1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
38 #undef CREATE_TRACE_POINTS
39 #include <trace/hooks/fs.h>
40
f2fs_zero_post_eof_page(struct inode * inode,loff_t new_size)41 static void f2fs_zero_post_eof_page(struct inode *inode, loff_t new_size)
42 {
43 loff_t old_size = i_size_read(inode);
44
45 if (old_size >= new_size)
46 return;
47
48 /* zero or drop pages only in range of [old_size, new_size] */
49 truncate_pagecache(inode, old_size);
50 }
51
f2fs_filemap_fault(struct vm_fault * vmf)52 vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
53 {
54 struct inode *inode = file_inode(vmf->vma->vm_file);
55 vm_flags_t flags = vmf->vma->vm_flags;
56 vm_fault_t ret;
57
58 ret = filemap_fault(vmf);
59 if (ret & VM_FAULT_LOCKED)
60 f2fs_update_iostat(F2FS_I_SB(inode), inode,
61 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
62
63 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
64
65 return ret;
66 }
67
f2fs_vm_page_mkwrite(struct vm_fault * vmf)68 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
69 {
70 struct folio *folio = page_folio(vmf->page);
71 struct inode *inode = file_inode(vmf->vma->vm_file);
72 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
73 struct dnode_of_data dn;
74 bool need_alloc = !f2fs_is_pinned_file(inode);
75 int err = 0;
76 vm_fault_t ret;
77
78 if (unlikely(IS_IMMUTABLE(inode)))
79 return VM_FAULT_SIGBUS;
80
81 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
82 err = -EIO;
83 goto out;
84 }
85
86 if (unlikely(f2fs_cp_error(sbi))) {
87 err = -EIO;
88 goto out;
89 }
90
91 if (!f2fs_is_checkpoint_ready(sbi)) {
92 err = -ENOSPC;
93 goto out;
94 }
95
96 err = f2fs_convert_inline_inode(inode);
97 if (err)
98 goto out;
99
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 if (f2fs_compressed_file(inode)) {
102 int ret = f2fs_is_compressed_cluster(inode, folio->index);
103
104 if (ret < 0) {
105 err = ret;
106 goto out;
107 } else if (ret) {
108 need_alloc = false;
109 }
110 }
111 #endif
112 /* should do out of any locked page */
113 if (need_alloc)
114 f2fs_balance_fs(sbi, true);
115
116 sb_start_pagefault(inode->i_sb);
117
118 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
119
120 filemap_invalidate_lock(inode->i_mapping);
121 f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT);
122 filemap_invalidate_unlock(inode->i_mapping);
123
124 file_update_time(vmf->vma->vm_file);
125 filemap_invalidate_lock_shared(inode->i_mapping);
126
127 folio_lock(folio);
128 if (unlikely(folio->mapping != inode->i_mapping ||
129 folio_pos(folio) > i_size_read(inode) ||
130 !folio_test_uptodate(folio))) {
131 folio_unlock(folio);
132 err = -EFAULT;
133 goto out_sem;
134 }
135
136 set_new_dnode(&dn, inode, NULL, NULL, 0);
137 if (need_alloc) {
138 /* block allocation */
139 err = f2fs_get_block_locked(&dn, folio->index);
140 } else {
141 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
142 f2fs_put_dnode(&dn);
143 if (f2fs_is_pinned_file(inode) &&
144 !__is_valid_data_blkaddr(dn.data_blkaddr))
145 err = -EIO;
146 }
147
148 if (err) {
149 folio_unlock(folio);
150 goto out_sem;
151 }
152
153 f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
154
155 /* wait for GCed page writeback via META_MAPPING */
156 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
157
158 /*
159 * check to see if the page is mapped already (no holes)
160 */
161 if (folio_test_mappedtodisk(folio))
162 goto out_sem;
163
164 /* page is wholly or partially inside EOF */
165 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
166 i_size_read(inode)) {
167 loff_t offset;
168
169 offset = i_size_read(inode) & ~PAGE_MASK;
170 folio_zero_segment(folio, offset, folio_size(folio));
171 }
172 folio_mark_dirty(folio);
173
174 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
175 f2fs_update_time(sbi, REQ_TIME);
176
177 out_sem:
178 filemap_invalidate_unlock_shared(inode->i_mapping);
179
180 sb_end_pagefault(inode->i_sb);
181 out:
182 ret = vmf_fs_error(err);
183
184 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
185 return ret;
186 }
187
188 static const struct vm_operations_struct f2fs_file_vm_ops = {
189 .fault = f2fs_filemap_fault,
190 .map_pages = filemap_map_pages,
191 .page_mkwrite = f2fs_vm_page_mkwrite,
192 };
193
get_parent_ino(struct inode * inode,nid_t * pino)194 static int get_parent_ino(struct inode *inode, nid_t *pino)
195 {
196 struct dentry *dentry;
197
198 /*
199 * Make sure to get the non-deleted alias. The alias associated with
200 * the open file descriptor being fsync()'ed may be deleted already.
