1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/page_size_compat.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68 #include <linux/time_namespace.h>
69 #include <linux/user_events.h>
70 #include <linux/rseq.h>
71 #include <linux/ksm.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/tlb.h>
76
77 #include <trace/events/task.h>
78 #include "internal.h"
79
80 #include <trace/events/sched.h>
81 #include <trace/hooks/sched.h>
82
83 static int bprm_creds_from_file(struct linux_binprm *bprm);
84
85 int suid_dumpable = 0;
86
87 static LIST_HEAD(formats);
88 static DEFINE_RWLOCK(binfmt_lock);
89
__register_binfmt(struct linux_binfmt * fmt,int insert)90 void __register_binfmt(struct linux_binfmt * fmt, int insert)
91 {
92 write_lock(&binfmt_lock);
93 insert ? list_add(&fmt->lh, &formats) :
94 list_add_tail(&fmt->lh, &formats);
95 write_unlock(&binfmt_lock);
96 }
97
98 EXPORT_SYMBOL(__register_binfmt);
99
unregister_binfmt(struct linux_binfmt * fmt)100 void unregister_binfmt(struct linux_binfmt * fmt)
101 {
102 write_lock(&binfmt_lock);
103 list_del(&fmt->lh);
104 write_unlock(&binfmt_lock);
105 }
106
107 EXPORT_SYMBOL(unregister_binfmt);
108
put_binfmt(struct linux_binfmt * fmt)109 static inline void put_binfmt(struct linux_binfmt * fmt)
110 {
111 module_put(fmt->module);
112 }
113
path_noexec(const struct path * path)114 bool path_noexec(const struct path *path)
115 {
116 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
117 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
118 }
119
120 #ifdef CONFIG_USELIB
121 /*
122 * Note that a shared library must be both readable and executable due to
123 * security reasons.
124 *
125 * Also note that we take the address to load from the file itself.
126 */
SYSCALL_DEFINE1(uselib,const char __user *,library)127 SYSCALL_DEFINE1(uselib, const char __user *, library)
128 {
129 struct linux_binfmt *fmt;
130 struct file *file;
131 struct filename *tmp = getname(library);
132 int error = PTR_ERR(tmp);
133 static const struct open_flags uselib_flags = {
134 .open_flag = O_LARGEFILE | O_RDONLY,
135 .acc_mode = MAY_READ | MAY_EXEC,
136 .intent = LOOKUP_OPEN,
137 .lookup_flags = LOOKUP_FOLLOW,
138 };
139
140 if (IS_ERR(tmp))
141 goto out;
142
143 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
144 putname(tmp);
145 error = PTR_ERR(file);
146 if (IS_ERR(file))
147 goto out;
148
149 /*
150 * Check do_open_execat() for an explanation.
151 */
152 error = -EACCES;
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
154 path_noexec(&file->f_path))
155 goto exit;
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
205 int ret;
206
207 /*
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
211 */
212 if (write && pos < vma->vm_start) {
213 mmap_write_lock(mm);
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
217 return NULL;
218 }
219 mmap_write_downgrade(mm);
220 } else
221 mmap_read_lock(mm);
222
223 /*
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
226 */
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
229 &page, NULL);
230 mmap_read_unlock(mm);
231 if (ret <= 0)
232 return NULL;
233
234 if (write)
235 acct_arg_size(bprm, vma_pages(vma));
236
237 return page;
238 }
239
put_arg_page(struct page * page)240 static void put_arg_page(struct page *page)
241 {
242 put_page(page);
243 }
244
free_arg_pages(struct linux_binprm * bprm)245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 struct page *page)
251 {
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254
__bprm_mm_init(struct linux_binprm * bprm)255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 int err;
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
260
261 bprm->vma = vma = vm_area_alloc(mm);
262 if (!vma)
263 return -ENOMEM;
264 vma_set_anonymous(vma);
265
266 if (mmap_write_lock_killable(mm)) {
267 err = -EINTR;
268 goto err_free;
269 }
270
271 /*
272 * Need to be called with mmap write lock
273 * held, to avoid race with ksmd.
274 */
275 err = ksm_execve(mm);
276 if (err)
277 goto err_ksm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - __PAGE_SIZE;
288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290
291 err = insert_vm_struct(mm, vma);
292 if (err)
293 goto err;
294
295 mm->stack_vm = mm->total_vm = 1;
296 mmap_write_unlock(mm);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299 err:
300 ksm_exit(mm);
301 err_ksm:
302 mmap_write_unlock(mm);
303 err_free:
304 bprm->vma = NULL;
305 vm_area_free(vma);
306 return err;
307 }
308
valid_arg_len(struct linux_binprm * bprm,long len)309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 return len <= MAX_ARG_STRLEN;
312 }
313
314 #else
315
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 int write)
322 {
323 struct page *page;
324
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 if (!page)
329 return NULL;
330 bprm->page[pos / PAGE_SIZE] = page;
331 }
332
333 return page;
334 }
335
put_arg_page(struct page * page)336 static void put_arg_page(struct page *page)
337 {
338 }
339
free_arg_page(struct linux_binprm * bprm,int i)340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 if (bprm->page[i]) {
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
345 }
346 }
347
free_arg_pages(struct linux_binprm * bprm)348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 int i;
351
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
354 }
355
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 struct page *page)
358 {
359 }
360
__bprm_mm_init(struct linux_binprm * bprm)361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 return 0;
365 }
366
valid_arg_len(struct linux_binprm * bprm,long len)367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 return len <= bprm->p;
370 }
371
372 #endif /* CONFIG_MMU */
373
374 /*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
379 */
bprm_mm_init(struct linux_binprm * bprm)380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 int err;
383 struct mm_struct *mm = NULL;
384
385 bprm->mm = mm = mm_alloc();
386 err = -ENOMEM;
387 if (!mm)
388 goto err;
389
390 /* Save current stack limit for all calculations made during exec. */
391 task_lock(current->group_leader);
392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 task_unlock(current->group_leader);
394
395 err = __bprm_mm_init(bprm);
396 if (err)
397 goto err;
398
399 return 0;
400
401 err:
402 if (mm) {
403 bprm->mm = NULL;
404 mmdrop(mm);
405 }
406
407 return err;
408 }
409
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412 bool is_compat;
413 #endif
414 union {
415 const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417 const compat_uptr_t __user *compat;
418 #endif
419 } ptr;
420 };
421
get_user_arg_ptr(struct user_arg_ptr argv,int nr)422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424 const char __user *native;
425
426 #ifdef CONFIG_COMPAT
427 if (unlikely(argv.is_compat)) {
428 compat_uptr_t compat;
429
430 if (get_user(compat, argv.ptr.compat + nr))
431 return ERR_PTR(-EFAULT);
432
433 return compat_ptr(compat);
434 }
435 #endif
436
437 if (get_user(native, argv.ptr.native + nr))
438 return ERR_PTR(-EFAULT);
439
440 return native;
441 }
442
443 /*
444 * count() counts the number of strings in array ARGV.
