1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 #include <linux/bits.h>
13 #include <linux/ktime.h>
14 #include <linux/bitmap.h>
15 #include <linux/mnt_idmapping.h>
16
17 #include "super.h"
18 #include "mds_client.h"
19 #include "crypto.h"
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/ceph/auth.h>
26 #include <linux/ceph/debugfs.h>
27
28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE)
29
30 /*
31 * A cluster of MDS (metadata server) daemons is responsible for
32 * managing the file system namespace (the directory hierarchy and
33 * inodes) and for coordinating shared access to storage. Metadata is
34 * partitioning hierarchically across a number of servers, and that
35 * partition varies over time as the cluster adjusts the distribution
36 * in order to balance load.
37 *
38 * The MDS client is primarily responsible to managing synchronous
39 * metadata requests for operations like open, unlink, and so forth.
40 * If there is a MDS failure, we find out about it when we (possibly
41 * request and) receive a new MDS map, and can resubmit affected
42 * requests.
43 *
44 * For the most part, though, we take advantage of a lossless
45 * communications channel to the MDS, and do not need to worry about
46 * timing out or resubmitting requests.
47 *
48 * We maintain a stateful "session" with each MDS we interact with.
49 * Within each session, we sent periodic heartbeat messages to ensure
50 * any capabilities or leases we have been issues remain valid. If
51 * the session times out and goes stale, our leases and capabilities
52 * are no longer valid.
53 */
54
55 struct ceph_reconnect_state {
56 struct ceph_mds_session *session;
57 int nr_caps, nr_realms;
58 struct ceph_pagelist *pagelist;
59 unsigned msg_version;
60 bool allow_multi;
61 };
62
63 static void __wake_requests(struct ceph_mds_client *mdsc,
64 struct list_head *head);
65 static void ceph_cap_release_work(struct work_struct *work);
66 static void ceph_cap_reclaim_work(struct work_struct *work);
67
68 static const struct ceph_connection_operations mds_con_ops;
69
70
71 /*
72 * mds reply parsing
73 */
74
parse_reply_info_quota(void ** p,void * end,struct ceph_mds_reply_info_in * info)75 static int parse_reply_info_quota(void **p, void *end,
76 struct ceph_mds_reply_info_in *info)
77 {
78 u8 struct_v, struct_compat;
79 u32 struct_len;
80
81 ceph_decode_8_safe(p, end, struct_v, bad);
82 ceph_decode_8_safe(p, end, struct_compat, bad);
83 /* struct_v is expected to be >= 1. we only
84 * understand encoding with struct_compat == 1. */
85 if (!struct_v || struct_compat != 1)
86 goto bad;
87 ceph_decode_32_safe(p, end, struct_len, bad);
88 ceph_decode_need(p, end, struct_len, bad);
89 end = *p + struct_len;
90 ceph_decode_64_safe(p, end, info->max_bytes, bad);
91 ceph_decode_64_safe(p, end, info->max_files, bad);
92 *p = end;
93 return 0;
94 bad:
95 return -EIO;
96 }
97
98 /*
99 * parse individual inode info
100 */
parse_reply_info_in(void ** p,void * end,struct ceph_mds_reply_info_in * info,u64 features)101 static int parse_reply_info_in(void **p, void *end,
102 struct ceph_mds_reply_info_in *info,
103 u64 features)
104 {
105 int err = 0;
106 u8 struct_v = 0;
107
108 if (features == (u64)-1) {
109 u32 struct_len;
110 u8 struct_compat;
111 ceph_decode_8_safe(p, end, struct_v, bad);
112 ceph_decode_8_safe(p, end, struct_compat, bad);
113 /* struct_v is expected to be >= 1. we only understand
114 * encoding with struct_compat == 1. */
115 if (!struct_v || struct_compat != 1)
116 goto bad;
117 ceph_decode_32_safe(p, end, struct_len, bad);
118 ceph_decode_need(p, end, struct_len, bad);
119 end = *p + struct_len;
120 }
121
122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad);
123 info->in = *p;
124 *p += sizeof(struct ceph_mds_reply_inode) +
125 sizeof(*info->in->fragtree.splits) *
126 le32_to_cpu(info->in->fragtree.nsplits);
127
128 ceph_decode_32_safe(p, end, info->symlink_len, bad);
129 ceph_decode_need(p, end, info->symlink_len, bad);
130 info->symlink = *p;
131 *p += info->symlink_len;
132
133 ceph_decode_copy_safe(p, end, &info->dir_layout,
134 sizeof(info->dir_layout), bad);
135 ceph_decode_32_safe(p, end, info->xattr_len, bad);
136 ceph_decode_need(p, end, info->xattr_len, bad);
137 info->xattr_data = *p;
138 *p += info->xattr_len;
139
140 if (features == (u64)-1) {
141 /* inline data */
142 ceph_decode_64_safe(p, end, info->inline_version, bad);
143 ceph_decode_32_safe(p, end, info->inline_len, bad);
144 ceph_decode_need(p, end, info->inline_len, bad);
145 info->inline_data = *p;
146 *p += info->inline_len;
147 /* quota */
148 err = parse_reply_info_quota(p, end, info);
149 if (err < 0)
150 goto out_bad;
151 /* pool namespace */
152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
153 if (info->pool_ns_len > 0) {
154 ceph_decode_need(p, end, info->pool_ns_len, bad);
155 info->pool_ns_data = *p;
156 *p += info->pool_ns_len;
157 }
158
159 /* btime */
160 ceph_decode_need(p, end, sizeof(info->btime), bad);
161 ceph_decode_copy(p, &info->btime, sizeof(info->btime));
162
163 /* change attribute */
164 ceph_decode_64_safe(p, end, info->change_attr, bad);
165
166 /* dir pin */
167 if (struct_v >= 2) {
168 ceph_decode_32_safe(p, end, info->dir_pin, bad);
169 } else {
170 info->dir_pin = -ENODATA;
171 }
172
173 /* snapshot birth time, remains zero for v<=2 */
174 if (struct_v >= 3) {
175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad);
176 ceph_decode_copy(p, &info->snap_btime,
177 sizeof(info->snap_btime));
178 } else {
179 memset(&info->snap_btime, 0, sizeof(info->snap_btime));
180 }
181
182 /* snapshot count, remains zero for v<=3 */
183 if (struct_v >= 4) {
184 ceph_decode_64_safe(p, end, info->rsnaps, bad);
185 } else {
186 info->rsnaps = 0;
187 }
188
189 if (struct_v >= 5) {
190 u32 alen;
191
192 ceph_decode_32_safe(p, end, alen, bad);
193
194 while (alen--) {
195 u32 len;
196
197 /* key */
198 ceph_decode_32_safe(p, end, len, bad);
199 ceph_decode_skip_n(p, end, len, bad);
200 /* value */
201 ceph_decode_32_safe(p, end, len, bad);
202 ceph_decode_skip_n(p, end, len, bad);
203 }
204 }
205
206 /* fscrypt flag -- ignore */
207 if (struct_v >= 6)
208 ceph_decode_skip_8(p, end, bad);
209
210 info->fscrypt_auth = NULL;
211 info->fscrypt_auth_len = 0;
212 info->fscrypt_file = NULL;
213 info->fscrypt_file_len = 0;
214 if (struct_v >= 7) {
215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad);
216 if (info->fscrypt_auth_len) {
217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len,
218 GFP_KERNEL);
219 if (!info->fscrypt_auth)
220 return -ENOMEM;
221 ceph_decode_copy_safe(p, end, info->fscrypt_auth,
222 info->fscrypt_auth_len, bad);
223 }
224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad);
225 if (info->fscrypt_file_len) {
226 info->fscrypt_file = kmalloc(info->fscrypt_file_len,
227 GFP_KERNEL);
228 if (!info->fscrypt_file)
229 return -ENOMEM;
230 ceph_decode_copy_safe(p, end, info->fscrypt_file,
231 info->fscrypt_file_len, bad);
232 }
233 }
234 *p = end;
235 } else {
236 /* legacy (unversioned) struct */
237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
238 ceph_decode_64_safe(p, end, info->inline_version, bad);
239 ceph_decode_32_safe(p, end, info->inline_len, bad);
240 ceph_decode_need(p, end, info->inline_len, bad);
241 info->inline_data = *p;
242 *p += info->inline_len;
243 } else
244 info->inline_version = CEPH_INLINE_NONE;
245
246 if (features & CEPH_FEATURE_MDS_QUOTA) {
247 err = parse_reply_info_quota(p, end, info);
248 if (err < 0)
249 goto out_bad;
250 } else {
251 info->max_bytes = 0;
252 info->max_files = 0;
253 }
254
255 info->pool_ns_len = 0;
256 info->pool_ns_data = NULL;
257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
259 if (info->pool_ns_len > 0) {
260 ceph_decode_need(p, end, info->pool_ns_len, bad);
261 info->pool_ns_data = *p;
262 *p += info->pool_ns_len;
263 }
264 }
265
266 if (features & CEPH_FEATURE_FS_BTIME) {
267 ceph_decode_need(p, end, sizeof(info->btime), bad);
268 ceph_decode_copy(p, &info->btime, sizeof(info->btime));
269 ceph_decode_64_safe(p, end, info->change_attr, bad);
270 }
271
272 info->dir_pin = -ENODATA;
273 /* info->snap_btime and info->rsnaps remain zero */
274 }
275 return 0;
276 bad:
277 err = -EIO;
278 out_bad:
279 return err;
280 }
281
parse_reply_info_dir(void ** p,void * end,struct ceph_mds_reply_dirfrag ** dirfrag,u64 features)282 static int parse_reply_info_dir(void **p, void *end,
283 struct ceph_mds_reply_dirfrag **dirfrag,
284 u64 features)
285 {
286 if (features == (u64)-1) {
287 u8 struct_v, struct_compat;
288 u32 struct_len;
289 ceph_decode_8_safe(p, end, struct_v, bad);
290 ceph_decode_8_safe(p, end, struct_compat, bad);
291 /* struct_v is expected to be >= 1. we only understand
292 * encoding whose struct_compat == 1. */
293 if (!struct_v || struct_compat != 1)
294 goto bad;
295 ceph_decode_32_safe(p, end, struct_len, bad);
296 ceph_decode_need(p, end, struct_len, bad);
297 end = *p + struct_len;
298 }
299
300 ceph_decode_need(p, end, sizeof(**dirfrag), bad);
301 *dirfrag = *p;
302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist);
303 if (unlikely(*p > end))
304 goto bad;
305 if (features == (u64)-1)
306 *p = end;
307 return 0;
308 bad:
309 return -EIO;
310 }
311
parse_reply_info_lease(void ** p,void * end,struct ceph_mds_reply_lease ** lease,u64 features,u32 * altname_len,u8 ** altname)312 static int parse_reply_info_lease(void **p, void *end,
313 struct ceph_mds_reply_lease **lease,
314 u64 features, u32 *altname_len, u8 **altname)
315 {
316 u8 struct_v;
317 u32 struct_len;
318 void *lend;
319
320 if (features == (u64)-1) {
321 u8 struct_compat;
322
323 ceph_decode_8_safe(p, end, struct_v, bad);
324 ceph_decode_8_safe(p, end, struct_compat, bad);
325
326 /* struct_v is expected to be >= 1. we only understand
327 * encoding whose struct_compat == 1. */
328 if (!struct_v || struct_compat != 1)
329 goto bad;
330
331 ceph_decode_32_safe(p, end, struct_len, bad);
332 } else {
333 struct_len = sizeof(**lease);
334 *altname_len = 0;
335 *altname = NULL;
336 }
337
338 lend = *p + struct_len;
339 ceph_decode_need(p, end, struct_len, bad);
340 *lease = *p;
341 *p += sizeof(**lease);
342
343 if (features == (u64)-1) {
344 if (struct_v >= 2) {
345 ceph_decode_32_safe(p, end, *altname_len, bad);
346 ceph_decode_need(p, end, *altname_len, bad);
347 *altname = *p;
348 *p += *altname_len;
349 } else {
350 *altname = NULL;
351 *altname_len = 0;
352 }
353 }
354 *p = lend;
355 return 0;
356 bad:
357 return -EIO;
358 }
359
360 /*
361 * parse a normal reply, which may contain a (dir+)dentry and/or a
362 * target inode.
363 */
parse_reply_info_trace(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)364 static int parse_reply_info_trace(void **p, void *end,
365 struct ceph_mds_reply_info_parsed *info,
366 u64 features)
367 {
368 int err;
369
370 if (info->head->is_dentry) {
371 err = parse_reply_info_in(p, end, &info->diri, features);
372 if (err < 0)
373 goto out_bad;
374
375 err = parse_reply_info_dir(p, end, &info->dirfrag, features);
376 if (err < 0)
377 goto out_bad;
378
379 ceph_decode_32_safe(p, end, info->dname_len, bad);
380 ceph_decode_need(p, end, info->dname_len, bad);
381 info->dname = *p;
382 *p += info->dname_len;
383
384 err = parse_reply_info_lease(p, end, &info->dlease, features,
385 &info->altname_len, &info->altname);
386 if (err < 0)
387 goto out_bad;
388 }
389
390 if (info->head->is_target) {
391 err = parse_reply_info_in(p, end, &info->targeti, features);
392 if (err < 0)
393 goto out_bad;
394 }
395
396 if (unlikely(*p != end))
397 goto bad;
398 return 0;
399
400 bad:
401 err = -EIO;
402 out_bad:
403 pr_err("problem parsing mds trace %d\n", err);
404 return err;
405 }
406
407 /*
408 * parse readdir results
409 */
parse_reply_info_readdir(void ** p,void * end,struct ceph_mds_request * req,u64 features)410 static int parse_reply_info_readdir(void **p, void *end,
411 struct ceph_mds_request *req,
412 u64 features)
413 {
414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
415 struct ceph_client *cl = req->r_mdsc->fsc->client;
416 u32 num, i = 0;
417 int err;
418
419 err = parse_reply_info_dir(p, end, &info->dir_dir, features);
420 if (err < 0)
421 goto out_bad;
422
423 ceph_decode_need(p, end, sizeof(num) + 2, bad);
424 num = ceph_decode_32(p);
425 {
426 u16 flags = ceph_decode_16(p);
427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
431 }
432 if (num == 0)
433 goto done;
434
435 BUG_ON(!info->dir_entries);
436 if ((unsigned long)(info->dir_entries + num) >
437 (unsigned long)info->dir_entries + info->dir_buf_size) {
438 pr_err_client(cl, "dir contents are larger than expected\n");
439 WARN_ON(1);
440 goto bad;
441 }
442
443 info->dir_nr = num;
444 while (num) {
445 struct inode *inode = d_inode(req->r_dentry);
446 struct ceph_inode_info *ci = ceph_inode(inode);
447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
448 struct fscrypt_str tname = FSTR_INIT(NULL, 0);
449 struct fscrypt_str oname = FSTR_INIT(NULL, 0);
450 struct ceph_fname fname;
451 u32 altname_len, _name_len;
452 u8 *altname, *_name;
453
454 /* dentry */
455 ceph_decode_32_safe(p, end, _name_len, bad);
456 ceph_decode_need(p, end, _name_len, bad);
457 _name = *p;
458 *p += _name_len;
459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name);
460
461 if (info->hash_order)
462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash,
463 _name, _name_len);
464
465 /* dentry lease */
466 err = parse_reply_info_lease(p, end, &rde->lease, features,
467 &altname_len, &altname);
468 if (err)
469 goto out_bad;
470
471 /*
472 * Try to dencrypt the dentry names and update them
473 * in the ceph_mds_reply_dir_entry struct.
474 */
475 fname.dir = inode;
476 fname.name = _name;
477 fname.name_len = _name_len;
478 fname.ctext = altname;
479 fname.ctext_len = altname_len;
480 /*
481 * The _name_len maybe larger than altname_len, such as
482 * when the human readable name length is in range of
483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE),
484 * then the copy in ceph_fname_to_usr will corrupt the
485 * data if there has no encryption key.
486 *
487 * Just set the no_copy flag and then if there has no
488 * encryption key the oname.name will be assigned to
489 * _name always.
490 */
491 fname.no_copy = true;
492 if (altname_len == 0) {
493 /*
494 * Set tname to _name, and this will be used
495 * to do the base64_decode in-place. It's
496 * safe because the decoded string should
497 * always be shorter, which is 3/4 of origin
498 * string.
499 */
500 tname.name = _name;
501
502 /*
503 * Set oname to _name too, and this will be
504 * used to do the dencryption in-place.
505 */
506 oname.name = _name;
507 oname.len = _name_len;
508 } else {
509 /*
510 * This will do the decryption only in-place
511 * from altname cryptext directly.
512 */
513 oname.name = altname;
514 oname.len = altname_len;
515 }
516 rde->is_nokey = false;
517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey);
518 if (err) {
519 pr_err_client(cl, "unable to decode %.*s, got %d\n",
520 _name_len, _name, err);
521 goto out_bad;
522 }
523 rde->name = oname.name;
524 rde->name_len = oname.len;
525
526 /* inode */
527 err = parse_reply_info_in(p, end, &rde->inode, features);
528 if (err < 0)
529 goto out_bad;
530 /* ceph_readdir_prepopulate() will update it */
531 rde->offset = 0;
532 i++;
533 num--;
534 }
535
536 done:
537 /* Skip over any unrecognized fields */
538 *p = end;
539 return 0;
540
541 bad:
542 err = -EIO;
543 out_bad:
544 pr_err_client(cl, "problem parsing dir contents %d\n", err);
545 return err;
546 }
547
548 /*
549 * parse fcntl F_GETLK results
550 */
parse_reply_info_filelock(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)551 static int parse_reply_info_filelock(void **p, void *end,
552 struct ceph_mds_reply_info_parsed *info,
553 u64 features)
554 {
555 if (*p + sizeof(*info->filelock_reply) > end)
556 goto bad;
557
558 info->filelock_reply = *p;
559
560 /* Skip over any unrecognized fields */
561 *p = end;
562 return 0;
563 bad:
564 return -EIO;
565 }
566
567
568 #if BITS_PER_LONG == 64
569
570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1)
571
ceph_parse_deleg_inos(void ** p,void * end,struct ceph_mds_session * s)572 static int ceph_parse_deleg_inos(void **p, void *end,
573 struct ceph_mds_session *s)
574 {
575 struct ceph_client *cl = s->s_mdsc->fsc->client;
576 u32 sets;
577
578 ceph_decode_32_safe(p, end, sets, bad);
579 doutc(cl, "got %u sets of delegated inodes\n", sets);
580 while (sets--) {
581 u64 start, len;
582
583 ceph_decode_64_safe(p, end, start, bad);
584 ceph_decode_64_safe(p, end, len, bad);
585
586 /* Don't accept a delegation of system inodes */
587 if (start < CEPH_INO_SYSTEM_BASE) {
588 pr_warn_ratelimited_client(cl,
589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n",
590 start, len);
591 continue;
592 }
593 while (len--) {
594 int err = xa_insert(&s->s_delegated_inos, start++,
595 DELEGATED_INO_AVAILABLE,
596 GFP_KERNEL);
597 if (!err) {
598 doutc(cl, "added delegated inode 0x%llx\n", start - 1);
599 } else if (err == -EBUSY) {
600 pr_warn_client(cl,
601 "MDS delegated inode 0x%llx more than once.\n",
602 start - 1);
603 } else {
604 return err;
605 }
606 }
607 }
608 return 0;
609 bad:
610 return -EIO;
611 }
612
ceph_get_deleg_ino(struct ceph_mds_session * s)613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
614 {
615 unsigned long ino;
616 void *val;
617
618 xa_for_each(&s->s_delegated_inos, ino, val) {
619 val = xa_erase(&s->s_delegated_inos, ino);
620 if (val == DELEGATED_INO_AVAILABLE)
621 return ino;
622 }
623 return 0;
624 }
625
ceph_restore_deleg_ino(struct ceph_mds_session * s,u64 ino)626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
627 {
628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE,
629 GFP_KERNEL);
630 }
631 #else /* BITS_PER_LONG == 64 */
632 /*
633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just
634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top
635 * and bottom words?
636 */
ceph_parse_deleg_inos(void ** p,void * end,struct ceph_mds_session * s)637 static int ceph_parse_deleg_inos(void **p, void *end,
638 struct ceph_mds_session *s)
639 {
640 u32 sets;
641
642 ceph_decode_32_safe(p, end, sets, bad);
643 if (sets)
644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad);
645 return 0;
646 bad:
647 return -EIO;
648 }
649
ceph_get_deleg_ino(struct ceph_mds_session * s)650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
651 {
652 return 0;
653 }
654
ceph_restore_deleg_ino(struct ceph_mds_session * s,u64 ino)655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
656 {
657 return 0;
658 }
659 #endif /* BITS_PER_LONG == 64 */
660
661 /*
662 * parse create results
663 */
parse_reply_info_create(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features,struct ceph_mds_session * s)664 static int parse_reply_info_create(void **p, void *end,
665 struct ceph_mds_reply_info_parsed *info,
666 u64 features, struct ceph_mds_session *s)
667 {
668 int ret;
669
670 if (features == (u64)-1 ||
671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) {
672 if (*p == end) {
673 /* Malformed reply? */
674 info->has_create_ino = false;
675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) {
676 info->has_create_ino = true;
677 /* struct_v, struct_compat, and len */
678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad);
679 ceph_decode_64_safe(p, end, info->ino, bad);
680 ret = ceph_parse_deleg_inos(p, end, s);
681 if (ret)
682 return ret;
683 } else {
684 /* legacy */
685 ceph_decode_64_safe(p, end, info->ino, bad);
686 info->has_create_ino = true;
687 }
688 } else {
689 if (*p != end)
690 goto bad;
691 }
692
693 /* Skip over any unrecognized fields */
694 *p = end;
695 return 0;
696 bad:
697 return -EIO;
698 }
699
parse_reply_info_getvxattr(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,u64 features)700 static int parse_reply_info_getvxattr(void **p, void *end,
701 struct ceph_mds_reply_info_parsed *info,
702 u64 features)
703 {
704 u32 value_len;
705
706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */
707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */
708 ceph_decode_skip_32(p, end, bad); /* skip payload length */
709
710 ceph_decode_32_safe(p, end, value_len, bad);
711
712 if (value_len == end - *p) {
713 info->xattr_info.xattr_value = *p;
714 info->xattr_info.xattr_value_len = value_len;
715 *p = end;
716 return value_len;
717 }
718 bad:
719 return -EIO;
720 }
721
722 /*
723 * parse extra results
724 */
parse_reply_info_extra(void ** p,void * end,struct ceph_mds_request * req,u64 features,struct ceph_mds_session * s)725 static int parse_reply_info_extra(void **p, void *end,
726 struct ceph_mds_request *req,
727 u64 features, struct ceph_mds_session *s)
728 {
729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
730 u32 op = le32_to_cpu(info->head->op);
731
732 if (op == CEPH_MDS_OP_GETFILELOCK)
733 return parse_reply_info_filelock(p, end, info, features);
734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
735 return parse_reply_info_readdir(p, end, req, features);
736 else if (op == CEPH_MDS_OP_CREATE)
737 return parse_reply_info_create(p, end, info, features, s);
738 else if (op == CEPH_MDS_OP_GETVXATTR)
739 return parse_reply_info_getvxattr(p, end, info, features);
740 else
741 return -EIO;
742 }
743
744 /*
745 * parse entire mds reply
746 */
parse_reply_info(struct ceph_mds_session * s,struct ceph_msg * msg,struct ceph_mds_request * req,u64 features)747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg,
748 struct ceph_mds_request *req, u64 features)
749 {
750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
751 struct ceph_client *cl = s->s_mdsc->fsc->client;
752 void *p, *end;
753 u32 len;
754 int err;
755
756 info->head = msg->front.iov_base;
757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
759
760 /* trace */
761 ceph_decode_32_safe(&p, end, len, bad);
762 if (len > 0) {
763 ceph_decode_need(&p, end, len, bad);
764 err = parse_reply_info_trace(&p, p+len, info, features);
765 if (err < 0)
766 goto out_bad;
767 }
768
769 /* extra */
770 ceph_decode_32_safe(&p, end, len, bad);
771 if (len > 0) {
772 ceph_decode_need(&p, end, len, bad);
773 err = parse_reply_info_extra(&p, p+len, req, features, s);
774 if (err < 0)
775 goto out_bad;
776 }
777
778 /* snap blob */
779 ceph_decode_32_safe(&p, end, len, bad);
780 info->snapblob_len = len;
781 info->snapblob = p;
782 p += len;
783
784 if (p != end)
785 goto bad;
786 return 0;
787
788 bad:
789 err = -EIO;
790 out_bad:
791 pr_err_client(cl, "mds parse_reply err %d\n", err);
792 ceph_msg_dump(msg);
793 return err;
794 }
795
destroy_reply_info(struct ceph_mds_reply_info_parsed * info)796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
797 {
798 int i;
799
800 kfree(info->diri.fscrypt_auth);
801 kfree(info->diri.fscrypt_file);
802 kfree(info->targeti.fscrypt_auth);
803 kfree(info->targeti.fscrypt_file);
804 if (!info->dir_entries)
805 return;
806
807 for (i = 0; i < info->dir_nr; i++) {
808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
809
810 kfree(rde->inode.fscrypt_auth);
811 kfree(rde->inode.fscrypt_file);
812 }
813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
814 }
815
816 /*
817 * In async unlink case the kclient won't wait for the first reply
818 * from MDS and just drop all the links and unhash the dentry and then
819 * succeeds immediately.
820 *
821 * For any new create/link/rename,etc requests followed by using the
822 * same file names we must wait for the first reply of the inflight
823 * unlink request, or the MDS possibly will fail these following
824 * requests with -EEXIST if the inflight async unlink request was
825 * delayed for some reasons.
826 *
827 * And the worst case is that for the none async openc request it will
828 * successfully open the file if the CDentry hasn't been unlinked yet,
829 * but later the previous delayed async unlink request will remove the
830 * CDenty. That means the just created file is possiblly deleted later
831 * by accident.
832 *
833 * We need to wait for the inflight async unlink requests to finish
834 * when creating new files/directories by using the same file names.
