 tlv_put_failure:
5419 return ret;
5420 }
5421
5422 /*
5423 * Send a clone command to user space.
5424 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5425 static int send_clone(struct send_ctx *sctx,
5426 u64 offset, u32 len,
5427 struct clone_root *clone_root)
5428 {
5429 int ret = 0;
5430 struct fs_path *p;
5431 struct fs_path *cur_inode_path;
5432 u64 gen;
5433
5434 btrfs_debug(sctx->send_root->fs_info,
5435 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5436 offset, len, btrfs_root_id(clone_root->root),
5437 clone_root->ino, clone_root->offset);
5438
5439 cur_inode_path = get_cur_inode_path(sctx);
5440 if (IS_ERR(cur_inode_path))
5441 return PTR_ERR(cur_inode_path);
5442
5443 p = fs_path_alloc();
5444 if (!p)
5445 return -ENOMEM;
5446
5447 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5448 if (ret < 0)
5449 goto out;
5450
5451 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5452 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5453 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5454
5455 if (clone_root->root == sctx->send_root) {
5456 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5457 if (ret < 0)
5458 goto out;
5459 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5460 } else {
5461 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5462 }
5463 if (ret < 0)
5464 goto out;
5465
5466 /*
5467 * If the parent we're using has a received_uuid set then use that as
5468 * our clone source as that is what we will look for when doing a
5469 * receive.
5470 *
5471 * This covers the case that we create a snapshot off of a received
5472 * subvolume and then use that as the parent and try to receive on a
5473 * different host.
5474 */
5475 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5476 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5477 clone_root->root->root_item.received_uuid);
5478 else
5479 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5480 clone_root->root->root_item.uuid);
5481 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5482 btrfs_root_ctransid(&clone_root->root->root_item));
5483 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5484 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5485 clone_root->offset);
5486
5487 ret = send_cmd(sctx);
5488
5489 tlv_put_failure:
5490 out:
5491 fs_path_free(p);
5492 return ret;
5493 }
5494
5495 /*
5496 * Send an update extent command to user space.
5497 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5498 static int send_update_extent(struct send_ctx *sctx,
5499 u64 offset, u32 len)
5500 {
5501 int ret = 0;
5502 struct fs_path *p;
5503
5504 p = get_cur_inode_path(sctx);
5505 if (IS_ERR(p))
5506 return PTR_ERR(p);
5507
5508 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5509 if (ret < 0)
5510 return ret;
5511
5512 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5513 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5514 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5515
5516 ret = send_cmd(sctx);
5517
5518 tlv_put_failure:
5519 return ret;
5520 }
5521
send_fallocate(struct send_ctx * sctx,u32 mode,u64 offset,u64 len)5522 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len)
5523 {
5524 struct fs_path *path;
5525 int ret;
5526
5527 path = get_cur_inode_path(sctx);
5528 if (IS_ERR(path))
5529 return PTR_ERR(path);
5530
5531 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE);
5532 if (ret < 0)
5533 return ret;
5534
5535 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5536 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode);
5537 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5538 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5539
5540 ret = send_cmd(sctx);
5541
5542 tlv_put_failure:
5543 return ret;
5544 }
5545
send_hole(struct send_ctx * sctx,u64 end)5546 static int send_hole(struct send_ctx *sctx, u64 end)
5547 {
5548 struct fs_path *p = NULL;
5549 u64 read_size = max_send_read_size(sctx);
5550 u64 offset = sctx->cur_inode_last_extent;
5551 int ret = 0;
5552
5553 /*
5554 * Starting with send stream v2 we have fallocate and can use it to
5555 * punch holes instead of sending writes full of zeroes.
5556 */
5557 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE))
5558 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
5559 offset, end - offset);
5560
5561 /*
5562 * A hole that starts at EOF or beyond it. Since we do not yet support
5563 * fallocate (for extent preallocation and hole punching), sending a
5564 * write of zeroes starting at EOF or beyond would later require issuing
5565 * a truncate operation which would undo the write and achieve nothing.
5566 */
5567 if (offset >= sctx->cur_inode_size)
5568 return 0;
5569
5570 /*
5571 * Don't go beyond the inode's i_size due to prealloc extents that start
5572 * after the i_size.
5573 */
5574 end = min_t(u64, end, sctx->cur_inode_size);
5575
5576 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5577 return send_update_extent(sctx, offset, end - offset);
5578
5579 p = get_cur_inode_path(sctx);
5580 if (IS_ERR(p))
5581 return PTR_ERR(p);
5582
5583 while (offset < end) {
5584 u64 len = min(end - offset, read_size);
5585
5586 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5587 if (ret < 0)
5588 break;
5589 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5590 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5591 ret = put_data_header(sctx, len);
5592 if (ret < 0)
5593 break;
5594 memset(sctx->send_buf + sctx->send_size, 0, len);
5595 sctx->send_size += len;
5596 ret = send_cmd(sctx);
5597 if (ret < 0)
5598 break;
5599 offset += len;
5600 }
5601 sctx->cur_inode_next_write_offset = offset;
5602 tlv_put_failure:
5603 return ret;
5604 }
5605
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5606 static int send_encoded_inline_extent(struct send_ctx *sctx,
5607 struct btrfs_path *path, u64 offset,
5608 u64 len)
5609 {
5610 struct btrfs_root *root = sctx->send_root;
5611 struct btrfs_fs_info *fs_info = root->fs_info;
5612 struct inode *inode;
5613 struct fs_path *fspath;
5614 struct extent_buffer *leaf = path->nodes[0];
5615 struct btrfs_key key;
5616 struct btrfs_file_extent_item *ei;
5617 u64 ram_bytes;
5618 size_t inline_size;
5619 int ret;
5620
5621 inode = btrfs_iget(sctx->cur_ino, root);
5622 if (IS_ERR(inode))
5623 return PTR_ERR(inode);
5624
5625 fspath = get_cur_inode_path(sctx);
5626 if (IS_ERR(fspath)) {
5627 ret = PTR_ERR(fspath);
5628 goto out;
5629 }
5630
5631 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5632 if (ret < 0)
5633 goto out;
5634
5635 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5636 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5637 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5638 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5639
5640 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5641 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5642 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5643 min(key.offset + ram_bytes - offset, len));
5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5646 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5647 btrfs_file_extent_compression(leaf, ei));
5648 if (ret < 0)
5649 goto out;
5650 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5651
5652 ret = put_data_header(sctx, inline_size);
5653 if (ret < 0)
5654 goto out;
5655 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5656 btrfs_file_extent_inline_start(ei), inline_size);
5657 sctx->send_size += inline_size;
5658
5659 ret = send_cmd(sctx);
5660
5661 tlv_put_failure:
5662 out:
5663 iput(inode);
5664 return ret;
5665 }
5666
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5667 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5668 u64 offset, u64 len)
5669 {
5670 struct btrfs_root *root = sctx->send_root;
5671 struct btrfs_fs_info *fs_info = root->fs_info;
5672 struct inode *inode;
5673 struct fs_path *fspath;
5674 struct extent_buffer *leaf = path->nodes[0];
5675 struct btrfs_key key;
5676 struct btrfs_file_extent_item *ei;
5677 u64 disk_bytenr, disk_num_bytes;
5678 u32 data_offset;
5679 struct btrfs_cmd_header *hdr;
5680 u32 crc;
5681 int ret;
5682
5683 inode = btrfs_iget(sctx->cur_ino, root);
5684 if (IS_ERR(inode))
5685 return PTR_ERR(inode);
5686
5687 fspath = get_cur_inode_path(sctx);
5688 if (IS_ERR(fspath)) {
5689 ret = PTR_ERR(fspath);
5690 goto out;
5691 }
5692
5693 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5694 if (ret < 0)
5695 goto out;
5696
5697 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5698 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5699 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5700 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5701
5702 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5703 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5704 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5705 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5706 len));
5707 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5708 btrfs_file_extent_ram_bytes(leaf, ei));
5709 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5710 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5711 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5712 btrfs_file_extent_compression(leaf, ei));
5713 if (ret < 0)
5714 goto out;
5715 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5716 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5717
5718 ret = put_data_header(sctx, disk_num_bytes);
5719 if (ret < 0)
5720 goto out;
5721
5722 /*
5723 * We want to do I/O directly into the send buffer, so get the next page
5724 * boundary in the send buffer. This means that there may be a gap
5725 * between the beginning of the command and the file data.
5726 */
5727 data_offset = PAGE_ALIGN(sctx->send_size);
5728 if (data_offset > sctx->send_max_size ||
5729 sctx->send_max_size - data_offset < disk_num_bytes) {
5730 ret = -EOVERFLOW;
5731 goto out;
5732 }
5733
5734 /*
5735 * Note that send_buf is a mapping of send_buf_pages, so this is really
5736 * reading into send_buf.
5737 */
5738 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode),
5739 disk_bytenr, disk_num_bytes,
5740 sctx->send_buf_pages +
5741 (data_offset >> PAGE_SHIFT));
5742 if (ret)
5743 goto out;
5744
5745 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5746 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5747 hdr->crc = 0;
5748 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5749 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5750 hdr->crc = cpu_to_le32(crc);
5751
5752 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5753 &sctx->send_off);
5754 if (!ret) {
5755 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5756 disk_num_bytes, &sctx->send_off);
5757 }
5758 sctx->send_size = 0;
5759 sctx->put_data = false;
5760
5761 tlv_put_failure:
5762 out:
5763 iput(inode);
5764 return ret;
5765 }
5766
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5767 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5768 const u64 offset, const u64 len)
5769 {
5770 const u64 end = offset + len;
5771 struct extent_buffer *leaf = path->nodes[0];
5772 struct btrfs_file_extent_item *ei;
5773 u64 read_size = max_send_read_size(sctx);
5774 u64 sent = 0;
5775
5776 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5777 return send_update_extent(sctx, offset, len);
5778
5779 ei = btrfs_item_ptr(leaf, path->slots[0],
5780 struct btrfs_file_extent_item);
5781 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5782 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5783 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5784 BTRFS_FILE_EXTENT_INLINE);
5785
5786 /*
5787 * Send the compressed extent unless the compressed data is
5788 * larger than the decompressed data. This can happen if we're
5789 * not sending the entire extent, either because it has been
5790 * partially overwritten/truncated or because this is a part of
5791 * the extent that we couldn't clone in clone_range().
5792 */
5793 if (is_inline &&
5794 btrfs_file_extent_inline_item_len(leaf,
5795 path->slots[0]) <= len) {
5796 return send_encoded_inline_extent(sctx, path, offset,
5797 len);
5798 } else if (!is_inline &&
5799 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5800 return send_encoded_extent(sctx, path, offset, len);
5801 }
5802 }
5803
5804 if (sctx->cur_inode == NULL) {
5805 struct btrfs_root *root = sctx->send_root;
5806
5807 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5808 if (IS_ERR(sctx->cur_inode)) {
5809 int err = PTR_ERR(sctx->cur_inode);
5810
5811 sctx->cur_inode = NULL;
5812 return err;
5813 }
5814 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5815 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5816
5817 /*
5818 * It's very likely there are no pages from this inode in the page
5819 * cache, so after reading extents and sending their data, we clean
5820 * the page cache to avoid trashing the page cache (adding pressure
5821 * to the page cache and forcing eviction of other data more useful
5822 * for applications).
5823 *
5824 * We decide if we should clean the page cache simply by checking
5825 * if the inode's mapping nrpages is 0 when we first open it, and
5826 * not by using something like filemap_range_has_page() before
5827 * reading an extent because when we ask the readahead code to
5828 * read a given file range, it may (and almost always does) read
5829 * pages from beyond that range (see the documentation for
5830 * page_cache_sync_readahead()), so it would not be reliable,
5831 * because after reading the first extent future calls to
5832 * filemap_range_has_page() would return true because the readahead
5833 * on the previous extent resulted in reading pages of the current
5834 * extent as well.
5835 */
5836 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5837 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5838 }
5839
5840 while (sent < len) {
5841 u64 size = min(len - sent, read_size);
5842 int ret;
5843
5844 ret = send_write(sctx, offset + sent, size);
5845 if (ret < 0)
5846 return ret;
5847 sent += size;
5848 }
5849
5850 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5851 /*
5852 * Always operate only on ranges that are a multiple of the page
5853 * size. This is not only to prevent zeroing parts of a page in
5854 * the case of subpage sector size, but also to guarantee we evict
5855 * pages, as passing a range that is smaller than page size does
5856 * not evict the respective page (only zeroes part of its content).