445 */
count(struct user_arg_ptr argv,int max)446 static int count(struct user_arg_ptr argv, int max)
447 {
448 int i = 0;
449
450 if (argv.ptr.native != NULL) {
451 for (;;) {
452 const char __user *p = get_user_arg_ptr(argv, i);
453
454 if (!p)
455 break;
456
457 if (IS_ERR(p))
458 return -EFAULT;
459
460 if (i >= max)
461 return -E2BIG;
462 ++i;
463
464 if (fatal_signal_pending(current))
465 return -ERESTARTNOHAND;
466 cond_resched();
467 }
468 }
469 return i;
470 }
471
count_strings_kernel(const char * const * argv)472 static int count_strings_kernel(const char *const *argv)
473 {
474 int i;
475
476 if (!argv)
477 return 0;
478
479 for (i = 0; argv[i]; ++i) {
480 if (i >= MAX_ARG_STRINGS)
481 return -E2BIG;
482 if (fatal_signal_pending(current))
483 return -ERESTARTNOHAND;
484 cond_resched();
485 }
486 return i;
487 }
488
bprm_set_stack_limit(struct linux_binprm * bprm,unsigned long limit)489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493 /* Avoid a pathological bprm->p. */
494 if (bprm->p < limit)
495 return -E2BIG;
496 bprm->argmin = bprm->p - limit;
497 #endif
498 return 0;
499 }
bprm_hit_stack_limit(struct linux_binprm * bprm)500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 {
502 #ifdef CONFIG_MMU
503 return bprm->p < bprm->argmin;
504 #else
505 return false;
506 #endif
507 }
508
509 /*
510 * Calculate bprm->argmin from:
511 * - _STK_LIM
512 * - ARG_MAX
513 * - bprm->rlim_stack.rlim_cur
514 * - bprm->argc
515 * - bprm->envc
516 * - bprm->p
517 */
bprm_stack_limits(struct linux_binprm * bprm)518 static int bprm_stack_limits(struct linux_binprm *bprm)
519 {
520 unsigned long limit, ptr_size;
521
522 /*
523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 * (whichever is smaller) for the argv+env strings.
525 * This ensures that:
526 * - the remaining binfmt code will not run out of stack space,
527 * - the program will have a reasonable amount of stack left
528 * to work from.
529 */
530 limit = _STK_LIM / 4 * 3;
531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532 /*
533 * We've historically supported up to 32 pages (ARG_MAX)
534 * of argument strings even with small stacks
535 */
536 limit = max_t(unsigned long, limit, ARG_MAX);
537 /* Reject totally pathological counts. */
538 if (bprm->argc < 0 || bprm->envc < 0)
539 return -E2BIG;
540 /*
541 * We must account for the size of all the argv and envp pointers to
542 * the argv and envp strings, since they will also take up space in
543 * the stack. They aren't stored until much later when we can't
544 * signal to the parent that the child has run out of stack space.
545 * Instead, calculate it here so it's possible to fail gracefully.
546 *
547 * In the case of argc = 0, make sure there is space for adding a
548 * empty string (which will bump argc to 1), to ensure confused
549 * userspace programs don't start processing from argv[1], thinking
550 * argc can never be 0, to keep them from walking envp by accident.
551 * See do_execveat_common().
552 */
553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555 return -E2BIG;
556 if (limit <= ptr_size)
557 return -E2BIG;
558 limit -= ptr_size;
559
560 return bprm_set_stack_limit(bprm, limit);
561 }
562
563 /*
564 * 'copy_strings()' copies argument/environment strings from the old
565 * processes's memory to the new process's stack. The call to get_user_pages()
566 * ensures the destination page is created and not swapped out.
567 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)568 static int copy_strings(int argc, struct user_arg_ptr argv,
569 struct linux_binprm *bprm)
570 {
571 struct page *kmapped_page = NULL;
572 char *kaddr = NULL;
573 unsigned long kpos = 0;
574 int ret;
575
576 while (argc-- > 0) {
577 const char __user *str;
578 int len;
579 unsigned long pos;
580
581 ret = -EFAULT;
582 str = get_user_arg_ptr(argv, argc);
583 if (IS_ERR(str))
584 goto out;
585
586 len = strnlen_user(str, MAX_ARG_STRLEN);
587 if (!len)
588 goto out;
589
590 ret = -E2BIG;
591 if (!valid_arg_len(bprm, len))
592 goto out;
593
594 /* We're going to work our way backwards. */
595 pos = bprm->p;
596 str += len;
597 bprm->p -= len;
598 if (bprm_hit_stack_limit(bprm))
599 goto out;
600
601 while (len > 0) {
602 int offset, bytes_to_copy;
603
604 if (fatal_signal_pending(current)) {
605 ret = -ERESTARTNOHAND;
606 goto out;
607 }
608 cond_resched();
609
610 offset = pos % PAGE_SIZE;
611 if (offset == 0)
612 offset = PAGE_SIZE;
613
614 bytes_to_copy = offset;
615 if (bytes_to_copy > len)
616 bytes_to_copy = len;
617
618 offset -= bytes_to_copy;
619 pos -= bytes_to_copy;
620 str -= bytes_to_copy;
621 len -= bytes_to_copy;
622
623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 struct page *page;
625
626 page = get_arg_page(bprm, pos, 1);
627 if (!page) {
628 ret = -E2BIG;
629 goto out;
630 }
631
632 if (kmapped_page) {
633 flush_dcache_page(kmapped_page);
634 kunmap_local(kaddr);
635 put_arg_page(kmapped_page);
636 }
637 kmapped_page = page;
638 kaddr = kmap_local_page(kmapped_page);
639 kpos = pos & PAGE_MASK;
640 flush_arg_page(bprm, kpos, kmapped_page);
641 }
642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643 ret = -EFAULT;
644 goto out;
645 }
646 }
647 }
648 ret = 0;
649 out:
650 if (kmapped_page) {
651 flush_dcache_page(kmapped_page);
652 kunmap_local(kaddr);
653 put_arg_page(kmapped_page);
654 }
655 return ret;
656 }
657
658 /*
659 * Copy and argument/environment string from the kernel to the processes stack.
660 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662 {
663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 unsigned long pos = bprm->p;
665
666 if (len == 0)
667 return -EFAULT;
668 if (!valid_arg_len(bprm, len))
669 return -E2BIG;
670
671 /* We're going to work our way backwards. */
672 arg += len;
673 bprm->p -= len;
674 if (bprm_hit_stack_limit(bprm))
675 return -E2BIG;
676
677 while (len > 0) {
678 unsigned int bytes_to_copy = min_t(unsigned int, len,
679 min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 struct page *page;
681
682 pos -= bytes_to_copy;
683 arg -= bytes_to_copy;
684 len -= bytes_to_copy;
685
686 page = get_arg_page(bprm, pos, 1);
687 if (!page)
688 return -E2BIG;
689 flush_arg_page(bprm, pos & PAGE_MASK, page);
690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691 put_arg_page(page);
692 }
693
694 return 0;
695 }
696 EXPORT_SYMBOL(copy_string_kernel);
697
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)698 static int copy_strings_kernel(int argc, const char *const *argv,
699 struct linux_binprm *bprm)
700 {
701 while (argc-- > 0) {
702 int ret = copy_string_kernel(argv[argc], bprm);
703 if (ret < 0)
704 return ret;
705 if (fatal_signal_pending(current))
706 return -ERESTARTNOHAND;
707 cond_resched();
708 }
709 return 0;
710 }
711
712 #ifdef CONFIG_MMU
713
714 /*
715 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
716 * the stack is optionally relocated, and some extra space is added.
