1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221 #define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255 out_overflow:;
256 }
257
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262 /*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 return &fs_uuids;
367 }
368
369 /*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
alloc_fs_devices(const u8 * fsid)379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400 }
401
btrfs_free_device(struct btrfs_device * device)402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409 }
410
free_fs_devices(struct btrfs_fs_devices * fs_devices)411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423 }
424
btrfs_cleanup_fs_uuids(void)425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435 }
436
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439 {
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450 }
451
find_fsid(const u8 * fsid,const u8 * metadata_fsid)452 static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454 {
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465 }
466
467 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471 {
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
482 }
483 bdev = file_bdev(*bdev_file);
484
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
492 }
493 }
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
500 }
501
502 return 0;
503
504 error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
508 }
509
510 /*
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
513 *
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
518 *
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
522 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
529
530 lockdep_assert_held(&uuid_mutex);
531
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
547 }
548
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
553
554 freed = true;
555 }
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
562 }
563 }
564
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
568
569 return ret;
570 }
571
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)572 static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
575 {
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
581
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
589
590 /*
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
594 */
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
597
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
601
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
606 }
607 }
608 if (found_by_devt)
609 break;
610 }
611
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
621 }
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
625 }
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
634 }
635 }
636
637 /* Not reached. */
638 }
639
640 /*
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
644 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
648 {
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
653
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
658
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
663
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
667
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
670
671 device->generation = btrfs_super_generation(disk_super);
672
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
679 }
680
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 }
689
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
692
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
695
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
706
707 device->devt = device->bdev->bd_dev;
708 }
709
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 }
716 btrfs_release_disk_super(disk_super);
717
718 return 0;
719
720 error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
723
724 return -EINVAL;
725 }
726
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734
is_same_device(struct btrfs_device * device,const char * new_path)735 static bool is_same_device(struct btrfs_device *device, const char *new_path)
736 {
737 struct path old = { .mnt = NULL, .dentry = NULL };
738 struct path new = { .mnt = NULL, .dentry = NULL };
739 char *old_path = NULL;
740 bool is_same = false;
741 int ret;
742
743 if (!device->name)
744 goto out;
745
746 old_path = kzalloc(PATH_MAX, GFP_NOFS);
747 if (!old_path)
748 goto out;
749
750 rcu_read_lock();
751 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
752 rcu_read_unlock();
753 if (ret < 0)
754 goto out;
755
756 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
757 if (ret)
758 goto out;
759 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
760 if (ret)
761 goto out;
762 if (path_equal(&old, &new))
763 is_same = true;
764 out:
765 kfree(old_path);
766 path_put(&old);
767 path_put(&new);
768 return is_same;
769 }
770
771 /*
772 * Add new device to list of registered devices
773 *
774 * Returns:
775 * device pointer which was just added or updated when successful
776 * error pointer when failed
777 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)778 static noinline struct btrfs_device *device_list_add(const char *path,
779 struct btrfs_super_block *disk_super,
780 bool *new_device_added)
781 {
782 struct btrfs_device *device;
783 struct btrfs_fs_devices *fs_devices = NULL;
784 struct rcu_string *name;
785 u64 found_transid = btrfs_super_generation(disk_super);
786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 dev_t path_devt;
788 int error;
789 bool same_fsid_diff_dev = false;
790 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
791 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
792
793 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
794 btrfs_err(NULL,
795 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
796 path);
797 return ERR_PTR(-EAGAIN);
798 }
799
800 error = lookup_bdev(path, &path_devt);
801 if (error) {
802 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
803 path, error);
804 return ERR_PTR(error);
805 }
806
807 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
808
809 if (!fs_devices) {
810 fs_devices = alloc_fs_devices(disk_super->fsid);
811 if (IS_ERR(fs_devices))
812 return ERR_CAST(fs_devices);
813
814 if (has_metadata_uuid)
815 memcpy(fs_devices->metadata_uuid,
816 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
817
818 if (same_fsid_diff_dev) {
819 generate_random_uuid(fs_devices->fsid);
820 fs_devices->temp_fsid = true;
821 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
822 path, MAJOR(path_devt), MINOR(path_devt),
823 fs_devices->fsid);
824 }
825
826 mutex_lock(&fs_devices->device_list_mutex);
827 list_add(&fs_devices->fs_list, &fs_uuids);
828
829 device = NULL;
830 } else {
831 struct btrfs_dev_lookup_args args = {
832 .devid = devid,
833 .uuid = disk_super->dev_item.uuid,
834 };
835
836 mutex_lock(&fs_devices->device_list_mutex);
837 device = btrfs_find_device(fs_devices, &args);
838
839 if (found_transid > fs_devices->latest_generation) {
840 memcpy(fs_devices->fsid, disk_super->fsid,
841 BTRFS_FSID_SIZE);
842 memcpy(fs_devices->metadata_uuid,
843 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
844 }
845 }
846
847 if (!device) {
848 unsigned int nofs_flag;
849
850 if (fs_devices->opened) {
851 btrfs_err(NULL,
852 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
853 path, MAJOR(path_devt), MINOR(path_devt),
854 fs_devices->fsid, current->comm,
855 task_pid_nr(current));
856 mutex_unlock(&fs_devices->device_list_mutex);
857 return ERR_PTR(-EBUSY);
858 }
859
860 nofs_flag = memalloc_nofs_save();
861 device = btrfs_alloc_device(NULL, &devid,
862 disk_super->dev_item.uuid, path);
863 memalloc_nofs_restore(nofs_flag);
864 if (IS_ERR(device)) {
865 mutex_unlock(&fs_devices->device_list_mutex);
866 /* we can safely leave the fs_devices entry around */
867 return device;
868 }
869
870 device->devt = path_devt;
871
872 list_add_rcu(&device->dev_list, &fs_devices->devices);
873 fs_devices->num_devices++;
874
875 device->fs_devices = fs_devices;
876 *new_device_added = true;
877
878 if (disk_super->label[0])
879 pr_info(
880 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
881 disk_super->label, devid, found_transid, path,
882 MAJOR(path_devt), MINOR(path_devt),
883 current->comm, task_pid_nr(current));
884 else
885 pr_info(
886 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
887 disk_super->fsid, devid, found_transid, path,
888 MAJOR(path_devt), MINOR(path_devt),
889 current->comm, task_pid_nr(current));
890
891 } else if (!device->name || !is_same_device(device, path)) {
892 /*
893 * When FS is already mounted.
894 * 1. If you are here and if the device->name is NULL that
895 * means this device was missing at time of FS mount.
896 * 2. If you are here and if the device->name is different
897 * from 'path' that means either
898 * a. The same device disappeared and reappeared with
899 * different name. or
900 * b. The missing-disk-which-was-replaced, has
901 * reappeared now.
902 *
903 * We must allow 1 and 2a above. But 2b would be a spurious
904 * and unintentional.
905 *
906 * Further in case of 1 and 2a above, the disk at 'path'
907 * would have missed some transaction when it was away and
908 * in case of 2a the stale bdev has to be updated as well.
909 * 2b must not be allowed at all time.
910 */
911
912 /*
913 * For now, we do allow update to btrfs_fs_device through the
914 * btrfs dev scan cli after FS has been mounted. We're still
915 * tracking a problem where systems fail mount by subvolume id
916 * when we reject replacement on a mounted FS.
917 */
918 if (!fs_devices->opened && found_transid < device->generation) {
919 /*
920 * That is if the FS is _not_ mounted and if you
921 * are here, that means there is more than one
922 * disk with same uuid and devid.We keep the one
923 * with larger generation number or the last-in if
924 * generation are equal.
925 */
926 mutex_unlock(&fs_devices->device_list_mutex);
927 btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 path, found_transid, device->generation);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 *
937 * NOTE: the device->fs_info may not be reliable here so pass
938 * in a NULL to message helpers instead. This avoids a possible
939 * use-after-free when the fs_info and fs_info->sb are already
940 * torn down.
941 */
942 if (device->bdev) {
943 if (device->devt != path_devt) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 btrfs_warn_in_rcu(NULL,
946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 path, devid, found_transid,
948 current->comm,
949 task_pid_nr(current));
950 return ERR_PTR(-EEXIST);
951 }
952 btrfs_info_in_rcu(NULL,
953 "devid %llu device path %s changed to %s scanned by %s (%d)",
954 devid, btrfs_dev_name(device),
955 path, current->comm,
956 task_pid_nr(current));
957 }
958
959 name = rcu_string_strdup(path, GFP_NOFS);
960 if (!name) {
961 mutex_unlock(&fs_devices->device_list_mutex);
962 return ERR_PTR(-ENOMEM);
963 }
964 rcu_string_free(device->name);
965 rcu_assign_pointer(device->name, name);
966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 fs_devices->missing_devices--;
968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 }
970 device->devt = path_devt;
971 }
972
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
984
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987 mutex_unlock(&fs_devices->device_list_mutex);
988 return device;
989 }
990
clone_fs_devices(struct btrfs_fs_devices * orig)991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
996 int ret = 0;
997
998 lockdep_assert_held(&uuid_mutex);
999
1000 fs_devices = alloc_fs_devices(orig->fsid);
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
1003
1004 fs_devices->total_devices = orig->total_devices;
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 const char *dev_path = NULL;
1008
1009 /*
1010 * This is ok to do without RCU read locked because we hold the
1011 * uuid mutex so nothing we touch in here is going to disappear.
1012 */
1013 if (orig_dev->name)
1014 dev_path = orig_dev->name->str;
1015
1016 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 orig_dev->uuid, dev_path);
1018 if (IS_ERR(device)) {
1019 ret = PTR_ERR(device);
1020 goto error;
1021 }
1022
1023 if (orig_dev->zone_info) {
1024 struct btrfs_zoned_device_info *zone_info;
1025
1026 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 if (!zone_info) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 device->zone_info = zone_info;
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 return fs_devices;
1040 error:
1041 free_fs_devices(fs_devices);
1042 return ERR_PTR(ret);
1043 }
1044
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 struct btrfs_device **latest_dev)
1047 {
1048 struct btrfs_device *device, *next;
1049
1050 /* This is the initialized path, it is safe to release the devices. */
1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 &device->dev_state) &&
1055 !test_bit(BTRFS_DEV_STATE_MISSING,
1056 &device->dev_state) &&
1057 (!*latest_dev ||
1058 device->generation > (*latest_dev)->generation)) {
1059 *latest_dev = device;
1060 }
1061 continue;
1062 }
1063
1064 /*
1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 * in btrfs_init_dev_replace() so just continue.
1067 */
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 continue;
1070
1071 if (device->bdev_file) {
1072 fput(device->bdev_file);
1073 device->bdev = NULL;
1074 device->bdev_file = NULL;
1075 fs_devices->open_devices--;
1076 }
1077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1078 list_del_init(&device->dev_alloc_list);
1079 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1080 fs_devices->rw_devices--;
1081 }
1082 list_del_init(&device->dev_list);
1083 fs_devices->num_devices--;
1084 btrfs_free_device(device);
1085 }
1086
1087 }
1088
1089 /*
1090 * After we have read the system tree and know devids belonging to this
1091 * filesystem, remove the device which does not belong there.
1092 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094 {
1095 struct btrfs_device *latest_dev = NULL;
1096 struct btrfs_fs_devices *seed_dev;
1097
1098 mutex_lock(&uuid_mutex);
1099 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1100
1101 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1103
1104 fs_devices->latest_dev = latest_dev;
1105
1106 mutex_unlock(&uuid_mutex);
1107 }
1108
btrfs_close_bdev(struct btrfs_device * device)1109 static void btrfs_close_bdev(struct btrfs_device *device)
1110 {
1111 if (!device->bdev)
1112 return;
1113
1114 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115 sync_blockdev(device->bdev);
1116 invalidate_bdev(device->bdev);
1117 }
1118
1119 fput(device->bdev_file);
1120 }
1121
btrfs_close_one_device(struct btrfs_device * device)1122 static void btrfs_close_one_device(struct btrfs_device *device)
1123 {
1124 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125
1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128 list_del_init(&device->dev_alloc_list);
1129 fs_devices->rw_devices--;
1130 }
1131
1132 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1133 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1134
1135 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1136 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1137 fs_devices->missing_devices--;
1138 }
1139
1140 btrfs_close_bdev(device);
1141 if (device->bdev) {
1142 fs_devices->open_devices--;
1143 device->bdev = NULL;
1144 device->bdev_file = NULL;
1145 }
1146 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1147 btrfs_destroy_dev_zone_info(device);
1148
1149 device->fs_info = NULL;
1150 atomic_set(&device->dev_stats_ccnt, 0);
1151 extent_io_tree_release(&device->alloc_state);
1152
1153 /*
1154 * Reset the flush error record. We might have a transient flush error
1155 * in this mount, and if so we aborted the current transaction and set
1156 * the fs to an error state, guaranteeing no super blocks can be further
1157 * committed. However that error might be transient and if we unmount the
1158 * filesystem and mount it again, we should allow the mount to succeed
1159 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1160 * filesystem again we still get flush errors, then we will again abort
1161 * any transaction and set the error state, guaranteeing no commits of
1162 * unsafe super blocks.
1163 */
1164 device->last_flush_error = 0;
1165
1166 /* Verify the device is back in a pristine state */
1167 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1168 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1169 WARN_ON(!list_empty(&device->dev_alloc_list));
1170 WARN_ON(!list_empty(&device->post_commit_list));
1171 }
1172
close_fs_devices(struct btrfs_fs_devices * fs_devices)1173 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1174 {
1175 struct btrfs_device *device, *tmp;
1176
1177 lockdep_assert_held(&uuid_mutex);
1178
1179 if (--fs_devices->opened > 0)
1180 return;
1181
1182 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1183 btrfs_close_one_device(device);
1184
1185 WARN_ON(fs_devices->open_devices);
1186 WARN_ON(fs_devices->rw_devices);
1187 fs_devices->opened = 0;
1188 fs_devices->seeding = false;
1189 fs_devices->fs_info = NULL;
1190 }
1191
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1192 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1193 {
1194 LIST_HEAD(list);
1195 struct btrfs_fs_devices *tmp;
1196
1197 mutex_lock(&uuid_mutex);
1198 close_fs_devices(fs_devices);
1199 if (!fs_devices->opened) {
1200 list_splice_init(&fs_devices->seed_list, &list);
1201
1202 /*
1203 * If the struct btrfs_fs_devices is not assembled with any
1204 * other device, it can be re-initialized during the next mount
1205 * without the needing device-scan step. Therefore, it can be
1206 * fully freed.
1207 */
1208 if (fs_devices->num_devices == 1) {
1209 list_del(&fs_devices->fs_list);
1210 free_fs_devices(fs_devices);
1211 }
1212 }
1213
1214
1215 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1216 close_fs_devices(fs_devices);
1217 list_del(&fs_devices->seed_list);
1218 free_fs_devices(fs_devices);
1219 }
1220 mutex_unlock(&uuid_mutex);
1221 }
1222
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1223 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1224 blk_mode_t flags, void *holder)
1225 {
1226 struct btrfs_device *device;
1227 struct btrfs_device *latest_dev = NULL;
1228 struct btrfs_device *tmp_device;
1229 int ret = 0;
1230
1231 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1232 dev_list) {
1233 int ret2;
1234
1235 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1236 if (ret2 == 0 &&
1237 (!latest_dev || device->generation > latest_dev->generation)) {
1238 latest_dev = device;
1239 } else if (ret2 == -ENODATA) {
1240 fs_devices->num_devices--;
1241 list_del(&device->dev_list);
1242 btrfs_free_device(device);
1243 }
1244 if (ret == 0 && ret2 != 0)
1245 ret = ret2;
1246 }
1247
1248 if (fs_devices->open_devices == 0) {
1249 if (ret)
1250 return ret;
1251 return -EINVAL;
1252 }
1253
1254 fs_devices->opened = 1;
1255 fs_devices->latest_dev = latest_dev;
1256 fs_devices->total_rw_bytes = 0;
1257 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1258 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1259
1260 return 0;
1261 }
1262
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1263 static int devid_cmp(void *priv, const struct list_head *a,
1264 const struct list_head *b)
1265 {
1266 const struct btrfs_device *dev1, *dev2;
1267
1268 dev1 = list_entry(a, struct btrfs_device, dev_list);
1269 dev2 = list_entry(b, struct btrfs_device, dev_list);
1270
1271 if (dev1->devid < dev2->devid)
1272 return -1;
1273 else if (dev1->devid > dev2->devid)
1274 return 1;
1275 return 0;
1276 }
1277
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1278 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1279 blk_mode_t flags, void *holder)
1280 {
1281 int ret;
1282
1283 lockdep_assert_held(&uuid_mutex);
1284 /*
1285 * The device_list_mutex cannot be taken here in case opening the
1286 * underlying device takes further locks like open_mutex.
1287 *
1288 * We also don't need the lock here as this is called during mount and
1289 * exclusion is provided by uuid_mutex
1290 */
1291
1292 if (fs_devices->opened) {
1293 fs_devices->opened++;
1294 ret = 0;
1295 } else {
1296 list_sort(NULL, &fs_devices->devices, devid_cmp);
1297 ret = open_fs_devices(fs_devices, flags, holder);
1298 }
1299
1300 return ret;
1301 }
1302
btrfs_release_disk_super(struct btrfs_super_block * super)1303 void btrfs_release_disk_super(struct btrfs_super_block *super)
1304 {
1305 struct page *page = virt_to_page(super);
1306
1307 put_page(page);
1308 }
1309
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1310 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1311 u64 bytenr, u64 bytenr_orig)
1312 {
1313 struct btrfs_super_block *disk_super;
1314 struct page *page;
1315 void *p;
1316 pgoff_t index;
1317
1318 /* make sure our super fits in the device */
1319 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1320 return ERR_PTR(-EINVAL);
1321
1322 /* make sure our super fits in the page */
1323 if (sizeof(*disk_super) > PAGE_SIZE)
1324 return ERR_PTR(-EINVAL);
1325
1326 /* make sure our super doesn't straddle pages on disk */
1327 index = bytenr >> PAGE_SHIFT;
1328 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1329 return ERR_PTR(-EINVAL);
1330
1331 /* pull in the page with our super */
1332 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1333
1334 if (IS_ERR(page))
1335 return ERR_CAST(page);
1336
1337 p = page_address(page);
1338
1339 /* align our pointer to the offset of the super block */
1340 disk_super = p + offset_in_page(bytenr);
1341
1342 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1343 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1344 btrfs_release_disk_super(p);
1345 return ERR_PTR(-EINVAL);
1346 }
1347
1348 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1349 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1350
1351 return disk_super;
1352 }
1353
btrfs_forget_devices(dev_t devt)1354 int btrfs_forget_devices(dev_t devt)
1355 {
1356 int ret;
1357
1358 mutex_lock(&uuid_mutex);
1359 ret = btrfs_free_stale_devices(devt, NULL);
1360 mutex_unlock(&uuid_mutex);
1361
1362 return ret;
1363 }
1364
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1365 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1366 const char *path, dev_t devt,
1367 bool mount_arg_dev)
1368 {
1369 struct btrfs_fs_devices *fs_devices;
1370
1371 /*
1372 * Do not skip device registration for mounted devices with matching
1373 * maj:min but different paths. Booting without initrd relies on
1374 * /dev/root initially, later replaced with the actual root device.
1375 * A successful scan ensures grub2-probe selects the correct device.
1376 */
1377 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1378 struct btrfs_device *device;
1379
1380 mutex_lock(&fs_devices->device_list_mutex);
1381
1382 if (!fs_devices->opened) {
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384 continue;
1385 }
1386
1387 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1388 if (device->bdev && (device->bdev->bd_dev == devt) &&
1389 strcmp(device->name->str, path) != 0) {
1390 mutex_unlock(&fs_devices->device_list_mutex);
1391
1392 /* Do not skip registration. */
1393 return false;
1394 }
1395 }
1396 mutex_unlock(&fs_devices->device_list_mutex);
1397 }
1398
1399 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1400 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1401 return true;
1402
1403 return false;
1404 }
1405
1406 /*
1407 * Look for a btrfs signature on a device. This may be called out of the mount path
1408 * and we are not allowed to call set_blocksize during the scan. The superblock
1409 * is read via pagecache.
1410 *
1411 * With @mount_arg_dev it's a scan during mount time that will always register
1412 * the device or return an error. Multi-device and seeding devices are registered
1413 * in both cases.
1414 */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1415 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1416 bool mount_arg_dev)
1417 {
1418 struct btrfs_super_block *disk_super;
1419 bool new_device_added = false;
1420 struct btrfs_device *device = NULL;
1421 struct file *bdev_file;
1422 u64 bytenr;
1423 dev_t devt;
1424 int ret;
1425
1426 lockdep_assert_held(&uuid_mutex);
1427
1428 /*
1429 * Avoid an exclusive open here, as the systemd-udev may initiate the
1430 * device scan which may race with the user's mount or mkfs command,
1431 * resulting in failure.
1432 * Since the device scan is solely for reading purposes, there is no
1433 * need for an exclusive open. Additionally, the devices are read again
1434 * during the mount process. It is ok to get some inconsistent
1435 * values temporarily, as the device paths of the fsid are the only
1436 * required information for assembling the volume.
1437 */
1438 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1439 if (IS_ERR(bdev_file))
1440 return ERR_CAST(bdev_file);
1441
1442 /*
1443 * We would like to check all the super blocks, but doing so would
1444 * allow a mount to succeed after a mkfs from a different filesystem.
1445 * Currently, recovery from a bad primary btrfs superblock is done
1446 * using the userspace command 'btrfs check --super'.
1447 */
1448 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1449 if (ret) {
1450 device = ERR_PTR(ret);
1451 goto error_bdev_put;
1452 }
1453
1454 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1455 btrfs_sb_offset(0));
1456 if (IS_ERR(disk_super)) {
1457 device = ERR_CAST(disk_super);
1458 goto error_bdev_put;
1459 }
1460
1461 devt = file_bdev(bdev_file)->bd_dev;
1462 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1463 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1464 path, MAJOR(devt), MINOR(devt));
1465
1466 btrfs_free_stale_devices(devt, NULL);
1467
1468 device = NULL;
1469 goto free_disk_super;
1470 }
1471
1472 device = device_list_add(path, disk_super, &new_device_added);
1473 if (!IS_ERR(device) && new_device_added)
1474 btrfs_free_stale_devices(device->devt, device);
1475
1476 free_disk_super:
1477 btrfs_release_disk_super(disk_super);
1478
1479 error_bdev_put:
1480 fput(bdev_file);
1481
1482 return device;
1483 }
1484
1485 /*
1486 * Try to find a chunk that intersects [start, start + len] range and when one
1487 * such is found, record the end of it in *start
1488 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1489 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1490 u64 len)
1491 {
1492 u64 physical_start, physical_end;
1493
1494 lockdep_assert_held(&device->fs_info->chunk_mutex);
1495
1496 if (find_first_extent_bit(&device->alloc_state, *start,
1497 &physical_start, &physical_end,
1498 CHUNK_ALLOCATED, NULL)) {
1499
1500 if (in_range(physical_start, *start, len) ||
1501 in_range(*start, physical_start,
1502 physical_end + 1 - physical_start)) {
1503 *start = physical_end + 1;
1504 return true;
1505 }
1506 }
1507 return false;
1508 }
1509
dev_extent_search_start(struct btrfs_device * device)1510 static u64 dev_extent_search_start(struct btrfs_device *device)
1511 {
1512 switch (device->fs_devices->chunk_alloc_policy) {
1513 case BTRFS_CHUNK_ALLOC_REGULAR:
1514 return BTRFS_DEVICE_RANGE_RESERVED;
1515 case BTRFS_CHUNK_ALLOC_ZONED:
1516 /*
1517 * We don't care about the starting region like regular
1518 * allocator, because we anyway use/reserve the first two zones
1519 * for superblock logging.
1520 */
1521 return 0;
1522 default:
1523 BUG();
1524 }
1525 }
1526
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1527 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1528 u64 *hole_start, u64 *hole_size,
1529 u64 num_bytes)
1530 {
1531 u64 zone_size = device->zone_info->zone_size;
1532 u64 pos;
1533 int ret;
1534 bool changed = false;
1535
1536 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1537
1538 while (*hole_size > 0) {
1539 pos = btrfs_find_allocatable_zones(device, *hole_start,
1540 *hole_start + *hole_size,
1541 num_bytes);
1542 if (pos != *hole_start) {
1543 *hole_size = *hole_start + *hole_size - pos;
1544 *hole_start = pos;
1545 changed = true;
1546 if (*hole_size < num_bytes)
1547 break;
1548 }
1549
1550 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1551
1552 /* Range is ensured to be empty */
1553 if (!ret)
1554 return changed;
1555
1556 /* Given hole range was invalid (outside of device) */
1557 if (ret == -ERANGE) {
1558 *hole_start += *hole_size;
1559 *hole_size = 0;
1560 return true;
1561 }
1562
1563 *hole_start += zone_size;
1564 *hole_size -= zone_size;
1565 changed = true;
1566 }
1567
1568 return changed;
1569 }
1570
1571 /*
1572 * Check if specified hole is suitable for allocation.
1573 *
1574 * @device: the device which we have the hole
1575 * @hole_start: starting position of the hole
1576 * @hole_size: the size of the hole
1577 * @num_bytes: the size of the free space that we need
1578 *
1579 * This function may modify @hole_start and @hole_size to reflect the suitable
1580 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1581 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1582 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1583 u64 *hole_size, u64 num_bytes)
1584 {
1585 bool changed = false;
1586 u64 hole_end = *hole_start + *hole_size;
1587
1588 for (;;) {
1589 /*
1590 * Check before we set max_hole_start, otherwise we could end up
1591 * sending back this offset anyway.
1592 */
1593 if (contains_pending_extent(device, hole_start, *hole_size)) {
1594 if (hole_end >= *hole_start)
1595 *hole_size = hole_end - *hole_start;
1596 else
1597 *hole_size = 0;
1598 changed = true;
1599 }
1600
1601 switch (device->fs_devices->chunk_alloc_policy) {
1602 case BTRFS_CHUNK_ALLOC_REGULAR:
1603 /* No extra check */
1604 break;
1605 case BTRFS_CHUNK_ALLOC_ZONED:
1606 if (dev_extent_hole_check_zoned(device, hole_start,
1607 hole_size, num_bytes)) {
1608 changed = true;
1609 /*
1610 * The changed hole can contain pending extent.
1611 * Loop again to check that.
1612 */
1613 continue;
1614 }
1615 break;
1616 default:
1617 BUG();
1618 }
1619
1620 break;
1621 }
1622
1623 return changed;
1624 }
1625
1626 /*
1627 * Find free space in the specified device.
1628 *
1629 * @device: the device which we search the free space in
1630 * @num_bytes: the size of the free space that we need
1631 * @search_start: the position from which to begin the search
1632 * @start: store the start of the free space.
1633 * @len: the size of the free space. that we find, or the size
1634 * of the max free space if we don't find suitable free space
1635 *
1636 * This does a pretty simple search, the expectation is that it is called very
1637 * infrequently and that a given device has a small number of extents.
1638 *
1639 * @start is used to store the start of the free space if we find. But if we
1640 * don't find suitable free space, it will be used to store the start position
1641 * of the max free space.
1642 *
1643 * @len is used to store the size of the free space that we find.
1644 * But if we don't find suitable free space, it is used to store the size of
1645 * the max free space.
1646 *
1647 * NOTE: This function will search *commit* root of device tree, and does extra
1648 * check to ensure dev extents are not double allocated.
1649 * This makes the function safe to allocate dev extents but may not report
1650 * correct usable device space, as device extent freed in current transaction
1651 * is not reported as available.