835 */
ceph_wait_on_conflict_unlink(struct dentry * dentry)836 int ceph_wait_on_conflict_unlink(struct dentry *dentry)
837 {
838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb);
839 struct ceph_client *cl = fsc->client;
840 struct dentry *pdentry = dentry->d_parent;
841 struct dentry *udentry, *found = NULL;
842 struct ceph_dentry_info *di;
843 struct qstr dname;
844 u32 hash = dentry->d_name.hash;
845 int err;
846
847 dname.name = dentry->d_name.name;
848 dname.len = dentry->d_name.len;
849
850 rcu_read_lock();
851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di,
852 hnode, hash) {
853 udentry = di->dentry;
854
855 spin_lock(&udentry->d_lock);
856 if (udentry->d_name.hash != hash)
857 goto next;
858 if (unlikely(udentry->d_parent != pdentry))
859 goto next;
860 if (!hash_hashed(&di->hnode))
861 goto next;
862
863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags))
864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n",
865 dentry, dentry);
866
867 if (!d_same_name(udentry, pdentry, &dname))
868 goto next;
869
870 found = dget_dlock(udentry);
871 spin_unlock(&udentry->d_lock);
872 break;
873 next:
874 spin_unlock(&udentry->d_lock);
875 }
876 rcu_read_unlock();
877
878 if (likely(!found))
879 return 0;
880
881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry,
882 found, found);
883
884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT,
885 TASK_KILLABLE);
886 dput(found);
887 return err;
888 }
889
890
891 /*
892 * sessions
893 */
ceph_session_state_name(int s)894 const char *ceph_session_state_name(int s)
895 {
896 switch (s) {
897 case CEPH_MDS_SESSION_NEW: return "new";
898 case CEPH_MDS_SESSION_OPENING: return "opening";
899 case CEPH_MDS_SESSION_OPEN: return "open";
900 case CEPH_MDS_SESSION_HUNG: return "hung";
901 case CEPH_MDS_SESSION_CLOSING: return "closing";
902 case CEPH_MDS_SESSION_CLOSED: return "closed";
903 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
905 case CEPH_MDS_SESSION_REJECTED: return "rejected";
906 default: return "???";
907 }
908 }
909
ceph_get_mds_session(struct ceph_mds_session * s)910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s)
911 {
912 if (refcount_inc_not_zero(&s->s_ref))
913 return s;
914 return NULL;
915 }
916
ceph_put_mds_session(struct ceph_mds_session * s)917 void ceph_put_mds_session(struct ceph_mds_session *s)
918 {
919 if (IS_ERR_OR_NULL(s))
920 return;
921
922 if (refcount_dec_and_test(&s->s_ref)) {
923 if (s->s_auth.authorizer)
924 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
925 WARN_ON(mutex_is_locked(&s->s_mutex));
926 xa_destroy(&s->s_delegated_inos);
927 kfree(s);
928 }
929 }
930
931 /*
932 * called under mdsc->mutex
933 */
__ceph_lookup_mds_session(struct ceph_mds_client * mdsc,int mds)934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
935 int mds)
936 {
937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
938 return NULL;
939 return ceph_get_mds_session(mdsc->sessions[mds]);
940 }
941
__have_session(struct ceph_mds_client * mdsc,int mds)942 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
943 {
944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
945 return false;
946 else
947 return true;
948 }
949
__verify_registered_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)950 static int __verify_registered_session(struct ceph_mds_client *mdsc,
951 struct ceph_mds_session *s)
952 {
953 if (s->s_mds >= mdsc->max_sessions ||
954 mdsc->sessions[s->s_mds] != s)
955 return -ENOENT;
956 return 0;
957 }
958
959 /*
960 * create+register a new session for given mds.
961 * called under mdsc->mutex.
962 */
register_session(struct ceph_mds_client * mdsc,int mds)963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
964 int mds)
965 {
966 struct ceph_client *cl = mdsc->fsc->client;
967 struct ceph_mds_session *s;
968
969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
970 return ERR_PTR(-EIO);
971
972 if (mds >= mdsc->mdsmap->possible_max_rank)
973 return ERR_PTR(-EINVAL);
974
975 s = kzalloc(sizeof(*s), GFP_NOFS);
976 if (!s)
977 return ERR_PTR(-ENOMEM);
978
979 if (mds >= mdsc->max_sessions) {
980 int newmax = 1 << get_count_order(mds + 1);
981 struct ceph_mds_session **sa;
982
983 doutc(cl, "realloc to %d\n", newmax);
984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
985 if (!sa)
986 goto fail_realloc;
987 if (mdsc->sessions) {
988 memcpy(sa, mdsc->sessions,
989 mdsc->max_sessions * sizeof(void *));
990 kfree(mdsc->sessions);
991 }
992 mdsc->sessions = sa;
993 mdsc->max_sessions = newmax;
994 }
995
996 doutc(cl, "mds%d\n", mds);
997 s->s_mdsc = mdsc;
998 s->s_mds = mds;
999 s->s_state = CEPH_MDS_SESSION_NEW;
1000 mutex_init(&s->s_mutex);
1001
1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
1003
1004 atomic_set(&s->s_cap_gen, 1);
1005 s->s_cap_ttl = jiffies - 1;
1006
1007 spin_lock_init(&s->s_cap_lock);
1008 INIT_LIST_HEAD(&s->s_caps);
1009 refcount_set(&s->s_ref, 1);
1010 INIT_LIST_HEAD(&s->s_waiting);
1011 INIT_LIST_HEAD(&s->s_unsafe);
1012 xa_init(&s->s_delegated_inos);
1013 INIT_LIST_HEAD(&s->s_cap_releases);
1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work);
1015
1016 INIT_LIST_HEAD(&s->s_cap_dirty);
1017 INIT_LIST_HEAD(&s->s_cap_flushing);
1018
1019 mdsc->sessions[mds] = s;
1020 atomic_inc(&mdsc->num_sessions);
1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */
1022
1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
1025
1026 return s;
1027
1028 fail_realloc:
1029 kfree(s);
1030 return ERR_PTR(-ENOMEM);
1031 }
1032
1033 /*
1034 * called under mdsc->mutex
1035 */
__unregister_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)1036 static void __unregister_session(struct ceph_mds_client *mdsc,
1037 struct ceph_mds_session *s)
1038 {
1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s);
1040 BUG_ON(mdsc->sessions[s->s_mds] != s);
1041 mdsc->sessions[s->s_mds] = NULL;
1042 ceph_con_close(&s->s_con);
1043 ceph_put_mds_session(s);
1044 atomic_dec(&mdsc->num_sessions);
1045 }
1046
1047 /*
1048 * drop session refs in request.
1049 *
1050 * should be last request ref, or hold mdsc->mutex
1051 */
put_request_session(struct ceph_mds_request * req)1052 static void put_request_session(struct ceph_mds_request *req)
1053 {
1054 if (req->r_session) {
1055 ceph_put_mds_session(req->r_session);
1056 req->r_session = NULL;
1057 }
1058 }
1059
ceph_mdsc_iterate_sessions(struct ceph_mds_client * mdsc,void (* cb)(struct ceph_mds_session *),bool check_state)1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc,
1061 void (*cb)(struct ceph_mds_session *),
1062 bool check_state)
1063 {
1064 int mds;
1065
1066 mutex_lock(&mdsc->mutex);
1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) {
1068 struct ceph_mds_session *s;
1069
1070 s = __ceph_lookup_mds_session(mdsc, mds);
1071 if (!s)
1072 continue;
1073
1074 if (check_state && !check_session_state(s)) {
1075 ceph_put_mds_session(s);
1076 continue;
1077 }
1078
1079 mutex_unlock(&mdsc->mutex);
1080 cb(s);
1081 ceph_put_mds_session(s);
1082 mutex_lock(&mdsc->mutex);
1083 }
1084 mutex_unlock(&mdsc->mutex);
1085 }
1086
ceph_mdsc_release_request(struct kref * kref)1087 void ceph_mdsc_release_request(struct kref *kref)
1088 {
1089 struct ceph_mds_request *req = container_of(kref,
1090 struct ceph_mds_request,
1091 r_kref);
1092 ceph_mdsc_release_dir_caps_async(req);
1093 destroy_reply_info(&req->r_reply_info);
1094 if (req->r_request)
1095 ceph_msg_put(req->r_request);
1096 if (req->r_reply)
1097 ceph_msg_put(req->r_reply);
1098 if (req->r_inode) {
1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1100 iput(req->r_inode);
1101 }
1102 if (req->r_parent) {
1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
1104 iput(req->r_parent);
1105 }
1106 iput(req->r_target_inode);
1107 iput(req->r_new_inode);
1108 if (req->r_dentry)
1109 dput(req->r_dentry);
1110 if (req->r_old_dentry)
1111 dput(req->r_old_dentry);
1112 if (req->r_old_dentry_dir) {
1113 /*
1114 * track (and drop pins for) r_old_dentry_dir
1115 * separately, since r_old_dentry's d_parent may have
1116 * changed between the dir mutex being dropped and
1117 * this request being freed.
1118 */
1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
1120 CEPH_CAP_PIN);
1121 iput(req->r_old_dentry_dir);
1122 }
1123 kfree(req->r_path1);
1124 kfree(req->r_path2);
1125 put_cred(req->r_cred);
1126 if (req->r_mnt_idmap)
1127 mnt_idmap_put(req->r_mnt_idmap);
1128 if (req->r_pagelist)
1129 ceph_pagelist_release(req->r_pagelist);
1130 kfree(req->r_fscrypt_auth);
1131 kfree(req->r_altname);
1132 put_request_session(req);
1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
1134 WARN_ON_ONCE(!list_empty(&req->r_wait));
1135 kmem_cache_free(ceph_mds_request_cachep, req);
1136 }
1137
DEFINE_RB_FUNCS(request,struct ceph_mds_request,r_tid,r_node)1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
1139
1140 /*
1141 * lookup session, bump ref if found.
1142 *
1143 * called under mdsc->mutex.
1144 */
1145 static struct ceph_mds_request *
1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
1147 {
1148 struct ceph_mds_request *req;
1149
1150 req = lookup_request(&mdsc->request_tree, tid);
1151 if (req)
1152 ceph_mdsc_get_request(req);
1153
1154 return req;
1155 }
1156
1157 /*
1158 * Register an in-flight request, and assign a tid. Link to directory
1159 * are modifying (if any).
1160 *
1161 * Called under mdsc->mutex.
1162 */
__register_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,struct inode * dir)1163 static void __register_request(struct ceph_mds_client *mdsc,
1164 struct ceph_mds_request *req,
1165 struct inode *dir)
1166 {
1167 struct ceph_client *cl = mdsc->fsc->client;
1168 int ret = 0;
1169
1170 req->r_tid = ++mdsc->last_tid;
1171 if (req->r_num_caps) {
1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
1173 req->r_num_caps);
1174 if (ret < 0) {
1175 pr_err_client(cl, "%p failed to reserve caps: %d\n",
1176 req, ret);
1177 /* set req->r_err to fail early from __do_request */
1178 req->r_err = ret;
1179 return;
1180 }
1181 }
1182 doutc(cl, "%p tid %lld\n", req, req->r_tid);
1183 ceph_mdsc_get_request(req);
1184 insert_request(&mdsc->request_tree, req);
1185
1186 req->r_cred = get_current_cred();
1187 if (!req->r_mnt_idmap)
1188 req->r_mnt_idmap = &nop_mnt_idmap;
1189
1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
1191 mdsc->oldest_tid = req->r_tid;
1192
1193 if (dir) {
1194 struct ceph_inode_info *ci = ceph_inode(dir);
1195
1196 ihold(dir);
1197 req->r_unsafe_dir = dir;
1198 spin_lock(&ci->i_unsafe_lock);
1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
1200 spin_unlock(&ci->i_unsafe_lock);
1201 }
1202 }
1203
__unregister_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1204 static void __unregister_request(struct ceph_mds_client *mdsc,
1205 struct ceph_mds_request *req)
1206 {
1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid);
1208
1209 /* Never leave an unregistered request on an unsafe list! */
1210 list_del_init(&req->r_unsafe_item);
1211
1212 if (req->r_tid == mdsc->oldest_tid) {
1213 struct rb_node *p = rb_next(&req->r_node);
1214 mdsc->oldest_tid = 0;
1215 while (p) {
1216 struct ceph_mds_request *next_req =
1217 rb_entry(p, struct ceph_mds_request, r_node);
1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
1219 mdsc->oldest_tid = next_req->r_tid;
1220 break;
1221 }
1222 p = rb_next(p);
1223 }
1224 }
1225
1226 erase_request(&mdsc->request_tree, req);
1227
1228 if (req->r_unsafe_dir) {
1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
1230 spin_lock(&ci->i_unsafe_lock);
1231 list_del_init(&req->r_unsafe_dir_item);
1232 spin_unlock(&ci->i_unsafe_lock);
1233 }
1234 if (req->r_target_inode &&
1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
1237 spin_lock(&ci->i_unsafe_lock);
1238 list_del_init(&req->r_unsafe_target_item);
1239 spin_unlock(&ci->i_unsafe_lock);
1240 }
1241
1242 if (req->r_unsafe_dir) {
1243 iput(req->r_unsafe_dir);
1244 req->r_unsafe_dir = NULL;
1245 }
1246
1247 complete_all(&req->r_safe_completion);
1248
1249 ceph_mdsc_put_request(req);
1250 }
1251
1252 /*
1253 * Walk back up the dentry tree until we hit a dentry representing a
1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held
1255 * when calling this) to ensure that the objects won't disappear while we're
1256 * working with them. Once we hit a candidate dentry, we attempt to take a
1257 * reference to it, and return that as the result.
1258 */
get_nonsnap_parent(struct dentry * dentry)1259 static struct inode *get_nonsnap_parent(struct dentry *dentry)
1260 {
1261 struct inode *inode = NULL;
1262
1263 while (dentry && !IS_ROOT(dentry)) {
1264 inode = d_inode_rcu(dentry);
1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
1266 break;
1267 dentry = dentry->d_parent;
1268 }
1269 if (inode)
1270 inode = igrab(inode);
1271 return inode;
1272 }
1273
1274 /*
1275 * Choose mds to send request to next. If there is a hint set in the
1276 * request (e.g., due to a prior forward hint from the mds), use that.
1277 * Otherwise, consult frag tree and/or caps to identify the
1278 * appropriate mds. If all else fails, choose randomly.
1279 *
1280 * Called under mdsc->mutex.
1281 */
__choose_mds(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,bool * random)1282 static int __choose_mds(struct ceph_mds_client *mdsc,
1283 struct ceph_mds_request *req,
1284 bool *random)
1285 {
1286 struct inode *inode;
1287 struct ceph_inode_info *ci;
1288 struct ceph_cap *cap;
1289 int mode = req->r_direct_mode;
1290 int mds = -1;
1291 u32 hash = req->r_direct_hash;
1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
1293 struct ceph_client *cl = mdsc->fsc->client;
1294
1295 if (random)
1296 *random = false;
1297
1298 /*
1299 * is there a specific mds we should try? ignore hint if we have
1300 * no session and the mds is not up (active or recovering).
1301 */
1302 if (req->r_resend_mds >= 0 &&
1303 (__have_session(mdsc, req->r_resend_mds) ||
1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds);
1306 return req->r_resend_mds;
1307 }
1308
1309 if (mode == USE_RANDOM_MDS)
1310 goto random;
1311
1312 inode = NULL;
1313 if (req->r_inode) {
1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
1315 inode = req->r_inode;
1316 ihold(inode);
1317 } else {
1318 /* req->r_dentry is non-null for LSSNAP request */
1319 rcu_read_lock();
1320 inode = get_nonsnap_parent(req->r_dentry);
1321 rcu_read_unlock();
1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n",
1323 inode, ceph_vinop(inode));
1324 }
1325 } else if (req->r_dentry) {
1326 /* ignore race with rename; old or new d_parent is okay */
1327 struct dentry *parent;
1328 struct inode *dir;
1329
1330 rcu_read_lock();
1331 parent = READ_ONCE(req->r_dentry->d_parent);
1332 dir = req->r_parent ? : d_inode_rcu(parent);
1333
1334 if (!dir || dir->i_sb != mdsc->fsc->sb) {
1335 /* not this fs or parent went negative */
1336 inode = d_inode(req->r_dentry);
1337 if (inode)
1338 ihold(inode);
1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
1340 /* direct snapped/virtual snapdir requests
1341 * based on parent dir inode */
1342 inode = get_nonsnap_parent(parent);
1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n",
1344 inode, ceph_vinop(inode));
1345 } else {
1346 /* dentry target */
1347 inode = d_inode(req->r_dentry);
1348 if (!inode || mode == USE_AUTH_MDS) {
1349 /* dir + name */
1350 inode = igrab(dir);
1351 hash = ceph_dentry_hash(dir, req->r_dentry);
1352 is_hash = true;
1353 } else {
1354 ihold(inode);
1355 }
1356 }
1357 rcu_read_unlock();
1358 }
1359
1360 if (!inode)
1361 goto random;
1362
1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode,
1364 ceph_vinop(inode), (int)is_hash, hash, mode);
1365 ci = ceph_inode(inode);
1366
1367 if (is_hash && S_ISDIR(inode->i_mode)) {
1368 struct ceph_inode_frag frag;
1369 int found;
1370
1371 ceph_choose_frag(ci, hash, &frag, &found);
1372 if (found) {
1373 if (mode == USE_ANY_MDS && frag.ndist > 0) {
1374 u8 r;
1375
1376 /* choose a random replica */
1377 get_random_bytes(&r, 1);
1378 r %= frag.ndist;
1379 mds = frag.dist[r];
1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n",
1381 inode, ceph_vinop(inode), frag.frag,
1382 mds, (int)r, frag.ndist);
1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1384 CEPH_MDS_STATE_ACTIVE &&
1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds))
1386 goto out;
1387 }
1388
1389 /* since this file/dir wasn't known to be
1390 * replicated, then we want to look for the
1391 * authoritative mds. */
1392 if (frag.mds >= 0) {
1393 /* choose auth mds */
1394 mds = frag.mds;
1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n",
1396 inode, ceph_vinop(inode), frag.frag, mds);
1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1398 CEPH_MDS_STATE_ACTIVE) {
1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap,
1400 mds))
1401 goto out;
1402 }
1403 }
1404 mode = USE_AUTH_MDS;
1405 }
1406 }
1407
1408 spin_lock(&ci->i_ceph_lock);
1409 cap = NULL;
1410 if (mode == USE_AUTH_MDS)
1411 cap = ci->i_auth_cap;
1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
1414 if (!cap) {
1415 spin_unlock(&ci->i_ceph_lock);
1416 iput(inode);
1417 goto random;
1418 }
1419 mds = cap->session->s_mds;
1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode,
1421 ceph_vinop(inode), mds,
1422 cap == ci->i_auth_cap ? "auth " : "", cap);
1423 spin_unlock(&ci->i_ceph_lock);
1424 out:
1425 iput(inode);
1426 return mds;
1427
1428 random:
1429 if (random)
1430 *random = true;
1431
1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
1433 doutc(cl, "chose random mds%d\n", mds);
1434 return mds;
1435 }
1436
1437
1438 /*
1439 * session messages
1440 */
ceph_create_session_msg(u32 op,u64 seq)1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq)
1442 {
1443 struct ceph_msg *msg;
1444 struct ceph_mds_session_head *h;
1445
1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
1447 false);
1448 if (!msg) {
1449 pr_err("ENOMEM creating session %s msg\n",
1450 ceph_session_op_name(op));
1451 return NULL;
1452 }
1453 h = msg->front.iov_base;
1454 h->op = cpu_to_le32(op);
1455 h->seq = cpu_to_le64(seq);
1456
1457 return msg;
1458 }
1459
1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8)
encode_supported_features(void ** p,void * end)1462 static int encode_supported_features(void **p, void *end)
1463 {
1464 static const size_t count = ARRAY_SIZE(feature_bits);
1465
1466 if (count > 0) {
1467 size_t i;
1468 size_t size = FEATURE_BYTES(count);
1469 unsigned long bit;
1470
1471 if (WARN_ON_ONCE(*p + 4 + size > end))
1472 return -ERANGE;
1473
1474 ceph_encode_32(p, size);
1475 memset(*p, 0, size);
1476 for (i = 0; i < count; i++) {
1477 bit = feature_bits[i];
1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8);
1479 }
1480 *p += size;
1481 } else {
1482 if (WARN_ON_ONCE(*p + 4 > end))
1483 return -ERANGE;
1484
1485 ceph_encode_32(p, 0);
1486 }
1487
1488 return 0;
1489 }
1490
1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED;
1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8)
encode_metric_spec(void ** p,void * end)1493 static int encode_metric_spec(void **p, void *end)
1494 {
1495 static const size_t count = ARRAY_SIZE(metric_bits);
1496
1497 /* header */
1498 if (WARN_ON_ONCE(*p + 2 > end))
1499 return -ERANGE;
1500
1501 ceph_encode_8(p, 1); /* version */
1502 ceph_encode_8(p, 1); /* compat */
1503
1504 if (count > 0) {
1505 size_t i;
1506 size_t size = METRIC_BYTES(count);
1507
1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end))
1509 return -ERANGE;
1510
1511 /* metric spec info length */
1512 ceph_encode_32(p, 4 + size);
1513
1514 /* metric spec */
1515 ceph_encode_32(p, size);
1516 memset(*p, 0, size);
1517 for (i = 0; i < count; i++)
1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8);
1519 *p += size;
1520 } else {
1521 if (WARN_ON_ONCE(*p + 4 + 4 > end))
1522 return -ERANGE;
1523
1524 /* metric spec info length */
1525 ceph_encode_32(p, 4);
1526 /* metric spec */
1527 ceph_encode_32(p, 0);
1528 }
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
1535 * to include additional client metadata fields.
1536 */
1537 static struct ceph_msg *
create_session_full_msg(struct ceph_mds_client * mdsc,int op,u64 seq)1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq)
1539 {
1540 struct ceph_msg *msg;
1541 struct ceph_mds_session_head *h;
1542 int i;
1543 int extra_bytes = 0;
1544 int metadata_key_count = 0;
1545 struct ceph_options *opt = mdsc->fsc->client->options;
1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
1547 struct ceph_client *cl = mdsc->fsc->client;
1548 size_t size, count;
1549 void *p, *end;
1550 int ret;
1551
1552 const char* metadata[][2] = {
1553 {"hostname", mdsc->nodename},
1554 {"kernel_version", init_utsname()->release},
1555 {"entity_id", opt->name ? : ""},
1556 {"root", fsopt->server_path ? : "/"},
1557 {NULL, NULL}
1558 };
1559
1560 /* Calculate serialized length of metadata */
1561 extra_bytes = 4; /* map length */
1562 for (i = 0; metadata[i][0]; ++i) {
1563 extra_bytes += 8 + strlen(metadata[i][0]) +
1564 strlen(metadata[i][1]);
1565 metadata_key_count++;
1566 }
1567
1568 /* supported feature */
1569 size = 0;
1570 count = ARRAY_SIZE(feature_bits);
1571 if (count > 0)
1572 size = FEATURE_BYTES(count);
1573 extra_bytes += 4 + size;
1574
1575 /* metric spec */
1576 size = 0;
1577 count = ARRAY_SIZE(metric_bits);
1578 if (count > 0)
1579 size = METRIC_BYTES(count);
1580 extra_bytes += 2 + 4 + 4 + size;
1581
1582 /* flags, mds auth caps and oldest_client_tid */
1583 extra_bytes += 4 + 4 + 8;
1584
1585 /* Allocate the message */
1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
1587 GFP_NOFS, false);
1588 if (!msg) {
1589 pr_err_client(cl, "ENOMEM creating session open msg\n");
1590 return ERR_PTR(-ENOMEM);
1591 }
1592 p = msg->front.iov_base;
1593 end = p + msg->front.iov_len;
1594
1595 h = p;
1596 h->op = cpu_to_le32(op);
1597 h->seq = cpu_to_le64(seq);
1598
1599 /*
1600 * Serialize client metadata into waiting buffer space, using
1601 * the format that userspace expects for map<string, string>
1602 *
1603 * ClientSession messages with metadata are v7
1604 */
1605 msg->hdr.version = cpu_to_le16(7);
1606 msg->hdr.compat_version = cpu_to_le16(1);
1607
1608 /* The write pointer, following the session_head structure */
1609 p += sizeof(*h);
1610
1611 /* Number of entries in the map */
1612 ceph_encode_32(&p, metadata_key_count);
1613
1614 /* Two length-prefixed strings for each entry in the map */
1615 for (i = 0; metadata[i][0]; ++i) {
1616 size_t const key_len = strlen(metadata[i][0]);
1617 size_t const val_len = strlen(metadata[i][1]);
1618
1619 ceph_encode_32(&p, key_len);
1620 memcpy(p, metadata[i][0], key_len);
1621 p += key_len;
1622 ceph_encode_32(&p, val_len);
1623 memcpy(p, metadata[i][1], val_len);
1624 p += val_len;
1625 }
1626
1627 ret = encode_supported_features(&p, end);
1628 if (ret) {
1629 pr_err_client(cl, "encode_supported_features failed!\n");
1630 ceph_msg_put(msg);
1631 return ERR_PTR(ret);
1632 }
1633
1634 ret = encode_metric_spec(&p, end);
1635 if (ret) {
1636 pr_err_client(cl, "encode_metric_spec failed!\n");
1637 ceph_msg_put(msg);
1638 return ERR_PTR(ret);
1639 }
1640
1641 /* version == 5, flags */
1642 ceph_encode_32(&p, 0);
1643
1644 /* version == 6, mds auth caps */
1645 ceph_encode_32(&p, 0);
1646
1647 /* version == 7, oldest_client_tid */
1648 ceph_encode_64(&p, mdsc->oldest_tid);
1649
1650 msg->front.iov_len = p - msg->front.iov_base;
1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1652
1653 return msg;
1654 }
1655
1656 /*
1657 * send session open request.
1658 *
1659 * called under mdsc->mutex
1660 */
__open_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1661 static int __open_session(struct ceph_mds_client *mdsc,
1662 struct ceph_mds_session *session)
1663 {
1664 struct ceph_msg *msg;
1665 int mstate;
1666 int mds = session->s_mds;
1667
1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
1669 return -EIO;
1670
1671 /* wait for mds to go active? */
1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds,
1674 ceph_mds_state_name(mstate));
1675 session->s_state = CEPH_MDS_SESSION_OPENING;
1676 session->s_renew_requested = jiffies;
1677
1678 /* send connect message */
1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN,
1680 session->s_seq);
1681 if (IS_ERR(msg))
1682 return PTR_ERR(msg);
1683 ceph_con_send(&session->s_con, msg);
1684 return 0;
1685 }
1686
1687 /*
1688 * open sessions for any export targets for the given mds
1689 *
1690 * called under mdsc->mutex
1691 */
1692 static struct ceph_mds_session *
__open_export_target_session(struct ceph_mds_client * mdsc,int target)1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1694 {
1695 struct ceph_mds_session *session;
1696 int ret;
1697
1698 session = __ceph_lookup_mds_session(mdsc, target);
1699 if (!session) {
1700 session = register_session(mdsc, target);
1701 if (IS_ERR(session))
1702 return session;
1703 }
1704 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1705 session->s_state == CEPH_MDS_SESSION_CLOSING) {
1706 ret = __open_session(mdsc, session);
1707 if (ret)
1708 return ERR_PTR(ret);
1709 }
1710
1711 return session;
1712 }
1713
1714 struct ceph_mds_session *
ceph_mdsc_open_export_target_session(struct ceph_mds_client * mdsc,int target)1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1716 {
1717 struct ceph_mds_session *session;
1718 struct ceph_client *cl = mdsc->fsc->client;
1719
1720 doutc(cl, "to mds%d\n", target);
1721
1722 mutex_lock(&mdsc->mutex);
1723 session = __open_export_target_session(mdsc, target);
1724 mutex_unlock(&mdsc->mutex);
1725
1726 return session;
1727 }
1728
__open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1730 struct ceph_mds_session *session)
1731 {
1732 struct ceph_mds_info *mi;
1733 struct ceph_mds_session *ts;
1734 int i, mds = session->s_mds;
1735 struct ceph_client *cl = mdsc->fsc->client;
1736
1737 if (mds >= mdsc->mdsmap->possible_max_rank)
1738 return;
1739
1740 mi = &mdsc->mdsmap->m_info[mds];
1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds,
1742 mi->num_export_targets);
1743
1744 for (i = 0; i < mi->num_export_targets; i++) {
1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1746 ceph_put_mds_session(ts);
1747 }
1748 }
1749
ceph_mdsc_open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1750 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1751 struct ceph_mds_session *session)
1752 {
1753 mutex_lock(&mdsc->mutex);
1754 __open_export_target_sessions(mdsc, session);
1755 mutex_unlock(&mdsc->mutex);
1756 }
1757
1758 /*
1759 * session caps
1760 */
1761
detach_cap_releases(struct ceph_mds_session * session,struct list_head * target)1762 static void detach_cap_releases(struct ceph_mds_session *session,
1763 struct list_head *target)
1764 {
1765 struct ceph_client *cl = session->s_mdsc->fsc->client;
1766
1767 lockdep_assert_held(&session->s_cap_lock);
1768
1769 list_splice_init(&session->s_cap_releases, target);
1770 session->s_num_cap_releases = 0;
1771 doutc(cl, "mds%d\n", session->s_mds);
1772 }
1773
dispose_cap_releases(struct ceph_mds_client * mdsc,struct list_head * dispose)1774 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1775 struct list_head *dispose)
1776 {
1777 while (!list_empty(dispose)) {
1778 struct ceph_cap *cap;
1779 /* zero out the in-progress message */
1780 cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1781 list_del(&cap->session_caps);
1782 ceph_put_cap(mdsc, cap);
1783 }
1784 }
1785
cleanup_session_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1786 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1787 struct ceph_mds_session *session)
1788 {
1789 struct ceph_client *cl = mdsc->fsc->client;
1790 struct ceph_mds_request *req;
1791 struct rb_node *p;
1792
1793 doutc(cl, "mds%d\n", session->s_mds);
1794 mutex_lock(&mdsc->mutex);
1795 while (!list_empty(&session->s_unsafe)) {
1796 req = list_first_entry(&session->s_unsafe,
1797 struct ceph_mds_request, r_unsafe_item);
1798 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n",
1799 req->r_tid);
1800 if (req->r_target_inode)
1801 mapping_set_error(req->r_target_inode->i_mapping, -EIO);
1802 if (req->r_unsafe_dir)
1803 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO);
1804 __unregister_request(mdsc, req);
1805 }
1806 /* zero r_attempts, so kick_requests() will re-send requests */
1807 p = rb_first(&mdsc->request_tree);
1808 while (p) {
1809 req = rb_entry(p, struct ceph_mds_request, r_node);
1810 p = rb_next(p);
1811 if (req->r_session &&
1812 req->r_session->s_mds == session->s_mds)
1813 req->r_attempts = 0;
1814 }
1815 mutex_unlock(&mdsc->mutex);
1816 }
1817
1818 /*
1819 * Helper to safely iterate over all caps associated with a session, with
1820 * special care taken to handle a racing __ceph_remove_cap().