5857 *
5858 * Always start from the end offset of the last range cleared.
5859 * This is because the readahead code may (and very often does)
5860 * reads pages beyond the range we request for readahead. So if
5861 * we have an extent layout like this:
5862 *
5863 * [ extent A ] [ extent B ] [ extent C ]
5864 *
5865 * When we ask page_cache_sync_readahead() to read extent A, it
5866 * may also trigger reads for pages of extent B. If we are doing
5867 * an incremental send and extent B has not changed between the
5868 * parent and send snapshots, some or all of its pages may end
5869 * up being read and placed in the page cache. So when truncating
5870 * the page cache we always start from the end offset of the
5871 * previously processed extent up to the end of the current
5872 * extent.
5873 */
5874 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5875 sctx->page_cache_clear_start,
5876 end - 1);
5877 sctx->page_cache_clear_start = end;
5878 }
5879
5880 return 0;
5881 }
5882
5883 /*
5884 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5885 * found, call send_set_xattr function to emit it.
5886 *
5887 * Return 0 if there isn't a capability, or when the capability was emitted
5888 * successfully, or < 0 if an error occurred.
5889 */
send_capabilities(struct send_ctx * sctx)5890 static int send_capabilities(struct send_ctx *sctx)
5891 {
5892 struct btrfs_path *path;
5893 struct btrfs_dir_item *di;
5894 struct extent_buffer *leaf;
5895 unsigned long data_ptr;
5896 char *buf = NULL;
5897 int buf_len;
5898 int ret = 0;
5899
5900 path = alloc_path_for_send();
5901 if (!path)
5902 return -ENOMEM;
5903
5904 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5905 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5906 if (!di) {
5907 /* There is no xattr for this inode */
5908 goto out;
5909 } else if (IS_ERR(di)) {
5910 ret = PTR_ERR(di);
5911 goto out;
5912 }
5913
5914 leaf = path->nodes[0];
5915 buf_len = btrfs_dir_data_len(leaf, di);
5916
5917 buf = kmalloc(buf_len, GFP_KERNEL);
5918 if (!buf) {
5919 ret = -ENOMEM;
5920 goto out;
5921 }
5922
5923 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5924 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5925
5926 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5927 strlen(XATTR_NAME_CAPS), buf, buf_len);
5928 out:
5929 kfree(buf);
5930 btrfs_free_path(path);
5931 return ret;
5932 }
5933
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5934 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5935 struct clone_root *clone_root, const u64 disk_byte,
5936 u64 data_offset, u64 offset, u64 len)
5937 {
5938 struct btrfs_path *path;
5939 struct btrfs_key key;
5940 int ret;
5941 struct btrfs_inode_info info;
5942 u64 clone_src_i_size = 0;
5943
5944 /*
5945 * Prevent cloning from a zero offset with a length matching the sector
5946 * size because in some scenarios this will make the receiver fail.
5947 *
5948 * For example, if in the source filesystem the extent at offset 0
5949 * has a length of sectorsize and it was written using direct IO, then
5950 * it can never be an inline extent (even if compression is enabled).
5951 * Then this extent can be cloned in the original filesystem to a non
5952 * zero file offset, but it may not be possible to clone in the
5953 * destination filesystem because it can be inlined due to compression
5954 * on the destination filesystem (as the receiver's write operations are
5955 * always done using buffered IO). The same happens when the original
5956 * filesystem does not have compression enabled but the destination
5957 * filesystem has.
5958 */
5959 if (clone_root->offset == 0 &&
5960 len == sctx->send_root->fs_info->sectorsize)
5961 return send_extent_data(sctx, dst_path, offset, len);
5962
5963 path = alloc_path_for_send();
5964 if (!path)
5965 return -ENOMEM;
5966
5967 /*
5968 * There are inodes that have extents that lie behind its i_size. Don't
5969 * accept clones from these extents.
5970 */
5971 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5972 btrfs_release_path(path);
5973 if (ret < 0)
5974 goto out;
5975 clone_src_i_size = info.size;
5976
5977 /*
5978 * We can't send a clone operation for the entire range if we find
5979 * extent items in the respective range in the source file that
5980 * refer to different extents or if we find holes.
5981 * So check for that and do a mix of clone and regular write/copy
5982 * operations if needed.
5983 *
5984 * Example:
5985 *
5986 * mkfs.btrfs -f /dev/sda
5987 * mount /dev/sda /mnt
5988 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5989 * cp --reflink=always /mnt/foo /mnt/bar
5990 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5991 * btrfs subvolume snapshot -r /mnt /mnt/snap
5992 *
5993 * If when we send the snapshot and we are processing file bar (which
5994 * has a higher inode number than foo) we blindly send a clone operation
5995 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5996 * a file bar that matches the content of file foo - iow, doesn't match
5997 * the content from bar in the original filesystem.
5998 */
5999 key.objectid = clone_root->ino;
6000 key.type = BTRFS_EXTENT_DATA_KEY;
6001 key.offset = clone_root->offset;
6002 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
6003 if (ret < 0)
6004 goto out;
6005 if (ret > 0 && path->slots[0] > 0) {
6006 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
6007 if (key.objectid == clone_root->ino &&
6008 key.type == BTRFS_EXTENT_DATA_KEY)
6009 path->slots[0]--;
6010 }
6011
6012 while (true) {
6013 struct extent_buffer *leaf = path->nodes[0];
6014 int slot = path->slots[0];
6015 struct btrfs_file_extent_item *ei;
6016 u8 type;
6017 u64 ext_len;
6018 u64 clone_len;
6019 u64 clone_data_offset;
6020 bool crossed_src_i_size = false;
6021
6022 if (slot >= btrfs_header_nritems(leaf)) {
6023 ret = btrfs_next_leaf(clone_root->root, path);
6024 if (ret < 0)
6025 goto out;
6026 else if (ret > 0)
6027 break;
6028 continue;
6029 }
6030
6031 btrfs_item_key_to_cpu(leaf, &key, slot);
6032
6033 /*
6034 * We might have an implicit trailing hole (NO_HOLES feature
6035 * enabled). We deal with it after leaving this loop.
6036 */
6037 if (key.objectid != clone_root->ino ||
6038 key.type != BTRFS_EXTENT_DATA_KEY)
6039 break;
6040
6041 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6042 type = btrfs_file_extent_type(leaf, ei);
6043 if (type == BTRFS_FILE_EXTENT_INLINE) {
6044 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
6045 ext_len = PAGE_ALIGN(ext_len);
6046 } else {
6047 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
6048 }
6049
6050 if (key.offset + ext_len <= clone_root->offset)
6051 goto next;
6052
6053 if (key.offset > clone_root->offset) {
6054 /* Implicit hole, NO_HOLES feature enabled. */
6055 u64 hole_len = key.offset - clone_root->offset;
6056
6057 if (hole_len > len)
6058 hole_len = len;
6059 ret = send_extent_data(sctx, dst_path, offset,
6060 hole_len);
6061 if (ret < 0)
6062 goto out;
6063
6064 len -= hole_len;
6065 if (len == 0)
6066 break;
6067 offset += hole_len;
6068 clone_root->offset += hole_len;
6069 data_offset += hole_len;
6070 }
6071
6072 if (key.offset >= clone_root->offset + len)
6073 break;
6074
6075 if (key.offset >= clone_src_i_size)
6076 break;
6077
6078 if (key.offset + ext_len > clone_src_i_size) {
6079 ext_len = clone_src_i_size - key.offset;
6080 crossed_src_i_size = true;
6081 }
6082
6083 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6084 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6085 clone_root->offset = key.offset;
6086 if (clone_data_offset < data_offset &&
6087 clone_data_offset + ext_len > data_offset) {
6088 u64 extent_offset;
6089
6090 extent_offset = data_offset - clone_data_offset;
6091 ext_len -= extent_offset;
6092 clone_data_offset += extent_offset;
6093 clone_root->offset += extent_offset;
6094 }
6095 }
6096
6097 clone_len = min_t(u64, ext_len, len);
6098
6099 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6100 clone_data_offset == data_offset) {
6101 const u64 src_end = clone_root->offset + clone_len;
6102 const u64 sectorsize = SZ_64K;
6103
6104 /*
6105 * We can't clone the last block, when its size is not
6106 * sector size aligned, into the middle of a file. If we
6107 * do so, the receiver will get a failure (-EINVAL) when
6108 * trying to clone or will silently corrupt the data in
6109 * the destination file if it's on a kernel without the
6110 * fix introduced by commit ac765f83f1397646
6111 * ("Btrfs: fix data corruption due to cloning of eof
6112 * block).
6113 *
6114 * So issue a clone of the aligned down range plus a
6115 * regular write for the eof block, if we hit that case.
6116 *
6117 * Also, we use the maximum possible sector size, 64K,
6118 * because we don't know what's the sector size of the
6119 * filesystem that receives the stream, so we have to
6120 * assume the largest possible sector size.
6121 */
6122 if (src_end == clone_src_i_size &&
6123 !IS_ALIGNED(src_end, sectorsize) &&
6124 offset + clone_len < sctx->cur_inode_size) {
6125 u64 slen;
6126
6127 slen = ALIGN_DOWN(src_end - clone_root->offset,
6128 sectorsize);
6129 if (slen > 0) {
6130 ret = send_clone(sctx, offset, slen,
6131 clone_root);
6132 if (ret < 0)
6133 goto out;
6134 }
6135 ret = send_extent_data(sctx, dst_path,
6136 offset + slen,
6137 clone_len - slen);
6138 } else {
6139 ret = send_clone(sctx, offset, clone_len,
6140 clone_root);
6141 }
6142 } else if (crossed_src_i_size && clone_len < len) {
6143 /*
6144 * If we are at i_size of the clone source inode and we
6145 * can not clone from it, terminate the loop. This is
6146 * to avoid sending two write operations, one with a
6147 * length matching clone_len and the final one after
6148 * this loop with a length of len - clone_len.
6149 *
6150 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6151 * was passed to the send ioctl), this helps avoid
6152 * sending an encoded write for an offset that is not
6153 * sector size aligned, in case the i_size of the source
6154 * inode is not sector size aligned. That will make the
6155 * receiver fallback to decompression of the data and
6156 * writing it using regular buffered IO, therefore while
6157 * not incorrect, it's not optimal due decompression and
6158 * possible re-compression at the receiver.
6159 */
6160 break;
6161 } else {
6162 ret = send_extent_data(sctx, dst_path, offset,
6163 clone_len);
6164 }
6165
6166 if (ret < 0)
6167 goto out;
6168
6169 len -= clone_len;
6170 if (len == 0)
6171 break;
6172 offset += clone_len;
6173 clone_root->offset += clone_len;
6174
6175 /*
6176 * If we are cloning from the file we are currently processing,
6177 * and using the send root as the clone root, we must stop once
6178 * the current clone offset reaches the current eof of the file
6179 * at the receiver, otherwise we would issue an invalid clone
6180 * operation (source range going beyond eof) and cause the
6181 * receiver to fail. So if we reach the current eof, bail out
6182 * and fallback to a regular write.
6183 */
6184 if (clone_root->root == sctx->send_root &&
6185 clone_root->ino == sctx->cur_ino &&
6186 clone_root->offset >= sctx->cur_inode_next_write_offset)
6187 break;
6188
6189 data_offset += clone_len;
6190 next:
6191 path->slots[0]++;
6192 }
6193
6194 if (len > 0)
6195 ret = send_extent_data(sctx, dst_path, offset, len);
6196 else
6197 ret = 0;
6198 out:
6199 btrfs_free_path(path);
6200 return ret;
6201 }
6202
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6203 static int send_write_or_clone(struct send_ctx *sctx,
6204 struct btrfs_path *path,
6205 struct btrfs_key *key,
6206 struct clone_root *clone_root)
6207 {
6208 int ret = 0;
6209 u64 offset = key->offset;
6210 u64 end;
6211 u64 bs = sctx->send_root->fs_info->sectorsize;
6212 struct btrfs_file_extent_item *ei;
6213 u64 disk_byte;
6214 u64 data_offset;
6215 u64 num_bytes;
6216 struct btrfs_inode_info info = { 0 };
6217
6218 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6219 if (offset >= end)
6220 return 0;
6221
6222 num_bytes = end - offset;
6223
6224 if (!clone_root)
6225 goto write_data;
6226
6227 if (IS_ALIGNED(end, bs))
6228 goto clone_data;
6229
6230 /*
6231 * If the extent end is not aligned, we can clone if the extent ends at
6232 * the i_size of the inode and the clone range ends at the i_size of the
6233 * source inode, otherwise the clone operation fails with -EINVAL.
