1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR_VALIDITY,
64 FAULT_BLKADDR_CONSISTENCE,
65 FAULT_NO_SEGMENT,
66 FAULT_INCONSISTENT_FOOTER,
67 FAULT_MAX,
68 };
69
70 #ifdef CONFIG_F2FS_FAULT_INJECTION
71 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
72
73 struct f2fs_fault_info {
74 atomic_t inject_ops;
75 int inject_rate;
76 unsigned int inject_type;
77 };
78
79 extern const char *f2fs_fault_name[FAULT_MAX];
80 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81
82 /* maximum retry count for injected failure */
83 #define DEFAULT_FAILURE_RETRY_COUNT 8
84 #else
85 #define DEFAULT_FAILURE_RETRY_COUNT 1
86 #endif
87
88 /*
89 * For mount options
90 */
91 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
92 #define F2FS_MOUNT_DISCARD 0x00000002
93 #define F2FS_MOUNT_NOHEAP 0x00000004
94 #define F2FS_MOUNT_XATTR_USER 0x00000008
95 #define F2FS_MOUNT_POSIX_ACL 0x00000010
96 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
97 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
98 #define F2FS_MOUNT_INLINE_DATA 0x00000080
99 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
100 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
101 #define F2FS_MOUNT_NOBARRIER 0x00000400
102 #define F2FS_MOUNT_FASTBOOT 0x00000800
103 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
104 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
105 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
106 #define F2FS_MOUNT_USRQUOTA 0x00008000
107 #define F2FS_MOUNT_GRPQUOTA 0x00010000
108 #define F2FS_MOUNT_PRJQUOTA 0x00020000
109 #define F2FS_MOUNT_QUOTA 0x00040000
110 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
111 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
112 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
113 #define F2FS_MOUNT_NORECOVERY 0x00400000
114 #define F2FS_MOUNT_ATGC 0x00800000
115 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
116 #define F2FS_MOUNT_GC_MERGE 0x02000000
117 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
118 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
119 #define F2FS_MOUNT_NAT_BITS 0x10000000
120 #define F2FS_MOUNT_INLINECRYPT 0x20000000
121 /*
122 * Some f2fs environments expect to be able to pass the "lazytime" option
123 * string rather than using the MS_LAZYTIME flag, so this must remain.
124 */
125 #define F2FS_MOUNT_LAZYTIME 0x40000000
126 #define F2FS_MOUNT_RESERVE_NODE 0x80000000
127
128 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
129 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
130 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
131 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
132
133 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
134 typecheck(unsigned long long, b) && \
135 ((long long)((a) - (b)) > 0))
136
137 typedef u32 block_t; /*
138 * should not change u32, since it is the on-disk block
139 * address format, __le32.
140 */
141 typedef u32 nid_t;
142
143 #define COMPRESS_EXT_NUM 16
144
145 enum blkzone_allocation_policy {
146 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
147 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
148 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
149 };
150
151 /*
152 * An implementation of an rwsem that is explicitly unfair to readers. This
153 * prevents priority inversion when a low-priority reader acquires the read lock
154 * while sleeping on the write lock but the write lock is needed by
155 * higher-priority clients.
156 */
157
158 struct f2fs_rwsem {
159 struct rw_semaphore internal_rwsem;
160 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
161 wait_queue_head_t read_waiters;
162 #endif
163 };
164
165 struct f2fs_mount_info {
166 unsigned int opt;
167 block_t root_reserved_blocks; /* root reserved blocks */
168 block_t root_reserved_nodes; /* root reserved nodes */
169 kuid_t s_resuid; /* reserved blocks for uid */
170 kgid_t s_resgid; /* reserved blocks for gid */
171 int active_logs; /* # of active logs */
172 int inline_xattr_size; /* inline xattr size */
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174 struct f2fs_fault_info fault_info; /* For fault injection */
175 #endif
176 #ifdef CONFIG_QUOTA
177 /* Names of quota files with journalled quota */
178 char *s_qf_names[MAXQUOTAS];
179 int s_jquota_fmt; /* Format of quota to use */
180 #endif
181 /* For which write hints are passed down to block layer */
182 int alloc_mode; /* segment allocation policy */
183 int fsync_mode; /* fsync policy */
184 int fs_mode; /* fs mode: LFS or ADAPTIVE */
185 int bggc_mode; /* bggc mode: off, on or sync */
186 int memory_mode; /* memory mode */
187 int errors; /* errors parameter */
188 int discard_unit; /*
189 * discard command's offset/size should
190 * be aligned to this unit: block,
191 * segment or section
192 */
193 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
194 block_t unusable_cap_perc; /* percentage for cap */
195 block_t unusable_cap; /* Amount of space allowed to be
196 * unusable when disabling checkpoint
197 */
198
199 /* For compression */
200 unsigned char compress_algorithm; /* algorithm type */
201 unsigned char compress_log_size; /* cluster log size */
202 unsigned char compress_level; /* compress level */
203 bool compress_chksum; /* compressed data chksum */
204 unsigned char compress_ext_cnt; /* extension count */
205 unsigned char nocompress_ext_cnt; /* nocompress extension count */
206 int compress_mode; /* compression mode */
207 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
208 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
209 };
210
211 #define F2FS_FEATURE_ENCRYPT 0x00000001
212 #define F2FS_FEATURE_BLKZONED 0x00000002
213 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
214 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
215 #define F2FS_FEATURE_PRJQUOTA 0x00000010
216 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
217 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
218 #define F2FS_FEATURE_QUOTA_INO 0x00000080
219 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
220 #define F2FS_FEATURE_LOST_FOUND 0x00000200
221 #define F2FS_FEATURE_VERITY 0x00000400
222 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
223 #define F2FS_FEATURE_CASEFOLD 0x00001000
224 #define F2FS_FEATURE_COMPRESSION 0x00002000
225 #define F2FS_FEATURE_RO 0x00004000
226 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
227
228 #define __F2FS_HAS_FEATURE(raw_super, mask) \
229 ((raw_super->feature & cpu_to_le32(mask)) != 0)
230 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
231
232 /*
233 * Default values for user and/or group using reserved blocks
234 */
235 #define F2FS_DEF_RESUID 0
236 #define F2FS_DEF_RESGID 0
237
238 /*
239 * For checkpoint manager
240 */
241 enum {
242 NAT_BITMAP,
243 SIT_BITMAP
244 };
245
246 #define CP_UMOUNT 0x00000001
247 #define CP_FASTBOOT 0x00000002
248 #define CP_SYNC 0x00000004
249 #define CP_RECOVERY 0x00000008
250 #define CP_DISCARD 0x00000010
251 #define CP_TRIMMED 0x00000020
252 #define CP_PAUSE 0x00000040
253 #define CP_RESIZE 0x00000080
254
255 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
256 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
257 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
258 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
259 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
260 #define DEF_CP_INTERVAL 60 /* 60 secs */
261 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
262 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
263 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
264 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
265
266 struct cp_control {
267 int reason;
268 __u64 trim_start;
269 __u64 trim_end;
270 __u64 trim_minlen;
271 };
272
273 /*
274 * indicate meta/data type
275 */
276 enum {
277 META_CP,
278 META_NAT,
279 META_SIT,
280 META_SSA,
281 META_MAX,
282 META_POR,
283 DATA_GENERIC, /* check range only */
284 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
285 DATA_GENERIC_ENHANCE_READ, /*
286 * strong check on range and segment
287 * bitmap but no warning due to race
288 * condition of read on truncated area
289 * by extent_cache
290 */
291 DATA_GENERIC_ENHANCE_UPDATE, /*
292 * strong check on range and segment
293 * bitmap for update case
294 */
295 META_GENERIC,
296 };
297
298 /* for the list of ino */
299 enum {
300 ORPHAN_INO, /* for orphan ino list */
301 APPEND_INO, /* for append ino list */
302 UPDATE_INO, /* for update ino list */
303 TRANS_DIR_INO, /* for transactions dir ino list */
304 XATTR_DIR_INO, /* for xattr updated dir ino list */
305 FLUSH_INO, /* for multiple device flushing */
306 MAX_INO_ENTRY, /* max. list */
307 };
308
309 struct ino_entry {
310 struct list_head list; /* list head */
311 nid_t ino; /* inode number */
312 unsigned int dirty_device; /* dirty device bitmap */
313 };
314
315 /* for the list of inodes to be GCed */
316 struct inode_entry {
317 struct list_head list; /* list head */
318 struct inode *inode; /* vfs inode pointer */
319 };
320
321 struct fsync_node_entry {
322 struct list_head list; /* list head */
323 struct page *page; /* warm node page pointer */
324 unsigned int seq_id; /* sequence id */
325 };
326
327 struct ckpt_req {
328 struct completion wait; /* completion for checkpoint done */
329 struct llist_node llnode; /* llist_node to be linked in wait queue */
330 int ret; /* return code of checkpoint */
331 ktime_t queue_time; /* request queued time */
332 };
333
334 struct ckpt_req_control {
335 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
336 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
337 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
338 atomic_t issued_ckpt; /* # of actually issued ckpts */
339 atomic_t total_ckpt; /* # of total ckpts */
340 atomic_t queued_ckpt; /* # of queued ckpts */
341 struct llist_head issue_list; /* list for command issue */
342 spinlock_t stat_lock; /* lock for below checkpoint time stats */
343 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
344 unsigned int peak_time; /* peak wait time in msec until now */
345 };
346
347 /* for the bitmap indicate blocks to be discarded */
348 struct discard_entry {
349 struct list_head list; /* list head */
350 block_t start_blkaddr; /* start blockaddr of current segment */
351 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
352 };
353
354 /* minimum discard granularity, unit: block count */
355 #define MIN_DISCARD_GRANULARITY 1
356 /* default discard granularity of inner discard thread, unit: block count */
357 #define DEFAULT_DISCARD_GRANULARITY 16
358 /* default maximum discard granularity of ordered discard, unit: block count */
359 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
360
361 /* max discard pend list number */
362 #define MAX_PLIST_NUM 512
363 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
364 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
365
366 enum {
367 D_PREP, /* initial */
368 D_PARTIAL, /* partially submitted */
369 D_SUBMIT, /* all submitted */
370 D_DONE, /* finished */
371 };
372
373 struct discard_info {
374 block_t lstart; /* logical start address */
375 block_t len; /* length */
376 block_t start; /* actual start address in dev */
377 };
378
379 struct discard_cmd {
380 struct rb_node rb_node; /* rb node located in rb-tree */
381 struct discard_info di; /* discard info */
382 struct list_head list; /* command list */
383 struct completion wait; /* compleation */
384 struct block_device *bdev; /* bdev */
385 unsigned short ref; /* reference count */
386 unsigned char state; /* state */
387 unsigned char queued; /* queued discard */
388 int error; /* bio error */
389 spinlock_t lock; /* for state/bio_ref updating */
390 unsigned short bio_ref; /* bio reference count */
391 };
392
393 enum {
394 DPOLICY_BG,
395 DPOLICY_FORCE,
396 DPOLICY_FSTRIM,
397 DPOLICY_UMOUNT,
398 MAX_DPOLICY,
399 };
400
401 enum {
402 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
403 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
404 DPOLICY_IO_AWARE_MAX,
405 };
406
407 struct discard_policy {
408 int type; /* type of discard */
409 unsigned int min_interval; /* used for candidates exist */
410 unsigned int mid_interval; /* used for device busy */
411 unsigned int max_interval; /* used for candidates not exist */
412 unsigned int max_requests; /* # of discards issued per round */
413 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
414 bool io_aware; /* issue discard in idle time */
415 bool sync; /* submit discard with REQ_SYNC flag */
416 bool ordered; /* issue discard by lba order */
417 bool timeout; /* discard timeout for put_super */
418 unsigned int granularity; /* discard granularity */
419 };
420
421 struct discard_cmd_control {
422 struct task_struct *f2fs_issue_discard; /* discard thread */
423 struct list_head entry_list; /* 4KB discard entry list */
424 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
425 struct list_head wait_list; /* store on-flushing entries */
426 struct list_head fstrim_list; /* in-flight discard from fstrim */
427 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
428 struct mutex cmd_lock;
429 unsigned int nr_discards; /* # of discards in the list */
430 unsigned int max_discards; /* max. discards to be issued */
431 unsigned int max_discard_request; /* max. discard request per round */
432 unsigned int min_discard_issue_time; /* min. interval between discard issue */
433 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
434 unsigned int max_discard_issue_time; /* max. interval between discard issue */
435 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
436 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
437 unsigned int discard_granularity; /* discard granularity */
438 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
439 unsigned int discard_io_aware; /* io_aware policy */
440 unsigned int undiscard_blks; /* # of undiscard blocks */
441 unsigned int next_pos; /* next discard position */
442 atomic_t issued_discard; /* # of issued discard */
443 atomic_t queued_discard; /* # of queued discard */
444 atomic_t discard_cmd_cnt; /* # of cached cmd count */
445 struct rb_root_cached root; /* root of discard rb-tree */
446 bool rbtree_check; /* config for consistence check */
447 bool discard_wake; /* to wake up discard thread */
448 };
449
450 /* for the list of fsync inodes, used only during recovery */
451 struct fsync_inode_entry {
452 struct list_head list; /* list head */
453 struct inode *inode; /* vfs inode pointer */
454 block_t blkaddr; /* block address locating the last fsync */
455 block_t last_dentry; /* block address locating the last dentry */
456 };
457
458 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
459 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
460
461 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
462 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
463 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
464 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
465
466 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
467 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
468
update_nats_in_cursum(struct f2fs_journal * journal,int i)469 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
470 {
471 int before = nats_in_cursum(journal);
472
473 journal->n_nats = cpu_to_le16(before + i);
474 return before;
475 }
476
update_sits_in_cursum(struct f2fs_journal * journal,int i)477 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
478 {
479 int before = sits_in_cursum(journal);
480
481 journal->n_sits = cpu_to_le16(before + i);
482 return before;
483 }
484
__has_cursum_space(struct f2fs_journal * journal,int size,int type)485 static inline bool __has_cursum_space(struct f2fs_journal *journal,
486 int size, int type)
487 {
488 if (type == NAT_JOURNAL)
489 return size <= MAX_NAT_JENTRIES(journal);
490 return size <= MAX_SIT_JENTRIES(journal);
491 }
492
493 /* for inline stuff */
494 #define DEF_INLINE_RESERVED_SIZE 1
495 static inline int get_extra_isize(struct inode *inode);
496 static inline int get_inline_xattr_addrs(struct inode *inode);
497 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
498 (CUR_ADDRS_PER_INODE(inode) - \
499 get_inline_xattr_addrs(inode) - \
500 DEF_INLINE_RESERVED_SIZE))
501
502 /* for inline dir */
503 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
504 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
505 BITS_PER_BYTE + 1))
506 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
507 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
508 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
509 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
510 NR_INLINE_DENTRY(inode) + \
511 INLINE_DENTRY_BITMAP_SIZE(inode)))
512
513 /*
514 * For INODE and NODE manager
515 */
516 /* for directory operations */
517
518 struct f2fs_filename {
519 /*
520 * The filename the user specified. This is NULL for some
521 * filesystem-internal operations, e.g. converting an inline directory
522 * to a non-inline one, or roll-forward recovering an encrypted dentry.
523 */
524 const struct qstr *usr_fname;
525
526 /*
527 * The on-disk filename. For encrypted directories, this is encrypted.
528 * This may be NULL for lookups in an encrypted dir without the key.
529 */
530 struct fscrypt_str disk_name;
531
532 /* The dirhash of this filename */
533 f2fs_hash_t hash;
534
535 #ifdef CONFIG_FS_ENCRYPTION
536 /*
537 * For lookups in encrypted directories: either the buffer backing
538 * disk_name, or a buffer that holds the decoded no-key name.
539 */
540 struct fscrypt_str crypto_buf;
541 #endif
542 #if IS_ENABLED(CONFIG_UNICODE)
543 /*
544 * For casefolded directories: the casefolded name, but it's left NULL
545 * if the original name is not valid Unicode, if the original name is
546 * "." or "..", if the directory is both casefolded and encrypted and
547 * its encryption key is unavailable, or if the filesystem is doing an
548 * internal operation where usr_fname is also NULL. In all these cases
549 * we fall back to treating the name as an opaque byte sequence.
550 */
551 struct qstr cf_name;
552 #endif
553 };
554
555 struct f2fs_dentry_ptr {
556 struct inode *inode;
557 void *bitmap;
558 struct f2fs_dir_entry *dentry;
559 __u8 (*filename)[F2FS_SLOT_LEN];
560 int max;
561 int nr_bitmap;
562 };
563
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)564 static inline void make_dentry_ptr_block(struct inode *inode,
565 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
566 {
567 d->inode = inode;
568 d->max = NR_DENTRY_IN_BLOCK;
569 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
570 d->bitmap = t->dentry_bitmap;
571 d->dentry = t->dentry;
572 d->filename = t->filename;
573 }
574
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)575 static inline void make_dentry_ptr_inline(struct inode *inode,
576 struct f2fs_dentry_ptr *d, void *t)
577 {
578 int entry_cnt = NR_INLINE_DENTRY(inode);
579 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
580 int reserved_size = INLINE_RESERVED_SIZE(inode);
581
582 d->inode = inode;
583 d->max = entry_cnt;
584 d->nr_bitmap = bitmap_size;
585 d->bitmap = t;
586 d->dentry = t + bitmap_size + reserved_size;
587 d->filename = t + bitmap_size + reserved_size +
588 SIZE_OF_DIR_ENTRY * entry_cnt;
589 }
590
591 /*
592 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
593 * as its node offset to distinguish from index node blocks.
594 * But some bits are used to mark the node block.
595 */
596 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
597 >> OFFSET_BIT_SHIFT)
598 enum {
599 ALLOC_NODE, /* allocate a new node page if needed */
600 LOOKUP_NODE, /* look up a node without readahead */
601 LOOKUP_NODE_RA, /*
602 * look up a node with readahead called
603 * by get_data_block.