717 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)718 int setup_arg_pages(struct linux_binprm *bprm,
719 unsigned long stack_top,
720 int executable_stack)
721 {
722 unsigned long ret;
723 unsigned long stack_shift;
724 struct mm_struct *mm = current->mm;
725 struct vm_area_struct *vma = bprm->vma;
726 struct vm_area_struct *prev = NULL;
727 unsigned long vm_flags;
728 unsigned long stack_base;
729 unsigned long stack_size;
730 unsigned long stack_expand;
731 unsigned long rlim_stack;
732 struct mmu_gather tlb;
733 struct vma_iterator vmi;
734
735 #ifdef CONFIG_STACK_GROWSUP
736 /* Limit stack size */
737 stack_base = bprm->rlim_stack.rlim_max;
738
739 stack_base = calc_max_stack_size(stack_base);
740
741 /* Add space for stack randomization. */
742 if (current->flags & PF_RANDOMIZE)
743 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
744
745 /* Make sure we didn't let the argument array grow too large. */
746 if (vma->vm_end - vma->vm_start > stack_base)
747 return -ENOMEM;
748
749 stack_base = __PAGE_ALIGN(stack_top - stack_base);
750
751 stack_shift = vma->vm_start - stack_base;
752 mm->arg_start = bprm->p - stack_shift;
753 bprm->p = vma->vm_end - stack_shift;
754 #else
755 stack_top = arch_align_stack(stack_top);
756 stack_top = __PAGE_ALIGN(stack_top);
757
758 if (unlikely(stack_top < mmap_min_addr) ||
759 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
760 return -ENOMEM;
761
762 stack_shift = vma->vm_end - stack_top;
763
764 bprm->p -= stack_shift;
765 mm->arg_start = bprm->p;
766 #endif
767
768 if (bprm->loader)
769 bprm->loader -= stack_shift;
770 bprm->exec -= stack_shift;
771
772 if (mmap_write_lock_killable(mm))
773 return -EINTR;
774
775 vm_flags = VM_STACK_FLAGS;
776
777 /*
778 * Adjust stack execute permissions; explicitly enable for
779 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
780 * (arch default) otherwise.
781 */
782 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
783 vm_flags |= VM_EXEC;
784 else if (executable_stack == EXSTACK_DISABLE_X)
785 vm_flags &= ~VM_EXEC;
786 vm_flags |= mm->def_flags;
787 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
788
789 vma_iter_init(&vmi, mm, vma->vm_start);
790
791 tlb_gather_mmu(&tlb, mm);
792 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
793 vm_flags);
794 tlb_finish_mmu(&tlb);
795
796 if (ret)
797 goto out_unlock;
798 BUG_ON(prev != vma);
799
800 if (unlikely(vm_flags & VM_EXEC)) {
801 pr_warn_once("process '%pD4' started with executable stack\n",
802 bprm->file);
803 }
804
805 /* Move stack pages down in memory. */
806 if (stack_shift) {
807 /*
808 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
809 * the binfmt code determines where the new stack should reside, we shift it to
810 * its final location.
811 */
812 ret = relocate_vma_down(vma, stack_shift);
813 if (ret)
814 goto out_unlock;
815 }
816
817 /* mprotect_fixup is overkill to remove the temporary stack flags */
818 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
819
820 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
821 stack_size = vma->vm_end - vma->vm_start;
822 /*
823 * Align this down to a page boundary as expand_stack
824 * will align it up.
825 */
826 rlim_stack = bprm->rlim_stack.rlim_cur & __PAGE_MASK;
827
828 stack_expand = min(rlim_stack, stack_size + stack_expand);
829
830 #ifdef CONFIG_STACK_GROWSUP
831 stack_base = vma->vm_start + stack_expand;
832 #else
833 stack_base = vma->vm_end - stack_expand;
834 #endif
835 current->mm->start_stack = bprm->p;
836 ret = expand_stack_locked(vma, stack_base);
837 if (ret)
838 ret = -EFAULT;
839
840 out_unlock:
841 mmap_write_unlock(mm);
842 return ret;
843 }
844 EXPORT_SYMBOL(setup_arg_pages);
845
846 #else
847
848 /*
849 * Transfer the program arguments and environment from the holding pages
850 * onto the stack. The provided stack pointer is adjusted accordingly.
851 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)852 int transfer_args_to_stack(struct linux_binprm *bprm,
853 unsigned long *sp_location)
854 {
855 unsigned long index, stop, sp;
856 int ret = 0;
857
858 stop = bprm->p >> PAGE_SHIFT;
859 sp = *sp_location;
860
861 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
862 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
863 char *src = kmap_local_page(bprm->page[index]) + offset;
864 sp -= PAGE_SIZE - offset;
865 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
866 ret = -EFAULT;
867 kunmap_local(src);
868 if (ret)
869 goto out;
870 }
871
872 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
873 *sp_location = sp;
874
875 out:
876 return ret;
877 }
878 EXPORT_SYMBOL(transfer_args_to_stack);
879
880 #endif /* CONFIG_MMU */
881
882 /*
883 * On success, caller must call do_close_execat() on the returned
884 * struct file to close it.
885 */
do_open_execat(int fd,struct filename * name,int flags)886 static struct file *do_open_execat(int fd, struct filename *name, int flags)
887 {
888 int err;
889 struct file *file __free(fput) = NULL;
890 struct open_flags open_exec_flags = {
891 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
892 .acc_mode = MAY_EXEC,
893 .intent = LOOKUP_OPEN,
894 .lookup_flags = LOOKUP_FOLLOW,
895 };
896
897 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
898 return ERR_PTR(-EINVAL);
899 if (flags & AT_SYMLINK_NOFOLLOW)
900 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
901 if (flags & AT_EMPTY_PATH)
902 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
903
904 file = do_filp_open(fd, name, &open_exec_flags);
905 if (IS_ERR(file))
906 return file;
907
908 /*
909 * In the past the regular type check was here. It moved to may_open() in
910 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
911 * an invariant that all non-regular files error out before we get here.
912 */
913 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
914 path_noexec(&file->f_path))
915 return ERR_PTR(-EACCES);
916
917 err = deny_write_access(file);
918 if (err)
919 return ERR_PTR(err);
920
921 return no_free_ptr(file);
922 }
923
924 /**
925 * open_exec - Open a path name for execution
926 *
927 * @name: path name to open with the intent of executing it.
928 *
929 * Returns ERR_PTR on failure or allocated struct file on success.
930 *
931 * As this is a wrapper for the internal do_open_execat(), callers
932 * must call allow_write_access() before fput() on release. Also see
933 * do_close_execat().
934 */
open_exec(const char * name)935 struct file *open_exec(const char *name)
936 {
937 struct filename *filename = getname_kernel(name);
938 struct file *f = ERR_CAST(filename);
939
940 if (!IS_ERR(filename)) {
941 f = do_open_execat(AT_FDCWD, filename, 0);
942 putname(filename);
943 }
944 return f;
945 }
946 EXPORT_SYMBOL(open_exec);
947
948 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)949 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
950 {
951 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
952 if (res > 0)
953 flush_icache_user_range(addr, addr + len);
954 return res;
955 }
956 EXPORT_SYMBOL(read_code);
957 #endif
958
959 /*
960 * Maps the mm_struct mm into the current task struct.
961 * On success, this function returns with exec_update_lock
962 * held for writing.
963 */
exec_mmap(struct mm_struct * mm)964 static int exec_mmap(struct mm_struct *mm)
965 {
966 struct task_struct *tsk;
967 struct mm_struct *old_mm, *active_mm;
968 int ret;
969
970 /* Notify parent that we're no longer interested in the old VM */
971 tsk = current;
972 old_mm = current->mm;
973 exec_mm_release(tsk, old_mm);
974
975 ret = down_write_killable(&tsk->signal->exec_update_lock);
976 if (ret)
977 return ret;
978
979 if (old_mm) {
980 /*
981 * If there is a pending fatal signal perhaps a signal
982 * whose default action is to create a coredump get
983 * out and die instead of going through with the exec.
984 */
985 ret = mmap_read_lock_killable(old_mm);
986 if (ret) {
987 up_write(&tsk->signal->exec_update_lock);
988 return ret;
989 }
990 }
991
992 task_lock(tsk);
993 membarrier_exec_mmap(mm);
994
995 local_irq_disable();
996 active_mm = tsk->active_mm;
997 tsk->active_mm = mm;
998 tsk->mm = mm;
999 mm_init_cid(mm);
1000 /*
1001 * This prevents preemption while active_mm is being loaded and
1002 * it and mm are being updated, which could cause problems for
1003 * lazy tlb mm refcounting when these are updated by context
1004 * switches. Not all architectures can handle irqs off over
1005 * activate_mm yet.