1821 *
1822 * Caller must hold session s_mutex.
1823 */
ceph_iterate_session_caps(struct ceph_mds_session * session,int (* cb)(struct inode *,int mds,void *),void * arg)1824 int ceph_iterate_session_caps(struct ceph_mds_session *session,
1825 int (*cb)(struct inode *, int mds, void *),
1826 void *arg)
1827 {
1828 struct ceph_client *cl = session->s_mdsc->fsc->client;
1829 struct list_head *p;
1830 struct ceph_cap *cap;
1831 struct inode *inode, *last_inode = NULL;
1832 struct ceph_cap *old_cap = NULL;
1833 int ret;
1834
1835 doutc(cl, "%p mds%d\n", session, session->s_mds);
1836 spin_lock(&session->s_cap_lock);
1837 p = session->s_caps.next;
1838 while (p != &session->s_caps) {
1839 int mds;
1840
1841 cap = list_entry(p, struct ceph_cap, session_caps);
1842 inode = igrab(&cap->ci->netfs.inode);
1843 if (!inode) {
1844 p = p->next;
1845 continue;
1846 }
1847 session->s_cap_iterator = cap;
1848 mds = cap->mds;
1849 spin_unlock(&session->s_cap_lock);
1850
1851 if (last_inode) {
1852 iput(last_inode);
1853 last_inode = NULL;
1854 }
1855 if (old_cap) {
1856 ceph_put_cap(session->s_mdsc, old_cap);
1857 old_cap = NULL;
1858 }
1859
1860 ret = cb(inode, mds, arg);
1861 last_inode = inode;
1862
1863 spin_lock(&session->s_cap_lock);
1864 p = p->next;
1865 if (!cap->ci) {
1866 doutc(cl, "finishing cap %p removal\n", cap);
1867 BUG_ON(cap->session != session);
1868 cap->session = NULL;
1869 list_del_init(&cap->session_caps);
1870 session->s_nr_caps--;
1871 atomic64_dec(&session->s_mdsc->metric.total_caps);
1872 if (cap->queue_release)
1873 __ceph_queue_cap_release(session, cap);
1874 else
1875 old_cap = cap; /* put_cap it w/o locks held */
1876 }
1877 if (ret < 0)
1878 goto out;
1879 }
1880 ret = 0;
1881 out:
1882 session->s_cap_iterator = NULL;
1883 spin_unlock(&session->s_cap_lock);
1884
1885 iput(last_inode);
1886 if (old_cap)
1887 ceph_put_cap(session->s_mdsc, old_cap);
1888
1889 return ret;
1890 }
1891
remove_session_caps_cb(struct inode * inode,int mds,void * arg)1892 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg)
1893 {
1894 struct ceph_inode_info *ci = ceph_inode(inode);
1895 struct ceph_client *cl = ceph_inode_to_client(inode);
1896 bool invalidate = false;
1897 struct ceph_cap *cap;
1898 int iputs = 0;
1899
1900 spin_lock(&ci->i_ceph_lock);
1901 cap = __get_cap_for_mds(ci, mds);
1902 if (cap) {
1903 doutc(cl, " removing cap %p, ci is %p, inode is %p\n",
1904 cap, ci, &ci->netfs.inode);
1905
1906 iputs = ceph_purge_inode_cap(inode, cap, &invalidate);
1907 }
1908 spin_unlock(&ci->i_ceph_lock);
1909
1910 if (cap)
1911 wake_up_all(&ci->i_cap_wq);
1912 if (invalidate)
1913 ceph_queue_invalidate(inode);
1914 while (iputs--)
1915 iput(inode);
1916 return 0;
1917 }
1918
1919 /*
1920 * caller must hold session s_mutex
1921 */
remove_session_caps(struct ceph_mds_session * session)1922 static void remove_session_caps(struct ceph_mds_session *session)
1923 {
1924 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1925 struct super_block *sb = fsc->sb;
1926 LIST_HEAD(dispose);
1927
1928 doutc(fsc->client, "on %p\n", session);
1929 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc);
1930
1931 wake_up_all(&fsc->mdsc->cap_flushing_wq);
1932
1933 spin_lock(&session->s_cap_lock);
1934 if (session->s_nr_caps > 0) {
1935 struct inode *inode;
1936 struct ceph_cap *cap, *prev = NULL;
1937 struct ceph_vino vino;
1938 /*
1939 * iterate_session_caps() skips inodes that are being
1940 * deleted, we need to wait until deletions are complete.
1941 * __wait_on_freeing_inode() is designed for the job,
1942 * but it is not exported, so use lookup inode function
1943 * to access it.
1944 */
1945 while (!list_empty(&session->s_caps)) {
1946 cap = list_entry(session->s_caps.next,
1947 struct ceph_cap, session_caps);
1948 if (cap == prev)
1949 break;
1950 prev = cap;
1951 vino = cap->ci->i_vino;
1952 spin_unlock(&session->s_cap_lock);
1953
1954 inode = ceph_find_inode(sb, vino);
1955 iput(inode);
1956
1957 spin_lock(&session->s_cap_lock);
1958 }
1959 }
1960
1961 // drop cap expires and unlock s_cap_lock
1962 detach_cap_releases(session, &dispose);
1963
1964 BUG_ON(session->s_nr_caps > 0);
1965 BUG_ON(!list_empty(&session->s_cap_flushing));
1966 spin_unlock(&session->s_cap_lock);
1967 dispose_cap_releases(session->s_mdsc, &dispose);
1968 }
1969
1970 enum {
1971 RECONNECT,
1972 RENEWCAPS,
1973 FORCE_RO,
1974 };
1975
1976 /*
1977 * wake up any threads waiting on this session's caps. if the cap is
1978 * old (didn't get renewed on the client reconnect), remove it now.
1979 *
1980 * caller must hold s_mutex.
1981 */
wake_up_session_cb(struct inode * inode,int mds,void * arg)1982 static int wake_up_session_cb(struct inode *inode, int mds, void *arg)
1983 {
1984 struct ceph_inode_info *ci = ceph_inode(inode);
1985 unsigned long ev = (unsigned long)arg;
1986
1987 if (ev == RECONNECT) {
1988 spin_lock(&ci->i_ceph_lock);
1989 ci->i_wanted_max_size = 0;
1990 ci->i_requested_max_size = 0;
1991 spin_unlock(&ci->i_ceph_lock);
1992 } else if (ev == RENEWCAPS) {
1993 struct ceph_cap *cap;
1994
1995 spin_lock(&ci->i_ceph_lock);
1996 cap = __get_cap_for_mds(ci, mds);
1997 /* mds did not re-issue stale cap */
1998 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen))
1999 cap->issued = cap->implemented = CEPH_CAP_PIN;
2000 spin_unlock(&ci->i_ceph_lock);
2001 } else if (ev == FORCE_RO) {
2002 }
2003 wake_up_all(&ci->i_cap_wq);
2004 return 0;
2005 }
2006
wake_up_session_caps(struct ceph_mds_session * session,int ev)2007 static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
2008 {
2009 struct ceph_client *cl = session->s_mdsc->fsc->client;
2010
2011 doutc(cl, "session %p mds%d\n", session, session->s_mds);
2012 ceph_iterate_session_caps(session, wake_up_session_cb,
2013 (void *)(unsigned long)ev);
2014 }
2015
2016 /*
2017 * Send periodic message to MDS renewing all currently held caps. The
2018 * ack will reset the expiration for all caps from this session.
2019 *
2020 * caller holds s_mutex
2021 */
send_renew_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2022 static int send_renew_caps(struct ceph_mds_client *mdsc,
2023 struct ceph_mds_session *session)
2024 {
2025 struct ceph_client *cl = mdsc->fsc->client;
2026 struct ceph_msg *msg;
2027 int state;
2028
2029 if (time_after_eq(jiffies, session->s_cap_ttl) &&
2030 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
2031 pr_info_client(cl, "mds%d caps stale\n", session->s_mds);
2032 session->s_renew_requested = jiffies;
2033
2034 /* do not try to renew caps until a recovering mds has reconnected
2035 * with its clients. */
2036 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
2037 if (state < CEPH_MDS_STATE_RECONNECT) {
2038 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds,
2039 ceph_mds_state_name(state));
2040 return 0;
2041 }
2042
2043 doutc(cl, "to mds%d (%s)\n", session->s_mds,
2044 ceph_mds_state_name(state));
2045 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS,
2046 ++session->s_renew_seq);
2047 if (IS_ERR(msg))
2048 return PTR_ERR(msg);
2049 ceph_con_send(&session->s_con, msg);
2050 return 0;
2051 }
2052
send_flushmsg_ack(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,u64 seq)2053 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
2054 struct ceph_mds_session *session, u64 seq)
2055 {
2056 struct ceph_client *cl = mdsc->fsc->client;
2057 struct ceph_msg *msg;
2058
2059 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds,
2060 ceph_session_state_name(session->s_state), seq);
2061 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
2062 if (!msg)
2063 return -ENOMEM;
2064 ceph_con_send(&session->s_con, msg);
2065 return 0;
2066 }
2067
2068
2069 /*
2070 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
2071 *
2072 * Called under session->s_mutex
2073 */
renewed_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int is_renew)2074 static void renewed_caps(struct ceph_mds_client *mdsc,
2075 struct ceph_mds_session *session, int is_renew)
2076 {
2077 struct ceph_client *cl = mdsc->fsc->client;
2078 int was_stale;
2079 int wake = 0;
2080
2081 spin_lock(&session->s_cap_lock);
2082 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
2083
2084 session->s_cap_ttl = session->s_renew_requested +
2085 mdsc->mdsmap->m_session_timeout*HZ;
2086
2087 if (was_stale) {
2088 if (time_before(jiffies, session->s_cap_ttl)) {
2089 pr_info_client(cl, "mds%d caps renewed\n",
2090 session->s_mds);
2091 wake = 1;
2092 } else {
2093 pr_info_client(cl, "mds%d caps still stale\n",
2094 session->s_mds);
2095 }
2096 }
2097 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds,
2098 session->s_cap_ttl, was_stale ? "stale" : "fresh",
2099 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
2100 spin_unlock(&session->s_cap_lock);
2101
2102 if (wake)
2103 wake_up_session_caps(session, RENEWCAPS);
2104 }
2105
2106 /*
2107 * send a session close request
2108 */
request_close_session(struct ceph_mds_session * session)2109 static int request_close_session(struct ceph_mds_session *session)
2110 {
2111 struct ceph_client *cl = session->s_mdsc->fsc->client;
2112 struct ceph_msg *msg;
2113
2114 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds,
2115 ceph_session_state_name(session->s_state), session->s_seq);
2116 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE,
2117 session->s_seq);
2118 if (!msg)
2119 return -ENOMEM;
2120 ceph_con_send(&session->s_con, msg);
2121 return 1;
2122 }
2123
2124 /*
2125 * Called with s_mutex held.
2126 */
__close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2127 static int __close_session(struct ceph_mds_client *mdsc,
2128 struct ceph_mds_session *session)
2129 {
2130 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
2131 return 0;
2132 session->s_state = CEPH_MDS_SESSION_CLOSING;
2133 return request_close_session(session);
2134 }
2135
drop_negative_children(struct dentry * dentry)2136 static bool drop_negative_children(struct dentry *dentry)
2137 {
2138 struct dentry *child;
2139 bool all_negative = true;
2140
2141 if (!d_is_dir(dentry))
2142 goto out;
2143
2144 spin_lock(&dentry->d_lock);
2145 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
2146 if (d_really_is_positive(child)) {
2147 all_negative = false;
2148 break;
2149 }
2150 }
2151 spin_unlock(&dentry->d_lock);
2152
2153 if (all_negative)
2154 shrink_dcache_parent(dentry);
2155 out:
2156 return all_negative;
2157 }
2158
2159 /*
2160 * Trim old(er) caps.
2161 *
2162 * Because we can't cache an inode without one or more caps, we do
2163 * this indirectly: if a cap is unused, we prune its aliases, at which
2164 * point the inode will hopefully get dropped to.
2165 *
2166 * Yes, this is a bit sloppy. Our only real goal here is to respond to
2167 * memory pressure from the MDS, though, so it needn't be perfect.
2168 */
trim_caps_cb(struct inode * inode,int mds,void * arg)2169 static int trim_caps_cb(struct inode *inode, int mds, void *arg)
2170 {
2171 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2172 struct ceph_client *cl = mdsc->fsc->client;
2173 int *remaining = arg;
2174 struct ceph_inode_info *ci = ceph_inode(inode);
2175 int used, wanted, oissued, mine;
2176 struct ceph_cap *cap;
2177
2178 if (*remaining <= 0)
2179 return -1;
2180
2181 spin_lock(&ci->i_ceph_lock);
2182 cap = __get_cap_for_mds(ci, mds);
2183 if (!cap) {
2184 spin_unlock(&ci->i_ceph_lock);
2185 return 0;
2186 }
2187 mine = cap->issued | cap->implemented;
2188 used = __ceph_caps_used(ci);
2189 wanted = __ceph_caps_file_wanted(ci);
2190 oissued = __ceph_caps_issued_other(ci, cap);
2191
2192 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n",
2193 inode, ceph_vinop(inode), cap, ceph_cap_string(mine),
2194 ceph_cap_string(oissued), ceph_cap_string(used),
2195 ceph_cap_string(wanted));
2196 if (cap == ci->i_auth_cap) {
2197 if (ci->i_dirty_caps || ci->i_flushing_caps ||
2198 !list_empty(&ci->i_cap_snaps))
2199 goto out;
2200 if ((used | wanted) & CEPH_CAP_ANY_WR)
2201 goto out;
2202 /* Note: it's possible that i_filelock_ref becomes non-zero
2203 * after dropping auth caps. It doesn't hurt because reply
2204 * of lock mds request will re-add auth caps. */
2205 if (atomic_read(&ci->i_filelock_ref) > 0)
2206 goto out;
2207 }
2208 /* The inode has cached pages, but it's no longer used.
2209 * we can safely drop it */
2210 if (S_ISREG(inode->i_mode) &&
2211 wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
2212 !(oissued & CEPH_CAP_FILE_CACHE)) {
2213 used = 0;
2214 oissued = 0;
2215 }
2216 if ((used | wanted) & ~oissued & mine)
2217 goto out; /* we need these caps */
2218
2219 if (oissued) {
2220 /* we aren't the only cap.. just remove us */
2221 ceph_remove_cap(mdsc, cap, true);
2222 (*remaining)--;
2223 } else {
2224 struct dentry *dentry;
2225 /* try dropping referring dentries */
2226 spin_unlock(&ci->i_ceph_lock);
2227 dentry = d_find_any_alias(inode);
2228 if (dentry && drop_negative_children(dentry)) {
2229 int count;
2230 dput(dentry);
2231 d_prune_aliases(inode);
2232 count = atomic_read(&inode->i_count);
2233 if (count == 1)
2234 (*remaining)--;
2235 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n",
2236 inode, ceph_vinop(inode), cap, count);
2237 } else {
2238 dput(dentry);
2239 }
2240 return 0;
2241 }
2242
2243 out:
2244 spin_unlock(&ci->i_ceph_lock);
2245 return 0;
2246 }
2247
2248 /*
2249 * Trim session cap count down to some max number.
2250 */
ceph_trim_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int max_caps)2251 int ceph_trim_caps(struct ceph_mds_client *mdsc,
2252 struct ceph_mds_session *session,
2253 int max_caps)
2254 {
2255 struct ceph_client *cl = mdsc->fsc->client;
2256 int trim_caps = session->s_nr_caps - max_caps;
2257
2258 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds,
2259 session->s_nr_caps, max_caps, trim_caps);
2260 if (trim_caps > 0) {
2261 int remaining = trim_caps;
2262
2263 ceph_iterate_session_caps(session, trim_caps_cb, &remaining);
2264 doutc(cl, "mds%d done: %d / %d, trimmed %d\n",
2265 session->s_mds, session->s_nr_caps, max_caps,
2266 trim_caps - remaining);
2267 }
2268
2269 ceph_flush_session_cap_releases(mdsc, session);
2270 return 0;
2271 }
2272
check_caps_flush(struct ceph_mds_client * mdsc,u64 want_flush_tid)2273 static int check_caps_flush(struct ceph_mds_client *mdsc,
2274 u64 want_flush_tid)
2275 {
2276 struct ceph_client *cl = mdsc->fsc->client;
2277 int ret = 1;
2278
2279 spin_lock(&mdsc->cap_dirty_lock);
2280 if (!list_empty(&mdsc->cap_flush_list)) {
2281 struct ceph_cap_flush *cf =
2282 list_first_entry(&mdsc->cap_flush_list,
2283 struct ceph_cap_flush, g_list);
2284 if (cf->tid <= want_flush_tid) {
2285 doutc(cl, "still flushing tid %llu <= %llu\n",
2286 cf->tid, want_flush_tid);
2287 ret = 0;
2288 }
2289 }
2290 spin_unlock(&mdsc->cap_dirty_lock);
2291 return ret;
2292 }
2293
2294 /*
2295 * flush all dirty inode data to disk.
2296 *
2297 * returns true if we've flushed through want_flush_tid
2298 */
wait_caps_flush(struct ceph_mds_client * mdsc,u64 want_flush_tid)2299 static void wait_caps_flush(struct ceph_mds_client *mdsc,
2300 u64 want_flush_tid)
2301 {
2302 struct ceph_client *cl = mdsc->fsc->client;
2303
2304 doutc(cl, "want %llu\n", want_flush_tid);
2305
2306 wait_event(mdsc->cap_flushing_wq,
2307 check_caps_flush(mdsc, want_flush_tid));
2308
2309 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid);
2310 }
2311
2312 /*
2313 * called under s_mutex
2314 */
ceph_send_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2315 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
2316 struct ceph_mds_session *session)
2317 {
2318 struct ceph_client *cl = mdsc->fsc->client;
2319 struct ceph_msg *msg = NULL;
2320 struct ceph_mds_cap_release *head;
2321 struct ceph_mds_cap_item *item;
2322 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
2323 struct ceph_cap *cap;
2324 LIST_HEAD(tmp_list);
2325 int num_cap_releases;
2326 __le32 barrier, *cap_barrier;
2327
2328 down_read(&osdc->lock);
2329 barrier = cpu_to_le32(osdc->epoch_barrier);
2330 up_read(&osdc->lock);
2331
2332 spin_lock(&session->s_cap_lock);
2333 again:
2334 list_splice_init(&session->s_cap_releases, &tmp_list);
2335 num_cap_releases = session->s_num_cap_releases;
2336 session->s_num_cap_releases = 0;
2337 spin_unlock(&session->s_cap_lock);
2338
2339 while (!list_empty(&tmp_list)) {
2340 if (!msg) {
2341 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
2342 PAGE_SIZE, GFP_NOFS, false);
2343 if (!msg)
2344 goto out_err;
2345 head = msg->front.iov_base;
2346 head->num = cpu_to_le32(0);
2347 msg->front.iov_len = sizeof(*head);
2348
2349 msg->hdr.version = cpu_to_le16(2);
2350 msg->hdr.compat_version = cpu_to_le16(1);
2351 }
2352
2353 cap = list_first_entry(&tmp_list, struct ceph_cap,
2354 session_caps);
2355 list_del(&cap->session_caps);
2356 num_cap_releases--;
2357
2358 head = msg->front.iov_base;
2359 put_unaligned_le32(get_unaligned_le32(&head->num) + 1,
2360 &head->num);
2361 item = msg->front.iov_base + msg->front.iov_len;
2362 item->ino = cpu_to_le64(cap->cap_ino);
2363 item->cap_id = cpu_to_le64(cap->cap_id);
2364 item->migrate_seq = cpu_to_le32(cap->mseq);
2365 item->seq = cpu_to_le32(cap->issue_seq);
2366 msg->front.iov_len += sizeof(*item);
2367
2368 ceph_put_cap(mdsc, cap);
2369
2370 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
2371 // Append cap_barrier field
2372 cap_barrier = msg->front.iov_base + msg->front.iov_len;
2373 *cap_barrier = barrier;
2374 msg->front.iov_len += sizeof(*cap_barrier);
2375
2376 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2377 doutc(cl, "mds%d %p\n", session->s_mds, msg);
2378 ceph_con_send(&session->s_con, msg);
2379 msg = NULL;
2380 }
2381 }
2382
2383 BUG_ON(num_cap_releases != 0);
2384
2385 spin_lock(&session->s_cap_lock);
2386 if (!list_empty(&session->s_cap_releases))
2387 goto again;
2388 spin_unlock(&session->s_cap_lock);
2389
2390 if (msg) {
2391 // Append cap_barrier field
2392 cap_barrier = msg->front.iov_base + msg->front.iov_len;
2393 *cap_barrier = barrier;
2394 msg->front.iov_len += sizeof(*cap_barrier);
2395
2396 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2397 doutc(cl, "mds%d %p\n", session->s_mds, msg);
2398 ceph_con_send(&session->s_con, msg);
2399 }
2400 return;
2401 out_err:
2402 pr_err_client(cl, "mds%d, failed to allocate message\n",
2403 session->s_mds);
2404 spin_lock(&session->s_cap_lock);
2405 list_splice(&tmp_list, &session->s_cap_releases);
2406 session->s_num_cap_releases += num_cap_releases;
2407 spin_unlock(&session->s_cap_lock);
2408 }
2409
ceph_cap_release_work(struct work_struct * work)2410 static void ceph_cap_release_work(struct work_struct *work)
2411 {
2412 struct ceph_mds_session *session =
2413 container_of(work, struct ceph_mds_session, s_cap_release_work);
2414
2415 mutex_lock(&session->s_mutex);
2416 if (session->s_state == CEPH_MDS_SESSION_OPEN ||
2417 session->s_state == CEPH_MDS_SESSION_HUNG)
2418 ceph_send_cap_releases(session->s_mdsc, session);
2419 mutex_unlock(&session->s_mutex);
2420 ceph_put_mds_session(session);
2421 }
2422
ceph_flush_session_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2423 void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc,
2424 struct ceph_mds_session *session)
2425 {
2426 struct ceph_client *cl = mdsc->fsc->client;
2427 if (mdsc->stopping)
2428 return;
2429
2430 ceph_get_mds_session(session);
2431 if (queue_work(mdsc->fsc->cap_wq,
2432 &session->s_cap_release_work)) {
2433 doutc(cl, "cap release work queued\n");
2434 } else {
2435 ceph_put_mds_session(session);
2436 doutc(cl, "failed to queue cap release work\n");
2437 }
2438 }
2439
2440 /*
2441 * caller holds session->s_cap_lock
2442 */
__ceph_queue_cap_release(struct ceph_mds_session * session,struct ceph_cap * cap)2443 void __ceph_queue_cap_release(struct ceph_mds_session *session,
2444 struct ceph_cap *cap)
2445 {
2446 list_add_tail(&cap->session_caps, &session->s_cap_releases);
2447 session->s_num_cap_releases++;
2448
2449 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE))
2450 ceph_flush_session_cap_releases(session->s_mdsc, session);
2451 }
2452
ceph_cap_reclaim_work(struct work_struct * work)2453 static void ceph_cap_reclaim_work(struct work_struct *work)
2454 {
2455 struct ceph_mds_client *mdsc =
2456 container_of(work, struct ceph_mds_client, cap_reclaim_work);
2457 int ret = ceph_trim_dentries(mdsc);
2458 if (ret == -EAGAIN)
2459 ceph_queue_cap_reclaim_work(mdsc);
2460 }
2461
ceph_queue_cap_reclaim_work(struct ceph_mds_client * mdsc)2462 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc)
2463 {
2464 struct ceph_client *cl = mdsc->fsc->client;
2465 if (mdsc->stopping)
2466 return;
2467
2468 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) {
2469 doutc(cl, "caps reclaim work queued\n");
2470 } else {
2471 doutc(cl, "failed to queue caps release work\n");
2472 }
2473 }
2474
ceph_reclaim_caps_nr(struct ceph_mds_client * mdsc,int nr)2475 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr)
2476 {
2477 int val;
2478 if (!nr)
2479 return;
2480 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending);
2481 if ((val % CEPH_CAPS_PER_RELEASE) < nr) {
2482 atomic_set(&mdsc->cap_reclaim_pending, 0);
2483 ceph_queue_cap_reclaim_work(mdsc);
2484 }
2485 }
2486
ceph_queue_cap_unlink_work(struct ceph_mds_client * mdsc)2487 void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc)
2488 {
2489 struct ceph_client *cl = mdsc->fsc->client;
2490 if (mdsc->stopping)
2491 return;
2492
2493 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) {
2494 doutc(cl, "caps unlink work queued\n");
2495 } else {
2496 doutc(cl, "failed to queue caps unlink work\n");
2497 }
2498 }
2499
ceph_cap_unlink_work(struct work_struct * work)2500 static void ceph_cap_unlink_work(struct work_struct *work)
2501 {
2502 struct ceph_mds_client *mdsc =
2503 container_of(work, struct ceph_mds_client, cap_unlink_work);
2504 struct ceph_client *cl = mdsc->fsc->client;
2505
2506 doutc(cl, "begin\n");
2507 spin_lock(&mdsc->cap_delay_lock);
2508 while (!list_empty(&mdsc->cap_unlink_delay_list)) {
2509 struct ceph_inode_info *ci;
2510 struct inode *inode;
2511
2512 ci = list_first_entry(&mdsc->cap_unlink_delay_list,
2513 struct ceph_inode_info,
2514 i_cap_delay_list);
2515 list_del_init(&ci->i_cap_delay_list);
2516
2517 inode = igrab(&ci->netfs.inode);
2518 if (inode) {
2519 spin_unlock(&mdsc->cap_delay_lock);
2520 doutc(cl, "on %p %llx.%llx\n", inode,
2521 ceph_vinop(inode));
2522 ceph_check_caps(ci, CHECK_CAPS_FLUSH);
2523 iput(inode);
2524 spin_lock(&mdsc->cap_delay_lock);
2525 }
2526 }
2527 spin_unlock(&mdsc->cap_delay_lock);
2528 doutc(cl, "done\n");
2529 }
2530
2531 /*
2532 * requests
2533 */
2534
ceph_alloc_readdir_reply_buffer(struct ceph_mds_request * req,struct inode * dir)2535 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
2536 struct inode *dir)
2537 {
2538 struct ceph_inode_info *ci = ceph_inode(dir);
2539 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
2540 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
2541 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
2542 unsigned int num_entries;
2543 int order;
2544
2545 spin_lock(&ci->i_ceph_lock);
2546 num_entries = ci->i_files + ci->i_subdirs;
2547 spin_unlock(&ci->i_ceph_lock);
2548 num_entries = max(num_entries, 1U);
2549 num_entries = min(num_entries, opt->max_readdir);
2550
2551 order = get_order(size * num_entries);
2552 while (order >= 0) {
2553 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
2554 __GFP_NOWARN |
2555 __GFP_ZERO,
2556 order);
2557 if (rinfo->dir_entries)
2558 break;
2559 order--;
2560 }
2561 if (!rinfo->dir_entries)
2562 return -ENOMEM;
2563
2564 num_entries = (PAGE_SIZE << order) / size;
2565 num_entries = min(num_entries, opt->max_readdir);
2566
2567 rinfo->dir_buf_size = PAGE_SIZE << order;
2568 req->r_num_caps = num_entries + 1;
2569 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
2570 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
2571 return 0;
2572 }
2573
2574 /*
2575 * Create an mds request.