201 */
202 dentry = d_find_alias(inode);
203 if (!dentry)
204 return 0;
205
206 *pino = d_parent_ino(dentry);
207 dput(dentry);
208 return 1;
209 }
210
need_do_checkpoint(struct inode * inode)211 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
212 {
213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 enum cp_reason_type cp_reason = CP_NO_NEEDED;
215
216 if (!S_ISREG(inode->i_mode))
217 cp_reason = CP_NON_REGULAR;
218 else if (f2fs_compressed_file(inode))
219 cp_reason = CP_COMPRESSED;
220 else if (inode->i_nlink != 1)
221 cp_reason = CP_HARDLINK;
222 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
223 cp_reason = CP_SB_NEED_CP;
224 else if (file_wrong_pino(inode))
225 cp_reason = CP_WRONG_PINO;
226 else if (!f2fs_space_for_roll_forward(sbi))
227 cp_reason = CP_NO_SPC_ROLL;
228 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
229 cp_reason = CP_NODE_NEED_CP;
230 else if (test_opt(sbi, FASTBOOT))
231 cp_reason = CP_FASTBOOT_MODE;
232 else if (F2FS_OPTION(sbi).active_logs == 2)
233 cp_reason = CP_SPEC_LOG_NUM;
234 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
235 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
236 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
237 TRANS_DIR_INO))
238 cp_reason = CP_RECOVER_DIR;
239 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
240 XATTR_DIR_INO))
241 cp_reason = CP_XATTR_DIR;
242
243 return cp_reason;
244 }
245
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)246 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
247 {
248 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
249 bool ret = false;
250 /* But we need to avoid that there are some inode updates */
251 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
252 ret = true;
253 f2fs_put_page(i, 0);
254 return ret;
255 }
256
try_to_fix_pino(struct inode * inode)257 static void try_to_fix_pino(struct inode *inode)
258 {
259 struct f2fs_inode_info *fi = F2FS_I(inode);
260 nid_t pino;
261
262 f2fs_down_write(&fi->i_sem);
263 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
264 get_parent_ino(inode, &pino)) {
265 f2fs_i_pino_write(inode, pino);
266 file_got_pino(inode);
267 }
268 f2fs_up_write(&fi->i_sem);
269 }
270
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)271 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
272 int datasync, bool atomic)
273 {
274 struct inode *inode = file->f_mapping->host;
275 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
276 nid_t ino = inode->i_ino;
277 int ret = 0;
278 enum cp_reason_type cp_reason = 0;
279 struct writeback_control wbc = {
280 .sync_mode = WB_SYNC_ALL,
281 .nr_to_write = LONG_MAX,
282 .for_reclaim = 0,
283 };
284 unsigned int seq_id = 0;
285
286 if (unlikely(f2fs_readonly(inode->i_sb)))
287 return 0;
288
289 trace_f2fs_sync_file_enter(inode);
290
291 if (S_ISDIR(inode->i_mode))
292 goto go_write;
293
294 /* if fdatasync is triggered, let's do in-place-update */
295 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
296 set_inode_flag(inode, FI_NEED_IPU);
297 ret = file_write_and_wait_range(file, start, end);
298 clear_inode_flag(inode, FI_NEED_IPU);
299
300 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
301 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
302 return ret;
303 }
304
305 /* if the inode is dirty, let's recover all the time */
306 if (!f2fs_skip_inode_update(inode, datasync)) {
307 f2fs_write_inode(inode, NULL);
308 goto go_write;
309 }
310
311 /*
312 * if there is no written data, don't waste time to write recovery info.
313 */
314 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
315 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
316
317 /* it may call write_inode just prior to fsync */
318 if (need_inode_page_update(sbi, ino))
319 goto go_write;
320
321 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
322 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
323 goto flush_out;
324 goto out;
325 } else {
326 /*
327 * for OPU case, during fsync(), node can be persisted before
328 * data when lower device doesn't support write barrier, result
329 * in data corruption after SPO.
330 * So for strict fsync mode, force to use atomic write semantics
331 * to keep write order in between data/node and last node to
332 * avoid potential data corruption.
333 */
334 if (F2FS_OPTION(sbi).fsync_mode ==
335 FSYNC_MODE_STRICT && !atomic)
336 atomic = true;
337 }
338 go_write:
339 /*
340 * Both of fdatasync() and fsync() are able to be recovered from
341 * sudden-power-off.