6234 */
6235 if (end != sctx->cur_inode_size)
6236 goto write_data;
6237
6238 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6239 if (ret < 0)
6240 return ret;
6241
6242 if (clone_root->offset + num_bytes == info.size) {
6243 /*
6244 * The final size of our file matches the end offset, but it may
6245 * be that its current size is larger, so we have to truncate it
6246 * to any value between the start offset of the range and the
6247 * final i_size, otherwise the clone operation is invalid
6248 * because it's unaligned and it ends before the current EOF.
6249 * We do this truncate to the final i_size when we finish
6250 * processing the inode, but it's too late by then. And here we
6251 * truncate to the start offset of the range because it's always
6252 * sector size aligned while if it were the final i_size it
6253 * would result in dirtying part of a page, filling part of a
6254 * page with zeroes and then having the clone operation at the
6255 * receiver trigger IO and wait for it due to the dirty page.
6256 */
6257 if (sctx->parent_root != NULL) {
6258 ret = send_truncate(sctx, sctx->cur_ino,
6259 sctx->cur_inode_gen, offset);
6260 if (ret < 0)
6261 return ret;
6262 }
6263 goto clone_data;
6264 }
6265
6266 write_data:
6267 ret = send_extent_data(sctx, path, offset, num_bytes);
6268 sctx->cur_inode_next_write_offset = end;
6269 return ret;
6270
6271 clone_data:
6272 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6273 struct btrfs_file_extent_item);
6274 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6275 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6276 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6277 num_bytes);
6278 sctx->cur_inode_next_write_offset = end;
6279 return ret;
6280 }
6281
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6282 static int is_extent_unchanged(struct send_ctx *sctx,
6283 struct btrfs_path *left_path,
6284 struct btrfs_key *ekey)
6285 {
6286 int ret = 0;
6287 struct btrfs_key key;
6288 struct btrfs_path *path = NULL;
6289 struct extent_buffer *eb;
6290 int slot;
6291 struct btrfs_key found_key;
6292 struct btrfs_file_extent_item *ei;
6293 u64 left_disknr;
6294 u64 right_disknr;
6295 u64 left_offset;
6296 u64 right_offset;
6297 u64 left_offset_fixed;
6298 u64 left_len;
6299 u64 right_len;
6300 u64 left_gen;
6301 u64 right_gen;
6302 u8 left_type;
6303 u8 right_type;
6304
6305 path = alloc_path_for_send();
6306 if (!path)
6307 return -ENOMEM;
6308
6309 eb = left_path->nodes[0];
6310 slot = left_path->slots[0];
6311 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6312 left_type = btrfs_file_extent_type(eb, ei);
6313
6314 if (left_type != BTRFS_FILE_EXTENT_REG) {
6315 ret = 0;
6316 goto out;
6317 }
6318 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6319 left_len = btrfs_file_extent_num_bytes(eb, ei);
6320 left_offset = btrfs_file_extent_offset(eb, ei);
6321 left_gen = btrfs_file_extent_generation(eb, ei);
6322
6323 /*
6324 * Following comments will refer to these graphics. L is the left
6325 * extents which we are checking at the moment. 1-8 are the right
6326 * extents that we iterate.
6327 *
6328 * |-----L-----|
6329 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6330 *
6331 * |-----L-----|
6332 * |--1--|-2b-|...(same as above)
6333 *
6334 * Alternative situation. Happens on files where extents got split.
6335 * |-----L-----|
6336 * |-----------7-----------|-6-|
6337 *
6338 * Alternative situation. Happens on files which got larger.
6339 * |-----L-----|
6340 * |-8-|
6341 * Nothing follows after 8.
6342 */
6343
6344 key.objectid = ekey->objectid;
6345 key.type = BTRFS_EXTENT_DATA_KEY;
6346 key.offset = ekey->offset;
6347 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6348 if (ret < 0)
6349 goto out;
6350 if (ret) {
6351 ret = 0;
6352 goto out;
6353 }
6354
6355 /*
6356 * Handle special case where the right side has no extents at all.
6357 */
6358 eb = path->nodes[0];
6359 slot = path->slots[0];
6360 btrfs_item_key_to_cpu(eb, &found_key, slot);
6361 if (found_key.objectid != key.objectid ||
6362 found_key.type != key.type) {
6363 /* If we're a hole then just pretend nothing changed */
6364 ret = (left_disknr) ? 0 : 1;
6365 goto out;
6366 }
6367
6368 /*
6369 * We're now on 2a, 2b or 7.
6370 */
6371 key = found_key;
6372 while (key.offset < ekey->offset + left_len) {
6373 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6374 right_type = btrfs_file_extent_type(eb, ei);
6375 if (right_type != BTRFS_FILE_EXTENT_REG &&
6376 right_type != BTRFS_FILE_EXTENT_INLINE) {
6377 ret = 0;
6378 goto out;
6379 }
6380
6381 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6382 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6383 right_len = PAGE_ALIGN(right_len);
6384 } else {
6385 right_len = btrfs_file_extent_num_bytes(eb, ei);
6386 }
6387
6388 /*
6389 * Are we at extent 8? If yes, we know the extent is changed.
6390 * This may only happen on the first iteration.
6391 */
6392 if (found_key.offset + right_len <= ekey->offset) {
6393 /* If we're a hole just pretend nothing changed */
6394 ret = (left_disknr) ? 0 : 1;
6395 goto out;
6396 }
6397
6398 /*
6399 * We just wanted to see if when we have an inline extent, what
6400 * follows it is a regular extent (wanted to check the above
6401 * condition for inline extents too). This should normally not
6402 * happen but it's possible for example when we have an inline
6403 * compressed extent representing data with a size matching
6404 * the page size (currently the same as sector size).
6405 */
6406 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6407 ret = 0;
6408 goto out;
6409 }
6410
6411 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6412 right_offset = btrfs_file_extent_offset(eb, ei);
6413 right_gen = btrfs_file_extent_generation(eb, ei);
6414
6415 left_offset_fixed = left_offset;
6416 if (key.offset < ekey->offset) {
6417 /* Fix the right offset for 2a and 7. */
6418 right_offset += ekey->offset - key.offset;
6419 } else {
6420 /* Fix the left offset for all behind 2a and 2b */
6421 left_offset_fixed += key.offset - ekey->offset;
6422 }
6423
6424 /*
6425 * Check if we have the same extent.
6426 */
6427 if (left_disknr != right_disknr ||
6428 left_offset_fixed != right_offset ||
6429 left_gen != right_gen) {
6430 ret = 0;
6431 goto out;
6432 }
6433
6434 /*
6435 * Go to the next extent.
6436 */
6437 ret = btrfs_next_item(sctx->parent_root, path);
6438 if (ret < 0)
6439 goto out;
6440 if (!ret) {
6441 eb = path->nodes[0];
6442 slot = path->slots[0];
6443 btrfs_item_key_to_cpu(eb, &found_key, slot);
6444 }
6445 if (ret || found_key.objectid != key.objectid ||
6446 found_key.type != key.type) {
6447 key.offset += right_len;
6448 break;
6449 }
6450 if (found_key.offset != key.offset + right_len) {
6451 ret = 0;
6452 goto out;
6453 }
6454 key = found_key;
6455 }
6456
6457 /*
6458 * We're now behind the left extent (treat as unchanged) or at the end
6459 * of the right side (treat as changed).
6460 */
6461 if (key.offset >= ekey->offset + left_len)
6462 ret = 1;
6463 else
6464 ret = 0;
6465
6466
6467 out:
6468 btrfs_free_path(path);
6469 return ret;
6470 }
6471
get_last_extent(struct send_ctx * sctx,u64 offset)6472 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6473 {
6474 struct btrfs_path *path;
6475 struct btrfs_root *root = sctx->send_root;
6476 struct btrfs_key key;
6477 int ret;
6478
6479 path = alloc_path_for_send();
6480 if (!path)
6481 return -ENOMEM;
6482
6483 sctx->cur_inode_last_extent = 0;
6484
6485 key.objectid = sctx->cur_ino;
6486 key.type = BTRFS_EXTENT_DATA_KEY;
6487 key.offset = offset;
6488 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6489 if (ret < 0)
6490 goto out;
6491 ret = 0;
6492 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6493 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6494 goto out;
6495
6496 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6497 out:
6498 btrfs_free_path(path);
6499 return ret;
6500 }
6501
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6502 static int range_is_hole_in_parent(struct send_ctx *sctx,
6503 const u64 start,
6504 const u64 end)
6505 {
6506 struct btrfs_path *path;
6507 struct btrfs_key key;
6508 struct btrfs_root *root = sctx->parent_root;
6509 u64 search_start = start;
6510 int ret;
6511
6512 path = alloc_path_for_send();
6513 if (!path)
6514 return -ENOMEM;
6515
6516 key.objectid = sctx->cur_ino;
6517 key.type = BTRFS_EXTENT_DATA_KEY;
6518 key.offset = search_start;
6519 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6520 if (ret < 0)
6521 goto out;
6522 if (ret > 0 && path->slots[0] > 0)
6523 path->slots[0]--;
6524
6525 while (search_start < end) {
6526 struct extent_buffer *leaf = path->nodes[0];
6527 int slot = path->slots[0];
6528 struct btrfs_file_extent_item *fi;
6529 u64 extent_end;
6530
6531 if (slot >= btrfs_header_nritems(leaf)) {
6532 ret = btrfs_next_leaf(root, path);
6533 if (ret < 0)
6534 goto out;
6535 else if (ret > 0)
6536 break;
6537 continue;
6538 }
6539
6540 btrfs_item_key_to_cpu(leaf, &key, slot);
6541 if (key.objectid < sctx->cur_ino ||
6542 key.type < BTRFS_EXTENT_DATA_KEY)
6543 goto next;
6544 if (key.objectid > sctx->cur_ino ||
6545 key.type > BTRFS_EXTENT_DATA_KEY ||
6546 key.offset >= end)
6547 break;
6548
6549 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6550 extent_end = btrfs_file_extent_end(path);
6551 if (extent_end <= start)
6552 goto next;
6553 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6554 search_start = extent_end;
6555 goto next;
6556 }
6557 ret = 0;
6558 goto out;
6559 next:
6560 path->slots[0]++;
6561 }
6562 ret = 1;
6563 out:
6564 btrfs_free_path(path);
6565 return ret;
6566 }
6567
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6568 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6569 struct btrfs_key *key)
6570 {
6571 int ret = 0;
6572
6573 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6574 return 0;
6575
6576 /*
6577 * Get last extent's end offset (exclusive) if we haven't determined it
6578 * yet (we're processing the first file extent item that is new), or if
6579 * we're at the first slot of a leaf and the last extent's end is less
6580 * than the current extent's offset, because we might have skipped
6581 * entire leaves that contained only file extent items for our current
6582 * inode. These leaves have a generation number smaller (older) than the
6583 * one in the current leaf and the leaf our last extent came from, and
6584 * are located between these 2 leaves.