1652 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1653 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1654 u64 *start, u64 *len)
1655 {
1656 struct btrfs_fs_info *fs_info = device->fs_info;
1657 struct btrfs_root *root = fs_info->dev_root;
1658 struct btrfs_key key;
1659 struct btrfs_dev_extent *dev_extent;
1660 struct btrfs_path *path;
1661 u64 search_start;
1662 u64 hole_size;
1663 u64 max_hole_start;
1664 u64 max_hole_size = 0;
1665 u64 extent_end;
1666 u64 search_end = device->total_bytes;
1667 int ret;
1668 int slot;
1669 struct extent_buffer *l;
1670
1671 search_start = dev_extent_search_start(device);
1672 max_hole_start = search_start;
1673
1674 WARN_ON(device->zone_info &&
1675 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1676
1677 path = btrfs_alloc_path();
1678 if (!path) {
1679 ret = -ENOMEM;
1680 goto out;
1681 }
1682 again:
1683 if (search_start >= search_end ||
1684 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1685 ret = -ENOSPC;
1686 goto out;
1687 }
1688
1689 path->reada = READA_FORWARD;
1690 path->search_commit_root = 1;
1691 path->skip_locking = 1;
1692
1693 key.objectid = device->devid;
1694 key.offset = search_start;
1695 key.type = BTRFS_DEV_EXTENT_KEY;
1696
1697 ret = btrfs_search_backwards(root, &key, path);
1698 if (ret < 0)
1699 goto out;
1700
1701 while (search_start < search_end) {
1702 l = path->nodes[0];
1703 slot = path->slots[0];
1704 if (slot >= btrfs_header_nritems(l)) {
1705 ret = btrfs_next_leaf(root, path);
1706 if (ret == 0)
1707 continue;
1708 if (ret < 0)
1709 goto out;
1710
1711 break;
1712 }
1713 btrfs_item_key_to_cpu(l, &key, slot);
1714
1715 if (key.objectid < device->devid)
1716 goto next;
1717
1718 if (key.objectid > device->devid)
1719 break;
1720
1721 if (key.type != BTRFS_DEV_EXTENT_KEY)
1722 goto next;
1723
1724 if (key.offset > search_end)
1725 break;
1726
1727 if (key.offset > search_start) {
1728 hole_size = key.offset - search_start;
1729 dev_extent_hole_check(device, &search_start, &hole_size,
1730 num_bytes);
1731
1732 if (hole_size > max_hole_size) {
1733 max_hole_start = search_start;
1734 max_hole_size = hole_size;
1735 }
1736
1737 /*
1738 * If this free space is greater than which we need,
1739 * it must be the max free space that we have found
1740 * until now, so max_hole_start must point to the start
1741 * of this free space and the length of this free space
1742 * is stored in max_hole_size. Thus, we return
1743 * max_hole_start and max_hole_size and go back to the
1744 * caller.
1745 */
1746 if (hole_size >= num_bytes) {
1747 ret = 0;
1748 goto out;
1749 }
1750 }
1751
1752 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1753 extent_end = key.offset + btrfs_dev_extent_length(l,
1754 dev_extent);
1755 if (extent_end > search_start)
1756 search_start = extent_end;
1757 next:
1758 path->slots[0]++;
1759 cond_resched();
1760 }
1761
1762 /*
1763 * At this point, search_start should be the end of
1764 * allocated dev extents, and when shrinking the device,
1765 * search_end may be smaller than search_start.
1766 */
1767 if (search_end > search_start) {
1768 hole_size = search_end - search_start;
1769 if (dev_extent_hole_check(device, &search_start, &hole_size,
1770 num_bytes)) {
1771 btrfs_release_path(path);
1772 goto again;
1773 }
1774
1775 if (hole_size > max_hole_size) {
1776 max_hole_start = search_start;
1777 max_hole_size = hole_size;
1778 }
1779 }
1780
1781 /* See above. */
1782 if (max_hole_size < num_bytes)
1783 ret = -ENOSPC;
1784 else
1785 ret = 0;
1786
1787 ASSERT(max_hole_start + max_hole_size <= search_end);
1788 out:
1789 btrfs_free_path(path);
1790 *start = max_hole_start;
1791 if (len)
1792 *len = max_hole_size;
1793 return ret;
1794 }
1795
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1796 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1797 struct btrfs_device *device,
1798 u64 start, u64 *dev_extent_len)
1799 {
1800 struct btrfs_fs_info *fs_info = device->fs_info;
1801 struct btrfs_root *root = fs_info->dev_root;
1802 int ret;
1803 struct btrfs_path *path;
1804 struct btrfs_key key;
1805 struct btrfs_key found_key;
1806 struct extent_buffer *leaf = NULL;
1807 struct btrfs_dev_extent *extent = NULL;
1808
1809 path = btrfs_alloc_path();
1810 if (!path)
1811 return -ENOMEM;
1812
1813 key.objectid = device->devid;
1814 key.offset = start;
1815 key.type = BTRFS_DEV_EXTENT_KEY;
1816 again:
1817 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1818 if (ret > 0) {
1819 ret = btrfs_previous_item(root, path, key.objectid,
1820 BTRFS_DEV_EXTENT_KEY);
1821 if (ret)
1822 goto out;
1823 leaf = path->nodes[0];
1824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1825 extent = btrfs_item_ptr(leaf, path->slots[0],
1826 struct btrfs_dev_extent);
1827 BUG_ON(found_key.offset > start || found_key.offset +
1828 btrfs_dev_extent_length(leaf, extent) < start);
1829 key = found_key;
1830 btrfs_release_path(path);
1831 goto again;
1832 } else if (ret == 0) {
1833 leaf = path->nodes[0];
1834 extent = btrfs_item_ptr(leaf, path->slots[0],
1835 struct btrfs_dev_extent);
1836 } else {
1837 goto out;
1838 }
1839
1840 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1841
1842 ret = btrfs_del_item(trans, root, path);
1843 if (ret == 0)
1844 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1845 out:
1846 btrfs_free_path(path);
1847 return ret;
1848 }
1849
find_next_chunk(struct btrfs_fs_info * fs_info)1850 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1851 {
1852 struct rb_node *n;
1853 u64 ret = 0;
1854
1855 read_lock(&fs_info->mapping_tree_lock);
1856 n = rb_last(&fs_info->mapping_tree.rb_root);
1857 if (n) {
1858 struct btrfs_chunk_map *map;
1859
1860 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1861 ret = map->start + map->chunk_len;
1862 }
1863 read_unlock(&fs_info->mapping_tree_lock);
1864
1865 return ret;
1866 }
1867
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1868 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1869 u64 *devid_ret)
1870 {
1871 int ret;
1872 struct btrfs_key key;
1873 struct btrfs_key found_key;
1874 struct btrfs_path *path;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1881 key.type = BTRFS_DEV_ITEM_KEY;
1882 key.offset = (u64)-1;
1883
1884 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1885 if (ret < 0)
1886 goto error;
1887
1888 if (ret == 0) {
1889 /* Corruption */
1890 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1891 ret = -EUCLEAN;
1892 goto error;
1893 }
1894
1895 ret = btrfs_previous_item(fs_info->chunk_root, path,
1896 BTRFS_DEV_ITEMS_OBJECTID,
1897 BTRFS_DEV_ITEM_KEY);
1898 if (ret) {
1899 *devid_ret = 1;
1900 } else {
1901 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1902 path->slots[0]);
1903 *devid_ret = found_key.offset + 1;
1904 }
1905 ret = 0;
1906 error:
1907 btrfs_free_path(path);
1908 return ret;
1909 }
1910
1911 /*
1912 * the device information is stored in the chunk root
1913 * the btrfs_device struct should be fully filled in
1914 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1915 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_device *device)
1917 {
1918 int ret;
1919 struct btrfs_path *path;
1920 struct btrfs_dev_item *dev_item;
1921 struct extent_buffer *leaf;
1922 struct btrfs_key key;
1923 unsigned long ptr;
1924
1925 path = btrfs_alloc_path();
1926 if (!path)
1927 return -ENOMEM;
1928
1929 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1930 key.type = BTRFS_DEV_ITEM_KEY;
1931 key.offset = device->devid;
1932
1933 btrfs_reserve_chunk_metadata(trans, true);
1934 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1935 &key, sizeof(*dev_item));
1936 btrfs_trans_release_chunk_metadata(trans);
1937 if (ret)
1938 goto out;
1939
1940 leaf = path->nodes[0];
1941 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1942
1943 btrfs_set_device_id(leaf, dev_item, device->devid);
1944 btrfs_set_device_generation(leaf, dev_item, 0);
1945 btrfs_set_device_type(leaf, dev_item, device->type);
1946 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1947 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1948 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1949 btrfs_set_device_total_bytes(leaf, dev_item,
1950 btrfs_device_get_disk_total_bytes(device));
1951 btrfs_set_device_bytes_used(leaf, dev_item,
1952 btrfs_device_get_bytes_used(device));
1953 btrfs_set_device_group(leaf, dev_item, 0);
1954 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1955 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1956 btrfs_set_device_start_offset(leaf, dev_item, 0);
1957
1958 ptr = btrfs_device_uuid(dev_item);
1959 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1960 ptr = btrfs_device_fsid(dev_item);
1961 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1962 ptr, BTRFS_FSID_SIZE);
1963 btrfs_mark_buffer_dirty(trans, leaf);
1964
1965 ret = 0;
1966 out:
1967 btrfs_free_path(path);
1968 return ret;
1969 }
1970
1971 /*
1972 * Function to update ctime/mtime for a given device path.
1973 * Mainly used for ctime/mtime based probe like libblkid.
1974 *
1975 * We don't care about errors here, this is just to be kind to userspace.
1976 */
update_dev_time(const char * device_path)1977 static void update_dev_time(const char *device_path)
1978 {
1979 struct path path;
1980 int ret;
1981
1982 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1983 if (ret)
1984 return;
1985
1986 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1987 path_put(&path);
1988 }
1989
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1990 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1991 struct btrfs_device *device)
1992 {
1993 struct btrfs_root *root = device->fs_info->chunk_root;
1994 int ret;
1995 struct btrfs_path *path;
1996 struct btrfs_key key;
1997
1998 path = btrfs_alloc_path();
1999 if (!path)
2000 return -ENOMEM;
2001
2002 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2003 key.type = BTRFS_DEV_ITEM_KEY;
2004 key.offset = device->devid;
2005
2006 btrfs_reserve_chunk_metadata(trans, false);
2007 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2008 btrfs_trans_release_chunk_metadata(trans);
2009 if (ret) {
2010 if (ret > 0)
2011 ret = -ENOENT;
2012 goto out;
2013 }
2014
2015 ret = btrfs_del_item(trans, root, path);
2016 out:
2017 btrfs_free_path(path);
2018 return ret;
2019 }
2020
2021 /*
2022 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2023 * filesystem. It's up to the caller to adjust that number regarding eg. device
2024 * replace.
2025 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2026 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2027 u64 num_devices)
2028 {
2029 u64 all_avail;
2030 unsigned seq;
2031 int i;
2032
2033 do {
2034 seq = read_seqbegin(&fs_info->profiles_lock);
2035
2036 all_avail = fs_info->avail_data_alloc_bits |
2037 fs_info->avail_system_alloc_bits |
2038 fs_info->avail_metadata_alloc_bits;
2039 } while (read_seqretry(&fs_info->profiles_lock, seq));
2040
2041 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2042 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2043 continue;
2044
2045 if (num_devices < btrfs_raid_array[i].devs_min)
2046 return btrfs_raid_array[i].mindev_error;
2047 }
2048
2049 return 0;
2050 }
2051
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2052 static struct btrfs_device * btrfs_find_next_active_device(
2053 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2054 {
2055 struct btrfs_device *next_device;
2056
2057 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2058 if (next_device != device &&
2059 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2060 && next_device->bdev)
2061 return next_device;
2062 }
2063
2064 return NULL;
2065 }
2066
2067 /*
2068 * Helper function to check if the given device is part of s_bdev / latest_dev
2069 * and replace it with the provided or the next active device, in the context
2070 * where this function called, there should be always be another device (or
2071 * this_dev) which is active.
2072 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2073 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2074 struct btrfs_device *next_device)
2075 {
2076 struct btrfs_fs_info *fs_info = device->fs_info;
2077
2078 if (!next_device)
2079 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2080 device);
2081 ASSERT(next_device);
2082
2083 if (fs_info->sb->s_bdev &&
2084 (fs_info->sb->s_bdev == device->bdev))
2085 fs_info->sb->s_bdev = next_device->bdev;
2086
2087 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2088 fs_info->fs_devices->latest_dev = next_device;
2089 }
2090
2091 /*
2092 * Return btrfs_fs_devices::num_devices excluding the device that's being
2093 * currently replaced.
2094 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2095 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2096 {
2097 u64 num_devices = fs_info->fs_devices->num_devices;
2098
2099 down_read(&fs_info->dev_replace.rwsem);
2100 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2101 ASSERT(num_devices > 1);
2102 num_devices--;
2103 }
2104 up_read(&fs_info->dev_replace.rwsem);
2105
2106 return num_devices;
2107 }
2108
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2109 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2110 struct block_device *bdev, int copy_num)
2111 {
2112 struct btrfs_super_block *disk_super;
2113 const size_t len = sizeof(disk_super->magic);
2114 const u64 bytenr = btrfs_sb_offset(copy_num);
2115 int ret;
2116
2117 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2118 if (IS_ERR(disk_super))
2119 return;
2120
2121 memset(&disk_super->magic, 0, len);
2122 folio_mark_dirty(virt_to_folio(disk_super));
2123 btrfs_release_disk_super(disk_super);
2124
2125 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2126 if (ret)
2127 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2128 copy_num, ret);
2129 }
2130
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2131 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2132 {
2133 int copy_num;
2134 struct block_device *bdev = device->bdev;
2135
2136 if (!bdev)
2137 return;
2138
2139 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2140 if (bdev_is_zoned(bdev))
2141 btrfs_reset_sb_log_zones(bdev, copy_num);
2142 else
2143 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2144 }
2145
2146 /* Notify udev that device has changed */
2147 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2148
2149 /* Update ctime/mtime for device path for libblkid */
2150 update_dev_time(device->name->str);
2151 }
2152
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2153 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2154 struct btrfs_dev_lookup_args *args,
2155 struct file **bdev_file)
2156 {
2157 struct btrfs_trans_handle *trans;
2158 struct btrfs_device *device;
2159 struct btrfs_fs_devices *cur_devices;
2160 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2161 u64 num_devices;
2162 int ret = 0;
2163
2164 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2165 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2166 return -EINVAL;
2167 }
2168
2169 /*
2170 * The device list in fs_devices is accessed without locks (neither
2171 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2172 * filesystem and another device rm cannot run.
2173 */
2174 num_devices = btrfs_num_devices(fs_info);
2175
2176 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2177 if (ret)
2178 return ret;
2179
2180 device = btrfs_find_device(fs_info->fs_devices, args);
2181 if (!device) {
2182 if (args->missing)
2183 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2184 else
2185 ret = -ENOENT;
2186 return ret;
2187 }
2188
2189 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2190 btrfs_warn_in_rcu(fs_info,
2191 "cannot remove device %s (devid %llu) due to active swapfile",
2192 btrfs_dev_name(device), device->devid);
2193 return -ETXTBSY;
2194 }
2195
2196 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2197 return BTRFS_ERROR_DEV_TGT_REPLACE;
2198
2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2200 fs_info->fs_devices->rw_devices == 1)
2201 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2202
2203 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2204 mutex_lock(&fs_info->chunk_mutex);
2205 list_del_init(&device->dev_alloc_list);
2206 device->fs_devices->rw_devices--;
2207 mutex_unlock(&fs_info->chunk_mutex);
2208 }
2209
2210 ret = btrfs_shrink_device(device, 0);
2211 if (ret)
2212 goto error_undo;
2213
2214 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2215 if (IS_ERR(trans)) {
2216 ret = PTR_ERR(trans);
2217 goto error_undo;
2218 }
2219
2220 ret = btrfs_rm_dev_item(trans, device);
2221 if (ret) {
2222 /* Any error in dev item removal is critical */
2223 btrfs_crit(fs_info,
2224 "failed to remove device item for devid %llu: %d",
2225 device->devid, ret);
2226 btrfs_abort_transaction(trans, ret);
2227 btrfs_end_transaction(trans);
2228 return ret;
2229 }
2230
2231 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2232 btrfs_scrub_cancel_dev(device);
2233
2234 /*
2235 * the device list mutex makes sure that we don't change
2236 * the device list while someone else is writing out all
2237 * the device supers. Whoever is writing all supers, should
2238 * lock the device list mutex before getting the number of
2239 * devices in the super block (super_copy). Conversely,
2240 * whoever updates the number of devices in the super block
2241 * (super_copy) should hold the device list mutex.
2242 */
2243
2244 /*
2245 * In normal cases the cur_devices == fs_devices. But in case
2246 * of deleting a seed device, the cur_devices should point to
2247 * its own fs_devices listed under the fs_devices->seed_list.
2248 */
2249 cur_devices = device->fs_devices;
2250 mutex_lock(&fs_devices->device_list_mutex);
2251 list_del_rcu(&device->dev_list);
2252
2253 cur_devices->num_devices--;
2254 cur_devices->total_devices--;
2255 /* Update total_devices of the parent fs_devices if it's seed */
2256 if (cur_devices != fs_devices)
2257 fs_devices->total_devices--;
2258
2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2260 cur_devices->missing_devices--;
2261
2262 btrfs_assign_next_active_device(device, NULL);
2263
2264 if (device->bdev_file) {
2265 cur_devices->open_devices--;
2266 /* remove sysfs entry */
2267 btrfs_sysfs_remove_device(device);
2268 }
2269
2270 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2271 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2272 mutex_unlock(&fs_devices->device_list_mutex);
2273
2274 /*
2275 * At this point, the device is zero sized and detached from the
2276 * devices list. All that's left is to zero out the old supers and
2277 * free the device.
2278 *
2279 * We cannot call btrfs_close_bdev() here because we're holding the sb
2280 * write lock, and fput() on the block device will pull in the
2281 * ->open_mutex on the block device and it's dependencies. Instead
2282 * just flush the device and let the caller do the final bdev_release.
2283 */
2284 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2285 btrfs_scratch_superblocks(fs_info, device);
2286 if (device->bdev) {
2287 sync_blockdev(device->bdev);
2288 invalidate_bdev(device->bdev);
2289 }
2290 }
2291
2292 *bdev_file = device->bdev_file;
2293 synchronize_rcu();
2294 btrfs_free_device(device);
2295
2296 /*
2297 * This can happen if cur_devices is the private seed devices list. We
2298 * cannot call close_fs_devices() here because it expects the uuid_mutex
2299 * to be held, but in fact we don't need that for the private
2300 * seed_devices, we can simply decrement cur_devices->opened and then
2301 * remove it from our list and free the fs_devices.
2302 */
2303 if (cur_devices->num_devices == 0) {
2304 list_del_init(&cur_devices->seed_list);
2305 ASSERT(cur_devices->opened == 1);
2306 cur_devices->opened--;
2307 free_fs_devices(cur_devices);
2308 }
2309
2310 ret = btrfs_commit_transaction(trans);
2311
2312 return ret;
2313
2314 error_undo:
2315 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2316 mutex_lock(&fs_info->chunk_mutex);
2317 list_add(&device->dev_alloc_list,
2318 &fs_devices->alloc_list);
2319 device->fs_devices->rw_devices++;
2320 mutex_unlock(&fs_info->chunk_mutex);
2321 }
2322 return ret;
2323 }
2324
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2325 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2326 {
2327 struct btrfs_fs_devices *fs_devices;
2328
2329 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2330
2331 /*
2332 * in case of fs with no seed, srcdev->fs_devices will point
2333 * to fs_devices of fs_info. However when the dev being replaced is
2334 * a seed dev it will point to the seed's local fs_devices. In short
2335 * srcdev will have its correct fs_devices in both the cases.
2336 */
2337 fs_devices = srcdev->fs_devices;
2338
2339 list_del_rcu(&srcdev->dev_list);
2340 list_del(&srcdev->dev_alloc_list);
2341 fs_devices->num_devices--;
2342 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2343 fs_devices->missing_devices--;
2344
2345 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2346 fs_devices->rw_devices--;
2347
2348 if (srcdev->bdev)
2349 fs_devices->open_devices--;
2350 }
2351
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2352 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2353 {
2354 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2355
2356 mutex_lock(&uuid_mutex);
2357
2358 btrfs_close_bdev(srcdev);
2359 synchronize_rcu();
2360 btrfs_free_device(srcdev);
2361
2362 /* if this is no devs we rather delete the fs_devices */
2363 if (!fs_devices->num_devices) {
2364 /*
2365 * On a mounted FS, num_devices can't be zero unless it's a
2366 * seed. In case of a seed device being replaced, the replace
2367 * target added to the sprout FS, so there will be no more
2368 * device left under the seed FS.
2369 */
2370 ASSERT(fs_devices->seeding);
2371
2372 list_del_init(&fs_devices->seed_list);
2373 close_fs_devices(fs_devices);
2374 free_fs_devices(fs_devices);
2375 }
2376 mutex_unlock(&uuid_mutex);
2377 }
2378
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2379 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2380 {
2381 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2382
2383 mutex_lock(&fs_devices->device_list_mutex);
2384
2385 btrfs_sysfs_remove_device(tgtdev);
2386
2387 if (tgtdev->bdev)
2388 fs_devices->open_devices--;
2389
2390 fs_devices->num_devices--;
2391
2392 btrfs_assign_next_active_device(tgtdev, NULL);
2393
2394 list_del_rcu(&tgtdev->dev_list);
2395
2396 mutex_unlock(&fs_devices->device_list_mutex);
2397
2398 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2399
2400 btrfs_close_bdev(tgtdev);
2401 synchronize_rcu();
2402 btrfs_free_device(tgtdev);
2403 }
2404
2405 /*
2406 * Populate args from device at path.
2407 *
2408 * @fs_info: the filesystem
2409 * @args: the args to populate
2410 * @path: the path to the device
2411 *
2412 * This will read the super block of the device at @path and populate @args with
2413 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2414 * lookup a device to operate on, but need to do it before we take any locks.
2415 * This properly handles the special case of "missing" that a user may pass in,
2416 * and does some basic sanity checks. The caller must make sure that @path is
2417 * properly NUL terminated before calling in, and must call
2418 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2419 * uuid buffers.
2420 *
2421 * Return: 0 for success, -errno for failure
2422 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2423 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2424 struct btrfs_dev_lookup_args *args,
2425 const char *path)
2426 {
2427 struct btrfs_super_block *disk_super;
2428 struct file *bdev_file;
2429 int ret;
2430
2431 if (!path || !path[0])
2432 return -EINVAL;
2433 if (!strcmp(path, "missing")) {
2434 args->missing = true;
2435 return 0;
2436 }
2437
2438 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2439 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2440 if (!args->uuid || !args->fsid) {
2441 btrfs_put_dev_args_from_path(args);
2442 return -ENOMEM;
2443 }
2444
2445 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2446 &bdev_file, &disk_super);
2447 if (ret) {
2448 btrfs_put_dev_args_from_path(args);
2449 return ret;
2450 }
2451
2452 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2453 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2454 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2455 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2456 else
2457 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2458 btrfs_release_disk_super(disk_super);
2459 fput(bdev_file);
2460 return 0;
2461 }
2462
2463 /*
2464 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2465 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2466 * that don't need to be freed.
2467 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2468 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2469 {
2470 kfree(args->uuid);
2471 kfree(args->fsid);
2472 args->uuid = NULL;
2473 args->fsid = NULL;
2474 }
2475
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2476 struct btrfs_device *btrfs_find_device_by_devspec(
2477 struct btrfs_fs_info *fs_info, u64 devid,
2478 const char *device_path)
2479 {
2480 BTRFS_DEV_LOOKUP_ARGS(args);
2481 struct btrfs_device *device;
2482 int ret;
2483
2484 if (devid) {
2485 args.devid = devid;
2486 device = btrfs_find_device(fs_info->fs_devices, &args);
2487 if (!device)
2488 return ERR_PTR(-ENOENT);
2489 return device;
2490 }
2491
2492 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2493 if (ret)
2494 return ERR_PTR(ret);
2495 device = btrfs_find_device(fs_info->fs_devices, &args);
2496 btrfs_put_dev_args_from_path(&args);
2497 if (!device)
2498 return ERR_PTR(-ENOENT);
2499 return device;
2500 }
2501
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2502 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2503 {
2504 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2505 struct btrfs_fs_devices *old_devices;
2506 struct btrfs_fs_devices *seed_devices;
2507
2508 lockdep_assert_held(&uuid_mutex);
2509 if (!fs_devices->seeding)
2510 return ERR_PTR(-EINVAL);
2511
2512 /*
2513 * Private copy of the seed devices, anchored at
2514 * fs_info->fs_devices->seed_list
2515 */
2516 seed_devices = alloc_fs_devices(NULL);
2517 if (IS_ERR(seed_devices))
2518 return seed_devices;
2519
2520 /*
2521 * It's necessary to retain a copy of the original seed fs_devices in
2522 * fs_uuids so that filesystems which have been seeded can successfully
2523 * reference the seed device from open_seed_devices. This also supports
2524 * multiple fs seed.
2525 */
2526 old_devices = clone_fs_devices(fs_devices);
2527 if (IS_ERR(old_devices)) {
2528 kfree(seed_devices);
2529 return old_devices;
2530 }
2531
2532 list_add(&old_devices->fs_list, &fs_uuids);
2533
2534 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2535 seed_devices->opened = 1;
2536 INIT_LIST_HEAD(&seed_devices->devices);
2537 INIT_LIST_HEAD(&seed_devices->alloc_list);
2538 mutex_init(&seed_devices->device_list_mutex);
2539
2540 return seed_devices;
2541 }
2542
2543 /*
2544 * Splice seed devices into the sprout fs_devices.
2545 * Generate a new fsid for the sprouted read-write filesystem.
2546 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2547 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2548 struct btrfs_fs_devices *seed_devices)
2549 {
2550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2551 struct btrfs_super_block *disk_super = fs_info->super_copy;
2552 struct btrfs_device *device;
2553 u64 super_flags;
2554
2555 /*
2556 * We are updating the fsid, the thread leading to device_list_add()
2557 * could race, so uuid_mutex is needed.
2558 */
2559 lockdep_assert_held(&uuid_mutex);
2560
2561 /*
2562 * The threads listed below may traverse dev_list but can do that without
2563 * device_list_mutex:
2564 * - All device ops and balance - as we are in btrfs_exclop_start.
2565 * - Various dev_list readers - are using RCU.
2566 * - btrfs_ioctl_fitrim() - is using RCU.
2567 *
2568 * For-read threads as below are using device_list_mutex:
2569 * - Readonly scrub btrfs_scrub_dev()
2570 * - Readonly scrub btrfs_scrub_progress()
2571 * - btrfs_get_dev_stats()
2572 */
2573 lockdep_assert_held(&fs_devices->device_list_mutex);
2574
2575 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2576 synchronize_rcu);
2577 list_for_each_entry(device, &seed_devices->devices, dev_list)
2578 device->fs_devices = seed_devices;
2579
2580 fs_devices->seeding = false;
2581 fs_devices->num_devices = 0;
2582 fs_devices->open_devices = 0;
2583 fs_devices->missing_devices = 0;
2584 fs_devices->rotating = false;
2585 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2586
2587 generate_random_uuid(fs_devices->fsid);
2588 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2589 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2590
2591 super_flags = btrfs_super_flags(disk_super) &
2592 ~BTRFS_SUPER_FLAG_SEEDING;
2593 btrfs_set_super_flags(disk_super, super_flags);
2594 }
2595
2596 /*
2597 * Store the expected generation for seed devices in device items.