342 */
343 f2fs_down_read(&F2FS_I(inode)->i_sem);
344 cp_reason = need_do_checkpoint(inode);
345 f2fs_up_read(&F2FS_I(inode)->i_sem);
346
347 if (cp_reason) {
348 /* all the dirty node pages should be flushed for POR */
349 ret = f2fs_sync_fs(inode->i_sb, 1);
350
351 /*
352 * We've secured consistency through sync_fs. Following pino
353 * will be used only for fsynced inodes after checkpoint.
354 */
355 try_to_fix_pino(inode);
356 clear_inode_flag(inode, FI_APPEND_WRITE);
357 clear_inode_flag(inode, FI_UPDATE_WRITE);
358 goto out;
359 }
360 sync_nodes:
361 atomic_inc(&sbi->wb_sync_req[NODE]);
362 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
363 atomic_dec(&sbi->wb_sync_req[NODE]);
364 if (ret)
365 goto out;
366
367 /* if cp_error was enabled, we should avoid infinite loop */
368 if (unlikely(f2fs_cp_error(sbi))) {
369 ret = -EIO;
370 goto out;
371 }
372
373 if (f2fs_need_inode_block_update(sbi, ino)) {
374 f2fs_mark_inode_dirty_sync(inode, true);
375 f2fs_write_inode(inode, NULL);
376 goto sync_nodes;
377 }
378
379 /*
380 * If it's atomic_write, it's just fine to keep write ordering. So
381 * here we don't need to wait for node write completion, since we use
382 * node chain which serializes node blocks. If one of node writes are
383 * reordered, we can see simply broken chain, resulting in stopping
384 * roll-forward recovery. It means we'll recover all or none node blocks
385 * given fsync mark.
386 */
387 if (!atomic) {
388 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
389 if (ret)
390 goto out;
391 }
392
393 /* once recovery info is written, don't need to tack this */
394 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
395 clear_inode_flag(inode, FI_APPEND_WRITE);
396 flush_out:
397 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
398 ret = f2fs_issue_flush(sbi, inode->i_ino);
399 if (!ret) {
400 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
401 clear_inode_flag(inode, FI_UPDATE_WRITE);
402 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
403 }
404 f2fs_update_time(sbi, REQ_TIME);
405 out:
406 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
407 return ret;
408 }
409
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)410 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
411 {
412 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
413 return -EIO;
414 return f2fs_do_sync_file(file, start, end, datasync, false);
415 }
416
__found_offset(struct address_space * mapping,struct dnode_of_data * dn,pgoff_t index,int whence)417 static bool __found_offset(struct address_space *mapping,
418 struct dnode_of_data *dn, pgoff_t index, int whence)
419 {
420 block_t blkaddr = f2fs_data_blkaddr(dn);
421 struct inode *inode = mapping->host;
422 bool compressed_cluster = false;
423
424 if (f2fs_compressed_file(inode)) {
425 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
426 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
427
428 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
429 }
430
431 switch (whence) {
432 case SEEK_DATA:
433 if (__is_valid_data_blkaddr(blkaddr))
434 return true;
435 if (blkaddr == NEW_ADDR &&
436 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
437 return true;
438 if (compressed_cluster)
439 return true;
440 break;
441 case SEEK_HOLE:
442 if (compressed_cluster)
443 return false;
444 if (blkaddr == NULL_ADDR)
445 return true;
446 break;
447 }
448 return false;
449 }
450
f2fs_seek_block(struct file * file,loff_t offset,int whence)451 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
452 {
453 struct inode *inode = file->f_mapping->host;
454 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
455 struct dnode_of_data dn;
456 pgoff_t pgofs, end_offset;
457 loff_t data_ofs = offset;
458 loff_t isize;
459 int err = 0;
460
461 inode_lock_shared(inode);
462
463 isize = i_size_read(inode);
464 if (offset >= isize)
465 goto fail;
466
467 /* handle inline data case */
468 if (f2fs_has_inline_data(inode)) {
469 if (whence == SEEK_HOLE) {
470 data_ofs = isize;
471 goto found;
472 } else if (whence == SEEK_DATA) {
473 data_ofs = offset;
474 goto found;
475 }
476 }
477
478 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
479
480 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
481 set_new_dnode(&dn, inode, NULL, NULL, 0);
482 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
483 if (err && err != -ENOENT) {
484 goto fail;
485 } else if (err == -ENOENT) {
486 /* direct node does not exists */
487 if (whence == SEEK_DATA) {
488 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
489 continue;
490 } else {
491 goto found;
492 }
493 }
494
495 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
496
497 /* find data/hole in dnode block */
498 for (; dn.ofs_in_node < end_offset;
499 dn.ofs_in_node++, pgofs++,
500 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