6585 */
6586 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6587 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6588 ret = get_last_extent(sctx, key->offset - 1);
6589 if (ret)
6590 return ret;
6591 }
6592
6593 if (sctx->cur_inode_last_extent < key->offset) {
6594 ret = range_is_hole_in_parent(sctx,
6595 sctx->cur_inode_last_extent,
6596 key->offset);
6597 if (ret < 0)
6598 return ret;
6599 else if (ret == 0)
6600 ret = send_hole(sctx, key->offset);
6601 else
6602 ret = 0;
6603 }
6604 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6605 return ret;
6606 }
6607
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6608 static int process_extent(struct send_ctx *sctx,
6609 struct btrfs_path *path,
6610 struct btrfs_key *key)
6611 {
6612 struct clone_root *found_clone = NULL;
6613 int ret = 0;
6614
6615 if (S_ISLNK(sctx->cur_inode_mode))
6616 return 0;
6617
6618 if (sctx->parent_root && !sctx->cur_inode_new) {
6619 ret = is_extent_unchanged(sctx, path, key);
6620 if (ret < 0)
6621 goto out;
6622 if (ret) {
6623 ret = 0;
6624 goto out_hole;
6625 }
6626 } else {
6627 struct btrfs_file_extent_item *ei;
6628 u8 type;
6629
6630 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6631 struct btrfs_file_extent_item);
6632 type = btrfs_file_extent_type(path->nodes[0], ei);
6633 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6634 type == BTRFS_FILE_EXTENT_REG) {
6635 /*
6636 * The send spec does not have a prealloc command yet,
6637 * so just leave a hole for prealloc'ed extents until
6638 * we have enough commands queued up to justify rev'ing
6639 * the send spec.
6640 */
6641 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6642 ret = 0;
6643 goto out;
6644 }
6645
6646 /* Have a hole, just skip it. */
6647 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6648 ret = 0;
6649 goto out;
6650 }
6651 }
6652 }
6653
6654 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6655 sctx->cur_inode_size, &found_clone);
6656 if (ret != -ENOENT && ret < 0)
6657 goto out;
6658
6659 ret = send_write_or_clone(sctx, path, key, found_clone);
6660 if (ret)
6661 goto out;
6662 out_hole:
6663 ret = maybe_send_hole(sctx, path, key);
6664 out:
6665 return ret;
6666 }
6667
process_all_extents(struct send_ctx * sctx)6668 static int process_all_extents(struct send_ctx *sctx)
6669 {
6670 int ret = 0;
6671 int iter_ret = 0;
6672 struct btrfs_root *root;
6673 struct btrfs_path *path;
6674 struct btrfs_key key;
6675 struct btrfs_key found_key;
6676
6677 root = sctx->send_root;
6678 path = alloc_path_for_send();
6679 if (!path)
6680 return -ENOMEM;
6681
6682 key.objectid = sctx->cmp_key->objectid;
6683 key.type = BTRFS_EXTENT_DATA_KEY;
6684 key.offset = 0;
6685 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6686 if (found_key.objectid != key.objectid ||
6687 found_key.type != key.type) {
6688 ret = 0;
6689 break;
6690 }
6691
6692 ret = process_extent(sctx, path, &found_key);
6693 if (ret < 0)
6694 break;
6695 }
6696 /* Catch error found during iteration */
6697 if (iter_ret < 0)
6698 ret = iter_ret;
6699
6700 btrfs_free_path(path);
6701 return ret;
6702 }
6703
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6704 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6705 int *pending_move,
6706 int *refs_processed)
6707 {
6708 int ret = 0;
6709
6710 if (sctx->cur_ino == 0)
6711 goto out;
6712 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6713 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6714 goto out;
6715 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6716 goto out;
6717
6718 ret = process_recorded_refs(sctx, pending_move);
6719 if (ret < 0)
6720 goto out;
6721
6722 *refs_processed = 1;
6723 out:
6724 return ret;
6725 }
6726
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6727 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6728 {
6729 int ret = 0;
6730 struct btrfs_inode_info info;
6731 u64 left_mode;
6732 u64 left_uid;
6733 u64 left_gid;
6734 u64 left_fileattr;
6735 u64 right_mode;
6736 u64 right_uid;
6737 u64 right_gid;
6738 u64 right_fileattr;
6739 int need_chmod = 0;
6740 int need_chown = 0;
6741 bool need_fileattr = false;
6742 int need_truncate = 1;
6743 int pending_move = 0;
6744 int refs_processed = 0;
6745
6746 if (sctx->ignore_cur_inode)
6747 return 0;
6748
6749 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6750 &refs_processed);
6751 if (ret < 0)
6752 goto out;
6753
6754 /*
6755 * We have processed the refs and thus need to advance send_progress.
6756 * Now, calls to get_cur_xxx will take the updated refs of the current
6757 * inode into account.
6758 *
6759 * On the other hand, if our current inode is a directory and couldn't
6760 * be moved/renamed because its parent was renamed/moved too and it has
6761 * a higher inode number, we can only move/rename our current inode
6762 * after we moved/renamed its parent. Therefore in this case operate on
6763 * the old path (pre move/rename) of our current inode, and the
6764 * move/rename will be performed later.
6765 */
6766 if (refs_processed && !pending_move)
6767 sctx->send_progress = sctx->cur_ino + 1;
6768
6769 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6770 goto out;
6771 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6772 goto out;
6773 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6774 if (ret < 0)
6775 goto out;
6776 left_mode = info.mode;
6777 left_uid = info.uid;
6778 left_gid = info.gid;
6779 left_fileattr = info.fileattr;
6780
6781 if (!sctx->parent_root || sctx->cur_inode_new) {
6782 need_chown = 1;
6783 if (!S_ISLNK(sctx->cur_inode_mode))
6784 need_chmod = 1;
6785 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6786 need_truncate = 0;
6787 } else {
6788 u64 old_size;
6789
6790 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6791 if (ret < 0)
6792 goto out;
6793 old_size = info.size;
6794 right_mode = info.mode;
6795 right_uid = info.uid;
6796 right_gid = info.gid;
6797 right_fileattr = info.fileattr;
6798
6799 if (left_uid != right_uid || left_gid != right_gid)
6800 need_chown = 1;
6801 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6802 need_chmod = 1;
6803 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6804 need_fileattr = true;
6805 if ((old_size == sctx->cur_inode_size) ||
6806 (sctx->cur_inode_size > old_size &&
6807 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6808 need_truncate = 0;
6809 }
6810
6811 if (S_ISREG(sctx->cur_inode_mode)) {
6812 if (need_send_hole(sctx)) {
6813 if (sctx->cur_inode_last_extent == (u64)-1 ||
6814 sctx->cur_inode_last_extent <
6815 sctx->cur_inode_size) {
6816 ret = get_last_extent(sctx, (u64)-1);
6817 if (ret)
6818 goto out;
6819 }
6820 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6821 ret = range_is_hole_in_parent(sctx,
6822 sctx->cur_inode_last_extent,
6823 sctx->cur_inode_size);
6824 if (ret < 0) {
6825 goto out;
6826 } else if (ret == 0) {
6827 ret = send_hole(sctx, sctx->cur_inode_size);
6828 if (ret < 0)
6829 goto out;
6830 } else {
6831 /* Range is already a hole, skip. */
6832 ret = 0;
6833 }
6834 }
6835 }
6836 if (need_truncate) {
6837 ret = send_truncate(sctx, sctx->cur_ino,
6838 sctx->cur_inode_gen,
6839 sctx->cur_inode_size);
6840 if (ret < 0)
6841 goto out;
6842 }
6843 }
6844
6845 if (need_chown) {
6846 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6847 left_uid, left_gid);
6848 if (ret < 0)
6849 goto out;
6850 }
6851 if (need_chmod) {
6852 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6853 left_mode);
6854 if (ret < 0)
6855 goto out;
6856 }
6857 if (need_fileattr) {
6858 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6859 left_fileattr);
6860 if (ret < 0)
6861 goto out;
6862 }
6863
6864 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6865 && sctx->cur_inode_needs_verity) {
6866 ret = process_verity(sctx);
6867 if (ret < 0)
6868 goto out;
6869 }
6870
6871 ret = send_capabilities(sctx);
6872 if (ret < 0)
6873 goto out;
6874
6875 /*
6876 * If other directory inodes depended on our current directory
6877 * inode's move/rename, now do their move/rename operations.
6878 */
6879 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6880 ret = apply_children_dir_moves(sctx);
6881 if (ret)
6882 goto out;
6883 /*
6884 * Need to send that every time, no matter if it actually
6885 * changed between the two trees as we have done changes to
6886 * the inode before. If our inode is a directory and it's
6887 * waiting to be moved/renamed, we will send its utimes when
6888 * it's moved/renamed, therefore we don't need to do it here.
6889 */
6890 sctx->send_progress = sctx->cur_ino + 1;
6891
6892 /*
6893 * If the current inode is a non-empty directory, delay issuing
6894 * the utimes command for it, as it's very likely we have inodes
6895 * with an higher number inside it. We want to issue the utimes
6896 * command only after adding all dentries to it.
6897 */
6898 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6899 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6900 else
6901 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6902
6903 if (ret < 0)
6904 goto out;
6905 }
6906
6907 out:
6908 if (!ret)
6909 ret = trim_dir_utimes_cache(sctx);
6910
6911 return ret;
6912 }
6913
close_current_inode(struct send_ctx * sctx)6914 static void close_current_inode(struct send_ctx *sctx)
6915 {
6916 u64 i_size;
6917
6918 if (sctx->cur_inode == NULL)
6919 return;
6920
6921 i_size = i_size_read(sctx->cur_inode);
6922
6923 /*
6924 * If we are doing an incremental send, we may have extents between the
6925 * last processed extent and the i_size that have not been processed
6926 * because they haven't changed but we may have read some of their pages
6927 * through readahead, see the comments at send_extent_data().
6928 */
6929 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6930 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6931 sctx->page_cache_clear_start,
6932 round_up(i_size, PAGE_SIZE) - 1);
6933
6934 iput(sctx->cur_inode);
6935 sctx->cur_inode = NULL;
6936 }
6937
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6938 static int changed_inode(struct send_ctx *sctx,
6939 enum btrfs_compare_tree_result result)
6940 {
6941 int ret = 0;
6942 struct btrfs_key *key = sctx->cmp_key;
6943 struct btrfs_inode_item *left_ii = NULL;
6944 struct btrfs_inode_item *right_ii = NULL;
6945 u64 left_gen = 0;
6946 u64 right_gen = 0;
6947
6948 close_current_inode(sctx);
6949
6950 sctx->cur_ino = key->objectid;
6951 sctx->cur_inode_new_gen = false;
6952 sctx->cur_inode_last_extent = (u64)-1;
6953 sctx->cur_inode_next_write_offset = 0;
6954 sctx->ignore_cur_inode = false;
6955 fs_path_reset(&sctx->cur_inode_path);
6956
6957 /*
6958 * Set send_progress to current inode. This will tell all get_cur_xxx
6959 * functions that the current inode's refs are not updated yet. Later,
6960 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6961 */
6962 sctx->send_progress = sctx->cur_ino;
6963
6964 if (result == BTRFS_COMPARE_TREE_NEW ||
6965 result == BTRFS_COMPARE_TREE_CHANGED) {
6966 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6967 sctx->left_path->slots[0],
6968 struct btrfs_inode_item);
6969 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6970 left_ii);
6971 } else {
6972 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6973 sctx->right_path->slots[0],
6974 struct btrfs_inode_item);
6975 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6976 right_ii);
6977 }
6978 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6979 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6980 sctx->right_path->slots[0],
6981 struct btrfs_inode_item);
6982
6983 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6984 right_ii);
6985
6986 /*
6987 * The cur_ino = root dir case is special here. We can't treat
6988 * the inode as deleted+reused because it would generate a
6989 * stream that tries to delete/mkdir the root dir.
6990 */
6991 if (left_gen != right_gen &&
6992 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6993 sctx->cur_inode_new_gen = true;
6994 }
6995
6996 /*
6997 * Normally we do not find inodes with a link count of zero (orphans)
6998 * because the most common case is to create a snapshot and use it
6999 * for a send operation. However other less common use cases involve
7000 * using a subvolume and send it after turning it to RO mode just
7001 * after deleting all hard links of a file while holding an open
7002 * file descriptor against it or turning a RO snapshot into RW mode,
7003 * keep an open file descriptor against a file, delete it and then
7004 * turn the snapshot back to RO mode before using it for a send
7005 * operation. The former is what the receiver operation does.
7006 * Therefore, if we want to send these snapshots soon after they're
7007 * received, we need to handle orphan inodes as well. Moreover, orphans
7008 * can appear not only in the send snapshot but also in the parent
7009 * snapshot. Here are several cases:
7010 *
7011 * Case 1: BTRFS_COMPARE_TREE_NEW
7012 * | send snapshot | action
7013 * --------------------------------
7014 * nlink | 0 | ignore
7015 *
7016 * Case 2: BTRFS_COMPARE_TREE_DELETED
7017 * | parent snapshot | action
7018 * ----------------------------------
7019 * nlink | 0 | as usual
7020 * Note: No unlinks will be sent because there're no paths for it.