604 */
605 };
606
607 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
608
609 /* congestion wait timeout value, default: 20ms */
610 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
611
612 /* maximum retry quota flush count */
613 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
614
615 /* maximum retry of EIO'ed page */
616 #define MAX_RETRY_PAGE_EIO 100
617
618 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
619
620 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
621
622 /* dirty segments threshold for triggering CP */
623 #define DEFAULT_DIRTY_THRESHOLD 4
624
625 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
626 #define RECOVERY_MIN_RA_BLOCKS 1
627
628 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
629
630 /* for in-memory extent cache entry */
631 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
632
633 /* number of extent info in extent cache we try to shrink */
634 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
635
636 /* number of age extent info in extent cache we try to shrink */
637 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
638 #define LAST_AGE_WEIGHT 30
639 #define SAME_AGE_REGION 1024
640
641 /*
642 * Define data block with age less than 1GB as hot data
643 * define data block with age less than 10GB but more than 1GB as warm data
644 */
645 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
646 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
647
648 /* default max read extent count per inode */
649 #define DEF_MAX_READ_EXTENT_COUNT 10240
650
651 /* extent cache type */
652 enum extent_type {
653 EX_READ,
654 EX_BLOCK_AGE,
655 NR_EXTENT_CACHES,
656 };
657
658 struct extent_info {
659 unsigned int fofs; /* start offset in a file */
660 unsigned int len; /* length of the extent */
661 union {
662 /* read extent_cache */
663 struct {
664 /* start block address of the extent */
665 block_t blk;
666 #ifdef CONFIG_F2FS_FS_COMPRESSION
667 /* physical extent length of compressed blocks */
668 unsigned int c_len;
669 #endif
670 };
671 /* block age extent_cache */
672 struct {
673 /* block age of the extent */
674 unsigned long long age;
675 /* last total blocks allocated */
676 unsigned long long last_blocks;
677 };
678 };
679 };
680
681 struct extent_node {
682 struct rb_node rb_node; /* rb node located in rb-tree */
683 struct extent_info ei; /* extent info */
684 struct list_head list; /* node in global extent list of sbi */
685 struct extent_tree *et; /* extent tree pointer */
686 };
687
688 struct extent_tree {
689 nid_t ino; /* inode number */
690 enum extent_type type; /* keep the extent tree type */
691 struct rb_root_cached root; /* root of extent info rb-tree */
692 struct extent_node *cached_en; /* recently accessed extent node */
693 struct list_head list; /* to be used by sbi->zombie_list */
694 rwlock_t lock; /* protect extent info rb-tree */
695 atomic_t node_cnt; /* # of extent node in rb-tree*/
696 bool largest_updated; /* largest extent updated */
697 struct extent_info largest; /* largest cached extent for EX_READ */
698 };
699
700 struct extent_tree_info {
701 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
702 struct mutex extent_tree_lock; /* locking extent radix tree */
703 struct list_head extent_list; /* lru list for shrinker */
704 spinlock_t extent_lock; /* locking extent lru list */
705 atomic_t total_ext_tree; /* extent tree count */
706 struct list_head zombie_list; /* extent zombie tree list */
707 atomic_t total_zombie_tree; /* extent zombie tree count */
708 atomic_t total_ext_node; /* extent info count */
709 };
710
711 /*
712 * State of block returned by f2fs_map_blocks.
713 */
714 #define F2FS_MAP_NEW (1U << 0)
715 #define F2FS_MAP_MAPPED (1U << 1)
716 #define F2FS_MAP_DELALLOC (1U << 2)
717 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
718 F2FS_MAP_DELALLOC)
719
720 struct f2fs_map_blocks {
721 struct block_device *m_bdev; /* for multi-device dio */
722 block_t m_pblk;
723 block_t m_lblk;
724 unsigned int m_len;
725 unsigned int m_flags;
726 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
727 pgoff_t *m_next_extent; /* point to next possible extent */
728 int m_seg_type;
729 bool m_may_create; /* indicate it is from write path */
730 bool m_multidev_dio; /* indicate it allows multi-device dio */
731 };
732
733 /* for flag in get_data_block */
734 enum {
735 F2FS_GET_BLOCK_DEFAULT,
736 F2FS_GET_BLOCK_FIEMAP,
737 F2FS_GET_BLOCK_BMAP,
738 F2FS_GET_BLOCK_DIO,
739 F2FS_GET_BLOCK_PRE_DIO,
740 F2FS_GET_BLOCK_PRE_AIO,
741 F2FS_GET_BLOCK_PRECACHE,
742 };
743
744 /*
745 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
746 */
747 #define FADVISE_COLD_BIT 0x01
748 #define FADVISE_LOST_PINO_BIT 0x02
749 #define FADVISE_ENCRYPT_BIT 0x04
750 #define FADVISE_ENC_NAME_BIT 0x08
751 #define FADVISE_KEEP_SIZE_BIT 0x10
752 #define FADVISE_HOT_BIT 0x20
753 #define FADVISE_VERITY_BIT 0x40
754 #define FADVISE_TRUNC_BIT 0x80
755
756 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
757
758 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
759 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
760 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
761
762 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
763 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
764 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
765
766 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
767 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
768
769 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
770 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
771
772 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
773 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
774
775 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
776 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
777 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
778
779 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
780 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
781
782 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
783 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
784 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
785
786 #define DEF_DIR_LEVEL 0
787
788 /* used for f2fs_inode_info->flags */
789 enum {
790 FI_NEW_INODE, /* indicate newly allocated inode */
791 FI_DIRTY_INODE, /* indicate inode is dirty or not */
792 FI_AUTO_RECOVER, /* indicate inode is recoverable */
793 FI_DIRTY_DIR, /* indicate directory has dirty pages */
794 FI_INC_LINK, /* need to increment i_nlink */
795 FI_ACL_MODE, /* indicate acl mode */
796 FI_NO_ALLOC, /* should not allocate any blocks */
797 FI_FREE_NID, /* free allocated nide */
798 FI_NO_EXTENT, /* not to use the extent cache */
799 FI_INLINE_XATTR, /* used for inline xattr */
800 FI_INLINE_DATA, /* used for inline data*/
801 FI_INLINE_DENTRY, /* used for inline dentry */
802 FI_APPEND_WRITE, /* inode has appended data */
803 FI_UPDATE_WRITE, /* inode has in-place-update data */
804 FI_NEED_IPU, /* used for ipu per file */
805 FI_ATOMIC_FILE, /* indicate atomic file */
806 FI_DATA_EXIST, /* indicate data exists */
807 FI_SKIP_WRITES, /* should skip data page writeback */
808 FI_OPU_WRITE, /* used for opu per file */
809 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
810 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
811 FI_HOT_DATA, /* indicate file is hot */
812 FI_EXTRA_ATTR, /* indicate file has extra attribute */
813 FI_PROJ_INHERIT, /* indicate file inherits projectid */
814 FI_PIN_FILE, /* indicate file should not be gced */
815 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
816 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
817 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
818 FI_MMAP_FILE, /* indicate file was mmapped */
819 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
820 FI_COMPRESS_RELEASED, /* compressed blocks were released */
821 FI_ALIGNED_WRITE, /* enable aligned write */
822 FI_COW_FILE, /* indicate COW file */
823 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
824 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
825 FI_ATOMIC_REPLACE, /* indicate atomic replace */
826 FI_OPENED_FILE, /* indicate file has been opened */
827 FI_DONATE_FINISHED, /* indicate page donation of file has been finished */
828 FI_MAX, /* max flag, never be used */
829 };
830
831 struct f2fs_inode_info {
832 struct inode vfs_inode; /* serve a vfs inode */
833 unsigned long i_flags; /* keep an inode flags for ioctl */
834 unsigned char i_advise; /* use to give file attribute hints */
835 unsigned char i_dir_level; /* use for dentry level for large dir */
836 union {
837 unsigned int i_current_depth; /* only for directory depth */
838 unsigned short i_gc_failures; /* for gc failure statistic */
839 };
840 unsigned int i_pino; /* parent inode number */
841 umode_t i_acl_mode; /* keep file acl mode temporarily */
842
843 /* Use below internally in f2fs*/
844 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
845 unsigned int ioprio_hint; /* hint for IO priority */
846 struct f2fs_rwsem i_sem; /* protect fi info */
847 atomic_t dirty_pages; /* # of dirty pages */
848 f2fs_hash_t chash; /* hash value of given file name */
849 unsigned int clevel; /* maximum level of given file name */
850 struct task_struct *task; /* lookup and create consistency */
851 struct task_struct *cp_task; /* separate cp/wb IO stats*/
852 struct task_struct *wb_task; /* indicate inode is in context of writeback */
853 nid_t i_xattr_nid; /* node id that contains xattrs */
854 loff_t last_disk_size; /* lastly written file size */
855 spinlock_t i_size_lock; /* protect last_disk_size */
856
857 #ifdef CONFIG_QUOTA
858 struct dquot __rcu *i_dquot[MAXQUOTAS];
859
860 /* quota space reservation, managed internally by quota code */
861 qsize_t i_reserved_quota;
862 #endif
863 struct list_head dirty_list; /* dirty list for dirs and files */
864 struct list_head gdirty_list; /* linked in global dirty list */
865
866 /* linked in global inode list for cache donation */
867 struct list_head gdonate_list;
868 pgoff_t donate_start, donate_end; /* inclusive */
869 atomic_t open_count; /* # of open files */
870
871 struct task_struct *atomic_write_task; /* store atomic write task */
872 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
873 /* cached extent_tree entry */
874 union {
875 struct inode *cow_inode; /* copy-on-write inode for atomic write */
876 struct inode *atomic_inode;
877 /* point to atomic_inode, available only for cow_inode */
878 };
879
880 /* avoid racing between foreground op and gc */
881 struct f2fs_rwsem i_gc_rwsem[2];
882 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
883
884 int i_extra_isize; /* size of extra space located in i_addr */
885 kprojid_t i_projid; /* id for project quota */
886 int i_inline_xattr_size; /* inline xattr size */
887 struct timespec64 i_crtime; /* inode creation time */
888 struct timespec64 i_disk_time[3];/* inode disk times */
889
890 /* for file compress */
891 atomic_t i_compr_blocks; /* # of compressed blocks */
892 unsigned char i_compress_algorithm; /* algorithm type */
893 unsigned char i_log_cluster_size; /* log of cluster size */
894 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
895 unsigned char i_compress_flag; /* compress flag */
896 unsigned int i_cluster_size; /* cluster size */
897
898 unsigned int atomic_write_cnt;
899 loff_t original_i_size; /* original i_size before atomic write */
900 };
901
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)902 static inline void get_read_extent_info(struct extent_info *ext,
903 struct f2fs_extent *i_ext)
904 {
905 ext->fofs = le32_to_cpu(i_ext->fofs);
906 ext->blk = le32_to_cpu(i_ext->blk);
907 ext->len = le32_to_cpu(i_ext->len);
908 }
909
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)910 static inline void set_raw_read_extent(struct extent_info *ext,
911 struct f2fs_extent *i_ext)
912 {
913 i_ext->fofs = cpu_to_le32(ext->fofs);
914 i_ext->blk = cpu_to_le32(ext->blk);
915 i_ext->len = cpu_to_le32(ext->len);
916 }
917
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)918 static inline bool __is_discard_mergeable(struct discard_info *back,
919 struct discard_info *front, unsigned int max_len)
920 {
921 return (back->lstart + back->len == front->lstart) &&
922 (back->len + front->len <= max_len);
923 }
924
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)925 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
926 struct discard_info *back, unsigned int max_len)
927 {
928 return __is_discard_mergeable(back, cur, max_len);
929 }
930
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)931 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
932 struct discard_info *front, unsigned int max_len)
933 {
934 return __is_discard_mergeable(cur, front, max_len);
935 }
936
937 /*
938 * For free nid management
939 */
940 enum nid_state {
941 FREE_NID, /* newly added to free nid list */
942 PREALLOC_NID, /* it is preallocated */
943 MAX_NID_STATE,
944 };
945
946 enum nat_state {
947 TOTAL_NAT,
948 DIRTY_NAT,
949 RECLAIMABLE_NAT,
950 MAX_NAT_STATE,
951 };
952
953 struct f2fs_nm_info {
954 block_t nat_blkaddr; /* base disk address of NAT */
955 nid_t max_nid; /* maximum possible node ids */
956 nid_t available_nids; /* # of available node ids */
957 nid_t next_scan_nid; /* the next nid to be scanned */
958 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
959 unsigned int ram_thresh; /* control the memory footprint */
960 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
961 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
962
963 /* NAT cache management */
964 struct radix_tree_root nat_root;/* root of the nat entry cache */
965 struct radix_tree_root nat_set_root;/* root of the nat set cache */
966 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
967 struct list_head nat_entries; /* cached nat entry list (clean) */
968 spinlock_t nat_list_lock; /* protect clean nat entry list */
969 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
970 unsigned int nat_blocks; /* # of nat blocks */
971
972 /* free node ids management */
973 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
974 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
975 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
976 spinlock_t nid_list_lock; /* protect nid lists ops */
977 struct mutex build_lock; /* lock for build free nids */
978 unsigned char **free_nid_bitmap;
979 unsigned char *nat_block_bitmap;
980 unsigned short *free_nid_count; /* free nid count of NAT block */
981
982 /* for checkpoint */
983 char *nat_bitmap; /* NAT bitmap pointer */
984
985 unsigned int nat_bits_blocks; /* # of nat bits blocks */
986 unsigned char *nat_bits; /* NAT bits blocks */
987 unsigned char *full_nat_bits; /* full NAT pages */
988 unsigned char *empty_nat_bits; /* empty NAT pages */
989 #ifdef CONFIG_F2FS_CHECK_FS
990 char *nat_bitmap_mir; /* NAT bitmap mirror */
991 #endif
992 int bitmap_size; /* bitmap size */
993 };
994
995 /*
996 * this structure is used as one of function parameters.
997 * all the information are dedicated to a given direct node block determined
998 * by the data offset in a file.
999 */
1000 struct dnode_of_data {
1001 struct inode *inode; /* vfs inode pointer */
1002 struct page *inode_page; /* its inode page, NULL is possible */
1003 struct page *node_page; /* cached direct node page */
1004 nid_t nid; /* node id of the direct node block */
1005 unsigned int ofs_in_node; /* data offset in the node page */
1006 bool inode_page_locked; /* inode page is locked or not */
1007 bool node_changed; /* is node block changed */
1008 char cur_level; /* level of hole node page */
1009 char max_level; /* level of current page located */
1010 block_t data_blkaddr; /* block address of the node block */
1011 };
1012
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)1013 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1014 struct page *ipage, struct page *npage, nid_t nid)
1015 {
1016 memset(dn, 0, sizeof(*dn));
1017 dn->inode = inode;
1018 dn->inode_page = ipage;
1019 dn->node_page = npage;
1020 dn->nid = nid;
1021 }
1022
1023 /*
1024 * For SIT manager
1025 *
1026 * By default, there are 6 active log areas across the whole main area.
1027 * When considering hot and cold data separation to reduce cleaning overhead,
1028 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1029 * respectively.
1030 * In the current design, you should not change the numbers intentionally.
1031 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1032 * logs individually according to the underlying devices. (default: 6)
1033 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1034 * data and 8 for node logs.
1035 */
1036 #define NR_CURSEG_DATA_TYPE (3)
1037 #define NR_CURSEG_NODE_TYPE (3)
1038 #define NR_CURSEG_INMEM_TYPE (2)
1039 #define NR_CURSEG_RO_TYPE (2)
1040 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1041 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1042
1043 enum log_type {
1044 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1045 CURSEG_WARM_DATA, /* data blocks */
1046 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1047 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1048 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1049 CURSEG_COLD_NODE, /* indirect node blocks */
1050 NR_PERSISTENT_LOG, /* number of persistent log */
1051 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1052 /* pinned file that needs consecutive block address */
1053 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1054 NO_CHECK_TYPE, /* number of persistent & inmem log */
1055 };
1056
1057 struct flush_cmd {
1058 struct completion wait;
1059 struct llist_node llnode;
1060 nid_t ino;
1061 int ret;
1062 };
1063
1064 struct flush_cmd_control {
1065 struct task_struct *f2fs_issue_flush; /* flush thread */
1066 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1067 atomic_t issued_flush; /* # of issued flushes */
1068 atomic_t queued_flush; /* # of queued flushes */
1069 struct llist_head issue_list; /* list for command issue */
1070 struct llist_node *dispatch_list; /* list for command dispatch */
1071 };
1072
1073 struct f2fs_sm_info {
1074 struct sit_info *sit_info; /* whole segment information */
1075 struct free_segmap_info *free_info; /* free segment information */
1076 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1077 struct curseg_info *curseg_array; /* active segment information */
1078
1079 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1080
1081 block_t seg0_blkaddr; /* block address of 0'th segment */
1082 block_t main_blkaddr; /* start block address of main area */
1083 block_t ssa_blkaddr; /* start block address of SSA area */
1084
1085 unsigned int segment_count; /* total # of segments */
1086 unsigned int main_segments; /* # of segments in main area */
1087 unsigned int reserved_segments; /* # of reserved segments */
1088 unsigned int ovp_segments; /* # of overprovision segments */
1089
1090 /* a threshold to reclaim prefree segments */
1091 unsigned int rec_prefree_segments;
1092
1093 struct list_head sit_entry_set; /* sit entry set list */
1094
1095 unsigned int ipu_policy; /* in-place-update policy */
1096 unsigned int min_ipu_util; /* in-place-update threshold */
1097 unsigned int min_fsync_blocks; /* threshold for fsync */
1098 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1099 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1100 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1101
1102 /* for flush command control */
1103 struct flush_cmd_control *fcc_info;
1104
1105 /* for discard command control */
1106 struct discard_cmd_control *dcc_info;
1107 };
1108
1109 /*
1110 * For superblock
1111 */
1112 /*
1113 * COUNT_TYPE for monitoring
1114 *
1115 * f2fs monitors the number of several block types such as on-writeback,
1116 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1117 */
1118 #define WB_DATA_TYPE(p, f) \
1119 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1120 enum count_type {
1121 F2FS_DIRTY_DENTS,
1122 F2FS_DIRTY_DATA,
1123 F2FS_DIRTY_QDATA,
1124 F2FS_DIRTY_NODES,
1125 F2FS_DIRTY_META,
1126 F2FS_DIRTY_IMETA,
1127 F2FS_WB_CP_DATA,
1128 F2FS_WB_DATA,
1129 F2FS_RD_DATA,
1130 F2FS_RD_NODE,
1131 F2FS_RD_META,
1132 F2FS_DIO_WRITE,
1133 F2FS_DIO_READ,
1134 NR_COUNT_TYPE,
1135 };
1136
1137 /*
1138 * The below are the page types of bios used in submit_bio().
1139 * The available types are:
1140 * DATA User data pages. It operates as async mode.
1141 * NODE Node pages. It operates as async mode.
1142 * META FS metadata pages such as SIT, NAT, CP.
1143 * NR_PAGE_TYPE The number of page types.
1144 * META_FLUSH Make sure the previous pages are written
1145 * with waiting the bio's completion
1146 * ... Only can be used with META.