501 block_t blkaddr;
502
503 blkaddr = f2fs_data_blkaddr(&dn);
504
505 if (__is_valid_data_blkaddr(blkaddr) &&
506 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
507 blkaddr, DATA_GENERIC_ENHANCE)) {
508 f2fs_put_dnode(&dn);
509 goto fail;
510 }
511
512 if (__found_offset(file->f_mapping, &dn,
513 pgofs, whence)) {
514 f2fs_put_dnode(&dn);
515 goto found;
516 }
517 }
518 f2fs_put_dnode(&dn);
519 }
520
521 if (whence == SEEK_DATA)
522 goto fail;
523 found:
524 if (whence == SEEK_HOLE && data_ofs > isize)
525 data_ofs = isize;
526 inode_unlock_shared(inode);
527 return vfs_setpos(file, data_ofs, maxbytes);
528 fail:
529 inode_unlock_shared(inode);
530 return -ENXIO;
531 }
532
f2fs_llseek(struct file * file,loff_t offset,int whence)533 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
534 {
535 struct inode *inode = file->f_mapping->host;
536 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
537
538 switch (whence) {
539 case SEEK_SET:
540 case SEEK_CUR:
541 case SEEK_END:
542 return generic_file_llseek_size(file, offset, whence,
543 maxbytes, i_size_read(inode));
544 case SEEK_DATA:
545 case SEEK_HOLE:
546 if (offset < 0)
547 return -ENXIO;
548 return f2fs_seek_block(file, offset, whence);
549 }
550
551 return -EINVAL;
552 }
553
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)554 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
555 {
556 struct inode *inode = file_inode(file);
557
558 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
559 return -EIO;
560
561 if (!f2fs_is_compress_backend_ready(inode))
562 return -EOPNOTSUPP;
563
564 file_accessed(file);
565 vma->vm_ops = &f2fs_file_vm_ops;
566
567 f2fs_down_read(&F2FS_I(inode)->i_sem);
568 set_inode_flag(inode, FI_MMAP_FILE);
569 f2fs_up_read(&F2FS_I(inode)->i_sem);
570
571 return 0;
572 }
573
finish_preallocate_blocks(struct inode * inode)574 static int finish_preallocate_blocks(struct inode *inode)
575 {
576 int ret = 0;
577 bool opened;
578
579 f2fs_down_read(&F2FS_I(inode)->i_sem);
580 opened = is_inode_flag_set(inode, FI_OPENED_FILE);
581 f2fs_up_read(&F2FS_I(inode)->i_sem);
582 if (opened)
583 return 0;
584
585 inode_lock(inode);
586 if (is_inode_flag_set(inode, FI_OPENED_FILE))
587 goto out_unlock;
588
589 if (!file_should_truncate(inode))
590 goto out_update;
591
592 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
593 filemap_invalidate_lock(inode->i_mapping);
594
595 truncate_setsize(inode, i_size_read(inode));
596 ret = f2fs_truncate(inode);
597
598 filemap_invalidate_unlock(inode->i_mapping);
599 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
600 if (ret)
601 goto out_unlock;
602
603 file_dont_truncate(inode);
604 out_update:
605 f2fs_down_write(&F2FS_I(inode)->i_sem);
606 set_inode_flag(inode, FI_OPENED_FILE);
607 f2fs_up_write(&F2FS_I(inode)->i_sem);
608 out_unlock:
609 inode_unlock(inode);
610 return ret;
611 }
612
f2fs_file_open(struct inode * inode,struct file * filp)613 static int f2fs_file_open(struct inode *inode, struct file *filp)
614 {
615 int err = fscrypt_file_open(inode, filp);
616
617 if (err)
618 return err;
619
620 if (!f2fs_is_compress_backend_ready(inode))
621 return -EOPNOTSUPP;
622
623 err = fsverity_file_open(inode, filp);
624 if (err)
625 return err;
626
627 filp->f_mode |= FMODE_NOWAIT;
628 filp->f_mode |= FMODE_CAN_ODIRECT;
629
630 trace_android_vh_f2fs_file_open(inode, filp);
631
632 err = dquot_file_open(inode, filp);
633 if (err)
634 return err;
635
636 err = finish_preallocate_blocks(inode);
637 if (!err)
638 atomic_inc(&F2FS_I(inode)->open_count);
639 return err;
640 }
641
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)642 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
643 {
644 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
645 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
646 __le32 *addr;
647 bool compressed_cluster = false;
648 int cluster_index = 0, valid_blocks = 0;
649 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
650 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
651 block_t blkstart;
652 int blklen = 0;
653
654 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
655 blkstart = le32_to_cpu(*addr);
656
657 /* Assumption: truncation starts with cluster */
658 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
659 block_t blkaddr = le32_to_cpu(*addr);
660
661 if (f2fs_compressed_file(dn->inode) &&
662 !(cluster_index & (cluster_size - 1))) {
663 if (compressed_cluster)
664 f2fs_i_compr_blocks_update(dn->inode,
665 valid_blocks, false);
666 compressed_cluster = (blkaddr == COMPRESS_ADDR);
667 valid_blocks = 0;
668 }
669
670 if (blkaddr == NULL_ADDR)
671 goto next;
672
673 f2fs_set_data_blkaddr(dn, NULL_ADDR);
674
675 if (__is_valid_data_blkaddr(blkaddr)) {
676 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
677 goto next;