2598 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2599 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2600 {
2601 BTRFS_DEV_LOOKUP_ARGS(args);
2602 struct btrfs_fs_info *fs_info = trans->fs_info;
2603 struct btrfs_root *root = fs_info->chunk_root;
2604 struct btrfs_path *path;
2605 struct extent_buffer *leaf;
2606 struct btrfs_dev_item *dev_item;
2607 struct btrfs_device *device;
2608 struct btrfs_key key;
2609 u8 fs_uuid[BTRFS_FSID_SIZE];
2610 u8 dev_uuid[BTRFS_UUID_SIZE];
2611 int ret;
2612
2613 path = btrfs_alloc_path();
2614 if (!path)
2615 return -ENOMEM;
2616
2617 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2618 key.offset = 0;
2619 key.type = BTRFS_DEV_ITEM_KEY;
2620
2621 while (1) {
2622 btrfs_reserve_chunk_metadata(trans, false);
2623 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2624 btrfs_trans_release_chunk_metadata(trans);
2625 if (ret < 0)
2626 goto error;
2627
2628 leaf = path->nodes[0];
2629 next_slot:
2630 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2631 ret = btrfs_next_leaf(root, path);
2632 if (ret > 0)
2633 break;
2634 if (ret < 0)
2635 goto error;
2636 leaf = path->nodes[0];
2637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2638 btrfs_release_path(path);
2639 continue;
2640 }
2641
2642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2643 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2644 key.type != BTRFS_DEV_ITEM_KEY)
2645 break;
2646
2647 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2648 struct btrfs_dev_item);
2649 args.devid = btrfs_device_id(leaf, dev_item);
2650 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2651 BTRFS_UUID_SIZE);
2652 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2653 BTRFS_FSID_SIZE);
2654 args.uuid = dev_uuid;
2655 args.fsid = fs_uuid;
2656 device = btrfs_find_device(fs_info->fs_devices, &args);
2657 BUG_ON(!device); /* Logic error */
2658
2659 if (device->fs_devices->seeding) {
2660 btrfs_set_device_generation(leaf, dev_item,
2661 device->generation);
2662 btrfs_mark_buffer_dirty(trans, leaf);
2663 }
2664
2665 path->slots[0]++;
2666 goto next_slot;
2667 }
2668 ret = 0;
2669 error:
2670 btrfs_free_path(path);
2671 return ret;
2672 }
2673
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2674 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2675 {
2676 struct btrfs_root *root = fs_info->dev_root;
2677 struct btrfs_trans_handle *trans;
2678 struct btrfs_device *device;
2679 struct file *bdev_file;
2680 struct super_block *sb = fs_info->sb;
2681 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2682 struct btrfs_fs_devices *seed_devices = NULL;
2683 u64 orig_super_total_bytes;
2684 u64 orig_super_num_devices;
2685 int ret = 0;
2686 bool seeding_dev = false;
2687 bool locked = false;
2688
2689 if (sb_rdonly(sb) && !fs_devices->seeding)
2690 return -EROFS;
2691
2692 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2693 fs_info->bdev_holder, NULL);
2694 if (IS_ERR(bdev_file))
2695 return PTR_ERR(bdev_file);
2696
2697 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2698 ret = -EINVAL;
2699 goto error;
2700 }
2701
2702 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) {
2703 ret = -EINVAL;
2704 goto error;
2705 }
2706
2707 if (fs_devices->seeding) {
2708 seeding_dev = true;
2709 down_write(&sb->s_umount);
2710 mutex_lock(&uuid_mutex);
2711 locked = true;
2712 }
2713
2714 sync_blockdev(file_bdev(bdev_file));
2715
2716 rcu_read_lock();
2717 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2718 if (device->bdev == file_bdev(bdev_file)) {
2719 ret = -EEXIST;
2720 rcu_read_unlock();
2721 goto error;
2722 }
2723 }
2724 rcu_read_unlock();
2725
2726 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2727 if (IS_ERR(device)) {
2728 /* we can safely leave the fs_devices entry around */
2729 ret = PTR_ERR(device);
2730 goto error;
2731 }
2732
2733 device->fs_info = fs_info;
2734 device->bdev_file = bdev_file;
2735 device->bdev = file_bdev(bdev_file);
2736 ret = lookup_bdev(device_path, &device->devt);
2737 if (ret)
2738 goto error_free_device;
2739
2740 ret = btrfs_get_dev_zone_info(device, false);
2741 if (ret)
2742 goto error_free_device;
2743
2744 trans = btrfs_start_transaction(root, 0);
2745 if (IS_ERR(trans)) {
2746 ret = PTR_ERR(trans);
2747 goto error_free_zone;
2748 }
2749
2750 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2751 device->generation = trans->transid;
2752 device->io_width = fs_info->sectorsize;
2753 device->io_align = fs_info->sectorsize;
2754 device->sector_size = fs_info->sectorsize;
2755 device->total_bytes =
2756 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2757 device->disk_total_bytes = device->total_bytes;
2758 device->commit_total_bytes = device->total_bytes;
2759 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2760 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2761 device->dev_stats_valid = 1;
2762 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2763
2764 if (seeding_dev) {
2765 /* GFP_KERNEL allocation must not be under device_list_mutex */
2766 seed_devices = btrfs_init_sprout(fs_info);
2767 if (IS_ERR(seed_devices)) {
2768 ret = PTR_ERR(seed_devices);
2769 btrfs_abort_transaction(trans, ret);
2770 goto error_trans;
2771 }
2772 }
2773
2774 mutex_lock(&fs_devices->device_list_mutex);
2775 if (seeding_dev) {
2776 btrfs_setup_sprout(fs_info, seed_devices);
2777 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2778 device);
2779 }
2780
2781 device->fs_devices = fs_devices;
2782
2783 mutex_lock(&fs_info->chunk_mutex);
2784 list_add_rcu(&device->dev_list, &fs_devices->devices);
2785 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2786 fs_devices->num_devices++;
2787 fs_devices->open_devices++;
2788 fs_devices->rw_devices++;
2789 fs_devices->total_devices++;
2790 fs_devices->total_rw_bytes += device->total_bytes;
2791
2792 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2793
2794 if (!bdev_nonrot(device->bdev))
2795 fs_devices->rotating = true;
2796
2797 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2798 btrfs_set_super_total_bytes(fs_info->super_copy,
2799 round_down(orig_super_total_bytes + device->total_bytes,
2800 fs_info->sectorsize));
2801
2802 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2803 btrfs_set_super_num_devices(fs_info->super_copy,
2804 orig_super_num_devices + 1);
2805
2806 /*
2807 * we've got more storage, clear any full flags on the space
2808 * infos
2809 */
2810 btrfs_clear_space_info_full(fs_info);
2811
2812 mutex_unlock(&fs_info->chunk_mutex);
2813
2814 /* Add sysfs device entry */
2815 btrfs_sysfs_add_device(device);
2816
2817 mutex_unlock(&fs_devices->device_list_mutex);
2818
2819 if (seeding_dev) {
2820 mutex_lock(&fs_info->chunk_mutex);
2821 ret = init_first_rw_device(trans);
2822 mutex_unlock(&fs_info->chunk_mutex);
2823 if (ret) {
2824 btrfs_abort_transaction(trans, ret);
2825 goto error_sysfs;
2826 }
2827 }
2828
2829 ret = btrfs_add_dev_item(trans, device);
2830 if (ret) {
2831 btrfs_abort_transaction(trans, ret);
2832 goto error_sysfs;
2833 }
2834
2835 if (seeding_dev) {
2836 ret = btrfs_finish_sprout(trans);
2837 if (ret) {
2838 btrfs_abort_transaction(trans, ret);
2839 goto error_sysfs;
2840 }
2841
2842 /*
2843 * fs_devices now represents the newly sprouted filesystem and
2844 * its fsid has been changed by btrfs_sprout_splice().
2845 */
2846 btrfs_sysfs_update_sprout_fsid(fs_devices);
2847 }
2848
2849 ret = btrfs_commit_transaction(trans);
2850
2851 if (seeding_dev) {
2852 mutex_unlock(&uuid_mutex);
2853 up_write(&sb->s_umount);
2854 locked = false;
2855
2856 if (ret) /* transaction commit */
2857 return ret;
2858
2859 ret = btrfs_relocate_sys_chunks(fs_info);
2860 if (ret < 0)
2861 btrfs_handle_fs_error(fs_info, ret,
2862 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2863 trans = btrfs_attach_transaction(root);
2864 if (IS_ERR(trans)) {
2865 if (PTR_ERR(trans) == -ENOENT)
2866 return 0;
2867 ret = PTR_ERR(trans);
2868 trans = NULL;
2869 goto error_sysfs;
2870 }
2871 ret = btrfs_commit_transaction(trans);
2872 }
2873
2874 /*
2875 * Now that we have written a new super block to this device, check all
2876 * other fs_devices list if device_path alienates any other scanned
2877 * device.
2878 * We can ignore the return value as it typically returns -EINVAL and
2879 * only succeeds if the device was an alien.
2880 */
2881 btrfs_forget_devices(device->devt);
2882
2883 /* Update ctime/mtime for blkid or udev */
2884 update_dev_time(device_path);
2885
2886 return ret;
2887
2888 error_sysfs:
2889 btrfs_sysfs_remove_device(device);
2890 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2891 mutex_lock(&fs_info->chunk_mutex);
2892 list_del_rcu(&device->dev_list);
2893 list_del(&device->dev_alloc_list);
2894 fs_info->fs_devices->num_devices--;
2895 fs_info->fs_devices->open_devices--;
2896 fs_info->fs_devices->rw_devices--;
2897 fs_info->fs_devices->total_devices--;
2898 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2899 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2900 btrfs_set_super_total_bytes(fs_info->super_copy,
2901 orig_super_total_bytes);
2902 btrfs_set_super_num_devices(fs_info->super_copy,
2903 orig_super_num_devices);
2904 mutex_unlock(&fs_info->chunk_mutex);
2905 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906 error_trans:
2907 if (trans)
2908 btrfs_end_transaction(trans);
2909 error_free_zone:
2910 btrfs_destroy_dev_zone_info(device);
2911 error_free_device:
2912 btrfs_free_device(device);
2913 error:
2914 fput(bdev_file);
2915 if (locked) {
2916 mutex_unlock(&uuid_mutex);
2917 up_write(&sb->s_umount);
2918 }
2919 return ret;
2920 }
2921
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2922 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2923 struct btrfs_device *device)
2924 {
2925 int ret;
2926 struct btrfs_path *path;
2927 struct btrfs_root *root = device->fs_info->chunk_root;
2928 struct btrfs_dev_item *dev_item;
2929 struct extent_buffer *leaf;
2930 struct btrfs_key key;
2931
2932 path = btrfs_alloc_path();
2933 if (!path)
2934 return -ENOMEM;
2935
2936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2937 key.type = BTRFS_DEV_ITEM_KEY;
2938 key.offset = device->devid;
2939
2940 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2941 if (ret < 0)
2942 goto out;
2943
2944 if (ret > 0) {
2945 ret = -ENOENT;
2946 goto out;
2947 }
2948
2949 leaf = path->nodes[0];
2950 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2951
2952 btrfs_set_device_id(leaf, dev_item, device->devid);
2953 btrfs_set_device_type(leaf, dev_item, device->type);
2954 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2955 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2956 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2957 btrfs_set_device_total_bytes(leaf, dev_item,
2958 btrfs_device_get_disk_total_bytes(device));
2959 btrfs_set_device_bytes_used(leaf, dev_item,
2960 btrfs_device_get_bytes_used(device));
2961 btrfs_mark_buffer_dirty(trans, leaf);
2962
2963 out:
2964 btrfs_free_path(path);
2965 return ret;
2966 }
2967
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2968 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2969 struct btrfs_device *device, u64 new_size)
2970 {
2971 struct btrfs_fs_info *fs_info = device->fs_info;
2972 struct btrfs_super_block *super_copy = fs_info->super_copy;
2973 u64 old_total;
2974 u64 diff;
2975 int ret;
2976
2977 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2978 return -EACCES;
2979
2980 new_size = round_down(new_size, fs_info->sectorsize);
2981
2982 mutex_lock(&fs_info->chunk_mutex);
2983 old_total = btrfs_super_total_bytes(super_copy);
2984 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2985
2986 if (new_size <= device->total_bytes ||
2987 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2988 mutex_unlock(&fs_info->chunk_mutex);
2989 return -EINVAL;
2990 }
2991
2992 btrfs_set_super_total_bytes(super_copy,
2993 round_down(old_total + diff, fs_info->sectorsize));
2994 device->fs_devices->total_rw_bytes += diff;
2995 atomic64_add(diff, &fs_info->free_chunk_space);
2996
2997 btrfs_device_set_total_bytes(device, new_size);
2998 btrfs_device_set_disk_total_bytes(device, new_size);
2999 btrfs_clear_space_info_full(device->fs_info);
3000 if (list_empty(&device->post_commit_list))
3001 list_add_tail(&device->post_commit_list,
3002 &trans->transaction->dev_update_list);
3003 mutex_unlock(&fs_info->chunk_mutex);
3004
3005 btrfs_reserve_chunk_metadata(trans, false);
3006 ret = btrfs_update_device(trans, device);
3007 btrfs_trans_release_chunk_metadata(trans);
3008
3009 return ret;
3010 }
3011
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3012 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3013 {
3014 struct btrfs_fs_info *fs_info = trans->fs_info;
3015 struct btrfs_root *root = fs_info->chunk_root;
3016 int ret;
3017 struct btrfs_path *path;
3018 struct btrfs_key key;
3019
3020 path = btrfs_alloc_path();
3021 if (!path)
3022 return -ENOMEM;
3023
3024 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3025 key.offset = chunk_offset;
3026 key.type = BTRFS_CHUNK_ITEM_KEY;
3027
3028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3029 if (ret < 0)
3030 goto out;
3031 else if (ret > 0) { /* Logic error or corruption */
3032 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3033 chunk_offset);
3034 btrfs_abort_transaction(trans, -ENOENT);
3035 ret = -EUCLEAN;
3036 goto out;
3037 }
3038
3039 ret = btrfs_del_item(trans, root, path);
3040 if (ret < 0) {
3041 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3042 btrfs_abort_transaction(trans, ret);
3043 goto out;
3044 }
3045 out:
3046 btrfs_free_path(path);
3047 return ret;
3048 }
3049
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3050 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3051 {
3052 struct btrfs_super_block *super_copy = fs_info->super_copy;
3053 struct btrfs_disk_key *disk_key;
3054 struct btrfs_chunk *chunk;
3055 u8 *ptr;
3056 int ret = 0;
3057 u32 num_stripes;
3058 u32 array_size;
3059 u32 len = 0;
3060 u32 cur;
3061 struct btrfs_key key;
3062
3063 lockdep_assert_held(&fs_info->chunk_mutex);
3064 array_size = btrfs_super_sys_array_size(super_copy);
3065
3066 ptr = super_copy->sys_chunk_array;
3067 cur = 0;
3068
3069 while (cur < array_size) {
3070 disk_key = (struct btrfs_disk_key *)ptr;
3071 btrfs_disk_key_to_cpu(&key, disk_key);
3072
3073 len = sizeof(*disk_key);
3074
3075 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3076 chunk = (struct btrfs_chunk *)(ptr + len);
3077 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3078 len += btrfs_chunk_item_size(num_stripes);
3079 } else {
3080 ret = -EIO;
3081 break;
3082 }
3083 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3084 key.offset == chunk_offset) {
3085 memmove(ptr, ptr + len, array_size - (cur + len));
3086 array_size -= len;
3087 btrfs_set_super_sys_array_size(super_copy, array_size);
3088 } else {
3089 ptr += len;
3090 cur += len;
3091 }
3092 }
3093 return ret;
3094 }
3095
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3096 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3097 u64 logical, u64 length)
3098 {
3099 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3100 struct rb_node *prev = NULL;
3101 struct rb_node *orig_prev;
3102 struct btrfs_chunk_map *map;
3103 struct btrfs_chunk_map *prev_map = NULL;
3104
3105 while (node) {
3106 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3107 prev = node;
3108 prev_map = map;
3109
3110 if (logical < map->start) {
3111 node = node->rb_left;
3112 } else if (logical >= map->start + map->chunk_len) {
3113 node = node->rb_right;
3114 } else {
3115 refcount_inc(&map->refs);
3116 return map;
3117 }
3118 }
3119
3120 if (!prev)
3121 return NULL;
3122
3123 orig_prev = prev;
3124 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3125 prev = rb_next(prev);
3126 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3127 }
3128
3129 if (!prev) {
3130 prev = orig_prev;
3131 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3132 while (prev && logical < prev_map->start) {
3133 prev = rb_prev(prev);
3134 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3135 }
3136 }
3137
3138 if (prev) {
3139 u64 end = logical + length;
3140
3141 /*
3142 * Caller can pass a U64_MAX length when it wants to get any
3143 * chunk starting at an offset of 'logical' or higher, so deal
3144 * with underflow by resetting the end offset to U64_MAX.
3145 */
3146 if (end < logical)
3147 end = U64_MAX;
3148
3149 if (end > prev_map->start &&
3150 logical < prev_map->start + prev_map->chunk_len) {
3151 refcount_inc(&prev_map->refs);
3152 return prev_map;
3153 }
3154 }
3155
3156 return NULL;
3157 }
3158
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3159 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3160 u64 logical, u64 length)
3161 {
3162 struct btrfs_chunk_map *map;
3163
3164 read_lock(&fs_info->mapping_tree_lock);
3165 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3166 read_unlock(&fs_info->mapping_tree_lock);
3167
3168 return map;
3169 }
3170
3171 /*
3172 * Find the mapping containing the given logical extent.
3173 *
3174 * @logical: Logical block offset in bytes.
3175 * @length: Length of extent in bytes.
3176 *
3177 * Return: Chunk mapping or ERR_PTR.
3178 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3179 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3180 u64 logical, u64 length)
3181 {
3182 struct btrfs_chunk_map *map;
3183
3184 map = btrfs_find_chunk_map(fs_info, logical, length);
3185
3186 if (unlikely(!map)) {
3187 btrfs_crit(fs_info,
3188 "unable to find chunk map for logical %llu length %llu",
3189 logical, length);
3190 return ERR_PTR(-EINVAL);
3191 }
3192
3193 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3194 btrfs_crit(fs_info,
3195 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3196 logical, logical + length, map->start,
3197 map->start + map->chunk_len);
3198 btrfs_free_chunk_map(map);
3199 return ERR_PTR(-EINVAL);
3200 }
3201
3202 /* Callers are responsible for dropping the reference. */
3203 return map;
3204 }
3205
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3206 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3207 struct btrfs_chunk_map *map, u64 chunk_offset)
3208 {
3209 int i;
3210
3211 /*
3212 * Removing chunk items and updating the device items in the chunks btree
3213 * requires holding the chunk_mutex.
3214 * See the comment at btrfs_chunk_alloc() for the details.
3215 */
3216 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3217
3218 for (i = 0; i < map->num_stripes; i++) {
3219 int ret;
3220
3221 ret = btrfs_update_device(trans, map->stripes[i].dev);
3222 if (ret)
3223 return ret;
3224 }
3225
3226 return btrfs_free_chunk(trans, chunk_offset);
3227 }
3228
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3229 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3230 {
3231 struct btrfs_fs_info *fs_info = trans->fs_info;
3232 struct btrfs_chunk_map *map;
3233 u64 dev_extent_len = 0;
3234 int i, ret = 0;
3235 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3236
3237 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3238 if (IS_ERR(map)) {
3239 /*
3240 * This is a logic error, but we don't want to just rely on the
3241 * user having built with ASSERT enabled, so if ASSERT doesn't
3242 * do anything we still error out.
3243 */
3244 ASSERT(0);
3245 return PTR_ERR(map);
3246 }
3247
3248 /*
3249 * First delete the device extent items from the devices btree.
3250 * We take the device_list_mutex to avoid racing with the finishing phase
3251 * of a device replace operation. See the comment below before acquiring
3252 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3253 * because that can result in a deadlock when deleting the device extent
3254 * items from the devices btree - COWing an extent buffer from the btree
3255 * may result in allocating a new metadata chunk, which would attempt to
3256 * lock again fs_info->chunk_mutex.
3257 */
3258 mutex_lock(&fs_devices->device_list_mutex);
3259 for (i = 0; i < map->num_stripes; i++) {
3260 struct btrfs_device *device = map->stripes[i].dev;
3261 ret = btrfs_free_dev_extent(trans, device,
3262 map->stripes[i].physical,
3263 &dev_extent_len);
3264 if (ret) {
3265 mutex_unlock(&fs_devices->device_list_mutex);
3266 btrfs_abort_transaction(trans, ret);
3267 goto out;
3268 }
3269
3270 if (device->bytes_used > 0) {
3271 mutex_lock(&fs_info->chunk_mutex);
3272 btrfs_device_set_bytes_used(device,
3273 device->bytes_used - dev_extent_len);
3274 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3275 btrfs_clear_space_info_full(fs_info);
3276
3277 if (list_empty(&device->post_commit_list)) {
3278 list_add_tail(&device->post_commit_list,
3279 &trans->transaction->dev_update_list);
3280 }
3281
3282 mutex_unlock(&fs_info->chunk_mutex);
3283 }
3284 }
3285 mutex_unlock(&fs_devices->device_list_mutex);
3286
3287 /*
3288 * We acquire fs_info->chunk_mutex for 2 reasons:
3289 *
3290 * 1) Just like with the first phase of the chunk allocation, we must
3291 * reserve system space, do all chunk btree updates and deletions, and
3292 * update the system chunk array in the superblock while holding this
3293 * mutex. This is for similar reasons as explained on the comment at
3294 * the top of btrfs_chunk_alloc();
3295 *
3296 * 2) Prevent races with the final phase of a device replace operation
3297 * that replaces the device object associated with the map's stripes,
3298 * because the device object's id can change at any time during that
3299 * final phase of the device replace operation
3300 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3301 * replaced device and then see it with an ID of
3302 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3303 * the device item, which does not exists on the chunk btree.
3304 * The finishing phase of device replace acquires both the
3305 * device_list_mutex and the chunk_mutex, in that order, so we are
3306 * safe by just acquiring the chunk_mutex.
3307 */
3308 trans->removing_chunk = true;
3309 mutex_lock(&fs_info->chunk_mutex);
3310
3311 check_system_chunk(trans, map->type);
3312
3313 ret = remove_chunk_item(trans, map, chunk_offset);
3314 /*
3315 * Normally we should not get -ENOSPC since we reserved space before
3316 * through the call to check_system_chunk().
3317 *
3318 * Despite our system space_info having enough free space, we may not
3319 * be able to allocate extents from its block groups, because all have
3320 * an incompatible profile, which will force us to allocate a new system
3321 * block group with the right profile, or right after we called
3322 * check_system_space() above, a scrub turned the only system block group
3323 * with enough free space into RO mode.
3324 * This is explained with more detail at do_chunk_alloc().
3325 *
3326 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3327 */
3328 if (ret == -ENOSPC) {
3329 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3330 struct btrfs_block_group *sys_bg;
3331
3332 sys_bg = btrfs_create_chunk(trans, sys_flags);
3333 if (IS_ERR(sys_bg)) {
3334 ret = PTR_ERR(sys_bg);
3335 btrfs_abort_transaction(trans, ret);
3336 goto out;
3337 }
3338
3339 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3340 if (ret) {
3341 btrfs_abort_transaction(trans, ret);
3342 goto out;
3343 }
3344
3345 ret = remove_chunk_item(trans, map, chunk_offset);
3346 if (ret) {
3347 btrfs_abort_transaction(trans, ret);
3348 goto out;
3349 }
3350 } else if (ret) {
3351 btrfs_abort_transaction(trans, ret);
3352 goto out;
3353 }
3354
3355 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3356
3357 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3358 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3359 if (ret) {
3360 btrfs_abort_transaction(trans, ret);
3361 goto out;
3362 }
3363 }
3364
3365 mutex_unlock(&fs_info->chunk_mutex);
3366 trans->removing_chunk = false;
3367
3368 /*
3369 * We are done with chunk btree updates and deletions, so release the
3370 * system space we previously reserved (with check_system_chunk()).
3371 */
3372 btrfs_trans_release_chunk_metadata(trans);
3373
3374 ret = btrfs_remove_block_group(trans, map);
3375 if (ret) {
3376 btrfs_abort_transaction(trans, ret);
3377 goto out;
3378 }
3379
3380 out:
3381 if (trans->removing_chunk) {
3382 mutex_unlock(&fs_info->chunk_mutex);
3383 trans->removing_chunk = false;
3384 }
3385 /* once for us */
3386 btrfs_free_chunk_map(map);
3387 return ret;
3388 }
3389
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3390 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3391 {
3392 struct btrfs_root *root = fs_info->chunk_root;
3393 struct btrfs_trans_handle *trans;
3394 struct btrfs_block_group *block_group;
3395 u64 length;
3396 int ret;
3397
3398 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3399 btrfs_err(fs_info,
3400 "relocate: not supported on extent tree v2 yet");
3401 return -EINVAL;
3402 }
3403
3404 /*
3405 * Prevent races with automatic removal of unused block groups.
3406 * After we relocate and before we remove the chunk with offset
3407 * chunk_offset, automatic removal of the block group can kick in,
3408 * resulting in a failure when calling btrfs_remove_chunk() below.
3409 *
3410 * Make sure to acquire this mutex before doing a tree search (dev
3411 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3412 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3413 * we release the path used to search the chunk/dev tree and before
3414 * the current task acquires this mutex and calls us.
3415 */
3416 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3417
3418 /* step one, relocate all the extents inside this chunk */
3419 btrfs_scrub_pause(fs_info);
3420 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3421 btrfs_scrub_continue(fs_info);
3422 if (ret) {
3423 /*
3424 * If we had a transaction abort, stop all running scrubs.
3425 * See transaction.c:cleanup_transaction() why we do it here.
3426 */
3427 if (BTRFS_FS_ERROR(fs_info))
3428 btrfs_scrub_cancel(fs_info);
3429 return ret;
3430 }
3431
3432 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3433 if (!block_group)
3434 return -ENOENT;
3435 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3436 length = block_group->length;
3437 btrfs_put_block_group(block_group);
3438
3439 /*
3440 * On a zoned file system, discard the whole block group, this will
3441 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3442 * resetting the zone fails, don't treat it as a fatal problem from the
3443 * filesystem's point of view.
3444 */
3445 if (btrfs_is_zoned(fs_info)) {
3446 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3447 if (ret)
3448 btrfs_info(fs_info,
3449 "failed to reset zone %llu after relocation",
3450 chunk_offset);
3451 }
3452
3453 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3454 chunk_offset);
3455 if (IS_ERR(trans)) {
3456 ret = PTR_ERR(trans);
3457 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3458 return ret;
3459 }
3460
3461 /*
3462 * step two, delete the device extents and the
3463 * chunk tree entries
3464 */
3465 ret = btrfs_remove_chunk(trans, chunk_offset);
3466 btrfs_end_transaction(trans);
3467 return ret;
3468 }
3469
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3470 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3471 {
3472 struct btrfs_root *chunk_root = fs_info->chunk_root;
3473 struct btrfs_path *path;
3474 struct extent_buffer *leaf;
3475 struct btrfs_chunk *chunk;
3476 struct btrfs_key key;
3477 struct btrfs_key found_key;
3478 u64 chunk_type;
3479 bool retried = false;
3480 int failed = 0;
3481 int ret;
3482
3483 path = btrfs_alloc_path();
3484 if (!path)
3485 return -ENOMEM;
3486
3487 again:
3488 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3489 key.offset = (u64)-1;
3490 key.type = BTRFS_CHUNK_ITEM_KEY;
3491
3492 while (1) {
3493 mutex_lock(&fs_info->reclaim_bgs_lock);
3494 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3495 if (ret < 0) {
3496 mutex_unlock(&fs_info->reclaim_bgs_lock);
3497 goto error;
3498 }
3499 if (ret == 0) {
3500 /*
3501 * On the first search we would find chunk tree with
3502 * offset -1, which is not possible. On subsequent
3503 * loops this would find an existing item on an invalid
3504 * offset (one less than the previous one, wrong
3505 * alignment and size).