2576 */
2577 struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client * mdsc,int op,int mode)2578 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
2579 {
2580 struct ceph_mds_request *req;
2581
2582 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS);
2583 if (!req)
2584 return ERR_PTR(-ENOMEM);
2585
2586 mutex_init(&req->r_fill_mutex);
2587 req->r_mdsc = mdsc;
2588 req->r_started = jiffies;
2589 req->r_start_latency = ktime_get();
2590 req->r_resend_mds = -1;
2591 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
2592 INIT_LIST_HEAD(&req->r_unsafe_target_item);
2593 req->r_fmode = -1;
2594 req->r_feature_needed = -1;
2595 kref_init(&req->r_kref);
2596 RB_CLEAR_NODE(&req->r_node);
2597 INIT_LIST_HEAD(&req->r_wait);
2598 init_completion(&req->r_completion);
2599 init_completion(&req->r_safe_completion);
2600 INIT_LIST_HEAD(&req->r_unsafe_item);
2601
2602 ktime_get_coarse_real_ts64(&req->r_stamp);
2603
2604 req->r_op = op;
2605 req->r_direct_mode = mode;
2606 return req;
2607 }
2608
2609 /*
2610 * return oldest (lowest) request, tid in request tree, 0 if none.
2611 *
2612 * called under mdsc->mutex.
2613 */
__get_oldest_req(struct ceph_mds_client * mdsc)2614 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
2615 {
2616 if (RB_EMPTY_ROOT(&mdsc->request_tree))
2617 return NULL;
2618 return rb_entry(rb_first(&mdsc->request_tree),
2619 struct ceph_mds_request, r_node);
2620 }
2621
__get_oldest_tid(struct ceph_mds_client * mdsc)2622 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
2623 {
2624 return mdsc->oldest_tid;
2625 }
2626
2627 #if IS_ENABLED(CONFIG_FS_ENCRYPTION)
get_fscrypt_altname(const struct ceph_mds_request * req,u32 * plen)2628 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2629 {
2630 struct inode *dir = req->r_parent;
2631 struct dentry *dentry = req->r_dentry;
2632 u8 *cryptbuf = NULL;
2633 u32 len = 0;
2634 int ret = 0;
2635
2636 /* only encode if we have parent and dentry */
2637 if (!dir || !dentry)
2638 goto success;
2639
2640 /* No-op unless this is encrypted */
2641 if (!IS_ENCRYPTED(dir))
2642 goto success;
2643
2644 ret = ceph_fscrypt_prepare_readdir(dir);
2645 if (ret < 0)
2646 return ERR_PTR(ret);
2647
2648 /* No key? Just ignore it. */
2649 if (!fscrypt_has_encryption_key(dir))
2650 goto success;
2651
2652 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX,
2653 &len)) {
2654 WARN_ON_ONCE(1);
2655 return ERR_PTR(-ENAMETOOLONG);
2656 }
2657
2658 /* No need to append altname if name is short enough */
2659 if (len <= CEPH_NOHASH_NAME_MAX) {
2660 len = 0;
2661 goto success;
2662 }
2663
2664 cryptbuf = kmalloc(len, GFP_KERNEL);
2665 if (!cryptbuf)
2666 return ERR_PTR(-ENOMEM);
2667
2668 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len);
2669 if (ret) {
2670 kfree(cryptbuf);
2671 return ERR_PTR(ret);
2672 }
2673 success:
2674 *plen = len;
2675 return cryptbuf;
2676 }
2677 #else
get_fscrypt_altname(const struct ceph_mds_request * req,u32 * plen)2678 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2679 {
2680 *plen = 0;
2681 return NULL;
2682 }
2683 #endif
2684
2685 /**
2686 * ceph_mdsc_build_path - build a path string to a given dentry
2687 * @mdsc: mds client
2688 * @dentry: dentry to which path should be built
2689 * @path_info: output path, length, base ino+snap, and freepath ownership flag
2690 * @for_wire: is this path going to be sent to the MDS?
2691 *
2692 * Build a string that represents the path to the dentry. This is mostly called
2693 * for two different purposes:
2694 *
2695 * 1) we need to build a path string to send to the MDS (for_wire == true)
2696 * 2) we need a path string for local presentation (e.g. debugfs)
2697 * (for_wire == false)
2698 *
2699 * The path is built in reverse, starting with the dentry. Walk back up toward
2700 * the root, building the path until the first non-snapped inode is reached
2701 * (for_wire) or the root inode is reached (!for_wire).
2702 *
2703 * Encode hidden .snap dirs as a double /, i.e.
2704 * foo/.snap/bar -> foo//bar
2705 */
ceph_mdsc_build_path(struct ceph_mds_client * mdsc,struct dentry * dentry,struct ceph_path_info * path_info,int for_wire)2706 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2707 struct ceph_path_info *path_info, int for_wire)
2708 {
2709 struct ceph_client *cl = mdsc->fsc->client;
2710 struct dentry *cur;
2711 struct inode *inode;
2712 char *path;
2713 int pos;
2714 unsigned seq;
2715 u64 base;
2716
2717 if (!dentry)
2718 return ERR_PTR(-EINVAL);
2719
2720 path = __getname();
2721 if (!path)
2722 return ERR_PTR(-ENOMEM);
2723 retry:
2724 pos = PATH_MAX - 1;
2725 path[pos] = '\0';
2726
2727 seq = read_seqbegin(&rename_lock);
2728 cur = dget(dentry);
2729 for (;;) {
2730 struct dentry *parent;
2731
2732 spin_lock(&cur->d_lock);
2733 inode = d_inode(cur);
2734 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
2735 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur);
2736 spin_unlock(&cur->d_lock);
2737 parent = dget_parent(cur);
2738 } else if (for_wire && inode && dentry != cur &&
2739 ceph_snap(inode) == CEPH_NOSNAP) {
2740 spin_unlock(&cur->d_lock);
2741 pos++; /* get rid of any prepended '/' */
2742 break;
2743 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) {
2744 pos -= cur->d_name.len;
2745 if (pos < 0) {
2746 spin_unlock(&cur->d_lock);
2747 break;
2748 }
2749 memcpy(path + pos, cur->d_name.name, cur->d_name.len);
2750 spin_unlock(&cur->d_lock);
2751 parent = dget_parent(cur);
2752 } else {
2753 int len, ret;
2754 char buf[NAME_MAX];
2755
2756 /*
2757 * Proactively copy name into buf, in case we need to
2758 * present it as-is.
2759 */
2760 memcpy(buf, cur->d_name.name, cur->d_name.len);
2761 len = cur->d_name.len;
2762 spin_unlock(&cur->d_lock);
2763 parent = dget_parent(cur);
2764
2765 ret = ceph_fscrypt_prepare_readdir(d_inode(parent));
2766 if (ret < 0) {
2767 dput(parent);
2768 dput(cur);
2769 return ERR_PTR(ret);
2770 }
2771
2772 if (fscrypt_has_encryption_key(d_inode(parent))) {
2773 len = ceph_encode_encrypted_fname(d_inode(parent),
2774 cur, buf);
2775 if (len < 0) {
2776 dput(parent);
2777 dput(cur);
2778 return ERR_PTR(len);
2779 }
2780 }
2781 pos -= len;
2782 if (pos < 0) {
2783 dput(parent);
2784 break;
2785 }
2786 memcpy(path + pos, buf, len);
2787 }
2788 dput(cur);
2789 cur = parent;
2790
2791 /* Are we at the root? */
2792 if (IS_ROOT(cur))
2793 break;
2794
2795 /* Are we out of buffer? */
2796 if (--pos < 0)
2797 break;
2798
2799 path[pos] = '/';
2800 }
2801 inode = d_inode(cur);
2802 base = inode ? ceph_ino(inode) : 0;
2803 dput(cur);
2804
2805 if (read_seqretry(&rename_lock, seq))
2806 goto retry;
2807
2808 if (pos < 0) {
2809 /*
2810 * The path is longer than PATH_MAX and this function
2811 * cannot ever succeed. Creating paths that long is
2812 * possible with Ceph, but Linux cannot use them.
2813 */
2814 return ERR_PTR(-ENAMETOOLONG);
2815 }
2816
2817 /* Initialize the output structure */
2818 memset(path_info, 0, sizeof(*path_info));
2819
2820 path_info->vino.ino = base;
2821 path_info->pathlen = PATH_MAX - 1 - pos;
2822 path_info->path = path + pos;
2823 path_info->freepath = true;
2824
2825 /* Set snap from dentry if available */
2826 if (d_inode(dentry))
2827 path_info->vino.snap = ceph_snap(d_inode(dentry));
2828 else
2829 path_info->vino.snap = CEPH_NOSNAP;
2830
2831 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry),
2832 base, PATH_MAX - 1 - pos, path + pos);
2833 return path + pos;
2834 }
2835
build_dentry_path(struct ceph_mds_client * mdsc,struct dentry * dentry,struct inode * dir,struct ceph_path_info * path_info,bool parent_locked)2836 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2837 struct inode *dir, struct ceph_path_info *path_info,
2838 bool parent_locked)
2839 {
2840 char *path;
2841
2842 rcu_read_lock();
2843 if (!dir)
2844 dir = d_inode_rcu(dentry->d_parent);
2845 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP &&
2846 !IS_ENCRYPTED(dir)) {
2847 path_info->vino.ino = ceph_ino(dir);
2848 path_info->vino.snap = ceph_snap(dir);
2849 rcu_read_unlock();
2850 path_info->path = dentry->d_name.name;
2851 path_info->pathlen = dentry->d_name.len;
2852 path_info->freepath = false;
2853 return 0;
2854 }
2855 rcu_read_unlock();
2856 path = ceph_mdsc_build_path(mdsc, dentry, path_info, 1);
2857 if (IS_ERR(path))
2858 return PTR_ERR(path);
2859 /*
2860 * ceph_mdsc_build_path already fills path_info, including snap handling.
2861 */
2862 return 0;
2863 }
2864
build_inode_path(struct inode * inode,struct ceph_path_info * path_info)2865 static int build_inode_path(struct inode *inode, struct ceph_path_info *path_info)
2866 {
2867 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2868 struct dentry *dentry;
2869 char *path;
2870
2871 if (ceph_snap(inode) == CEPH_NOSNAP) {
2872 path_info->vino.ino = ceph_ino(inode);
2873 path_info->vino.snap = ceph_snap(inode);
2874 path_info->pathlen = 0;
2875 path_info->freepath = false;
2876 return 0;
2877 }
2878 dentry = d_find_alias(inode);
2879 path = ceph_mdsc_build_path(mdsc, dentry, path_info, 1);
2880 dput(dentry);
2881 if (IS_ERR(path))
2882 return PTR_ERR(path);
2883 /*
2884 * ceph_mdsc_build_path already fills path_info, including snap from dentry.
2885 * Override with inode's snap since that's what this function is for.
2886 */
2887 path_info->vino.snap = ceph_snap(inode);
2888 return 0;
2889 }
2890
2891 /*
2892 * request arguments may be specified via an inode *, a dentry *, or
2893 * an explicit ino+path.
2894 */
set_request_path_attr(struct ceph_mds_client * mdsc,struct inode * rinode,struct dentry * rdentry,struct inode * rdiri,const char * rpath,u64 rino,struct ceph_path_info * path_info,bool parent_locked)2895 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode,
2896 struct dentry *rdentry, struct inode *rdiri,
2897 const char *rpath, u64 rino,
2898 struct ceph_path_info *path_info,
2899 bool parent_locked)
2900 {
2901 struct ceph_client *cl = mdsc->fsc->client;
2902 int r = 0;
2903
2904 /* Initialize the output structure */
2905 memset(path_info, 0, sizeof(*path_info));
2906
2907 if (rinode) {
2908 r = build_inode_path(rinode, path_info);
2909 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2910 ceph_snap(rinode));
2911 } else if (rdentry) {
2912 r = build_dentry_path(mdsc, rdentry, rdiri, path_info, parent_locked);
2913 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, path_info->vino.ino,
2914 path_info->pathlen, path_info->path);
2915 } else if (rpath || rino) {
2916 path_info->vino.ino = rino;
2917 path_info->vino.snap = CEPH_NOSNAP;
2918 path_info->path = rpath;
2919 path_info->pathlen = rpath ? strlen(rpath) : 0;
2920 path_info->freepath = false;
2921
2922 doutc(cl, " path %.*s\n", path_info->pathlen, rpath);
2923 }
2924
2925 return r;
2926 }
2927
encode_mclientrequest_tail(void ** p,const struct ceph_mds_request * req)2928 static void encode_mclientrequest_tail(void **p,
2929 const struct ceph_mds_request *req)
2930 {
2931 struct ceph_timespec ts;
2932 int i;
2933
2934 ceph_encode_timespec64(&ts, &req->r_stamp);
2935 ceph_encode_copy(p, &ts, sizeof(ts));
2936
2937 /* v4: gid_list */
2938 ceph_encode_32(p, req->r_cred->group_info->ngroups);
2939 for (i = 0; i < req->r_cred->group_info->ngroups; i++)
2940 ceph_encode_64(p, from_kgid(&init_user_ns,
2941 req->r_cred->group_info->gid[i]));
2942
2943 /* v5: altname */
2944 ceph_encode_32(p, req->r_altname_len);
2945 ceph_encode_copy(p, req->r_altname, req->r_altname_len);
2946
2947 /* v6: fscrypt_auth and fscrypt_file */
2948 if (req->r_fscrypt_auth) {
2949 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth);
2950
2951 ceph_encode_32(p, authlen);
2952 ceph_encode_copy(p, req->r_fscrypt_auth, authlen);
2953 } else {
2954 ceph_encode_32(p, 0);
2955 }
2956 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) {
2957 ceph_encode_32(p, sizeof(__le64));
2958 ceph_encode_64(p, req->r_fscrypt_file);
2959 } else {
2960 ceph_encode_32(p, 0);
2961 }
2962 }
2963
mds_supported_head_version(struct ceph_mds_session * session)2964 static inline u16 mds_supported_head_version(struct ceph_mds_session *session)
2965 {
2966 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features))
2967 return 1;
2968
2969 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features))
2970 return 2;
2971
2972 return CEPH_MDS_REQUEST_HEAD_VERSION;
2973 }
2974
2975 static struct ceph_mds_request_head_legacy *
find_legacy_request_head(void * p,u64 features)2976 find_legacy_request_head(void *p, u64 features)
2977 {
2978 bool legacy = !(features & CEPH_FEATURE_FS_BTIME);
2979 struct ceph_mds_request_head_old *ohead;
2980
2981 if (legacy)
2982 return (struct ceph_mds_request_head_legacy *)p;
2983 ohead = (struct ceph_mds_request_head_old *)p;
2984 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid;
2985 }
2986
2987 /*
2988 * called under mdsc->mutex
2989 */
create_request_message(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)2990 static struct ceph_msg *create_request_message(struct ceph_mds_session *session,
2991 struct ceph_mds_request *req,
2992 bool drop_cap_releases)
2993 {
2994 int mds = session->s_mds;
2995 struct ceph_mds_client *mdsc = session->s_mdsc;
2996 struct ceph_client *cl = mdsc->fsc->client;
2997 struct ceph_msg *msg;
2998 struct ceph_mds_request_head_legacy *lhead;
2999 struct ceph_path_info path_info1 = {0};
3000 struct ceph_path_info path_info2 = {0};
3001 struct dentry *old_dentry = NULL;
3002 int len;
3003 u16 releases;
3004 void *p, *end;
3005 int ret;
3006 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME);
3007 u16 request_head_version = mds_supported_head_version(session);
3008 kuid_t caller_fsuid = req->r_cred->fsuid;
3009 kgid_t caller_fsgid = req->r_cred->fsgid;
3010 bool parent_locked = test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags);
3011
3012 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry,
3013 req->r_parent, req->r_path1, req->r_ino1.ino,
3014 &path_info1, parent_locked);
3015 if (ret < 0) {
3016 msg = ERR_PTR(ret);
3017 goto out;
3018 }
3019
3020 /*
3021 * When the parent directory's i_rwsem is *not* locked, req->r_parent may
3022 * have become stale (e.g. after a concurrent rename) between the time the
3023 * dentry was looked up and now. If we detect that the stored r_parent
3024 * does not match the inode number we just encoded for the request, switch
3025 * to the correct inode so that the MDS receives a valid parent reference.
3026 */
3027 if (!parent_locked && req->r_parent && path_info1.vino.ino &&
3028 ceph_ino(req->r_parent) != path_info1.vino.ino) {
3029 struct inode *old_parent = req->r_parent;
3030 struct inode *correct_dir = ceph_get_inode(mdsc->fsc->sb, path_info1.vino, NULL);
3031 if (!IS_ERR(correct_dir)) {
3032 WARN_ONCE(1, "ceph: r_parent mismatch (had %llx wanted %llx) - updating\n",
3033 ceph_ino(old_parent), path_info1.vino.ino);
3034 /*
3035 * Transfer CEPH_CAP_PIN from the old parent to the new one.
3036 * The pin was taken earlier in ceph_mdsc_submit_request().
3037 */
3038 ceph_put_cap_refs(ceph_inode(old_parent), CEPH_CAP_PIN);
3039 iput(old_parent);
3040 req->r_parent = correct_dir;
3041 ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
3042 }
3043 }
3044
3045 /* If r_old_dentry is set, then assume that its parent is locked */
3046 if (req->r_old_dentry &&
3047 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED))
3048 old_dentry = req->r_old_dentry;
3049 ret = set_request_path_attr(mdsc, NULL, old_dentry,
3050 req->r_old_dentry_dir,
3051 req->r_path2, req->r_ino2.ino,
3052 &path_info2, true);
3053 if (ret < 0) {
3054 msg = ERR_PTR(ret);
3055 goto out_free1;
3056 }
3057
3058 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len);
3059 if (IS_ERR(req->r_altname)) {
3060 msg = ERR_CAST(req->r_altname);
3061 req->r_altname = NULL;
3062 goto out_free2;
3063 }
3064
3065 /*
3066 * For old cephs without supporting the 32bit retry/fwd feature
3067 * it will copy the raw memories directly when decoding the
3068 * requests. While new cephs will decode the head depending the
3069 * version member, so we need to make sure it will be compatible
3070 * with them both.
3071 */
3072 if (legacy)
3073 len = sizeof(struct ceph_mds_request_head_legacy);
3074 else if (request_head_version == 1)
3075 len = sizeof(struct ceph_mds_request_head_old);
3076 else if (request_head_version == 2)
3077 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3078 else
3079 len = sizeof(struct ceph_mds_request_head);
3080
3081 /* filepaths */
3082 len += 2 * (1 + sizeof(u32) + sizeof(u64));
3083 len += path_info1.pathlen + path_info2.pathlen;
3084
3085 /* cap releases */
3086 len += sizeof(struct ceph_mds_request_release) *
3087 (!!req->r_inode_drop + !!req->r_dentry_drop +
3088 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
3089
3090 if (req->r_dentry_drop)
3091 len += path_info1.pathlen;
3092 if (req->r_old_dentry_drop)
3093 len += path_info2.pathlen;
3094
3095 /* MClientRequest tail */
3096
3097 /* req->r_stamp */
3098 len += sizeof(struct ceph_timespec);
3099
3100 /* gid list */
3101 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups);
3102
3103 /* alternate name */
3104 len += sizeof(u32) + req->r_altname_len;
3105
3106 /* fscrypt_auth */
3107 len += sizeof(u32); // fscrypt_auth
3108 if (req->r_fscrypt_auth)
3109 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth);
3110
3111 /* fscrypt_file */
3112 len += sizeof(u32);
3113 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags))
3114 len += sizeof(__le64);
3115
3116 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
3117 if (!msg) {
3118 msg = ERR_PTR(-ENOMEM);
3119 goto out_free2;
3120 }
3121
3122 msg->hdr.tid = cpu_to_le64(req->r_tid);
3123
3124 lhead = find_legacy_request_head(msg->front.iov_base,
3125 session->s_con.peer_features);
3126
3127 if ((req->r_mnt_idmap != &nop_mnt_idmap) &&
3128 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) {
3129 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op));
3130
3131 if (enable_unsafe_idmap) {
3132 pr_warn_once_client(cl,
3133 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3134 " is not supported by MDS. UID/GID-based restrictions may"
3135 " not work properly.\n");
3136
3137 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3138 VFSUIDT_INIT(req->r_cred->fsuid));
3139 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3140 VFSGIDT_INIT(req->r_cred->fsgid));
3141 } else {
3142 pr_err_ratelimited_client(cl,
3143 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3144 " is not supported by MDS. Fail request with -EIO.\n");
3145
3146 ret = -EIO;
3147 goto out_err;
3148 }
3149 }
3150
3151 /*
3152 * The ceph_mds_request_head_legacy didn't contain a version field, and
3153 * one was added when we moved the message version from 3->4.
3154 */
3155 if (legacy) {
3156 msg->hdr.version = cpu_to_le16(3);
3157 p = msg->front.iov_base + sizeof(*lhead);
3158 } else if (request_head_version == 1) {
3159 struct ceph_mds_request_head_old *ohead = msg->front.iov_base;
3160
3161 msg->hdr.version = cpu_to_le16(4);
3162 ohead->version = cpu_to_le16(1);
3163 p = msg->front.iov_base + sizeof(*ohead);
3164 } else if (request_head_version == 2) {
3165 struct ceph_mds_request_head *nhead = msg->front.iov_base;
3166
3167 msg->hdr.version = cpu_to_le16(6);
3168 nhead->version = cpu_to_le16(2);
3169
3170 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3171 } else {
3172 struct ceph_mds_request_head *nhead = msg->front.iov_base;
3173 kuid_t owner_fsuid;
3174 kgid_t owner_fsgid;
3175
3176 msg->hdr.version = cpu_to_le16(6);
3177 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION);
3178 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head));
3179
3180 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) {
3181 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3182 VFSUIDT_INIT(req->r_cred->fsuid));
3183 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3184 VFSGIDT_INIT(req->r_cred->fsgid));
3185 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid));
3186 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid));
3187 } else {
3188 nhead->owner_uid = cpu_to_le32(-1);
3189 nhead->owner_gid = cpu_to_le32(-1);
3190 }
3191
3192 p = msg->front.iov_base + sizeof(*nhead);
3193 }
3194
3195 end = msg->front.iov_base + msg->front.iov_len;
3196
3197 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
3198 lhead->op = cpu_to_le32(req->r_op);
3199 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns,
3200 caller_fsuid));
3201 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns,
3202 caller_fsgid));
3203 lhead->ino = cpu_to_le64(req->r_deleg_ino);
3204 lhead->args = req->r_args;
3205
3206 ceph_encode_filepath(&p, end, path_info1.vino.ino, path_info1.path);
3207 ceph_encode_filepath(&p, end, path_info2.vino.ino, path_info2.path);
3208
3209 /* make note of release offset, in case we need to replay */
3210 req->r_request_release_offset = p - msg->front.iov_base;
3211
3212 /* cap releases */
3213 releases = 0;
3214 if (req->r_inode_drop)
3215 releases += ceph_encode_inode_release(&p,
3216 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
3217 mds, req->r_inode_drop, req->r_inode_unless,
3218 req->r_op == CEPH_MDS_OP_READDIR);
3219 if (req->r_dentry_drop) {
3220 ret = ceph_encode_dentry_release(&p, req->r_dentry,
3221 req->r_parent, mds, req->r_dentry_drop,
3222 req->r_dentry_unless);
3223 if (ret < 0)
3224 goto out_err;
3225 releases += ret;
3226 }
3227 if (req->r_old_dentry_drop) {
3228 ret = ceph_encode_dentry_release(&p, req->r_old_dentry,
3229 req->r_old_dentry_dir, mds,
3230 req->r_old_dentry_drop,
3231 req->r_old_dentry_unless);
3232 if (ret < 0)
3233 goto out_err;
3234 releases += ret;
3235 }
3236 if (req->r_old_inode_drop)
3237 releases += ceph_encode_inode_release(&p,
3238 d_inode(req->r_old_dentry),
3239 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
3240
3241 if (drop_cap_releases) {
3242 releases = 0;
3243 p = msg->front.iov_base + req->r_request_release_offset;
3244 }
3245
3246 lhead->num_releases = cpu_to_le16(releases);
3247
3248 encode_mclientrequest_tail(&p, req);
3249
3250 if (WARN_ON_ONCE(p > end)) {
3251 ceph_msg_put(msg);
3252 msg = ERR_PTR(-ERANGE);
3253 goto out_free2;
3254 }
3255
3256 msg->front.iov_len = p - msg->front.iov_base;
3257 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3258
3259 if (req->r_pagelist) {
3260 struct ceph_pagelist *pagelist = req->r_pagelist;
3261 ceph_msg_data_add_pagelist(msg, pagelist);
3262 msg->hdr.data_len = cpu_to_le32(pagelist->length);
3263 } else {
3264 msg->hdr.data_len = 0;
3265 }
3266
3267 msg->hdr.data_off = cpu_to_le16(0);
3268
3269 out_free2:
3270 ceph_mdsc_free_path_info(&path_info2);
3271 out_free1:
3272 ceph_mdsc_free_path_info(&path_info1);
3273 out:
3274 return msg;
3275 out_err:
3276 ceph_msg_put(msg);
3277 msg = ERR_PTR(ret);
3278 goto out_free2;
3279 }
3280
3281 /*
3282 * called under mdsc->mutex if error, under no mutex if
3283 * success.
3284 */
complete_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)3285 static void complete_request(struct ceph_mds_client *mdsc,
3286 struct ceph_mds_request *req)
3287 {
3288 req->r_end_latency = ktime_get();
3289
3290 if (req->r_callback)
3291 req->r_callback(mdsc, req);
3292 complete_all(&req->r_completion);
3293 }
3294
3295 /*
3296 * called under mdsc->mutex
3297 */
__prepare_send_request(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)3298 static int __prepare_send_request(struct ceph_mds_session *session,
3299 struct ceph_mds_request *req,
3300 bool drop_cap_releases)
3301 {
3302 int mds = session->s_mds;
3303 struct ceph_mds_client *mdsc = session->s_mdsc;
3304 struct ceph_client *cl = mdsc->fsc->client;
3305 struct ceph_mds_request_head_legacy *lhead;
3306 struct ceph_mds_request_head *nhead;
3307 struct ceph_msg *msg;
3308 int flags = 0, old_max_retry;
3309 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD,
3310 &session->s_features);
3311
3312 /*
3313 * Avoid inifinite retrying after overflow. The client will
3314 * increase the retry count and if the MDS is old version,
3315 * so we limit to retry at most 256 times.