7021 *
7022 * Case 3: BTRFS_COMPARE_TREE_CHANGED
7023 * | | parent snapshot | send snapshot | action
7024 * -----------------------------------------------------------------------
7025 * subcase 1 | nlink | 0 | 0 | ignore
7026 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
7027 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
7028 *
7029 */
7030 if (result == BTRFS_COMPARE_TREE_NEW) {
7031 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
7032 sctx->ignore_cur_inode = true;
7033 goto out;
7034 }
7035 sctx->cur_inode_gen = left_gen;
7036 sctx->cur_inode_new = true;
7037 sctx->cur_inode_deleted = false;
7038 sctx->cur_inode_size = btrfs_inode_size(
7039 sctx->left_path->nodes[0], left_ii);
7040 sctx->cur_inode_mode = btrfs_inode_mode(
7041 sctx->left_path->nodes[0], left_ii);
7042 sctx->cur_inode_rdev = btrfs_inode_rdev(
7043 sctx->left_path->nodes[0], left_ii);
7044 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
7045 ret = send_create_inode_if_needed(sctx);
7046 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
7047 sctx->cur_inode_gen = right_gen;
7048 sctx->cur_inode_new = false;
7049 sctx->cur_inode_deleted = true;
7050 sctx->cur_inode_size = btrfs_inode_size(
7051 sctx->right_path->nodes[0], right_ii);
7052 sctx->cur_inode_mode = btrfs_inode_mode(
7053 sctx->right_path->nodes[0], right_ii);
7054 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7055 u32 new_nlinks, old_nlinks;
7056
7057 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7058 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7059 if (new_nlinks == 0 && old_nlinks == 0) {
7060 sctx->ignore_cur_inode = true;
7061 goto out;
7062 } else if (new_nlinks == 0 || old_nlinks == 0) {
7063 sctx->cur_inode_new_gen = 1;
7064 }
7065 /*
7066 * We need to do some special handling in case the inode was
7067 * reported as changed with a changed generation number. This
7068 * means that the original inode was deleted and new inode
7069 * reused the same inum. So we have to treat the old inode as
7070 * deleted and the new one as new.
7071 */
7072 if (sctx->cur_inode_new_gen) {
7073 /*
7074 * First, process the inode as if it was deleted.
7075 */
7076 if (old_nlinks > 0) {
7077 sctx->cur_inode_gen = right_gen;
7078 sctx->cur_inode_new = false;
7079 sctx->cur_inode_deleted = true;
7080 sctx->cur_inode_size = btrfs_inode_size(
7081 sctx->right_path->nodes[0], right_ii);
7082 sctx->cur_inode_mode = btrfs_inode_mode(
7083 sctx->right_path->nodes[0], right_ii);
7084 ret = process_all_refs(sctx,
7085 BTRFS_COMPARE_TREE_DELETED);
7086 if (ret < 0)
7087 goto out;
7088 }
7089
7090 /*
7091 * Now process the inode as if it was new.
7092 */
7093 if (new_nlinks > 0) {
7094 sctx->cur_inode_gen = left_gen;
7095 sctx->cur_inode_new = true;
7096 sctx->cur_inode_deleted = false;
7097 sctx->cur_inode_size = btrfs_inode_size(
7098 sctx->left_path->nodes[0],
7099 left_ii);
7100 sctx->cur_inode_mode = btrfs_inode_mode(
7101 sctx->left_path->nodes[0],
7102 left_ii);
7103 sctx->cur_inode_rdev = btrfs_inode_rdev(
7104 sctx->left_path->nodes[0],
7105 left_ii);
7106 ret = send_create_inode_if_needed(sctx);
7107 if (ret < 0)
7108 goto out;
7109
7110 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7111 if (ret < 0)
7112 goto out;
7113 /*
7114 * Advance send_progress now as we did not get
7115 * into process_recorded_refs_if_needed in the
7116 * new_gen case.
7117 */
7118 sctx->send_progress = sctx->cur_ino + 1;
7119
7120 /*
7121 * Now process all extents and xattrs of the
7122 * inode as if they were all new.
7123 */
7124 ret = process_all_extents(sctx);
7125 if (ret < 0)
7126 goto out;
7127 ret = process_all_new_xattrs(sctx);
7128 if (ret < 0)
7129 goto out;
7130 }
7131 } else {
7132 sctx->cur_inode_gen = left_gen;
7133 sctx->cur_inode_new = false;
7134 sctx->cur_inode_new_gen = false;
7135 sctx->cur_inode_deleted = false;
7136 sctx->cur_inode_size = btrfs_inode_size(
7137 sctx->left_path->nodes[0], left_ii);
7138 sctx->cur_inode_mode = btrfs_inode_mode(
7139 sctx->left_path->nodes[0], left_ii);
7140 }
7141 }
7142
7143 out:
7144 return ret;
7145 }
7146
7147 /*
7148 * We have to process new refs before deleted refs, but compare_trees gives us
7149 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7150 * first and later process them in process_recorded_refs.
7151 * For the cur_inode_new_gen case, we skip recording completely because
7152 * changed_inode did already initiate processing of refs. The reason for this is
7153 * that in this case, compare_tree actually compares the refs of 2 different
7154 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7155 * refs of the right tree as deleted and all refs of the left tree as new.
7156 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7157 static int changed_ref(struct send_ctx *sctx,
7158 enum btrfs_compare_tree_result result)
7159 {
7160 int ret = 0;
7161
7162 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7163 inconsistent_snapshot_error(sctx, result, "reference");
7164 return -EIO;
7165 }
7166
7167 if (!sctx->cur_inode_new_gen &&
7168 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7169 if (result == BTRFS_COMPARE_TREE_NEW)
7170 ret = record_new_ref(sctx);
7171 else if (result == BTRFS_COMPARE_TREE_DELETED)
7172 ret = record_deleted_ref(sctx);
7173 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7174 ret = record_changed_ref(sctx);
7175 }
7176
7177 return ret;
7178 }
7179
7180 /*
7181 * Process new/deleted/changed xattrs. We skip processing in the
7182 * cur_inode_new_gen case because changed_inode did already initiate processing
7183 * of xattrs. The reason is the same as in changed_ref
7184 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7185 static int changed_xattr(struct send_ctx *sctx,
7186 enum btrfs_compare_tree_result result)
7187 {
7188 int ret = 0;
7189
7190 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7191 inconsistent_snapshot_error(sctx, result, "xattr");
7192 return -EIO;
7193 }
7194
7195 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7196 if (result == BTRFS_COMPARE_TREE_NEW)
7197 ret = process_new_xattr(sctx);
7198 else if (result == BTRFS_COMPARE_TREE_DELETED)
7199 ret = process_deleted_xattr(sctx);
7200 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7201 ret = process_changed_xattr(sctx);
7202 }
7203
7204 return ret;
7205 }
7206
7207 /*
7208 * Process new/deleted/changed extents. We skip processing in the
7209 * cur_inode_new_gen case because changed_inode did already initiate processing
7210 * of extents. The reason is the same as in changed_ref
7211 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7212 static int changed_extent(struct send_ctx *sctx,
7213 enum btrfs_compare_tree_result result)
7214 {
7215 int ret = 0;
7216
7217 /*
7218 * We have found an extent item that changed without the inode item
7219 * having changed. This can happen either after relocation (where the
7220 * disk_bytenr of an extent item is replaced at
7221 * relocation.c:replace_file_extents()) or after deduplication into a
7222 * file in both the parent and send snapshots (where an extent item can
7223 * get modified or replaced with a new one). Note that deduplication
7224 * updates the inode item, but it only changes the iversion (sequence
7225 * field in the inode item) of the inode, so if a file is deduplicated
7226 * the same amount of times in both the parent and send snapshots, its
7227 * iversion becomes the same in both snapshots, whence the inode item is
7228 * the same on both snapshots.
7229 */
7230 if (sctx->cur_ino != sctx->cmp_key->objectid)
7231 return 0;
7232
7233 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7234 if (result != BTRFS_COMPARE_TREE_DELETED)
7235 ret = process_extent(sctx, sctx->left_path,
7236 sctx->cmp_key);
7237 }
7238
7239 return ret;
7240 }
7241
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7242 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7243 {
7244 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7245 if (result == BTRFS_COMPARE_TREE_NEW)
7246 sctx->cur_inode_needs_verity = true;
7247 }
7248 return 0;
7249 }
7250
dir_changed(struct send_ctx * sctx,u64 dir)7251 static int dir_changed(struct send_ctx *sctx, u64 dir)
7252 {
7253 u64 orig_gen, new_gen;
7254 int ret;
7255
7256 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7257 if (ret)
7258 return ret;
7259
7260 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7261 if (ret)
7262 return ret;
7263
7264 return (orig_gen != new_gen) ? 1 : 0;
7265 }
7266
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7267 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7268 struct btrfs_key *key)
7269 {
7270 struct btrfs_inode_extref *extref;
7271 struct extent_buffer *leaf;
7272 u64 dirid = 0, last_dirid = 0;
7273 unsigned long ptr;
7274 u32 item_size;
7275 u32 cur_offset = 0;
7276 int ref_name_len;
7277 int ret = 0;
7278
7279 /* Easy case, just check this one dirid */
7280 if (key->type == BTRFS_INODE_REF_KEY) {
7281 dirid = key->offset;
7282
7283 ret = dir_changed(sctx, dirid);
7284 goto out;
7285 }
7286
7287 leaf = path->nodes[0];
7288 item_size = btrfs_item_size(leaf, path->slots[0]);
7289 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7290 while (cur_offset < item_size) {
7291 extref = (struct btrfs_inode_extref *)(ptr +
7292 cur_offset);
7293 dirid = btrfs_inode_extref_parent(leaf, extref);
7294 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7295 cur_offset += ref_name_len + sizeof(*extref);
7296 if (dirid == last_dirid)
7297 continue;
7298 ret = dir_changed(sctx, dirid);
7299 if (ret)
7300 break;
7301 last_dirid = dirid;
7302 }
7303 out:
7304 return ret;
7305 }
7306
7307 /*
7308 * Updates compare related fields in sctx and simply forwards to the actual
7309 * changed_xxx functions.
7310 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7311 static int changed_cb(struct btrfs_path *left_path,
7312 struct btrfs_path *right_path,
7313 struct btrfs_key *key,
7314 enum btrfs_compare_tree_result result,
7315 struct send_ctx *sctx)
7316 {
7317 int ret = 0;
7318
7319 /*
7320 * We can not hold the commit root semaphore here. This is because in
7321 * the case of sending and receiving to the same filesystem, using a
7322 * pipe, could result in a deadlock:
7323 *
7324 * 1) The task running send blocks on the pipe because it's full;
7325 *
7326 * 2) The task running receive, which is the only consumer of the pipe,
7327 * is waiting for a transaction commit (for example due to a space
7328 * reservation when doing a write or triggering a transaction commit
7329 * when creating a subvolume);
7330 *
7331 * 3) The transaction is waiting to write lock the commit root semaphore,
7332 * but can not acquire it since it's being held at 1).
7333 *
7334 * Down this call chain we write to the pipe through kernel_write().
7335 * The same type of problem can also happen when sending to a file that
7336 * is stored in the same filesystem - when reserving space for a write
7337 * into the file, we can trigger a transaction commit.
7338 *
7339 * Our caller has supplied us with clones of leaves from the send and
7340 * parent roots, so we're safe here from a concurrent relocation and
7341 * further reallocation of metadata extents while we are here. Below we
7342 * also assert that the leaves are clones.
7343 */
7344 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7345
7346 /*
7347 * We always have a send root, so left_path is never NULL. We will not
7348 * have a leaf when we have reached the end of the send root but have
7349 * not yet reached the end of the parent root.
7350 */
7351 if (left_path->nodes[0])
7352 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7353 &left_path->nodes[0]->bflags));
7354 /*
7355 * When doing a full send we don't have a parent root, so right_path is
7356 * NULL. When doing an incremental send, we may have reached the end of
7357 * the parent root already, so we don't have a leaf at right_path.