1006 */
1007 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1008 local_irq_enable();
1009 activate_mm(active_mm, mm);
1010 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1011 local_irq_enable();
1012 lru_gen_add_mm(mm);
1013 task_unlock(tsk);
1014 lru_gen_use_mm(mm);
1015 if (old_mm) {
1016 mmap_read_unlock(old_mm);
1017 BUG_ON(active_mm != old_mm);
1018 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1019 mm_update_next_owner(old_mm);
1020 mmput(old_mm);
1021 return 0;
1022 }
1023 mmdrop_lazy_tlb(active_mm);
1024 return 0;
1025 }
1026
de_thread(struct task_struct * tsk)1027 static int de_thread(struct task_struct *tsk)
1028 {
1029 struct signal_struct *sig = tsk->signal;
1030 struct sighand_struct *oldsighand = tsk->sighand;
1031 spinlock_t *lock = &oldsighand->siglock;
1032
1033 if (thread_group_empty(tsk))
1034 goto no_thread_group;
1035
1036 /*
1037 * Kill all other threads in the thread group.
1038 */
1039 spin_lock_irq(lock);
1040 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1041 /*
1042 * Another group action in progress, just
1043 * return so that the signal is processed.
1044 */
1045 spin_unlock_irq(lock);
1046 return -EAGAIN;
1047 }
1048
1049 sig->group_exec_task = tsk;
1050 sig->notify_count = zap_other_threads(tsk);
1051 if (!thread_group_leader(tsk))
1052 sig->notify_count--;
1053
1054 while (sig->notify_count) {
1055 __set_current_state(TASK_KILLABLE);
1056 spin_unlock_irq(lock);
1057 schedule();
1058 if (__fatal_signal_pending(tsk))
1059 goto killed;
1060 spin_lock_irq(lock);
1061 }
1062 spin_unlock_irq(lock);
1063
1064 /*
1065 * At this point all other threads have exited, all we have to
1066 * do is to wait for the thread group leader to become inactive,
1067 * and to assume its PID:
1068 */
1069 if (!thread_group_leader(tsk)) {
1070 struct task_struct *leader = tsk->group_leader;
1071
1072 for (;;) {
1073 cgroup_threadgroup_change_begin(tsk);
1074 write_lock_irq(&tasklist_lock);
1075 /*
1076 * Do this under tasklist_lock to ensure that
1077 * exit_notify() can't miss ->group_exec_task
1078 */
1079 sig->notify_count = -1;
1080 if (likely(leader->exit_state))
1081 break;
1082 __set_current_state(TASK_KILLABLE);
1083 write_unlock_irq(&tasklist_lock);
1084 cgroup_threadgroup_change_end(tsk);
1085 schedule();
1086 if (__fatal_signal_pending(tsk))
1087 goto killed;
1088 }
1089
1090 /*
1091 * The only record we have of the real-time age of a
1092 * process, regardless of execs it's done, is start_time.
1093 * All the past CPU time is accumulated in signal_struct
1094 * from sister threads now dead. But in this non-leader
1095 * exec, nothing survives from the original leader thread,
1096 * whose birth marks the true age of this process now.
1097 * When we take on its identity by switching to its PID, we
1098 * also take its birthdate (always earlier than our own).
1099 */
1100 tsk->start_time = leader->start_time;
1101 tsk->start_boottime = leader->start_boottime;
1102
1103 BUG_ON(!same_thread_group(leader, tsk));
1104 /*
1105 * An exec() starts a new thread group with the
1106 * TGID of the previous thread group. Rehash the
1107 * two threads with a switched PID, and release
1108 * the former thread group leader:
1109 */
1110
1111 /* Become a process group leader with the old leader's pid.
1112 * The old leader becomes a thread of the this thread group.
1113 */
1114 exchange_tids(tsk, leader);
1115 transfer_pid(leader, tsk, PIDTYPE_TGID);
1116 transfer_pid(leader, tsk, PIDTYPE_PGID);
1117 transfer_pid(leader, tsk, PIDTYPE_SID);
1118
1119 list_replace_rcu(&leader->tasks, &tsk->tasks);
1120 list_replace_init(&leader->sibling, &tsk->sibling);
1121
1122 tsk->group_leader = tsk;
1123 leader->group_leader = tsk;
1124
1125 tsk->exit_signal = SIGCHLD;
1126 leader->exit_signal = -1;
1127
1128 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1129 leader->exit_state = EXIT_DEAD;
1130 /*
1131 * We are going to release_task()->ptrace_unlink() silently,
1132 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1133 * the tracer won't block again waiting for this thread.
1134 */
1135 if (unlikely(leader->ptrace))
1136 __wake_up_parent(leader, leader->parent);
1137 write_unlock_irq(&tasklist_lock);
1138 cgroup_threadgroup_change_end(tsk);
1139
1140 release_task(leader);
1141 }
1142
1143 sig->group_exec_task = NULL;
1144 sig->notify_count = 0;
1145
1146 no_thread_group:
1147 /* we have changed execution domain */
1148 tsk->exit_signal = SIGCHLD;
1149
1150 BUG_ON(!thread_group_leader(tsk));
1151 return 0;
1152
1153 killed:
1154 /* protects against exit_notify() and __exit_signal() */
1155 read_lock(&tasklist_lock);
1156 sig->group_exec_task = NULL;
1157 sig->notify_count = 0;
1158 read_unlock(&tasklist_lock);
1159 return -EAGAIN;
1160 }
1161
1162
1163 /*
1164 * This function makes sure the current process has its own signal table,
1165 * so that flush_signal_handlers can later reset the handlers without
1166 * disturbing other processes. (Other processes might share the signal
1167 * table via the CLONE_SIGHAND option to clone().)
1168 */
unshare_sighand(struct task_struct * me)1169 static int unshare_sighand(struct task_struct *me)
1170 {
1171 struct sighand_struct *oldsighand = me->sighand;
1172
1173 if (refcount_read(&oldsighand->count) != 1) {
1174 struct sighand_struct *newsighand;
1175 /*
1176 * This ->sighand is shared with the CLONE_SIGHAND
1177 * but not CLONE_THREAD task, switch to the new one.
1178 */
1179 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1180 if (!newsighand)
1181 return -ENOMEM;
1182
1183 refcount_set(&newsighand->count, 1);
1184
1185 write_lock_irq(&tasklist_lock);
1186 spin_lock(&oldsighand->siglock);
1187 memcpy(newsighand->action, oldsighand->action,
1188 sizeof(newsighand->action));
1189 rcu_assign_pointer(me->sighand, newsighand);
1190 spin_unlock(&oldsighand->siglock);
1191 write_unlock_irq(&tasklist_lock);
1192
1193 __cleanup_sighand(oldsighand);
1194 }
1195 return 0;
1196 }
1197
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1198 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1199 {
1200 task_lock(tsk);
1201 /* Always NUL terminated and zero-padded */
1202 strscpy_pad(buf, tsk->comm, buf_size);
1203 task_unlock(tsk);
1204 return buf;
1205 }
1206 EXPORT_SYMBOL_GPL(__get_task_comm);
1207
1208 /*
1209 * These functions flushes out all traces of the currently running executable
1210 * so that a new one can be started
1211 */
1212
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1213 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1214 {
1215 task_lock(tsk);
1216 trace_task_rename(tsk, buf);
1217 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1218 task_unlock(tsk);
1219 perf_event_comm(tsk, exec);
1220 trace_android_rvh_set_task_comm(tsk, exec);
1221 }
1222 EXPORT_SYMBOL_GPL(__set_task_comm);
1223
1224 /*
1225 * Calling this is the point of no return. None of the failures will be
1226 * seen by userspace since either the process is already taking a fatal
1227 * signal (via de_thread() or coredump), or will have SEGV raised
1228 * (after exec_mmap()) by search_binary_handler (see below).