3506 */
3507 ret = -EUCLEAN;
3508 mutex_unlock(&fs_info->reclaim_bgs_lock);
3509 goto error;
3510 }
3511
3512 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3513 key.type);
3514 if (ret)
3515 mutex_unlock(&fs_info->reclaim_bgs_lock);
3516 if (ret < 0)
3517 goto error;
3518 if (ret > 0)
3519 break;
3520
3521 leaf = path->nodes[0];
3522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3523
3524 chunk = btrfs_item_ptr(leaf, path->slots[0],
3525 struct btrfs_chunk);
3526 chunk_type = btrfs_chunk_type(leaf, chunk);
3527 btrfs_release_path(path);
3528
3529 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3530 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3531 if (ret == -ENOSPC)
3532 failed++;
3533 else
3534 BUG_ON(ret);
3535 }
3536 mutex_unlock(&fs_info->reclaim_bgs_lock);
3537
3538 if (found_key.offset == 0)
3539 break;
3540 key.offset = found_key.offset - 1;
3541 }
3542 ret = 0;
3543 if (failed && !retried) {
3544 failed = 0;
3545 retried = true;
3546 goto again;
3547 } else if (WARN_ON(failed && retried)) {
3548 ret = -ENOSPC;
3549 }
3550 error:
3551 btrfs_free_path(path);
3552 return ret;
3553 }
3554
3555 /*
3556 * return 1 : allocate a data chunk successfully,
3557 * return <0: errors during allocating a data chunk,
3558 * return 0 : no need to allocate a data chunk.
3559 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3560 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3561 u64 chunk_offset)
3562 {
3563 struct btrfs_block_group *cache;
3564 u64 bytes_used;
3565 u64 chunk_type;
3566
3567 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3568 ASSERT(cache);
3569 chunk_type = cache->flags;
3570 btrfs_put_block_group(cache);
3571
3572 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3573 return 0;
3574
3575 spin_lock(&fs_info->data_sinfo->lock);
3576 bytes_used = fs_info->data_sinfo->bytes_used;
3577 spin_unlock(&fs_info->data_sinfo->lock);
3578
3579 if (!bytes_used) {
3580 struct btrfs_trans_handle *trans;
3581 int ret;
3582
3583 trans = btrfs_join_transaction(fs_info->tree_root);
3584 if (IS_ERR(trans))
3585 return PTR_ERR(trans);
3586
3587 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3588 btrfs_end_transaction(trans);
3589 if (ret < 0)
3590 return ret;
3591 return 1;
3592 }
3593
3594 return 0;
3595 }
3596
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3597 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3598 const struct btrfs_disk_balance_args *disk)
3599 {
3600 memset(cpu, 0, sizeof(*cpu));
3601
3602 cpu->profiles = le64_to_cpu(disk->profiles);
3603 cpu->usage = le64_to_cpu(disk->usage);
3604 cpu->devid = le64_to_cpu(disk->devid);
3605 cpu->pstart = le64_to_cpu(disk->pstart);
3606 cpu->pend = le64_to_cpu(disk->pend);
3607 cpu->vstart = le64_to_cpu(disk->vstart);
3608 cpu->vend = le64_to_cpu(disk->vend);
3609 cpu->target = le64_to_cpu(disk->target);
3610 cpu->flags = le64_to_cpu(disk->flags);
3611 cpu->limit = le64_to_cpu(disk->limit);
3612 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3613 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3614 }
3615
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3616 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3617 const struct btrfs_balance_args *cpu)
3618 {
3619 memset(disk, 0, sizeof(*disk));
3620
3621 disk->profiles = cpu_to_le64(cpu->profiles);
3622 disk->usage = cpu_to_le64(cpu->usage);
3623 disk->devid = cpu_to_le64(cpu->devid);
3624 disk->pstart = cpu_to_le64(cpu->pstart);
3625 disk->pend = cpu_to_le64(cpu->pend);
3626 disk->vstart = cpu_to_le64(cpu->vstart);
3627 disk->vend = cpu_to_le64(cpu->vend);
3628 disk->target = cpu_to_le64(cpu->target);
3629 disk->flags = cpu_to_le64(cpu->flags);
3630 disk->limit = cpu_to_le64(cpu->limit);
3631 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3632 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3633 }
3634
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3635 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3636 struct btrfs_balance_control *bctl)
3637 {
3638 struct btrfs_root *root = fs_info->tree_root;
3639 struct btrfs_trans_handle *trans;
3640 struct btrfs_balance_item *item;
3641 struct btrfs_disk_balance_args disk_bargs;
3642 struct btrfs_path *path;
3643 struct extent_buffer *leaf;
3644 struct btrfs_key key;
3645 int ret, err;
3646
3647 path = btrfs_alloc_path();
3648 if (!path)
3649 return -ENOMEM;
3650
3651 trans = btrfs_start_transaction(root, 0);
3652 if (IS_ERR(trans)) {
3653 btrfs_free_path(path);
3654 return PTR_ERR(trans);
3655 }
3656
3657 key.objectid = BTRFS_BALANCE_OBJECTID;
3658 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659 key.offset = 0;
3660
3661 ret = btrfs_insert_empty_item(trans, root, path, &key,
3662 sizeof(*item));
3663 if (ret)
3664 goto out;
3665
3666 leaf = path->nodes[0];
3667 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3668
3669 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3670
3671 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3672 btrfs_set_balance_data(leaf, item, &disk_bargs);
3673 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3674 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3675 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3676 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3677
3678 btrfs_set_balance_flags(leaf, item, bctl->flags);
3679
3680 btrfs_mark_buffer_dirty(trans, leaf);
3681 out:
3682 btrfs_free_path(path);
3683 err = btrfs_commit_transaction(trans);
3684 if (err && !ret)
3685 ret = err;
3686 return ret;
3687 }
3688
del_balance_item(struct btrfs_fs_info * fs_info)3689 static int del_balance_item(struct btrfs_fs_info *fs_info)
3690 {
3691 struct btrfs_root *root = fs_info->tree_root;
3692 struct btrfs_trans_handle *trans;
3693 struct btrfs_path *path;
3694 struct btrfs_key key;
3695 int ret, err;
3696
3697 path = btrfs_alloc_path();
3698 if (!path)
3699 return -ENOMEM;
3700
3701 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3702 if (IS_ERR(trans)) {
3703 btrfs_free_path(path);
3704 return PTR_ERR(trans);
3705 }
3706
3707 key.objectid = BTRFS_BALANCE_OBJECTID;
3708 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3709 key.offset = 0;
3710
3711 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3712 if (ret < 0)
3713 goto out;
3714 if (ret > 0) {
3715 ret = -ENOENT;
3716 goto out;
3717 }
3718
3719 ret = btrfs_del_item(trans, root, path);
3720 out:
3721 btrfs_free_path(path);
3722 err = btrfs_commit_transaction(trans);
3723 if (err && !ret)
3724 ret = err;
3725 return ret;
3726 }
3727
3728 /*
3729 * This is a heuristic used to reduce the number of chunks balanced on
3730 * resume after balance was interrupted.
3731 */
update_balance_args(struct btrfs_balance_control * bctl)3732 static void update_balance_args(struct btrfs_balance_control *bctl)
3733 {
3734 /*
3735 * Turn on soft mode for chunk types that were being converted.
3736 */
3737 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3738 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3739 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3740 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3741 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3742 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3743
3744 /*
3745 * Turn on usage filter if is not already used. The idea is
3746 * that chunks that we have already balanced should be
3747 * reasonably full. Don't do it for chunks that are being
3748 * converted - that will keep us from relocating unconverted
3749 * (albeit full) chunks.
3750 */
3751 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3752 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3753 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3754 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3755 bctl->data.usage = 90;
3756 }
3757 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3758 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3759 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3760 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3761 bctl->sys.usage = 90;
3762 }
3763 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3764 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3765 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3766 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3767 bctl->meta.usage = 90;
3768 }
3769 }
3770
3771 /*
3772 * Clear the balance status in fs_info and delete the balance item from disk.
3773 */
reset_balance_state(struct btrfs_fs_info * fs_info)3774 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3775 {
3776 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3777 int ret;
3778
3779 ASSERT(fs_info->balance_ctl);
3780
3781 spin_lock(&fs_info->balance_lock);
3782 fs_info->balance_ctl = NULL;
3783 spin_unlock(&fs_info->balance_lock);
3784
3785 kfree(bctl);
3786 ret = del_balance_item(fs_info);
3787 if (ret)
3788 btrfs_handle_fs_error(fs_info, ret, NULL);
3789 }
3790
3791 /*
3792 * Balance filters. Return 1 if chunk should be filtered out
3793 * (should not be balanced).
3794 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3795 static int chunk_profiles_filter(u64 chunk_type,
3796 struct btrfs_balance_args *bargs)
3797 {
3798 chunk_type = chunk_to_extended(chunk_type) &
3799 BTRFS_EXTENDED_PROFILE_MASK;
3800
3801 if (bargs->profiles & chunk_type)
3802 return 0;
3803
3804 return 1;
3805 }
3806
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3807 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3808 struct btrfs_balance_args *bargs)
3809 {
3810 struct btrfs_block_group *cache;
3811 u64 chunk_used;
3812 u64 user_thresh_min;
3813 u64 user_thresh_max;
3814 int ret = 1;
3815
3816 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3817 chunk_used = cache->used;
3818
3819 if (bargs->usage_min == 0)
3820 user_thresh_min = 0;
3821 else
3822 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3823
3824 if (bargs->usage_max == 0)
3825 user_thresh_max = 1;
3826 else if (bargs->usage_max > 100)
3827 user_thresh_max = cache->length;
3828 else
3829 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3830
3831 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3832 ret = 0;
3833
3834 btrfs_put_block_group(cache);
3835 return ret;
3836 }
3837
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3838 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3839 u64 chunk_offset, struct btrfs_balance_args *bargs)
3840 {
3841 struct btrfs_block_group *cache;
3842 u64 chunk_used, user_thresh;
3843 int ret = 1;
3844
3845 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3846 chunk_used = cache->used;
3847
3848 if (bargs->usage_min == 0)
3849 user_thresh = 1;
3850 else if (bargs->usage > 100)
3851 user_thresh = cache->length;
3852 else
3853 user_thresh = mult_perc(cache->length, bargs->usage);
3854
3855 if (chunk_used < user_thresh)
3856 ret = 0;
3857
3858 btrfs_put_block_group(cache);
3859 return ret;
3860 }
3861
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3862 static int chunk_devid_filter(struct extent_buffer *leaf,
3863 struct btrfs_chunk *chunk,
3864 struct btrfs_balance_args *bargs)
3865 {
3866 struct btrfs_stripe *stripe;
3867 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3868 int i;
3869
3870 for (i = 0; i < num_stripes; i++) {
3871 stripe = btrfs_stripe_nr(chunk, i);
3872 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3873 return 0;
3874 }
3875
3876 return 1;
3877 }
3878
calc_data_stripes(u64 type,int num_stripes)3879 static u64 calc_data_stripes(u64 type, int num_stripes)
3880 {
3881 const int index = btrfs_bg_flags_to_raid_index(type);
3882 const int ncopies = btrfs_raid_array[index].ncopies;
3883 const int nparity = btrfs_raid_array[index].nparity;
3884
3885 return (num_stripes - nparity) / ncopies;
3886 }
3887
3888 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3889 static int chunk_drange_filter(struct extent_buffer *leaf,
3890 struct btrfs_chunk *chunk,
3891 struct btrfs_balance_args *bargs)
3892 {
3893 struct btrfs_stripe *stripe;
3894 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3895 u64 stripe_offset;
3896 u64 stripe_length;
3897 u64 type;
3898 int factor;
3899 int i;
3900
3901 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3902 return 0;
3903
3904 type = btrfs_chunk_type(leaf, chunk);
3905 factor = calc_data_stripes(type, num_stripes);
3906
3907 for (i = 0; i < num_stripes; i++) {
3908 stripe = btrfs_stripe_nr(chunk, i);
3909 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3910 continue;
3911
3912 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3913 stripe_length = btrfs_chunk_length(leaf, chunk);
3914 stripe_length = div_u64(stripe_length, factor);
3915
3916 if (stripe_offset < bargs->pend &&
3917 stripe_offset + stripe_length > bargs->pstart)
3918 return 0;
3919 }
3920
3921 return 1;
3922 }
3923
3924 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3925 static int chunk_vrange_filter(struct extent_buffer *leaf,
3926 struct btrfs_chunk *chunk,
3927 u64 chunk_offset,
3928 struct btrfs_balance_args *bargs)
3929 {
3930 if (chunk_offset < bargs->vend &&
3931 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3932 /* at least part of the chunk is inside this vrange */
3933 return 0;
3934
3935 return 1;
3936 }
3937
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3938 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3939 struct btrfs_chunk *chunk,
3940 struct btrfs_balance_args *bargs)
3941 {
3942 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3943
3944 if (bargs->stripes_min <= num_stripes
3945 && num_stripes <= bargs->stripes_max)
3946 return 0;
3947
3948 return 1;
3949 }
3950
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3951 static int chunk_soft_convert_filter(u64 chunk_type,
3952 struct btrfs_balance_args *bargs)
3953 {
3954 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3955 return 0;
3956
3957 chunk_type = chunk_to_extended(chunk_type) &
3958 BTRFS_EXTENDED_PROFILE_MASK;
3959
3960 if (bargs->target == chunk_type)
3961 return 1;
3962
3963 return 0;
3964 }
3965
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3966 static int should_balance_chunk(struct extent_buffer *leaf,
3967 struct btrfs_chunk *chunk, u64 chunk_offset)
3968 {
3969 struct btrfs_fs_info *fs_info = leaf->fs_info;
3970 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3971 struct btrfs_balance_args *bargs = NULL;
3972 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3973
3974 /* type filter */
3975 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3976 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3977 return 0;
3978 }
3979
3980 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3981 bargs = &bctl->data;
3982 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3983 bargs = &bctl->sys;
3984 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3985 bargs = &bctl->meta;
3986
3987 /* profiles filter */
3988 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3989 chunk_profiles_filter(chunk_type, bargs)) {
3990 return 0;
3991 }
3992
3993 /* usage filter */
3994 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3995 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3996 return 0;
3997 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3998 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3999 return 0;
4000 }
4001
4002 /* devid filter */
4003 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4004 chunk_devid_filter(leaf, chunk, bargs)) {
4005 return 0;
4006 }
4007
4008 /* drange filter, makes sense only with devid filter */
4009 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4010 chunk_drange_filter(leaf, chunk, bargs)) {
4011 return 0;
4012 }
4013
4014 /* vrange filter */
4015 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4016 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4017 return 0;
4018 }
4019
4020 /* stripes filter */
4021 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4022 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4023 return 0;
4024 }
4025
4026 /* soft profile changing mode */
4027 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4028 chunk_soft_convert_filter(chunk_type, bargs)) {
4029 return 0;
4030 }
4031
4032 /*
4033 * limited by count, must be the last filter
4034 */
4035 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4036 if (bargs->limit == 0)
4037 return 0;
4038 else
4039 bargs->limit--;
4040 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4041 /*
4042 * Same logic as the 'limit' filter; the minimum cannot be
4043 * determined here because we do not have the global information
4044 * about the count of all chunks that satisfy the filters.
4045 */
4046 if (bargs->limit_max == 0)
4047 return 0;
4048 else
4049 bargs->limit_max--;
4050 }
4051
4052 return 1;
4053 }
4054
__btrfs_balance(struct btrfs_fs_info * fs_info)4055 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4056 {
4057 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4058 struct btrfs_root *chunk_root = fs_info->chunk_root;
4059 u64 chunk_type;
4060 struct btrfs_chunk *chunk;
4061 struct btrfs_path *path = NULL;
4062 struct btrfs_key key;
4063 struct btrfs_key found_key;
4064 struct extent_buffer *leaf;
4065 int slot;
4066 int ret;
4067 int enospc_errors = 0;
4068 bool counting = true;
4069 /* The single value limit and min/max limits use the same bytes in the */
4070 u64 limit_data = bctl->data.limit;
4071 u64 limit_meta = bctl->meta.limit;
4072 u64 limit_sys = bctl->sys.limit;
4073 u32 count_data = 0;
4074 u32 count_meta = 0;
4075 u32 count_sys = 0;
4076 int chunk_reserved = 0;
4077
4078 path = btrfs_alloc_path();
4079 if (!path) {
4080 ret = -ENOMEM;
4081 goto error;
4082 }
4083
4084 /* zero out stat counters */
4085 spin_lock(&fs_info->balance_lock);
4086 memset(&bctl->stat, 0, sizeof(bctl->stat));
4087 spin_unlock(&fs_info->balance_lock);
4088 again:
4089 if (!counting) {
4090 /*
4091 * The single value limit and min/max limits use the same bytes
4092 * in the
4093 */
4094 bctl->data.limit = limit_data;
4095 bctl->meta.limit = limit_meta;
4096 bctl->sys.limit = limit_sys;
4097 }
4098 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4099 key.offset = (u64)-1;
4100 key.type = BTRFS_CHUNK_ITEM_KEY;
4101
4102 while (1) {
4103 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4104 atomic_read(&fs_info->balance_cancel_req)) {
4105 ret = -ECANCELED;
4106 goto error;
4107 }
4108
4109 mutex_lock(&fs_info->reclaim_bgs_lock);
4110 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4111 if (ret < 0) {
4112 mutex_unlock(&fs_info->reclaim_bgs_lock);
4113 goto error;
4114 }
4115
4116 /*
4117 * this shouldn't happen, it means the last relocate
4118 * failed
4119 */
4120 if (ret == 0)
4121 BUG(); /* FIXME break ? */
4122
4123 ret = btrfs_previous_item(chunk_root, path, 0,
4124 BTRFS_CHUNK_ITEM_KEY);
4125 if (ret) {
4126 mutex_unlock(&fs_info->reclaim_bgs_lock);
4127 ret = 0;
4128 break;
4129 }
4130
4131 leaf = path->nodes[0];
4132 slot = path->slots[0];
4133 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4134
4135 if (found_key.objectid != key.objectid) {
4136 mutex_unlock(&fs_info->reclaim_bgs_lock);
4137 break;
4138 }
4139
4140 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4141 chunk_type = btrfs_chunk_type(leaf, chunk);
4142
4143 if (!counting) {
4144 spin_lock(&fs_info->balance_lock);
4145 bctl->stat.considered++;
4146 spin_unlock(&fs_info->balance_lock);
4147 }
4148
4149 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4150
4151 btrfs_release_path(path);
4152 if (!ret) {
4153 mutex_unlock(&fs_info->reclaim_bgs_lock);
4154 goto loop;
4155 }
4156
4157 if (counting) {
4158 mutex_unlock(&fs_info->reclaim_bgs_lock);
4159 spin_lock(&fs_info->balance_lock);
4160 bctl->stat.expected++;
4161 spin_unlock(&fs_info->balance_lock);
4162
4163 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4164 count_data++;
4165 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4166 count_sys++;
4167 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4168 count_meta++;
4169
4170 goto loop;
4171 }
4172
4173 /*
4174 * Apply limit_min filter, no need to check if the LIMITS
4175 * filter is used, limit_min is 0 by default
4176 */
4177 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4178 count_data < bctl->data.limit_min)
4179 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4180 count_meta < bctl->meta.limit_min)
4181 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4182 count_sys < bctl->sys.limit_min)) {
4183 mutex_unlock(&fs_info->reclaim_bgs_lock);
4184 goto loop;
4185 }
4186
4187 if (!chunk_reserved) {
4188 /*
4189 * We may be relocating the only data chunk we have,
4190 * which could potentially end up with losing data's
4191 * raid profile, so lets allocate an empty one in
4192 * advance.
4193 */
4194 ret = btrfs_may_alloc_data_chunk(fs_info,
4195 found_key.offset);
4196 if (ret < 0) {
4197 mutex_unlock(&fs_info->reclaim_bgs_lock);
4198 goto error;
4199 } else if (ret == 1) {
4200 chunk_reserved = 1;
4201 }
4202 }
4203
4204 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4205 mutex_unlock(&fs_info->reclaim_bgs_lock);
4206 if (ret == -ENOSPC) {
4207 enospc_errors++;
4208 } else if (ret == -ETXTBSY) {
4209 btrfs_info(fs_info,
4210 "skipping relocation of block group %llu due to active swapfile",
4211 found_key.offset);
4212 ret = 0;
4213 } else if (ret) {
4214 goto error;
4215 } else {
4216 spin_lock(&fs_info->balance_lock);
4217 bctl->stat.completed++;
4218 spin_unlock(&fs_info->balance_lock);
4219 }
4220 loop:
4221 if (found_key.offset == 0)
4222 break;
4223 key.offset = found_key.offset - 1;
4224 }
4225
4226 if (counting) {
4227 btrfs_release_path(path);
4228 counting = false;
4229 goto again;
4230 }
4231 error:
4232 btrfs_free_path(path);
4233 if (enospc_errors) {
4234 btrfs_info(fs_info, "%d enospc errors during balance",
4235 enospc_errors);
4236 if (!ret)
4237 ret = -ENOSPC;
4238 }
4239
4240 return ret;
4241 }
4242
4243 /*
4244 * See if a given profile is valid and reduced.
4245 *
4246 * @flags: profile to validate
4247 * @extended: if true @flags is treated as an extended profile
4248 */
alloc_profile_is_valid(u64 flags,int extended)4249 static int alloc_profile_is_valid(u64 flags, int extended)
4250 {
4251 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4252 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4253
4254 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4255
4256 /* 1) check that all other bits are zeroed */
4257 if (flags & ~mask)
4258 return 0;
4259
4260 /* 2) see if profile is reduced */
4261 if (flags == 0)
4262 return !extended; /* "0" is valid for usual profiles */
4263
4264 return has_single_bit_set(flags);
4265 }
4266
4267 /*
4268 * Validate target profile against allowed profiles and return true if it's OK.
4269 * Otherwise print the error message and return false.
4270 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4271 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4272 const struct btrfs_balance_args *bargs,
4273 u64 allowed, const char *type)
4274 {
4275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4276 return true;
4277
4278 /* Profile is valid and does not have bits outside of the allowed set */
4279 if (alloc_profile_is_valid(bargs->target, 1) &&
4280 (bargs->target & ~allowed) == 0)
4281 return true;
4282
4283 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4284 type, btrfs_bg_type_to_raid_name(bargs->target));
4285 return false;
4286 }
4287
4288 /*
4289 * Fill @buf with textual description of balance filter flags @bargs, up to
4290 * @size_buf including the terminating null. The output may be trimmed if it
4291 * does not fit into the provided buffer.
4292 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4293 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4294 u32 size_buf)
4295 {
4296 int ret;
4297 u32 size_bp = size_buf;
4298 char *bp = buf;
4299 u64 flags = bargs->flags;
4300 char tmp_buf[128] = {'\0'};
4301
4302 if (!flags)
4303 return;
4304
4305 #define CHECK_APPEND_NOARG(a) \
4306 do { \
4307 ret = snprintf(bp, size_bp, (a)); \
4308 if (ret < 0 || ret >= size_bp) \
4309 goto out_overflow; \
4310 size_bp -= ret; \
4311 bp += ret; \
4312 } while (0)
4313
4314 #define CHECK_APPEND_1ARG(a, v1) \
4315 do { \
4316 ret = snprintf(bp, size_bp, (a), (v1)); \
4317 if (ret < 0 || ret >= size_bp) \
4318 goto out_overflow; \
4319 size_bp -= ret; \
4320 bp += ret; \
4321 } while (0)
4322
4323 #define CHECK_APPEND_2ARG(a, v1, v2) \
4324 do { \
4325 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4326 if (ret < 0 || ret >= size_bp) \
4327 goto out_overflow; \
4328 size_bp -= ret; \
4329 bp += ret; \
4330 } while (0)
4331
4332 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4333 CHECK_APPEND_1ARG("convert=%s,",
4334 btrfs_bg_type_to_raid_name(bargs->target));
4335
4336 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4337 CHECK_APPEND_NOARG("soft,");
4338
4339 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4340 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4341 sizeof(tmp_buf));
4342 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4343 }
4344
4345 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4346 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4347
4348 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4349 CHECK_APPEND_2ARG("usage=%u..%u,",
4350 bargs->usage_min, bargs->usage_max);
4351
4352 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4353 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4354
4355 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4356 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4357 bargs->pstart, bargs->pend);
4358
4359 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4360 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4361 bargs->vstart, bargs->vend);
4362
4363 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4364 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4365
4366 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4367 CHECK_APPEND_2ARG("limit=%u..%u,",
4368 bargs->limit_min, bargs->limit_max);
4369
4370 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4371 CHECK_APPEND_2ARG("stripes=%u..%u,",
4372 bargs->stripes_min, bargs->stripes_max);
4373
4374 #undef CHECK_APPEND_2ARG
4375 #undef CHECK_APPEND_1ARG
4376 #undef CHECK_APPEND_NOARG
4377
4378 out_overflow:
4379
4380 if (size_bp < size_buf)
4381 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4382 else
4383 buf[0] = '\0';
4384 }
4385
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4386 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4387 {
4388 u32 size_buf = 1024;
4389 char tmp_buf[192] = {'\0'};
4390 char *buf;
4391 char *bp;
4392 u32 size_bp = size_buf;
4393 int ret;
4394 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4395
4396 buf = kzalloc(size_buf, GFP_KERNEL);
4397 if (!buf)
4398 return;
4399
4400 bp = buf;
4401
4402 #define CHECK_APPEND_1ARG(a, v1) \
4403 do { \
4404 ret = snprintf(bp, size_bp, (a), (v1)); \
4405 if (ret < 0 || ret >= size_bp) \
4406 goto out_overflow; \
4407 size_bp -= ret; \
4408 bp += ret; \
4409 } while (0)
4410
4411 if (bctl->flags & BTRFS_BALANCE_FORCE)
4412 CHECK_APPEND_1ARG("%s", "-f ");
4413
4414 if (bctl->flags & BTRFS_BALANCE_DATA) {
4415 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4416 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4417 }
4418
4419 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4420 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4421 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4422 }
4423
4424 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4425 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4426 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4427 }
4428
4429 #undef CHECK_APPEND_1ARG
4430
4431 out_overflow:
4432
4433 if (size_bp < size_buf)
4434 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4435 btrfs_info(fs_info, "balance: %s %s",
4436 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4437 "resume" : "start", buf);
4438
4439 kfree(buf);
4440 }
4441
4442 /*
4443 * Should be called with balance mutexe held
4444 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4445 int btrfs_balance(struct btrfs_fs_info *fs_info,
4446 struct btrfs_balance_control *bctl,
4447 struct btrfs_ioctl_balance_args *bargs)
4448 {
4449 u64 meta_target, data_target;
4450 u64 allowed;
4451 int mixed = 0;
4452 int ret;
4453 u64 num_devices;
4454 unsigned seq;
4455 bool reducing_redundancy;
4456 bool paused = false;
4457 int i;
4458
4459 if (btrfs_fs_closing(fs_info) ||
4460 atomic_read(&fs_info->balance_pause_req) ||
4461 btrfs_should_cancel_balance(fs_info)) {
4462 ret = -EINVAL;
4463 goto out;
4464 }
4465
4466 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4467 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4468 mixed = 1;
4469
4470 /*
4471 * In case of mixed groups both data and meta should be picked,
4472 * and identical options should be given for both of them.
4473 */
4474 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4475 if (mixed && (bctl->flags & allowed)) {
4476 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4477 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4478 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4479 btrfs_err(fs_info,
4480 "balance: mixed groups data and metadata options must be the same");
4481 ret = -EINVAL;
4482 goto out;
4483 }
4484 }
4485
4486 /*
4487 * rw_devices will not change at the moment, device add/delete/replace
4488 * are exclusive
4489 */
4490 num_devices = fs_info->fs_devices->rw_devices;
4491
4492 /*
4493 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4494 * special bit for it, to make it easier to distinguish. Thus we need
4495 * to set it manually, or balance would refuse the profile.