7358 */
7359 if (right_path && right_path->nodes[0])
7360 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7361 &right_path->nodes[0]->bflags));
7362
7363 if (result == BTRFS_COMPARE_TREE_SAME) {
7364 if (key->type == BTRFS_INODE_REF_KEY ||
7365 key->type == BTRFS_INODE_EXTREF_KEY) {
7366 ret = compare_refs(sctx, left_path, key);
7367 if (!ret)
7368 return 0;
7369 if (ret < 0)
7370 return ret;
7371 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7372 return maybe_send_hole(sctx, left_path, key);
7373 } else {
7374 return 0;
7375 }
7376 result = BTRFS_COMPARE_TREE_CHANGED;
7377 ret = 0;
7378 }
7379
7380 sctx->left_path = left_path;
7381 sctx->right_path = right_path;
7382 sctx->cmp_key = key;
7383
7384 ret = finish_inode_if_needed(sctx, 0);
7385 if (ret < 0)
7386 goto out;
7387
7388 /* Ignore non-FS objects */
7389 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7390 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7391 goto out;
7392
7393 if (key->type == BTRFS_INODE_ITEM_KEY) {
7394 ret = changed_inode(sctx, result);
7395 } else if (!sctx->ignore_cur_inode) {
7396 if (key->type == BTRFS_INODE_REF_KEY ||
7397 key->type == BTRFS_INODE_EXTREF_KEY)
7398 ret = changed_ref(sctx, result);
7399 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7400 ret = changed_xattr(sctx, result);
7401 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7402 ret = changed_extent(sctx, result);
7403 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7404 key->offset == 0)
7405 ret = changed_verity(sctx, result);
7406 }
7407
7408 out:
7409 return ret;
7410 }
7411
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7412 static int search_key_again(const struct send_ctx *sctx,
7413 struct btrfs_root *root,
7414 struct btrfs_path *path,
7415 const struct btrfs_key *key)
7416 {
7417 int ret;
7418
7419 if (!path->need_commit_sem)
7420 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7421
7422 /*
7423 * Roots used for send operations are readonly and no one can add,
7424 * update or remove keys from them, so we should be able to find our
7425 * key again. The only exception is deduplication, which can operate on
7426 * readonly roots and add, update or remove keys to/from them - but at
7427 * the moment we don't allow it to run in parallel with send.
7428 */
7429 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7430 ASSERT(ret <= 0);
7431 if (ret > 0) {
7432 btrfs_print_tree(path->nodes[path->lowest_level], false);
7433 btrfs_err(root->fs_info,
7434 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7435 key->objectid, key->type, key->offset,
7436 (root == sctx->parent_root ? "parent" : "send"),
7437 btrfs_root_id(root), path->lowest_level,
7438 path->slots[path->lowest_level]);
7439 return -EUCLEAN;
7440 }
7441
7442 return ret;
7443 }
7444
full_send_tree(struct send_ctx * sctx)7445 static int full_send_tree(struct send_ctx *sctx)
7446 {
7447 int ret;
7448 struct btrfs_root *send_root = sctx->send_root;
7449 struct btrfs_key key;
7450 struct btrfs_fs_info *fs_info = send_root->fs_info;
7451 struct btrfs_path *path;
7452
7453 path = alloc_path_for_send();
7454 if (!path)
7455 return -ENOMEM;
7456 path->reada = READA_FORWARD_ALWAYS;
7457
7458 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7459 key.type = BTRFS_INODE_ITEM_KEY;
7460 key.offset = 0;
7461
7462 down_read(&fs_info->commit_root_sem);
7463 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7464 up_read(&fs_info->commit_root_sem);
7465
7466 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7467 if (ret < 0)
7468 goto out;
7469 if (ret)
7470 goto out_finish;
7471
7472 while (1) {
7473 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7474
7475 ret = changed_cb(path, NULL, &key,
7476 BTRFS_COMPARE_TREE_NEW, sctx);
7477 if (ret < 0)
7478 goto out;
7479
7480 down_read(&fs_info->commit_root_sem);
7481 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7482 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7483 up_read(&fs_info->commit_root_sem);
7484 /*
7485 * A transaction used for relocating a block group was
7486 * committed or is about to finish its commit. Release
7487 * our path (leaf) and restart the search, so that we
7488 * avoid operating on any file extent items that are
7489 * stale, with a disk_bytenr that reflects a pre
7490 * relocation value. This way we avoid as much as
7491 * possible to fallback to regular writes when checking
7492 * if we can clone file ranges.
7493 */
7494 btrfs_release_path(path);
7495 ret = search_key_again(sctx, send_root, path, &key);
7496 if (ret < 0)
7497 goto out;
7498 } else {
7499 up_read(&fs_info->commit_root_sem);
7500 }
7501
7502 ret = btrfs_next_item(send_root, path);
7503 if (ret < 0)
7504 goto out;
7505 if (ret) {
7506 ret = 0;
7507 break;
7508 }
7509 }
7510
7511 out_finish:
7512 ret = finish_inode_if_needed(sctx, 1);
7513
7514 out:
7515 btrfs_free_path(path);
7516 return ret;
7517 }
7518
replace_node_with_clone(struct btrfs_path * path,int level)7519 static int replace_node_with_clone(struct btrfs_path *path, int level)
7520 {
7521 struct extent_buffer *clone;
7522
7523 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7524 if (!clone)
7525 return -ENOMEM;
7526
7527 free_extent_buffer(path->nodes[level]);
7528 path->nodes[level] = clone;
7529
7530 return 0;
7531 }
7532
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7533 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7534 {
7535 struct extent_buffer *eb;
7536 struct extent_buffer *parent = path->nodes[*level];
7537 int slot = path->slots[*level];
7538 const int nritems = btrfs_header_nritems(parent);
7539 u64 reada_max;
7540 u64 reada_done = 0;
7541
7542 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7543 ASSERT(*level != 0);
7544
7545 eb = btrfs_read_node_slot(parent, slot);
7546 if (IS_ERR(eb))
7547 return PTR_ERR(eb);
7548
7549 /*
7550 * Trigger readahead for the next leaves we will process, so that it is
7551 * very likely that when we need them they are already in memory and we
7552 * will not block on disk IO. For nodes we only do readahead for one,
7553 * since the time window between processing nodes is typically larger.
7554 */
7555 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7556
7557 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7558 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7559 btrfs_readahead_node_child(parent, slot);
7560 reada_done += eb->fs_info->nodesize;
7561 }
7562 }
7563
7564 path->nodes[*level - 1] = eb;
7565 path->slots[*level - 1] = 0;
7566 (*level)--;
7567
7568 if (*level == 0)
7569 return replace_node_with_clone(path, 0);
7570
7571 return 0;
7572 }
7573
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7574 static int tree_move_next_or_upnext(struct btrfs_path *path,
7575 int *level, int root_level)
7576 {
7577 int ret = 0;
7578 int nritems;
7579 nritems = btrfs_header_nritems(path->nodes[*level]);
7580
7581 path->slots[*level]++;
7582
7583 while (path->slots[*level] >= nritems) {
7584 if (*level == root_level) {
7585 path->slots[*level] = nritems - 1;
7586 return -1;
7587 }
7588
7589 /* move upnext */
7590 path->slots[*level] = 0;
7591 free_extent_buffer(path->nodes[*level]);
7592 path->nodes[*level] = NULL;
7593 (*level)++;
7594 path->slots[*level]++;
7595
7596 nritems = btrfs_header_nritems(path->nodes[*level]);
7597 ret = 1;
7598 }
7599 return ret;
7600 }
7601
7602 /*
7603 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7604 * or down.
7605 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7606 static int tree_advance(struct btrfs_path *path,
7607 int *level, int root_level,
7608 int allow_down,
7609 struct btrfs_key *key,
7610 u64 reada_min_gen)
7611 {
7612 int ret;
7613
7614 if (*level == 0 || !allow_down) {
7615 ret = tree_move_next_or_upnext(path, level, root_level);
7616 } else {
7617 ret = tree_move_down(path, level, reada_min_gen);
7618 }
7619
7620 /*
7621 * Even if we have reached the end of a tree, ret is -1, update the key
7622 * anyway, so that in case we need to restart due to a block group
7623 * relocation, we can assert that the last key of the root node still
7624 * exists in the tree.
7625 */
7626 if (*level == 0)
7627 btrfs_item_key_to_cpu(path->nodes[*level], key,
7628 path->slots[*level]);
7629 else
7630 btrfs_node_key_to_cpu(path->nodes[*level], key,
7631 path->slots[*level]);
7632
7633 return ret;
7634 }
7635
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7636 static int tree_compare_item(struct btrfs_path *left_path,
7637 struct btrfs_path *right_path,
7638 char *tmp_buf)
7639 {
7640 int cmp;
7641 int len1, len2;
7642 unsigned long off1, off2;
7643
7644 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7645 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7646 if (len1 != len2)
7647 return 1;
7648
7649 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7650 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7651 right_path->slots[0]);
7652
7653 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7654
7655 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7656 if (cmp)
7657 return 1;
7658 return 0;
7659 }
7660
7661 /*
7662 * A transaction used for relocating a block group was committed or is about to
7663 * finish its commit. Release our paths and restart the search, so that we are
7664 * not using stale extent buffers:
7665 *
7666 * 1) For levels > 0, we are only holding references of extent buffers, without
7667 * any locks on them, which does not prevent them from having been relocated
7668 * and reallocated after the last time we released the commit root semaphore.
7669 * The exception are the root nodes, for which we always have a clone, see
7670 * the comment at btrfs_compare_trees();
7671 *
7672 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7673 * we are safe from the concurrent relocation and reallocation. However they
7674 * can have file extent items with a pre relocation disk_bytenr value, so we
7675 * restart the start from the current commit roots and clone the new leaves so
7676 * that we get the post relocation disk_bytenr values. Not doing so, could
7677 * make us clone the wrong data in case there are new extents using the old
7678 * disk_bytenr that happen to be shared.
7679 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7680 static int restart_after_relocation(struct btrfs_path *left_path,
7681 struct btrfs_path *right_path,
7682 const struct btrfs_key *left_key,
7683 const struct btrfs_key *right_key,
7684 int left_level,
7685 int right_level,
7686 const struct send_ctx *sctx)
7687 {
7688 int root_level;
7689 int ret;
7690
7691 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7692
7693 btrfs_release_path(left_path);
7694 btrfs_release_path(right_path);
7695
7696 /*
7697 * Since keys can not be added or removed to/from our roots because they
7698 * are readonly and we do not allow deduplication to run in parallel
7699 * (which can add, remove or change keys), the layout of the trees should
7700 * not change.
7701 */
7702 left_path->lowest_level = left_level;
7703 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7704 if (ret < 0)
7705 return ret;
7706
7707 right_path->lowest_level = right_level;
7708 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7709 if (ret < 0)
7710 return ret;
7711
7712 /*
7713 * If the lowest level nodes are leaves, clone them so that they can be
7714 * safely used by changed_cb() while not under the protection of the
7715 * commit root semaphore, even if relocation and reallocation happens in
7716 * parallel.
7717 */
7718 if (left_level == 0) {
7719 ret = replace_node_with_clone(left_path, 0);
7720 if (ret < 0)
7721 return ret;
7722 }
7723
7724 if (right_level == 0) {
7725 ret = replace_node_with_clone(right_path, 0);
7726 if (ret < 0)
7727 return ret;
7728 }
7729
7730 /*
7731 * Now clone the root nodes (unless they happen to be the leaves we have
7732 * already cloned). This is to protect against concurrent snapshotting of
7733 * the send and parent roots (see the comment at btrfs_compare_trees()).
7734 */
7735 root_level = btrfs_header_level(sctx->send_root->commit_root);
7736 if (root_level > 0) {
7737 ret = replace_node_with_clone(left_path, root_level);
7738 if (ret < 0)
7739 return ret;
7740 }
7741
7742 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7743 if (root_level > 0) {
7744 ret = replace_node_with_clone(right_path, root_level);
7745 if (ret < 0)
7746 return ret;
7747 }
7748
7749 return 0;
7750 }
7751
7752 /*
7753 * This function compares two trees and calls the provided callback for
7754 * every changed/new/deleted item it finds.
7755 * If shared tree blocks are encountered, whole subtrees are skipped, making
7756 * the compare pretty fast on snapshotted subvolumes.
7757 *
7758 * This currently works on commit roots only. As commit roots are read only,
7759 * we don't do any locking. The commit roots are protected with transactions.