1229 */
begin_new_exec(struct linux_binprm * bprm)1230 int begin_new_exec(struct linux_binprm * bprm)
1231 {
1232 struct task_struct *me = current;
1233 int retval;
1234
1235 /* Once we are committed compute the creds */
1236 retval = bprm_creds_from_file(bprm);
1237 if (retval)
1238 return retval;
1239
1240 /*
1241 * This tracepoint marks the point before flushing the old exec where
1242 * the current task is still unchanged, but errors are fatal (point of
1243 * no return). The later "sched_process_exec" tracepoint is called after
1244 * the current task has successfully switched to the new exec.
1245 */
1246 trace_sched_prepare_exec(current, bprm);
1247
1248 /*
1249 * Ensure all future errors are fatal.
1250 */
1251 bprm->point_of_no_return = true;
1252
1253 /* Make this the only thread in the thread group */
1254 retval = de_thread(me);
1255 if (retval)
1256 goto out;
1257 /* see the comment in check_unsafe_exec() */
1258 current->fs->in_exec = 0;
1259 /*
1260 * Cancel any io_uring activity across execve
1261 */
1262 io_uring_task_cancel();
1263
1264 /* Ensure the files table is not shared. */
1265 retval = unshare_files();
1266 if (retval)
1267 goto out;
1268
1269 /*
1270 * Must be called _before_ exec_mmap() as bprm->mm is
1271 * not visible until then. Doing it here also ensures
1272 * we don't race against replace_mm_exe_file().
1273 */
1274 retval = set_mm_exe_file(bprm->mm, bprm->file);
1275 if (retval)
1276 goto out;
1277
1278 /* If the binary is not readable then enforce mm->dumpable=0 */
1279 would_dump(bprm, bprm->file);
1280 if (bprm->have_execfd)
1281 would_dump(bprm, bprm->executable);
1282
1283 /*
1284 * Release all of the old mmap stuff
1285 */
1286 acct_arg_size(bprm, 0);
1287 retval = exec_mmap(bprm->mm);
1288 if (retval)
1289 goto out;
1290
1291 bprm->mm = NULL;
1292
1293 retval = exec_task_namespaces();
1294 if (retval)
1295 goto out_unlock;
1296
1297 #ifdef CONFIG_POSIX_TIMERS
1298 spin_lock_irq(&me->sighand->siglock);
1299 posix_cpu_timers_exit(me);
1300 spin_unlock_irq(&me->sighand->siglock);
1301 exit_itimers(me);
1302 flush_itimer_signals();
1303 #endif
1304
1305 /*
1306 * Make the signal table private.
1307 */
1308 retval = unshare_sighand(me);
1309 if (retval)
1310 goto out_unlock;
1311
1312 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1313 PF_NOFREEZE | PF_NO_SETAFFINITY);
1314 flush_thread();
1315 me->personality &= ~bprm->per_clear;
1316
1317 clear_syscall_work_syscall_user_dispatch(me);
1318
1319 /*
1320 * We have to apply CLOEXEC before we change whether the process is
1321 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1322 * trying to access the should-be-closed file descriptors of a process
1323 * undergoing exec(2).
1324 */
1325 do_close_on_exec(me->files);
1326
1327 if (bprm->secureexec) {
1328 /* Make sure parent cannot signal privileged process. */
1329 me->pdeath_signal = 0;
1330
1331 /*
1332 * For secureexec, reset the stack limit to sane default to
1333 * avoid bad behavior from the prior rlimits. This has to
1334 * happen before arch_pick_mmap_layout(), which examines
1335 * RLIMIT_STACK, but after the point of no return to avoid
1336 * needing to clean up the change on failure.
1337 */
1338 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1339 bprm->rlim_stack.rlim_cur = _STK_LIM;
1340 }
1341
1342 me->sas_ss_sp = me->sas_ss_size = 0;
1343
1344 /*
1345 * Figure out dumpability. Note that this checking only of current
1346 * is wrong, but userspace depends on it. This should be testing
1347 * bprm->secureexec instead.
1348 */
1349 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1350 !(uid_eq(current_euid(), current_uid()) &&
1351 gid_eq(current_egid(), current_gid())))
1352 set_dumpable(current->mm, suid_dumpable);
1353 else
1354 set_dumpable(current->mm, SUID_DUMP_USER);
1355
1356 perf_event_exec();
1357
1358 /*
1359 * If the original filename was empty, alloc_bprm() made up a path
1360 * that will probably not be useful to admins running ps or similar.
1361 * Let's fix it up to be something reasonable.
1362 */
1363 if (bprm->comm_from_dentry) {
1364 /*
1365 * Hold RCU lock to keep the name from being freed behind our back.
1366 * Use acquire semantics to make sure the terminating NUL from
1367 * __d_alloc() is seen.
1368 *
1369 * Note, we're deliberately sloppy here. We don't need to care about
1370 * detecting a concurrent rename and just want a terminated name.
1371 */
1372 rcu_read_lock();
1373 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1374 true);
1375 rcu_read_unlock();
1376 } else {
1377 __set_task_comm(me, kbasename(bprm->filename), true);
1378 }
1379
1380 /* An exec changes our domain. We are no longer part of the thread
1381 group */
1382 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1383 flush_signal_handlers(me, 0);
1384
1385 retval = set_cred_ucounts(bprm->cred);
1386 if (retval < 0)
1387 goto out_unlock;
1388
1389 /*
1390 * install the new credentials for this executable
1391 */
1392 security_bprm_committing_creds(bprm);
1393
1394 commit_creds(bprm->cred);
1395 bprm->cred = NULL;
1396
1397 /*
1398 * Disable monitoring for regular users
1399 * when executing setuid binaries. Must
1400 * wait until new credentials are committed
1401 * by commit_creds() above
1402 */
1403 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1404 perf_event_exit_task(me);
1405 /*
1406 * cred_guard_mutex must be held at least to this point to prevent
1407 * ptrace_attach() from altering our determination of the task's
1408 * credentials; any time after this it may be unlocked.
1409 */
1410 security_bprm_committed_creds(bprm);
1411
1412 /* Pass the opened binary to the interpreter. */
1413 if (bprm->have_execfd) {
1414 retval = get_unused_fd_flags(0);
1415 if (retval < 0)
1416 goto out_unlock;
1417 fd_install(retval, bprm->executable);
1418 bprm->executable = NULL;
1419 bprm->execfd = retval;
1420 }
1421 return 0;
1422
1423 out_unlock:
1424 up_write(&me->signal->exec_update_lock);
1425 if (!bprm->cred)
1426 mutex_unlock(&me->signal->cred_guard_mutex);
1427
1428 out:
1429 return retval;
1430 }
1431 EXPORT_SYMBOL(begin_new_exec);
1432
would_dump(struct linux_binprm * bprm,struct file * file)1433 void would_dump(struct linux_binprm *bprm, struct file *file)
1434 {
1435 struct inode *inode = file_inode(file);
1436 struct mnt_idmap *idmap = file_mnt_idmap(file);
1437 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1438 struct user_namespace *old, *user_ns;
1439 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1440
1441 /* Ensure mm->user_ns contains the executable */
1442 user_ns = old = bprm->mm->user_ns;
1443 while ((user_ns != &init_user_ns) &&
1444 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1445 user_ns = user_ns->parent;
1446
1447 if (old != user_ns) {
1448 bprm->mm->user_ns = get_user_ns(user_ns);
1449 put_user_ns(old);
1450 }
1451 }
1452 }
1453 EXPORT_SYMBOL(would_dump);
1454
setup_new_exec(struct linux_binprm * bprm)1455 void setup_new_exec(struct linux_binprm * bprm)
1456 {
1457 /* Setup things that can depend upon the personality */
1458 struct task_struct *me = current;
1459
1460 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1461
1462 arch_setup_new_exec();
1463
1464 /* Set the new mm task size. We have to do that late because it may
1465 * depend on TIF_32BIT which is only updated in flush_thread() on
1466 * some architectures like powerpc
1467 */
1468 me->mm->task_size = TASK_SIZE;
1469 up_write(&me->signal->exec_update_lock);
1470 mutex_unlock(&me->signal->cred_guard_mutex);
1471 }
1472 EXPORT_SYMBOL(setup_new_exec);
1473
1474 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1475 void finalize_exec(struct linux_binprm *bprm)
1476 {
1477 /* Store any stack rlimit changes before starting thread. */
1478 task_lock(current->group_leader);
1479 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1480 task_unlock(current->group_leader);
1481 }
1482 EXPORT_SYMBOL(finalize_exec);
1483
1484 /*
1485 * Prepare credentials and lock ->cred_guard_mutex.