1147 */
1148 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1149 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1150 enum page_type {
1151 DATA = 0,
1152 NODE = 1, /* should not change this */
1153 META,
1154 NR_PAGE_TYPE,
1155 META_FLUSH,
1156 IPU, /* the below types are used by tracepoints only. */
1157 OPU,
1158 };
1159
1160 enum temp_type {
1161 HOT = 0, /* must be zero for meta bio */
1162 WARM,
1163 COLD,
1164 NR_TEMP_TYPE,
1165 };
1166
1167 enum need_lock_type {
1168 LOCK_REQ = 0,
1169 LOCK_DONE,
1170 LOCK_RETRY,
1171 };
1172
1173 enum cp_reason_type {
1174 CP_NO_NEEDED,
1175 CP_NON_REGULAR,
1176 CP_COMPRESSED,
1177 CP_HARDLINK,
1178 CP_SB_NEED_CP,
1179 CP_WRONG_PINO,
1180 CP_NO_SPC_ROLL,
1181 CP_NODE_NEED_CP,
1182 CP_FASTBOOT_MODE,
1183 CP_SPEC_LOG_NUM,
1184 CP_RECOVER_DIR,
1185 CP_XATTR_DIR,
1186 };
1187
1188 enum iostat_type {
1189 /* WRITE IO */
1190 APP_DIRECT_IO, /* app direct write IOs */
1191 APP_BUFFERED_IO, /* app buffered write IOs */
1192 APP_WRITE_IO, /* app write IOs */
1193 APP_MAPPED_IO, /* app mapped IOs */
1194 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1195 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1196 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1197 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1198 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1199 FS_META_IO, /* meta IOs from kworker/reclaimer */
1200 FS_GC_DATA_IO, /* data IOs from forground gc */
1201 FS_GC_NODE_IO, /* node IOs from forground gc */
1202 FS_CP_DATA_IO, /* data IOs from checkpoint */
1203 FS_CP_NODE_IO, /* node IOs from checkpoint */
1204 FS_CP_META_IO, /* meta IOs from checkpoint */
1205
1206 /* READ IO */
1207 APP_DIRECT_READ_IO, /* app direct read IOs */
1208 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1209 APP_READ_IO, /* app read IOs */
1210 APP_MAPPED_READ_IO, /* app mapped read IOs */
1211 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1212 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1213 FS_DATA_READ_IO, /* data read IOs */
1214 FS_GDATA_READ_IO, /* data read IOs from background gc */
1215 FS_CDATA_READ_IO, /* compressed data read IOs */
1216 FS_NODE_READ_IO, /* node read IOs */
1217 FS_META_READ_IO, /* meta read IOs */
1218
1219 /* other */
1220 FS_DISCARD_IO, /* discard */
1221 FS_FLUSH_IO, /* flush */
1222 FS_ZONE_RESET_IO, /* zone reset */
1223 NR_IO_TYPE,
1224 };
1225
1226 struct f2fs_io_info {
1227 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1228 nid_t ino; /* inode number */
1229 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1230 enum temp_type temp; /* contains HOT/WARM/COLD */
1231 enum req_op op; /* contains REQ_OP_ */
1232 blk_opf_t op_flags; /* req_flag_bits */
1233 block_t new_blkaddr; /* new block address to be written */
1234 block_t old_blkaddr; /* old block address before Cow */
1235 struct page *page; /* page to be written */
1236 struct page *encrypted_page; /* encrypted page */
1237 struct page *compressed_page; /* compressed page */
1238 struct list_head list; /* serialize IOs */
1239 unsigned int compr_blocks; /* # of compressed block addresses */
1240 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1241 unsigned int version:8; /* version of the node */
1242 unsigned int submitted:1; /* indicate IO submission */
1243 unsigned int in_list:1; /* indicate fio is in io_list */
1244 unsigned int is_por:1; /* indicate IO is from recovery or not */
1245 unsigned int encrypted:1; /* indicate file is encrypted */
1246 unsigned int meta_gc:1; /* require meta inode GC */
1247 enum iostat_type io_type; /* io type */
1248 struct writeback_control *io_wbc; /* writeback control */
1249 struct bio **bio; /* bio for ipu */
1250 sector_t *last_block; /* last block number in bio */
1251 };
1252
1253 struct bio_entry {
1254 struct bio *bio;
1255 struct list_head list;
1256 };
1257
1258 #define is_read_io(rw) ((rw) == READ)
1259 struct f2fs_bio_info {
1260 struct f2fs_sb_info *sbi; /* f2fs superblock */
1261 struct bio *bio; /* bios to merge */
1262 sector_t last_block_in_bio; /* last block number */
1263 struct f2fs_io_info fio; /* store buffered io info. */
1264 #ifdef CONFIG_BLK_DEV_ZONED
1265 struct completion zone_wait; /* condition value for the previous open zone to close */
1266 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1267 void *bi_private; /* previous bi_private for pending bio */
1268 #endif
1269 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1270 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1271 struct list_head io_list; /* track fios */
1272 struct list_head bio_list; /* bio entry list head */
1273 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1274 };
1275
1276 #define FDEV(i) (sbi->devs[i])
1277 #define RDEV(i) (raw_super->devs[i])
1278 struct f2fs_dev_info {
1279 struct file *bdev_file;
1280 struct block_device *bdev;
1281 char path[MAX_PATH_LEN];
1282 unsigned int total_segments;
1283 block_t start_blk;
1284 block_t end_blk;
1285 #ifdef CONFIG_BLK_DEV_ZONED
1286 unsigned int nr_blkz; /* Total number of zones */
1287 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1288 #endif
1289 };
1290
1291 enum inode_type {
1292 DIR_INODE, /* for dirty dir inode */
1293 FILE_INODE, /* for dirty regular/symlink inode */
1294 DIRTY_META, /* for all dirtied inode metadata */
1295 DONATE_INODE, /* for all inode to donate pages */
1296 NR_INODE_TYPE,
1297 };
1298
1299 /* for inner inode cache management */
1300 struct inode_management {
1301 struct radix_tree_root ino_root; /* ino entry array */
1302 spinlock_t ino_lock; /* for ino entry lock */
1303 struct list_head ino_list; /* inode list head */
1304 unsigned long ino_num; /* number of entries */
1305 };
1306
1307 /* for GC_AT */
1308 struct atgc_management {
1309 bool atgc_enabled; /* ATGC is enabled or not */
1310 struct rb_root_cached root; /* root of victim rb-tree */
1311 struct list_head victim_list; /* linked with all victim entries */
1312 unsigned int victim_count; /* victim count in rb-tree */
1313 unsigned int candidate_ratio; /* candidate ratio */
1314 unsigned int max_candidate_count; /* max candidate count */
1315 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1316 unsigned long long age_threshold; /* age threshold */
1317 };
1318
1319 struct f2fs_gc_control {
1320 unsigned int victim_segno; /* target victim segment number */
1321 int init_gc_type; /* FG_GC or BG_GC */
1322 bool no_bg_gc; /* check the space and stop bg_gc */
1323 bool should_migrate_blocks; /* should migrate blocks */
1324 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1325 bool one_time; /* require one time GC in one migration unit */
1326 unsigned int nr_free_secs; /* # of free sections to do GC */
1327 };
1328
1329 /*
1330 * For s_flag in struct f2fs_sb_info
1331 * Modification on enum should be synchronized with s_flag array
1332 */
1333 enum {
1334 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1335 SBI_IS_CLOSE, /* specify unmounting */
1336 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1337 SBI_POR_DOING, /* recovery is doing or not */
1338 SBI_NEED_SB_WRITE, /* need to recover superblock */
1339 SBI_NEED_CP, /* need to checkpoint */
1340 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1341 SBI_IS_RECOVERED, /* recovered orphan/data */
1342 SBI_CP_DISABLED, /* CP was disabled last mount */
1343 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1344 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1345 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1346 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1347 SBI_IS_RESIZEFS, /* resizefs is in process */
1348 SBI_IS_FREEZING, /* freezefs is in process */
1349 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1350 MAX_SBI_FLAG,
1351 };
1352
1353 enum {
1354 CP_TIME,
1355 REQ_TIME,
1356 DISCARD_TIME,
1357 GC_TIME,
1358 DISABLE_TIME,
1359 UMOUNT_DISCARD_TIMEOUT,
1360 MAX_TIME,
1361 };
1362
1363 /* Note that you need to keep synchronization with this gc_mode_names array */
1364 enum {
1365 GC_NORMAL,
1366 GC_IDLE_CB,
1367 GC_IDLE_GREEDY,
1368 GC_IDLE_AT,
1369 GC_URGENT_HIGH,
1370 GC_URGENT_LOW,
1371 GC_URGENT_MID,
1372 MAX_GC_MODE,
1373 };
1374
1375 enum {
1376 BGGC_MODE_ON, /* background gc is on */
1377 BGGC_MODE_OFF, /* background gc is off */
1378 BGGC_MODE_SYNC, /*
1379 * background gc is on, migrating blocks
1380 * like foreground gc
1381 */
1382 };
1383
1384 enum {
1385 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1386 FS_MODE_LFS, /* use lfs allocation only */
1387 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1388 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1389 };
1390
1391 enum {
1392 ALLOC_MODE_DEFAULT, /* stay default */
1393 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1394 };
1395
1396 enum fsync_mode {
1397 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1398 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1399 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1400 };
1401
1402 enum {
1403 COMPR_MODE_FS, /*
1404 * automatically compress compression
1405 * enabled files
1406 */
1407 COMPR_MODE_USER, /*
1408 * automatical compression is disabled.
1409 * user can control the file compression
1410 * using ioctls
1411 */
1412 };
1413
1414 enum {
1415 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1416 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1417 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1418 };
1419
1420 enum {
1421 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1422 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1423 };
1424
1425 enum errors_option {
1426 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1427 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1428 MOUNT_ERRORS_PANIC, /* panic on errors */
1429 };
1430
1431 enum {
1432 BACKGROUND,
1433 FOREGROUND,
1434 MAX_CALL_TYPE,
1435 TOTAL_CALL = FOREGROUND,
1436 };
1437
1438 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1439 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1440 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1441
1442 /*
1443 * Layout of f2fs page.private:
1444 *
1445 * Layout A: lowest bit should be 1
1446 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1447 * bit 0 PAGE_PRIVATE_NOT_POINTER
1448 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1449 * bit 2 PAGE_PRIVATE_INLINE_INODE
1450 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1451 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1452 * bit 5- f2fs private data
1453 *
1454 * Layout B: lowest bit should be 0
1455 * page.private is a wrapped pointer.
1456 */
1457 enum {
1458 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1459 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1460 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1461 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1462 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1463 PAGE_PRIVATE_MAX
1464 };
1465
1466 /* For compression */
1467 enum compress_algorithm_type {
1468 COMPRESS_LZO,
1469 COMPRESS_LZ4,
1470 COMPRESS_ZSTD,
1471 COMPRESS_LZORLE,
1472 COMPRESS_MAX,
1473 };
1474
1475 enum compress_flag {
1476 COMPRESS_CHKSUM,
1477 COMPRESS_MAX_FLAG,
1478 };
1479
1480 #define COMPRESS_WATERMARK 20
1481 #define COMPRESS_PERCENT 20
1482
1483 #define COMPRESS_DATA_RESERVED_SIZE 4
1484 struct compress_data {
1485 __le32 clen; /* compressed data size */
1486 __le32 chksum; /* compressed data chksum */
1487 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1488 u8 cdata[]; /* compressed data */
1489 };
1490
1491 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1492
1493 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1494
1495 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1496
1497 #define COMPRESS_LEVEL_OFFSET 8
1498
1499 /* compress context */
1500 struct compress_ctx {
1501 struct inode *inode; /* inode the context belong to */
1502 pgoff_t cluster_idx; /* cluster index number */
1503 unsigned int cluster_size; /* page count in cluster */
1504 unsigned int log_cluster_size; /* log of cluster size */
1505 struct page **rpages; /* pages store raw data in cluster */
1506 unsigned int nr_rpages; /* total page number in rpages */
1507 struct page **cpages; /* pages store compressed data in cluster */
1508 unsigned int nr_cpages; /* total page number in cpages */
1509 unsigned int valid_nr_cpages; /* valid page number in cpages */
1510 void *rbuf; /* virtual mapped address on rpages */
1511 struct compress_data *cbuf; /* virtual mapped address on cpages */
1512 size_t rlen; /* valid data length in rbuf */
1513 size_t clen; /* valid data length in cbuf */
1514 void *private; /* payload buffer for specified compression algorithm */
1515 void *private2; /* extra payload buffer */
1516 };
1517
1518 /* compress context for write IO path */
1519 struct compress_io_ctx {
1520 u32 magic; /* magic number to indicate page is compressed */
1521 struct inode *inode; /* inode the context belong to */
1522 struct page **rpages; /* pages store raw data in cluster */
1523 unsigned int nr_rpages; /* total page number in rpages */
1524 atomic_t pending_pages; /* in-flight compressed page count */
1525 };
1526
1527 /* Context for decompressing one cluster on the read IO path */
1528 struct decompress_io_ctx {
1529 u32 magic; /* magic number to indicate page is compressed */
1530 struct inode *inode; /* inode the context belong to */
1531 pgoff_t cluster_idx; /* cluster index number */
1532 unsigned int cluster_size; /* page count in cluster */
1533 unsigned int log_cluster_size; /* log of cluster size */
1534 struct page **rpages; /* pages store raw data in cluster */
1535 unsigned int nr_rpages; /* total page number in rpages */
1536 struct page **cpages; /* pages store compressed data in cluster */
1537 unsigned int nr_cpages; /* total page number in cpages */
1538 struct page **tpages; /* temp pages to pad holes in cluster */
1539 void *rbuf; /* virtual mapped address on rpages */
1540 struct compress_data *cbuf; /* virtual mapped address on cpages */
1541 size_t rlen; /* valid data length in rbuf */
1542 size_t clen; /* valid data length in cbuf */
1543
1544 /*
1545 * The number of compressed pages remaining to be read in this cluster.
1546 * This is initially nr_cpages. It is decremented by 1 each time a page
1547 * has been read (or failed to be read). When it reaches 0, the cluster
1548 * is decompressed (or an error is reported).
1549 *
1550 * If an error occurs before all the pages have been submitted for I/O,
1551 * then this will never reach 0. In this case the I/O submitter is
1552 * responsible for calling f2fs_decompress_end_io() instead.
1553 */
1554 atomic_t remaining_pages;
1555
1556 /*
1557 * Number of references to this decompress_io_ctx.
1558 *
1559 * One reference is held for I/O completion. This reference is dropped
1560 * after the pagecache pages are updated and unlocked -- either after
1561 * decompression (and verity if enabled), or after an error.
1562 *
1563 * In addition, each compressed page holds a reference while it is in a
1564 * bio. These references are necessary prevent compressed pages from
1565 * being freed while they are still in a bio.
1566 */
1567 refcount_t refcnt;
1568
1569 bool failed; /* IO error occurred before decompression? */
1570 bool need_verity; /* need fs-verity verification after decompression? */
1571 void *private; /* payload buffer for specified decompression algorithm */
1572 void *private2; /* extra payload buffer */
1573 struct work_struct verity_work; /* work to verify the decompressed pages */
1574 struct work_struct free_work; /* work for late free this structure itself */
1575 };
1576
1577 #define NULL_CLUSTER ((unsigned int)(~0))
1578 #define MIN_COMPRESS_LOG_SIZE 2
1579 #define MAX_COMPRESS_LOG_SIZE 8
1580 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1581
1582 struct f2fs_sb_info {
1583 struct super_block *sb; /* pointer to VFS super block */
1584 struct proc_dir_entry *s_proc; /* proc entry */
1585 struct f2fs_super_block *raw_super; /* raw super block pointer */
1586 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1587 int valid_super_block; /* valid super block no */
1588 unsigned long s_flag; /* flags for sbi */
1589 struct mutex writepages; /* mutex for writepages() */
1590
1591 #ifdef CONFIG_BLK_DEV_ZONED
1592 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1593 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1594 /* For adjust the priority writing position of data in zone UFS */
1595 unsigned int blkzone_alloc_policy;
1596 #endif
1597
1598 /* for node-related operations */
1599 struct f2fs_nm_info *nm_info; /* node manager */
1600 struct inode *node_inode; /* cache node blocks */
1601
1602 /* for segment-related operations */
1603 struct f2fs_sm_info *sm_info; /* segment manager */
1604
1605 /* for bio operations */
1606 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1607 /* keep migration IO order for LFS mode */
1608 struct f2fs_rwsem io_order_lock;
1609 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1610 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1611
1612 /* for checkpoint */
1613 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1614 int cur_cp_pack; /* remain current cp pack */
1615 spinlock_t cp_lock; /* for flag in ckpt */
1616 struct inode *meta_inode; /* cache meta blocks */
1617 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1618 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1619 struct f2fs_rwsem node_write; /* locking node writes */
1620 struct f2fs_rwsem node_change; /* locking node change */
1621 wait_queue_head_t cp_wait;
1622 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1623 long interval_time[MAX_TIME]; /* to store thresholds */
1624 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1625
1626 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1627
1628 spinlock_t fsync_node_lock; /* for node entry lock */
1629 struct list_head fsync_node_list; /* node list head */
1630 unsigned int fsync_seg_id; /* sequence id */
1631 unsigned int fsync_node_num; /* number of node entries */
1632
1633 /* for orphan inode, use 0'th array */
1634 unsigned int max_orphans; /* max orphan inodes */
1635
1636 /* for inode management */
1637 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1638 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1639 struct mutex flush_lock; /* for flush exclusion */
1640
1641 /* for extent tree cache */
1642 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1643 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1644 unsigned int max_read_extent_count; /* max read extent count per inode */
1645
1646 /* The threshold used for hot and warm data seperation*/
1647 unsigned int hot_data_age_threshold;
1648 unsigned int warm_data_age_threshold;
1649 unsigned int last_age_weight;
1650
1651 /* control donate caches */
1652 unsigned int donate_files;
1653
1654 /* basic filesystem units */
1655 unsigned int log_sectors_per_block; /* log2 sectors per block */
1656 unsigned int log_blocksize; /* log2 block size */
1657 unsigned int blocksize; /* block size */
1658 unsigned int root_ino_num; /* root inode number*/
1659 unsigned int node_ino_num; /* node inode number*/
1660 unsigned int meta_ino_num; /* meta inode number*/
1661 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1662 unsigned int blocks_per_seg; /* blocks per segment */
1663 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1664 unsigned int segs_per_sec; /* segments per section */
1665 unsigned int secs_per_zone; /* sections per zone */
1666 unsigned int total_sections; /* total section count */
1667 unsigned int total_node_count; /* total node block count */
1668 unsigned int total_valid_node_count; /* valid node block count */
1669 int dir_level; /* directory level */
1670 bool readdir_ra; /* readahead inode in readdir */
1671 u64 max_io_bytes; /* max io bytes to merge IOs */
1672
1673 block_t user_block_count; /* # of user blocks */
1674 block_t total_valid_block_count; /* # of valid blocks */
1675 block_t discard_blks; /* discard command candidats */
1676 block_t last_valid_block_count; /* for recovery */
1677 block_t reserved_blocks; /* configurable reserved blocks */
1678 block_t current_reserved_blocks; /* current reserved blocks */
1679
1680 /* Additional tracking for no checkpoint mode */
1681 block_t unusable_block_count; /* # of blocks saved by last cp */
1682
1683 unsigned int nquota_files; /* # of quota sysfile */
1684 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1685 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1686
1687 /* # of pages, see count_type */
1688 atomic_t nr_pages[NR_COUNT_TYPE];
1689 /* # of allocated blocks */
1690 struct percpu_counter alloc_valid_block_count;
1691 /* # of node block writes as roll forward recovery */
1692 struct percpu_counter rf_node_block_count;
1693
1694 /* writeback control */
1695 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1696
1697 /* valid inode count */
1698 struct percpu_counter total_valid_inode_count;
1699
1700 struct f2fs_mount_info mount_opt; /* mount options */
1701
1702 /* for cleaning operations */
1703 struct f2fs_rwsem gc_lock; /*
1704 * semaphore for GC, avoid
1705 * race between GC and GC or CP
1706 */
1707 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1708 struct atgc_management am; /* atgc management */
1709 unsigned int cur_victim_sec; /* current victim section num */
1710 unsigned int gc_mode; /* current GC state */
1711 unsigned int next_victim_seg[2]; /* next segment in victim section */
1712 spinlock_t gc_remaining_trials_lock;
1713 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1714 unsigned int gc_remaining_trials;
1715
1716 /* for skip statistic */
1717 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1718
1719 /* threshold for gc trials on pinned files */
1720 unsigned short gc_pin_file_threshold;
1721
1722 /* free sections reserved for pinned file */
1723 ANDROID_KABI_IGNORE(0, unsigned int reserved_pin_section);
1724
1725 struct f2fs_rwsem pin_sem;
1726
1727 /* maximum # of trials to find a victim segment for SSR and GC */
1728 unsigned int max_victim_search;
1729 /* migration granularity of garbage collection, unit: segment */
1730 unsigned int migration_granularity;
1731 /* migration window granularity of garbage collection, unit: segment */
1732 unsigned int migration_window_granularity;
1733
1734 /*
1735 * for stat information.