4496 */
4497 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4498 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4499 if (num_devices >= btrfs_raid_array[i].devs_min)
4500 allowed |= btrfs_raid_array[i].bg_flag;
4501
4502 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4503 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4504 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4505 ret = -EINVAL;
4506 goto out;
4507 }
4508
4509 /*
4510 * Allow to reduce metadata or system integrity only if force set for
4511 * profiles with redundancy (copies, parity)
4512 */
4513 allowed = 0;
4514 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4515 if (btrfs_raid_array[i].ncopies >= 2 ||
4516 btrfs_raid_array[i].tolerated_failures >= 1)
4517 allowed |= btrfs_raid_array[i].bg_flag;
4518 }
4519 do {
4520 seq = read_seqbegin(&fs_info->profiles_lock);
4521
4522 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4523 (fs_info->avail_system_alloc_bits & allowed) &&
4524 !(bctl->sys.target & allowed)) ||
4525 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4526 (fs_info->avail_metadata_alloc_bits & allowed) &&
4527 !(bctl->meta.target & allowed)))
4528 reducing_redundancy = true;
4529 else
4530 reducing_redundancy = false;
4531
4532 /* if we're not converting, the target field is uninitialized */
4533 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4534 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4535 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4536 bctl->data.target : fs_info->avail_data_alloc_bits;
4537 } while (read_seqretry(&fs_info->profiles_lock, seq));
4538
4539 if (reducing_redundancy) {
4540 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4541 btrfs_info(fs_info,
4542 "balance: force reducing metadata redundancy");
4543 } else {
4544 btrfs_err(fs_info,
4545 "balance: reduces metadata redundancy, use --force if you want this");
4546 ret = -EINVAL;
4547 goto out;
4548 }
4549 }
4550
4551 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4552 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4553 btrfs_warn(fs_info,
4554 "balance: metadata profile %s has lower redundancy than data profile %s",
4555 btrfs_bg_type_to_raid_name(meta_target),
4556 btrfs_bg_type_to_raid_name(data_target));
4557 }
4558
4559 ret = insert_balance_item(fs_info, bctl);
4560 if (ret && ret != -EEXIST)
4561 goto out;
4562
4563 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4564 BUG_ON(ret == -EEXIST);
4565 BUG_ON(fs_info->balance_ctl);
4566 spin_lock(&fs_info->balance_lock);
4567 fs_info->balance_ctl = bctl;
4568 spin_unlock(&fs_info->balance_lock);
4569 } else {
4570 BUG_ON(ret != -EEXIST);
4571 spin_lock(&fs_info->balance_lock);
4572 update_balance_args(bctl);
4573 spin_unlock(&fs_info->balance_lock);
4574 }
4575
4576 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4577 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4578 describe_balance_start_or_resume(fs_info);
4579 mutex_unlock(&fs_info->balance_mutex);
4580
4581 ret = __btrfs_balance(fs_info);
4582
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4585 btrfs_info(fs_info, "balance: paused");
4586 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4587 paused = true;
4588 }
4589 /*
4590 * Balance can be canceled by:
4591 *
4592 * - Regular cancel request
4593 * Then ret == -ECANCELED and balance_cancel_req > 0
4594 *
4595 * - Fatal signal to "btrfs" process
4596 * Either the signal caught by wait_reserve_ticket() and callers
4597 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4598 * got -ECANCELED.
4599 * Either way, in this case balance_cancel_req = 0, and
4600 * ret == -EINTR or ret == -ECANCELED.
4601 *
4602 * So here we only check the return value to catch canceled balance.
4603 */
4604 else if (ret == -ECANCELED || ret == -EINTR)
4605 btrfs_info(fs_info, "balance: canceled");
4606 else
4607 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4608
4609 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4610
4611 if (bargs) {
4612 memset(bargs, 0, sizeof(*bargs));
4613 btrfs_update_ioctl_balance_args(fs_info, bargs);
4614 }
4615
4616 /* We didn't pause, we can clean everything up. */
4617 if (!paused) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 }
4621
4622 wake_up(&fs_info->balance_wait_q);
4623
4624 return ret;
4625 out:
4626 if (bctl->flags & BTRFS_BALANCE_RESUME)
4627 reset_balance_state(fs_info);
4628 else
4629 kfree(bctl);
4630 btrfs_exclop_finish(fs_info);
4631
4632 return ret;
4633 }
4634
balance_kthread(void * data)4635 static int balance_kthread(void *data)
4636 {
4637 struct btrfs_fs_info *fs_info = data;
4638 int ret = 0;
4639
4640 sb_start_write(fs_info->sb);
4641 mutex_lock(&fs_info->balance_mutex);
4642 if (fs_info->balance_ctl)
4643 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4644 mutex_unlock(&fs_info->balance_mutex);
4645 sb_end_write(fs_info->sb);
4646
4647 return ret;
4648 }
4649
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4650 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4651 {
4652 struct task_struct *tsk;
4653
4654 mutex_lock(&fs_info->balance_mutex);
4655 if (!fs_info->balance_ctl) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 return 0;
4658 }
4659 mutex_unlock(&fs_info->balance_mutex);
4660
4661 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4662 btrfs_info(fs_info, "balance: resume skipped");
4663 return 0;
4664 }
4665
4666 spin_lock(&fs_info->super_lock);
4667 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4668 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4669 spin_unlock(&fs_info->super_lock);
4670 /*
4671 * A ro->rw remount sequence should continue with the paused balance
4672 * regardless of who pauses it, system or the user as of now, so set
4673 * the resume flag.
4674 */
4675 spin_lock(&fs_info->balance_lock);
4676 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4677 spin_unlock(&fs_info->balance_lock);
4678
4679 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4680 return PTR_ERR_OR_ZERO(tsk);
4681 }
4682
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4683 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4684 {
4685 struct btrfs_balance_control *bctl;
4686 struct btrfs_balance_item *item;
4687 struct btrfs_disk_balance_args disk_bargs;
4688 struct btrfs_path *path;
4689 struct extent_buffer *leaf;
4690 struct btrfs_key key;
4691 int ret;
4692
4693 path = btrfs_alloc_path();
4694 if (!path)
4695 return -ENOMEM;
4696
4697 key.objectid = BTRFS_BALANCE_OBJECTID;
4698 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4699 key.offset = 0;
4700
4701 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4702 if (ret < 0)
4703 goto out;
4704 if (ret > 0) { /* ret = -ENOENT; */
4705 ret = 0;
4706 goto out;
4707 }
4708
4709 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4710 if (!bctl) {
4711 ret = -ENOMEM;
4712 goto out;
4713 }
4714
4715 leaf = path->nodes[0];
4716 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4717
4718 bctl->flags = btrfs_balance_flags(leaf, item);
4719 bctl->flags |= BTRFS_BALANCE_RESUME;
4720
4721 btrfs_balance_data(leaf, item, &disk_bargs);
4722 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4723 btrfs_balance_meta(leaf, item, &disk_bargs);
4724 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4725 btrfs_balance_sys(leaf, item, &disk_bargs);
4726 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4727
4728 /*
4729 * This should never happen, as the paused balance state is recovered
4730 * during mount without any chance of other exclusive ops to collide.
4731 *
4732 * This gives the exclusive op status to balance and keeps in paused
4733 * state until user intervention (cancel or umount). If the ownership
4734 * cannot be assigned, show a message but do not fail. The balance
4735 * is in a paused state and must have fs_info::balance_ctl properly
4736 * set up.
4737 */
4738 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4739 btrfs_warn(fs_info,
4740 "balance: cannot set exclusive op status, resume manually");
4741
4742 btrfs_release_path(path);
4743
4744 mutex_lock(&fs_info->balance_mutex);
4745 BUG_ON(fs_info->balance_ctl);
4746 spin_lock(&fs_info->balance_lock);
4747 fs_info->balance_ctl = bctl;
4748 spin_unlock(&fs_info->balance_lock);
4749 mutex_unlock(&fs_info->balance_mutex);
4750 out:
4751 btrfs_free_path(path);
4752 return ret;
4753 }
4754
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4755 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4756 {
4757 int ret = 0;
4758
4759 mutex_lock(&fs_info->balance_mutex);
4760 if (!fs_info->balance_ctl) {
4761 mutex_unlock(&fs_info->balance_mutex);
4762 return -ENOTCONN;
4763 }
4764
4765 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4766 atomic_inc(&fs_info->balance_pause_req);
4767 mutex_unlock(&fs_info->balance_mutex);
4768
4769 wait_event(fs_info->balance_wait_q,
4770 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4771
4772 mutex_lock(&fs_info->balance_mutex);
4773 /* we are good with balance_ctl ripped off from under us */
4774 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4775 atomic_dec(&fs_info->balance_pause_req);
4776 } else {
4777 ret = -ENOTCONN;
4778 }
4779
4780 mutex_unlock(&fs_info->balance_mutex);
4781 return ret;
4782 }
4783
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4784 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4785 {
4786 mutex_lock(&fs_info->balance_mutex);
4787 if (!fs_info->balance_ctl) {
4788 mutex_unlock(&fs_info->balance_mutex);
4789 return -ENOTCONN;
4790 }
4791
4792 /*
4793 * A paused balance with the item stored on disk can be resumed at
4794 * mount time if the mount is read-write. Otherwise it's still paused
4795 * and we must not allow cancelling as it deletes the item.
4796 */
4797 if (sb_rdonly(fs_info->sb)) {
4798 mutex_unlock(&fs_info->balance_mutex);
4799 return -EROFS;
4800 }
4801
4802 atomic_inc(&fs_info->balance_cancel_req);
4803 /*
4804 * if we are running just wait and return, balance item is
4805 * deleted in btrfs_balance in this case
4806 */
4807 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4808 mutex_unlock(&fs_info->balance_mutex);
4809 wait_event(fs_info->balance_wait_q,
4810 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4811 mutex_lock(&fs_info->balance_mutex);
4812 } else {
4813 mutex_unlock(&fs_info->balance_mutex);
4814 /*
4815 * Lock released to allow other waiters to continue, we'll
4816 * reexamine the status again.
4817 */
4818 mutex_lock(&fs_info->balance_mutex);
4819
4820 if (fs_info->balance_ctl) {
4821 reset_balance_state(fs_info);
4822 btrfs_exclop_finish(fs_info);
4823 btrfs_info(fs_info, "balance: canceled");
4824 }
4825 }
4826
4827 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4828 atomic_dec(&fs_info->balance_cancel_req);
4829 mutex_unlock(&fs_info->balance_mutex);
4830 return 0;
4831 }
4832
4833 /*
4834 * shrinking a device means finding all of the device extents past
4835 * the new size, and then following the back refs to the chunks.
4836 * The chunk relocation code actually frees the device extent
4837 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4838 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4839 {
4840 struct btrfs_fs_info *fs_info = device->fs_info;
4841 struct btrfs_root *root = fs_info->dev_root;
4842 struct btrfs_trans_handle *trans;
4843 struct btrfs_dev_extent *dev_extent = NULL;
4844 struct btrfs_path *path;
4845 u64 length;
4846 u64 chunk_offset;
4847 int ret;
4848 int slot;
4849 int failed = 0;
4850 bool retried = false;
4851 struct extent_buffer *l;
4852 struct btrfs_key key;
4853 struct btrfs_super_block *super_copy = fs_info->super_copy;
4854 u64 old_total = btrfs_super_total_bytes(super_copy);
4855 u64 old_size = btrfs_device_get_total_bytes(device);
4856 u64 diff;
4857 u64 start;
4858 u64 free_diff = 0;
4859
4860 new_size = round_down(new_size, fs_info->sectorsize);
4861 start = new_size;
4862 diff = round_down(old_size - new_size, fs_info->sectorsize);
4863
4864 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4865 return -EINVAL;
4866
4867 path = btrfs_alloc_path();
4868 if (!path)
4869 return -ENOMEM;
4870
4871 path->reada = READA_BACK;
4872
4873 trans = btrfs_start_transaction(root, 0);
4874 if (IS_ERR(trans)) {
4875 btrfs_free_path(path);
4876 return PTR_ERR(trans);
4877 }
4878
4879 mutex_lock(&fs_info->chunk_mutex);
4880
4881 btrfs_device_set_total_bytes(device, new_size);
4882 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4883 device->fs_devices->total_rw_bytes -= diff;
4884
4885 /*
4886 * The new free_chunk_space is new_size - used, so we have to
4887 * subtract the delta of the old free_chunk_space which included
4888 * old_size - used. If used > new_size then just subtract this
4889 * entire device's free space.
4890 */
4891 if (device->bytes_used < new_size)
4892 free_diff = (old_size - device->bytes_used) -
4893 (new_size - device->bytes_used);
4894 else
4895 free_diff = old_size - device->bytes_used;
4896 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4897 }
4898
4899 /*
4900 * Once the device's size has been set to the new size, ensure all
4901 * in-memory chunks are synced to disk so that the loop below sees them
4902 * and relocates them accordingly.
4903 */
4904 if (contains_pending_extent(device, &start, diff)) {
4905 mutex_unlock(&fs_info->chunk_mutex);
4906 ret = btrfs_commit_transaction(trans);
4907 if (ret)
4908 goto done;
4909 } else {
4910 mutex_unlock(&fs_info->chunk_mutex);
4911 btrfs_end_transaction(trans);
4912 }
4913
4914 again:
4915 key.objectid = device->devid;
4916 key.offset = (u64)-1;
4917 key.type = BTRFS_DEV_EXTENT_KEY;
4918
4919 do {
4920 mutex_lock(&fs_info->reclaim_bgs_lock);
4921 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4922 if (ret < 0) {
4923 mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 goto done;
4925 }
4926
4927 ret = btrfs_previous_item(root, path, 0, key.type);
4928 if (ret) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 if (ret < 0)
4931 goto done;
4932 ret = 0;
4933 btrfs_release_path(path);
4934 break;
4935 }
4936
4937 l = path->nodes[0];
4938 slot = path->slots[0];
4939 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4940
4941 if (key.objectid != device->devid) {
4942 mutex_unlock(&fs_info->reclaim_bgs_lock);
4943 btrfs_release_path(path);
4944 break;
4945 }
4946
4947 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4948 length = btrfs_dev_extent_length(l, dev_extent);
4949
4950 if (key.offset + length <= new_size) {
4951 mutex_unlock(&fs_info->reclaim_bgs_lock);
4952 btrfs_release_path(path);
4953 break;
4954 }
4955
4956 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4957 btrfs_release_path(path);
4958
4959 /*
4960 * We may be relocating the only data chunk we have,
4961 * which could potentially end up with losing data's
4962 * raid profile, so lets allocate an empty one in
4963 * advance.
4964 */
4965 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4966 if (ret < 0) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 goto done;
4969 }
4970
4971 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4972 mutex_unlock(&fs_info->reclaim_bgs_lock);
4973 if (ret == -ENOSPC) {
4974 failed++;
4975 } else if (ret) {
4976 if (ret == -ETXTBSY) {
4977 btrfs_warn(fs_info,
4978 "could not shrink block group %llu due to active swapfile",
4979 chunk_offset);
4980 }
4981 goto done;
4982 }
4983 } while (key.offset-- > 0);
4984
4985 if (failed && !retried) {
4986 failed = 0;
4987 retried = true;
4988 goto again;
4989 } else if (failed && retried) {
4990 ret = -ENOSPC;
4991 goto done;
4992 }
4993
4994 /* Shrinking succeeded, else we would be at "done". */
4995 trans = btrfs_start_transaction(root, 0);
4996 if (IS_ERR(trans)) {
4997 ret = PTR_ERR(trans);
4998 goto done;
4999 }
5000
5001 mutex_lock(&fs_info->chunk_mutex);
5002 /* Clear all state bits beyond the shrunk device size */
5003 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5004 CHUNK_STATE_MASK);
5005
5006 btrfs_device_set_disk_total_bytes(device, new_size);
5007 if (list_empty(&device->post_commit_list))
5008 list_add_tail(&device->post_commit_list,
5009 &trans->transaction->dev_update_list);
5010
5011 WARN_ON(diff > old_total);
5012 btrfs_set_super_total_bytes(super_copy,
5013 round_down(old_total - diff, fs_info->sectorsize));
5014 mutex_unlock(&fs_info->chunk_mutex);
5015
5016 btrfs_reserve_chunk_metadata(trans, false);
5017 /* Now btrfs_update_device() will change the on-disk size. */
5018 ret = btrfs_update_device(trans, device);
5019 btrfs_trans_release_chunk_metadata(trans);
5020 if (ret < 0) {
5021 btrfs_abort_transaction(trans, ret);
5022 btrfs_end_transaction(trans);
5023 } else {
5024 ret = btrfs_commit_transaction(trans);
5025 }
5026 done:
5027 btrfs_free_path(path);
5028 if (ret) {
5029 mutex_lock(&fs_info->chunk_mutex);
5030 btrfs_device_set_total_bytes(device, old_size);
5031 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5032 device->fs_devices->total_rw_bytes += diff;
5033 atomic64_add(free_diff, &fs_info->free_chunk_space);
5034 }
5035 mutex_unlock(&fs_info->chunk_mutex);
5036 }
5037 return ret;
5038 }
5039
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5040 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5041 struct btrfs_key *key,
5042 struct btrfs_chunk *chunk, int item_size)
5043 {
5044 struct btrfs_super_block *super_copy = fs_info->super_copy;
5045 struct btrfs_disk_key disk_key;
5046 u32 array_size;
5047 u8 *ptr;
5048
5049 lockdep_assert_held(&fs_info->chunk_mutex);
5050
5051 array_size = btrfs_super_sys_array_size(super_copy);
5052 if (array_size + item_size + sizeof(disk_key)
5053 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5054 return -EFBIG;
5055
5056 ptr = super_copy->sys_chunk_array + array_size;
5057 btrfs_cpu_key_to_disk(&disk_key, key);
5058 memcpy(ptr, &disk_key, sizeof(disk_key));
5059 ptr += sizeof(disk_key);
5060 memcpy(ptr, chunk, item_size);
5061 item_size += sizeof(disk_key);
5062 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5063
5064 return 0;
5065 }
5066
5067 /*
5068 * sort the devices in descending order by max_avail, total_avail
5069 */
btrfs_cmp_device_info(const void * a,const void * b)5070 static int btrfs_cmp_device_info(const void *a, const void *b)
5071 {
5072 const struct btrfs_device_info *di_a = a;
5073 const struct btrfs_device_info *di_b = b;
5074
5075 if (di_a->max_avail > di_b->max_avail)
5076 return -1;
5077 if (di_a->max_avail < di_b->max_avail)
5078 return 1;
5079 if (di_a->total_avail > di_b->total_avail)
5080 return -1;
5081 if (di_a->total_avail < di_b->total_avail)
5082 return 1;
5083 return 0;
5084 }
5085
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5086 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5087 {
5088 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5089 return;
5090
5091 btrfs_set_fs_incompat(info, RAID56);
5092 }
5093
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5094 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5095 {
5096 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5097 return;
5098
5099 btrfs_set_fs_incompat(info, RAID1C34);
5100 }
5101
5102 /*
5103 * Structure used internally for btrfs_create_chunk() function.
5104 * Wraps needed parameters.
5105 */
5106 struct alloc_chunk_ctl {
5107 u64 start;
5108 u64 type;
5109 /* Total number of stripes to allocate */
5110 int num_stripes;
5111 /* sub_stripes info for map */
5112 int sub_stripes;
5113 /* Stripes per device */
5114 int dev_stripes;
5115 /* Maximum number of devices to use */
5116 int devs_max;
5117 /* Minimum number of devices to use */
5118 int devs_min;
5119 /* ndevs has to be a multiple of this */
5120 int devs_increment;
5121 /* Number of copies */
5122 int ncopies;
5123 /* Number of stripes worth of bytes to store parity information */
5124 int nparity;
5125 u64 max_stripe_size;
5126 u64 max_chunk_size;
5127 u64 dev_extent_min;
5128 u64 stripe_size;
5129 u64 chunk_size;
5130 int ndevs;
5131 };
5132
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5133 static void init_alloc_chunk_ctl_policy_regular(
5134 struct btrfs_fs_devices *fs_devices,
5135 struct alloc_chunk_ctl *ctl)
5136 {
5137 struct btrfs_space_info *space_info;
5138
5139 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5140 ASSERT(space_info);
5141
5142 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5143 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5144
5145 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5146 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5147
5148 /* We don't want a chunk larger than 10% of writable space */
5149 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5150 ctl->max_chunk_size);
5151 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5152 }
5153
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5154 static void init_alloc_chunk_ctl_policy_zoned(
5155 struct btrfs_fs_devices *fs_devices,
5156 struct alloc_chunk_ctl *ctl)
5157 {
5158 u64 zone_size = fs_devices->fs_info->zone_size;
5159 u64 limit;
5160 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5161 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5162 u64 min_chunk_size = min_data_stripes * zone_size;
5163 u64 type = ctl->type;
5164
5165 ctl->max_stripe_size = zone_size;
5166 if (type & BTRFS_BLOCK_GROUP_DATA) {
5167 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5168 zone_size);
5169 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5170 ctl->max_chunk_size = ctl->max_stripe_size;
5171 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5172 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5173 ctl->devs_max = min_t(int, ctl->devs_max,
5174 BTRFS_MAX_DEVS_SYS_CHUNK);
5175 } else {
5176 BUG();
5177 }
5178
5179 /* We don't want a chunk larger than 10% of writable space */
5180 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5181 zone_size),
5182 min_chunk_size);
5183 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5184 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5185 }
5186
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5187 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5188 struct alloc_chunk_ctl *ctl)
5189 {
5190 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5191
5192 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5193 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5194 ctl->devs_max = btrfs_raid_array[index].devs_max;
5195 if (!ctl->devs_max)
5196 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5197 ctl->devs_min = btrfs_raid_array[index].devs_min;
5198 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5199 ctl->ncopies = btrfs_raid_array[index].ncopies;
5200 ctl->nparity = btrfs_raid_array[index].nparity;
5201 ctl->ndevs = 0;
5202
5203 switch (fs_devices->chunk_alloc_policy) {
5204 case BTRFS_CHUNK_ALLOC_REGULAR:
5205 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5206 break;
5207 case BTRFS_CHUNK_ALLOC_ZONED:
5208 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5209 break;
5210 default:
5211 BUG();
5212 }
5213 }
5214
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5215 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5216 struct alloc_chunk_ctl *ctl,
5217 struct btrfs_device_info *devices_info)
5218 {
5219 struct btrfs_fs_info *info = fs_devices->fs_info;
5220 struct btrfs_device *device;
5221 u64 total_avail;
5222 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5223 int ret;
5224 int ndevs = 0;
5225 u64 max_avail;
5226 u64 dev_offset;
5227
5228 /*
5229 * in the first pass through the devices list, we gather information
5230 * about the available holes on each device.
5231 */
5232 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5233 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5234 WARN(1, KERN_ERR
5235 "BTRFS: read-only device in alloc_list\n");
5236 continue;
5237 }
5238
5239 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5240 &device->dev_state) ||
5241 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5242 continue;
5243
5244 if (device->total_bytes > device->bytes_used)
5245 total_avail = device->total_bytes - device->bytes_used;
5246 else
5247 total_avail = 0;
5248
5249 /* If there is no space on this device, skip it. */
5250 if (total_avail < ctl->dev_extent_min)
5251 continue;
5252
5253 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5254 &max_avail);
5255 if (ret && ret != -ENOSPC)
5256 return ret;
5257
5258 if (ret == 0)
5259 max_avail = dev_extent_want;
5260
5261 if (max_avail < ctl->dev_extent_min) {
5262 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5263 btrfs_debug(info,
5264 "%s: devid %llu has no free space, have=%llu want=%llu",
5265 __func__, device->devid, max_avail,
5266 ctl->dev_extent_min);
5267 continue;
5268 }
5269
5270 if (ndevs == fs_devices->rw_devices) {
5271 WARN(1, "%s: found more than %llu devices\n",
5272 __func__, fs_devices->rw_devices);
5273 break;
5274 }
5275 devices_info[ndevs].dev_offset = dev_offset;
5276 devices_info[ndevs].max_avail = max_avail;
5277 devices_info[ndevs].total_avail = total_avail;
5278 devices_info[ndevs].dev = device;
5279 ++ndevs;
5280 }
5281 ctl->ndevs = ndevs;
5282
5283 /*
5284 * now sort the devices by hole size / available space
5285 */
5286 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5287 btrfs_cmp_device_info, NULL);
5288
5289 return 0;
5290 }
5291
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5292 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5293 struct btrfs_device_info *devices_info)
5294 {
5295 /* Number of stripes that count for block group size */
5296 int data_stripes;
5297
5298 /*
5299 * The primary goal is to maximize the number of stripes, so use as
5300 * many devices as possible, even if the stripes are not maximum sized.
5301 *
5302 * The DUP profile stores more than one stripe per device, the
5303 * max_avail is the total size so we have to adjust.
5304 */
5305 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5306 ctl->dev_stripes);
5307 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5308
5309 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5310 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5311
5312 /*
5313 * Use the number of data stripes to figure out how big this chunk is
5314 * really going to be in terms of logical address space, and compare
5315 * that answer with the max chunk size. If it's higher, we try to
5316 * reduce stripe_size.
5317 */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 /*
5320 * Reduce stripe_size, round it up to a 16MB boundary again and
5321 * then use it, unless it ends up being even bigger than the
5322 * previous value we had already.
5323 */
5324 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5325 data_stripes), SZ_16M),
5326 ctl->stripe_size);
5327 }
5328
5329 /* Stripe size should not go beyond 1G. */
5330 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5331
5332 /* Align to BTRFS_STRIPE_LEN */
5333 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5334 ctl->chunk_size = ctl->stripe_size * data_stripes;
5335
5336 return 0;
5337 }
5338
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5339 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5340 struct btrfs_device_info *devices_info)
5341 {
5342 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5343 /* Number of stripes that count for block group size */
5344 int data_stripes;
5345
5346 /*
5347 * It should hold because:
5348 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5349 */
5350 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5351
5352 ctl->stripe_size = zone_size;
5353 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5354 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5355
5356 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5357 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5358 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5359 ctl->stripe_size) + ctl->nparity,
5360 ctl->dev_stripes);
5361 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5362 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5363 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5364 }
5365
5366 ctl->chunk_size = ctl->stripe_size * data_stripes;
5367
5368 return 0;
5369 }
5370
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5371 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5372 struct alloc_chunk_ctl *ctl,
5373 struct btrfs_device_info *devices_info)
5374 {
5375 struct btrfs_fs_info *info = fs_devices->fs_info;
5376
5377 /*
5378 * Round down to number of usable stripes, devs_increment can be any
5379 * number so we can't use round_down() that requires power of 2, while
5380 * rounddown is safe.