1486 * setup_new_exec() commits the new creds and drops the lock.
1487 * Or, if exec fails before, free_bprm() should release ->cred
1488 * and unlock.
1489 */
prepare_bprm_creds(struct linux_binprm * bprm)1490 static int prepare_bprm_creds(struct linux_binprm *bprm)
1491 {
1492 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1493 return -ERESTARTNOINTR;
1494
1495 bprm->cred = prepare_exec_creds();
1496 if (likely(bprm->cred))
1497 return 0;
1498
1499 mutex_unlock(¤t->signal->cred_guard_mutex);
1500 return -ENOMEM;
1501 }
1502
1503 /* Matches do_open_execat() */
do_close_execat(struct file * file)1504 static void do_close_execat(struct file *file)
1505 {
1506 if (!file)
1507 return;
1508 allow_write_access(file);
1509 fput(file);
1510 }
1511
free_bprm(struct linux_binprm * bprm)1512 static void free_bprm(struct linux_binprm *bprm)
1513 {
1514 if (bprm->mm) {
1515 acct_arg_size(bprm, 0);
1516 mmput(bprm->mm);
1517 }
1518 free_arg_pages(bprm);
1519 if (bprm->cred) {
1520 /* in case exec fails before de_thread() succeeds */
1521 current->fs->in_exec = 0;
1522 mutex_unlock(¤t->signal->cred_guard_mutex);
1523 abort_creds(bprm->cred);
1524 }
1525 do_close_execat(bprm->file);
1526 if (bprm->executable)
1527 fput(bprm->executable);
1528 /* If a binfmt changed the interp, free it. */
1529 if (bprm->interp != bprm->filename)
1530 kfree(bprm->interp);
1531 kfree(bprm->fdpath);
1532 kfree(bprm);
1533 }
1534
alloc_bprm(int fd,struct filename * filename,int flags)1535 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1536 {
1537 struct linux_binprm *bprm;
1538 struct file *file;
1539 int retval = -ENOMEM;
1540
1541 file = do_open_execat(fd, filename, flags);
1542 if (IS_ERR(file))
1543 return ERR_CAST(file);
1544
1545 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1546 if (!bprm) {
1547 do_close_execat(file);
1548 return ERR_PTR(-ENOMEM);
1549 }
1550
1551 bprm->file = file;
1552
1553 if (fd == AT_FDCWD || filename->name[0] == '/') {
1554 bprm->filename = filename->name;
1555 } else {
1556 if (filename->name[0] == '\0') {
1557 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1558 bprm->comm_from_dentry = 1;
1559 } else {
1560 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1561 fd, filename->name);
1562 }
1563 if (!bprm->fdpath)
1564 goto out_free;
1565
1566 /*
1567 * Record that a name derived from an O_CLOEXEC fd will be
1568 * inaccessible after exec. This allows the code in exec to
1569 * choose to fail when the executable is not mmaped into the
1570 * interpreter and an open file descriptor is not passed to
1571 * the interpreter. This makes for a better user experience
1572 * than having the interpreter start and then immediately fail
1573 * when it finds the executable is inaccessible.
1574 */
1575 if (get_close_on_exec(fd))
1576 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1577
1578 bprm->filename = bprm->fdpath;
1579 }
1580 bprm->interp = bprm->filename;
1581
1582 retval = bprm_mm_init(bprm);
1583 if (!retval)
1584 return bprm;
1585
1586 out_free:
1587 free_bprm(bprm);
1588 return ERR_PTR(retval);
1589 }
1590
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1591 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1592 {
1593 /* If a binfmt changed the interp, free it first. */
1594 if (bprm->interp != bprm->filename)
1595 kfree(bprm->interp);
1596 bprm->interp = kstrdup(interp, GFP_KERNEL);
1597 if (!bprm->interp)
1598 return -ENOMEM;
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(bprm_change_interp);
1602
1603 /*
1604 * determine how safe it is to execute the proposed program
1605 * - the caller must hold ->cred_guard_mutex to protect against
1606 * PTRACE_ATTACH or seccomp thread-sync
1607 */
check_unsafe_exec(struct linux_binprm * bprm)1608 static void check_unsafe_exec(struct linux_binprm *bprm)
1609 {
1610 struct task_struct *p = current, *t;
1611 unsigned n_fs;
1612
1613 if (p->ptrace)
1614 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1615
1616 /*
1617 * This isn't strictly necessary, but it makes it harder for LSMs to
1618 * mess up.
1619 */
1620 if (task_no_new_privs(current))
1621 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1622
1623 /*
1624 * If another task is sharing our fs, we cannot safely
1625 * suid exec because the differently privileged task
1626 * will be able to manipulate the current directory, etc.
1627 * It would be nice to force an unshare instead...
1628 *
1629 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1630 * from another sub-thread until de_thread() succeeds, this
1631 * state is protected by cred_guard_mutex we hold.
1632 */
1633 n_fs = 1;
1634 spin_lock(&p->fs->lock);
1635 rcu_read_lock();
1636 for_other_threads(p, t) {
1637 if (t->fs == p->fs)
1638 n_fs++;
1639 }
1640 rcu_read_unlock();
1641
1642 /* "users" and "in_exec" locked for copy_fs() */
1643 if (p->fs->users > n_fs)
1644 bprm->unsafe |= LSM_UNSAFE_SHARE;
1645 else
1646 p->fs->in_exec = 1;
1647 spin_unlock(&p->fs->lock);
1648 }
1649
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1650 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1651 {
1652 /* Handle suid and sgid on files */
1653 struct mnt_idmap *idmap;
1654 struct inode *inode = file_inode(file);
1655 unsigned int mode;
1656 vfsuid_t vfsuid;
1657 vfsgid_t vfsgid;
1658 int err;
1659
1660 if (!mnt_may_suid(file->f_path.mnt))
1661 return;
1662
1663 if (task_no_new_privs(current))
1664 return;
1665
1666 mode = READ_ONCE(inode->i_mode);
1667 if (!(mode & (S_ISUID|S_ISGID)))
1668 return;
1669
1670 idmap = file_mnt_idmap(file);
1671
1672 /* Be careful if suid/sgid is set */
1673 inode_lock(inode);
1674
1675 /* Atomically reload and check mode/uid/gid now that lock held. */
1676 mode = inode->i_mode;
1677 vfsuid = i_uid_into_vfsuid(idmap, inode);
1678 vfsgid = i_gid_into_vfsgid(idmap, inode);
1679 err = inode_permission(idmap, inode, MAY_EXEC);
1680 inode_unlock(inode);
1681
1682 /* Did the exec bit vanish out from under us? Give up. */
1683 if (err)
1684 return;
1685
1686 /* We ignore suid/sgid if there are no mappings for them in the ns */
1687 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1688 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1689 return;
1690
1691 if (mode & S_ISUID) {
1692 bprm->per_clear |= PER_CLEAR_ON_SETID;
1693 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1694 }
1695
1696 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1697 bprm->per_clear |= PER_CLEAR_ON_SETID;
1698 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1699 }
1700 }
1701
1702 /*
1703 * Compute brpm->cred based upon the final binary.