1736 * one is for the LFS mode, and the other is for the SSR mode.
1737 */
1738 #ifdef CONFIG_F2FS_STAT_FS
1739 struct f2fs_stat_info *stat_info; /* FS status information */
1740 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1741 unsigned int segment_count[2]; /* # of allocated segments */
1742 unsigned int block_count[2]; /* # of allocated blocks */
1743 atomic_t inplace_count; /* # of inplace update */
1744 /* # of lookup extent cache */
1745 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1746 /* # of hit rbtree extent node */
1747 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1748 /* # of hit cached extent node */
1749 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1750 /* # of hit largest extent node in read extent cache */
1751 atomic64_t read_hit_largest;
1752 atomic_t inline_xattr; /* # of inline_xattr inodes */
1753 atomic_t inline_inode; /* # of inline_data inodes */
1754 atomic_t inline_dir; /* # of inline_dentry inodes */
1755 atomic_t compr_inode; /* # of compressed inodes */
1756 atomic64_t compr_blocks; /* # of compressed blocks */
1757 atomic_t swapfile_inode; /* # of swapfile inodes */
1758 atomic_t atomic_files; /* # of opened atomic file */
1759 atomic_t max_aw_cnt; /* max # of atomic writes */
1760 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1761 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1762 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1763 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1764 #endif
1765 spinlock_t stat_lock; /* lock for stat operations */
1766
1767 /* to attach REQ_META|REQ_FUA flags */
1768 unsigned int data_io_flag;
1769 unsigned int node_io_flag;
1770
1771 /* For sysfs support */
1772 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1773 struct completion s_kobj_unregister;
1774
1775 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1776 struct completion s_stat_kobj_unregister;
1777
1778 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1779 struct completion s_feature_list_kobj_unregister;
1780
1781 /* For shrinker support */
1782 struct list_head s_list;
1783 struct mutex umount_mutex;
1784 unsigned int shrinker_run_no;
1785
1786 /* For multi devices */
1787 int s_ndevs; /* number of devices */
1788 struct f2fs_dev_info *devs; /* for device list */
1789 unsigned int dirty_device; /* for checkpoint data flush */
1790 spinlock_t dev_lock; /* protect dirty_device */
1791 bool aligned_blksize; /* all devices has the same logical blksize */
1792 unsigned int first_zoned_segno; /* first segno in sequential zone */
1793
1794 /* For write statistics */
1795 u64 sectors_written_start;
1796 u64 kbytes_written;
1797
1798 /* Reference to checksum algorithm driver via cryptoapi */
1799 struct crypto_shash *s_chksum_driver;
1800
1801 /* Precomputed FS UUID checksum for seeding other checksums */
1802 __u32 s_chksum_seed;
1803
1804 struct workqueue_struct *post_read_wq; /* post read workqueue */
1805
1806 /*
1807 * If we are in irq context, let's update error information into
1808 * on-disk superblock in the work.
1809 */
1810 struct work_struct s_error_work;
1811 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1812 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1813 spinlock_t error_lock; /* protect errors/stop_reason array */
1814 bool error_dirty; /* errors of sb is dirty */
1815
1816 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1817 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1818
1819 /* For reclaimed segs statistics per each GC mode */
1820 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1821 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1822
1823 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1824
1825 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1826 int max_fragment_hole; /* max hole size for block fragmentation mode */
1827
1828 /* For atomic write statistics */
1829 atomic64_t current_atomic_write;
1830 s64 peak_atomic_write;
1831 u64 committed_atomic_block;
1832 u64 revoked_atomic_block;
1833
1834 /* carve out reserved_blocks from total blocks */
1835 bool carve_out;
1836
1837 #ifdef CONFIG_F2FS_FS_COMPRESSION
1838 struct kmem_cache *page_array_slab; /* page array entry */
1839 unsigned int page_array_slab_size; /* default page array slab size */
1840
1841 /* For runtime compression statistics */
1842 u64 compr_written_block;
1843 u64 compr_saved_block;
1844 u32 compr_new_inode;
1845
1846 /* For compressed block cache */
1847 struct inode *compress_inode; /* cache compressed blocks */
1848 unsigned int compress_percent; /* cache page percentage */
1849 unsigned int compress_watermark; /* cache page watermark */
1850 atomic_t compress_page_hit; /* cache hit count */
1851 #endif
1852
1853 #ifdef CONFIG_F2FS_IOSTAT
1854 /* For app/fs IO statistics */
1855 spinlock_t iostat_lock;
1856 unsigned long long iostat_count[NR_IO_TYPE];
1857 unsigned long long iostat_bytes[NR_IO_TYPE];
1858 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1859 bool iostat_enable;
1860 unsigned long iostat_next_period;
1861 unsigned int iostat_period_ms;
1862
1863 /* For io latency related statistics info in one iostat period */
1864 spinlock_t iostat_lat_lock;
1865 struct iostat_lat_info *iostat_io_lat;
1866 #endif
1867 };
1868
1869 /* Definitions to access f2fs_sb_info */
1870 #define SEGS_TO_BLKS(sbi, segs) \
1871 ((segs) << (sbi)->log_blocks_per_seg)
1872 #define BLKS_TO_SEGS(sbi, blks) \
1873 ((blks) >> (sbi)->log_blocks_per_seg)
1874
1875 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1876 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1877 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1878
1879 __printf(3, 4)
1880 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1881
1882 #define f2fs_err(sbi, fmt, ...) \
1883 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1884 #define f2fs_warn(sbi, fmt, ...) \
1885 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1886 #define f2fs_notice(sbi, fmt, ...) \
1887 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1888 #define f2fs_info(sbi, fmt, ...) \
1889 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1890 #define f2fs_debug(sbi, fmt, ...) \
1891 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1892
1893 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1894 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1895 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1896 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1897 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1898 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1899
1900 #ifdef CONFIG_F2FS_FAULT_INJECTION
1901 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1902 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1903 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1904 const char *func, const char *parent_func)
1905 {
1906 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1907
1908 if (!ffi->inject_rate)
1909 return false;
1910
1911 if (!IS_FAULT_SET(ffi, type))
1912 return false;
1913
1914 atomic_inc(&ffi->inject_ops);
1915 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1916 atomic_set(&ffi->inject_ops, 0);
1917 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1918 f2fs_fault_name[type], func, parent_func);
1919 return true;
1920 }
1921 return false;
1922 }
1923 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1924 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1925 {
1926 return false;
1927 }
1928 #endif
1929
1930 /*
1931 * Test if the mounted volume is a multi-device volume.
1932 * - For a single regular disk volume, sbi->s_ndevs is 0.
1933 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1934 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1935 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1936 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1937 {
1938 return sbi->s_ndevs > 1;
1939 }
1940
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1941 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1942 {
1943 unsigned long now = jiffies;
1944
1945 sbi->last_time[type] = now;
1946
1947 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1948 if (type == REQ_TIME) {
1949 sbi->last_time[DISCARD_TIME] = now;
1950 sbi->last_time[GC_TIME] = now;
1951 }
1952 }
1953
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1954 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1955 {
1956 unsigned long interval = sbi->interval_time[type] * HZ;
1957
1958 return time_after(jiffies, sbi->last_time[type] + interval);
1959 }
1960
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1961 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1962 int type)
1963 {
1964 unsigned long interval = sbi->interval_time[type] * HZ;
1965 unsigned int wait_ms = 0;
1966 long delta;
1967
1968 delta = (sbi->last_time[type] + interval) - jiffies;
1969 if (delta > 0)
1970 wait_ms = jiffies_to_msecs(delta);
1971
1972 return wait_ms;
1973 }
1974
1975 /*
1976 * Inline functions
1977 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1978 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1979 const void *address, unsigned int length)
1980 {
1981 struct {
1982 struct shash_desc shash;
1983 char ctx[4];
1984 } desc;
1985 int err;
1986
1987 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1988
1989 desc.shash.tfm = sbi->s_chksum_driver;
1990 *(u32 *)desc.ctx = crc;
1991
1992 err = crypto_shash_update(&desc.shash, address, length);
1993 BUG_ON(err);
1994
1995 return *(u32 *)desc.ctx;
1996 }
1997
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1998 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1999 unsigned int length)
2000 {
2001 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
2002 }
2003
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)2004 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
2005 void *buf, size_t buf_size)
2006 {
2007 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
2008 }
2009
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)2010 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
2011 const void *address, unsigned int length)
2012 {
2013 return __f2fs_crc32(sbi, crc, address, length);
2014 }
2015
F2FS_I(struct inode * inode)2016 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
2017 {
2018 return container_of(inode, struct f2fs_inode_info, vfs_inode);
2019 }
2020
F2FS_SB(struct super_block * sb)2021 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2022 {
2023 return sb->s_fs_info;
2024 }
2025
F2FS_I_SB(struct inode * inode)2026 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2027 {
2028 return F2FS_SB(inode->i_sb);
2029 }
2030
F2FS_M_SB(struct address_space * mapping)2031 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2032 {
2033 return F2FS_I_SB(mapping->host);
2034 }
2035
F2FS_F_SB(struct folio * folio)2036 static inline struct f2fs_sb_info *F2FS_F_SB(struct folio *folio)
2037 {
2038 return F2FS_M_SB(folio->mapping);
2039 }
2040
F2FS_P_SB(struct page * page)2041 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2042 {
2043 return F2FS_F_SB(page_folio(page));
2044 }
2045
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2046 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2047 {
2048 return (struct f2fs_super_block *)(sbi->raw_super);
2049 }
2050
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2051 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2052 pgoff_t index)
2053 {
2054 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2055
2056 return (struct f2fs_super_block *)
2057 (page_address(folio_page(folio, idx_in_folio)) +
2058 F2FS_SUPER_OFFSET);
2059 }
2060
F2FS_CKPT(struct f2fs_sb_info * sbi)2061 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2062 {
2063 return (struct f2fs_checkpoint *)(sbi->ckpt);
2064 }
2065
F2FS_NODE(const struct page * page)2066 static inline struct f2fs_node *F2FS_NODE(const struct page *page)
2067 {
2068 return (struct f2fs_node *)page_address(page);
2069 }
2070
F2FS_INODE(struct page * page)2071 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2072 {
2073 return &((struct f2fs_node *)page_address(page))->i;
2074 }
2075
NM_I(struct f2fs_sb_info * sbi)2076 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2077 {
2078 return (struct f2fs_nm_info *)(sbi->nm_info);
2079 }
2080
SM_I(struct f2fs_sb_info * sbi)2081 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2082 {
2083 return (struct f2fs_sm_info *)(sbi->sm_info);
2084 }
2085
SIT_I(struct f2fs_sb_info * sbi)2086 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2087 {
2088 return (struct sit_info *)(SM_I(sbi)->sit_info);
2089 }
2090
FREE_I(struct f2fs_sb_info * sbi)2091 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2092 {
2093 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2094 }
2095
DIRTY_I(struct f2fs_sb_info * sbi)2096 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2097 {
2098 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2099 }
2100
META_MAPPING(struct f2fs_sb_info * sbi)2101 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2102 {
2103 return sbi->meta_inode->i_mapping;
2104 }
2105
NODE_MAPPING(struct f2fs_sb_info * sbi)2106 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2107 {
2108 return sbi->node_inode->i_mapping;
2109 }
2110
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2111 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2112 {
2113 return test_bit(type, &sbi->s_flag);
2114 }
2115
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2116 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2117 {
2118 set_bit(type, &sbi->s_flag);
2119 }
2120
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2121 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2122 {
2123 clear_bit(type, &sbi->s_flag);
2124 }
2125
cur_cp_version(struct f2fs_checkpoint * cp)2126 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2127 {
2128 return le64_to_cpu(cp->checkpoint_ver);
2129 }
2130
f2fs_qf_ino(struct super_block * sb,int type)2131 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2132 {
2133 if (type < F2FS_MAX_QUOTAS)
2134 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2135 return 0;
2136 }
2137
cur_cp_crc(struct f2fs_checkpoint * cp)2138 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2139 {
2140 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2141 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2142 }
2143
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2144 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2145 {
2146 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2147
2148 return ckpt_flags & f;
2149 }
2150
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2151 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2152 {
2153 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2154 }
2155
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2156 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2157 {
2158 unsigned int ckpt_flags;
2159
2160 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2161 ckpt_flags |= f;
2162 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2163 }
2164
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2165 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2166 {
2167 unsigned long flags;
2168
2169 spin_lock_irqsave(&sbi->cp_lock, flags);
2170 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2171 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2172 }
2173
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2174 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2175 {
2176 unsigned int ckpt_flags;
2177
2178 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2179 ckpt_flags &= (~f);
2180 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2181 }
2182
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2183 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2184 {
2185 unsigned long flags;
2186
2187 spin_lock_irqsave(&sbi->cp_lock, flags);
2188 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2189 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2190 }
2191
2192 #define init_f2fs_rwsem(sem) \
2193 do { \
2194 static struct lock_class_key __key; \
2195 \
2196 __init_f2fs_rwsem((sem), #sem, &__key); \
2197 } while (0)
2198
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2199 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2200 const char *sem_name, struct lock_class_key *key)
2201 {
2202 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2203 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2204 init_waitqueue_head(&sem->read_waiters);
2205 #endif
2206 }
2207
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2208 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2209 {
2210 return rwsem_is_locked(&sem->internal_rwsem);
2211 }
2212
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2213 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2214 {
2215 return rwsem_is_contended(&sem->internal_rwsem);
2216 }
2217
2218 void _trace_android_rvh_f2fs_down_read(wait_queue_head_t *read_waiters,
2219 struct rw_semaphore *rwsem, bool *skip);
2220
f2fs_down_read(struct f2fs_rwsem * sem)2221 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2222 {
2223 bool skip = false;
2224 _trace_android_rvh_f2fs_down_read(&sem->read_waiters, &sem->internal_rwsem, &skip);
2225 if (skip)
2226 return;
2227 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2228 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2229 #else
2230 down_read(&sem->internal_rwsem);
2231 #endif
2232 }
2233
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2234 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2235 {
2236 return down_read_trylock(&sem->internal_rwsem);
2237 }
2238
f2fs_up_read(struct f2fs_rwsem * sem)2239 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2240 {
2241 up_read(&sem->internal_rwsem);
2242 }
2243
f2fs_down_write(struct f2fs_rwsem * sem)2244 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2245 {
2246 down_write(&sem->internal_rwsem);
2247 }
2248
2249 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2250 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2251 {
2252 down_read_nested(&sem->internal_rwsem, subclass);
2253 }
2254
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2255 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2256 {
2257 down_write_nested(&sem->internal_rwsem, subclass);
2258 }
2259 #else
2260 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2261 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2262 #endif
2263
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2264 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2265 {
2266 return down_write_trylock(&sem->internal_rwsem);
2267 }
2268
f2fs_up_write(struct f2fs_rwsem * sem)2269 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2270 {
2271 up_write(&sem->internal_rwsem);
2272 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2273 wake_up_all(&sem->read_waiters);
2274 #endif
2275 }
2276
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2277 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2278 {
2279 unsigned long flags;
2280 unsigned char *nat_bits;
2281
2282 /*
2283 * In order to re-enable nat_bits we need to call fsck.f2fs by
2284 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2285 * so let's rely on regular fsck or unclean shutdown.