5381 */
5382 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5383
5384 if (ctl->ndevs < ctl->devs_min) {
5385 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5386 btrfs_debug(info,
5387 "%s: not enough devices with free space: have=%d minimum required=%d",
5388 __func__, ctl->ndevs, ctl->devs_min);
5389 }
5390 return -ENOSPC;
5391 }
5392
5393 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5394
5395 switch (fs_devices->chunk_alloc_policy) {
5396 case BTRFS_CHUNK_ALLOC_REGULAR:
5397 return decide_stripe_size_regular(ctl, devices_info);
5398 case BTRFS_CHUNK_ALLOC_ZONED:
5399 return decide_stripe_size_zoned(ctl, devices_info);
5400 default:
5401 BUG();
5402 }
5403 }
5404
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5405 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5406 {
5407 for (int i = 0; i < map->num_stripes; i++) {
5408 struct btrfs_io_stripe *stripe = &map->stripes[i];
5409 struct btrfs_device *device = stripe->dev;
5410
5411 set_extent_bit(&device->alloc_state, stripe->physical,
5412 stripe->physical + map->stripe_size - 1,
5413 bits | EXTENT_NOWAIT, NULL);
5414 }
5415 }
5416
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5417 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5418 {
5419 for (int i = 0; i < map->num_stripes; i++) {
5420 struct btrfs_io_stripe *stripe = &map->stripes[i];
5421 struct btrfs_device *device = stripe->dev;
5422
5423 __clear_extent_bit(&device->alloc_state, stripe->physical,
5424 stripe->physical + map->stripe_size - 1,
5425 bits | EXTENT_NOWAIT,
5426 NULL, NULL);
5427 }
5428 }
5429
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5430 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5431 {
5432 write_lock(&fs_info->mapping_tree_lock);
5433 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5434 RB_CLEAR_NODE(&map->rb_node);
5435 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5436 write_unlock(&fs_info->mapping_tree_lock);
5437
5438 /* Once for the tree reference. */
5439 btrfs_free_chunk_map(map);
5440 }
5441
5442 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5443 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5444 {
5445 struct rb_node **p;
5446 struct rb_node *parent = NULL;
5447 bool leftmost = true;
5448
5449 write_lock(&fs_info->mapping_tree_lock);
5450 p = &fs_info->mapping_tree.rb_root.rb_node;
5451 while (*p) {
5452 struct btrfs_chunk_map *entry;
5453
5454 parent = *p;
5455 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5456
5457 if (map->start < entry->start) {
5458 p = &(*p)->rb_left;
5459 } else if (map->start > entry->start) {
5460 p = &(*p)->rb_right;
5461 leftmost = false;
5462 } else {
5463 write_unlock(&fs_info->mapping_tree_lock);
5464 return -EEXIST;
5465 }
5466 }
5467 rb_link_node(&map->rb_node, parent, p);
5468 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5469 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5470 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5471 write_unlock(&fs_info->mapping_tree_lock);
5472
5473 return 0;
5474 }
5475
5476 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5477 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5478 {
5479 struct btrfs_chunk_map *map;
5480
5481 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5482 if (!map)
5483 return NULL;
5484
5485 refcount_set(&map->refs, 1);
5486 RB_CLEAR_NODE(&map->rb_node);
5487
5488 return map;
5489 }
5490
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5491 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5492 struct alloc_chunk_ctl *ctl,
5493 struct btrfs_device_info *devices_info)
5494 {
5495 struct btrfs_fs_info *info = trans->fs_info;
5496 struct btrfs_chunk_map *map;
5497 struct btrfs_block_group *block_group;
5498 u64 start = ctl->start;
5499 u64 type = ctl->type;
5500 int ret;
5501
5502 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5503 if (!map)
5504 return ERR_PTR(-ENOMEM);
5505
5506 map->start = start;
5507 map->chunk_len = ctl->chunk_size;
5508 map->stripe_size = ctl->stripe_size;
5509 map->type = type;
5510 map->io_align = BTRFS_STRIPE_LEN;
5511 map->io_width = BTRFS_STRIPE_LEN;
5512 map->sub_stripes = ctl->sub_stripes;
5513 map->num_stripes = ctl->num_stripes;
5514
5515 for (int i = 0; i < ctl->ndevs; i++) {
5516 for (int j = 0; j < ctl->dev_stripes; j++) {
5517 int s = i * ctl->dev_stripes + j;
5518 map->stripes[s].dev = devices_info[i].dev;
5519 map->stripes[s].physical = devices_info[i].dev_offset +
5520 j * ctl->stripe_size;
5521 }
5522 }
5523
5524 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5525
5526 ret = btrfs_add_chunk_map(info, map);
5527 if (ret) {
5528 btrfs_free_chunk_map(map);
5529 return ERR_PTR(ret);
5530 }
5531
5532 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5533 if (IS_ERR(block_group)) {
5534 btrfs_remove_chunk_map(info, map);
5535 return block_group;
5536 }
5537
5538 for (int i = 0; i < map->num_stripes; i++) {
5539 struct btrfs_device *dev = map->stripes[i].dev;
5540
5541 btrfs_device_set_bytes_used(dev,
5542 dev->bytes_used + ctl->stripe_size);
5543 if (list_empty(&dev->post_commit_list))
5544 list_add_tail(&dev->post_commit_list,
5545 &trans->transaction->dev_update_list);
5546 }
5547
5548 atomic64_sub(ctl->stripe_size * map->num_stripes,
5549 &info->free_chunk_space);
5550
5551 check_raid56_incompat_flag(info, type);
5552 check_raid1c34_incompat_flag(info, type);
5553
5554 return block_group;
5555 }
5556
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5557 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5558 u64 type)
5559 {
5560 struct btrfs_fs_info *info = trans->fs_info;
5561 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5562 struct btrfs_device_info *devices_info = NULL;
5563 struct alloc_chunk_ctl ctl;
5564 struct btrfs_block_group *block_group;
5565 int ret;
5566
5567 lockdep_assert_held(&info->chunk_mutex);
5568
5569 if (!alloc_profile_is_valid(type, 0)) {
5570 ASSERT(0);
5571 return ERR_PTR(-EINVAL);
5572 }
5573
5574 if (list_empty(&fs_devices->alloc_list)) {
5575 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5576 btrfs_debug(info, "%s: no writable device", __func__);
5577 return ERR_PTR(-ENOSPC);
5578 }
5579
5580 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5581 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5582 ASSERT(0);
5583 return ERR_PTR(-EINVAL);
5584 }
5585
5586 ctl.start = find_next_chunk(info);
5587 ctl.type = type;
5588 init_alloc_chunk_ctl(fs_devices, &ctl);
5589
5590 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5591 GFP_NOFS);
5592 if (!devices_info)
5593 return ERR_PTR(-ENOMEM);
5594
5595 ret = gather_device_info(fs_devices, &ctl, devices_info);
5596 if (ret < 0) {
5597 block_group = ERR_PTR(ret);
5598 goto out;
5599 }
5600
5601 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5602 if (ret < 0) {
5603 block_group = ERR_PTR(ret);
5604 goto out;
5605 }
5606
5607 block_group = create_chunk(trans, &ctl, devices_info);
5608
5609 out:
5610 kfree(devices_info);
5611 return block_group;
5612 }
5613
5614 /*
5615 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5616 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5617 * chunks.
5618 *
5619 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5620 * phases.
5621 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5622 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5623 struct btrfs_block_group *bg)
5624 {
5625 struct btrfs_fs_info *fs_info = trans->fs_info;
5626 struct btrfs_root *chunk_root = fs_info->chunk_root;
5627 struct btrfs_key key;
5628 struct btrfs_chunk *chunk;
5629 struct btrfs_stripe *stripe;
5630 struct btrfs_chunk_map *map;
5631 size_t item_size;
5632 int i;
5633 int ret;
5634
5635 /*
5636 * We take the chunk_mutex for 2 reasons:
5637 *
5638 * 1) Updates and insertions in the chunk btree must be done while holding
5639 * the chunk_mutex, as well as updating the system chunk array in the
5640 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5641 * details;
5642 *
5643 * 2) To prevent races with the final phase of a device replace operation
5644 * that replaces the device object associated with the map's stripes,
5645 * because the device object's id can change at any time during that
5646 * final phase of the device replace operation
5647 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5648 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5649 * which would cause a failure when updating the device item, which does
5650 * not exists, or persisting a stripe of the chunk item with such ID.
5651 * Here we can't use the device_list_mutex because our caller already
5652 * has locked the chunk_mutex, and the final phase of device replace
5653 * acquires both mutexes - first the device_list_mutex and then the
5654 * chunk_mutex. Using any of those two mutexes protects us from a
5655 * concurrent device replace.
5656 */
5657 lockdep_assert_held(&fs_info->chunk_mutex);
5658
5659 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5660 if (IS_ERR(map)) {
5661 ret = PTR_ERR(map);
5662 btrfs_abort_transaction(trans, ret);
5663 return ret;
5664 }
5665
5666 item_size = btrfs_chunk_item_size(map->num_stripes);
5667
5668 chunk = kzalloc(item_size, GFP_NOFS);
5669 if (!chunk) {
5670 ret = -ENOMEM;
5671 btrfs_abort_transaction(trans, ret);
5672 goto out;
5673 }
5674
5675 for (i = 0; i < map->num_stripes; i++) {
5676 struct btrfs_device *device = map->stripes[i].dev;
5677
5678 ret = btrfs_update_device(trans, device);
5679 if (ret)
5680 goto out;
5681 }
5682
5683 stripe = &chunk->stripe;
5684 for (i = 0; i < map->num_stripes; i++) {
5685 struct btrfs_device *device = map->stripes[i].dev;
5686 const u64 dev_offset = map->stripes[i].physical;
5687
5688 btrfs_set_stack_stripe_devid(stripe, device->devid);
5689 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5690 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5691 stripe++;
5692 }
5693
5694 btrfs_set_stack_chunk_length(chunk, bg->length);
5695 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5696 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5697 btrfs_set_stack_chunk_type(chunk, map->type);
5698 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5699 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5700 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5701 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5702 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5703
5704 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5705 key.type = BTRFS_CHUNK_ITEM_KEY;
5706 key.offset = bg->start;
5707
5708 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5709 if (ret)
5710 goto out;
5711
5712 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5713
5714 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5715 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5716 if (ret)
5717 goto out;
5718 }
5719
5720 out:
5721 kfree(chunk);
5722 btrfs_free_chunk_map(map);
5723 return ret;
5724 }
5725
init_first_rw_device(struct btrfs_trans_handle * trans)5726 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5727 {
5728 struct btrfs_fs_info *fs_info = trans->fs_info;
5729 u64 alloc_profile;
5730 struct btrfs_block_group *meta_bg;
5731 struct btrfs_block_group *sys_bg;
5732
5733 /*
5734 * When adding a new device for sprouting, the seed device is read-only
5735 * so we must first allocate a metadata and a system chunk. But before
5736 * adding the block group items to the extent, device and chunk btrees,
5737 * we must first:
5738 *
5739 * 1) Create both chunks without doing any changes to the btrees, as
5740 * otherwise we would get -ENOSPC since the block groups from the
5741 * seed device are read-only;
5742 *
5743 * 2) Add the device item for the new sprout device - finishing the setup
5744 * of a new block group requires updating the device item in the chunk
5745 * btree, so it must exist when we attempt to do it. The previous step
5746 * ensures this does not fail with -ENOSPC.
5747 *
5748 * After that we can add the block group items to their btrees:
5749 * update existing device item in the chunk btree, add a new block group
5750 * item to the extent btree, add a new chunk item to the chunk btree and
5751 * finally add the new device extent items to the devices btree.
5752 */
5753
5754 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5755 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5756 if (IS_ERR(meta_bg))
5757 return PTR_ERR(meta_bg);
5758
5759 alloc_profile = btrfs_system_alloc_profile(fs_info);
5760 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5761 if (IS_ERR(sys_bg))
5762 return PTR_ERR(sys_bg);
5763
5764 return 0;
5765 }
5766
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5767 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5768 {
5769 const int index = btrfs_bg_flags_to_raid_index(map->type);
5770
5771 return btrfs_raid_array[index].tolerated_failures;
5772 }
5773
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5774 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5775 {
5776 struct btrfs_chunk_map *map;
5777 int miss_ndevs = 0;
5778 int i;
5779 bool ret = true;
5780
5781 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5782 if (IS_ERR(map))
5783 return false;
5784
5785 for (i = 0; i < map->num_stripes; i++) {
5786 if (test_bit(BTRFS_DEV_STATE_MISSING,
5787 &map->stripes[i].dev->dev_state)) {
5788 miss_ndevs++;
5789 continue;
5790 }
5791 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5792 &map->stripes[i].dev->dev_state)) {
5793 ret = false;
5794 goto end;
5795 }
5796 }
5797
5798 /*
5799 * If the number of missing devices is larger than max errors, we can
5800 * not write the data into that chunk successfully.
5801 */
5802 if (miss_ndevs > btrfs_chunk_max_errors(map))
5803 ret = false;
5804 end:
5805 btrfs_free_chunk_map(map);
5806 return ret;
5807 }
5808
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5809 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5810 {
5811 write_lock(&fs_info->mapping_tree_lock);
5812 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5813 struct btrfs_chunk_map *map;
5814 struct rb_node *node;
5815
5816 node = rb_first_cached(&fs_info->mapping_tree);
5817 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5818 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5819 RB_CLEAR_NODE(&map->rb_node);
5820 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5821 /* Once for the tree ref. */
5822 btrfs_free_chunk_map(map);
5823 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5824 }
5825 write_unlock(&fs_info->mapping_tree_lock);
5826 }
5827
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5828 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5829 {
5830 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5831
5832 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5833 return 2;
5834
5835 /*
5836 * There could be two corrupted data stripes, we need to loop retry in
5837 * order to rebuild the correct data.
5838 *
5839 * Fail a stripe at a time on every retry except the stripe under
5840 * reconstruction.
5841 */
5842 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5843 return map->num_stripes;
5844
5845 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5846 return btrfs_raid_array[index].ncopies;
5847 }
5848
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5849 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5850 {
5851 struct btrfs_chunk_map *map;
5852 int ret;
5853
5854 map = btrfs_get_chunk_map(fs_info, logical, len);
5855 if (IS_ERR(map))
5856 /*
5857 * We could return errors for these cases, but that could get
5858 * ugly and we'd probably do the same thing which is just not do
5859 * anything else and exit, so return 1 so the callers don't try
5860 * to use other copies.
5861 */
5862 return 1;
5863
5864 ret = btrfs_chunk_map_num_copies(map);
5865 btrfs_free_chunk_map(map);
5866 return ret;
5867 }
5868
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5869 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5870 u64 logical)
5871 {
5872 struct btrfs_chunk_map *map;
5873 unsigned long len = fs_info->sectorsize;
5874
5875 if (!btrfs_fs_incompat(fs_info, RAID56))
5876 return len;
5877
5878 map = btrfs_get_chunk_map(fs_info, logical, len);
5879
5880 if (!WARN_ON(IS_ERR(map))) {
5881 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5882 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5883 btrfs_free_chunk_map(map);
5884 }
5885 return len;
5886 }
5887
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5888 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5889 {
5890 struct btrfs_chunk_map *map;
5891 int ret = 0;
5892
5893 if (!btrfs_fs_incompat(fs_info, RAID56))
5894 return 0;
5895
5896 map = btrfs_get_chunk_map(fs_info, logical, len);
5897
5898 if (!WARN_ON(IS_ERR(map))) {
5899 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5900 ret = 1;
5901 btrfs_free_chunk_map(map);
5902 }
5903 return ret;
5904 }
5905
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,int dev_replace_is_ongoing)5906 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5907 struct btrfs_chunk_map *map, int first,
5908 int dev_replace_is_ongoing)
5909 {
5910 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5911 int i;
5912 int num_stripes;
5913 int preferred_mirror;
5914 int tolerance;
5915 struct btrfs_device *srcdev;
5916
5917 ASSERT((map->type &
5918 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5919
5920 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5921 num_stripes = map->sub_stripes;
5922 else
5923 num_stripes = map->num_stripes;
5924
5925 switch (policy) {
5926 default:
5927 /* Shouldn't happen, just warn and use pid instead of failing */
5928 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5929 policy);
5930 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5931 fallthrough;
5932 case BTRFS_READ_POLICY_PID:
5933 preferred_mirror = first + (current->pid % num_stripes);
5934 break;
5935 }
5936
5937 if (dev_replace_is_ongoing &&
5938 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5939 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5940 srcdev = fs_info->dev_replace.srcdev;
5941 else
5942 srcdev = NULL;
5943
5944 /*
5945 * try to avoid the drive that is the source drive for a
5946 * dev-replace procedure, only choose it if no other non-missing
5947 * mirror is available
5948 */
5949 for (tolerance = 0; tolerance < 2; tolerance++) {
5950 if (map->stripes[preferred_mirror].dev->bdev &&
5951 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5952 return preferred_mirror;
5953 for (i = first; i < first + num_stripes; i++) {
5954 if (map->stripes[i].dev->bdev &&
5955 (tolerance || map->stripes[i].dev != srcdev))
5956 return i;
5957 }
5958 }
5959
5960 /* we couldn't find one that doesn't fail. Just return something
5961 * and the io error handling code will clean up eventually
5962 */
5963 return preferred_mirror;
5964 }
5965
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)5966 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5967 u64 logical,
5968 u16 total_stripes)
5969 {
5970 struct btrfs_io_context *bioc;
5971
5972 bioc = kzalloc(
5973 /* The size of btrfs_io_context */
5974 sizeof(struct btrfs_io_context) +
5975 /* Plus the variable array for the stripes */
5976 sizeof(struct btrfs_io_stripe) * (total_stripes),
5977 GFP_NOFS);
5978
5979 if (!bioc)
5980 return NULL;
5981
5982 refcount_set(&bioc->refs, 1);
5983
5984 bioc->fs_info = fs_info;
5985 bioc->replace_stripe_src = -1;
5986 bioc->full_stripe_logical = (u64)-1;
5987 bioc->logical = logical;
5988
5989 return bioc;
5990 }
5991
btrfs_get_bioc(struct btrfs_io_context * bioc)5992 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5993 {
5994 WARN_ON(!refcount_read(&bioc->refs));
5995 refcount_inc(&bioc->refs);
5996 }
5997
btrfs_put_bioc(struct btrfs_io_context * bioc)5998 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5999 {
6000 if (!bioc)
6001 return;
6002 if (refcount_dec_and_test(&bioc->refs))
6003 kfree(bioc);
6004 }
6005
6006 /*
6007 * Please note that, discard won't be sent to target device of device
6008 * replace.
6009 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6010 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6011 u64 logical, u64 *length_ret,
6012 u32 *num_stripes)
6013 {
6014 struct btrfs_chunk_map *map;
6015 struct btrfs_discard_stripe *stripes;
6016 u64 length = *length_ret;
6017 u64 offset;
6018 u32 stripe_nr;
6019 u32 stripe_nr_end;
6020 u32 stripe_cnt;
6021 u64 stripe_end_offset;
6022 u64 stripe_offset;
6023 u32 stripe_index;
6024 u32 factor = 0;
6025 u32 sub_stripes = 0;
6026 u32 stripes_per_dev = 0;
6027 u32 remaining_stripes = 0;
6028 u32 last_stripe = 0;
6029 int ret;
6030 int i;
6031
6032 map = btrfs_get_chunk_map(fs_info, logical, length);
6033 if (IS_ERR(map))
6034 return ERR_CAST(map);
6035
6036 /* we don't discard raid56 yet */
6037 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6038 ret = -EOPNOTSUPP;
6039 goto out_free_map;
6040 }
6041
6042 offset = logical - map->start;
6043 length = min_t(u64, map->start + map->chunk_len - logical, length);
6044 *length_ret = length;
6045
6046 /*
6047 * stripe_nr counts the total number of stripes we have to stride
6048 * to get to this block
6049 */
6050 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6051
6052 /* stripe_offset is the offset of this block in its stripe */
6053 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6054
6055 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6056 BTRFS_STRIPE_LEN_SHIFT;
6057 stripe_cnt = stripe_nr_end - stripe_nr;
6058 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6059 (offset + length);
6060 /*
6061 * after this, stripe_nr is the number of stripes on this
6062 * device we have to walk to find the data, and stripe_index is
6063 * the number of our device in the stripe array
6064 */
6065 *num_stripes = 1;
6066 stripe_index = 0;
6067 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6068 BTRFS_BLOCK_GROUP_RAID10)) {
6069 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6070 sub_stripes = 1;
6071 else
6072 sub_stripes = map->sub_stripes;
6073
6074 factor = map->num_stripes / sub_stripes;
6075 *num_stripes = min_t(u64, map->num_stripes,
6076 sub_stripes * stripe_cnt);
6077 stripe_index = stripe_nr % factor;
6078 stripe_nr /= factor;
6079 stripe_index *= sub_stripes;
6080
6081 remaining_stripes = stripe_cnt % factor;
6082 stripes_per_dev = stripe_cnt / factor;
6083 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6084 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6085 BTRFS_BLOCK_GROUP_DUP)) {
6086 *num_stripes = map->num_stripes;
6087 } else {
6088 stripe_index = stripe_nr % map->num_stripes;
6089 stripe_nr /= map->num_stripes;
6090 }
6091
6092 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6093 if (!stripes) {
6094 ret = -ENOMEM;
6095 goto out_free_map;
6096 }
6097
6098 for (i = 0; i < *num_stripes; i++) {
6099 stripes[i].physical =
6100 map->stripes[stripe_index].physical +
6101 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6102 stripes[i].dev = map->stripes[stripe_index].dev;
6103
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6107
6108 if (i / sub_stripes < remaining_stripes)
6109 stripes[i].length += BTRFS_STRIPE_LEN;
6110
6111 /*
6112 * Special for the first stripe and
6113 * the last stripe:
6114 *
6115 * |-------|...|-------|
6116 * |----------|
6117 * off end_off
6118 */
6119 if (i < sub_stripes)
6120 stripes[i].length -= stripe_offset;
6121
6122 if (stripe_index >= last_stripe &&
6123 stripe_index <= (last_stripe +
6124 sub_stripes - 1))
6125 stripes[i].length -= stripe_end_offset;
6126
6127 if (i == sub_stripes - 1)
6128 stripe_offset = 0;
6129 } else {
6130 stripes[i].length = length;
6131 }
6132
6133 stripe_index++;
6134 if (stripe_index == map->num_stripes) {
6135 stripe_index = 0;
6136 stripe_nr++;
6137 }
6138 }
6139
6140 btrfs_free_chunk_map(map);
6141 return stripes;
6142 out_free_map:
6143 btrfs_free_chunk_map(map);
6144 return ERR_PTR(ret);
6145 }
6146
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6147 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6148 {
6149 struct btrfs_block_group *cache;
6150 bool ret;
6151
6152 /* Non zoned filesystem does not use "to_copy" flag */
6153 if (!btrfs_is_zoned(fs_info))
6154 return false;
6155
6156 cache = btrfs_lookup_block_group(fs_info, logical);
6157
6158 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6159
6160 btrfs_put_block_group(cache);
6161 return ret;
6162 }
6163
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6164 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6165 struct btrfs_dev_replace *dev_replace,
6166 u64 logical,
6167 struct btrfs_io_geometry *io_geom)
6168 {
6169 u64 srcdev_devid = dev_replace->srcdev->devid;
6170 /*
6171 * At this stage, num_stripes is still the real number of stripes,
6172 * excluding the duplicated stripes.
6173 */
6174 int num_stripes = io_geom->num_stripes;
6175 int max_errors = io_geom->max_errors;
6176 int nr_extra_stripes = 0;
6177 int i;
6178
6179 /*
6180 * A block group which has "to_copy" set will eventually be copied by
6181 * the dev-replace process. We can avoid cloning IO here.
6182 */
6183 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6184 return;
6185
6186 /*
6187 * Duplicate the write operations while the dev-replace procedure is
6188 * running. Since the copying of the old disk to the new disk takes
6189 * place at run time while the filesystem is mounted writable, the
6190 * regular write operations to the old disk have to be duplicated to go
6191 * to the new disk as well.
6192 *
6193 * Note that device->missing is handled by the caller, and that the
6194 * write to the old disk is already set up in the stripes array.
6195 */
6196 for (i = 0; i < num_stripes; i++) {
6197 struct btrfs_io_stripe *old = &bioc->stripes[i];
6198 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6199
6200 if (old->dev->devid != srcdev_devid)
6201 continue;
6202
6203 new->physical = old->physical;
6204 new->dev = dev_replace->tgtdev;
6205 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6206 bioc->replace_stripe_src = i;
6207 nr_extra_stripes++;
6208 }
6209
6210 /* We can only have at most 2 extra nr_stripes (for DUP). */
6211 ASSERT(nr_extra_stripes <= 2);
6212 /*
6213 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6214 * replace.
6215 * If we have 2 extra stripes, only choose the one with smaller physical.
6216 */
6217 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6218 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6219 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6220
6221 /* Only DUP can have two extra stripes. */
6222 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6223
6224 /*
6225 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6226 * The extra stripe would still be there, but won't be accessed.
6227 */
6228 if (first->physical > second->physical) {
6229 swap(second->physical, first->physical);
6230 swap(second->dev, first->dev);
6231 nr_extra_stripes--;
6232 }
6233 }
6234
6235 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6236 io_geom->max_errors = max_errors + nr_extra_stripes;
6237 bioc->replace_nr_stripes = nr_extra_stripes;
6238 }
6239
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6240 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6241 struct btrfs_io_geometry *io_geom)
6242 {
6243 /*
6244 * Stripe_nr is the stripe where this block falls. stripe_offset is
6245 * the offset of this block in its stripe.
6246 */
6247 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6248 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6249 ASSERT(io_geom->stripe_offset < U32_MAX);
6250
6251 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6252 unsigned long full_stripe_len =
6253 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6254
6255 /*
6256 * For full stripe start, we use previously calculated
6257 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6258 * STRIPE_LEN.
6259 *
6260 * By this we can avoid u64 division completely. And we have
6261 * to go rounddown(), not round_down(), as nr_data_stripes is
6262 * not ensured to be power of 2.
6263 */
6264 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6265 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6266
6267 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6268 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6269 /*
6270 * For writes to RAID56, allow to write a full stripe set, but
6271 * no straddling of stripe sets.
6272 */
6273 if (io_geom->op == BTRFS_MAP_WRITE)
6274 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6275 }
6276
6277 /*
6278 * For other RAID types and for RAID56 reads, allow a single stripe (on
6279 * a single disk).
6280 */
6281 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6282 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6283 return U64_MAX;
6284 }
6285
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6286 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6287 u64 *length, struct btrfs_io_stripe *dst,
6288 struct btrfs_chunk_map *map,
6289 struct btrfs_io_geometry *io_geom)
6290 {
6291 dst->dev = map->stripes[io_geom->stripe_index].dev;
6292
6293 if (io_geom->op == BTRFS_MAP_READ &&
6294 btrfs_need_stripe_tree_update(fs_info, map->type))
6295 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6296 map->type,
6297 io_geom->stripe_index, dst);
6298
6299 dst->physical = map->stripes[io_geom->stripe_index].physical +
6300 io_geom->stripe_offset +
6301 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6302 return 0;
6303 }
6304
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,enum btrfs_map_op op,int mirror_num)6305 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6306 const struct btrfs_io_stripe *smap,
6307 const struct btrfs_chunk_map *map,
6308 int num_alloc_stripes,
6309 enum btrfs_map_op op, int mirror_num)
6310 {
6311 if (!smap)
6312 return false;
6313
6314 if (num_alloc_stripes != 1)
6315 return false;
6316
6317 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6318 return false;
6319
6320 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6321 return false;
6322
6323 return true;
6324 }
6325
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6326 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6328 {
6329 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6330 io_geom->stripe_nr /= map->num_stripes;
6331 if (io_geom->op == BTRFS_MAP_READ)
6332 io_geom->mirror_num = 1;
6333 }
6334
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6335 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6336 struct btrfs_chunk_map *map,
6337 struct btrfs_io_geometry *io_geom,
6338 bool dev_replace_is_ongoing)
6339 {
6340 if (io_geom->op != BTRFS_MAP_READ) {
6341 io_geom->num_stripes = map->num_stripes;
6342 return;
6343 }
6344
6345 if (io_geom->mirror_num) {
6346 io_geom->stripe_index = io_geom->mirror_num - 1;
6347 return;
6348 }
6349
6350 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6351 dev_replace_is_ongoing);
6352 io_geom->mirror_num = io_geom->stripe_index + 1;
6353 }
6354
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6355 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6356 struct btrfs_io_geometry *io_geom)
6357 {
6358 if (io_geom->op != BTRFS_MAP_READ) {
6359 io_geom->num_stripes = map->num_stripes;
6360 return;
6361 }
6362
6363 if (io_geom->mirror_num) {
6364 io_geom->stripe_index = io_geom->mirror_num - 1;
6365 return;
6366 }
6367
6368 io_geom->mirror_num = 1;
6369 }
6370
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6371 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6372 struct btrfs_chunk_map *map,
6373 struct btrfs_io_geometry *io_geom,
6374 bool dev_replace_is_ongoing)
6375 {
6376 u32 factor = map->num_stripes / map->sub_stripes;
6377 int old_stripe_index;
6378
6379 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6380 io_geom->stripe_nr /= factor;
6381
6382 if (io_geom->op != BTRFS_MAP_READ) {
6383 io_geom->num_stripes = map->sub_stripes;
6384 return;
6385 }
6386
6387 if (io_geom->mirror_num) {
6388 io_geom->stripe_index += io_geom->mirror_num - 1;
6389 return;
6390 }
6391
6392 old_stripe_index = io_geom->stripe_index;
6393 io_geom->stripe_index = find_live_mirror(fs_info, map,
6394 io_geom->stripe_index,
6395 dev_replace_is_ongoing);
6396 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6397 }
6398
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6399 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6400 struct btrfs_io_geometry *io_geom,
6401 u64 logical, u64 *length)
6402 {
6403 int data_stripes = nr_data_stripes(map);
6404
6405 /*
6406 * Needs full stripe mapping.