1704 */
bprm_creds_from_file(struct linux_binprm * bprm)1705 static int bprm_creds_from_file(struct linux_binprm *bprm)
1706 {
1707 /* Compute creds based on which file? */
1708 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1709
1710 bprm_fill_uid(bprm, file);
1711 return security_bprm_creds_from_file(bprm, file);
1712 }
1713
1714 /*
1715 * Fill the binprm structure from the inode.
1716 * Read the first BINPRM_BUF_SIZE bytes
1717 *
1718 * This may be called multiple times for binary chains (scripts for example).
1719 */
prepare_binprm(struct linux_binprm * bprm)1720 static int prepare_binprm(struct linux_binprm *bprm)
1721 {
1722 loff_t pos = 0;
1723
1724 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1725 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1726 }
1727
1728 /*
1729 * Arguments are '\0' separated strings found at the location bprm->p
1730 * points to; chop off the first by relocating brpm->p to right after
1731 * the first '\0' encountered.
1732 */
remove_arg_zero(struct linux_binprm * bprm)1733 int remove_arg_zero(struct linux_binprm *bprm)
1734 {
1735 unsigned long offset;
1736 char *kaddr;
1737 struct page *page;
1738
1739 if (!bprm->argc)
1740 return 0;
1741
1742 do {
1743 offset = bprm->p & ~PAGE_MASK;
1744 page = get_arg_page(bprm, bprm->p, 0);
1745 if (!page)
1746 return -EFAULT;
1747 kaddr = kmap_local_page(page);
1748
1749 for (; offset < PAGE_SIZE && kaddr[offset];
1750 offset++, bprm->p++)
1751 ;
1752
1753 kunmap_local(kaddr);
1754 put_arg_page(page);
1755 } while (offset == PAGE_SIZE);
1756
1757 bprm->p++;
1758 bprm->argc--;
1759
1760 return 0;
1761 }
1762 EXPORT_SYMBOL(remove_arg_zero);
1763
1764 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1765 /*
1766 * cycle the list of binary formats handler, until one recognizes the image
1767 */
search_binary_handler(struct linux_binprm * bprm)1768 static int search_binary_handler(struct linux_binprm *bprm)
1769 {
1770 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1771 struct linux_binfmt *fmt;
1772 int retval;
1773
1774 retval = prepare_binprm(bprm);
1775 if (retval < 0)
1776 return retval;
1777
1778 retval = security_bprm_check(bprm);
1779 if (retval)
1780 return retval;
1781
1782 retval = -ENOENT;
1783 retry:
1784 read_lock(&binfmt_lock);
1785 list_for_each_entry(fmt, &formats, lh) {
1786 if (!try_module_get(fmt->module))
1787 continue;
1788 read_unlock(&binfmt_lock);
1789
1790 retval = fmt->load_binary(bprm);
1791
1792 read_lock(&binfmt_lock);
1793 put_binfmt(fmt);
1794 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1795 read_unlock(&binfmt_lock);
1796 return retval;
1797 }
1798 }
1799 read_unlock(&binfmt_lock);
1800
1801 if (need_retry) {
1802 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1803 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1804 return retval;
1805 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1806 return retval;
1807 need_retry = false;
1808 goto retry;
1809 }
1810
1811 return retval;
1812 }
1813
1814 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1815 static int exec_binprm(struct linux_binprm *bprm)
1816 {
1817 pid_t old_pid, old_vpid;
1818 int ret, depth;
1819
1820 /* Need to fetch pid before load_binary changes it */
1821 old_pid = current->pid;
1822 rcu_read_lock();
1823 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1824 rcu_read_unlock();
1825
1826 /* This allows 4 levels of binfmt rewrites before failing hard. */
1827 for (depth = 0;; depth++) {
1828 struct file *exec;
1829 if (depth > 5)
1830 return -ELOOP;
1831
1832 ret = search_binary_handler(bprm);
1833 if (ret < 0)
1834 return ret;
1835 if (!bprm->interpreter)
1836 break;
1837
1838 exec = bprm->file;
1839 bprm->file = bprm->interpreter;
1840 bprm->interpreter = NULL;
1841
1842 allow_write_access(exec);
1843 if (unlikely(bprm->have_execfd)) {
1844 if (bprm->executable) {
1845 fput(exec);
1846 return -ENOEXEC;
1847 }
1848 bprm->executable = exec;
1849 } else
1850 fput(exec);
1851 }
1852
1853 audit_bprm(bprm);
1854 trace_sched_process_exec(current, old_pid, bprm);
1855 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1856 proc_exec_connector(current);
1857 return 0;
1858 }
1859
bprm_execve(struct linux_binprm * bprm)1860 static int bprm_execve(struct linux_binprm *bprm)
1861 {
1862 int retval;
1863
1864 retval = prepare_bprm_creds(bprm);
1865 if (retval)
1866 return retval;
1867
1868 /*
1869 * Check for unsafe execution states before exec_binprm(), which
1870 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1871 * where setuid-ness is evaluated.
1872 */
1873 check_unsafe_exec(bprm);
1874 current->in_execve = 1;
1875 sched_mm_cid_before_execve(current);
1876
1877 sched_exec();
1878
1879 /* Set the unchanging part of bprm->cred */
1880 retval = security_bprm_creds_for_exec(bprm);
1881 if (retval)
1882 goto out;
1883
1884 retval = exec_binprm(bprm);
1885 if (retval < 0)
1886 goto out;
1887
1888 sched_mm_cid_after_execve(current);
1889 /* execve succeeded */
1890 current->in_execve = 0;
1891 rseq_execve(current);
1892 user_events_execve(current);
1893 acct_update_integrals(current);
1894 task_numa_free(current, false);
1895 return retval;
1896
1897 out:
1898 /*
1899 * If past the point of no return ensure the code never
1900 * returns to the userspace process. Use an existing fatal
1901 * signal if present otherwise terminate the process with
1902 * SIGSEGV.
1903 */
1904 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1905 force_fatal_sig(SIGSEGV);
1906
1907 sched_mm_cid_after_execve(current);
1908 current->in_execve = 0;
1909
1910 return retval;
1911 }
1912
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1913 static int do_execveat_common(int fd, struct filename *filename,
1914 struct user_arg_ptr argv,
1915 struct user_arg_ptr envp,
1916 int flags)
1917 {
1918 struct linux_binprm *bprm;
1919 int retval;
1920
1921 if (IS_ERR(filename))
1922 return PTR_ERR(filename);
1923
1924 /*
1925 * We move the actual failure in case of RLIMIT_NPROC excess from
1926 * set*uid() to execve() because too many poorly written programs
1927 * don't check setuid() return code. Here we additionally recheck
1928 * whether NPROC limit is still exceeded.