2286 */
2287
2288 if (lock)
2289 spin_lock_irqsave(&sbi->cp_lock, flags);
2290 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2291 nat_bits = NM_I(sbi)->nat_bits;
2292 NM_I(sbi)->nat_bits = NULL;
2293 if (lock)
2294 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2295
2296 kvfree(nat_bits);
2297 }
2298
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2299 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2300 struct cp_control *cpc)
2301 {
2302 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2303
2304 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2305 }
2306
f2fs_lock_op(struct f2fs_sb_info * sbi)2307 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2308 {
2309 f2fs_down_read(&sbi->cp_rwsem);
2310 }
2311
f2fs_trylock_op(struct f2fs_sb_info * sbi)2312 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2313 {
2314 if (time_to_inject(sbi, FAULT_LOCK_OP))
2315 return 0;
2316 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2317 }
2318
f2fs_unlock_op(struct f2fs_sb_info * sbi)2319 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2320 {
2321 f2fs_up_read(&sbi->cp_rwsem);
2322 }
2323
f2fs_lock_all(struct f2fs_sb_info * sbi)2324 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2325 {
2326 f2fs_down_write(&sbi->cp_rwsem);
2327 }
2328
f2fs_unlock_all(struct f2fs_sb_info * sbi)2329 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2330 {
2331 f2fs_up_write(&sbi->cp_rwsem);
2332 }
2333
__get_cp_reason(struct f2fs_sb_info * sbi)2334 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2335 {
2336 int reason = CP_SYNC;
2337
2338 if (test_opt(sbi, FASTBOOT))
2339 reason = CP_FASTBOOT;
2340 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2341 reason = CP_UMOUNT;
2342 return reason;
2343 }
2344
__remain_node_summaries(int reason)2345 static inline bool __remain_node_summaries(int reason)
2346 {
2347 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2348 }
2349
__exist_node_summaries(struct f2fs_sb_info * sbi)2350 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2351 {
2352 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2353 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2354 }
2355
2356 /*
2357 * Check whether the inode has blocks or not
2358 */
F2FS_HAS_BLOCKS(struct inode * inode)2359 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2360 {
2361 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2362
2363 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2364 }
2365
f2fs_has_xattr_block(unsigned int ofs)2366 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2367 {
2368 return ofs == XATTR_NODE_OFFSET;
2369 }
2370
__allow_reserved_root(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2371 static inline bool __allow_reserved_root(struct f2fs_sb_info *sbi,
2372 struct inode *inode, bool cap)
2373 {
2374 if (!inode)
2375 return true;
2376 if (IS_NOQUOTA(inode))
2377 return true;
2378 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2379 return true;
2380 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2381 in_group_p(F2FS_OPTION(sbi).s_resgid))
2382 return true;
2383 if (cap && capable(CAP_SYS_RESOURCE))
2384 return true;
2385 return false;
2386 }
2387
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2388 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2389 struct inode *inode, bool cap)
2390 {
2391 block_t avail_user_block_count;
2392
2393 avail_user_block_count = sbi->user_block_count -
2394 sbi->current_reserved_blocks;
2395
2396 if (test_opt(sbi, RESERVE_ROOT) && !__allow_reserved_root(sbi, inode, cap))
2397 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2398
2399 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2400 if (avail_user_block_count > sbi->unusable_block_count)
2401 avail_user_block_count -= sbi->unusable_block_count;
2402 else
2403 avail_user_block_count = 0;
2404 }
2405
2406 return avail_user_block_count;
2407 }
2408
2409 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2410 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2411 struct inode *inode, blkcnt_t *count, bool partial)
2412 {
2413 long long diff = 0, release = 0;
2414 block_t avail_user_block_count;
2415 int ret;
2416
2417 ret = dquot_reserve_block(inode, *count);
2418 if (ret)
2419 return ret;
2420
2421 if (time_to_inject(sbi, FAULT_BLOCK)) {
2422 release = *count;
2423 goto release_quota;
2424 }
2425
2426 /*
2427 * let's increase this in prior to actual block count change in order
2428 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2429 */
2430 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2431
2432 spin_lock(&sbi->stat_lock);
2433
2434 avail_user_block_count = get_available_block_count(sbi, inode, true);
2435 diff = (long long)sbi->total_valid_block_count + *count -
2436 avail_user_block_count;
2437 if (unlikely(diff > 0)) {
2438 if (!partial) {
2439 spin_unlock(&sbi->stat_lock);
2440 release = *count;
2441 goto enospc;
2442 }
2443 if (diff > *count)
2444 diff = *count;
2445 *count -= diff;
2446 release = diff;
2447 if (!*count) {
2448 spin_unlock(&sbi->stat_lock);
2449 goto enospc;
2450 }
2451 }
2452 sbi->total_valid_block_count += (block_t)(*count);
2453
2454 spin_unlock(&sbi->stat_lock);
2455
2456 if (unlikely(release)) {
2457 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2458 dquot_release_reservation_block(inode, release);
2459 }
2460 f2fs_i_blocks_write(inode, *count, true, true);
2461 return 0;
2462
2463 enospc:
2464 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2465 release_quota:
2466 dquot_release_reservation_block(inode, release);
2467 return -ENOSPC;
2468 }
2469
2470 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2471 static inline bool page_private_##name(struct page *page) \
2472 { \
2473 return PagePrivate(page) && \
2474 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2475 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2476 }
2477
2478 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2479 static inline void set_page_private_##name(struct page *page) \
2480 { \
2481 if (!PagePrivate(page)) \
2482 attach_page_private(page, (void *)0); \
2483 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2484 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2485 }
2486
2487 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2488 static inline void clear_page_private_##name(struct page *page) \
2489 { \
2490 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2491 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2492 detach_page_private(page); \
2493 }
2494
2495 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2496 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2497 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2498 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2499
2500 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2501 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2502 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2503 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2504
2505 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2506 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2507 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2508 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2509
get_page_private_data(struct page * page)2510 static inline unsigned long get_page_private_data(struct page *page)
2511 {
2512 unsigned long data = page_private(page);
2513
2514 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2515 return 0;
2516 return data >> PAGE_PRIVATE_MAX;
2517 }
2518
set_page_private_data(struct page * page,unsigned long data)2519 static inline void set_page_private_data(struct page *page, unsigned long data)
2520 {
2521 if (!PagePrivate(page))
2522 attach_page_private(page, (void *)0);
2523 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2524 page_private(page) |= data << PAGE_PRIVATE_MAX;
2525 }
2526
clear_page_private_data(struct page * page)2527 static inline void clear_page_private_data(struct page *page)
2528 {
2529 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2530 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2531 detach_page_private(page);
2532 }
2533
clear_page_private_all(struct page * page)2534 static inline void clear_page_private_all(struct page *page)
2535 {
2536 clear_page_private_data(page);
2537 clear_page_private_reference(page);
2538 clear_page_private_gcing(page);
2539 clear_page_private_inline(page);
2540 clear_page_private_atomic(page);
2541
2542 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2543 }
2544
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2545 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2546 struct inode *inode,
2547 block_t count)
2548 {
2549 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2550
2551 spin_lock(&sbi->stat_lock);
2552 if (unlikely(sbi->total_valid_block_count < count)) {
2553 f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2554 sbi->total_valid_block_count, inode->i_ino, count);
2555 sbi->total_valid_block_count = 0;
2556 set_sbi_flag(sbi, SBI_NEED_FSCK);
2557 } else {
2558 sbi->total_valid_block_count -= count;
2559 }
2560 if (sbi->reserved_blocks &&
2561 sbi->current_reserved_blocks < sbi->reserved_blocks)
2562 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2563 sbi->current_reserved_blocks + count);
2564 spin_unlock(&sbi->stat_lock);
2565 if (unlikely(inode->i_blocks < sectors)) {
2566 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2567 inode->i_ino,
2568 (unsigned long long)inode->i_blocks,
2569 (unsigned long long)sectors);
2570 set_sbi_flag(sbi, SBI_NEED_FSCK);
2571 return;
2572 }
2573 f2fs_i_blocks_write(inode, count, false, true);
2574 }
2575
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2576 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2577 {
2578 atomic_inc(&sbi->nr_pages[count_type]);
2579
2580 if (count_type == F2FS_DIRTY_DENTS ||
2581 count_type == F2FS_DIRTY_NODES ||
2582 count_type == F2FS_DIRTY_META ||
2583 count_type == F2FS_DIRTY_QDATA ||
2584 count_type == F2FS_DIRTY_IMETA)
2585 set_sbi_flag(sbi, SBI_IS_DIRTY);
2586 }
2587
inode_inc_dirty_pages(struct inode * inode)2588 static inline void inode_inc_dirty_pages(struct inode *inode)
2589 {
2590 atomic_inc(&F2FS_I(inode)->dirty_pages);
2591 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2592 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2593 if (IS_NOQUOTA(inode))
2594 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2595 }
2596
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2597 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2598 {
2599 atomic_dec(&sbi->nr_pages[count_type]);
2600 }
2601
inode_dec_dirty_pages(struct inode * inode)2602 static inline void inode_dec_dirty_pages(struct inode *inode)
2603 {
2604 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2605 !S_ISLNK(inode->i_mode))
2606 return;
2607
2608 atomic_dec(&F2FS_I(inode)->dirty_pages);
2609 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2610 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2611 if (IS_NOQUOTA(inode))
2612 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2613 }
2614
inc_atomic_write_cnt(struct inode * inode)2615 static inline void inc_atomic_write_cnt(struct inode *inode)
2616 {
2617 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2618 struct f2fs_inode_info *fi = F2FS_I(inode);
2619 u64 current_write;
2620
2621 fi->atomic_write_cnt++;
2622 atomic64_inc(&sbi->current_atomic_write);
2623 current_write = atomic64_read(&sbi->current_atomic_write);
2624 if (current_write > sbi->peak_atomic_write)
2625 sbi->peak_atomic_write = current_write;
2626 }
2627
release_atomic_write_cnt(struct inode * inode)2628 static inline void release_atomic_write_cnt(struct inode *inode)
2629 {
2630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2631 struct f2fs_inode_info *fi = F2FS_I(inode);
2632
2633 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2634 fi->atomic_write_cnt = 0;
2635 }
2636
get_pages(struct f2fs_sb_info * sbi,int count_type)2637 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2638 {
2639 return atomic_read(&sbi->nr_pages[count_type]);
2640 }
2641
get_dirty_pages(struct inode * inode)2642 static inline int get_dirty_pages(struct inode *inode)
2643 {
2644 return atomic_read(&F2FS_I(inode)->dirty_pages);
2645 }
2646
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2647 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2648 {
2649 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2650 BLKS_PER_SEC(sbi));
2651 }
2652
valid_user_blocks(struct f2fs_sb_info * sbi)2653 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2654 {
2655 return sbi->total_valid_block_count;
2656 }
2657
discard_blocks(struct f2fs_sb_info * sbi)2658 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2659 {
2660 return sbi->discard_blks;
2661 }
2662
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2663 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2664 {
2665 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2666
2667 /* return NAT or SIT bitmap */
2668 if (flag == NAT_BITMAP)
2669 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2670 else if (flag == SIT_BITMAP)
2671 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2672
2673 return 0;
2674 }
2675
__cp_payload(struct f2fs_sb_info * sbi)2676 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2677 {
2678 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2679 }
2680
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2681 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2682 {
2683 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2684 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2685 int offset;
2686
2687 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2688 offset = (flag == SIT_BITMAP) ?
2689 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2690 /*
2691 * if large_nat_bitmap feature is enabled, leave checksum
2692 * protection for all nat/sit bitmaps.
2693 */
2694 return tmp_ptr + offset + sizeof(__le32);
2695 }
2696
2697 if (__cp_payload(sbi) > 0) {
2698 if (flag == NAT_BITMAP)
2699 return tmp_ptr;
2700 else
2701 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2702 } else {
2703 offset = (flag == NAT_BITMAP) ?
2704 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2705 return tmp_ptr + offset;
2706 }
2707 }
2708
__start_cp_addr(struct f2fs_sb_info * sbi)2709 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2710 {
2711 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2712
2713 if (sbi->cur_cp_pack == 2)
2714 start_addr += BLKS_PER_SEG(sbi);
2715 return start_addr;
2716 }
2717
__start_cp_next_addr(struct f2fs_sb_info * sbi)2718 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2719 {
2720 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2721
2722 if (sbi->cur_cp_pack == 1)
2723 start_addr += BLKS_PER_SEG(sbi);
2724 return start_addr;
2725 }
2726
__set_cp_next_pack(struct f2fs_sb_info * sbi)2727 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2728 {
2729 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2730 }
2731
__start_sum_addr(struct f2fs_sb_info * sbi)2732 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2733 {
2734 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2735 }
2736
2737 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2738 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2739 struct inode *inode, bool is_inode)
2740 {
2741 block_t valid_block_count;
2742 unsigned int valid_node_count, avail_user_node_count;
2743 unsigned int avail_user_block_count;
2744 int err;
2745
2746 if (is_inode) {
2747 if (inode) {
2748 err = dquot_alloc_inode(inode);
2749 if (err)
2750 return err;
2751 }
2752 } else {
2753 err = dquot_reserve_block(inode, 1);
2754 if (err)
2755 return err;
2756 }
2757
2758 if (time_to_inject(sbi, FAULT_BLOCK))
2759 goto enospc;
2760
2761 spin_lock(&sbi->stat_lock);
2762
2763 valid_block_count = sbi->total_valid_block_count + 1;
2764 avail_user_block_count = get_available_block_count(sbi, inode,
2765 test_opt(sbi, RESERVE_NODE));
2766
2767 if (unlikely(valid_block_count > avail_user_block_count)) {
2768 spin_unlock(&sbi->stat_lock);
2769 goto enospc;
2770 }
2771
2772 avail_user_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2773 if (test_opt(sbi, RESERVE_NODE) &&
2774 !__allow_reserved_root(sbi, inode, true))
2775 avail_user_node_count -= F2FS_OPTION(sbi).root_reserved_nodes;
2776 valid_node_count = sbi->total_valid_node_count + 1;
2777 if (unlikely(valid_node_count > avail_user_node_count)) {
2778 spin_unlock(&sbi->stat_lock);
2779 goto enospc;
2780 }
2781
2782 sbi->total_valid_node_count++;
2783 sbi->total_valid_block_count++;
2784 spin_unlock(&sbi->stat_lock);
2785
2786 if (inode) {
2787 if (is_inode)
2788 f2fs_mark_inode_dirty_sync(inode, true);
2789 else
2790 f2fs_i_blocks_write(inode, 1, true, true);
2791 }
2792
2793 percpu_counter_inc(&sbi->alloc_valid_block_count);
2794 return 0;
2795
2796 enospc:
2797 if (is_inode) {
2798 if (inode)
2799 dquot_free_inode(inode);
2800 } else {
2801 dquot_release_reservation_block(inode, 1);
2802 }
2803 return -ENOSPC;
2804 }
2805
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2806 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2807 struct inode *inode, bool is_inode)
2808 {
2809 spin_lock(&sbi->stat_lock);
2810
2811 if (unlikely(!sbi->total_valid_block_count ||
2812 !sbi->total_valid_node_count)) {
2813 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2814 sbi->total_valid_block_count,
2815 sbi->total_valid_node_count);
2816 set_sbi_flag(sbi, SBI_NEED_FSCK);
2817 } else {
2818 sbi->total_valid_block_count--;
2819 sbi->total_valid_node_count--;
2820 }
2821
2822 if (sbi->reserved_blocks &&
2823 sbi->current_reserved_blocks < sbi->reserved_blocks)
2824 sbi->current_reserved_blocks++;
2825
2826 spin_unlock(&sbi->stat_lock);
2827
2828 if (is_inode) {
2829 dquot_free_inode(inode);
2830 } else {
2831 if (unlikely(inode->i_blocks == 0)) {
2832 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2833 inode->i_ino,
2834 (unsigned long long)inode->i_blocks);
2835 set_sbi_flag(sbi, SBI_NEED_FSCK);
2836 return;
2837 }
2838 f2fs_i_blocks_write(inode, 1, false, true);
2839 }
2840 }
2841
valid_node_count(struct f2fs_sb_info * sbi)2842 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2843 {
2844 return sbi->total_valid_node_count;
2845 }
2846
inc_valid_inode_count(struct f2fs_sb_info * sbi)2847 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2848 {
2849 percpu_counter_inc(&sbi->total_valid_inode_count);
2850 }
2851
dec_valid_inode_count(struct f2fs_sb_info * sbi)2852 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2853 {
2854 percpu_counter_dec(&sbi->total_valid_inode_count);
2855 }
2856
valid_inode_count(struct f2fs_sb_info * sbi)2857 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2858 {
2859 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2860 }
2861
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2862 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2863 pgoff_t index, bool for_write)
2864 {
2865 struct folio *folio;
2866 unsigned int flags;
2867
2868 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2869 fgf_t fgf_flags;
2870
2871 if (!for_write)
2872 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2873 else
2874 fgf_flags = FGP_LOCK;
2875 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2876 if (!IS_ERR(folio))
2877 return folio;
2878
2879 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2880 return ERR_PTR(-ENOMEM);
2881 }
2882
2883 if (!for_write)
2884 return filemap_grab_folio(mapping, index);
2885
2886 flags = memalloc_nofs_save();
2887 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2888 mapping_gfp_mask(mapping));
2889 memalloc_nofs_restore(flags);
2890
2891 return folio;
2892 }
2893
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2894 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2895 pgoff_t index, bool for_write)
2896 {
2897 struct folio *folio = f2fs_grab_cache_folio(mapping, index, for_write);
2898
2899 if (IS_ERR(folio))
2900 return NULL;
2901 return &folio->page;
2902 }
2903
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2904 static inline struct page *f2fs_pagecache_get_page(
2905 struct address_space *mapping, pgoff_t index,
2906 fgf_t fgp_flags, gfp_t gfp_mask)
2907 {
2908 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2909 return NULL;
2910
2911 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2912 }
2913
f2fs_folio_put(struct folio * folio,bool unlock)2914 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2915 {
2916 if (!folio)
2917 return;
2918
2919 if (unlock) {
2920 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2921 folio_unlock(folio);
2922 }
2923 folio_put(folio);
2924 }
2925
f2fs_put_page(struct page * page,int unlock)2926 static inline void f2fs_put_page(struct page *page, int unlock)
2927 {
2928 if (!page)
2929 return;
2930 f2fs_folio_put(page_folio(page), unlock);
2931 }
2932
f2fs_put_dnode(struct dnode_of_data * dn)2933 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2934 {
2935 if (dn->node_page)
2936 f2fs_put_page(dn->node_page, 1);
2937 if (dn->inode_page && dn->node_page != dn->inode_page)
2938 f2fs_put_page(dn->inode_page, 0);
2939 dn->node_page = NULL;
2940 dn->inode_page = NULL;
2941 }
2942
f2fs_kmem_cache_create(const char * name,size_t size)2943 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2944 size_t size)
2945 {
2946 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2947 }
2948
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2949 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2950 gfp_t flags)
2951 {
2952 void *entry;
2953
2954 entry = kmem_cache_alloc(cachep, flags);
2955 if (!entry)
2956 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2957 return entry;
2958 }
2959
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2960 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2961 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2962 {
2963 if (nofail)
2964 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2965
2966 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2967 return NULL;
2968
2969 return kmem_cache_alloc(cachep, flags);
2970 }
2971
is_inflight_io(struct f2fs_sb_info * sbi,int type)2972 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2973 {
2974 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2975 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2976 get_pages(sbi, F2FS_WB_CP_DATA) ||
2977 get_pages(sbi, F2FS_DIO_READ) ||
2978 get_pages(sbi, F2FS_DIO_WRITE))
2979 return true;
2980
2981 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2982 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2983 return true;
2984
2985 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2986 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2987 return true;
2988 return false;
2989 }
2990
is_inflight_read_io(struct f2fs_sb_info * sbi)2991 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2992 {
2993 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2994 }
2995
is_idle(struct f2fs_sb_info * sbi,int type)2996 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2997 {
2998 bool zoned_gc = (type == GC_TIME &&
2999 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
3000
3001 if (sbi->gc_mode == GC_URGENT_HIGH)
3002 return true;
3003
3004 if (zoned_gc) {
3005 if (is_inflight_read_io(sbi))
3006 return false;
3007 } else {
3008 if (is_inflight_io(sbi, type))
3009 return false;
3010 }
3011
3012 if (sbi->gc_mode == GC_URGENT_MID)
3013 return true;
3014
3015 if (sbi->gc_mode == GC_URGENT_LOW &&
3016 (type == DISCARD_TIME || type == GC_TIME))
3017 return true;
3018
3019 if (zoned_gc)
3020 return true;
3021
3022 return f2fs_time_over(sbi, type);
3023 }
3024
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3025 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3026 unsigned long index, void *item)
3027 {
3028 while (radix_tree_insert(root, index, item))
3029 cond_resched();
3030 }
3031
3032 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
3033
IS_INODE(struct page * page)3034 static inline bool IS_INODE(struct page *page)
3035 {
3036 struct f2fs_node *p = F2FS_NODE(page);
3037
3038 return RAW_IS_INODE(p);
3039 }
3040
offset_in_addr(struct f2fs_inode * i)3041 static inline int offset_in_addr(struct f2fs_inode *i)
3042 {
3043 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3044 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3045 }
3046
blkaddr_in_node(struct f2fs_node * node)3047 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3048 {
3049 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3050 }
3051
3052 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)3053 static inline unsigned int get_dnode_base(struct inode *inode,
3054 struct page *node_page)
3055 {
3056 if (!IS_INODE(node_page))
3057 return 0;
3058
3059 return inode ? get_extra_isize(inode) :
3060 offset_in_addr(&F2FS_NODE(node_page)->i);
3061 }
3062
get_dnode_addr(struct inode * inode,struct page * node_page)3063 static inline __le32 *get_dnode_addr(struct inode *inode,
3064 struct page *node_page)
3065 {
3066 return blkaddr_in_node(F2FS_NODE(node_page)) +
3067 get_dnode_base(inode, node_page);
3068 }
3069
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)3070 static inline block_t data_blkaddr(struct inode *inode,
3071 struct page *node_page, unsigned int offset)
3072 {
3073 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
3074 }
3075
f2fs_data_blkaddr(struct dnode_of_data * dn)3076 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3077 {
3078 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
3079 }
3080
f2fs_test_bit(unsigned int nr,char * addr)3081 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3082 {
3083 int mask;
3084
3085 addr += (nr >> 3);
3086 mask = BIT(7 - (nr & 0x07));
3087 return mask & *addr;
3088 }
3089
f2fs_set_bit(unsigned int nr,char * addr)3090 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3091 {
3092 int mask;
3093
3094 addr += (nr >> 3);
3095 mask = BIT(7 - (nr & 0x07));
3096 *addr |= mask;
3097 }
3098
f2fs_clear_bit(unsigned int nr,char * addr)3099 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3100 {
3101 int mask;
3102
3103 addr += (nr >> 3);
3104 mask = BIT(7 - (nr & 0x07));
3105 *addr &= ~mask;
3106 }
3107
f2fs_test_and_set_bit(unsigned int nr,char * addr)3108 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3109 {
3110 int mask;
3111 int ret;
3112
3113 addr += (nr >> 3);
3114 mask = BIT(7 - (nr & 0x07));
3115 ret = mask & *addr;
3116 *addr |= mask;
3117 return ret;
3118 }
3119