678 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
679 DATA_GENERIC_ENHANCE))
680 goto next;
681 if (compressed_cluster)
682 valid_blocks++;
683 }
684
685 if (blkstart + blklen == blkaddr) {
686 blklen++;
687 } else {
688 f2fs_invalidate_blocks(sbi, blkstart, blklen);
689 blkstart = blkaddr;
690 blklen = 1;
691 }
692
693 if (!released || blkaddr != COMPRESS_ADDR)
694 nr_free++;
695
696 continue;
697
698 next:
699 if (blklen)
700 f2fs_invalidate_blocks(sbi, blkstart, blklen);
701
702 blkstart = le32_to_cpu(*(addr + 1));
703 blklen = 0;
704 }
705
706 if (blklen)
707 f2fs_invalidate_blocks(sbi, blkstart, blklen);
708
709 if (compressed_cluster)
710 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
711
712 if (nr_free) {
713 pgoff_t fofs;
714 /*
715 * once we invalidate valid blkaddr in range [ofs, ofs + count],
716 * we will invalidate all blkaddr in the whole range.
717 */
718 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
719 dn->inode) + ofs;
720 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
721 f2fs_update_age_extent_cache_range(dn, fofs, len);
722 dec_valid_block_count(sbi, dn->inode, nr_free);
723 }
724 dn->ofs_in_node = ofs;
725
726 f2fs_update_time(sbi, REQ_TIME);
727 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
728 dn->ofs_in_node, nr_free);
729 }
730
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)731 static int truncate_partial_data_page(struct inode *inode, u64 from,
732 bool cache_only)
733 {
734 loff_t offset = from & (PAGE_SIZE - 1);
735 pgoff_t index = from >> PAGE_SHIFT;
736 struct address_space *mapping = inode->i_mapping;
737 struct folio *folio;
738
739 if (!offset && !cache_only)
740 return 0;
741
742 if (cache_only) {
743 folio = filemap_lock_folio(mapping, index);
744 if (IS_ERR(folio))
745 return 0;
746 if (folio_test_uptodate(folio))
747 goto truncate_out;
748 f2fs_folio_put(folio, true);
749 return 0;
750 }
751
752 folio = f2fs_get_lock_data_folio(inode, index, true);
753 if (IS_ERR(folio))
754 return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio);
755 truncate_out:
756 f2fs_folio_wait_writeback(folio, DATA, true, true);
757 folio_zero_segment(folio, offset, folio_size(folio));
758
759 /* An encrypted inode should have a key and truncate the last page. */
760 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
761 if (!cache_only)
762 folio_mark_dirty(folio);
763 f2fs_folio_put(folio, true);
764 return 0;
765 }
766
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)767 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
768 {
769 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
770 struct dnode_of_data dn;
771 pgoff_t free_from;
772 int count = 0, err = 0;
773 struct page *ipage;
774 bool truncate_page = false;
775
776 trace_f2fs_truncate_blocks_enter(inode, from);
777
778 if (IS_DEVICE_ALIASING(inode) && from) {
779 err = -EINVAL;
780 goto out_err;
781 }
782
783 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
784
785 if (free_from >= max_file_blocks(inode))
786 goto free_partial;
787
788 if (lock)
789 f2fs_lock_op(sbi);
790
791 ipage = f2fs_get_inode_page(sbi, inode->i_ino);
792 if (IS_ERR(ipage)) {
793 err = PTR_ERR(ipage);
794 goto out;
795 }
796
797 if (IS_DEVICE_ALIASING(inode)) {
798 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
799 struct extent_info ei = et->largest;
800
801 f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
802
803 dec_valid_block_count(sbi, inode, ei.len);
804 f2fs_update_time(sbi, REQ_TIME);
805
806 f2fs_put_page(ipage, 1);
807 goto out;
808 }
809
810 if (f2fs_has_inline_data(inode)) {
811 f2fs_truncate_inline_inode(inode, ipage, from);
812 f2fs_put_page(ipage, 1);
813 truncate_page = true;
814 goto out;
815 }
816
817 set_new_dnode(&dn, inode, ipage, NULL, 0);
818 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
819 if (err) {
820 if (err == -ENOENT)
821 goto free_next;
822 goto out;
823 }
824
825 count = ADDRS_PER_PAGE(dn.node_page, inode);
826
827 count -= dn.ofs_in_node;
828 f2fs_bug_on(sbi, count < 0);
829
830 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
831 f2fs_truncate_data_blocks_range(&dn, count);
832 free_from += count;
833 }
834
835 f2fs_put_dnode(&dn);
836 free_next:
837 err = f2fs_truncate_inode_blocks(inode, free_from);
838 out:
839 if (lock)
840 f2fs_unlock_op(sbi);
841 free_partial:
842 /* lastly zero out the first data page */
843 if (!err)
844 err = truncate_partial_data_page(inode, from, truncate_page);
845 out_err:
846 trace_f2fs_truncate_blocks_exit(inode, err);
847 return err;
848 }
849
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)850 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
851 {
852 u64 free_from = from;
853 int err;
854
855 #ifdef CONFIG_F2FS_FS_COMPRESSION
856 /*
857 * for compressed file, only support cluster size
858 * aligned truncation.