7760 * Transactions are ended and rejoined when a commit is tried in between.
7761 *
7762 * This function checks for modifications done to the trees while comparing.
7763 * If it detects a change, it aborts immediately.
7764 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7765 static int btrfs_compare_trees(struct btrfs_root *left_root,
7766 struct btrfs_root *right_root, struct send_ctx *sctx)
7767 {
7768 struct btrfs_fs_info *fs_info = left_root->fs_info;
7769 int ret;
7770 int cmp;
7771 struct btrfs_path *left_path = NULL;
7772 struct btrfs_path *right_path = NULL;
7773 struct btrfs_key left_key;
7774 struct btrfs_key right_key;
7775 char *tmp_buf = NULL;
7776 int left_root_level;
7777 int right_root_level;
7778 int left_level;
7779 int right_level;
7780 int left_end_reached = 0;
7781 int right_end_reached = 0;
7782 int advance_left = 0;
7783 int advance_right = 0;
7784 u64 left_blockptr;
7785 u64 right_blockptr;
7786 u64 left_gen;
7787 u64 right_gen;
7788 u64 reada_min_gen;
7789
7790 left_path = btrfs_alloc_path();
7791 if (!left_path) {
7792 ret = -ENOMEM;
7793 goto out;
7794 }
7795 right_path = btrfs_alloc_path();
7796 if (!right_path) {
7797 ret = -ENOMEM;
7798 goto out;
7799 }
7800
7801 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7802 if (!tmp_buf) {
7803 ret = -ENOMEM;
7804 goto out;
7805 }
7806
7807 left_path->search_commit_root = 1;
7808 left_path->skip_locking = 1;
7809 right_path->search_commit_root = 1;
7810 right_path->skip_locking = 1;
7811
7812 /*
7813 * Strategy: Go to the first items of both trees. Then do
7814 *
7815 * If both trees are at level 0
7816 * Compare keys of current items
7817 * If left < right treat left item as new, advance left tree
7818 * and repeat
7819 * If left > right treat right item as deleted, advance right tree
7820 * and repeat
7821 * If left == right do deep compare of items, treat as changed if
7822 * needed, advance both trees and repeat
7823 * If both trees are at the same level but not at level 0
7824 * Compare keys of current nodes/leafs
7825 * If left < right advance left tree and repeat
7826 * If left > right advance right tree and repeat
7827 * If left == right compare blockptrs of the next nodes/leafs
7828 * If they match advance both trees but stay at the same level
7829 * and repeat
7830 * If they don't match advance both trees while allowing to go
7831 * deeper and repeat
7832 * If tree levels are different
7833 * Advance the tree that needs it and repeat
7834 *
7835 * Advancing a tree means:
7836 * If we are at level 0, try to go to the next slot. If that's not
7837 * possible, go one level up and repeat. Stop when we found a level
7838 * where we could go to the next slot. We may at this point be on a
7839 * node or a leaf.
7840 *
7841 * If we are not at level 0 and not on shared tree blocks, go one
7842 * level deeper.
7843 *
7844 * If we are not at level 0 and on shared tree blocks, go one slot to
7845 * the right if possible or go up and right.
7846 */
7847
7848 down_read(&fs_info->commit_root_sem);
7849 left_level = btrfs_header_level(left_root->commit_root);
7850 left_root_level = left_level;
7851 /*
7852 * We clone the root node of the send and parent roots to prevent races
7853 * with snapshot creation of these roots. Snapshot creation COWs the
7854 * root node of a tree, so after the transaction is committed the old
7855 * extent can be reallocated while this send operation is still ongoing.
7856 * So we clone them, under the commit root semaphore, to be race free.
7857 */
7858 left_path->nodes[left_level] =
7859 btrfs_clone_extent_buffer(left_root->commit_root);
7860 if (!left_path->nodes[left_level]) {
7861 ret = -ENOMEM;
7862 goto out_unlock;
7863 }
7864
7865 right_level = btrfs_header_level(right_root->commit_root);
7866 right_root_level = right_level;
7867 right_path->nodes[right_level] =
7868 btrfs_clone_extent_buffer(right_root->commit_root);
7869 if (!right_path->nodes[right_level]) {
7870 ret = -ENOMEM;
7871 goto out_unlock;
7872 }
7873 /*
7874 * Our right root is the parent root, while the left root is the "send"
7875 * root. We know that all new nodes/leaves in the left root must have
7876 * a generation greater than the right root's generation, so we trigger
7877 * readahead for those nodes and leaves of the left root, as we know we
7878 * will need to read them at some point.
7879 */
7880 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7881
7882 if (left_level == 0)
7883 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7884 &left_key, left_path->slots[left_level]);
7885 else
7886 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7887 &left_key, left_path->slots[left_level]);
7888 if (right_level == 0)
7889 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7890 &right_key, right_path->slots[right_level]);
7891 else
7892 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7893 &right_key, right_path->slots[right_level]);
7894
7895 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7896
7897 while (1) {
7898 if (need_resched() ||
7899 rwsem_is_contended(&fs_info->commit_root_sem)) {
7900 up_read(&fs_info->commit_root_sem);
7901 cond_resched();
7902 down_read(&fs_info->commit_root_sem);
7903 }
7904
7905 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7906 ret = restart_after_relocation(left_path, right_path,
7907 &left_key, &right_key,
7908 left_level, right_level,
7909 sctx);
7910 if (ret < 0)
7911 goto out_unlock;
7912 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7913 }
7914
7915 if (advance_left && !left_end_reached) {
7916 ret = tree_advance(left_path, &left_level,
7917 left_root_level,
7918 advance_left != ADVANCE_ONLY_NEXT,
7919 &left_key, reada_min_gen);
7920 if (ret == -1)
7921 left_end_reached = ADVANCE;
7922 else if (ret < 0)
7923 goto out_unlock;
7924 advance_left = 0;
7925 }
7926 if (advance_right && !right_end_reached) {
7927 ret = tree_advance(right_path, &right_level,
7928 right_root_level,
7929 advance_right != ADVANCE_ONLY_NEXT,
7930 &right_key, reada_min_gen);
7931 if (ret == -1)
7932 right_end_reached = ADVANCE;
7933 else if (ret < 0)
7934 goto out_unlock;
7935 advance_right = 0;
7936 }
7937
7938 if (left_end_reached && right_end_reached) {
7939 ret = 0;
7940 goto out_unlock;
7941 } else if (left_end_reached) {
7942 if (right_level == 0) {
7943 up_read(&fs_info->commit_root_sem);
7944 ret = changed_cb(left_path, right_path,
7945 &right_key,
7946 BTRFS_COMPARE_TREE_DELETED,
7947 sctx);
7948 if (ret < 0)
7949 goto out;
7950 down_read(&fs_info->commit_root_sem);
7951 }
7952 advance_right = ADVANCE;
7953 continue;
7954 } else if (right_end_reached) {
7955 if (left_level == 0) {
7956 up_read(&fs_info->commit_root_sem);
7957 ret = changed_cb(left_path, right_path,
7958 &left_key,
7959 BTRFS_COMPARE_TREE_NEW,
7960 sctx);
7961 if (ret < 0)
7962 goto out;
7963 down_read(&fs_info->commit_root_sem);
7964 }
7965 advance_left = ADVANCE;
7966 continue;
7967 }
7968
7969 if (left_level == 0 && right_level == 0) {
7970 up_read(&fs_info->commit_root_sem);
7971 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7972 if (cmp < 0) {
7973 ret = changed_cb(left_path, right_path,
7974 &left_key,
7975 BTRFS_COMPARE_TREE_NEW,
7976 sctx);
7977 advance_left = ADVANCE;
7978 } else if (cmp > 0) {
7979 ret = changed_cb(left_path, right_path,
7980 &right_key,
7981 BTRFS_COMPARE_TREE_DELETED,
7982 sctx);
7983 advance_right = ADVANCE;
7984 } else {
7985 enum btrfs_compare_tree_result result;
7986
7987 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7988 ret = tree_compare_item(left_path, right_path,
7989 tmp_buf);
7990 if (ret)
7991 result = BTRFS_COMPARE_TREE_CHANGED;
7992 else
7993 result = BTRFS_COMPARE_TREE_SAME;
7994 ret = changed_cb(left_path, right_path,
7995 &left_key, result, sctx);
7996 advance_left = ADVANCE;
7997 advance_right = ADVANCE;
7998 }
7999
8000 if (ret < 0)
8001 goto out;
8002 down_read(&fs_info->commit_root_sem);
8003 } else if (left_level == right_level) {
8004 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
8005 if (cmp < 0) {
8006 advance_left = ADVANCE;
8007 } else if (cmp > 0) {
8008 advance_right = ADVANCE;
8009 } else {
8010 left_blockptr = btrfs_node_blockptr(
8011 left_path->nodes[left_level],
8012 left_path->slots[left_level]);
8013 right_blockptr = btrfs_node_blockptr(
8014 right_path->nodes[right_level],
8015 right_path->slots[right_level]);
8016 left_gen = btrfs_node_ptr_generation(
8017 left_path->nodes[left_level],
8018 left_path->slots[left_level]);
8019 right_gen = btrfs_node_ptr_generation(
8020 right_path->nodes[right_level],
8021 right_path->slots[right_level]);
8022 if (left_blockptr == right_blockptr &&
8023 left_gen == right_gen) {
8024 /*
8025 * As we're on a shared block, don't
8026 * allow to go deeper.
8027 */
8028 advance_left = ADVANCE_ONLY_NEXT;
8029 advance_right = ADVANCE_ONLY_NEXT;
8030 } else {
8031 advance_left = ADVANCE;
8032 advance_right = ADVANCE;
8033 }
8034 }
8035 } else if (left_level < right_level) {
8036 advance_right = ADVANCE;
8037 } else {
8038 advance_left = ADVANCE;
8039 }
8040 }
8041
8042 out_unlock:
8043 up_read(&fs_info->commit_root_sem);
8044 out:
8045 btrfs_free_path(left_path);
8046 btrfs_free_path(right_path);
8047 kvfree(tmp_buf);
8048 return ret;
8049 }
8050
send_subvol(struct send_ctx * sctx)8051 static int send_subvol(struct send_ctx *sctx)
8052 {
8053 int ret;
8054
8055 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8056 ret = send_header(sctx);
8057 if (ret < 0)
8058 goto out;
8059 }
8060
8061 ret = send_subvol_begin(sctx);
8062 if (ret < 0)
8063 goto out;
8064
8065 if (sctx->parent_root) {
8066 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8067 if (ret < 0)
8068 goto out;
8069 ret = finish_inode_if_needed(sctx, 1);
8070 if (ret < 0)
8071 goto out;
8072 } else {
8073 ret = full_send_tree(sctx);
8074 if (ret < 0)
8075 goto out;
8076 }
8077
8078 out:
8079 free_recorded_refs(sctx);
8080 return ret;
8081 }
8082
8083 /*
8084 * If orphan cleanup did remove any orphans from a root, it means the tree
8085 * was modified and therefore the commit root is not the same as the current
8086 * root anymore. This is a problem, because send uses the commit root and
8087 * therefore can see inode items that don't exist in the current root anymore,
8088 * and for example make calls to btrfs_iget, which will do tree lookups based
8089 * on the current root and not on the commit root. Those lookups will fail,
8090 * returning a -ESTALE error, and making send fail with that error. So make
8091 * sure a send does not see any orphans we have just removed, and that it will
8092 * see the same inodes regardless of whether a transaction commit happened
8093 * before it started (meaning that the commit root will be the same as the
8094 * current root) or not.
8095 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8096 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8097 {
8098 struct btrfs_root *root = sctx->parent_root;
8099
8100 if (root && root->node != root->commit_root)
8101 return btrfs_commit_current_transaction(root);
8102
8103 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8104 root = sctx->clone_roots[i].root;
8105 if (root->node != root->commit_root)
8106 return btrfs_commit_current_transaction(root);
8107 }
8108
8109 return 0;
8110 }
8111
8112 /*
8113 * Make sure any existing dellaloc is flushed for any root used by a send
8114 * operation so that we do not miss any data and we do not race with writeback
8115 * finishing and changing a tree while send is using the tree. This could
8116 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8117 * a send operation then uses the subvolume.