3316 */
3317 if (req->r_attempts) {
3318 old_max_retry = sizeof_field(struct ceph_mds_request_head_old,
3319 num_retry);
3320 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE);
3321 if ((old_version && req->r_attempts >= old_max_retry) ||
3322 ((uint32_t)req->r_attempts >= U32_MAX)) {
3323 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n",
3324 req->r_tid);
3325 return -EMULTIHOP;
3326 }
3327 }
3328
3329 req->r_attempts++;
3330 if (req->r_inode) {
3331 struct ceph_cap *cap =
3332 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
3333
3334 if (cap)
3335 req->r_sent_on_mseq = cap->mseq;
3336 else
3337 req->r_sent_on_mseq = -1;
3338 }
3339 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid,
3340 ceph_mds_op_name(req->r_op), req->r_attempts);
3341
3342 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3343 void *p;
3344
3345 /*
3346 * Replay. Do not regenerate message (and rebuild
3347 * paths, etc.); just use the original message.
3348 * Rebuilding paths will break for renames because
3349 * d_move mangles the src name.
3350 */
3351 msg = req->r_request;
3352 lhead = find_legacy_request_head(msg->front.iov_base,
3353 session->s_con.peer_features);
3354
3355 flags = le32_to_cpu(lhead->flags);
3356 flags |= CEPH_MDS_FLAG_REPLAY;
3357 lhead->flags = cpu_to_le32(flags);
3358
3359 if (req->r_target_inode)
3360 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
3361
3362 lhead->num_retry = req->r_attempts - 1;
3363 if (!old_version) {
3364 nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3365 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3366 }
3367
3368 /* remove cap/dentry releases from message */
3369 lhead->num_releases = 0;
3370
3371 p = msg->front.iov_base + req->r_request_release_offset;
3372 encode_mclientrequest_tail(&p, req);
3373
3374 msg->front.iov_len = p - msg->front.iov_base;
3375 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3376 return 0;
3377 }
3378
3379 if (req->r_request) {
3380 ceph_msg_put(req->r_request);
3381 req->r_request = NULL;
3382 }
3383 msg = create_request_message(session, req, drop_cap_releases);
3384 if (IS_ERR(msg)) {
3385 req->r_err = PTR_ERR(msg);
3386 return PTR_ERR(msg);
3387 }
3388 req->r_request = msg;
3389
3390 lhead = find_legacy_request_head(msg->front.iov_base,
3391 session->s_con.peer_features);
3392 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
3393 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3394 flags |= CEPH_MDS_FLAG_REPLAY;
3395 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags))
3396 flags |= CEPH_MDS_FLAG_ASYNC;
3397 if (req->r_parent)
3398 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
3399 lhead->flags = cpu_to_le32(flags);
3400 lhead->num_fwd = req->r_num_fwd;
3401 lhead->num_retry = req->r_attempts - 1;
3402 if (!old_version) {
3403 nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3404 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd);
3405 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3406 }
3407
3408 doutc(cl, " r_parent = %p\n", req->r_parent);
3409 return 0;
3410 }
3411
3412 /*
3413 * called under mdsc->mutex
3414 */
__send_request(struct ceph_mds_session * session,struct ceph_mds_request * req,bool drop_cap_releases)3415 static int __send_request(struct ceph_mds_session *session,
3416 struct ceph_mds_request *req,
3417 bool drop_cap_releases)
3418 {
3419 int err;
3420
3421 err = __prepare_send_request(session, req, drop_cap_releases);
3422 if (!err) {
3423 ceph_msg_get(req->r_request);
3424 ceph_con_send(&session->s_con, req->r_request);
3425 }
3426
3427 return err;
3428 }
3429
3430 /*
3431 * send request, or put it on the appropriate wait list.
3432 */
__do_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)3433 static void __do_request(struct ceph_mds_client *mdsc,
3434 struct ceph_mds_request *req)
3435 {
3436 struct ceph_client *cl = mdsc->fsc->client;
3437 struct ceph_mds_session *session = NULL;
3438 int mds = -1;
3439 int err = 0;
3440 bool random;
3441
3442 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3443 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
3444 __unregister_request(mdsc, req);
3445 return;
3446 }
3447
3448 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) {
3449 doutc(cl, "metadata corrupted\n");
3450 err = -EIO;
3451 goto finish;
3452 }
3453 if (req->r_timeout &&
3454 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
3455 doutc(cl, "timed out\n");
3456 err = -ETIMEDOUT;
3457 goto finish;
3458 }
3459 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
3460 doutc(cl, "forced umount\n");
3461 err = -EIO;
3462 goto finish;
3463 }
3464 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
3465 if (mdsc->mdsmap_err) {
3466 err = mdsc->mdsmap_err;
3467 doutc(cl, "mdsmap err %d\n", err);
3468 goto finish;
3469 }
3470 if (mdsc->mdsmap->m_epoch == 0) {
3471 doutc(cl, "no mdsmap, waiting for map\n");
3472 list_add(&req->r_wait, &mdsc->waiting_for_map);
3473 return;
3474 }
3475 if (!(mdsc->fsc->mount_options->flags &
3476 CEPH_MOUNT_OPT_MOUNTWAIT) &&
3477 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
3478 err = -EHOSTUNREACH;
3479 goto finish;
3480 }
3481 }
3482
3483 put_request_session(req);
3484
3485 mds = __choose_mds(mdsc, req, &random);
3486 if (mds < 0 ||
3487 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
3488 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3489 err = -EJUKEBOX;
3490 goto finish;
3491 }
3492 doutc(cl, "no mds or not active, waiting for map\n");
3493 list_add(&req->r_wait, &mdsc->waiting_for_map);
3494 return;
3495 }
3496
3497 /* get, open session */
3498 session = __ceph_lookup_mds_session(mdsc, mds);
3499 if (!session) {
3500 session = register_session(mdsc, mds);
3501 if (IS_ERR(session)) {
3502 err = PTR_ERR(session);
3503 goto finish;
3504 }
3505 }
3506 req->r_session = ceph_get_mds_session(session);
3507
3508 doutc(cl, "mds%d session %p state %s\n", mds, session,
3509 ceph_session_state_name(session->s_state));
3510
3511 /*
3512 * The old ceph will crash the MDSs when see unknown OPs
3513 */
3514 if (req->r_feature_needed > 0 &&
3515 !test_bit(req->r_feature_needed, &session->s_features)) {
3516 err = -EOPNOTSUPP;
3517 goto out_session;
3518 }
3519
3520 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
3521 session->s_state != CEPH_MDS_SESSION_HUNG) {
3522 /*
3523 * We cannot queue async requests since the caps and delegated
3524 * inodes are bound to the session. Just return -EJUKEBOX and
3525 * let the caller retry a sync request in that case.
3526 */
3527 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3528 err = -EJUKEBOX;
3529 goto out_session;
3530 }
3531
3532 /*
3533 * If the session has been REJECTED, then return a hard error,
3534 * unless it's a CLEANRECOVER mount, in which case we'll queue
3535 * it to the mdsc queue.
3536 */
3537 if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
3538 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER))
3539 list_add(&req->r_wait, &mdsc->waiting_for_map);
3540 else
3541 err = -EACCES;
3542 goto out_session;
3543 }
3544
3545 if (session->s_state == CEPH_MDS_SESSION_NEW ||
3546 session->s_state == CEPH_MDS_SESSION_CLOSING) {
3547 err = __open_session(mdsc, session);
3548 if (err)
3549 goto out_session;
3550 /* retry the same mds later */
3551 if (random)
3552 req->r_resend_mds = mds;
3553 }
3554 list_add(&req->r_wait, &session->s_waiting);
3555 goto out_session;
3556 }
3557
3558 /* send request */
3559 req->r_resend_mds = -1; /* forget any previous mds hint */
3560
3561 if (req->r_request_started == 0) /* note request start time */
3562 req->r_request_started = jiffies;
3563
3564 /*
3565 * For async create we will choose the auth MDS of frag in parent
3566 * directory to send the request and ususally this works fine, but
3567 * if the migrated the dirtory to another MDS before it could handle
3568 * it the request will be forwarded.
3569 *
3570 * And then the auth cap will be changed.
3571 */
3572 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) {
3573 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry);
3574 struct ceph_inode_info *ci;
3575 struct ceph_cap *cap;
3576
3577 /*
3578 * The request maybe handled very fast and the new inode
3579 * hasn't been linked to the dentry yet. We need to wait
3580 * for the ceph_finish_async_create(), which shouldn't be
3581 * stuck too long or fail in thoery, to finish when forwarding
3582 * the request.
3583 */
3584 if (!d_inode(req->r_dentry)) {
3585 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT,
3586 TASK_KILLABLE);
3587 if (err) {
3588 mutex_lock(&req->r_fill_mutex);
3589 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3590 mutex_unlock(&req->r_fill_mutex);
3591 goto out_session;
3592 }
3593 }
3594
3595 ci = ceph_inode(d_inode(req->r_dentry));
3596
3597 spin_lock(&ci->i_ceph_lock);
3598 cap = ci->i_auth_cap;
3599 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) {
3600 doutc(cl, "session changed for auth cap %d -> %d\n",
3601 cap->session->s_mds, session->s_mds);
3602
3603 /* Remove the auth cap from old session */
3604 spin_lock(&cap->session->s_cap_lock);
3605 cap->session->s_nr_caps--;
3606 list_del_init(&cap->session_caps);
3607 spin_unlock(&cap->session->s_cap_lock);
3608
3609 /* Add the auth cap to the new session */
3610 cap->mds = mds;
3611 cap->session = session;
3612 spin_lock(&session->s_cap_lock);
3613 session->s_nr_caps++;
3614 list_add_tail(&cap->session_caps, &session->s_caps);
3615 spin_unlock(&session->s_cap_lock);
3616
3617 change_auth_cap_ses(ci, session);
3618 }
3619 spin_unlock(&ci->i_ceph_lock);
3620 }
3621
3622 err = __send_request(session, req, false);
3623
3624 out_session:
3625 ceph_put_mds_session(session);
3626 finish:
3627 if (err) {
3628 doutc(cl, "early error %d\n", err);
3629 req->r_err = err;
3630 complete_request(mdsc, req);
3631 __unregister_request(mdsc, req);
3632 }
3633 return;
3634 }
3635
3636 /*
3637 * called under mdsc->mutex
3638 */
__wake_requests(struct ceph_mds_client * mdsc,struct list_head * head)3639 static void __wake_requests(struct ceph_mds_client *mdsc,
3640 struct list_head *head)
3641 {
3642 struct ceph_client *cl = mdsc->fsc->client;
3643 struct ceph_mds_request *req;
3644 LIST_HEAD(tmp_list);
3645
3646 list_splice_init(head, &tmp_list);
3647
3648 while (!list_empty(&tmp_list)) {
3649 req = list_entry(tmp_list.next,
3650 struct ceph_mds_request, r_wait);
3651 list_del_init(&req->r_wait);
3652 doutc(cl, " wake request %p tid %llu\n", req,
3653 req->r_tid);
3654 __do_request(mdsc, req);
3655 }
3656 }
3657
3658 /*
3659 * Wake up threads with requests pending for @mds, so that they can
3660 * resubmit their requests to a possibly different mds.
3661 */
kick_requests(struct ceph_mds_client * mdsc,int mds)3662 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
3663 {
3664 struct ceph_client *cl = mdsc->fsc->client;
3665 struct ceph_mds_request *req;
3666 struct rb_node *p = rb_first(&mdsc->request_tree);
3667
3668 doutc(cl, "kick_requests mds%d\n", mds);
3669 while (p) {
3670 req = rb_entry(p, struct ceph_mds_request, r_node);
3671 p = rb_next(p);
3672 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3673 continue;
3674 if (req->r_attempts > 0)
3675 continue; /* only new requests */
3676 if (req->r_session &&
3677 req->r_session->s_mds == mds) {
3678 doutc(cl, " kicking tid %llu\n", req->r_tid);
3679 list_del_init(&req->r_wait);
3680 __do_request(mdsc, req);
3681 }
3682 }
3683 }
3684
ceph_mdsc_submit_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)3685 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir,
3686 struct ceph_mds_request *req)
3687 {
3688 struct ceph_client *cl = mdsc->fsc->client;
3689 int err = 0;
3690
3691 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
3692 if (req->r_inode)
3693 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
3694 if (req->r_parent) {
3695 struct ceph_inode_info *ci = ceph_inode(req->r_parent);
3696 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ?
3697 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD;
3698 spin_lock(&ci->i_ceph_lock);
3699 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false);
3700 __ceph_touch_fmode(ci, mdsc, fmode);
3701 spin_unlock(&ci->i_ceph_lock);
3702 }
3703 if (req->r_old_dentry_dir)
3704 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
3705 CEPH_CAP_PIN);
3706
3707 if (req->r_inode) {
3708 err = ceph_wait_on_async_create(req->r_inode);
3709 if (err) {
3710 doutc(cl, "wait for async create returned: %d\n", err);
3711 return err;
3712 }
3713 }
3714
3715 if (!err && req->r_old_inode) {
3716 err = ceph_wait_on_async_create(req->r_old_inode);
3717 if (err) {
3718 doutc(cl, "wait for async create returned: %d\n", err);
3719 return err;
3720 }
3721 }
3722
3723 doutc(cl, "submit_request on %p for inode %p\n", req, dir);
3724 mutex_lock(&mdsc->mutex);
3725 __register_request(mdsc, req, dir);
3726 __do_request(mdsc, req);
3727 err = req->r_err;
3728 mutex_unlock(&mdsc->mutex);
3729 return err;
3730 }
3731
ceph_mdsc_wait_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,ceph_mds_request_wait_callback_t wait_func)3732 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc,
3733 struct ceph_mds_request *req,
3734 ceph_mds_request_wait_callback_t wait_func)
3735 {
3736 struct ceph_client *cl = mdsc->fsc->client;
3737 int err;
3738
3739 /* wait */
3740 doutc(cl, "do_request waiting\n");
3741 if (wait_func) {
3742 err = wait_func(mdsc, req);
3743 } else {
3744 long timeleft = wait_for_completion_killable_timeout(
3745 &req->r_completion,
3746 ceph_timeout_jiffies(req->r_timeout));
3747 if (timeleft > 0)
3748 err = 0;
3749 else if (!timeleft)
3750 err = -ETIMEDOUT; /* timed out */
3751 else
3752 err = timeleft; /* killed */
3753 }
3754 doutc(cl, "do_request waited, got %d\n", err);
3755 mutex_lock(&mdsc->mutex);
3756
3757 /* only abort if we didn't race with a real reply */
3758 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3759 err = le32_to_cpu(req->r_reply_info.head->result);
3760 } else if (err < 0) {
3761 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err);
3762
3763 /*
3764 * ensure we aren't running concurrently with
3765 * ceph_fill_trace or ceph_readdir_prepopulate, which
3766 * rely on locks (dir mutex) held by our caller.
3767 */
3768 mutex_lock(&req->r_fill_mutex);
3769 req->r_err = err;
3770 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3771 mutex_unlock(&req->r_fill_mutex);
3772
3773 if (req->r_parent &&
3774 (req->r_op & CEPH_MDS_OP_WRITE))
3775 ceph_invalidate_dir_request(req);
3776 } else {
3777 err = req->r_err;
3778 }
3779
3780 mutex_unlock(&mdsc->mutex);
3781 return err;
3782 }
3783
3784 /*
3785 * Synchrously perform an mds request. Take care of all of the
3786 * session setup, forwarding, retry details.
3787 */
ceph_mdsc_do_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)3788 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
3789 struct inode *dir,
3790 struct ceph_mds_request *req)
3791 {
3792 struct ceph_client *cl = mdsc->fsc->client;
3793 int err;
3794
3795 doutc(cl, "do_request on %p\n", req);
3796
3797 /* issue */
3798 err = ceph_mdsc_submit_request(mdsc, dir, req);
3799 if (!err)
3800 err = ceph_mdsc_wait_request(mdsc, req, NULL);
3801 doutc(cl, "do_request %p done, result %d\n", req, err);
3802 return err;
3803 }
3804
3805 /*
3806 * Invalidate dir's completeness, dentry lease state on an aborted MDS
3807 * namespace request.
3808 */
ceph_invalidate_dir_request(struct ceph_mds_request * req)3809 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
3810 {
3811 struct inode *dir = req->r_parent;
3812 struct inode *old_dir = req->r_old_dentry_dir;
3813 struct ceph_client *cl = req->r_mdsc->fsc->client;
3814
3815 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n",
3816 dir, old_dir);
3817
3818 ceph_dir_clear_complete(dir);
3819 if (old_dir)
3820 ceph_dir_clear_complete(old_dir);
3821 if (req->r_dentry)
3822 ceph_invalidate_dentry_lease(req->r_dentry);
3823 if (req->r_old_dentry)
3824 ceph_invalidate_dentry_lease(req->r_old_dentry);
3825 }
3826
3827 /*
3828 * Handle mds reply.
3829 *
3830 * We take the session mutex and parse and process the reply immediately.
3831 * This preserves the logical ordering of replies, capabilities, etc., sent
3832 * by the MDS as they are applied to our local cache.
3833 */
handle_reply(struct ceph_mds_session * session,struct ceph_msg * msg)3834 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
3835 {
3836 struct ceph_mds_client *mdsc = session->s_mdsc;
3837 struct ceph_client *cl = mdsc->fsc->client;
3838 struct ceph_mds_request *req;
3839 struct ceph_mds_reply_head *head = msg->front.iov_base;
3840 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
3841 struct ceph_snap_realm *realm;
3842 u64 tid;
3843 int err, result;
3844 int mds = session->s_mds;
3845 bool close_sessions = false;
3846
3847 if (msg->front.iov_len < sizeof(*head)) {
3848 pr_err_client(cl, "got corrupt (short) reply\n");
3849 ceph_msg_dump(msg);
3850 return;
3851 }
3852
3853 /* get request, session */
3854 tid = le64_to_cpu(msg->hdr.tid);
3855 mutex_lock(&mdsc->mutex);
3856 req = lookup_get_request(mdsc, tid);
3857 if (!req) {
3858 doutc(cl, "on unknown tid %llu\n", tid);
3859 mutex_unlock(&mdsc->mutex);
3860 return;
3861 }
3862 doutc(cl, "handle_reply %p\n", req);
3863
3864 /* correct session? */
3865 if (req->r_session != session) {
3866 pr_err_client(cl, "got %llu on session mds%d not mds%d\n",
3867 tid, session->s_mds,
3868 req->r_session ? req->r_session->s_mds : -1);
3869 mutex_unlock(&mdsc->mutex);
3870 goto out;
3871 }
3872
3873 /* dup? */
3874 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
3875 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
3876 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n",
3877 head->safe ? "safe" : "unsafe", tid, mds);
3878 mutex_unlock(&mdsc->mutex);
3879 goto out;
3880 }
3881 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
3882 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n",
3883 tid, mds);
3884 mutex_unlock(&mdsc->mutex);
3885 goto out;
3886 }
3887
3888 result = le32_to_cpu(head->result);
3889
3890 if (head->safe) {
3891 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
3892 __unregister_request(mdsc, req);
3893
3894 /* last request during umount? */
3895 if (mdsc->stopping && !__get_oldest_req(mdsc))
3896 complete_all(&mdsc->safe_umount_waiters);
3897
3898 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3899 /*
3900 * We already handled the unsafe response, now do the
3901 * cleanup. No need to examine the response; the MDS
3902 * doesn't include any result info in the safe
3903 * response. And even if it did, there is nothing
3904 * useful we could do with a revised return value.
3905 */
3906 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds);
3907
3908 mutex_unlock(&mdsc->mutex);
3909 goto out;
3910 }
3911 } else {
3912 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
3913 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
3914 }
3915
3916 doutc(cl, "tid %lld result %d\n", tid, result);
3917 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features))
3918 err = parse_reply_info(session, msg, req, (u64)-1);
3919 else
3920 err = parse_reply_info(session, msg, req,
3921 session->s_con.peer_features);
3922 mutex_unlock(&mdsc->mutex);
3923
3924 /* Must find target inode outside of mutexes to avoid deadlocks */
3925 rinfo = &req->r_reply_info;
3926 if ((err >= 0) && rinfo->head->is_target) {
3927 struct inode *in = xchg(&req->r_new_inode, NULL);
3928 struct ceph_vino tvino = {
3929 .ino = le64_to_cpu(rinfo->targeti.in->ino),
3930 .snap = le64_to_cpu(rinfo->targeti.in->snapid)
3931 };
3932
3933 /*
3934 * If we ended up opening an existing inode, discard
3935 * r_new_inode
3936 */
3937 if (req->r_op == CEPH_MDS_OP_CREATE &&
3938 !req->r_reply_info.has_create_ino) {
3939 /* This should never happen on an async create */
3940 WARN_ON_ONCE(req->r_deleg_ino);
3941 iput(in);
3942 in = NULL;
3943 }
3944
3945 in = ceph_get_inode(mdsc->fsc->sb, tvino, in);
3946 if (IS_ERR(in)) {
3947 err = PTR_ERR(in);
3948 mutex_lock(&session->s_mutex);
3949 goto out_err;
3950 }
3951 req->r_target_inode = in;
3952 }
3953
3954 mutex_lock(&session->s_mutex);
3955 if (err < 0) {
3956 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n",
3957 mds, tid);
3958 ceph_msg_dump(msg);
3959 goto out_err;
3960 }
3961
3962 /* snap trace */
3963 realm = NULL;
3964 if (rinfo->snapblob_len) {
3965 down_write(&mdsc->snap_rwsem);
3966 err = ceph_update_snap_trace(mdsc, rinfo->snapblob,
3967 rinfo->snapblob + rinfo->snapblob_len,
3968 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
3969 &realm);
3970 if (err) {
3971 up_write(&mdsc->snap_rwsem);
3972 close_sessions = true;
3973 if (err == -EIO)
3974 ceph_msg_dump(msg);
3975 goto out_err;
3976 }
3977 downgrade_write(&mdsc->snap_rwsem);
3978 } else {
3979 down_read(&mdsc->snap_rwsem);
3980 }
3981
3982 /* insert trace into our cache */
3983 mutex_lock(&req->r_fill_mutex);
3984 current->journal_info = req;
3985 err = ceph_fill_trace(mdsc->fsc->sb, req);
3986 if (err == 0) {
3987 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
3988 req->r_op == CEPH_MDS_OP_LSSNAP))
3989 err = ceph_readdir_prepopulate(req, req->r_session);
3990 }
3991 current->journal_info = NULL;
3992 mutex_unlock(&req->r_fill_mutex);
3993
3994 up_read(&mdsc->snap_rwsem);
3995 if (realm)
3996 ceph_put_snap_realm(mdsc, realm);
3997
3998 if (err == 0) {
3999 if (req->r_target_inode &&
4000 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
4001 struct ceph_inode_info *ci =
4002 ceph_inode(req->r_target_inode);
4003 spin_lock(&ci->i_unsafe_lock);
4004 list_add_tail(&req->r_unsafe_target_item,
4005 &ci->i_unsafe_iops);
4006 spin_unlock(&ci->i_unsafe_lock);
4007 }
4008
4009 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
4010 }
4011 out_err:
4012 mutex_lock(&mdsc->mutex);
4013 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
4014 if (err) {
4015 req->r_err = err;
4016 } else {
4017 req->r_reply = ceph_msg_get(msg);
4018 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
4019 }
4020 } else {
4021 doutc(cl, "reply arrived after request %lld was aborted\n", tid);
4022 }
4023 mutex_unlock(&mdsc->mutex);
4024
4025 mutex_unlock(&session->s_mutex);
4026
4027 /* kick calling process */
4028 complete_request(mdsc, req);
4029
4030 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency,
4031 req->r_end_latency, err);
4032 out:
4033 ceph_mdsc_put_request(req);
4034
4035 /* Defer closing the sessions after s_mutex lock being released */
4036 if (close_sessions)
4037 ceph_mdsc_close_sessions(mdsc);
4038 return;
4039 }
4040
4041
4042
4043 /*
4044 * handle mds notification that our request has been forwarded.
4045 */
handle_forward(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)4046 static void handle_forward(struct ceph_mds_client *mdsc,
4047 struct ceph_mds_session *session,
4048 struct ceph_msg *msg)
4049 {
4050 struct ceph_client *cl = mdsc->fsc->client;
4051 struct ceph_mds_request *req;
4052 u64 tid = le64_to_cpu(msg->hdr.tid);
4053 u32 next_mds;
4054 u32 fwd_seq;
4055 int err = -EINVAL;
4056 void *p = msg->front.iov_base;
4057 void *end = p + msg->front.iov_len;
4058 bool aborted = false;
4059
4060 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
4061 next_mds = ceph_decode_32(&p);
4062 fwd_seq = ceph_decode_32(&p);
4063
4064 mutex_lock(&mdsc->mutex);
4065 req = lookup_get_request(mdsc, tid);
4066 if (!req) {
4067 mutex_unlock(&mdsc->mutex);
4068 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds);
4069 return; /* dup reply? */
4070 }
4071
4072 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
4073 doutc(cl, "forward tid %llu aborted, unregistering\n", tid);
4074 __unregister_request(mdsc, req);
4075 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) {
4076 /*
4077 * Avoid inifinite retrying after overflow.
4078 *
4079 * The MDS will increase the fwd count and in client side
4080 * if the num_fwd is less than the one saved in request
4081 * that means the MDS is an old version and overflowed of
4082 * 8 bits.
4083 */
4084 mutex_lock(&req->r_fill_mutex);
4085 req->r_err = -EMULTIHOP;
4086 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
4087 mutex_unlock(&req->r_fill_mutex);
4088 aborted = true;
4089 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n",
4090 tid);
4091 } else {
4092 /* resend. forward race not possible; mds would drop */
4093 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds);
4094 BUG_ON(req->r_err);
4095 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
4096 req->r_attempts = 0;
4097 req->r_num_fwd = fwd_seq;
4098 req->r_resend_mds = next_mds;
4099 put_request_session(req);
4100 __do_request(mdsc, req);
4101 }
4102 mutex_unlock(&mdsc->mutex);
4103
4104 /* kick calling process */
4105 if (aborted)
4106 complete_request(mdsc, req);
4107 ceph_mdsc_put_request(req);
4108 return;
4109
4110 bad:
4111 pr_err_client(cl, "decode error err=%d\n", err);
4112 ceph_msg_dump(msg);
4113 }
4114
__decode_session_metadata(void ** p,void * end,bool * blocklisted)4115 static int __decode_session_metadata(void **p, void *end,
4116 bool *blocklisted)
4117 {
4118 /* map<string,string> */
4119 u32 n;
4120 bool err_str;
4121 ceph_decode_32_safe(p, end, n, bad);
4122 while (n-- > 0) {
4123 u32 len;
4124 ceph_decode_32_safe(p, end, len, bad);
4125 ceph_decode_need(p, end, len, bad);
4126 err_str = !strncmp(*p, "error_string", len);
4127 *p += len;
4128 ceph_decode_32_safe(p, end, len, bad);
4129 ceph_decode_need(p, end, len, bad);
4130 /*
4131 * Match "blocklisted (blacklisted)" from newer MDSes,
4132 * or "blacklisted" from older MDSes.