859 */
860 if (f2fs_compressed_file(inode))
861 free_from = round_up(from,
862 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
863 #endif
864
865 err = f2fs_do_truncate_blocks(inode, free_from, lock);
866 if (err)
867 return err;
868
869 #ifdef CONFIG_F2FS_FS_COMPRESSION
870 /*
871 * For compressed file, after release compress blocks, don't allow write
872 * direct, but we should allow write direct after truncate to zero.
873 */
874 if (f2fs_compressed_file(inode) && !free_from
875 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
876 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
877
878 if (from != free_from) {
879 err = f2fs_truncate_partial_cluster(inode, from, lock);
880 if (err)
881 return err;
882 }
883 #endif
884
885 return 0;
886 }
887
f2fs_truncate(struct inode * inode)888 int f2fs_truncate(struct inode *inode)
889 {
890 int err;
891
892 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
893 return -EIO;
894
895 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
896 S_ISLNK(inode->i_mode)))
897 return 0;
898
899 trace_f2fs_truncate(inode);
900
901 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
902 return -EIO;
903
904 err = f2fs_dquot_initialize(inode);
905 if (err)
906 return err;
907
908 /* we should check inline_data size */
909 if (!f2fs_may_inline_data(inode)) {
910 err = f2fs_convert_inline_inode(inode);
911 if (err)
912 return err;
913 }
914
915 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
916 if (err)
917 return err;
918
919 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
920 f2fs_mark_inode_dirty_sync(inode, false);
921 return 0;
922 }
923
f2fs_force_buffered_io(struct inode * inode,int rw)924 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
925 {
926 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
927
928 if (!fscrypt_dio_supported(inode))
929 return true;
930 if (fsverity_active(inode))
931 return true;
932 if (f2fs_compressed_file(inode))
933 return true;
934 /*
935 * only force direct read to use buffered IO, for direct write,
936 * it expects inline data conversion before committing IO.
937 */
938 if (f2fs_has_inline_data(inode) && rw == READ)
939 return true;
940
941 /* disallow direct IO if any of devices has unaligned blksize */
942 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
943 return true;
944 /*
945 * for blkzoned device, fallback direct IO to buffered IO, so
946 * all IOs can be serialized by log-structured write.
947 */
948 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
949 !f2fs_is_pinned_file(inode))
950 return true;
951 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
952 return true;
953
954 return false;
955 }
956
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)957 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
958 struct kstat *stat, u32 request_mask, unsigned int query_flags)
959 {
960 struct inode *inode = d_inode(path->dentry);
961 struct f2fs_inode_info *fi = F2FS_I(inode);
962 struct f2fs_inode *ri = NULL;
963 unsigned int flags;
964
965 if (f2fs_has_extra_attr(inode) &&
966 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
967 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
968 stat->result_mask |= STATX_BTIME;
969 stat->btime.tv_sec = fi->i_crtime.tv_sec;
970 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
971 }
972
973 /*
974 * Return the DIO alignment restrictions if requested. We only return
975 * this information when requested, since on encrypted files it might
976 * take a fair bit of work to get if the file wasn't opened recently.
977 *
978 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
979 * cannot represent that, so in that case we report no DIO support.