8118 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8119 */
flush_delalloc_roots(struct send_ctx * sctx)8120 static int flush_delalloc_roots(struct send_ctx *sctx)
8121 {
8122 struct btrfs_root *root = sctx->parent_root;
8123 int ret;
8124 int i;
8125
8126 if (root) {
8127 ret = btrfs_start_delalloc_snapshot(root, false);
8128 if (ret)
8129 return ret;
8130 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8131 }
8132
8133 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8134 root = sctx->clone_roots[i].root;
8135 ret = btrfs_start_delalloc_snapshot(root, false);
8136 if (ret)
8137 return ret;
8138 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8139 }
8140
8141 return 0;
8142 }
8143
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8144 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8145 {
8146 spin_lock(&root->root_item_lock);
8147 root->send_in_progress--;
8148 /*
8149 * Not much left to do, we don't know why it's unbalanced and
8150 * can't blindly reset it to 0.
8151 */
8152 if (root->send_in_progress < 0)
8153 btrfs_err(root->fs_info,
8154 "send_in_progress unbalanced %d root %llu",
8155 root->send_in_progress, btrfs_root_id(root));
8156 spin_unlock(&root->root_item_lock);
8157 }
8158
dedupe_in_progress_warn(const struct btrfs_root * root)8159 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8160 {
8161 btrfs_warn_rl(root->fs_info,
8162 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8163 btrfs_root_id(root), root->dedupe_in_progress);
8164 }
8165
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8166 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8167 {
8168 int ret = 0;
8169 struct btrfs_root *send_root = inode->root;
8170 struct btrfs_fs_info *fs_info = send_root->fs_info;
8171 struct btrfs_root *clone_root;
8172 struct send_ctx *sctx = NULL;
8173 u32 i;
8174 u64 *clone_sources_tmp = NULL;
8175 int clone_sources_to_rollback = 0;
8176 size_t alloc_size;
8177 int sort_clone_roots = 0;
8178 struct btrfs_lru_cache_entry *entry;
8179 struct btrfs_lru_cache_entry *tmp;
8180
8181 if (!capable(CAP_SYS_ADMIN))
8182 return -EPERM;
8183
8184 /*
8185 * The subvolume must remain read-only during send, protect against
8186 * making it RW. This also protects against deletion.
8187 */
8188 spin_lock(&send_root->root_item_lock);
8189 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8190 dedupe_in_progress_warn(send_root);
8191 spin_unlock(&send_root->root_item_lock);
8192 return -EAGAIN;
8193 }
8194 send_root->send_in_progress++;
8195 spin_unlock(&send_root->root_item_lock);
8196
8197 /*
8198 * Userspace tools do the checks and warn the user if it's
8199 * not RO.
8200 */
8201 if (!btrfs_root_readonly(send_root)) {
8202 ret = -EPERM;
8203 goto out;
8204 }
8205
8206 /*
8207 * Check that we don't overflow at later allocations, we request
8208 * clone_sources_count + 1 items, and compare to unsigned long inside
8209 * access_ok. Also set an upper limit for allocation size so this can't
8210 * easily exhaust memory. Max number of clone sources is about 200K.
8211 */
8212 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8213 ret = -EINVAL;
8214 goto out;
8215 }
8216
8217 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8218 ret = -EOPNOTSUPP;
8219 goto out;
8220 }
8221
8222 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8223 if (!sctx) {
8224 ret = -ENOMEM;
8225 goto out;
8226 }
8227
8228 init_path(&sctx->cur_inode_path);
8229 INIT_LIST_HEAD(&sctx->new_refs);
8230 INIT_LIST_HEAD(&sctx->deleted_refs);
8231
8232 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8233 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8234 btrfs_lru_cache_init(&sctx->dir_created_cache,
8235 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8236 /*
8237 * This cache is periodically trimmed to a fixed size elsewhere, see
8238 * cache_dir_utimes() and trim_dir_utimes_cache().
8239 */
8240 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8241
8242 sctx->pending_dir_moves = RB_ROOT;
8243 sctx->waiting_dir_moves = RB_ROOT;
8244 sctx->orphan_dirs = RB_ROOT;
8245 sctx->rbtree_new_refs = RB_ROOT;
8246 sctx->rbtree_deleted_refs = RB_ROOT;
8247
8248 sctx->flags = arg->flags;
8249
8250 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8251 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8252 ret = -EPROTO;
8253 goto out;
8254 }
8255 /* Zero means "use the highest version" */
8256 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8257 } else {
8258 sctx->proto = 1;
8259 }
8260 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8261 ret = -EINVAL;
8262 goto out;
8263 }
8264
8265 sctx->send_filp = fget(arg->send_fd);
8266 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8267 ret = -EBADF;
8268 goto out;
8269 }
8270
8271 sctx->send_root = send_root;
8272 /*
8273 * Unlikely but possible, if the subvolume is marked for deletion but
8274 * is slow to remove the directory entry, send can still be started
8275 */
8276 if (btrfs_root_dead(sctx->send_root)) {
8277 ret = -EPERM;
8278 goto out;
8279 }
8280
8281 sctx->clone_roots_cnt = arg->clone_sources_count;
8282
8283 if (sctx->proto >= 2) {
8284 u32 send_buf_num_pages;
8285
8286 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8287 sctx->send_buf = vmalloc(sctx->send_max_size);
8288 if (!sctx->send_buf) {
8289 ret = -ENOMEM;
8290 goto out;
8291 }
8292 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8293 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8294 sizeof(*sctx->send_buf_pages),
8295 GFP_KERNEL);
8296 if (!sctx->send_buf_pages) {
8297 ret = -ENOMEM;
8298 goto out;
8299 }
8300 for (i = 0; i < send_buf_num_pages; i++) {
8301 sctx->send_buf_pages[i] =
8302 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8303 }
8304 } else {
8305 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8306 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8307 }
8308 if (!sctx->send_buf) {
8309 ret = -ENOMEM;
8310 goto out;
8311 }
8312
8313 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8314 sizeof(*sctx->clone_roots),
8315 GFP_KERNEL);
8316 if (!sctx->clone_roots) {
8317 ret = -ENOMEM;
8318 goto out;
8319 }
8320
8321 alloc_size = array_size(sizeof(*arg->clone_sources),
8322 arg->clone_sources_count);
8323
8324 if (arg->clone_sources_count) {
8325 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8326 if (!clone_sources_tmp) {
8327 ret = -ENOMEM;
8328 goto out;
8329 }
8330
8331 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8332 alloc_size);
8333 if (ret) {
8334 ret = -EFAULT;
8335 goto out;
8336 }
8337
8338 for (i = 0; i < arg->clone_sources_count; i++) {
8339 clone_root = btrfs_get_fs_root(fs_info,
8340 clone_sources_tmp[i], true);
8341 if (IS_ERR(clone_root)) {
8342 ret = PTR_ERR(clone_root);
8343 goto out;
8344 }
8345 spin_lock(&clone_root->root_item_lock);
8346 if (!btrfs_root_readonly(clone_root) ||
8347 btrfs_root_dead(clone_root)) {
8348 spin_unlock(&clone_root->root_item_lock);
8349 btrfs_put_root(clone_root);
8350 ret = -EPERM;
8351 goto out;
8352 }
8353 if (clone_root->dedupe_in_progress) {
8354 dedupe_in_progress_warn(clone_root);
8355 spin_unlock(&clone_root->root_item_lock);
8356 btrfs_put_root(clone_root);
8357 ret = -EAGAIN;
8358 goto out;
8359 }
8360 clone_root->send_in_progress++;
8361 spin_unlock(&clone_root->root_item_lock);
8362
8363 sctx->clone_roots[i].root = clone_root;
8364 clone_sources_to_rollback = i + 1;
8365 }
8366 kvfree(clone_sources_tmp);
8367 clone_sources_tmp = NULL;
8368 }
8369
8370 if (arg->parent_root) {
8371 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8372 true);
8373 if (IS_ERR(sctx->parent_root)) {
8374 ret = PTR_ERR(sctx->parent_root);
8375 goto out;
8376 }
8377
8378 spin_lock(&sctx->parent_root->root_item_lock);
8379 sctx->parent_root->send_in_progress++;
8380 if (!btrfs_root_readonly(sctx->parent_root) ||
8381 btrfs_root_dead(sctx->parent_root)) {
8382 spin_unlock(&sctx->parent_root->root_item_lock);
8383 ret = -EPERM;
8384 goto out;
8385 }
8386 if (sctx->parent_root->dedupe_in_progress) {
8387 dedupe_in_progress_warn(sctx->parent_root);
8388 spin_unlock(&sctx->parent_root->root_item_lock);
8389 ret = -EAGAIN;
8390 goto out;
8391 }
8392 spin_unlock(&sctx->parent_root->root_item_lock);
8393 }
8394
8395 /*
8396 * Clones from send_root are allowed, but only if the clone source
8397 * is behind the current send position. This is checked while searching
8398 * for possible clone sources.
8399 */
8400 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8401 btrfs_grab_root(sctx->send_root);
8402
8403 /* We do a bsearch later */
8404 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8405 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8406 NULL);
8407 sort_clone_roots = 1;
8408
8409 ret = flush_delalloc_roots(sctx);
8410 if (ret)
8411 goto out;
8412
8413 ret = ensure_commit_roots_uptodate(sctx);
8414 if (ret)
8415 goto out;
8416
8417 ret = send_subvol(sctx);
8418 if (ret < 0)
8419 goto out;
8420
8421 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8422 ret = send_utimes(sctx, entry->key, entry->gen);
8423 if (ret < 0)
8424 goto out;
8425 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8426 }
8427
8428 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8429 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8430 if (ret < 0)
8431 goto out;
8432 ret = send_cmd(sctx);
8433 if (ret < 0)
8434 goto out;
8435 }
8436
8437 out:
8438 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8439 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8440 struct rb_node *n;
8441 struct pending_dir_move *pm;
8442
8443 n = rb_first(&sctx->pending_dir_moves);
8444 pm = rb_entry(n, struct pending_dir_move, node);
8445 while (!list_empty(&pm->list)) {
8446 struct pending_dir_move *pm2;
8447
8448 pm2 = list_first_entry(&pm->list,
8449 struct pending_dir_move, list);
8450 free_pending_move(sctx, pm2);
8451 }
8452 free_pending_move(sctx, pm);
8453 }
8454
8455 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8456 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8457 struct rb_node *n;
8458 struct waiting_dir_move *dm;
8459
8460 n = rb_first(&sctx->waiting_dir_moves);
8461 dm = rb_entry(n, struct waiting_dir_move, node);
8462 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8463 kfree(dm);
8464 }
8465
8466 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8467 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8468 struct rb_node *n;
8469 struct orphan_dir_info *odi;
8470
8471 n = rb_first(&sctx->orphan_dirs);
8472 odi = rb_entry(n, struct orphan_dir_info, node);
8473 free_orphan_dir_info(sctx, odi);
8474 }
8475
8476 if (sort_clone_roots) {
8477 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8478 btrfs_root_dec_send_in_progress(
8479 sctx->clone_roots[i].root);
8480 btrfs_put_root(sctx->clone_roots[i].root);
8481 }
8482 } else {
8483 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8484 btrfs_root_dec_send_in_progress(
8485 sctx->clone_roots[i].root);
8486 btrfs_put_root(sctx->clone_roots[i].root);
8487 }
8488
8489 btrfs_root_dec_send_in_progress(send_root);
8490 }
8491 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8492 btrfs_root_dec_send_in_progress(sctx->parent_root);
8493 btrfs_put_root(sctx->parent_root);
8494 }
8495
8496 kvfree(clone_sources_tmp);
8497
8498 if (sctx) {
8499 if (sctx->send_filp)
8500 fput(sctx->send_filp);
8501
8502 kvfree(sctx->clone_roots);
8503 kfree(sctx->send_buf_pages);
8504 kvfree(sctx->send_buf);
8505 kvfree(sctx->verity_descriptor);
8506
8507 close_current_inode(sctx);
8508
8509 btrfs_lru_cache_clear(&sctx->name_cache);
8510 btrfs_lru_cache_clear(&sctx->backref_cache);
8511 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8512 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8513
8514 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8515 kfree(sctx->cur_inode_path.buf);
8516
8517 kfree(sctx);
8518 }
8519
8520 return ret;
8521 }
8522