4133 */
4134 if (err_str && strnstr(*p, "blacklisted", len))
4135 *blocklisted = true;
4136 *p += len;
4137 }
4138 return 0;
4139 bad:
4140 return -1;
4141 }
4142
4143 /*
4144 * handle a mds session control message
4145 */
handle_session(struct ceph_mds_session * session,struct ceph_msg * msg)4146 static void handle_session(struct ceph_mds_session *session,
4147 struct ceph_msg *msg)
4148 {
4149 struct ceph_mds_client *mdsc = session->s_mdsc;
4150 struct ceph_client *cl = mdsc->fsc->client;
4151 int mds = session->s_mds;
4152 int msg_version = le16_to_cpu(msg->hdr.version);
4153 void *p = msg->front.iov_base;
4154 void *end = p + msg->front.iov_len;
4155 struct ceph_mds_session_head *h;
4156 struct ceph_mds_cap_auth *cap_auths = NULL;
4157 u32 op, cap_auths_num = 0;
4158 u64 seq, features = 0;
4159 int wake = 0;
4160 bool blocklisted = false;
4161 u32 i;
4162
4163
4164 /* decode */
4165 ceph_decode_need(&p, end, sizeof(*h), bad);
4166 h = p;
4167 p += sizeof(*h);
4168
4169 op = le32_to_cpu(h->op);
4170 seq = le64_to_cpu(h->seq);
4171
4172 if (msg_version >= 3) {
4173 u32 len;
4174 /* version >= 2 and < 5, decode metadata, skip otherwise
4175 * as it's handled via flags.
4176 */
4177 if (msg_version >= 5)
4178 ceph_decode_skip_map(&p, end, string, string, bad);
4179 else if (__decode_session_metadata(&p, end, &blocklisted) < 0)
4180 goto bad;
4181
4182 /* version >= 3, feature bits */
4183 ceph_decode_32_safe(&p, end, len, bad);
4184 if (len) {
4185 ceph_decode_64_safe(&p, end, features, bad);
4186 p += len - sizeof(features);
4187 }
4188 }
4189
4190 if (msg_version >= 5) {
4191 u32 flags, len;
4192
4193 /* version >= 4 */
4194 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */
4195 ceph_decode_32_safe(&p, end, len, bad); /* len */
4196 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */
4197
4198 /* version >= 5, flags */
4199 ceph_decode_32_safe(&p, end, flags, bad);
4200 if (flags & CEPH_SESSION_BLOCKLISTED) {
4201 pr_warn_client(cl, "mds%d session blocklisted\n",
4202 session->s_mds);
4203 blocklisted = true;
4204 }
4205 }
4206
4207 if (msg_version >= 6) {
4208 ceph_decode_32_safe(&p, end, cap_auths_num, bad);
4209 doutc(cl, "cap_auths_num %d\n", cap_auths_num);
4210
4211 if (cap_auths_num && op != CEPH_SESSION_OPEN) {
4212 WARN_ON_ONCE(op != CEPH_SESSION_OPEN);
4213 goto skip_cap_auths;
4214 }
4215
4216 cap_auths = kcalloc(cap_auths_num,
4217 sizeof(struct ceph_mds_cap_auth),
4218 GFP_KERNEL);
4219 if (!cap_auths) {
4220 pr_err_client(cl, "No memory for cap_auths\n");
4221 return;
4222 }
4223
4224 for (i = 0; i < cap_auths_num; i++) {
4225 u32 _len, j;
4226
4227 /* struct_v, struct_compat, and struct_len in MDSCapAuth */
4228 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4229
4230 /* struct_v, struct_compat, and struct_len in MDSCapMatch */
4231 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4232 ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad);
4233 ceph_decode_32_safe(&p, end, _len, bad);
4234 if (_len) {
4235 cap_auths[i].match.gids = kcalloc(_len, sizeof(u32),
4236 GFP_KERNEL);
4237 if (!cap_auths[i].match.gids) {
4238 pr_err_client(cl, "No memory for gids\n");
4239 goto fail;
4240 }
4241
4242 cap_auths[i].match.num_gids = _len;
4243 for (j = 0; j < _len; j++)
4244 ceph_decode_32_safe(&p, end,
4245 cap_auths[i].match.gids[j],
4246 bad);
4247 }
4248
4249 ceph_decode_32_safe(&p, end, _len, bad);
4250 if (_len) {
4251 cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char),
4252 GFP_KERNEL);
4253 if (!cap_auths[i].match.path) {
4254 pr_err_client(cl, "No memory for path\n");
4255 goto fail;
4256 }
4257 ceph_decode_copy(&p, cap_auths[i].match.path, _len);
4258
4259 /* Remove the tailing '/' */
4260 while (_len && cap_auths[i].match.path[_len - 1] == '/') {
4261 cap_auths[i].match.path[_len - 1] = '\0';
4262 _len -= 1;
4263 }
4264 }
4265
4266 ceph_decode_32_safe(&p, end, _len, bad);
4267 if (_len) {
4268 cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char),
4269 GFP_KERNEL);
4270 if (!cap_auths[i].match.fs_name) {
4271 pr_err_client(cl, "No memory for fs_name\n");
4272 goto fail;
4273 }
4274 ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len);
4275 }
4276
4277 ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad);
4278 ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad);
4279 ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad);
4280 doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n",
4281 cap_auths[i].match.uid, cap_auths[i].match.num_gids,
4282 cap_auths[i].match.path, cap_auths[i].match.fs_name,
4283 cap_auths[i].match.root_squash,
4284 cap_auths[i].readable, cap_auths[i].writeable);
4285 }
4286 }
4287
4288 skip_cap_auths:
4289 mutex_lock(&mdsc->mutex);
4290 if (op == CEPH_SESSION_OPEN) {
4291 if (mdsc->s_cap_auths) {
4292 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
4293 kfree(mdsc->s_cap_auths[i].match.gids);
4294 kfree(mdsc->s_cap_auths[i].match.path);
4295 kfree(mdsc->s_cap_auths[i].match.fs_name);
4296 }
4297 kfree(mdsc->s_cap_auths);
4298 }
4299 mdsc->s_cap_auths_num = cap_auths_num;
4300 mdsc->s_cap_auths = cap_auths;
4301 }
4302 if (op == CEPH_SESSION_CLOSE) {
4303 ceph_get_mds_session(session);
4304 __unregister_session(mdsc, session);
4305 }
4306 /* FIXME: this ttl calculation is generous */
4307 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
4308 mutex_unlock(&mdsc->mutex);
4309
4310 mutex_lock(&session->s_mutex);
4311
4312 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds,
4313 ceph_session_op_name(op), session,
4314 ceph_session_state_name(session->s_state), seq);
4315
4316 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
4317 session->s_state = CEPH_MDS_SESSION_OPEN;
4318 pr_info_client(cl, "mds%d came back\n", session->s_mds);
4319 }
4320
4321 switch (op) {
4322 case CEPH_SESSION_OPEN:
4323 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4324 pr_info_client(cl, "mds%d reconnect success\n",
4325 session->s_mds);
4326
4327 session->s_features = features;
4328 if (session->s_state == CEPH_MDS_SESSION_OPEN) {
4329 pr_notice_client(cl, "mds%d is already opened\n",
4330 session->s_mds);
4331 } else {
4332 session->s_state = CEPH_MDS_SESSION_OPEN;
4333 renewed_caps(mdsc, session, 0);
4334 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT,
4335 &session->s_features))
4336 metric_schedule_delayed(&mdsc->metric);
4337 }
4338
4339 /*
4340 * The connection maybe broken and the session in client
4341 * side has been reinitialized, need to update the seq
4342 * anyway.
4343 */
4344 if (!session->s_seq && seq)
4345 session->s_seq = seq;
4346
4347 wake = 1;
4348 if (mdsc->stopping)
4349 __close_session(mdsc, session);
4350 break;
4351
4352 case CEPH_SESSION_RENEWCAPS:
4353 if (session->s_renew_seq == seq)
4354 renewed_caps(mdsc, session, 1);
4355 break;
4356
4357 case CEPH_SESSION_CLOSE:
4358 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4359 pr_info_client(cl, "mds%d reconnect denied\n",
4360 session->s_mds);
4361 session->s_state = CEPH_MDS_SESSION_CLOSED;
4362 cleanup_session_requests(mdsc, session);
4363 remove_session_caps(session);
4364 wake = 2; /* for good measure */
4365 wake_up_all(&mdsc->session_close_wq);
4366 break;
4367
4368 case CEPH_SESSION_STALE:
4369 pr_info_client(cl, "mds%d caps went stale, renewing\n",
4370 session->s_mds);
4371 atomic_inc(&session->s_cap_gen);
4372 session->s_cap_ttl = jiffies - 1;
4373 send_renew_caps(mdsc, session);
4374 break;
4375
4376 case CEPH_SESSION_RECALL_STATE:
4377 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
4378 break;
4379
4380 case CEPH_SESSION_FLUSHMSG:
4381 /* flush cap releases */
4382 spin_lock(&session->s_cap_lock);
4383 if (session->s_num_cap_releases)
4384 ceph_flush_session_cap_releases(mdsc, session);
4385 spin_unlock(&session->s_cap_lock);
4386
4387 send_flushmsg_ack(mdsc, session, seq);
4388 break;
4389
4390 case CEPH_SESSION_FORCE_RO:
4391 doutc(cl, "force_session_readonly %p\n", session);
4392 spin_lock(&session->s_cap_lock);
4393 session->s_readonly = true;
4394 spin_unlock(&session->s_cap_lock);
4395 wake_up_session_caps(session, FORCE_RO);
4396 break;
4397
4398 case CEPH_SESSION_REJECT:
4399 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
4400 pr_info_client(cl, "mds%d rejected session\n",
4401 session->s_mds);
4402 session->s_state = CEPH_MDS_SESSION_REJECTED;
4403 cleanup_session_requests(mdsc, session);
4404 remove_session_caps(session);
4405 if (blocklisted)
4406 mdsc->fsc->blocklisted = true;
4407 wake = 2; /* for good measure */
4408 break;
4409
4410 default:
4411 pr_err_client(cl, "bad op %d mds%d\n", op, mds);
4412 WARN_ON(1);
4413 }
4414
4415 mutex_unlock(&session->s_mutex);
4416 if (wake) {
4417 mutex_lock(&mdsc->mutex);
4418 __wake_requests(mdsc, &session->s_waiting);
4419 if (wake == 2)
4420 kick_requests(mdsc, mds);
4421 mutex_unlock(&mdsc->mutex);
4422 }
4423 if (op == CEPH_SESSION_CLOSE)
4424 ceph_put_mds_session(session);
4425 return;
4426
4427 bad:
4428 pr_err_client(cl, "corrupt message mds%d len %d\n", mds,
4429 (int)msg->front.iov_len);
4430 ceph_msg_dump(msg);
4431 fail:
4432 for (i = 0; i < cap_auths_num; i++) {
4433 kfree(cap_auths[i].match.gids);
4434 kfree(cap_auths[i].match.path);
4435 kfree(cap_auths[i].match.fs_name);
4436 }
4437 kfree(cap_auths);
4438 return;
4439 }
4440
ceph_mdsc_release_dir_caps(struct ceph_mds_request * req)4441 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req)
4442 {
4443 struct ceph_client *cl = req->r_mdsc->fsc->client;
4444 int dcaps;
4445
4446 dcaps = xchg(&req->r_dir_caps, 0);
4447 if (dcaps) {
4448 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4449 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps);
4450 }
4451 }
4452
ceph_mdsc_release_dir_caps_async(struct ceph_mds_request * req)4453 void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req)
4454 {
4455 struct ceph_client *cl = req->r_mdsc->fsc->client;
4456 int dcaps;
4457
4458 dcaps = xchg(&req->r_dir_caps, 0);
4459 if (dcaps) {
4460 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4461 ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps);
4462 }
4463 }
4464
4465 /*
4466 * called under session->mutex.
4467 */
replay_unsafe_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)4468 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
4469 struct ceph_mds_session *session)
4470 {
4471 struct ceph_mds_request *req, *nreq;
4472 struct rb_node *p;
4473
4474 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds);
4475
4476 mutex_lock(&mdsc->mutex);
4477 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item)
4478 __send_request(session, req, true);
4479
4480 /*
4481 * also re-send old requests when MDS enters reconnect stage. So that MDS
4482 * can process completed request in clientreplay stage.
4483 */
4484 p = rb_first(&mdsc->request_tree);
4485 while (p) {
4486 req = rb_entry(p, struct ceph_mds_request, r_node);
4487 p = rb_next(p);
4488 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
4489 continue;
4490 if (req->r_attempts == 0)
4491 continue; /* only old requests */
4492 if (!req->r_session)
4493 continue;
4494 if (req->r_session->s_mds != session->s_mds)
4495 continue;
4496
4497 ceph_mdsc_release_dir_caps_async(req);
4498
4499 __send_request(session, req, true);
4500 }
4501 mutex_unlock(&mdsc->mutex);
4502 }
4503
send_reconnect_partial(struct ceph_reconnect_state * recon_state)4504 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state)
4505 {
4506 struct ceph_msg *reply;
4507 struct ceph_pagelist *_pagelist;
4508 struct page *page;
4509 __le32 *addr;
4510 int err = -ENOMEM;
4511
4512 if (!recon_state->allow_multi)
4513 return -ENOSPC;
4514
4515 /* can't handle message that contains both caps and realm */
4516 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms);
4517
4518 /* pre-allocate new pagelist */
4519 _pagelist = ceph_pagelist_alloc(GFP_NOFS);
4520 if (!_pagelist)
4521 return -ENOMEM;
4522
4523 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4524 if (!reply)
4525 goto fail_msg;
4526
4527 /* placeholder for nr_caps */
4528 err = ceph_pagelist_encode_32(_pagelist, 0);
4529 if (err < 0)
4530 goto fail;
4531
4532 if (recon_state->nr_caps) {
4533 /* currently encoding caps */
4534 err = ceph_pagelist_encode_32(recon_state->pagelist, 0);
4535 if (err)
4536 goto fail;
4537 } else {
4538 /* placeholder for nr_realms (currently encoding relams) */
4539 err = ceph_pagelist_encode_32(_pagelist, 0);
4540 if (err < 0)
4541 goto fail;
4542 }
4543
4544 err = ceph_pagelist_encode_8(recon_state->pagelist, 1);
4545 if (err)
4546 goto fail;
4547
4548 page = list_first_entry(&recon_state->pagelist->head, struct page, lru);
4549 addr = kmap_atomic(page);
4550 if (recon_state->nr_caps) {
4551 /* currently encoding caps */
4552 *addr = cpu_to_le32(recon_state->nr_caps);
4553 } else {
4554 /* currently encoding relams */
4555 *(addr + 1) = cpu_to_le32(recon_state->nr_realms);
4556 }
4557 kunmap_atomic(addr);
4558
4559 reply->hdr.version = cpu_to_le16(5);
4560 reply->hdr.compat_version = cpu_to_le16(4);
4561
4562 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length);
4563 ceph_msg_data_add_pagelist(reply, recon_state->pagelist);
4564
4565 ceph_con_send(&recon_state->session->s_con, reply);
4566 ceph_pagelist_release(recon_state->pagelist);
4567
4568 recon_state->pagelist = _pagelist;
4569 recon_state->nr_caps = 0;
4570 recon_state->nr_realms = 0;
4571 recon_state->msg_version = 5;
4572 return 0;
4573 fail:
4574 ceph_msg_put(reply);
4575 fail_msg:
4576 ceph_pagelist_release(_pagelist);
4577 return err;
4578 }
4579
d_find_primary(struct inode * inode)4580 static struct dentry* d_find_primary(struct inode *inode)
4581 {
4582 struct dentry *alias, *dn = NULL;
4583
4584 if (hlist_empty(&inode->i_dentry))
4585 return NULL;
4586
4587 spin_lock(&inode->i_lock);
4588 if (hlist_empty(&inode->i_dentry))
4589 goto out_unlock;
4590
4591 if (S_ISDIR(inode->i_mode)) {
4592 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
4593 if (!IS_ROOT(alias))
4594 dn = dget(alias);
4595 goto out_unlock;
4596 }
4597
4598 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
4599 spin_lock(&alias->d_lock);
4600 if (!d_unhashed(alias) &&
4601 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) {
4602 dn = dget_dlock(alias);
4603 }
4604 spin_unlock(&alias->d_lock);
4605 if (dn)
4606 break;
4607 }
4608 out_unlock:
4609 spin_unlock(&inode->i_lock);
4610 return dn;
4611 }
4612
4613 /*
4614 * Encode information about a cap for a reconnect with the MDS.
4615 */
reconnect_caps_cb(struct inode * inode,int mds,void * arg)4616 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg)
4617 {
4618 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
4619 struct ceph_client *cl = ceph_inode_to_client(inode);
4620 union {
4621 struct ceph_mds_cap_reconnect v2;
4622 struct ceph_mds_cap_reconnect_v1 v1;
4623 } rec;
4624 struct ceph_inode_info *ci = ceph_inode(inode);
4625 struct ceph_reconnect_state *recon_state = arg;
4626 struct ceph_pagelist *pagelist = recon_state->pagelist;
4627 struct dentry *dentry;
4628 struct ceph_cap *cap;
4629 struct ceph_path_info path_info = {0};
4630 int err;
4631 u64 snap_follows;
4632
4633 dentry = d_find_primary(inode);
4634 if (dentry) {
4635 /* set pathbase to parent dir when msg_version >= 2 */
4636 char *path = ceph_mdsc_build_path(mdsc, dentry, &path_info,
4637 recon_state->msg_version >= 2);
4638 dput(dentry);
4639 if (IS_ERR(path)) {
4640 err = PTR_ERR(path);
4641 goto out_err;
4642 }
4643 }
4644
4645 spin_lock(&ci->i_ceph_lock);
4646 cap = __get_cap_for_mds(ci, mds);
4647 if (!cap) {
4648 spin_unlock(&ci->i_ceph_lock);
4649 err = 0;
4650 goto out_err;
4651 }
4652 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode,
4653 ceph_vinop(inode), cap, cap->cap_id,
4654 ceph_cap_string(cap->issued));
4655
4656 cap->seq = 0; /* reset cap seq */
4657 cap->issue_seq = 0; /* and issue_seq */
4658 cap->mseq = 0; /* and migrate_seq */
4659 cap->cap_gen = atomic_read(&cap->session->s_cap_gen);
4660
4661 /* These are lost when the session goes away */
4662 if (S_ISDIR(inode->i_mode)) {
4663 if (cap->issued & CEPH_CAP_DIR_CREATE) {
4664 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
4665 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
4666 }
4667 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS;
4668 }
4669
4670 if (recon_state->msg_version >= 2) {
4671 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
4672 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4673 rec.v2.issued = cpu_to_le32(cap->issued);
4674 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4675 rec.v2.pathbase = cpu_to_le64(path_info.vino.ino);
4676 rec.v2.flock_len = (__force __le32)
4677 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
4678 } else {
4679 struct timespec64 ts;
4680
4681 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
4682 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4683 rec.v1.issued = cpu_to_le32(cap->issued);
4684 rec.v1.size = cpu_to_le64(i_size_read(inode));
4685 ts = inode_get_mtime(inode);
4686 ceph_encode_timespec64(&rec.v1.mtime, &ts);
4687 ts = inode_get_atime(inode);
4688 ceph_encode_timespec64(&rec.v1.atime, &ts);
4689 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4690 rec.v1.pathbase = cpu_to_le64(path_info.vino.ino);
4691 }
4692
4693 if (list_empty(&ci->i_cap_snaps)) {
4694 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
4695 } else {
4696 struct ceph_cap_snap *capsnap =
4697 list_first_entry(&ci->i_cap_snaps,
4698 struct ceph_cap_snap, ci_item);
4699 snap_follows = capsnap->follows;
4700 }
4701 spin_unlock(&ci->i_ceph_lock);
4702
4703 if (recon_state->msg_version >= 2) {
4704 int num_fcntl_locks, num_flock_locks;
4705 struct ceph_filelock *flocks = NULL;
4706 size_t struct_len, total_len = sizeof(u64);
4707 u8 struct_v = 0;
4708
4709 encode_again:
4710 if (rec.v2.flock_len) {
4711 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
4712 } else {
4713 num_fcntl_locks = 0;
4714 num_flock_locks = 0;
4715 }
4716 if (num_fcntl_locks + num_flock_locks > 0) {
4717 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
4718 sizeof(struct ceph_filelock),
4719 GFP_NOFS);
4720 if (!flocks) {
4721 err = -ENOMEM;
4722 goto out_err;
4723 }
4724 err = ceph_encode_locks_to_buffer(inode, flocks,
4725 num_fcntl_locks,
4726 num_flock_locks);
4727 if (err) {
4728 kfree(flocks);
4729 flocks = NULL;
4730 if (err == -ENOSPC)
4731 goto encode_again;
4732 goto out_err;
4733 }
4734 } else {
4735 kfree(flocks);
4736 flocks = NULL;
4737 }
4738
4739 if (recon_state->msg_version >= 3) {
4740 /* version, compat_version and struct_len */
4741 total_len += 2 * sizeof(u8) + sizeof(u32);
4742 struct_v = 2;
4743 }
4744 /*
4745 * number of encoded locks is stable, so copy to pagelist
4746 */
4747 struct_len = 2 * sizeof(u32) +
4748 (num_fcntl_locks + num_flock_locks) *
4749 sizeof(struct ceph_filelock);
4750 rec.v2.flock_len = cpu_to_le32(struct_len);
4751
4752 struct_len += sizeof(u32) + path_info.pathlen + sizeof(rec.v2);
4753
4754 if (struct_v >= 2)
4755 struct_len += sizeof(u64); /* snap_follows */
4756
4757 total_len += struct_len;
4758
4759 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) {
4760 err = send_reconnect_partial(recon_state);
4761 if (err)
4762 goto out_freeflocks;
4763 pagelist = recon_state->pagelist;
4764 }
4765
4766 err = ceph_pagelist_reserve(pagelist, total_len);
4767 if (err)
4768 goto out_freeflocks;
4769
4770 ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4771 if (recon_state->msg_version >= 3) {
4772 ceph_pagelist_encode_8(pagelist, struct_v);
4773 ceph_pagelist_encode_8(pagelist, 1);
4774 ceph_pagelist_encode_32(pagelist, struct_len);
4775 }
4776 ceph_pagelist_encode_string(pagelist, (char *)path_info.path, path_info.pathlen);
4777 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
4778 ceph_locks_to_pagelist(flocks, pagelist,
4779 num_fcntl_locks, num_flock_locks);
4780 if (struct_v >= 2)
4781 ceph_pagelist_encode_64(pagelist, snap_follows);
4782 out_freeflocks:
4783 kfree(flocks);
4784 } else {
4785 err = ceph_pagelist_reserve(pagelist,
4786 sizeof(u64) + sizeof(u32) +
4787 path_info.pathlen + sizeof(rec.v1));
4788 if (err)
4789 goto out_err;
4790
4791 ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4792 ceph_pagelist_encode_string(pagelist, (char *)path_info.path, path_info.pathlen);
4793 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
4794 }
4795
4796 out_err:
4797 ceph_mdsc_free_path_info(&path_info);
4798 if (!err)
4799 recon_state->nr_caps++;
4800 return err;
4801 }
4802
encode_snap_realms(struct ceph_mds_client * mdsc,struct ceph_reconnect_state * recon_state)4803 static int encode_snap_realms(struct ceph_mds_client *mdsc,
4804 struct ceph_reconnect_state *recon_state)
4805 {
4806 struct rb_node *p;
4807 struct ceph_pagelist *pagelist = recon_state->pagelist;
4808 struct ceph_client *cl = mdsc->fsc->client;
4809 int err = 0;
4810
4811 if (recon_state->msg_version >= 4) {
4812 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms);
4813 if (err < 0)
4814 goto fail;
4815 }
4816
4817 /*
4818 * snaprealms. we provide mds with the ino, seq (version), and
4819 * parent for all of our realms. If the mds has any newer info,
4820 * it will tell us.
4821 */
4822 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
4823 struct ceph_snap_realm *realm =
4824 rb_entry(p, struct ceph_snap_realm, node);
4825 struct ceph_mds_snaprealm_reconnect sr_rec;
4826
4827 if (recon_state->msg_version >= 4) {
4828 size_t need = sizeof(u8) * 2 + sizeof(u32) +
4829 sizeof(sr_rec);
4830
4831 if (pagelist->length + need > RECONNECT_MAX_SIZE) {
4832 err = send_reconnect_partial(recon_state);
4833 if (err)
4834 goto fail;
4835 pagelist = recon_state->pagelist;
4836 }
4837
4838 err = ceph_pagelist_reserve(pagelist, need);
4839 if (err)
4840 goto fail;
4841
4842 ceph_pagelist_encode_8(pagelist, 1);
4843 ceph_pagelist_encode_8(pagelist, 1);
4844 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec));
4845 }
4846
4847 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n",
4848 realm->ino, realm->seq, realm->parent_ino);
4849 sr_rec.ino = cpu_to_le64(realm->ino);
4850 sr_rec.seq = cpu_to_le64(realm->seq);
4851 sr_rec.parent = cpu_to_le64(realm->parent_ino);
4852
4853 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
4854 if (err)
4855 goto fail;
4856
4857 recon_state->nr_realms++;
4858 }
4859 fail:
4860 return err;
4861 }
4862
4863
4864 /*
4865 * If an MDS fails and recovers, clients need to reconnect in order to
4866 * reestablish shared state. This includes all caps issued through
4867 * this session _and_ the snap_realm hierarchy. Because it's not
4868 * clear which snap realms the mds cares about, we send everything we
4869 * know about.. that ensures we'll then get any new info the
4870 * recovering MDS might have.
4871 *
4872 * This is a relatively heavyweight operation, but it's rare.
4873 */
send_mds_reconnect(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)4874 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
4875 struct ceph_mds_session *session)
4876 {
4877 struct ceph_client *cl = mdsc->fsc->client;
4878 struct ceph_msg *reply;
4879 int mds = session->s_mds;
4880 int err = -ENOMEM;
4881 struct ceph_reconnect_state recon_state = {
4882 .session = session,
4883 };
4884 LIST_HEAD(dispose);
4885
4886 pr_info_client(cl, "mds%d reconnect start\n", mds);
4887
4888 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS);
4889 if (!recon_state.pagelist)
4890 goto fail_nopagelist;
4891
4892 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4893 if (!reply)
4894 goto fail_nomsg;
4895
4896 xa_destroy(&session->s_delegated_inos);
4897
4898 mutex_lock(&session->s_mutex);
4899 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
4900 session->s_seq = 0;
4901
4902 doutc(cl, "session %p state %s\n", session,
4903 ceph_session_state_name(session->s_state));
4904
4905 atomic_inc(&session->s_cap_gen);
4906
4907 spin_lock(&session->s_cap_lock);
4908 /* don't know if session is readonly */
4909 session->s_readonly = 0;
4910 /*
4911 * notify __ceph_remove_cap() that we are composing cap reconnect.
4912 * If a cap get released before being added to the cap reconnect,
4913 * __ceph_remove_cap() should skip queuing cap release.