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3120 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3121 {
3122 int mask;
3123 int ret;
3124
3125 addr += (nr >> 3);
3126 mask = BIT(7 - (nr & 0x07));
3127 ret = mask & *addr;
3128 *addr &= ~mask;
3129 return ret;
3130 }
3131
f2fs_change_bit(unsigned int nr,char * addr)3132 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3133 {
3134 int mask;
3135
3136 addr += (nr >> 3);
3137 mask = BIT(7 - (nr & 0x07));
3138 *addr ^= mask;
3139 }
3140
3141 /*
3142 * On-disk inode flags (f2fs_inode::i_flags)
3143 */
3144 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3145 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3146 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3147 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3148 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3149 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3150 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3151 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3152 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3153 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3154 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3155 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3156
3157 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3158
3159 /* Flags that should be inherited by new inodes from their parent. */
3160 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3161 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3162 F2FS_CASEFOLD_FL)
3163
3164 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3165 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3166 F2FS_CASEFOLD_FL))
3167
3168 /* Flags that are appropriate for non-directories/regular files. */
3169 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3170
3171 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3172
f2fs_mask_flags(umode_t mode,__u32 flags)3173 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3174 {
3175 if (S_ISDIR(mode))
3176 return flags;
3177 else if (S_ISREG(mode))
3178 return flags & F2FS_REG_FLMASK;
3179 else
3180 return flags & F2FS_OTHER_FLMASK;
3181 }
3182
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3183 static inline void __mark_inode_dirty_flag(struct inode *inode,
3184 int flag, bool set)
3185 {
3186 switch (flag) {
3187 case FI_INLINE_XATTR:
3188 case FI_INLINE_DATA:
3189 case FI_INLINE_DENTRY:
3190 case FI_NEW_INODE:
3191 if (set)
3192 return;
3193 fallthrough;
3194 case FI_DATA_EXIST:
3195 case FI_PIN_FILE:
3196 case FI_COMPRESS_RELEASED:
3197 f2fs_mark_inode_dirty_sync(inode, true);
3198 }
3199 }
3200
set_inode_flag(struct inode * inode,int flag)3201 static inline void set_inode_flag(struct inode *inode, int flag)
3202 {
3203 set_bit(flag, F2FS_I(inode)->flags);
3204 __mark_inode_dirty_flag(inode, flag, true);
3205 }
3206
is_inode_flag_set(struct inode * inode,int flag)3207 static inline int is_inode_flag_set(struct inode *inode, int flag)
3208 {
3209 return test_bit(flag, F2FS_I(inode)->flags);
3210 }
3211
clear_inode_flag(struct inode * inode,int flag)3212 static inline void clear_inode_flag(struct inode *inode, int flag)
3213 {
3214 clear_bit(flag, F2FS_I(inode)->flags);
3215 __mark_inode_dirty_flag(inode, flag, false);
3216 }
3217
f2fs_verity_in_progress(struct inode * inode)3218 static inline bool f2fs_verity_in_progress(struct inode *inode)
3219 {
3220 return IS_ENABLED(CONFIG_FS_VERITY) &&
3221 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3222 }
3223
set_acl_inode(struct inode * inode,umode_t mode)3224 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3225 {
3226 F2FS_I(inode)->i_acl_mode = mode;
3227 set_inode_flag(inode, FI_ACL_MODE);
3228 f2fs_mark_inode_dirty_sync(inode, false);
3229 }
3230
f2fs_i_links_write(struct inode * inode,bool inc)3231 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3232 {
3233 if (inc)
3234 inc_nlink(inode);
3235 else
3236 drop_nlink(inode);
3237 f2fs_mark_inode_dirty_sync(inode, true);
3238 }
3239
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3240 static inline void f2fs_i_blocks_write(struct inode *inode,
3241 block_t diff, bool add, bool claim)
3242 {
3243 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3244 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3245
3246 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3247 if (add) {
3248 if (claim)
3249 dquot_claim_block(inode, diff);
3250 else
3251 dquot_alloc_block_nofail(inode, diff);
3252 } else {
3253 dquot_free_block(inode, diff);
3254 }
3255
3256 f2fs_mark_inode_dirty_sync(inode, true);
3257 if (clean || recover)
3258 set_inode_flag(inode, FI_AUTO_RECOVER);
3259 }
3260
3261 static inline bool f2fs_is_atomic_file(struct inode *inode);
3262
f2fs_i_size_write(struct inode * inode,loff_t i_size)3263 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3264 {
3265 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3266 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3267
3268 if (i_size_read(inode) == i_size)
3269 return;
3270
3271 i_size_write(inode, i_size);
3272
3273 if (f2fs_is_atomic_file(inode))
3274 return;
3275
3276 f2fs_mark_inode_dirty_sync(inode, true);
3277 if (clean || recover)
3278 set_inode_flag(inode, FI_AUTO_RECOVER);
3279 }
3280
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3281 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3282 {
3283 F2FS_I(inode)->i_current_depth = depth;
3284 f2fs_mark_inode_dirty_sync(inode, true);
3285 }
3286
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3287 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3288 unsigned int count)
3289 {
3290 F2FS_I(inode)->i_gc_failures = count;
3291 f2fs_mark_inode_dirty_sync(inode, true);
3292 }
3293
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3294 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3295 {
3296 F2FS_I(inode)->i_xattr_nid = xnid;
3297 f2fs_mark_inode_dirty_sync(inode, true);
3298 }
3299
f2fs_i_pino_write(struct inode * inode,nid_t pino)3300 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3301 {
3302 F2FS_I(inode)->i_pino = pino;
3303 f2fs_mark_inode_dirty_sync(inode, true);
3304 }
3305
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3306 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3307 {
3308 struct f2fs_inode_info *fi = F2FS_I(inode);
3309
3310 if (ri->i_inline & F2FS_INLINE_XATTR)
3311 set_bit(FI_INLINE_XATTR, fi->flags);
3312 if (ri->i_inline & F2FS_INLINE_DATA)
3313 set_bit(FI_INLINE_DATA, fi->flags);
3314 if (ri->i_inline & F2FS_INLINE_DENTRY)
3315 set_bit(FI_INLINE_DENTRY, fi->flags);
3316 if (ri->i_inline & F2FS_DATA_EXIST)
3317 set_bit(FI_DATA_EXIST, fi->flags);
3318 if (ri->i_inline & F2FS_EXTRA_ATTR)
3319 set_bit(FI_EXTRA_ATTR, fi->flags);
3320 if (ri->i_inline & F2FS_PIN_FILE)
3321 set_bit(FI_PIN_FILE, fi->flags);
3322 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3323 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3324 }
3325
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3326 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3327 {
3328 ri->i_inline = 0;
3329
3330 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3331 ri->i_inline |= F2FS_INLINE_XATTR;
3332 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3333 ri->i_inline |= F2FS_INLINE_DATA;
3334 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3335 ri->i_inline |= F2FS_INLINE_DENTRY;
3336 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3337 ri->i_inline |= F2FS_DATA_EXIST;
3338 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3339 ri->i_inline |= F2FS_EXTRA_ATTR;
3340 if (is_inode_flag_set(inode, FI_PIN_FILE))
3341 ri->i_inline |= F2FS_PIN_FILE;
3342 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3343 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3344 }
3345
f2fs_has_extra_attr(struct inode * inode)3346 static inline int f2fs_has_extra_attr(struct inode *inode)
3347 {
3348 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3349 }
3350
f2fs_has_inline_xattr(struct inode * inode)3351 static inline int f2fs_has_inline_xattr(struct inode *inode)
3352 {
3353 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3354 }
3355
f2fs_compressed_file(struct inode * inode)3356 static inline int f2fs_compressed_file(struct inode *inode)
3357 {
3358 return S_ISREG(inode->i_mode) &&
3359 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3360 }
3361
f2fs_need_compress_data(struct inode * inode)3362 static inline bool f2fs_need_compress_data(struct inode *inode)
3363 {
3364 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3365
3366 if (!f2fs_compressed_file(inode))
3367 return false;
3368
3369 if (compress_mode == COMPR_MODE_FS)
3370 return true;
3371 else if (compress_mode == COMPR_MODE_USER &&
3372 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3373 return true;
3374
3375 return false;
3376 }
3377
addrs_per_page(struct inode * inode,bool is_inode)3378 static inline unsigned int addrs_per_page(struct inode *inode,
3379 bool is_inode)
3380 {
3381 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3382 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3383
3384 if (f2fs_compressed_file(inode))
3385 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3386 return addrs;
3387 }
3388
inline_xattr_addr(struct inode * inode,struct page * page)3389 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3390 {
3391 struct f2fs_inode *ri = F2FS_INODE(page);
3392
3393 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3394 get_inline_xattr_addrs(inode)]);
3395 }
3396
inline_xattr_size(struct inode * inode)3397 static inline int inline_xattr_size(struct inode *inode)
3398 {
3399 if (f2fs_has_inline_xattr(inode))
3400 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3401 return 0;
3402 }
3403
3404 /*
3405 * Notice: check inline_data flag without inode page lock is unsafe.
3406 * It could change at any time by f2fs_convert_inline_page().
3407 */
f2fs_has_inline_data(struct inode * inode)3408 static inline int f2fs_has_inline_data(struct inode *inode)
3409 {
3410 return is_inode_flag_set(inode, FI_INLINE_DATA);
3411 }
3412
f2fs_exist_data(struct inode * inode)3413 static inline int f2fs_exist_data(struct inode *inode)
3414 {
3415 return is_inode_flag_set(inode, FI_DATA_EXIST);
3416 }
3417
f2fs_is_mmap_file(struct inode * inode)3418 static inline int f2fs_is_mmap_file(struct inode *inode)
3419 {
3420 return is_inode_flag_set(inode, FI_MMAP_FILE);
3421 }
3422
f2fs_is_pinned_file(struct inode * inode)3423 static inline bool f2fs_is_pinned_file(struct inode *inode)
3424 {
3425 return is_inode_flag_set(inode, FI_PIN_FILE);
3426 }
3427
f2fs_is_atomic_file(struct inode * inode)3428 static inline bool f2fs_is_atomic_file(struct inode *inode)
3429 {
3430 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3431 }
3432
f2fs_is_cow_file(struct inode * inode)3433 static inline bool f2fs_is_cow_file(struct inode *inode)
3434 {
3435 return is_inode_flag_set(inode, FI_COW_FILE);
3436 }
3437
inline_data_addr(struct inode * inode,struct page * page)3438 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3439 {
3440 __le32 *addr = get_dnode_addr(inode, page);
3441
3442 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3443 }
3444
f2fs_has_inline_dentry(struct inode * inode)3445 static inline int f2fs_has_inline_dentry(struct inode *inode)
3446 {
3447 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3448 }
3449
is_file(struct inode * inode,int type)3450 static inline int is_file(struct inode *inode, int type)
3451 {
3452 return F2FS_I(inode)->i_advise & type;
3453 }
3454
set_file(struct inode * inode,int type)3455 static inline void set_file(struct inode *inode, int type)
3456 {
3457 if (is_file(inode, type))
3458 return;
3459 F2FS_I(inode)->i_advise |= type;
3460 f2fs_mark_inode_dirty_sync(inode, true);
3461 }
3462
clear_file(struct inode * inode,int type)3463 static inline void clear_file(struct inode *inode, int type)
3464 {
3465 if (!is_file(inode, type))
3466 return;
3467 F2FS_I(inode)->i_advise &= ~type;
3468 f2fs_mark_inode_dirty_sync(inode, true);
3469 }
3470
f2fs_is_time_consistent(struct inode * inode)3471 static inline bool f2fs_is_time_consistent(struct inode *inode)
3472 {
3473 struct timespec64 ts = inode_get_atime(inode);
3474
3475 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3476 return false;
3477 ts = inode_get_ctime(inode);
3478 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3479 return false;
3480 ts = inode_get_mtime(inode);
3481 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3482 return false;
3483 return true;
3484 }
3485
f2fs_skip_inode_update(struct inode * inode,int dsync)3486 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3487 {
3488 bool ret;
3489
3490 if (dsync) {
3491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492
3493 spin_lock(&sbi->inode_lock[DIRTY_META]);
3494 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3495 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3496 return ret;
3497 }
3498 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3499 file_keep_isize(inode) ||
3500 i_size_read(inode) & ~PAGE_MASK)
3501 return false;
3502
3503 if (!f2fs_is_time_consistent(inode))
3504 return false;
3505
3506 spin_lock(&F2FS_I(inode)->i_size_lock);
3507 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3508 spin_unlock(&F2FS_I(inode)->i_size_lock);
3509
3510 return ret;
3511 }
3512
f2fs_readonly(struct super_block * sb)3513 static inline bool f2fs_readonly(struct super_block *sb)
3514 {
3515 return sb_rdonly(sb);
3516 }
3517
f2fs_cp_error(struct f2fs_sb_info * sbi)3518 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3519 {
3520 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3521 }
3522
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3523 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3524 size_t size, gfp_t flags)
3525 {
3526 if (time_to_inject(sbi, FAULT_KMALLOC))
3527 return NULL;
3528
3529 return kmalloc(size, flags);
3530 }
3531
f2fs_getname(struct f2fs_sb_info * sbi)3532 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3533 {
3534 if (time_to_inject(sbi, FAULT_KMALLOC))
3535 return NULL;
3536
3537 return __getname();
3538 }
3539
f2fs_putname(char * buf)3540 static inline void f2fs_putname(char *buf)
3541 {
3542 __putname(buf);
3543 }
3544
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3545 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3546 size_t size, gfp_t flags)
3547 {
3548 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3549 }
3550
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3551 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3552 size_t size, gfp_t flags)
3553 {
3554 if (time_to_inject(sbi, FAULT_KVMALLOC))
3555 return NULL;
3556
3557 return kvmalloc(size, flags);
3558 }
3559
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3560 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3561 size_t size, gfp_t flags)
3562 {
3563 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3564 }
3565
f2fs_vmalloc(size_t size)3566 static inline void *f2fs_vmalloc(size_t size)
3567 {
3568 return vmalloc(size);
3569 }
3570
get_extra_isize(struct inode * inode)3571 static inline int get_extra_isize(struct inode *inode)
3572 {
3573 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3574 }
3575
get_inline_xattr_addrs(struct inode * inode)3576 static inline int get_inline_xattr_addrs(struct inode *inode)
3577 {
3578 return F2FS_I(inode)->i_inline_xattr_size;
3579 }
3580
3581 #define f2fs_get_inode_mode(i) \
3582 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3583 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3584
3585 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3586
3587 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3588 (offsetof(struct f2fs_inode, i_extra_end) - \
3589 offsetof(struct f2fs_inode, i_extra_isize)) \
3590
3591 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3592 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3593 ((offsetof(typeof(*(f2fs_inode)), field) + \
3594 sizeof((f2fs_inode)->field)) \
3595 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3596
3597 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3598
3599 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3600
3601 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3602 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3603 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3604 block_t blkaddr, int type)
3605 {
3606 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3607 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3608 blkaddr, type);
3609 }
3610
__is_valid_data_blkaddr(block_t blkaddr)3611 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3612 {
3613 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3614 blkaddr == COMPRESS_ADDR)
3615 return false;
3616 return true;
3617 }
3618
3619 /*
3620 * file.c
3621 */
3622 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3623 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3624 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3625 int f2fs_truncate(struct inode *inode);
3626 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3627 struct kstat *stat, u32 request_mask, unsigned int flags);
3628 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3629 struct iattr *attr);
3630 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3631 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3632 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3633 bool readonly, bool need_lock);
3634 int f2fs_precache_extents(struct inode *inode);
3635 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3636 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3637 struct dentry *dentry, struct fileattr *fa);
3638 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3639 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3640 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3641 int f2fs_pin_file_control(struct inode *inode, bool inc);
3642
3643 /*
3644 * inode.c
3645 */
3646 void f2fs_set_inode_flags(struct inode *inode);
3647 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3648 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3649 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3650 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3651 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3652 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3653 void f2fs_update_inode_page(struct inode *inode);
3654 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3655 void f2fs_remove_donate_inode(struct inode *inode);
3656 void f2fs_evict_inode(struct inode *inode);
3657 void f2fs_handle_failed_inode(struct inode *inode);
3658
3659 /*
3660 * namei.c
3661 */
3662 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3663 bool hot, bool set);
3664 struct dentry *f2fs_get_parent(struct dentry *child);
3665 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3666 struct inode **new_inode);
3667
3668 /*
3669 * dir.c
3670 */
3671 #if IS_ENABLED(CONFIG_UNICODE)
3672 int f2fs_init_casefolded_name(const struct inode *dir,
3673 struct f2fs_filename *fname);
3674 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3675 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3676 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3677 struct f2fs_filename *fname)
3678 {
3679 return 0;
3680 }
3681
f2fs_free_casefolded_name(struct f2fs_filename * fname)3682 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3683 {
3684 }
3685 #endif /* CONFIG_UNICODE */
3686
3687 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3688 int lookup, struct f2fs_filename *fname);
3689 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3690 struct f2fs_filename *fname);
3691 void f2fs_free_filename(struct f2fs_filename *fname);
3692 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3693 const struct f2fs_filename *fname, int *max_slots,
3694 bool use_hash);
3695 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3696 unsigned int start_pos, struct fscrypt_str *fstr);
3697 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3698 struct f2fs_dentry_ptr *d);
3699 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3700 const struct f2fs_filename *fname, struct page *dpage);
3701 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3702 unsigned int current_depth);
3703 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3704 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3705 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3706 const struct f2fs_filename *fname,
3707 struct page **res_page);
3708 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3709 const struct qstr *child, struct page **res_page);
3710 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3711 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3712 struct page **page);
3713 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3714 struct page *page, struct inode *inode);
3715 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3716 const struct f2fs_filename *fname);
3717 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3718 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3719 unsigned int bit_pos);
3720 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3721 struct inode *inode, nid_t ino, umode_t mode);
3722 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3723 struct inode *inode, nid_t ino, umode_t mode);
3724 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3725 struct inode *inode, nid_t ino, umode_t mode);
3726 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3727 struct inode *dir, struct inode *inode);
3728 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3729 struct f2fs_filename *fname);
3730 bool f2fs_empty_dir(struct inode *dir);
3731
f2fs_add_link(struct dentry * dentry,struct inode * inode)3732 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3733 {
3734 if (fscrypt_is_nokey_name(dentry))
3735 return -ENOKEY;
3736 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3737 inode, inode->i_ino, inode->i_mode);
3738 }
3739
3740 /*
3741 * super.c
3742 */
3743 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3744 void f2fs_inode_synced(struct inode *inode);
3745 int f2fs_dquot_initialize(struct inode *inode);
3746 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3747 int f2fs_do_quota_sync(struct super_block *sb, int type);
3748 loff_t max_file_blocks(struct inode *inode);
3749 void f2fs_quota_off_umount(struct super_block *sb);
3750 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3751 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3752 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3753 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3754 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3755 int f2fs_sync_fs(struct super_block *sb, int sync);
3756 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3757
3758 /*
3759 * hash.c
3760 */
3761 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3762
3763 /*
3764 * node.c
3765 */
3766 struct node_info;
3767
3768 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3769 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3770 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi,
3771 const struct folio *folio);
3772 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3773 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3774 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3775 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3776 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3777 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3778 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3779 struct node_info *ni, bool checkpoint_context);
3780 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3781 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3782 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3783 int f2fs_truncate_xattr_node(struct inode *inode);
3784 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3785 unsigned int seq_id);
3786 int f2fs_remove_inode_page(struct inode *inode);
3787 struct page *f2fs_new_inode_page(struct inode *inode);
3788 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3789 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3790 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3791 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3792 struct page *f2fs_get_inode_page(struct f2fs_sb_info *sbi, pgoff_t ino);
3793 struct page *f2fs_get_xnode_page(struct f2fs_sb_info *sbi, pgoff_t xnid);
3794 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3795 int f2fs_move_node_page(struct page *node_page, int gc_type);
3796 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3797 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3798 struct writeback_control *wbc, bool atomic,
3799 unsigned int *seq_id);
3800 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3801 struct writeback_control *wbc,
3802 bool do_balance, enum iostat_type io_type);
3803 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3804 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3805 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3806 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3807 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3808 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3809 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3810 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3811 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3812 unsigned int segno, struct f2fs_summary_block *sum);
3813 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3814 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3815 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3816 int __init f2fs_create_node_manager_caches(void);
3817 void f2fs_destroy_node_manager_caches(void);
3818
3819 /*
3820 * segment.c
3821 */
3822 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3823 int f2fs_commit_atomic_write(struct inode *inode);
3824 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3825 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3826 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3827 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3828 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3829 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3830 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3831 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3832 unsigned int len);
3833 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3834 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3835 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3836 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3837 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3838 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3839 struct cp_control *cpc);