980 */
981 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
982 unsigned int bsize = i_blocksize(inode);
983
984 stat->result_mask |= STATX_DIOALIGN;
985 if (!f2fs_force_buffered_io(inode, WRITE)) {
986 stat->dio_mem_align = bsize;
987 stat->dio_offset_align = bsize;
988 }
989 }
990
991 flags = fi->i_flags;
992 if (flags & F2FS_COMPR_FL)
993 stat->attributes |= STATX_ATTR_COMPRESSED;
994 if (flags & F2FS_APPEND_FL)
995 stat->attributes |= STATX_ATTR_APPEND;
996 if (IS_ENCRYPTED(inode))
997 stat->attributes |= STATX_ATTR_ENCRYPTED;
998 if (flags & F2FS_IMMUTABLE_FL)
999 stat->attributes |= STATX_ATTR_IMMUTABLE;
1000 if (flags & F2FS_NODUMP_FL)
1001 stat->attributes |= STATX_ATTR_NODUMP;
1002 if (IS_VERITY(inode))
1003 stat->attributes |= STATX_ATTR_VERITY;
1004
1005 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
1006 STATX_ATTR_APPEND |
1007 STATX_ATTR_ENCRYPTED |
1008 STATX_ATTR_IMMUTABLE |
1009 STATX_ATTR_NODUMP |
1010 STATX_ATTR_VERITY);
1011
1012 generic_fillattr(idmap, request_mask, inode, stat);
1013
1014 /* we need to show initial sectors used for inline_data/dentries */
1015 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
1016 f2fs_has_inline_dentry(inode))
1017 stat->blocks += (stat->size + 511) >> 9;
1018
1019 return 0;
1020 }
1021
1022 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)1023 static void __setattr_copy(struct mnt_idmap *idmap,
1024 struct inode *inode, const struct iattr *attr)
1025 {
1026 unsigned int ia_valid = attr->ia_valid;
1027
1028 i_uid_update(idmap, attr, inode);
1029 i_gid_update(idmap, attr, inode);
1030 if (ia_valid & ATTR_ATIME)
1031 inode_set_atime_to_ts(inode, attr->ia_atime);
1032 if (ia_valid & ATTR_MTIME)
1033 inode_set_mtime_to_ts(inode, attr->ia_mtime);
1034 if (ia_valid & ATTR_CTIME)
1035 inode_set_ctime_to_ts(inode, attr->ia_ctime);
1036 if (ia_valid & ATTR_MODE) {
1037 umode_t mode = attr->ia_mode;
1038
1039 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1040 mode &= ~S_ISGID;
1041 set_acl_inode(inode, mode);
1042 }
1043 }
1044 #else
1045 #define __setattr_copy setattr_copy
1046 #endif
1047
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1048 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1049 struct iattr *attr)
1050 {
1051 struct inode *inode = d_inode(dentry);
1052 struct f2fs_inode_info *fi = F2FS_I(inode);
1053 int err;
1054
1055 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1056 return -EIO;
1057
1058 err = setattr_prepare(idmap, dentry, attr);
1059 if (err)
1060 return err;
1061
1062 err = fscrypt_prepare_setattr(dentry, attr);
1063 if (err)
1064 return err;
1065
1066 err = fsverity_prepare_setattr(dentry, attr);
1067 if (err)
1068 return err;
1069
1070 if (unlikely(IS_IMMUTABLE(inode)))
1071 return -EPERM;
1072
1073 if (unlikely(IS_APPEND(inode) &&
1074 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
1075 ATTR_GID | ATTR_TIMES_SET))))
1076 return -EPERM;
1077
1078 if ((attr->ia_valid & ATTR_SIZE)) {
1079 if (!f2fs_is_compress_backend_ready(inode) ||
1080 IS_DEVICE_ALIASING(inode))
1081 return -EOPNOTSUPP;
1082 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1083 !IS_ALIGNED(attr->ia_size,
1084 F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1085 return -EINVAL;
1086 }
1087
1088 if (is_quota_modification(idmap, inode, attr)) {
1089 err = f2fs_dquot_initialize(inode);
1090 if (err)
1091 return err;
1092 }
1093 if (i_uid_needs_update(idmap, attr, inode) ||
1094 i_gid_needs_update(idmap, attr, inode)) {
1095 f2fs_lock_op(F2FS_I_SB(inode));
1096 err = dquot_transfer(idmap, inode, attr);
1097 if (err) {
1098 set_sbi_flag(F2FS_I_SB(inode),
1099 SBI_QUOTA_NEED_REPAIR);
1100 f2fs_unlock_op(F2FS_I_SB(inode));
1101 return err;
1102 }
1103 /*
1104 * update uid/gid under lock_op(), so that dquot and inode can
1105 * be updated atomically.
1106 */
1107 i_uid_update(idmap, attr, inode);
1108 i_gid_update(idmap, attr, inode);
1109 f2fs_mark_inode_dirty_sync(inode, true);
1110 f2fs_unlock_op(F2FS_I_SB(inode));
1111 }
1112
1113 if (attr->ia_valid & ATTR_SIZE) {
1114 loff_t old_size = i_size_read(inode);
1115
1116 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1117 /*
1118 * should convert inline inode before i_size_write to
1119 * keep smaller than inline_data size with inline flag.