4914 */
4915 session->s_cap_reconnect = 1;
4916 /* drop old cap expires; we're about to reestablish that state */
4917 detach_cap_releases(session, &dispose);
4918 spin_unlock(&session->s_cap_lock);
4919 dispose_cap_releases(mdsc, &dispose);
4920
4921 /* trim unused caps to reduce MDS's cache rejoin time */
4922 if (mdsc->fsc->sb->s_root)
4923 shrink_dcache_parent(mdsc->fsc->sb->s_root);
4924
4925 ceph_con_close(&session->s_con);
4926 ceph_con_open(&session->s_con,
4927 CEPH_ENTITY_TYPE_MDS, mds,
4928 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
4929
4930 /* replay unsafe requests */
4931 replay_unsafe_requests(mdsc, session);
4932
4933 ceph_early_kick_flushing_caps(mdsc, session);
4934
4935 down_read(&mdsc->snap_rwsem);
4936
4937 /* placeholder for nr_caps */
4938 err = ceph_pagelist_encode_32(recon_state.pagelist, 0);
4939 if (err)
4940 goto fail;
4941
4942 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) {
4943 recon_state.msg_version = 3;
4944 recon_state.allow_multi = true;
4945 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) {
4946 recon_state.msg_version = 3;
4947 } else {
4948 recon_state.msg_version = 2;
4949 }
4950 /* traverse this session's caps */
4951 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state);
4952
4953 spin_lock(&session->s_cap_lock);
4954 session->s_cap_reconnect = 0;
4955 spin_unlock(&session->s_cap_lock);
4956
4957 if (err < 0)
4958 goto fail;
4959
4960 /* check if all realms can be encoded into current message */
4961 if (mdsc->num_snap_realms) {
4962 size_t total_len =
4963 recon_state.pagelist->length +
4964 mdsc->num_snap_realms *
4965 sizeof(struct ceph_mds_snaprealm_reconnect);
4966 if (recon_state.msg_version >= 4) {
4967 /* number of realms */
4968 total_len += sizeof(u32);
4969 /* version, compat_version and struct_len */
4970 total_len += mdsc->num_snap_realms *
4971 (2 * sizeof(u8) + sizeof(u32));
4972 }
4973 if (total_len > RECONNECT_MAX_SIZE) {
4974 if (!recon_state.allow_multi) {
4975 err = -ENOSPC;
4976 goto fail;
4977 }
4978 if (recon_state.nr_caps) {
4979 err = send_reconnect_partial(&recon_state);
4980 if (err)
4981 goto fail;
4982 }
4983 recon_state.msg_version = 5;
4984 }
4985 }
4986
4987 err = encode_snap_realms(mdsc, &recon_state);
4988 if (err < 0)
4989 goto fail;
4990
4991 if (recon_state.msg_version >= 5) {
4992 err = ceph_pagelist_encode_8(recon_state.pagelist, 0);
4993 if (err < 0)
4994 goto fail;
4995 }
4996
4997 if (recon_state.nr_caps || recon_state.nr_realms) {
4998 struct page *page =
4999 list_first_entry(&recon_state.pagelist->head,
5000 struct page, lru);
5001 __le32 *addr = kmap_atomic(page);
5002 if (recon_state.nr_caps) {
5003 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms);
5004 *addr = cpu_to_le32(recon_state.nr_caps);
5005 } else if (recon_state.msg_version >= 4) {
5006 *(addr + 1) = cpu_to_le32(recon_state.nr_realms);
5007 }
5008 kunmap_atomic(addr);
5009 }
5010
5011 reply->hdr.version = cpu_to_le16(recon_state.msg_version);
5012 if (recon_state.msg_version >= 4)
5013 reply->hdr.compat_version = cpu_to_le16(4);
5014
5015 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length);
5016 ceph_msg_data_add_pagelist(reply, recon_state.pagelist);
5017
5018 ceph_con_send(&session->s_con, reply);
5019
5020 mutex_unlock(&session->s_mutex);
5021
5022 mutex_lock(&mdsc->mutex);
5023 __wake_requests(mdsc, &session->s_waiting);
5024 mutex_unlock(&mdsc->mutex);
5025
5026 up_read(&mdsc->snap_rwsem);
5027 ceph_pagelist_release(recon_state.pagelist);
5028 return;
5029
5030 fail:
5031 ceph_msg_put(reply);
5032 up_read(&mdsc->snap_rwsem);
5033 mutex_unlock(&session->s_mutex);
5034 fail_nomsg:
5035 ceph_pagelist_release(recon_state.pagelist);
5036 fail_nopagelist:
5037 pr_err_client(cl, "error %d preparing reconnect for mds%d\n",
5038 err, mds);
5039 return;
5040 }
5041
5042
5043 /*
5044 * compare old and new mdsmaps, kicking requests
5045 * and closing out old connections as necessary
5046 *
5047 * called under mdsc->mutex.
5048 */
check_new_map(struct ceph_mds_client * mdsc,struct ceph_mdsmap * newmap,struct ceph_mdsmap * oldmap)5049 static void check_new_map(struct ceph_mds_client *mdsc,
5050 struct ceph_mdsmap *newmap,
5051 struct ceph_mdsmap *oldmap)
5052 {
5053 int i, j, err;
5054 int oldstate, newstate;
5055 struct ceph_mds_session *s;
5056 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0};
5057 struct ceph_client *cl = mdsc->fsc->client;
5058
5059 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch);
5060
5061 if (newmap->m_info) {
5062 for (i = 0; i < newmap->possible_max_rank; i++) {
5063 for (j = 0; j < newmap->m_info[i].num_export_targets; j++)
5064 set_bit(newmap->m_info[i].export_targets[j], targets);
5065 }
5066 }
5067
5068 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5069 if (!mdsc->sessions[i])
5070 continue;
5071 s = mdsc->sessions[i];
5072 oldstate = ceph_mdsmap_get_state(oldmap, i);
5073 newstate = ceph_mdsmap_get_state(newmap, i);
5074
5075 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n",
5076 i, ceph_mds_state_name(oldstate),
5077 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
5078 ceph_mds_state_name(newstate),
5079 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
5080 ceph_session_state_name(s->s_state));
5081
5082 if (i >= newmap->possible_max_rank) {
5083 /* force close session for stopped mds */
5084 ceph_get_mds_session(s);
5085 __unregister_session(mdsc, s);
5086 __wake_requests(mdsc, &s->s_waiting);
5087 mutex_unlock(&mdsc->mutex);
5088
5089 mutex_lock(&s->s_mutex);
5090 cleanup_session_requests(mdsc, s);
5091 remove_session_caps(s);
5092 mutex_unlock(&s->s_mutex);
5093
5094 ceph_put_mds_session(s);
5095
5096 mutex_lock(&mdsc->mutex);
5097 kick_requests(mdsc, i);
5098 continue;
5099 }
5100
5101 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
5102 ceph_mdsmap_get_addr(newmap, i),
5103 sizeof(struct ceph_entity_addr))) {
5104 /* just close it */
5105 mutex_unlock(&mdsc->mutex);
5106 mutex_lock(&s->s_mutex);
5107 mutex_lock(&mdsc->mutex);
5108 ceph_con_close(&s->s_con);
5109 mutex_unlock(&s->s_mutex);
5110 s->s_state = CEPH_MDS_SESSION_RESTARTING;
5111 } else if (oldstate == newstate) {
5112 continue; /* nothing new with this mds */
5113 }
5114
5115 /*
5116 * send reconnect?
5117 */
5118 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
5119 newstate >= CEPH_MDS_STATE_RECONNECT) {
5120 mutex_unlock(&mdsc->mutex);
5121 clear_bit(i, targets);
5122 send_mds_reconnect(mdsc, s);
5123 mutex_lock(&mdsc->mutex);
5124 }
5125
5126 /*
5127 * kick request on any mds that has gone active.
5128 */
5129 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
5130 newstate >= CEPH_MDS_STATE_ACTIVE) {
5131 if (oldstate != CEPH_MDS_STATE_CREATING &&
5132 oldstate != CEPH_MDS_STATE_STARTING)
5133 pr_info_client(cl, "mds%d recovery completed\n",
5134 s->s_mds);
5135 kick_requests(mdsc, i);
5136 mutex_unlock(&mdsc->mutex);
5137 mutex_lock(&s->s_mutex);
5138 mutex_lock(&mdsc->mutex);
5139 ceph_kick_flushing_caps(mdsc, s);
5140 mutex_unlock(&s->s_mutex);
5141 wake_up_session_caps(s, RECONNECT);
5142 }
5143 }
5144
5145 /*
5146 * Only open and reconnect sessions that don't exist yet.
5147 */
5148 for (i = 0; i < newmap->possible_max_rank; i++) {
5149 /*
5150 * In case the import MDS is crashed just after
5151 * the EImportStart journal is flushed, so when
5152 * a standby MDS takes over it and is replaying
5153 * the EImportStart journal the new MDS daemon
5154 * will wait the client to reconnect it, but the
5155 * client may never register/open the session yet.
5156 *
5157 * Will try to reconnect that MDS daemon if the
5158 * rank number is in the export targets array and
5159 * is the up:reconnect state.
5160 */
5161 newstate = ceph_mdsmap_get_state(newmap, i);
5162 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT)
5163 continue;
5164
5165 /*
5166 * The session maybe registered and opened by some
5167 * requests which were choosing random MDSes during
5168 * the mdsc->mutex's unlock/lock gap below in rare
5169 * case. But the related MDS daemon will just queue
5170 * that requests and be still waiting for the client's
5171 * reconnection request in up:reconnect state.
5172 */
5173 s = __ceph_lookup_mds_session(mdsc, i);
5174 if (likely(!s)) {
5175 s = __open_export_target_session(mdsc, i);
5176 if (IS_ERR(s)) {
5177 err = PTR_ERR(s);
5178 pr_err_client(cl,
5179 "failed to open export target session, err %d\n",
5180 err);
5181 continue;
5182 }
5183 }
5184 doutc(cl, "send reconnect to export target mds.%d\n", i);
5185 mutex_unlock(&mdsc->mutex);
5186 send_mds_reconnect(mdsc, s);
5187 ceph_put_mds_session(s);
5188 mutex_lock(&mdsc->mutex);
5189 }
5190
5191 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5192 s = mdsc->sessions[i];
5193 if (!s)
5194 continue;
5195 if (!ceph_mdsmap_is_laggy(newmap, i))
5196 continue;
5197 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5198 s->s_state == CEPH_MDS_SESSION_HUNG ||
5199 s->s_state == CEPH_MDS_SESSION_CLOSING) {
5200 doutc(cl, " connecting to export targets of laggy mds%d\n", i);
5201 __open_export_target_sessions(mdsc, s);
5202 }
5203 }
5204 }
5205
5206
5207
5208 /*
5209 * leases
5210 */
5211
5212 /*
5213 * caller must hold session s_mutex, dentry->d_lock
5214 */
__ceph_mdsc_drop_dentry_lease(struct dentry * dentry)5215 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
5216 {
5217 struct ceph_dentry_info *di = ceph_dentry(dentry);
5218
5219 ceph_put_mds_session(di->lease_session);
5220 di->lease_session = NULL;
5221 }
5222
handle_lease(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)5223 static void handle_lease(struct ceph_mds_client *mdsc,
5224 struct ceph_mds_session *session,
5225 struct ceph_msg *msg)
5226 {
5227 struct ceph_client *cl = mdsc->fsc->client;
5228 struct super_block *sb = mdsc->fsc->sb;
5229 struct inode *inode;
5230 struct dentry *parent, *dentry;
5231 struct ceph_dentry_info *di;
5232 int mds = session->s_mds;
5233 struct ceph_mds_lease *h = msg->front.iov_base;
5234 u32 seq;
5235 struct ceph_vino vino;
5236 struct qstr dname;
5237 int release = 0;
5238
5239 doutc(cl, "from mds%d\n", mds);
5240
5241 if (!ceph_inc_mds_stopping_blocker(mdsc, session))
5242 return;
5243
5244 /* decode */
5245 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
5246 goto bad;
5247 vino.ino = le64_to_cpu(h->ino);
5248 vino.snap = CEPH_NOSNAP;
5249 seq = le32_to_cpu(h->seq);
5250 dname.len = get_unaligned_le32(h + 1);
5251 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
5252 goto bad;
5253 dname.name = (void *)(h + 1) + sizeof(u32);
5254
5255 /* lookup inode */
5256 inode = ceph_find_inode(sb, vino);
5257 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action),
5258 vino.ino, inode, dname.len, dname.name);
5259
5260 mutex_lock(&session->s_mutex);
5261 if (!inode) {
5262 doutc(cl, "no inode %llx\n", vino.ino);
5263 goto release;
5264 }
5265
5266 /* dentry */
5267 parent = d_find_alias(inode);
5268 if (!parent) {
5269 doutc(cl, "no parent dentry on inode %p\n", inode);
5270 WARN_ON(1);
5271 goto release; /* hrm... */
5272 }
5273 dname.hash = full_name_hash(parent, dname.name, dname.len);
5274 dentry = d_lookup(parent, &dname);
5275 dput(parent);
5276 if (!dentry)
5277 goto release;
5278
5279 spin_lock(&dentry->d_lock);
5280 di = ceph_dentry(dentry);
5281 switch (h->action) {
5282 case CEPH_MDS_LEASE_REVOKE:
5283 if (di->lease_session == session) {
5284 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
5285 h->seq = cpu_to_le32(di->lease_seq);
5286 __ceph_mdsc_drop_dentry_lease(dentry);
5287 }
5288 release = 1;
5289 break;
5290
5291 case CEPH_MDS_LEASE_RENEW:
5292 if (di->lease_session == session &&
5293 di->lease_gen == atomic_read(&session->s_cap_gen) &&
5294 di->lease_renew_from &&
5295 di->lease_renew_after == 0) {
5296 unsigned long duration =
5297 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
5298
5299 di->lease_seq = seq;
5300 di->time = di->lease_renew_from + duration;
5301 di->lease_renew_after = di->lease_renew_from +
5302 (duration >> 1);
5303 di->lease_renew_from = 0;
5304 }
5305 break;
5306 }
5307 spin_unlock(&dentry->d_lock);
5308 dput(dentry);
5309
5310 if (!release)
5311 goto out;
5312
5313 release:
5314 /* let's just reuse the same message */
5315 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
5316 ceph_msg_get(msg);
5317 ceph_con_send(&session->s_con, msg);
5318
5319 out:
5320 mutex_unlock(&session->s_mutex);
5321 iput(inode);
5322
5323 ceph_dec_mds_stopping_blocker(mdsc);
5324 return;
5325
5326 bad:
5327 ceph_dec_mds_stopping_blocker(mdsc);
5328
5329 pr_err_client(cl, "corrupt lease message\n");
5330 ceph_msg_dump(msg);
5331 }
5332
ceph_mdsc_lease_send_msg(struct ceph_mds_session * session,struct dentry * dentry,char action,u32 seq)5333 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
5334 struct dentry *dentry, char action,
5335 u32 seq)
5336 {
5337 struct ceph_client *cl = session->s_mdsc->fsc->client;
5338 struct ceph_msg *msg;
5339 struct ceph_mds_lease *lease;
5340 struct inode *dir;
5341 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX;
5342
5343 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action),
5344 session->s_mds);
5345
5346 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
5347 if (!msg)
5348 return;
5349 lease = msg->front.iov_base;
5350 lease->action = action;
5351 lease->seq = cpu_to_le32(seq);
5352
5353 spin_lock(&dentry->d_lock);
5354 dir = d_inode(dentry->d_parent);
5355 lease->ino = cpu_to_le64(ceph_ino(dir));
5356 lease->first = lease->last = cpu_to_le64(ceph_snap(dir));
5357
5358 put_unaligned_le32(dentry->d_name.len, lease + 1);
5359 memcpy((void *)(lease + 1) + 4,
5360 dentry->d_name.name, dentry->d_name.len);
5361 spin_unlock(&dentry->d_lock);
5362
5363 ceph_con_send(&session->s_con, msg);
5364 }
5365
5366 /*
5367 * lock unlock the session, to wait ongoing session activities
5368 */
lock_unlock_session(struct ceph_mds_session * s)5369 static void lock_unlock_session(struct ceph_mds_session *s)
5370 {
5371 mutex_lock(&s->s_mutex);
5372 mutex_unlock(&s->s_mutex);
5373 }
5374
maybe_recover_session(struct ceph_mds_client * mdsc)5375 static void maybe_recover_session(struct ceph_mds_client *mdsc)
5376 {
5377 struct ceph_client *cl = mdsc->fsc->client;
5378 struct ceph_fs_client *fsc = mdsc->fsc;
5379
5380 if (!ceph_test_mount_opt(fsc, CLEANRECOVER))
5381 return;
5382
5383 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED)
5384 return;
5385
5386 if (!READ_ONCE(fsc->blocklisted))
5387 return;
5388
5389 pr_info_client(cl, "auto reconnect after blocklisted\n");
5390 ceph_force_reconnect(fsc->sb);
5391 }
5392
check_session_state(struct ceph_mds_session * s)5393 bool check_session_state(struct ceph_mds_session *s)
5394 {
5395 struct ceph_client *cl = s->s_mdsc->fsc->client;
5396
5397 switch (s->s_state) {
5398 case CEPH_MDS_SESSION_OPEN:
5399 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
5400 s->s_state = CEPH_MDS_SESSION_HUNG;
5401 pr_info_client(cl, "mds%d hung\n", s->s_mds);
5402 }
5403 break;
5404 case CEPH_MDS_SESSION_CLOSING:
5405 case CEPH_MDS_SESSION_NEW:
5406 case CEPH_MDS_SESSION_RESTARTING:
5407 case CEPH_MDS_SESSION_CLOSED:
5408 case CEPH_MDS_SESSION_REJECTED:
5409 return false;
5410 }
5411
5412 return true;
5413 }
5414
5415 /*
5416 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply,
5417 * then we need to retransmit that request.
5418 */
inc_session_sequence(struct ceph_mds_session * s)5419 void inc_session_sequence(struct ceph_mds_session *s)
5420 {
5421 struct ceph_client *cl = s->s_mdsc->fsc->client;
5422
5423 lockdep_assert_held(&s->s_mutex);
5424
5425 s->s_seq++;
5426
5427 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
5428 int ret;
5429
5430 doutc(cl, "resending session close request for mds%d\n", s->s_mds);
5431 ret = request_close_session(s);
5432 if (ret < 0)
5433 pr_err_client(cl, "unable to close session to mds%d: %d\n",
5434 s->s_mds, ret);
5435 }
5436 }
5437
5438 /*
5439 * delayed work -- periodically trim expired leases, renew caps with mds. If
5440 * the @delay parameter is set to 0 or if it's more than 5 secs, the default
5441 * workqueue delay value of 5 secs will be used.
5442 */
schedule_delayed(struct ceph_mds_client * mdsc,unsigned long delay)5443 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay)
5444 {
5445 unsigned long max_delay = HZ * 5;
5446
5447 /* 5 secs default delay */
5448 if (!delay || (delay > max_delay))
5449 delay = max_delay;
5450 schedule_delayed_work(&mdsc->delayed_work,
5451 round_jiffies_relative(delay));
5452 }
5453
delayed_work(struct work_struct * work)5454 static void delayed_work(struct work_struct *work)
5455 {
5456 struct ceph_mds_client *mdsc =
5457 container_of(work, struct ceph_mds_client, delayed_work.work);
5458 unsigned long delay;
5459 int renew_interval;
5460 int renew_caps;
5461 int i;
5462
5463 doutc(mdsc->fsc->client, "mdsc delayed_work\n");
5464
5465 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED)
5466 return;
5467
5468 mutex_lock(&mdsc->mutex);
5469 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
5470 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
5471 mdsc->last_renew_caps);
5472 if (renew_caps)
5473 mdsc->last_renew_caps = jiffies;
5474
5475 for (i = 0; i < mdsc->max_sessions; i++) {
5476 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
5477 if (!s)
5478 continue;
5479
5480 if (!check_session_state(s)) {
5481 ceph_put_mds_session(s);
5482 continue;
5483 }
5484 mutex_unlock(&mdsc->mutex);
5485
5486 ceph_flush_session_cap_releases(mdsc, s);
5487
5488 mutex_lock(&s->s_mutex);
5489 if (renew_caps)
5490 send_renew_caps(mdsc, s);
5491 else
5492 ceph_con_keepalive(&s->s_con);
5493 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5494 s->s_state == CEPH_MDS_SESSION_HUNG)
5495 ceph_send_cap_releases(mdsc, s);
5496 mutex_unlock(&s->s_mutex);
5497 ceph_put_mds_session(s);
5498
5499 mutex_lock(&mdsc->mutex);
5500 }
5501 mutex_unlock(&mdsc->mutex);
5502
5503 delay = ceph_check_delayed_caps(mdsc);
5504
5505 ceph_queue_cap_reclaim_work(mdsc);
5506
5507 ceph_trim_snapid_map(mdsc);
5508
5509 maybe_recover_session(mdsc);
5510
5511 schedule_delayed(mdsc, delay);
5512 }
5513
ceph_mdsc_init(struct ceph_fs_client * fsc)5514 int ceph_mdsc_init(struct ceph_fs_client *fsc)
5515
5516 {
5517 struct ceph_mds_client *mdsc;
5518 int err;
5519
5520 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
5521 if (!mdsc)
5522 return -ENOMEM;
5523 mdsc->fsc = fsc;
5524 mutex_init(&mdsc->mutex);
5525 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
5526 if (!mdsc->mdsmap) {
5527 err = -ENOMEM;
5528 goto err_mdsc;
5529 }
5530
5531 init_completion(&mdsc->safe_umount_waiters);
5532 spin_lock_init(&mdsc->stopping_lock);
5533 atomic_set(&mdsc->stopping_blockers, 0);
5534 init_completion(&mdsc->stopping_waiter);
5535 init_waitqueue_head(&mdsc->session_close_wq);
5536 INIT_LIST_HEAD(&mdsc->waiting_for_map);
5537 mdsc->quotarealms_inodes = RB_ROOT;
5538 mutex_init(&mdsc->quotarealms_inodes_mutex);
5539 init_rwsem(&mdsc->snap_rwsem);
5540 mdsc->snap_realms = RB_ROOT;
5541 INIT_LIST_HEAD(&mdsc->snap_empty);
5542 spin_lock_init(&mdsc->snap_empty_lock);
5543 mdsc->request_tree = RB_ROOT;
5544 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
5545 mdsc->last_renew_caps = jiffies;
5546 INIT_LIST_HEAD(&mdsc->cap_delay_list);
5547 #ifdef CONFIG_DEBUG_FS
5548 INIT_LIST_HEAD(&mdsc->cap_wait_list);
5549 #endif
5550 spin_lock_init(&mdsc->cap_delay_lock);
5551 INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list);
5552 INIT_LIST_HEAD(&mdsc->snap_flush_list);
5553 spin_lock_init(&mdsc->snap_flush_lock);
5554 mdsc->last_cap_flush_tid = 1;
5555 INIT_LIST_HEAD(&mdsc->cap_flush_list);
5556 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
5557 spin_lock_init(&mdsc->cap_dirty_lock);
5558 init_waitqueue_head(&mdsc->cap_flushing_wq);
5559 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work);
5560 INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work);
5561 err = ceph_metric_init(&mdsc->metric);
5562 if (err)
5563 goto err_mdsmap;
5564
5565 spin_lock_init(&mdsc->dentry_list_lock);
5566 INIT_LIST_HEAD(&mdsc->dentry_leases);
5567 INIT_LIST_HEAD(&mdsc->dentry_dir_leases);
5568
5569 ceph_caps_init(mdsc);
5570 ceph_adjust_caps_max_min(mdsc, fsc->mount_options);
5571
5572 spin_lock_init(&mdsc->snapid_map_lock);
5573 mdsc->snapid_map_tree = RB_ROOT;
5574 INIT_LIST_HEAD(&mdsc->snapid_map_lru);
5575
5576 init_rwsem(&mdsc->pool_perm_rwsem);
5577 mdsc->pool_perm_tree = RB_ROOT;
5578
5579 strscpy(mdsc->nodename, utsname()->nodename,
5580 sizeof(mdsc->nodename));
5581
5582 fsc->mdsc = mdsc;
5583 return 0;
5584
5585 err_mdsmap:
5586 kfree(mdsc->mdsmap);
5587 err_mdsc:
5588 kfree(mdsc);
5589 return err;
5590 }
5591
5592 /*
5593 * Wait for safe replies on open mds requests. If we time out, drop
5594 * all requests from the tree to avoid dangling dentry refs.
5595 */
wait_requests(struct ceph_mds_client * mdsc)5596 static void wait_requests(struct ceph_mds_client *mdsc)
5597 {
5598 struct ceph_client *cl = mdsc->fsc->client;
5599 struct ceph_options *opts = mdsc->fsc->client->options;
5600 struct ceph_mds_request *req;
5601
5602 mutex_lock(&mdsc->mutex);
5603 if (__get_oldest_req(mdsc)) {
5604 mutex_unlock(&mdsc->mutex);
5605
5606 doutc(cl, "waiting for requests\n");
5607 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
5608 ceph_timeout_jiffies(opts->mount_timeout));
5609
5610 /* tear down remaining requests */
5611 mutex_lock(&mdsc->mutex);
5612 while ((req = __get_oldest_req(mdsc))) {
5613 doutc(cl, "timed out on tid %llu\n", req->r_tid);
5614 list_del_init(&req->r_wait);
5615 __unregister_request(mdsc, req);
5616 }
5617 }
5618 mutex_unlock(&mdsc->mutex);
5619 doutc(cl, "done\n");
5620 }
5621
send_flush_mdlog(struct ceph_mds_session * s)5622 void send_flush_mdlog(struct ceph_mds_session *s)
5623 {
5624 struct ceph_client *cl = s->s_mdsc->fsc->client;
5625 struct ceph_msg *msg;
5626
5627 /*
5628 * Pre-luminous MDS crashes when it sees an unknown session request
5629 */
5630 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS))
5631 return;
5632
5633 mutex_lock(&s->s_mutex);
5634 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n",
5635 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5636 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG,
5637 s->s_seq);
5638 if (!msg) {
5639 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n",
5640 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5641 } else {
5642 ceph_con_send(&s->s_con, msg);
5643 }
5644 mutex_unlock(&s->s_mutex);
5645 }
5646
ceph_mds_auth_match(struct ceph_mds_client * mdsc,struct ceph_mds_cap_auth * auth,const struct cred * cred,char * tpath)5647 static int ceph_mds_auth_match(struct ceph_mds_client *mdsc,
5648 struct ceph_mds_cap_auth *auth,
5649 const struct cred *cred,
5650 char *tpath)
5651 {
5652 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5653 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5654 struct ceph_client *cl = mdsc->fsc->client;
5655 const char *spath = mdsc->fsc->mount_options->server_path;
5656 bool gid_matched = false;
5657 u32 gid, tlen, len;
5658 int i, j;
5659
5660 doutc(cl, "match.uid %lld\n", auth->match.uid);
5661 if (auth->match.uid != MDS_AUTH_UID_ANY) {
5662 if (auth->match.uid != caller_uid)
5663 return 0;
5664 if (auth->match.num_gids) {
5665 for (i = 0; i < auth->match.num_gids; i++) {
5666 if (caller_gid == auth->match.gids[i])
5667 gid_matched = true;
5668 }
5669 if (!gid_matched && cred->group_info->ngroups) {
5670 for (i = 0; i < cred->group_info->ngroups; i++) {
5671 gid = from_kgid(&init_user_ns,
5672 cred->group_info->gid[i]);
5673 for (j = 0; j < auth->match.num_gids; j++) {
5674 if (gid == auth->match.gids[j]) {
5675 gid_matched = true;
5676 break;
5677 }
5678 }
5679 if (gid_matched)
5680 break;
5681 }
5682 }
5683 if (!gid_matched)
5684 return 0;
5685 }
5686 }
5687
5688 /* path match */
5689 if (auth->match.path) {
5690 if (!tpath)
5691 return 0;
5692
5693 tlen = strlen(tpath);
5694 len = strlen(auth->match.path);
5695 if (len) {
5696 char *_tpath = tpath;
5697 bool free_tpath = false;
5698 int m, n;
5699
5700 doutc(cl, "server path %s, tpath %s, match.path %s\n",
5701 spath, tpath, auth->match.path);
5702 if (spath && (m = strlen(spath)) != 1) {
5703 /* mount path + '/' + tpath + an extra space */
5704 n = m + 1 + tlen + 1;
5705 _tpath = kmalloc(n, GFP_NOFS);
5706 if (!_tpath)
5707 return -ENOMEM;
5708 /* remove the leading '/' */
5709 snprintf(_tpath, n, "%s/%s", spath + 1, tpath);
5710 free_tpath = true;
5711 tlen = strlen(_tpath);
5712 }
5713
5714 /*
5715 * Please note the tailing '/' for match.path has already
5716 * been removed when parsing.
5717 *
5718 * Remove the tailing '/' for the target path.