1929 */
1930 if ((current->flags & PF_NPROC_EXCEEDED) &&
1931 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1932 retval = -EAGAIN;
1933 goto out_ret;
1934 }
1935
1936 /* We're below the limit (still or again), so we don't want to make
1937 * further execve() calls fail. */
1938 current->flags &= ~PF_NPROC_EXCEEDED;
1939
1940 bprm = alloc_bprm(fd, filename, flags);
1941 if (IS_ERR(bprm)) {
1942 retval = PTR_ERR(bprm);
1943 goto out_ret;
1944 }
1945
1946 retval = count(argv, MAX_ARG_STRINGS);
1947 if (retval == 0)
1948 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1949 current->comm, bprm->filename);
1950 if (retval < 0)
1951 goto out_free;
1952 bprm->argc = retval;
1953
1954 retval = count(envp, MAX_ARG_STRINGS);
1955 if (retval < 0)
1956 goto out_free;
1957 bprm->envc = retval;
1958
1959 retval = bprm_stack_limits(bprm);
1960 if (retval < 0)
1961 goto out_free;
1962
1963 retval = copy_string_kernel(bprm->filename, bprm);
1964 if (retval < 0)
1965 goto out_free;
1966 bprm->exec = bprm->p;
1967
1968 retval = copy_strings(bprm->envc, envp, bprm);
1969 if (retval < 0)
1970 goto out_free;
1971
1972 retval = copy_strings(bprm->argc, argv, bprm);
1973 if (retval < 0)
1974 goto out_free;
1975
1976 /*
1977 * When argv is empty, add an empty string ("") as argv[0] to
1978 * ensure confused userspace programs that start processing
1979 * from argv[1] won't end up walking envp. See also
1980 * bprm_stack_limits().
1981 */
1982 if (bprm->argc == 0) {
1983 retval = copy_string_kernel("", bprm);
1984 if (retval < 0)
1985 goto out_free;
1986 bprm->argc = 1;
1987 }
1988
1989 retval = bprm_execve(bprm);
1990 out_free:
1991 free_bprm(bprm);
1992
1993 out_ret:
1994 putname(filename);
1995 return retval;
1996 }
1997
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1998 int kernel_execve(const char *kernel_filename,
1999 const char *const *argv, const char *const *envp)
2000 {
2001 struct filename *filename;
2002 struct linux_binprm *bprm;
2003 int fd = AT_FDCWD;
2004 int retval;
2005
2006 /* It is non-sense for kernel threads to call execve */
2007 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2008 return -EINVAL;
2009
2010 filename = getname_kernel(kernel_filename);
2011 if (IS_ERR(filename))
2012 return PTR_ERR(filename);
2013
2014 bprm = alloc_bprm(fd, filename, 0);
2015 if (IS_ERR(bprm)) {
2016 retval = PTR_ERR(bprm);
2017 goto out_ret;
2018 }
2019
2020 retval = count_strings_kernel(argv);
2021 if (WARN_ON_ONCE(retval == 0))
2022 retval = -EINVAL;
2023 if (retval < 0)
2024 goto out_free;
2025 bprm->argc = retval;
2026
2027 retval = count_strings_kernel(envp);
2028 if (retval < 0)
2029 goto out_free;
2030 bprm->envc = retval;
2031
2032 retval = bprm_stack_limits(bprm);
2033 if (retval < 0)
2034 goto out_free;
2035
2036 retval = copy_string_kernel(bprm->filename, bprm);
2037 if (retval < 0)
2038 goto out_free;
2039 bprm->exec = bprm->p;
2040
2041 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2042 if (retval < 0)
2043 goto out_free;
2044
2045 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2046 if (retval < 0)
2047 goto out_free;
2048
2049 retval = bprm_execve(bprm);
2050 out_free:
2051 free_bprm(bprm);
2052 out_ret:
2053 putname(filename);
2054 return retval;
2055 }
2056
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2057 static int do_execve(struct filename *filename,
2058 const char __user *const __user *__argv,
2059 const char __user *const __user *__envp)
2060 {
2061 struct user_arg_ptr argv = { .ptr.native = __argv };
2062 struct user_arg_ptr envp = { .ptr.native = __envp };
2063 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2064 }
2065
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2066 static int do_execveat(int fd, struct filename *filename,
2067 const char __user *const __user *__argv,
2068 const char __user *const __user *__envp,
2069 int flags)
2070 {
2071 struct user_arg_ptr argv = { .ptr.native = __argv };
2072 struct user_arg_ptr envp = { .ptr.native = __envp };
2073
2074 return do_execveat_common(fd, filename, argv, envp, flags);
2075 }
2076
2077 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2078 static int compat_do_execve(struct filename *filename,
2079 const compat_uptr_t __user *__argv,
2080 const compat_uptr_t __user *__envp)
2081 {
2082 struct user_arg_ptr argv = {
2083 .is_compat = true,
2084 .ptr.compat = __argv,
2085 };
2086 struct user_arg_ptr envp = {
2087 .is_compat = true,
2088 .ptr.compat = __envp,
2089 };
2090 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2091 }
2092
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2093 static int compat_do_execveat(int fd, struct filename *filename,
2094 const compat_uptr_t __user *__argv,
2095 const compat_uptr_t __user *__envp,
2096 int flags)
2097 {
2098 struct user_arg_ptr argv = {
2099 .is_compat = true,
2100 .ptr.compat = __argv,
2101 };
2102 struct user_arg_ptr envp = {
2103 .is_compat = true,
2104 .ptr.compat = __envp,
2105 };
2106 return do_execveat_common(fd, filename, argv, envp, flags);
2107 }
2108 #endif
2109
set_binfmt(struct linux_binfmt * new)2110 void set_binfmt(struct linux_binfmt *new)
2111 {
2112 struct mm_struct *mm = current->mm;
2113
2114 if (mm->binfmt)
2115 module_put(mm->binfmt->module);
2116
2117 mm->binfmt = new;
2118 if (new)
2119 __module_get(new->module);
2120 }
2121 EXPORT_SYMBOL(set_binfmt);
2122
2123 /*
2124 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2125 */
set_dumpable(struct mm_struct * mm,int value)2126 void set_dumpable(struct mm_struct *mm, int value)
2127 {
2128 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2129 return;
2130
2131 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2132 }
2133
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2134 SYSCALL_DEFINE3(execve,
2135 const char __user *, filename,
2136 const char __user *const __user *, argv,
2137 const char __user *const __user *, envp)
2138 {
2139 return do_execve(getname(filename), argv, envp);
2140 }
2141
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2142 SYSCALL_DEFINE5(execveat,
2143 int, fd, const char __user *, filename,
2144 const char __user *const __user *, argv,
2145 const char __user *const __user *, envp,
2146 int, flags)
2147 {
2148 return do_execveat(fd,
2149 getname_uflags(filename, flags),
2150 argv, envp, flags);
2151 }
2152
2153 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2154 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2155 const compat_uptr_t __user *, argv,
2156 const compat_uptr_t __user *, envp)
2157 {
2158 return compat_do_execve(getname(filename), argv, envp);
2159 }
2160
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2161 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2162 const char __user *, filename,
2163 const compat_uptr_t __user *, argv,
2164 const compat_uptr_t __user *, envp,
2165 int, flags)
2166 {
2167 return compat_do_execveat(fd,
2168 getname_uflags(filename, flags),
2169 argv, envp, flags);
2170 }
2171 #endif
2172
2173 #ifdef CONFIG_SYSCTL
2174
proc_dointvec_minmax_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2175 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2176 void *buffer, size_t *lenp, loff_t *ppos)
2177 {
2178 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2179
2180 if (!error)
2181 validate_coredump_safety();
2182 return error;
2183 }
2184
2185 static struct ctl_table fs_exec_sysctls[] = {
2186 {
2187 .procname = "suid_dumpable",
2188 .data = &suid_dumpable,
2189 .maxlen = sizeof(int),
2190 .mode = 0644,
2191 .proc_handler = proc_dointvec_minmax_coredump,
2192 .extra1 = SYSCTL_ZERO,
2193 .extra2 = SYSCTL_TWO,
2194 },
2195 };
2196
init_fs_exec_sysctls(void)2197 static int __init init_fs_exec_sysctls(void)
2198 {
2199 register_sysctl_init("fs", fs_exec_sysctls);
2200 return 0;
2201 }
2202
2203 fs_initcall(init_fs_exec_sysctls);
2204 #endif /* CONFIG_SYSCTL */
2205
2206 #ifdef CONFIG_EXEC_KUNIT_TEST
2207 #include "tests/exec_kunit.c"
2208 #endif
2209