6407 *
6408 * Push stripe_nr back to the start of the full stripe For those cases
6409 * needing a full stripe, @stripe_nr is the full stripe number.
6410 *
6411 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6412 * that can be expensive. Here we just divide @stripe_nr with
6413 * @data_stripes.
6414 */
6415 io_geom->stripe_nr /= data_stripes;
6416
6417 /* RAID[56] write or recovery. Return all stripes */
6418 io_geom->num_stripes = map->num_stripes;
6419 io_geom->max_errors = btrfs_chunk_max_errors(map);
6420
6421 /* Return the length to the full stripe end. */
6422 *length = min(logical + *length,
6423 io_geom->raid56_full_stripe_start + map->start +
6424 btrfs_stripe_nr_to_offset(data_stripes)) -
6425 logical;
6426 io_geom->stripe_index = 0;
6427 io_geom->stripe_offset = 0;
6428 }
6429
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6430 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6431 struct btrfs_io_geometry *io_geom)
6432 {
6433 int data_stripes = nr_data_stripes(map);
6434
6435 ASSERT(io_geom->mirror_num <= 1);
6436 /* Just grab the data stripe directly. */
6437 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6438 io_geom->stripe_nr /= data_stripes;
6439
6440 /* We distribute the parity blocks across stripes. */
6441 io_geom->stripe_index =
6442 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6443
6444 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6445 io_geom->mirror_num = 1;
6446 }
6447
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6448 static void map_blocks_single(const struct btrfs_chunk_map *map,
6449 struct btrfs_io_geometry *io_geom)
6450 {
6451 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6452 io_geom->stripe_nr /= map->num_stripes;
6453 io_geom->mirror_num = io_geom->stripe_index + 1;
6454 }
6455
6456 /*
6457 * Map one logical range to one or more physical ranges.
6458 *
6459 * @length: (Mandatory) mapped length of this run.
6460 * One logical range can be split into different segments
6461 * due to factors like zones and RAID0/5/6/10 stripe
6462 * boundaries.
6463 *
6464 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6465 * which has one or more physical ranges (btrfs_io_stripe)
6466 * recorded inside.
6467 * Caller should call btrfs_put_bioc() to free it after use.
6468 *
6469 * @smap: (Optional) single physical range optimization.
6470 * If the map request can be fulfilled by one single
6471 * physical range, and this is parameter is not NULL,
6472 * then @bioc_ret would be NULL, and @smap would be
6473 * updated.
6474 *
6475 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6476 * value is 0.
6477 *
6478 * Mirror number 0 means to choose any live mirrors.
6479 *
6480 * For non-RAID56 profiles, non-zero mirror_num means
6481 * the Nth mirror. (e.g. mirror_num 1 means the first
6482 * copy).
6483 *
6484 * For RAID56 profile, mirror 1 means rebuild from P and
6485 * the remaining data stripes.
6486 *
6487 * For RAID6 profile, mirror > 2 means mark another
6488 * data/P stripe error and rebuild from the remaining
6489 * stripes..
6490 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6491 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6492 u64 logical, u64 *length,
6493 struct btrfs_io_context **bioc_ret,
6494 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6495 {
6496 struct btrfs_chunk_map *map;
6497 struct btrfs_io_geometry io_geom = { 0 };
6498 u64 map_offset;
6499 int ret = 0;
6500 int num_copies;
6501 struct btrfs_io_context *bioc = NULL;
6502 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6503 int dev_replace_is_ongoing = 0;
6504 u16 num_alloc_stripes;
6505 u64 max_len;
6506
6507 ASSERT(bioc_ret);
6508
6509 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6510 io_geom.num_stripes = 1;
6511 io_geom.stripe_index = 0;
6512 io_geom.op = op;
6513
6514 map = btrfs_get_chunk_map(fs_info, logical, *length);
6515 if (IS_ERR(map))
6516 return PTR_ERR(map);
6517
6518 num_copies = btrfs_chunk_map_num_copies(map);
6519 if (io_geom.mirror_num > num_copies)
6520 return -EINVAL;
6521
6522 map_offset = logical - map->start;
6523 io_geom.raid56_full_stripe_start = (u64)-1;
6524 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6525 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6526
6527 if (dev_replace->replace_task != current)
6528 down_read(&dev_replace->rwsem);
6529
6530 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6531 /*
6532 * Hold the semaphore for read during the whole operation, write is
6533 * requested at commit time but must wait.
6534 */
6535 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6536 up_read(&dev_replace->rwsem);
6537
6538 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6539 case BTRFS_BLOCK_GROUP_RAID0:
6540 map_blocks_raid0(map, &io_geom);
6541 break;
6542 case BTRFS_BLOCK_GROUP_RAID1:
6543 case BTRFS_BLOCK_GROUP_RAID1C3:
6544 case BTRFS_BLOCK_GROUP_RAID1C4:
6545 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6546 break;
6547 case BTRFS_BLOCK_GROUP_DUP:
6548 map_blocks_dup(map, &io_geom);
6549 break;
6550 case BTRFS_BLOCK_GROUP_RAID10:
6551 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6552 break;
6553 case BTRFS_BLOCK_GROUP_RAID5:
6554 case BTRFS_BLOCK_GROUP_RAID6:
6555 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6556 map_blocks_raid56_write(map, &io_geom, logical, length);
6557 else
6558 map_blocks_raid56_read(map, &io_geom);
6559 break;
6560 default:
6561 /*
6562 * After this, stripe_nr is the number of stripes on this
6563 * device we have to walk to find the data, and stripe_index is
6564 * the number of our device in the stripe array
6565 */
6566 map_blocks_single(map, &io_geom);
6567 break;
6568 }
6569 if (io_geom.stripe_index >= map->num_stripes) {
6570 btrfs_crit(fs_info,
6571 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6572 io_geom.stripe_index, map->num_stripes);
6573 ret = -EINVAL;
6574 goto out;
6575 }
6576
6577 num_alloc_stripes = io_geom.num_stripes;
6578 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6579 op != BTRFS_MAP_READ)
6580 /*
6581 * For replace case, we need to add extra stripes for extra
6582 * duplicated stripes.
6583 *
6584 * For both WRITE and GET_READ_MIRRORS, we may have at most
6585 * 2 more stripes (DUP types, otherwise 1).
6586 */
6587 num_alloc_stripes += 2;
6588
6589 /*
6590 * If this I/O maps to a single device, try to return the device and
6591 * physical block information on the stack instead of allocating an
6592 * I/O context structure.
6593 */
6594 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6595 io_geom.mirror_num)) {
6596 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6597 if (mirror_num_ret)
6598 *mirror_num_ret = io_geom.mirror_num;
6599 *bioc_ret = NULL;
6600 goto out;
6601 }
6602
6603 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6604 if (!bioc) {
6605 ret = -ENOMEM;
6606 goto out;
6607 }
6608 bioc->map_type = map->type;
6609
6610 /*
6611 * For RAID56 full map, we need to make sure the stripes[] follows the
6612 * rule that data stripes are all ordered, then followed with P and Q
6613 * (if we have).
6614 *
6615 * It's still mostly the same as other profiles, just with extra rotation.
6616 */
6617 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6618 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6619 /*
6620 * For RAID56 @stripe_nr is already the number of full stripes
6621 * before us, which is also the rotation value (needs to modulo
6622 * with num_stripes).
6623 *
6624 * In this case, we just add @stripe_nr with @i, then do the
6625 * modulo, to reduce one modulo call.
6626 */
6627 bioc->full_stripe_logical = map->start +
6628 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6629 nr_data_stripes(map));
6630 for (int i = 0; i < io_geom.num_stripes; i++) {
6631 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6632 u32 stripe_index;
6633
6634 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6635 dst->dev = map->stripes[stripe_index].dev;
6636 dst->physical =
6637 map->stripes[stripe_index].physical +
6638 io_geom.stripe_offset +
6639 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6640 }
6641 } else {
6642 /*
6643 * For all other non-RAID56 profiles, just copy the target
6644 * stripe into the bioc.
6645 */
6646 for (int i = 0; i < io_geom.num_stripes; i++) {
6647 ret = set_io_stripe(fs_info, logical, length,
6648 &bioc->stripes[i], map, &io_geom);
6649 if (ret < 0)
6650 break;
6651 io_geom.stripe_index++;
6652 }
6653 }
6654
6655 if (ret) {
6656 *bioc_ret = NULL;
6657 btrfs_put_bioc(bioc);
6658 goto out;
6659 }
6660
6661 if (op != BTRFS_MAP_READ)
6662 io_geom.max_errors = btrfs_chunk_max_errors(map);
6663
6664 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6665 op != BTRFS_MAP_READ) {
6666 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6667 }
6668
6669 *bioc_ret = bioc;
6670 bioc->num_stripes = io_geom.num_stripes;
6671 bioc->max_errors = io_geom.max_errors;
6672 bioc->mirror_num = io_geom.mirror_num;
6673
6674 out:
6675 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6676 lockdep_assert_held(&dev_replace->rwsem);
6677 /* Unlock and let waiting writers proceed */
6678 up_read(&dev_replace->rwsem);
6679 }
6680 btrfs_free_chunk_map(map);
6681 return ret;
6682 }
6683
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6684 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6685 const struct btrfs_fs_devices *fs_devices)
6686 {
6687 if (args->fsid == NULL)
6688 return true;
6689 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6690 return true;
6691 return false;
6692 }
6693
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6694 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6695 const struct btrfs_device *device)
6696 {
6697 if (args->missing) {
6698 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6699 !device->bdev)
6700 return true;
6701 return false;
6702 }
6703
6704 if (device->devid != args->devid)
6705 return false;
6706 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6707 return false;
6708 return true;
6709 }
6710
6711 /*
6712 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6713 * return NULL.
6714 *
6715 * If devid and uuid are both specified, the match must be exact, otherwise
6716 * only devid is used.
6717 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6718 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6719 const struct btrfs_dev_lookup_args *args)
6720 {
6721 struct btrfs_device *device;
6722 struct btrfs_fs_devices *seed_devs;
6723
6724 if (dev_args_match_fs_devices(args, fs_devices)) {
6725 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6726 if (dev_args_match_device(args, device))
6727 return device;
6728 }
6729 }
6730
6731 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6732 if (!dev_args_match_fs_devices(args, seed_devs))
6733 continue;
6734 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6735 if (dev_args_match_device(args, device))
6736 return device;
6737 }
6738 }
6739
6740 return NULL;
6741 }
6742
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6743 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6744 u64 devid, u8 *dev_uuid)
6745 {
6746 struct btrfs_device *device;
6747 unsigned int nofs_flag;
6748
6749 /*
6750 * We call this under the chunk_mutex, so we want to use NOFS for this
6751 * allocation, however we don't want to change btrfs_alloc_device() to
6752 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6753 * places.
6754 */
6755
6756 nofs_flag = memalloc_nofs_save();
6757 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6758 memalloc_nofs_restore(nofs_flag);
6759 if (IS_ERR(device))
6760 return device;
6761
6762 list_add(&device->dev_list, &fs_devices->devices);
6763 device->fs_devices = fs_devices;
6764 fs_devices->num_devices++;
6765
6766 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6767 fs_devices->missing_devices++;
6768
6769 return device;
6770 }
6771
6772 /*
6773 * Allocate new device struct, set up devid and UUID.
6774 *
6775 * @fs_info: used only for generating a new devid, can be NULL if
6776 * devid is provided (i.e. @devid != NULL).
6777 * @devid: a pointer to devid for this device. If NULL a new devid
6778 * is generated.
6779 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6780 * is generated.
6781 * @path: a pointer to device path if available, NULL otherwise.
6782 *
6783 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6784 * on error. Returned struct is not linked onto any lists and must be
6785 * destroyed with btrfs_free_device.
6786 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6787 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6788 const u64 *devid, const u8 *uuid,
6789 const char *path)
6790 {
6791 struct btrfs_device *dev;
6792 u64 tmp;
6793
6794 if (WARN_ON(!devid && !fs_info))
6795 return ERR_PTR(-EINVAL);
6796
6797 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6798 if (!dev)
6799 return ERR_PTR(-ENOMEM);
6800
6801 INIT_LIST_HEAD(&dev->dev_list);
6802 INIT_LIST_HEAD(&dev->dev_alloc_list);
6803 INIT_LIST_HEAD(&dev->post_commit_list);
6804
6805 atomic_set(&dev->dev_stats_ccnt, 0);
6806 btrfs_device_data_ordered_init(dev);
6807 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6808
6809 if (devid)
6810 tmp = *devid;
6811 else {
6812 int ret;
6813
6814 ret = find_next_devid(fs_info, &tmp);
6815 if (ret) {
6816 btrfs_free_device(dev);
6817 return ERR_PTR(ret);
6818 }
6819 }
6820 dev->devid = tmp;
6821
6822 if (uuid)
6823 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6824 else
6825 generate_random_uuid(dev->uuid);
6826
6827 if (path) {
6828 struct rcu_string *name;
6829
6830 name = rcu_string_strdup(path, GFP_KERNEL);
6831 if (!name) {
6832 btrfs_free_device(dev);
6833 return ERR_PTR(-ENOMEM);
6834 }
6835 rcu_assign_pointer(dev->name, name);
6836 }
6837
6838 return dev;
6839 }
6840
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6841 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6842 u64 devid, u8 *uuid, bool error)
6843 {
6844 if (error)
6845 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6846 devid, uuid);
6847 else
6848 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6849 devid, uuid);
6850 }
6851
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6852 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6853 {
6854 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6855
6856 return div_u64(map->chunk_len, data_stripes);
6857 }
6858
6859 #if BITS_PER_LONG == 32
6860 /*
6861 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6862 * can't be accessed on 32bit systems.
6863 *
6864 * This function do mount time check to reject the fs if it already has
6865 * metadata chunk beyond that limit.
6866 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6867 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6868 u64 logical, u64 length, u64 type)
6869 {
6870 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6871 return 0;
6872
6873 if (logical + length < MAX_LFS_FILESIZE)
6874 return 0;
6875
6876 btrfs_err_32bit_limit(fs_info);
6877 return -EOVERFLOW;
6878 }
6879
6880 /*
6881 * This is to give early warning for any metadata chunk reaching
6882 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6883 * Although we can still access the metadata, it's not going to be possible
6884 * once the limit is reached.
6885 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6886 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6887 u64 logical, u64 length, u64 type)
6888 {
6889 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6890 return;
6891
6892 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6893 return;
6894
6895 btrfs_warn_32bit_limit(fs_info);
6896 }
6897 #endif
6898
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6899 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6900 u64 devid, u8 *uuid)
6901 {
6902 struct btrfs_device *dev;
6903
6904 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6905 btrfs_report_missing_device(fs_info, devid, uuid, true);
6906 return ERR_PTR(-ENOENT);
6907 }
6908
6909 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6910 if (IS_ERR(dev)) {
6911 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6912 devid, PTR_ERR(dev));
6913 return dev;
6914 }
6915 btrfs_report_missing_device(fs_info, devid, uuid, false);
6916
6917 return dev;
6918 }
6919
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6920 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6921 struct btrfs_chunk *chunk)
6922 {
6923 BTRFS_DEV_LOOKUP_ARGS(args);
6924 struct btrfs_fs_info *fs_info = leaf->fs_info;
6925 struct btrfs_chunk_map *map;
6926 u64 logical;
6927 u64 length;
6928 u64 devid;
6929 u64 type;
6930 u8 uuid[BTRFS_UUID_SIZE];
6931 int index;
6932 int num_stripes;
6933 int ret;
6934 int i;
6935
6936 logical = key->offset;
6937 length = btrfs_chunk_length(leaf, chunk);
6938 type = btrfs_chunk_type(leaf, chunk);
6939 index = btrfs_bg_flags_to_raid_index(type);
6940 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6941
6942 #if BITS_PER_LONG == 32
6943 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6944 if (ret < 0)
6945 return ret;
6946 warn_32bit_meta_chunk(fs_info, logical, length, type);
6947 #endif
6948
6949 /*
6950 * Only need to verify chunk item if we're reading from sys chunk array,
6951 * as chunk item in tree block is already verified by tree-checker.
6952 */
6953 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6954 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6955 if (ret)
6956 return ret;
6957 }
6958
6959 map = btrfs_find_chunk_map(fs_info, logical, 1);
6960
6961 /* already mapped? */
6962 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
6963 btrfs_free_chunk_map(map);
6964 return 0;
6965 } else if (map) {
6966 btrfs_free_chunk_map(map);
6967 }
6968
6969 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
6970 if (!map)
6971 return -ENOMEM;
6972
6973 map->start = logical;
6974 map->chunk_len = length;
6975 map->num_stripes = num_stripes;
6976 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6977 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6978 map->type = type;
6979 /*
6980 * We can't use the sub_stripes value, as for profiles other than
6981 * RAID10, they may have 0 as sub_stripes for filesystems created by
6982 * older mkfs (<v5.4).
6983 * In that case, it can cause divide-by-zero errors later.
6984 * Since currently sub_stripes is fixed for each profile, let's
6985 * use the trusted value instead.
6986 */
6987 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6988 map->verified_stripes = 0;
6989 map->stripe_size = btrfs_calc_stripe_length(map);
6990 for (i = 0; i < num_stripes; i++) {
6991 map->stripes[i].physical =
6992 btrfs_stripe_offset_nr(leaf, chunk, i);
6993 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6994 args.devid = devid;
6995 read_extent_buffer(leaf, uuid, (unsigned long)
6996 btrfs_stripe_dev_uuid_nr(chunk, i),
6997 BTRFS_UUID_SIZE);
6998 args.uuid = uuid;
6999 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7000 if (!map->stripes[i].dev) {
7001 map->stripes[i].dev = handle_missing_device(fs_info,
7002 devid, uuid);
7003 if (IS_ERR(map->stripes[i].dev)) {
7004 ret = PTR_ERR(map->stripes[i].dev);
7005 btrfs_free_chunk_map(map);
7006 return ret;
7007 }
7008 }
7009
7010 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7011 &(map->stripes[i].dev->dev_state));
7012 }
7013
7014 ret = btrfs_add_chunk_map(fs_info, map);
7015 if (ret < 0) {
7016 btrfs_err(fs_info,
7017 "failed to add chunk map, start=%llu len=%llu: %d",
7018 map->start, map->chunk_len, ret);
7019 btrfs_free_chunk_map(map);
7020 }
7021
7022 return ret;
7023 }
7024
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7025 static void fill_device_from_item(struct extent_buffer *leaf,
7026 struct btrfs_dev_item *dev_item,
7027 struct btrfs_device *device)
7028 {
7029 unsigned long ptr;
7030
7031 device->devid = btrfs_device_id(leaf, dev_item);
7032 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7033 device->total_bytes = device->disk_total_bytes;
7034 device->commit_total_bytes = device->disk_total_bytes;
7035 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7036 device->commit_bytes_used = device->bytes_used;
7037 device->type = btrfs_device_type(leaf, dev_item);
7038 device->io_align = btrfs_device_io_align(leaf, dev_item);
7039 device->io_width = btrfs_device_io_width(leaf, dev_item);
7040 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7041 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7042 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7043
7044 ptr = btrfs_device_uuid(dev_item);
7045 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7046 }
7047
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7048 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7049 u8 *fsid)
7050 {
7051 struct btrfs_fs_devices *fs_devices;
7052 int ret;
7053
7054 lockdep_assert_held(&uuid_mutex);
7055 ASSERT(fsid);
7056
7057 /* This will match only for multi-device seed fs */
7058 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7059 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7060 return fs_devices;
7061
7062
7063 fs_devices = find_fsid(fsid, NULL);
7064 if (!fs_devices) {
7065 if (!btrfs_test_opt(fs_info, DEGRADED))
7066 return ERR_PTR(-ENOENT);
7067
7068 fs_devices = alloc_fs_devices(fsid);
7069 if (IS_ERR(fs_devices))
7070 return fs_devices;
7071
7072 fs_devices->seeding = true;
7073 fs_devices->opened = 1;
7074 return fs_devices;
7075 }
7076
7077 /*
7078 * Upon first call for a seed fs fsid, just create a private copy of the
7079 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7080 */
7081 fs_devices = clone_fs_devices(fs_devices);
7082 if (IS_ERR(fs_devices))
7083 return fs_devices;
7084
7085 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7086 if (ret) {
7087 free_fs_devices(fs_devices);
7088 return ERR_PTR(ret);
7089 }
7090
7091 if (!fs_devices->seeding) {
7092 close_fs_devices(fs_devices);
7093 free_fs_devices(fs_devices);
7094 return ERR_PTR(-EINVAL);
7095 }
7096
7097 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7098
7099 return fs_devices;
7100 }
7101
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7102 static int read_one_dev(struct extent_buffer *leaf,
7103 struct btrfs_dev_item *dev_item)
7104 {
7105 BTRFS_DEV_LOOKUP_ARGS(args);
7106 struct btrfs_fs_info *fs_info = leaf->fs_info;
7107 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7108 struct btrfs_device *device;
7109 u64 devid;
7110 int ret;
7111 u8 fs_uuid[BTRFS_FSID_SIZE];
7112 u8 dev_uuid[BTRFS_UUID_SIZE];
7113
7114 devid = btrfs_device_id(leaf, dev_item);
7115 args.devid = devid;
7116 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7117 BTRFS_UUID_SIZE);
7118 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7119 BTRFS_FSID_SIZE);
7120 args.uuid = dev_uuid;
7121 args.fsid = fs_uuid;
7122
7123 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7124 fs_devices = open_seed_devices(fs_info, fs_uuid);
7125 if (IS_ERR(fs_devices))
7126 return PTR_ERR(fs_devices);
7127 }
7128
7129 device = btrfs_find_device(fs_info->fs_devices, &args);
7130 if (!device) {
7131 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7132 btrfs_report_missing_device(fs_info, devid,
7133 dev_uuid, true);
7134 return -ENOENT;
7135 }
7136
7137 device = add_missing_dev(fs_devices, devid, dev_uuid);
7138 if (IS_ERR(device)) {
7139 btrfs_err(fs_info,
7140 "failed to add missing dev %llu: %ld",
7141 devid, PTR_ERR(device));
7142 return PTR_ERR(device);
7143 }
7144 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7145 } else {
7146 if (!device->bdev) {
7147 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7148 btrfs_report_missing_device(fs_info,
7149 devid, dev_uuid, true);
7150 return -ENOENT;
7151 }
7152 btrfs_report_missing_device(fs_info, devid,
7153 dev_uuid, false);
7154 }
7155
7156 if (!device->bdev &&
7157 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7158 /*
7159 * this happens when a device that was properly setup
7160 * in the device info lists suddenly goes bad.
7161 * device->bdev is NULL, and so we have to set
7162 * device->missing to one here
7163 */
7164 device->fs_devices->missing_devices++;
7165 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7166 }
7167
7168 /* Move the device to its own fs_devices */
7169 if (device->fs_devices != fs_devices) {
7170 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7171 &device->dev_state));
7172
7173 list_move(&device->dev_list, &fs_devices->devices);
7174 device->fs_devices->num_devices--;
7175 fs_devices->num_devices++;
7176
7177 device->fs_devices->missing_devices--;
7178 fs_devices->missing_devices++;
7179
7180 device->fs_devices = fs_devices;
7181 }
7182 }
7183
7184 if (device->fs_devices != fs_info->fs_devices) {
7185 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7186 if (device->generation !=
7187 btrfs_device_generation(leaf, dev_item))
7188 return -EINVAL;
7189 }
7190
7191 fill_device_from_item(leaf, dev_item, device);
7192 if (device->bdev) {
7193 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7194
7195 if (device->total_bytes > max_total_bytes) {
7196 btrfs_err(fs_info,
7197 "device total_bytes should be at most %llu but found %llu",
7198 max_total_bytes, device->total_bytes);
7199 return -EINVAL;
7200 }
7201 }
7202 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7203 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7204 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7205 device->fs_devices->total_rw_bytes += device->total_bytes;
7206 atomic64_add(device->total_bytes - device->bytes_used,
7207 &fs_info->free_chunk_space);
7208 }
7209 ret = 0;
7210 return ret;
7211 }
7212
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7213 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7214 {
7215 struct btrfs_super_block *super_copy = fs_info->super_copy;
7216 struct extent_buffer *sb;
7217 struct btrfs_disk_key *disk_key;
7218 struct btrfs_chunk *chunk;
7219 u8 *array_ptr;
7220 unsigned long sb_array_offset;
7221 int ret = 0;
7222 u32 num_stripes;
7223 u32 array_size;
7224 u32 len = 0;
7225 u32 cur_offset;
7226 u64 type;
7227 struct btrfs_key key;
7228
7229 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7230
7231 /*
7232 * We allocated a dummy extent, just to use extent buffer accessors.
7233 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7234 * that's fine, we will not go beyond system chunk array anyway.
7235 */
7236 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7237 if (!sb)
7238 return -ENOMEM;
7239 set_extent_buffer_uptodate(sb);
7240
7241 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7242 array_size = btrfs_super_sys_array_size(super_copy);
7243
7244 array_ptr = super_copy->sys_chunk_array;
7245 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7246 cur_offset = 0;
7247
7248 while (cur_offset < array_size) {
7249 disk_key = (struct btrfs_disk_key *)array_ptr;
7250 len = sizeof(*disk_key);
7251 if (cur_offset + len > array_size)
7252 goto out_short_read;
7253
7254 btrfs_disk_key_to_cpu(&key, disk_key);
7255
7256 array_ptr += len;
7257 sb_array_offset += len;
7258 cur_offset += len;
7259
7260 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7261 btrfs_err(fs_info,
7262 "unexpected item type %u in sys_array at offset %u",
7263 (u32)key.type, cur_offset);
7264 ret = -EIO;
7265 break;
7266 }
7267
7268 chunk = (struct btrfs_chunk *)sb_array_offset;
7269 /*
7270 * At least one btrfs_chunk with one stripe must be present,
7271 * exact stripe count check comes afterwards
7272 */
7273 len = btrfs_chunk_item_size(1);
7274 if (cur_offset + len > array_size)
7275 goto out_short_read;
7276
7277 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7278 if (!num_stripes) {
7279 btrfs_err(fs_info,
7280 "invalid number of stripes %u in sys_array at offset %u",
7281 num_stripes, cur_offset);
7282 ret = -EIO;
7283 break;
7284 }
7285
7286 type = btrfs_chunk_type(sb, chunk);
7287 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7288 btrfs_err(fs_info,
7289 "invalid chunk type %llu in sys_array at offset %u",
7290 type, cur_offset);
7291 ret = -EIO;
7292 break;
7293 }
7294
7295 len = btrfs_chunk_item_size(num_stripes);
7296 if (cur_offset + len > array_size)
7297 goto out_short_read;
7298
7299 ret = read_one_chunk(&key, sb, chunk);
7300 if (ret)
7301 break;
7302
7303 array_ptr += len;
7304 sb_array_offset += len;
7305 cur_offset += len;
7306 }
7307 clear_extent_buffer_uptodate(sb);
7308 free_extent_buffer_stale(sb);
7309 return ret;
7310
7311 out_short_read:
7312 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7313 len, cur_offset);
7314 clear_extent_buffer_uptodate(sb);
7315 free_extent_buffer_stale(sb);
7316 return -EIO;
7317 }
7318
7319 /*
7320 * Check if all chunks in the fs are OK for read-write degraded mount
7321 *
7322 * If the @failing_dev is specified, it's accounted as missing.