5719 */
5720 while (tlen && _tpath[tlen - 1] == '/') {
5721 _tpath[tlen - 1] = '\0';
5722 tlen -= 1;
5723 }
5724 doutc(cl, "_tpath %s\n", _tpath);
5725
5726 /*
5727 * In case first == _tpath && tlen == len:
5728 * match.path=/foo --> /foo _path=/foo --> match
5729 * match.path=/foo/ --> /foo _path=/foo --> match
5730 *
5731 * In case first == _tmatch.path && tlen > len:
5732 * match.path=/foo/ --> /foo _path=/foo/ --> match
5733 * match.path=/foo --> /foo _path=/foo/ --> match
5734 * match.path=/foo/ --> /foo _path=/foo/d --> match
5735 * match.path=/foo --> /foo _path=/food --> mismatch
5736 *
5737 * All the other cases --> mismatch
5738 */
5739 bool path_matched = true;
5740 char *first = strstr(_tpath, auth->match.path);
5741 if (first != _tpath ||
5742 (tlen > len && _tpath[len] != '/')) {
5743 path_matched = false;
5744 }
5745
5746 if (free_tpath)
5747 kfree(_tpath);
5748
5749 if (!path_matched)
5750 return 0;
5751 }
5752 }
5753
5754 doutc(cl, "matched\n");
5755 return 1;
5756 }
5757
ceph_mds_check_access(struct ceph_mds_client * mdsc,char * tpath,int mask)5758 int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask)
5759 {
5760 const struct cred *cred = get_current_cred();
5761 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5762 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5763 struct ceph_mds_cap_auth *rw_perms_s = NULL;
5764 struct ceph_client *cl = mdsc->fsc->client;
5765 bool root_squash_perms = true;
5766 int i, err;
5767
5768 doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n",
5769 tpath, mask, caller_uid, caller_gid);
5770
5771 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
5772 struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i];
5773
5774 err = ceph_mds_auth_match(mdsc, s, cred, tpath);
5775 if (err < 0) {
5776 put_cred(cred);
5777 return err;
5778 } else if (err > 0) {
5779 /* always follow the last auth caps' permision */
5780 root_squash_perms = true;
5781 rw_perms_s = NULL;
5782 if ((mask & MAY_WRITE) && s->writeable &&
5783 s->match.root_squash && (!caller_uid || !caller_gid))
5784 root_squash_perms = false;
5785
5786 if (((mask & MAY_WRITE) && !s->writeable) ||
5787 ((mask & MAY_READ) && !s->readable))
5788 rw_perms_s = s;
5789 }
5790 }
5791
5792 put_cred(cred);
5793
5794 doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms,
5795 rw_perms_s);
5796 if (root_squash_perms && rw_perms_s == NULL) {
5797 doutc(cl, "access allowed\n");
5798 return 0;
5799 }
5800
5801 if (!root_squash_perms) {
5802 doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write",
5803 caller_uid, caller_gid);
5804 }
5805 if (rw_perms_s) {
5806 doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d",
5807 rw_perms_s->readable, rw_perms_s->writeable,
5808 !!(mask & MAY_READ), !!(mask & MAY_WRITE));
5809 }
5810 doutc(cl, "access denied\n");
5811 return -EACCES;
5812 }
5813
5814 /*
5815 * called before mount is ro, and before dentries are torn down.
5816 * (hmm, does this still race with new lookups?)
5817 */
ceph_mdsc_pre_umount(struct ceph_mds_client * mdsc)5818 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
5819 {
5820 doutc(mdsc->fsc->client, "begin\n");
5821 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN;
5822
5823 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true);
5824 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false);
5825 ceph_flush_dirty_caps(mdsc);
5826 wait_requests(mdsc);
5827
5828 /*
5829 * wait for reply handlers to drop their request refs and
5830 * their inode/dcache refs
5831 */
5832 ceph_msgr_flush();
5833
5834 ceph_cleanup_quotarealms_inodes(mdsc);
5835 doutc(mdsc->fsc->client, "done\n");
5836 }
5837
5838 /*
5839 * flush the mdlog and wait for all write mds requests to flush.
5840 */
flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client * mdsc,u64 want_tid)5841 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc,
5842 u64 want_tid)
5843 {
5844 struct ceph_client *cl = mdsc->fsc->client;
5845 struct ceph_mds_request *req = NULL, *nextreq;
5846 struct ceph_mds_session *last_session = NULL;
5847 struct rb_node *n;
5848
5849 mutex_lock(&mdsc->mutex);
5850 doutc(cl, "want %lld\n", want_tid);
5851 restart:
5852 req = __get_oldest_req(mdsc);
5853 while (req && req->r_tid <= want_tid) {
5854 /* find next request */
5855 n = rb_next(&req->r_node);
5856 if (n)
5857 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
5858 else
5859 nextreq = NULL;
5860 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
5861 (req->r_op & CEPH_MDS_OP_WRITE)) {
5862 struct ceph_mds_session *s = req->r_session;
5863
5864 if (!s) {
5865 req = nextreq;
5866 continue;
5867 }
5868
5869 /* write op */
5870 ceph_mdsc_get_request(req);
5871 if (nextreq)
5872 ceph_mdsc_get_request(nextreq);
5873 s = ceph_get_mds_session(s);
5874 mutex_unlock(&mdsc->mutex);
5875
5876 /* send flush mdlog request to MDS */
5877 if (last_session != s) {
5878 send_flush_mdlog(s);
5879 ceph_put_mds_session(last_session);
5880 last_session = s;
5881 } else {
5882 ceph_put_mds_session(s);
5883 }
5884 doutc(cl, "wait on %llu (want %llu)\n",
5885 req->r_tid, want_tid);
5886 wait_for_completion(&req->r_safe_completion);
5887
5888 mutex_lock(&mdsc->mutex);
5889 ceph_mdsc_put_request(req);
5890 if (!nextreq)
5891 break; /* next dne before, so we're done! */
5892 if (RB_EMPTY_NODE(&nextreq->r_node)) {
5893 /* next request was removed from tree */
5894 ceph_mdsc_put_request(nextreq);
5895 goto restart;
5896 }
5897 ceph_mdsc_put_request(nextreq); /* won't go away */
5898 }
5899 req = nextreq;
5900 }
5901 mutex_unlock(&mdsc->mutex);
5902 ceph_put_mds_session(last_session);
5903 doutc(cl, "done\n");
5904 }
5905
ceph_mdsc_sync(struct ceph_mds_client * mdsc)5906 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
5907 {
5908 struct ceph_client *cl = mdsc->fsc->client;
5909 u64 want_tid, want_flush;
5910
5911 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN)
5912 return;
5913
5914 doutc(cl, "sync\n");
5915 mutex_lock(&mdsc->mutex);
5916 want_tid = mdsc->last_tid;
5917 mutex_unlock(&mdsc->mutex);
5918
5919 ceph_flush_dirty_caps(mdsc);
5920 ceph_flush_cap_releases(mdsc);
5921 spin_lock(&mdsc->cap_dirty_lock);
5922 want_flush = mdsc->last_cap_flush_tid;
5923 if (!list_empty(&mdsc->cap_flush_list)) {
5924 struct ceph_cap_flush *cf =
5925 list_last_entry(&mdsc->cap_flush_list,
5926 struct ceph_cap_flush, g_list);
5927 cf->wake = true;
5928 }
5929 spin_unlock(&mdsc->cap_dirty_lock);
5930
5931 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
5932
5933 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid);
5934 wait_caps_flush(mdsc, want_flush);
5935 }
5936
5937 /*
5938 * true if all sessions are closed, or we force unmount
5939 */
done_closing_sessions(struct ceph_mds_client * mdsc,int skipped)5940 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
5941 {
5942 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
5943 return true;
5944 return atomic_read(&mdsc->num_sessions) <= skipped;
5945 }
5946
5947 /*
5948 * called after sb is ro or when metadata corrupted.
5949 */
ceph_mdsc_close_sessions(struct ceph_mds_client * mdsc)5950 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
5951 {
5952 struct ceph_options *opts = mdsc->fsc->client->options;
5953 struct ceph_client *cl = mdsc->fsc->client;
5954 struct ceph_mds_session *session;
5955 int i;
5956 int skipped = 0;
5957
5958 doutc(cl, "begin\n");
5959
5960 /* close sessions */
5961 mutex_lock(&mdsc->mutex);
5962 for (i = 0; i < mdsc->max_sessions; i++) {
5963 session = __ceph_lookup_mds_session(mdsc, i);
5964 if (!session)
5965 continue;
5966 mutex_unlock(&mdsc->mutex);
5967 mutex_lock(&session->s_mutex);
5968 if (__close_session(mdsc, session) <= 0)
5969 skipped++;
5970 mutex_unlock(&session->s_mutex);
5971 ceph_put_mds_session(session);
5972 mutex_lock(&mdsc->mutex);
5973 }
5974 mutex_unlock(&mdsc->mutex);
5975
5976 doutc(cl, "waiting for sessions to close\n");
5977 wait_event_timeout(mdsc->session_close_wq,
5978 done_closing_sessions(mdsc, skipped),
5979 ceph_timeout_jiffies(opts->mount_timeout));
5980
5981 /* tear down remaining sessions */
5982 mutex_lock(&mdsc->mutex);
5983 for (i = 0; i < mdsc->max_sessions; i++) {
5984 if (mdsc->sessions[i]) {
5985 session = ceph_get_mds_session(mdsc->sessions[i]);
5986 __unregister_session(mdsc, session);
5987 mutex_unlock(&mdsc->mutex);
5988 mutex_lock(&session->s_mutex);
5989 remove_session_caps(session);
5990 mutex_unlock(&session->s_mutex);
5991 ceph_put_mds_session(session);
5992 mutex_lock(&mdsc->mutex);
5993 }
5994 }
5995 WARN_ON(!list_empty(&mdsc->cap_delay_list));
5996 mutex_unlock(&mdsc->mutex);
5997
5998 ceph_cleanup_snapid_map(mdsc);
5999 ceph_cleanup_global_and_empty_realms(mdsc);
6000
6001 cancel_work_sync(&mdsc->cap_reclaim_work);
6002 cancel_work_sync(&mdsc->cap_unlink_work);
6003 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
6004
6005 doutc(cl, "done\n");
6006 }
6007
ceph_mdsc_force_umount(struct ceph_mds_client * mdsc)6008 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
6009 {
6010 struct ceph_mds_session *session;
6011 int mds;
6012
6013 doutc(mdsc->fsc->client, "force umount\n");
6014
6015 mutex_lock(&mdsc->mutex);
6016 for (mds = 0; mds < mdsc->max_sessions; mds++) {
6017 session = __ceph_lookup_mds_session(mdsc, mds);
6018 if (!session)
6019 continue;
6020
6021 if (session->s_state == CEPH_MDS_SESSION_REJECTED)
6022 __unregister_session(mdsc, session);
6023 __wake_requests(mdsc, &session->s_waiting);
6024 mutex_unlock(&mdsc->mutex);
6025
6026 mutex_lock(&session->s_mutex);
6027 __close_session(mdsc, session);
6028 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
6029 cleanup_session_requests(mdsc, session);
6030 remove_session_caps(session);
6031 }
6032 mutex_unlock(&session->s_mutex);
6033 ceph_put_mds_session(session);
6034
6035 mutex_lock(&mdsc->mutex);
6036 kick_requests(mdsc, mds);
6037 }
6038 __wake_requests(mdsc, &mdsc->waiting_for_map);
6039 mutex_unlock(&mdsc->mutex);
6040 }
6041
ceph_mdsc_stop(struct ceph_mds_client * mdsc)6042 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
6043 {
6044 doutc(mdsc->fsc->client, "stop\n");
6045 /*
6046 * Make sure the delayed work stopped before releasing
6047 * the resources.
6048 *
6049 * Because the cancel_delayed_work_sync() will only
6050 * guarantee that the work finishes executing. But the
6051 * delayed work will re-arm itself again after that.
6052 */
6053 flush_delayed_work(&mdsc->delayed_work);
6054
6055 if (mdsc->mdsmap)
6056 ceph_mdsmap_destroy(mdsc->mdsmap);
6057 kfree(mdsc->sessions);
6058 ceph_caps_finalize(mdsc);
6059
6060 if (mdsc->s_cap_auths) {
6061 int i;
6062
6063 for (i = 0; i < mdsc->s_cap_auths_num; i++) {
6064 kfree(mdsc->s_cap_auths[i].match.gids);
6065 kfree(mdsc->s_cap_auths[i].match.path);
6066 kfree(mdsc->s_cap_auths[i].match.fs_name);
6067 }
6068 kfree(mdsc->s_cap_auths);
6069 }
6070
6071 ceph_pool_perm_destroy(mdsc);
6072 }
6073
ceph_mdsc_destroy(struct ceph_fs_client * fsc)6074 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
6075 {
6076 struct ceph_mds_client *mdsc = fsc->mdsc;
6077 doutc(fsc->client, "%p\n", mdsc);
6078
6079 if (!mdsc)
6080 return;
6081
6082 /* flush out any connection work with references to us */
6083 ceph_msgr_flush();
6084
6085 ceph_mdsc_stop(mdsc);
6086
6087 ceph_metric_destroy(&mdsc->metric);
6088
6089 fsc->mdsc = NULL;
6090 kfree(mdsc);
6091 doutc(fsc->client, "%p done\n", mdsc);
6092 }
6093
ceph_mdsc_handle_fsmap(struct ceph_mds_client * mdsc,struct ceph_msg * msg)6094 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6095 {
6096 struct ceph_fs_client *fsc = mdsc->fsc;
6097 struct ceph_client *cl = fsc->client;
6098 const char *mds_namespace = fsc->mount_options->mds_namespace;
6099 void *p = msg->front.iov_base;
6100 void *end = p + msg->front.iov_len;
6101 u32 epoch;
6102 u32 num_fs;
6103 u32 mount_fscid = (u32)-1;
6104 int err = -EINVAL;
6105
6106 ceph_decode_need(&p, end, sizeof(u32), bad);
6107 epoch = ceph_decode_32(&p);
6108
6109 doutc(cl, "epoch %u\n", epoch);
6110
6111 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */
6112 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad);
6113
6114 ceph_decode_32_safe(&p, end, num_fs, bad);
6115 while (num_fs-- > 0) {
6116 void *info_p, *info_end;
6117 u32 info_len;
6118 u32 fscid, namelen;
6119
6120 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
6121 p += 2; // info_v, info_cv
6122 info_len = ceph_decode_32(&p);
6123 ceph_decode_need(&p, end, info_len, bad);
6124 info_p = p;
6125 info_end = p + info_len;
6126 p = info_end;
6127
6128 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
6129 fscid = ceph_decode_32(&info_p);
6130 namelen = ceph_decode_32(&info_p);
6131 ceph_decode_need(&info_p, info_end, namelen, bad);
6132
6133 if (mds_namespace &&
6134 strlen(mds_namespace) == namelen &&
6135 !strncmp(mds_namespace, (char *)info_p, namelen)) {
6136 mount_fscid = fscid;
6137 break;
6138 }
6139 }
6140
6141 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
6142 if (mount_fscid != (u32)-1) {
6143 fsc->client->monc.fs_cluster_id = mount_fscid;
6144 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
6145 0, true);
6146 ceph_monc_renew_subs(&fsc->client->monc);
6147 } else {
6148 err = -ENOENT;
6149 goto err_out;
6150 }
6151 return;
6152
6153 bad:
6154 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n",
6155 err);
6156 ceph_umount_begin(mdsc->fsc->sb);
6157 ceph_msg_dump(msg);
6158 err_out:
6159 mutex_lock(&mdsc->mutex);
6160 mdsc->mdsmap_err = err;
6161 __wake_requests(mdsc, &mdsc->waiting_for_map);
6162 mutex_unlock(&mdsc->mutex);
6163 }
6164
6165 /*
6166 * handle mds map update.
6167 */
ceph_mdsc_handle_mdsmap(struct ceph_mds_client * mdsc,struct ceph_msg * msg)6168 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6169 {
6170 struct ceph_client *cl = mdsc->fsc->client;
6171 u32 epoch;
6172 u32 maplen;
6173 void *p = msg->front.iov_base;
6174 void *end = p + msg->front.iov_len;
6175 struct ceph_mdsmap *newmap, *oldmap;
6176 struct ceph_fsid fsid;
6177 int err = -EINVAL;
6178
6179 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
6180 ceph_decode_copy(&p, &fsid, sizeof(fsid));
6181 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
6182 return;
6183 epoch = ceph_decode_32(&p);
6184 maplen = ceph_decode_32(&p);
6185 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen);
6186
6187 /* do we need it? */
6188 mutex_lock(&mdsc->mutex);
6189 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
6190 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch);
6191 mutex_unlock(&mdsc->mutex);
6192 return;
6193 }
6194
6195 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client));
6196 if (IS_ERR(newmap)) {
6197 err = PTR_ERR(newmap);
6198 goto bad_unlock;
6199 }
6200
6201 /* swap into place */
6202 if (mdsc->mdsmap) {
6203 oldmap = mdsc->mdsmap;
6204 mdsc->mdsmap = newmap;
6205 check_new_map(mdsc, newmap, oldmap);
6206 ceph_mdsmap_destroy(oldmap);
6207 } else {
6208 mdsc->mdsmap = newmap; /* first mds map */
6209 }
6210 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
6211 MAX_LFS_FILESIZE);
6212
6213 __wake_requests(mdsc, &mdsc->waiting_for_map);
6214 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
6215 mdsc->mdsmap->m_epoch);
6216
6217 mutex_unlock(&mdsc->mutex);
6218 schedule_delayed(mdsc, 0);
6219 return;
6220
6221 bad_unlock:
6222 mutex_unlock(&mdsc->mutex);
6223 bad:
6224 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n",
6225 err);
6226 ceph_umount_begin(mdsc->fsc->sb);
6227 ceph_msg_dump(msg);
6228 return;
6229 }
6230
mds_get_con(struct ceph_connection * con)6231 static struct ceph_connection *mds_get_con(struct ceph_connection *con)
6232 {
6233 struct ceph_mds_session *s = con->private;
6234
6235 if (ceph_get_mds_session(s))
6236 return con;
6237 return NULL;
6238 }
6239
mds_put_con(struct ceph_connection * con)6240 static void mds_put_con(struct ceph_connection *con)
6241 {
6242 struct ceph_mds_session *s = con->private;
6243
6244 ceph_put_mds_session(s);
6245 }
6246
6247 /*
6248 * if the client is unresponsive for long enough, the mds will kill
6249 * the session entirely.
6250 */
mds_peer_reset(struct ceph_connection * con)6251 static void mds_peer_reset(struct ceph_connection *con)
6252 {
6253 struct ceph_mds_session *s = con->private;
6254 struct ceph_mds_client *mdsc = s->s_mdsc;
6255
6256 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n",
6257 s->s_mds);
6258 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO &&
6259 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT)
6260 send_mds_reconnect(mdsc, s);
6261 }
6262
mds_dispatch(struct ceph_connection * con,struct ceph_msg * msg)6263 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg)
6264 {
6265 struct ceph_mds_session *s = con->private;
6266 struct ceph_mds_client *mdsc = s->s_mdsc;
6267 struct ceph_client *cl = mdsc->fsc->client;
6268 int type = le16_to_cpu(msg->hdr.type);
6269
6270 mutex_lock(&mdsc->mutex);
6271 if (__verify_registered_session(mdsc, s) < 0) {
6272 mutex_unlock(&mdsc->mutex);
6273 goto out;
6274 }
6275 mutex_unlock(&mdsc->mutex);
6276
6277 switch (type) {
6278 case CEPH_MSG_MDS_MAP:
6279 ceph_mdsc_handle_mdsmap(mdsc, msg);
6280 break;
6281 case CEPH_MSG_FS_MAP_USER:
6282 ceph_mdsc_handle_fsmap(mdsc, msg);
6283 break;
6284 case CEPH_MSG_CLIENT_SESSION:
6285 handle_session(s, msg);
6286 break;
6287 case CEPH_MSG_CLIENT_REPLY:
6288 handle_reply(s, msg);
6289 break;
6290 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
6291 handle_forward(mdsc, s, msg);
6292 break;
6293 case CEPH_MSG_CLIENT_CAPS:
6294 ceph_handle_caps(s, msg);
6295 break;
6296 case CEPH_MSG_CLIENT_SNAP:
6297 ceph_handle_snap(mdsc, s, msg);
6298 break;
6299 case CEPH_MSG_CLIENT_LEASE:
6300 handle_lease(mdsc, s, msg);
6301 break;
6302 case CEPH_MSG_CLIENT_QUOTA:
6303 ceph_handle_quota(mdsc, s, msg);
6304 break;
6305
6306 default:
6307 pr_err_client(cl, "received unknown message type %d %s\n",
6308 type, ceph_msg_type_name(type));
6309 }
6310 out:
6311 ceph_msg_put(msg);
6312 }
6313
6314 /*
6315 * authentication
6316 */
6317
6318 /*
6319 * Note: returned pointer is the address of a structure that's
6320 * managed separately. Caller must *not* attempt to free it.
6321 */
6322 static struct ceph_auth_handshake *
mds_get_authorizer(struct ceph_connection * con,int * proto,int force_new)6323 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new)
6324 {
6325 struct ceph_mds_session *s = con->private;
6326 struct ceph_mds_client *mdsc = s->s_mdsc;
6327 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6328 struct ceph_auth_handshake *auth = &s->s_auth;
6329 int ret;
6330
6331 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6332 force_new, proto, NULL, NULL);
6333 if (ret)
6334 return ERR_PTR(ret);
6335
6336 return auth;
6337 }
6338
mds_add_authorizer_challenge(struct ceph_connection * con,void * challenge_buf,int challenge_buf_len)6339 static int mds_add_authorizer_challenge(struct ceph_connection *con,
6340 void *challenge_buf, int challenge_buf_len)
6341 {
6342 struct ceph_mds_session *s = con->private;
6343 struct ceph_mds_client *mdsc = s->s_mdsc;
6344 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6345
6346 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
6347 challenge_buf, challenge_buf_len);
6348 }
6349
mds_verify_authorizer_reply(struct ceph_connection * con)6350 static int mds_verify_authorizer_reply(struct ceph_connection *con)
6351 {
6352 struct ceph_mds_session *s = con->private;
6353 struct ceph_mds_client *mdsc = s->s_mdsc;
6354 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6355 struct ceph_auth_handshake *auth = &s->s_auth;
6356
6357 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer,
6358 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len,
6359 NULL, NULL, NULL, NULL);
6360 }
6361
mds_invalidate_authorizer(struct ceph_connection * con)6362 static int mds_invalidate_authorizer(struct ceph_connection *con)
6363 {
6364 struct ceph_mds_session *s = con->private;
6365 struct ceph_mds_client *mdsc = s->s_mdsc;
6366 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6367
6368 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
6369
6370 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
6371 }
6372
mds_get_auth_request(struct ceph_connection * con,void * buf,int * buf_len,void ** authorizer,int * authorizer_len)6373 static int mds_get_auth_request(struct ceph_connection *con,
6374 void *buf, int *buf_len,
6375 void **authorizer, int *authorizer_len)
6376 {
6377 struct ceph_mds_session *s = con->private;
6378 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6379 struct ceph_auth_handshake *auth = &s->s_auth;
6380 int ret;
6381
6382 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6383 buf, buf_len);
6384 if (ret)
6385 return ret;
6386
6387 *authorizer = auth->authorizer_buf;
6388 *authorizer_len = auth->authorizer_buf_len;
6389 return 0;
6390 }
6391
mds_handle_auth_reply_more(struct ceph_connection * con,void * reply,int reply_len,void * buf,int * buf_len,void ** authorizer,int * authorizer_len)6392 static int mds_handle_auth_reply_more(struct ceph_connection *con,
6393 void *reply, int reply_len,
6394 void *buf, int *buf_len,
6395 void **authorizer, int *authorizer_len)
6396 {
6397 struct ceph_mds_session *s = con->private;
6398 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6399 struct ceph_auth_handshake *auth = &s->s_auth;
6400 int ret;
6401
6402 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len,
6403 buf, buf_len);
6404 if (ret)
6405 return ret;
6406
6407 *authorizer = auth->authorizer_buf;
6408 *authorizer_len = auth->authorizer_buf_len;
6409 return 0;
6410 }
6411
mds_handle_auth_done(struct ceph_connection * con,u64 global_id,void * reply,int reply_len,u8 * session_key,int * session_key_len,u8 * con_secret,int * con_secret_len)6412 static int mds_handle_auth_done(struct ceph_connection *con,
6413 u64 global_id, void *reply, int reply_len,
6414 u8 *session_key, int *session_key_len,
6415 u8 *con_secret, int *con_secret_len)
6416 {
6417 struct ceph_mds_session *s = con->private;
6418 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6419 struct ceph_auth_handshake *auth = &s->s_auth;
6420
6421 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len,
6422 session_key, session_key_len,
6423 con_secret, con_secret_len);
6424 }
6425
mds_handle_auth_bad_method(struct ceph_connection * con,int used_proto,int result,const int * allowed_protos,int proto_cnt,const int * allowed_modes,int mode_cnt)6426 static int mds_handle_auth_bad_method(struct ceph_connection *con,
6427 int used_proto, int result,
6428 const int *allowed_protos, int proto_cnt,
6429 const int *allowed_modes, int mode_cnt)
6430 {
6431 struct ceph_mds_session *s = con->private;
6432 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc;
6433 int ret;
6434
6435 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS,
6436 used_proto, result,
6437 allowed_protos, proto_cnt,
6438 allowed_modes, mode_cnt)) {
6439 ret = ceph_monc_validate_auth(monc);
6440 if (ret)
6441 return ret;
6442 }
6443
6444 return -EACCES;
6445 }
6446
mds_alloc_msg(struct ceph_connection * con,struct ceph_msg_header * hdr,int * skip)6447 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
6448 struct ceph_msg_header *hdr, int *skip)
6449 {
6450 struct ceph_msg *msg;
6451 int type = (int) le16_to_cpu(hdr->type);
6452 int front_len = (int) le32_to_cpu(hdr->front_len);
6453
6454 if (con->in_msg)
6455 return con->in_msg;
6456
6457 *skip = 0;
6458 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
6459 if (!msg) {
6460 pr_err("unable to allocate msg type %d len %d\n",
6461 type, front_len);
6462 return NULL;
6463 }
6464
6465 return msg;
6466 }
6467
mds_sign_message(struct ceph_msg * msg)6468 static int mds_sign_message(struct ceph_msg *msg)
6469 {
6470 struct ceph_mds_session *s = msg->con->private;
6471 struct ceph_auth_handshake *auth = &s->s_auth;
6472
6473 return ceph_auth_sign_message(auth, msg);
6474 }
6475
mds_check_message_signature(struct ceph_msg * msg)6476 static int mds_check_message_signature(struct ceph_msg *msg)
6477 {
6478 struct ceph_mds_session *s = msg->con->private;
6479 struct ceph_auth_handshake *auth = &s->s_auth;
6480
6481 return ceph_auth_check_message_signature(auth, msg);
6482 }
6483
6484 static const struct ceph_connection_operations mds_con_ops = {
6485 .get = mds_get_con,
6486 .put = mds_put_con,
6487 .alloc_msg = mds_alloc_msg,
6488 .dispatch = mds_dispatch,
6489 .peer_reset = mds_peer_reset,
6490 .get_authorizer = mds_get_authorizer,
6491 .add_authorizer_challenge = mds_add_authorizer_challenge,
6492 .verify_authorizer_reply = mds_verify_authorizer_reply,
6493 .invalidate_authorizer = mds_invalidate_authorizer,
6494 .sign_message = mds_sign_message,
6495 .check_message_signature = mds_check_message_signature,
6496 .get_auth_request = mds_get_auth_request,
6497 .handle_auth_reply_more = mds_handle_auth_reply_more,
6498 .handle_auth_done = mds_handle_auth_done,
6499 .handle_auth_bad_method = mds_handle_auth_bad_method,
6500 };
6501
6502 /* eof */
6503