3840 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3841 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3842 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3843 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3844 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3845 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3846 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3847 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3848 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3849 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3850 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3851 unsigned int start, unsigned int end);
3852 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3853 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3854 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3855 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3856 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3857 struct cp_control *cpc);
3858 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3859 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3860 block_t blk_addr);
3861 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3862 enum iostat_type io_type);
3863 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3864 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3865 struct f2fs_io_info *fio);
3866 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3867 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3868 block_t old_blkaddr, block_t new_blkaddr,
3869 bool recover_curseg, bool recover_newaddr,
3870 bool from_gc);
3871 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3872 block_t old_addr, block_t new_addr,
3873 unsigned char version, bool recover_curseg,
3874 bool recover_newaddr);
3875 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3876 enum log_type seg_type);
3877 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3878 block_t old_blkaddr, block_t *new_blkaddr,
3879 struct f2fs_summary *sum, int type,
3880 struct f2fs_io_info *fio);
3881 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3882 block_t blkaddr, unsigned int blkcnt);
3883 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3884 bool ordered, bool locked);
3885 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3886 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3887 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3888 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3889 block_t len);
3890 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3891 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3892 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3893 unsigned int val, int alloc);
3894 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3895 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3896 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3897 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3898 int __init f2fs_create_segment_manager_caches(void);
3899 void f2fs_destroy_segment_manager_caches(void);
3900 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3901 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3902 enum page_type type, enum temp_type temp);
3903 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3904 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3905 unsigned int segno);
3906 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3907 unsigned int segno);
3908
3909 #define DEF_FRAGMENT_SIZE 4
3910 #define MIN_FRAGMENT_SIZE 1
3911 #define MAX_FRAGMENT_SIZE 512
3912
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3913 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3914 {
3915 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3916 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3917 }
3918
3919 /*
3920 * checkpoint.c
3921 */
3922 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3923 unsigned char reason);
3924 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3925 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3926 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3927 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3928 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3929 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3930 block_t blkaddr, int type);
3931 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3932 block_t blkaddr, int type);
3933 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3934 int type, bool sync);
3935 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3936 unsigned int ra_blocks);
3937 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3938 long nr_to_write, enum iostat_type io_type);
3939 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3940 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3941 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3942 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3943 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3944 unsigned int devidx, int type);
3945 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3946 unsigned int devidx, int type);
3947 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3948 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3949 void f2fs_add_orphan_inode(struct inode *inode);
3950 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3951 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3952 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3953 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3954 void f2fs_remove_dirty_inode(struct inode *inode);
3955 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3956 bool from_cp);
3957 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3958 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3959 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3960 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3961 int __init f2fs_create_checkpoint_caches(void);
3962 void f2fs_destroy_checkpoint_caches(void);
3963 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3964 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3965 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3966 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3967
3968 /*
3969 * data.c
3970 */
3971 int __init f2fs_init_bioset(void);
3972 void f2fs_destroy_bioset(void);
3973 bool f2fs_is_cp_guaranteed(struct page *page);
3974 int f2fs_init_bio_entry_cache(void);
3975 void f2fs_destroy_bio_entry_cache(void);
3976 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3977 enum page_type type);
3978 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3979 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3980 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3981 struct inode *inode, struct page *page,
3982 nid_t ino, enum page_type type);
3983 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3984 struct bio **bio, struct page *page);
3985 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3986 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3987 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3988 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3989 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3990 block_t blk_addr, sector_t *sector);
3991 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3992 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3993 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3994 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3995 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3996 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3997 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3998 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
3999 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
4000 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
4001 pgoff_t *next_pgofs);
4002 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
4003 bool for_write);
4004 struct page *f2fs_get_new_data_page(struct inode *inode,
4005 struct page *ipage, pgoff_t index, bool new_i_size);
4006 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
4007 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
4008 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4009 u64 start, u64 len);
4010 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
4011 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
4012 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
4013 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
4014 struct bio **bio, sector_t *last_block,
4015 struct writeback_control *wbc,
4016 enum iostat_type io_type,
4017 int compr_blocks, bool allow_balance);
4018 void f2fs_write_failed(struct inode *inode, loff_t to);
4019 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4020 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4021 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4022 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4023 int f2fs_init_post_read_processing(void);
4024 void f2fs_destroy_post_read_processing(void);
4025 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4026 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4027 extern const struct iomap_ops f2fs_iomap_ops;
4028
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)4029 static inline struct page *f2fs_find_data_page(struct inode *inode,
4030 pgoff_t index, pgoff_t *next_pgofs)
4031 {
4032 struct folio *folio = f2fs_find_data_folio(inode, index, next_pgofs);
4033
4034 return &folio->page;
4035 }
4036
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)4037 static inline struct page *f2fs_get_lock_data_page(struct inode *inode,
4038 pgoff_t index, bool for_write)
4039 {
4040 struct folio *folio = f2fs_get_lock_data_folio(inode, index, for_write);
4041
4042 return &folio->page;
4043 }
4044
4045 /*
4046 * gc.c
4047 */
4048 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4049 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4050 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4051 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4052 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4053 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4054 unsigned int start_seg, unsigned int end_seg,
4055 bool dry_run, unsigned int dry_run_sections);
4056 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4057 int __init f2fs_create_garbage_collection_cache(void);
4058 void f2fs_destroy_garbage_collection_cache(void);
4059 /* victim selection function for cleaning and SSR */
4060 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4061 int gc_type, int type, char alloc_mode,
4062 unsigned long long age, bool one_time);
4063
4064 /*
4065 * recovery.c
4066 */
4067 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4068 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4069 int __init f2fs_create_recovery_cache(void);
4070 void f2fs_destroy_recovery_cache(void);
4071
4072 /*
4073 * debug.c
4074 */
4075 #ifdef CONFIG_F2FS_STAT_FS
4076 enum {
4077 DEVSTAT_INUSE,
4078 DEVSTAT_DIRTY,
4079 DEVSTAT_FULL,
4080 DEVSTAT_FREE,
4081 DEVSTAT_PREFREE,
4082 DEVSTAT_MAX,
4083 };
4084
4085 struct f2fs_dev_stats {
4086 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4087 };
4088
4089 struct f2fs_stat_info {
4090 struct list_head stat_list;
4091 struct f2fs_sb_info *sbi;
4092 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4093 int main_area_segs, main_area_sections, main_area_zones;
4094 unsigned long long hit_cached[NR_EXTENT_CACHES];
4095 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4096 unsigned long long total_ext[NR_EXTENT_CACHES];
4097 unsigned long long hit_total[NR_EXTENT_CACHES];
4098 int ext_tree[NR_EXTENT_CACHES];
4099 int zombie_tree[NR_EXTENT_CACHES];
4100 int ext_node[NR_EXTENT_CACHES];
4101 /* to count memory footprint */
4102 unsigned long long ext_mem[NR_EXTENT_CACHES];
4103 /* for read extent cache */
4104 unsigned long long hit_largest;
4105 /* for block age extent cache */
4106 unsigned long long allocated_data_blocks;
4107 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4108 int ndirty_data, ndirty_qdata;
4109 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4110 unsigned int nquota_files, ndonate_files;
4111 int nats, dirty_nats, sits, dirty_sits;
4112 int free_nids, avail_nids, alloc_nids;
4113 int total_count, utilization;
4114 int nr_wb_cp_data, nr_wb_data;
4115 int nr_rd_data, nr_rd_node, nr_rd_meta;
4116 int nr_dio_read, nr_dio_write;
4117 unsigned int io_skip_bggc, other_skip_bggc;
4118 int nr_flushing, nr_flushed, flush_list_empty;
4119 int nr_discarding, nr_discarded;
4120 int nr_discard_cmd;
4121 unsigned int undiscard_blks;
4122 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4123 unsigned int cur_ckpt_time, peak_ckpt_time;
4124 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4125 int compr_inode, swapfile_inode;
4126 unsigned long long compr_blocks;
4127 int aw_cnt, max_aw_cnt;
4128 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4129 unsigned int bimodal, avg_vblocks;
4130 int util_free, util_valid, util_invalid;
4131 int rsvd_segs, overp_segs;
4132 int dirty_count, node_pages, meta_pages, compress_pages;
4133 int compress_page_hit;
4134 int prefree_count, free_segs, free_secs;
4135 int cp_call_count[MAX_CALL_TYPE], cp_count;
4136 int gc_call_count[MAX_CALL_TYPE];
4137 int gc_segs[2][2];
4138 int gc_secs[2][2];
4139 int tot_blks, data_blks, node_blks;
4140 int bg_data_blks, bg_node_blks;
4141 int curseg[NR_CURSEG_TYPE];
4142 int cursec[NR_CURSEG_TYPE];
4143 int curzone[NR_CURSEG_TYPE];
4144 unsigned int dirty_seg[NR_CURSEG_TYPE];
4145 unsigned int full_seg[NR_CURSEG_TYPE];
4146 unsigned int valid_blks[NR_CURSEG_TYPE];
4147
4148 unsigned int meta_count[META_MAX];
4149 unsigned int segment_count[2];
4150 unsigned int block_count[2];
4151 unsigned int inplace_count;
4152 unsigned long long base_mem, cache_mem, page_mem;
4153 struct f2fs_dev_stats *dev_stats;
4154 };
4155
F2FS_STAT(struct f2fs_sb_info * sbi)4156 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4157 {
4158 return (struct f2fs_stat_info *)sbi->stat_info;
4159 }
4160
4161 #define stat_inc_cp_call_count(sbi, foreground) \
4162 atomic_inc(&sbi->cp_call_count[(foreground)])
4163 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4164 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4165 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4166 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4167 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4168 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4169 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4170 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4171 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4172 #define stat_inc_inline_xattr(inode) \
4173 do { \
4174 if (f2fs_has_inline_xattr(inode)) \
4175 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4176 } while (0)
4177 #define stat_dec_inline_xattr(inode) \
4178 do { \
4179 if (f2fs_has_inline_xattr(inode)) \
4180 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4181 } while (0)
4182 #define stat_inc_inline_inode(inode) \
4183 do { \
4184 if (f2fs_has_inline_data(inode)) \
4185 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4186 } while (0)
4187 #define stat_dec_inline_inode(inode) \
4188 do { \
4189 if (f2fs_has_inline_data(inode)) \
4190 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4191 } while (0)
4192 #define stat_inc_inline_dir(inode) \
4193 do { \
4194 if (f2fs_has_inline_dentry(inode)) \
4195 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4196 } while (0)
4197 #define stat_dec_inline_dir(inode) \
4198 do { \
4199 if (f2fs_has_inline_dentry(inode)) \
4200 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4201 } while (0)
4202 #define stat_inc_compr_inode(inode) \
4203 do { \
4204 if (f2fs_compressed_file(inode)) \
4205 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4206 } while (0)
4207 #define stat_dec_compr_inode(inode) \
4208 do { \
4209 if (f2fs_compressed_file(inode)) \
4210 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4211 } while (0)
4212 #define stat_add_compr_blocks(inode, blocks) \
4213 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4214 #define stat_sub_compr_blocks(inode, blocks) \
4215 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4216 #define stat_inc_swapfile_inode(inode) \
4217 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4218 #define stat_dec_swapfile_inode(inode) \
4219 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4220 #define stat_inc_atomic_inode(inode) \
4221 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4222 #define stat_dec_atomic_inode(inode) \
4223 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4224 #define stat_inc_meta_count(sbi, blkaddr) \
4225 do { \
4226 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4227 atomic_inc(&(sbi)->meta_count[META_CP]); \
4228 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4229 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4230 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4231 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4232 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4233 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4234 } while (0)
4235 #define stat_inc_seg_type(sbi, curseg) \
4236 ((sbi)->segment_count[(curseg)->alloc_type]++)
4237 #define stat_inc_block_count(sbi, curseg) \
4238 ((sbi)->block_count[(curseg)->alloc_type]++)
4239 #define stat_inc_inplace_blocks(sbi) \
4240 (atomic_inc(&(sbi)->inplace_count))
4241 #define stat_update_max_atomic_write(inode) \
4242 do { \
4243 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4244 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4245 if (cur > max) \
4246 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4247 } while (0)
4248 #define stat_inc_gc_call_count(sbi, foreground) \
4249 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4250 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4251 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4252 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4253 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4254
4255 #define stat_inc_tot_blk_count(si, blks) \
4256 ((si)->tot_blks += (blks))
4257
4258 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4259 do { \
4260 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4261 stat_inc_tot_blk_count(si, blks); \
4262 si->data_blks += (blks); \
4263 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4264 } while (0)
4265
4266 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4267 do { \
4268 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4269 stat_inc_tot_blk_count(si, blks); \
4270 si->node_blks += (blks); \
4271 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4272 } while (0)
4273
4274 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4275 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4276 void __init f2fs_create_root_stats(void);
4277 void f2fs_destroy_root_stats(void);
4278 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4279 #else
4280 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4281 #define stat_inc_cp_count(sbi) do { } while (0)
4282 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4283 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4284 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4285 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4286 #define stat_inc_total_hit(sbi, type) do { } while (0)
4287 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4288 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4289 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4290 #define stat_inc_inline_xattr(inode) do { } while (0)
4291 #define stat_dec_inline_xattr(inode) do { } while (0)
4292 #define stat_inc_inline_inode(inode) do { } while (0)
4293 #define stat_dec_inline_inode(inode) do { } while (0)
4294 #define stat_inc_inline_dir(inode) do { } while (0)
4295 #define stat_dec_inline_dir(inode) do { } while (0)
4296 #define stat_inc_compr_inode(inode) do { } while (0)
4297 #define stat_dec_compr_inode(inode) do { } while (0)
4298 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4299 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4300 #define stat_inc_swapfile_inode(inode) do { } while (0)
4301 #define stat_dec_swapfile_inode(inode) do { } while (0)
4302 #define stat_inc_atomic_inode(inode) do { } while (0)
4303 #define stat_dec_atomic_inode(inode) do { } while (0)
4304 #define stat_update_max_atomic_write(inode) do { } while (0)
4305 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4306 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4307 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4308 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4309 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4310 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4311 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4312 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4313 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4314 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4315
f2fs_build_stats(struct f2fs_sb_info * sbi)4316 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4317 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4318 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4319 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4320 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4321 #endif
4322
4323 extern const struct file_operations f2fs_dir_operations;
4324 extern const struct file_operations f2fs_file_operations;
4325 extern const struct inode_operations f2fs_file_inode_operations;
4326 extern const struct address_space_operations f2fs_dblock_aops;
4327 extern const struct address_space_operations f2fs_node_aops;
4328 extern const struct address_space_operations f2fs_meta_aops;
4329 extern const struct inode_operations f2fs_dir_inode_operations;
4330 extern const struct inode_operations f2fs_symlink_inode_operations;
4331 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4332 extern const struct inode_operations f2fs_special_inode_operations;
4333 extern struct kmem_cache *f2fs_inode_entry_slab;
4334
4335 /*
4336 * inline.c
4337 */
4338 bool f2fs_may_inline_data(struct inode *inode);
4339 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4340 bool f2fs_may_inline_dentry(struct inode *inode);
4341 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4342 void f2fs_truncate_inline_inode(struct inode *inode,
4343 struct page *ipage, u64 from);
4344 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4345 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4346 int f2fs_convert_inline_inode(struct inode *inode);
4347 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4348 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4349 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4350 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4351 const struct f2fs_filename *fname,
4352 struct page **res_page,
4353 bool use_hash);
4354 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4355 struct page *ipage);
4356 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4357 struct inode *inode, nid_t ino, umode_t mode);
4358 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4359 struct page *page, struct inode *dir,
4360 struct inode *inode);
4361 bool f2fs_empty_inline_dir(struct inode *dir);
4362 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4363 struct fscrypt_str *fstr);
4364 int f2fs_inline_data_fiemap(struct inode *inode,
4365 struct fiemap_extent_info *fieinfo,
4366 __u64 start, __u64 len);
4367
4368 /*
4369 * shrinker.c
4370 */
4371 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4372 struct shrink_control *sc);
4373 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4374 struct shrink_control *sc);
4375 unsigned int f2fs_donate_files(void);
4376 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4377 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4378 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4379
4380 /*
4381 * extent_cache.c
4382 */
4383 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4384 void f2fs_init_extent_tree(struct inode *inode);
4385 void f2fs_drop_extent_tree(struct inode *inode);
4386 void f2fs_destroy_extent_node(struct inode *inode);
4387 void f2fs_destroy_extent_tree(struct inode *inode);
4388 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4389 int __init f2fs_create_extent_cache(void);
4390 void f2fs_destroy_extent_cache(void);
4391
4392 /* read extent cache ops */
4393 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4394 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4395 struct extent_info *ei);
4396 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4397 block_t *blkaddr);
4398 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4399 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4400 pgoff_t fofs, block_t blkaddr, unsigned int len);
4401 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4402 int nr_shrink);
4403
4404 /* block age extent cache ops */
4405 void f2fs_init_age_extent_tree(struct inode *inode);
4406 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4407 struct extent_info *ei);
4408 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4409 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4410 pgoff_t fofs, unsigned int len);
4411 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4412 int nr_shrink);
4413
4414 /*
4415 * sysfs.c
4416 */
4417 #define MIN_RA_MUL 2
4418 #define MAX_RA_MUL 256
4419
4420 int __init f2fs_init_sysfs(void);
4421 void f2fs_exit_sysfs(void);
4422 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4423 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4424
4425 /* verity.c */
4426 extern const struct fsverity_operations f2fs_verityops;
4427
4428 /*
4429 * crypto support
4430 */
f2fs_encrypted_file(struct inode * inode)4431 static inline bool f2fs_encrypted_file(struct inode *inode)
4432 {
4433 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4434 }
4435
f2fs_set_encrypted_inode(struct inode * inode)4436 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4437 {
4438 #ifdef CONFIG_FS_ENCRYPTION
4439 file_set_encrypt(inode);
4440 f2fs_set_inode_flags(inode);
4441 #endif
4442 }
4443
4444 /*
4445 * Returns true if the reads of the inode's data need to undergo some
4446 * postprocessing step, like decryption or authenticity verification.