7323 *
7324 * Return true if all chunks meet the minimal RW mount requirements.
7325 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7326 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7327 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7328 struct btrfs_device *failing_dev)
7329 {
7330 struct btrfs_chunk_map *map;
7331 u64 next_start;
7332 bool ret = true;
7333
7334 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7335 /* No chunk at all? Return false anyway */
7336 if (!map) {
7337 ret = false;
7338 goto out;
7339 }
7340 while (map) {
7341 int missing = 0;
7342 int max_tolerated;
7343 int i;
7344
7345 max_tolerated =
7346 btrfs_get_num_tolerated_disk_barrier_failures(
7347 map->type);
7348 for (i = 0; i < map->num_stripes; i++) {
7349 struct btrfs_device *dev = map->stripes[i].dev;
7350
7351 if (!dev || !dev->bdev ||
7352 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7353 dev->last_flush_error)
7354 missing++;
7355 else if (failing_dev && failing_dev == dev)
7356 missing++;
7357 }
7358 if (missing > max_tolerated) {
7359 if (!failing_dev)
7360 btrfs_warn(fs_info,
7361 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7362 map->start, missing, max_tolerated);
7363 btrfs_free_chunk_map(map);
7364 ret = false;
7365 goto out;
7366 }
7367 next_start = map->start + map->chunk_len;
7368 btrfs_free_chunk_map(map);
7369
7370 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7371 }
7372 out:
7373 return ret;
7374 }
7375
readahead_tree_node_children(struct extent_buffer * node)7376 static void readahead_tree_node_children(struct extent_buffer *node)
7377 {
7378 int i;
7379 const int nr_items = btrfs_header_nritems(node);
7380
7381 for (i = 0; i < nr_items; i++)
7382 btrfs_readahead_node_child(node, i);
7383 }
7384
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7385 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7386 {
7387 struct btrfs_root *root = fs_info->chunk_root;
7388 struct btrfs_path *path;
7389 struct extent_buffer *leaf;
7390 struct btrfs_key key;
7391 struct btrfs_key found_key;
7392 int ret;
7393 int slot;
7394 int iter_ret = 0;
7395 u64 total_dev = 0;
7396 u64 last_ra_node = 0;
7397
7398 path = btrfs_alloc_path();
7399 if (!path)
7400 return -ENOMEM;
7401
7402 /*
7403 * uuid_mutex is needed only if we are mounting a sprout FS
7404 * otherwise we don't need it.
7405 */
7406 mutex_lock(&uuid_mutex);
7407
7408 /*
7409 * It is possible for mount and umount to race in such a way that
7410 * we execute this code path, but open_fs_devices failed to clear
7411 * total_rw_bytes. We certainly want it cleared before reading the
7412 * device items, so clear it here.
7413 */
7414 fs_info->fs_devices->total_rw_bytes = 0;
7415
7416 /*
7417 * Lockdep complains about possible circular locking dependency between
7418 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7419 * used for freeze procection of a fs (struct super_block.s_writers),
7420 * which we take when starting a transaction, and extent buffers of the
7421 * chunk tree if we call read_one_dev() while holding a lock on an
7422 * extent buffer of the chunk tree. Since we are mounting the filesystem
7423 * and at this point there can't be any concurrent task modifying the
7424 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7425 */
7426 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7427 path->skip_locking = 1;
7428
7429 /*
7430 * Read all device items, and then all the chunk items. All
7431 * device items are found before any chunk item (their object id
7432 * is smaller than the lowest possible object id for a chunk
7433 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7434 */
7435 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7436 key.offset = 0;
7437 key.type = 0;
7438 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7439 struct extent_buffer *node = path->nodes[1];
7440
7441 leaf = path->nodes[0];
7442 slot = path->slots[0];
7443
7444 if (node) {
7445 if (last_ra_node != node->start) {
7446 readahead_tree_node_children(node);
7447 last_ra_node = node->start;
7448 }
7449 }
7450 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7451 struct btrfs_dev_item *dev_item;
7452 dev_item = btrfs_item_ptr(leaf, slot,
7453 struct btrfs_dev_item);
7454 ret = read_one_dev(leaf, dev_item);
7455 if (ret)
7456 goto error;
7457 total_dev++;
7458 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7459 struct btrfs_chunk *chunk;
7460
7461 /*
7462 * We are only called at mount time, so no need to take
7463 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7464 * we always lock first fs_info->chunk_mutex before
7465 * acquiring any locks on the chunk tree. This is a
7466 * requirement for chunk allocation, see the comment on
7467 * top of btrfs_chunk_alloc() for details.
7468 */
7469 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7470 ret = read_one_chunk(&found_key, leaf, chunk);
7471 if (ret)
7472 goto error;
7473 }
7474 }
7475 /* Catch error found during iteration */
7476 if (iter_ret < 0) {
7477 ret = iter_ret;
7478 goto error;
7479 }
7480
7481 /*
7482 * After loading chunk tree, we've got all device information,
7483 * do another round of validation checks.
7484 */
7485 if (total_dev != fs_info->fs_devices->total_devices) {
7486 btrfs_warn(fs_info,
7487 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7488 btrfs_super_num_devices(fs_info->super_copy),
7489 total_dev);
7490 fs_info->fs_devices->total_devices = total_dev;
7491 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7492 }
7493 if (btrfs_super_total_bytes(fs_info->super_copy) <
7494 fs_info->fs_devices->total_rw_bytes) {
7495 btrfs_err(fs_info,
7496 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7497 btrfs_super_total_bytes(fs_info->super_copy),
7498 fs_info->fs_devices->total_rw_bytes);
7499 ret = -EINVAL;
7500 goto error;
7501 }
7502 ret = 0;
7503 error:
7504 mutex_unlock(&uuid_mutex);
7505
7506 btrfs_free_path(path);
7507 return ret;
7508 }
7509
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7510 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7511 {
7512 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7513 struct btrfs_device *device;
7514 int ret = 0;
7515
7516 fs_devices->fs_info = fs_info;
7517
7518 mutex_lock(&fs_devices->device_list_mutex);
7519 list_for_each_entry(device, &fs_devices->devices, dev_list)
7520 device->fs_info = fs_info;
7521
7522 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7523 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7524 device->fs_info = fs_info;
7525 ret = btrfs_get_dev_zone_info(device, false);
7526 if (ret)
7527 break;
7528 }
7529
7530 seed_devs->fs_info = fs_info;
7531 }
7532 mutex_unlock(&fs_devices->device_list_mutex);
7533
7534 return ret;
7535 }
7536
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7537 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7538 const struct btrfs_dev_stats_item *ptr,
7539 int index)
7540 {
7541 u64 val;
7542
7543 read_extent_buffer(eb, &val,
7544 offsetof(struct btrfs_dev_stats_item, values) +
7545 ((unsigned long)ptr) + (index * sizeof(u64)),
7546 sizeof(val));
7547 return val;
7548 }
7549
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7550 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7551 struct btrfs_dev_stats_item *ptr,
7552 int index, u64 val)
7553 {
7554 write_extent_buffer(eb, &val,
7555 offsetof(struct btrfs_dev_stats_item, values) +
7556 ((unsigned long)ptr) + (index * sizeof(u64)),
7557 sizeof(val));
7558 }
7559
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7560 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7561 struct btrfs_path *path)
7562 {
7563 struct btrfs_dev_stats_item *ptr;
7564 struct extent_buffer *eb;
7565 struct btrfs_key key;
7566 int item_size;
7567 int i, ret, slot;
7568
7569 if (!device->fs_info->dev_root)
7570 return 0;
7571
7572 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7573 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7574 key.offset = device->devid;
7575 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7576 if (ret) {
7577 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7578 btrfs_dev_stat_set(device, i, 0);
7579 device->dev_stats_valid = 1;
7580 btrfs_release_path(path);
7581 return ret < 0 ? ret : 0;
7582 }
7583 slot = path->slots[0];
7584 eb = path->nodes[0];
7585 item_size = btrfs_item_size(eb, slot);
7586
7587 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7588
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7590 if (item_size >= (1 + i) * sizeof(__le64))
7591 btrfs_dev_stat_set(device, i,
7592 btrfs_dev_stats_value(eb, ptr, i));
7593 else
7594 btrfs_dev_stat_set(device, i, 0);
7595 }
7596
7597 device->dev_stats_valid = 1;
7598 btrfs_dev_stat_print_on_load(device);
7599 btrfs_release_path(path);
7600
7601 return 0;
7602 }
7603
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7604 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7605 {
7606 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7607 struct btrfs_device *device;
7608 struct btrfs_path *path = NULL;
7609 int ret = 0;
7610
7611 path = btrfs_alloc_path();
7612 if (!path)
7613 return -ENOMEM;
7614
7615 mutex_lock(&fs_devices->device_list_mutex);
7616 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7617 ret = btrfs_device_init_dev_stats(device, path);
7618 if (ret)
7619 goto out;
7620 }
7621 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7622 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7623 ret = btrfs_device_init_dev_stats(device, path);
7624 if (ret)
7625 goto out;
7626 }
7627 }
7628 out:
7629 mutex_unlock(&fs_devices->device_list_mutex);
7630
7631 btrfs_free_path(path);
7632 return ret;
7633 }
7634
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7635 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7636 struct btrfs_device *device)
7637 {
7638 struct btrfs_fs_info *fs_info = trans->fs_info;
7639 struct btrfs_root *dev_root = fs_info->dev_root;
7640 struct btrfs_path *path;
7641 struct btrfs_key key;
7642 struct extent_buffer *eb;
7643 struct btrfs_dev_stats_item *ptr;
7644 int ret;
7645 int i;
7646
7647 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7648 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7649 key.offset = device->devid;
7650
7651 path = btrfs_alloc_path();
7652 if (!path)
7653 return -ENOMEM;
7654 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7655 if (ret < 0) {
7656 btrfs_warn_in_rcu(fs_info,
7657 "error %d while searching for dev_stats item for device %s",
7658 ret, btrfs_dev_name(device));
7659 goto out;
7660 }
7661
7662 if (ret == 0 &&
7663 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7664 /* need to delete old one and insert a new one */
7665 ret = btrfs_del_item(trans, dev_root, path);
7666 if (ret != 0) {
7667 btrfs_warn_in_rcu(fs_info,
7668 "delete too small dev_stats item for device %s failed %d",
7669 btrfs_dev_name(device), ret);
7670 goto out;
7671 }
7672 ret = 1;
7673 }
7674
7675 if (ret == 1) {
7676 /* need to insert a new item */
7677 btrfs_release_path(path);
7678 ret = btrfs_insert_empty_item(trans, dev_root, path,
7679 &key, sizeof(*ptr));
7680 if (ret < 0) {
7681 btrfs_warn_in_rcu(fs_info,
7682 "insert dev_stats item for device %s failed %d",
7683 btrfs_dev_name(device), ret);
7684 goto out;
7685 }
7686 }
7687
7688 eb = path->nodes[0];
7689 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7690 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7691 btrfs_set_dev_stats_value(eb, ptr, i,
7692 btrfs_dev_stat_read(device, i));
7693 btrfs_mark_buffer_dirty(trans, eb);
7694
7695 out:
7696 btrfs_free_path(path);
7697 return ret;
7698 }
7699
7700 /*
7701 * called from commit_transaction. Writes all changed device stats to disk.
7702 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7703 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7704 {
7705 struct btrfs_fs_info *fs_info = trans->fs_info;
7706 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7707 struct btrfs_device *device;
7708 int stats_cnt;
7709 int ret = 0;
7710
7711 mutex_lock(&fs_devices->device_list_mutex);
7712 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7713 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7714 if (!device->dev_stats_valid || stats_cnt == 0)
7715 continue;
7716
7717
7718 /*
7719 * There is a LOAD-LOAD control dependency between the value of
7720 * dev_stats_ccnt and updating the on-disk values which requires
7721 * reading the in-memory counters. Such control dependencies
7722 * require explicit read memory barriers.
7723 *
7724 * This memory barriers pairs with smp_mb__before_atomic in
7725 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7726 * barrier implied by atomic_xchg in
7727 * btrfs_dev_stats_read_and_reset
7728 */
7729 smp_rmb();
7730
7731 ret = update_dev_stat_item(trans, device);
7732 if (!ret)
7733 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7734 }
7735 mutex_unlock(&fs_devices->device_list_mutex);
7736
7737 return ret;
7738 }
7739
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7740 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7741 {
7742 btrfs_dev_stat_inc(dev, index);
7743
7744 if (!dev->dev_stats_valid)
7745 return;
7746 btrfs_err_rl_in_rcu(dev->fs_info,
7747 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7748 btrfs_dev_name(dev),
7749 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7750 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7751 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7752 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7753 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7754 }
7755
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7756 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7757 {
7758 int i;
7759
7760 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7761 if (btrfs_dev_stat_read(dev, i) != 0)
7762 break;
7763 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7764 return; /* all values == 0, suppress message */
7765
7766 btrfs_info_in_rcu(dev->fs_info,
7767 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7768 btrfs_dev_name(dev),
7769 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7770 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7771 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7772 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7773 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7774 }
7775
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7776 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7777 struct btrfs_ioctl_get_dev_stats *stats)
7778 {
7779 BTRFS_DEV_LOOKUP_ARGS(args);
7780 struct btrfs_device *dev;
7781 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7782 int i;
7783
7784 mutex_lock(&fs_devices->device_list_mutex);
7785 args.devid = stats->devid;
7786 dev = btrfs_find_device(fs_info->fs_devices, &args);
7787 mutex_unlock(&fs_devices->device_list_mutex);
7788
7789 if (!dev) {
7790 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7791 return -ENODEV;
7792 } else if (!dev->dev_stats_valid) {
7793 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7794 return -ENODEV;
7795 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7796 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7797 if (stats->nr_items > i)
7798 stats->values[i] =
7799 btrfs_dev_stat_read_and_reset(dev, i);
7800 else
7801 btrfs_dev_stat_set(dev, i, 0);
7802 }
7803 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7804 current->comm, task_pid_nr(current));
7805 } else {
7806 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7807 if (stats->nr_items > i)
7808 stats->values[i] = btrfs_dev_stat_read(dev, i);
7809 }
7810 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7811 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7812 return 0;
7813 }
7814
7815 /*
7816 * Update the size and bytes used for each device where it changed. This is
7817 * delayed since we would otherwise get errors while writing out the
7818 * superblocks.
7819 *
7820 * Must be invoked during transaction commit.
7821 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7822 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7823 {
7824 struct btrfs_device *curr, *next;
7825
7826 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7827
7828 if (list_empty(&trans->dev_update_list))
7829 return;
7830
7831 /*
7832 * We don't need the device_list_mutex here. This list is owned by the
7833 * transaction and the transaction must complete before the device is
7834 * released.
7835 */
7836 mutex_lock(&trans->fs_info->chunk_mutex);
7837 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7838 post_commit_list) {
7839 list_del_init(&curr->post_commit_list);
7840 curr->commit_total_bytes = curr->disk_total_bytes;
7841 curr->commit_bytes_used = curr->bytes_used;
7842 }
7843 mutex_unlock(&trans->fs_info->chunk_mutex);
7844 }
7845
7846 /*
7847 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7848 */
btrfs_bg_type_to_factor(u64 flags)7849 int btrfs_bg_type_to_factor(u64 flags)
7850 {
7851 const int index = btrfs_bg_flags_to_raid_index(flags);
7852
7853 return btrfs_raid_array[index].ncopies;
7854 }
7855
7856
7857
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7858 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7859 u64 chunk_offset, u64 devid,
7860 u64 physical_offset, u64 physical_len)
7861 {
7862 struct btrfs_dev_lookup_args args = { .devid = devid };
7863 struct btrfs_chunk_map *map;
7864 struct btrfs_device *dev;
7865 u64 stripe_len;
7866 bool found = false;
7867 int ret = 0;
7868 int i;
7869
7870 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7871 if (!map) {
7872 btrfs_err(fs_info,
7873 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7874 physical_offset, devid);
7875 ret = -EUCLEAN;
7876 goto out;
7877 }
7878
7879 stripe_len = btrfs_calc_stripe_length(map);
7880 if (physical_len != stripe_len) {
7881 btrfs_err(fs_info,
7882 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7883 physical_offset, devid, map->start, physical_len,
7884 stripe_len);
7885 ret = -EUCLEAN;
7886 goto out;
7887 }
7888
7889 /*
7890 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7891 * space. Although kernel can handle it without problem, better to warn
7892 * the users.
7893 */
7894 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7895 btrfs_warn(fs_info,
7896 "devid %llu physical %llu len %llu inside the reserved space",
7897 devid, physical_offset, physical_len);
7898
7899 for (i = 0; i < map->num_stripes; i++) {
7900 if (map->stripes[i].dev->devid == devid &&
7901 map->stripes[i].physical == physical_offset) {
7902 found = true;
7903 if (map->verified_stripes >= map->num_stripes) {
7904 btrfs_err(fs_info,
7905 "too many dev extents for chunk %llu found",
7906 map->start);
7907 ret = -EUCLEAN;
7908 goto out;
7909 }
7910 map->verified_stripes++;
7911 break;
7912 }
7913 }
7914 if (!found) {
7915 btrfs_err(fs_info,
7916 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7917 physical_offset, devid);
7918 ret = -EUCLEAN;
7919 }
7920
7921 /* Make sure no dev extent is beyond device boundary */
7922 dev = btrfs_find_device(fs_info->fs_devices, &args);
7923 if (!dev) {
7924 btrfs_err(fs_info, "failed to find devid %llu", devid);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928
7929 if (physical_offset + physical_len > dev->disk_total_bytes) {
7930 btrfs_err(fs_info,
7931 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7932 devid, physical_offset, physical_len,
7933 dev->disk_total_bytes);
7934 ret = -EUCLEAN;
7935 goto out;
7936 }
7937
7938 if (dev->zone_info) {
7939 u64 zone_size = dev->zone_info->zone_size;
7940
7941 if (!IS_ALIGNED(physical_offset, zone_size) ||
7942 !IS_ALIGNED(physical_len, zone_size)) {
7943 btrfs_err(fs_info,
7944 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7945 devid, physical_offset, physical_len);
7946 ret = -EUCLEAN;
7947 goto out;
7948 }
7949 }
7950
7951 out:
7952 btrfs_free_chunk_map(map);
7953 return ret;
7954 }
7955
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7956 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7957 {
7958 struct rb_node *node;
7959 int ret = 0;
7960
7961 read_lock(&fs_info->mapping_tree_lock);
7962 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7963 struct btrfs_chunk_map *map;
7964
7965 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7966 if (map->num_stripes != map->verified_stripes) {
7967 btrfs_err(fs_info,
7968 "chunk %llu has missing dev extent, have %d expect %d",
7969 map->start, map->verified_stripes, map->num_stripes);
7970 ret = -EUCLEAN;
7971 goto out;
7972 }
7973 }
7974 out:
7975 read_unlock(&fs_info->mapping_tree_lock);
7976 return ret;
7977 }
7978
7979 /*
7980 * Ensure that all dev extents are mapped to correct chunk, otherwise
7981 * later chunk allocation/free would cause unexpected behavior.
7982 *
7983 * NOTE: This will iterate through the whole device tree, which should be of
7984 * the same size level as the chunk tree. This slightly increases mount time.
7985 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7986 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7987 {
7988 struct btrfs_path *path;
7989 struct btrfs_root *root = fs_info->dev_root;
7990 struct btrfs_key key;
7991 u64 prev_devid = 0;
7992 u64 prev_dev_ext_end = 0;
7993 int ret = 0;
7994
7995 /*
7996 * We don't have a dev_root because we mounted with ignorebadroots and
7997 * failed to load the root, so we want to skip the verification in this
7998 * case for sure.
7999 *
8000 * However if the dev root is fine, but the tree itself is corrupted
8001 * we'd still fail to mount. This verification is only to make sure
8002 * writes can happen safely, so instead just bypass this check
8003 * completely in the case of IGNOREBADROOTS.
8004 */
8005 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8006 return 0;
8007
8008 key.objectid = 1;
8009 key.type = BTRFS_DEV_EXTENT_KEY;
8010 key.offset = 0;
8011
8012 path = btrfs_alloc_path();
8013 if (!path)
8014 return -ENOMEM;
8015
8016 path->reada = READA_FORWARD;
8017 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8018 if (ret < 0)
8019 goto out;
8020
8021 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8022 ret = btrfs_next_leaf(root, path);
8023 if (ret < 0)
8024 goto out;
8025 /* No dev extents at all? Not good */
8026 if (ret > 0) {
8027 ret = -EUCLEAN;
8028 goto out;
8029 }
8030 }
8031 while (1) {
8032 struct extent_buffer *leaf = path->nodes[0];
8033 struct btrfs_dev_extent *dext;
8034 int slot = path->slots[0];
8035 u64 chunk_offset;
8036 u64 physical_offset;
8037 u64 physical_len;
8038 u64 devid;
8039
8040 btrfs_item_key_to_cpu(leaf, &key, slot);
8041 if (key.type != BTRFS_DEV_EXTENT_KEY)
8042 break;
8043 devid = key.objectid;
8044 physical_offset = key.offset;
8045
8046 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8047 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8048 physical_len = btrfs_dev_extent_length(leaf, dext);
8049
8050 /* Check if this dev extent overlaps with the previous one */
8051 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8052 btrfs_err(fs_info,
8053 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8054 devid, physical_offset, prev_dev_ext_end);
8055 ret = -EUCLEAN;
8056 goto out;
8057 }
8058
8059 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8060 physical_offset, physical_len);
8061 if (ret < 0)
8062 goto out;
8063 prev_devid = devid;
8064 prev_dev_ext_end = physical_offset + physical_len;
8065
8066 ret = btrfs_next_item(root, path);
8067 if (ret < 0)
8068 goto out;
8069 if (ret > 0) {
8070 ret = 0;
8071 break;
8072 }
8073 }
8074
8075 /* Ensure all chunks have corresponding dev extents */
8076 ret = verify_chunk_dev_extent_mapping(fs_info);
8077 out:
8078 btrfs_free_path(path);
8079 return ret;
8080 }
8081
8082 /*
8083 * Check whether the given block group or device is pinned by any inode being
8084 * used as a swapfile.
8085 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8086 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8087 {
8088 struct btrfs_swapfile_pin *sp;
8089 struct rb_node *node;
8090
8091 spin_lock(&fs_info->swapfile_pins_lock);
8092 node = fs_info->swapfile_pins.rb_node;
8093 while (node) {
8094 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8095 if (ptr < sp->ptr)
8096 node = node->rb_left;
8097 else if (ptr > sp->ptr)
8098 node = node->rb_right;
8099 else
8100 break;
8101 }
8102 spin_unlock(&fs_info->swapfile_pins_lock);
8103 return node != NULL;
8104 }
8105
relocating_repair_kthread(void * data)8106 static int relocating_repair_kthread(void *data)
8107 {
8108 struct btrfs_block_group *cache = data;
8109 struct btrfs_fs_info *fs_info = cache->fs_info;
8110 u64 target;
8111 int ret = 0;
8112
8113 target = cache->start;
8114 btrfs_put_block_group(cache);
8115
8116 sb_start_write(fs_info->sb);
8117 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8118 btrfs_info(fs_info,
8119 "zoned: skip relocating block group %llu to repair: EBUSY",
8120 target);
8121 sb_end_write(fs_info->sb);
8122 return -EBUSY;
8123 }
8124
8125 mutex_lock(&fs_info->reclaim_bgs_lock);
8126
8127 /* Ensure block group still exists */
8128 cache = btrfs_lookup_block_group(fs_info, target);
8129 if (!cache)
8130 goto out;
8131
8132 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8133 goto out;
8134
8135 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8136 if (ret < 0)
8137 goto out;
8138
8139 btrfs_info(fs_info,
8140 "zoned: relocating block group %llu to repair IO failure",
8141 target);
8142 ret = btrfs_relocate_chunk(fs_info, target);
8143
8144 out:
8145 if (cache)
8146 btrfs_put_block_group(cache);
8147 mutex_unlock(&fs_info->reclaim_bgs_lock);
8148 btrfs_exclop_finish(fs_info);
8149 sb_end_write(fs_info->sb);
8150
8151 return ret;
8152 }
8153
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8154 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8155 {
8156 struct btrfs_block_group *cache;
8157
8158 if (!btrfs_is_zoned(fs_info))
8159 return false;
8160
8161 /* Do not attempt to repair in degraded state */
8162 if (btrfs_test_opt(fs_info, DEGRADED))
8163 return true;
8164
8165 cache = btrfs_lookup_block_group(fs_info, logical);
8166 if (!cache)
8167 return true;
8168
8169 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8170 btrfs_put_block_group(cache);
8171 return true;
8172 }
8173
8174 kthread_run(relocating_repair_kthread, cache,
8175 "btrfs-relocating-repair");
8176
8177 return true;
8178 }
8179
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8180 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8181 struct btrfs_io_stripe *smap,
8182 u64 logical)
8183 {
8184 int data_stripes = nr_bioc_data_stripes(bioc);
8185 int i;
8186
8187 for (i = 0; i < data_stripes; i++) {
8188 u64 stripe_start = bioc->full_stripe_logical +
8189 btrfs_stripe_nr_to_offset(i);
8190
8191 if (logical >= stripe_start &&
8192 logical < stripe_start + BTRFS_STRIPE_LEN)
8193 break;
8194 }
8195 ASSERT(i < data_stripes);
8196 smap->dev = bioc->stripes[i].dev;
8197 smap->physical = bioc->stripes[i].physical +
8198 ((logical - bioc->full_stripe_logical) &
8199 BTRFS_STRIPE_LEN_MASK);
8200 }
8201
8202 /*
8203 * Map a repair write into a single device.
8204 *
8205 * A repair write is triggered by read time repair or scrub, which would only
8206 * update the contents of a single device.
8207 * Not update any other mirrors nor go through RMW path.
8208 *
8209 * Callers should ensure:
8210 *
8211 * - Call btrfs_bio_counter_inc_blocked() first
8212 * - The range does not cross stripe boundary
8213 * - Has a valid @mirror_num passed in.
8214 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8215 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8216 struct btrfs_io_stripe *smap, u64 logical,
8217 u32 length, int mirror_num)
8218 {
8219 struct btrfs_io_context *bioc = NULL;
8220 u64 map_length = length;
8221 int mirror_ret = mirror_num;
8222 int ret;
8223
8224 ASSERT(mirror_num > 0);
8225
8226 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8227 &bioc, smap, &mirror_ret);
8228 if (ret < 0)
8229 return ret;
8230
8231 /* The map range should not cross stripe boundary. */
8232 ASSERT(map_length >= length);
8233
8234 /* Already mapped to single stripe. */
8235 if (!bioc)
8236 goto out;
8237
8238 /* Map the RAID56 multi-stripe writes to a single one. */
8239 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8240 map_raid56_repair_block(bioc, smap, logical);
8241 goto out;
8242 }
8243
8244 ASSERT(mirror_num <= bioc->num_stripes);
8245 smap->dev = bioc->stripes[mirror_num - 1].dev;
8246 smap->physical = bioc->stripes[mirror_num - 1].physical;
8247 out:
8248 btrfs_put_bioc(bioc);
8249 ASSERT(smap->dev);
8250 return 0;
8251 }
8252