4447 */
f2fs_post_read_required(struct inode * inode)4448 static inline bool f2fs_post_read_required(struct inode *inode)
4449 {
4450 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4451 f2fs_compressed_file(inode);
4452 }
4453
f2fs_used_in_atomic_write(struct inode * inode)4454 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4455 {
4456 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4457 }
4458
f2fs_meta_inode_gc_required(struct inode * inode)4459 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4460 {
4461 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4462 }
4463
4464 /*
4465 * compress.c
4466 */
4467 #ifdef CONFIG_F2FS_FS_COMPRESSION
4468 enum cluster_check_type {
4469 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4470 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4471 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4472 };
4473 bool f2fs_is_compressed_page(struct page *page);
4474 struct page *f2fs_compress_control_page(struct page *page);
4475 int f2fs_prepare_compress_overwrite(struct inode *inode,
4476 struct page **pagep, pgoff_t index, void **fsdata);
4477 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4478 pgoff_t index, unsigned copied);
4479 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4480 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4481 bool f2fs_is_compress_backend_ready(struct inode *inode);
4482 bool f2fs_is_compress_level_valid(int alg, int lvl);
4483 int __init f2fs_init_compress_mempool(void);
4484 void f2fs_destroy_compress_mempool(void);
4485 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4486 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4487 block_t blkaddr, bool in_task);
4488 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4489 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4490 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4491 int index, int nr_pages, bool uptodate);
4492 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4493 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4494 int f2fs_write_multi_pages(struct compress_ctx *cc,
4495 int *submitted,
4496 struct writeback_control *wbc,
4497 enum iostat_type io_type);
4498 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4499 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4500 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4501 pgoff_t fofs, block_t blkaddr,
4502 unsigned int llen, unsigned int c_len);
4503 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4504 unsigned nr_pages, sector_t *last_block_in_bio,
4505 struct readahead_control *rac, bool for_write);
4506 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4507 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4508 bool in_task);
4509 void f2fs_put_page_dic(struct page *page, bool in_task);
4510 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4511 unsigned int ofs_in_node);
4512 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4513 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4514 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4515 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4516 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4517 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4518 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4519 int __init f2fs_init_compress_cache(void);
4520 void f2fs_destroy_compress_cache(void);
4521 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4522 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4523 block_t blkaddr, unsigned int len);
4524 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4525 nid_t ino, block_t blkaddr);
4526 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4527 block_t blkaddr);
4528 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4529 #define inc_compr_inode_stat(inode) \
4530 do { \
4531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4532 sbi->compr_new_inode++; \
4533 } while (0)
4534 #define add_compr_block_stat(inode, blocks) \
4535 do { \
4536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4537 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4538 sbi->compr_written_block += blocks; \
4539 sbi->compr_saved_block += diff; \
4540 } while (0)
4541 #else
f2fs_is_compressed_page(struct page * page)4542 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4543 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4544 {
4545 if (!f2fs_compressed_file(inode))
4546 return true;
4547 /* not support compression */
4548 return false;
4549 }
f2fs_is_compress_level_valid(int alg,int lvl)4550 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4551 static inline struct page *f2fs_compress_control_page(struct page *page)
4552 {
4553 WARN_ON_ONCE(1);
4554 return ERR_PTR(-EINVAL);
4555 }
f2fs_init_compress_mempool(void)4556 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4557 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4558 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4559 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4560 static inline void f2fs_end_read_compressed_page(struct page *page,
4561 bool failed, block_t blkaddr, bool in_task)
4562 {
4563 WARN_ON_ONCE(1);
4564 }
f2fs_put_page_dic(struct page * page,bool in_task)4565 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4566 {
4567 WARN_ON_ONCE(1);
4568 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4569 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4570 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4571 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4572 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4573 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4574 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4575 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4576 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4577 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4578 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4579 block_t blkaddr, unsigned int len) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4580 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4581 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4582 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4583 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4584 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4585 nid_t ino) { }
4586 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4587 static inline int f2fs_is_compressed_cluster(
4588 struct inode *inode,
4589 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4590 static inline bool f2fs_is_sparse_cluster(
4591 struct inode *inode,
4592 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4593 static inline void f2fs_update_read_extent_tree_range_compressed(
4594 struct inode *inode,
4595 pgoff_t fofs, block_t blkaddr,
4596 unsigned int llen, unsigned int c_len) { }
4597 #endif
4598
set_compress_context(struct inode * inode)4599 static inline int set_compress_context(struct inode *inode)
4600 {
4601 #ifdef CONFIG_F2FS_FS_COMPRESSION
4602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4603 struct f2fs_inode_info *fi = F2FS_I(inode);
4604
4605 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4606 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4607 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4608 BIT(COMPRESS_CHKSUM) : 0;
4609 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4610 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4611 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4612 F2FS_OPTION(sbi).compress_level)
4613 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4614 fi->i_flags |= F2FS_COMPR_FL;
4615 set_inode_flag(inode, FI_COMPRESSED_FILE);
4616 stat_inc_compr_inode(inode);
4617 inc_compr_inode_stat(inode);
4618 f2fs_mark_inode_dirty_sync(inode, true);
4619 return 0;
4620 #else
4621 return -EOPNOTSUPP;
4622 #endif
4623 }
4624
f2fs_disable_compressed_file(struct inode * inode)4625 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4626 {
4627 struct f2fs_inode_info *fi = F2FS_I(inode);
4628
4629 f2fs_down_write(&fi->i_sem);
4630
4631 if (!f2fs_compressed_file(inode)) {
4632 f2fs_up_write(&fi->i_sem);
4633 return true;
4634 }
4635 if (f2fs_is_mmap_file(inode) ||
4636 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4637 f2fs_up_write(&fi->i_sem);
4638 return false;
4639 }
4640
4641 fi->i_flags &= ~F2FS_COMPR_FL;
4642 stat_dec_compr_inode(inode);
4643 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4644 f2fs_mark_inode_dirty_sync(inode, true);
4645
4646 f2fs_up_write(&fi->i_sem);
4647 return true;
4648 }
4649
4650 #define F2FS_FEATURE_FUNCS(name, flagname) \
4651 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4652 { \
4653 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4654 }
4655
4656 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4657 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4658 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4659 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4660 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4661 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4662 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4663 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4664 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4665 F2FS_FEATURE_FUNCS(verity, VERITY);
4666 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4667 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4668 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4669 F2FS_FEATURE_FUNCS(readonly, RO);
4670 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4671
4672 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4673 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4674 unsigned int zone)
4675 {
4676 return test_bit(zone, FDEV(devi).blkz_seq);
4677 }
4678
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4679 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4680 block_t blkaddr)
4681 {
4682 return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4683 }
4684 #endif
4685
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4686 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4687 struct block_device *bdev)
4688 {
4689 int i;
4690
4691 if (!f2fs_is_multi_device(sbi))
4692 return 0;
4693
4694 for (i = 0; i < sbi->s_ndevs; i++)
4695 if (FDEV(i).bdev == bdev)
4696 return i;
4697
4698 WARN_ON(1);
4699 return -1;
4700 }
4701
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4702 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4703 {
4704 return f2fs_sb_has_blkzoned(sbi);
4705 }
4706
f2fs_bdev_support_discard(struct block_device * bdev)4707 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4708 {
4709 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4710 }
4711
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4712 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4713 {
4714 int i;
4715
4716 if (!f2fs_is_multi_device(sbi))
4717 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4718
4719 for (i = 0; i < sbi->s_ndevs; i++)
4720 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4721 return true;
4722 return false;
4723 }
4724
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4725 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4726 {
4727 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4728 f2fs_hw_should_discard(sbi);
4729 }
4730
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4731 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4732 {
4733 int i;
4734
4735 if (!f2fs_is_multi_device(sbi))
4736 return bdev_read_only(sbi->sb->s_bdev);
4737
4738 for (i = 0; i < sbi->s_ndevs; i++)
4739 if (bdev_read_only(FDEV(i).bdev))
4740 return true;
4741 return false;
4742 }
4743
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4744 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4745 {
4746 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4747 }
4748
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4749 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4750 {
4751 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4752 }
4753
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4754 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4755 block_t blkaddr)
4756 {
4757 if (f2fs_sb_has_blkzoned(sbi)) {
4758 #ifdef CONFIG_BLK_DEV_ZONED
4759 int devi = f2fs_target_device_index(sbi, blkaddr);
4760
4761 if (!bdev_is_zoned(FDEV(devi).bdev))
4762 return false;
4763
4764 if (f2fs_is_multi_device(sbi)) {
4765 if (blkaddr < FDEV(devi).start_blk ||
4766 blkaddr > FDEV(devi).end_blk) {
4767 f2fs_err(sbi, "Invalid block %x", blkaddr);
4768 return false;
4769 }
4770 blkaddr -= FDEV(devi).start_blk;
4771 }
4772
4773 return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4774 #else
4775 return false;
4776 #endif
4777 }
4778 return false;
4779 }
4780
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4781 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4782 {
4783 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4784 }
4785
f2fs_may_compress(struct inode * inode)4786 static inline bool f2fs_may_compress(struct inode *inode)
4787 {
4788 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4789 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4790 f2fs_is_mmap_file(inode))
4791 return false;
4792 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4793 }
4794
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4795 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4796 u64 blocks, bool add)
4797 {
4798 struct f2fs_inode_info *fi = F2FS_I(inode);
4799 int diff = fi->i_cluster_size - blocks;
4800
4801 /* don't update i_compr_blocks if saved blocks were released */
4802 if (!add && !atomic_read(&fi->i_compr_blocks))
4803 return;
4804
4805 if (add) {
4806 atomic_add(diff, &fi->i_compr_blocks);
4807 stat_add_compr_blocks(inode, diff);
4808 } else {
4809 atomic_sub(diff, &fi->i_compr_blocks);
4810 stat_sub_compr_blocks(inode, diff);
4811 }
4812 f2fs_mark_inode_dirty_sync(inode, true);
4813 }
4814
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4815 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4816 int flag)
4817 {
4818 if (!f2fs_is_multi_device(sbi))
4819 return false;
4820 if (flag != F2FS_GET_BLOCK_DIO)
4821 return false;
4822 return sbi->aligned_blksize;
4823 }
4824
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4825 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4826 {
4827 return fsverity_active(inode) &&
4828 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4829 }
4830
4831 #ifdef CONFIG_F2FS_FAULT_INJECTION
4832 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4833 unsigned long type);
4834 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4835 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4836 unsigned long rate, unsigned long type)
4837 {
4838 return 0;
4839 }
4840 #endif
4841
is_journalled_quota(struct f2fs_sb_info * sbi)4842 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4843 {
4844 #ifdef CONFIG_QUOTA
4845 if (f2fs_sb_has_quota_ino(sbi))
4846 return true;
4847 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4848 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4849 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4850 return true;
4851 #endif
4852 return false;
4853 }
4854
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4855 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4856 {
4857 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4858 }
4859
f2fs_io_schedule_timeout(long timeout)4860 static inline void f2fs_io_schedule_timeout(long timeout)
4861 {
4862 set_current_state(TASK_UNINTERRUPTIBLE);
4863 io_schedule_timeout(timeout);
4864 }
4865
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4866 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4867 struct folio *folio, enum page_type type)
4868 {
4869 pgoff_t ofs = folio->index;
4870
4871 if (unlikely(f2fs_cp_error(sbi)))
4872 return;
4873
4874 if (ofs == sbi->page_eio_ofs[type]) {
4875 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4876 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4877 } else {
4878 sbi->page_eio_ofs[type] = ofs;
4879 sbi->page_eio_cnt[type] = 0;
4880 }
4881 }
4882
f2fs_is_readonly(struct f2fs_sb_info * sbi)4883 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4884 {
4885 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4886 }
4887
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4888 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4889 block_t blkaddr, unsigned int cnt)
4890 {
4891 bool need_submit = false;
4892 int i = 0;
4893
4894 do {
4895 struct page *page;
4896
4897 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4898 if (page) {
4899 if (folio_test_writeback(page_folio(page)))
4900 need_submit = true;
4901 f2fs_put_page(page, 0);
4902 }
4903 } while (++i < cnt && !need_submit);
4904
4905 if (need_submit)
4906 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4907 NULL, 0, DATA);
4908
4909 truncate_inode_pages_range(META_MAPPING(sbi),
4910 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4911 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4912 }
4913
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4914 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4915 block_t blkaddr, unsigned int len)
4916 {
4917 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4918 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4919 }
4920
4921 enum f2fs_lookup_mode {
4922 LOOKUP_PERF,
4923 LOOKUP_COMPAT,
4924 LOOKUP_AUTO,
4925 };
4926
4927 /*
4928 * For bit-packing in f2fs_mount_info->alloc_mode
4929 */
4930 #define ALLOC_MODE_BITS 1
4931 #define LOOKUP_MODE_BITS 2
4932
4933 #define ALLOC_MODE_SHIFT 0
4934 #define LOOKUP_MODE_SHIFT (ALLOC_MODE_SHIFT + ALLOC_MODE_BITS)
4935
4936 #define ALLOC_MODE_MASK (((1 << ALLOC_MODE_BITS) - 1) << ALLOC_MODE_SHIFT)
4937 #define LOOKUP_MODE_MASK (((1 << LOOKUP_MODE_BITS) - 1) << LOOKUP_MODE_SHIFT)
4938
f2fs_get_alloc_mode(struct f2fs_sb_info * sbi)4939 static inline int f2fs_get_alloc_mode(struct f2fs_sb_info *sbi)
4940 {
4941 return (F2FS_OPTION(sbi).alloc_mode & ALLOC_MODE_MASK) >> ALLOC_MODE_SHIFT;
4942 }
4943
f2fs_set_alloc_mode(struct f2fs_sb_info * sbi,int mode)4944 static inline void f2fs_set_alloc_mode(struct f2fs_sb_info *sbi, int mode)
4945 {
4946 F2FS_OPTION(sbi).alloc_mode &= ~ALLOC_MODE_MASK;
4947 F2FS_OPTION(sbi).alloc_mode |= (mode << ALLOC_MODE_SHIFT);
4948 }
4949
f2fs_get_lookup_mode(struct f2fs_sb_info * sbi)4950 static inline enum f2fs_lookup_mode f2fs_get_lookup_mode(struct f2fs_sb_info *sbi)
4951 {
4952 return (F2FS_OPTION(sbi).alloc_mode & LOOKUP_MODE_MASK) >> LOOKUP_MODE_SHIFT;
4953 }
4954
f2fs_set_lookup_mode(struct f2fs_sb_info * sbi,enum f2fs_lookup_mode mode)4955 static inline void f2fs_set_lookup_mode(struct f2fs_sb_info *sbi,
4956 enum f2fs_lookup_mode mode)
4957 {
4958 F2FS_OPTION(sbi).alloc_mode &= ~LOOKUP_MODE_MASK;
4959 F2FS_OPTION(sbi).alloc_mode |= (mode << LOOKUP_MODE_SHIFT);
4960 }
4961
4962 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4963 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4964
4965 #endif /* _LINUX_F2FS_H */
4966