1120 */
1121 err = f2fs_convert_inline_inode(inode);
1122 if (err)
1123 return err;
1124 }
1125
1126 /*
1127 * wait for inflight dio, blocks should be removed after
1128 * IO completion.
1129 */
1130 if (attr->ia_size < old_size)
1131 inode_dio_wait(inode);
1132
1133 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1134 filemap_invalidate_lock(inode->i_mapping);
1135
1136 if (attr->ia_size > old_size)
1137 f2fs_zero_post_eof_page(inode, attr->ia_size);
1138 truncate_setsize(inode, attr->ia_size);
1139
1140 if (attr->ia_size <= old_size)
1141 err = f2fs_truncate(inode);
1142 /*
1143 * do not trim all blocks after i_size if target size is
1144 * larger than i_size.
1145 */
1146 filemap_invalidate_unlock(inode->i_mapping);
1147 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1148 if (err)
1149 return err;
1150
1151 spin_lock(&fi->i_size_lock);
1152 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1153 fi->last_disk_size = i_size_read(inode);
1154 spin_unlock(&fi->i_size_lock);
1155 }
1156
1157 __setattr_copy(idmap, inode, attr);
1158
1159 if (attr->ia_valid & ATTR_MODE) {
1160 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1161
1162 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1163 if (!err)
1164 inode->i_mode = fi->i_acl_mode;
1165 clear_inode_flag(inode, FI_ACL_MODE);
1166 }
1167 }
1168
1169 /* file size may changed here */
1170 f2fs_mark_inode_dirty_sync(inode, true);
1171
1172 /* inode change will produce dirty node pages flushed by checkpoint */
1173 f2fs_balance_fs(F2FS_I_SB(inode), true);
1174
1175 return err;
1176 }
1177
1178 const struct inode_operations f2fs_file_inode_operations = {
1179 .getattr = f2fs_getattr,
1180 .setattr = f2fs_setattr,
1181 .get_inode_acl = f2fs_get_acl,
1182 .set_acl = f2fs_set_acl,
1183 .listxattr = f2fs_listxattr,
1184 .fiemap = f2fs_fiemap,
1185 .fileattr_get = f2fs_fileattr_get,
1186 .fileattr_set = f2fs_fileattr_set,
1187 };
1188
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1189 static int fill_zero(struct inode *inode, pgoff_t index,
1190 loff_t start, loff_t len)
1191 {
1192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1193 struct page *page;
1194
1195 if (!len)
1196 return 0;
1197
1198 f2fs_balance_fs(sbi, true);
1199
1200 f2fs_lock_op(sbi);
1201 page = f2fs_get_new_data_page(inode, NULL, index, false);
1202 f2fs_unlock_op(sbi);
1203
1204 if (IS_ERR(page))
1205 return PTR_ERR(page);
1206
1207 f2fs_wait_on_page_writeback(page, DATA, true, true);
1208 zero_user(page, start, len);
1209 set_page_dirty(page);
1210 f2fs_put_page(page, 1);
1211 return 0;
1212 }
1213
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1214 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1215 {
1216 int err;
1217
1218 while (pg_start < pg_end) {
1219 struct dnode_of_data dn;
1220 pgoff_t end_offset, count;
1221
1222 set_new_dnode(&dn, inode, NULL, NULL, 0);
1223 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1224 if (err) {
1225 if (err == -ENOENT) {
1226 pg_start = f2fs_get_next_page_offset(&dn,
1227 pg_start);
1228 continue;
1229 }
1230 return err;
1231 }
1232
1233 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1234 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1235
1236 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1237
1238 f2fs_truncate_data_blocks_range(&dn, count);
1239 f2fs_put_dnode(&dn);
1240
1241 pg_start += count;
1242 }
1243 return 0;
1244 }
1245
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1246 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1247 {
1248 pgoff_t pg_start, pg_end;
1249 loff_t off_start, off_end;
1250 int ret;
1251
1252 ret = f2fs_convert_inline_inode(inode);
1253 if (ret)
1254 return ret;
1255
1256 filemap_invalidate_lock(inode->i_mapping);
1257 f2fs_zero_post_eof_page(inode, offset + len);
1258 filemap_invalidate_unlock(inode->i_mapping);
1259
1260 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1261 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1262
1263 off_start = offset & (PAGE_SIZE - 1);
1264 off_end = (offset + len) & (PAGE_SIZE - 1);
1265
1266 if (pg_start == pg_end) {
1267 ret = fill_zero(inode, pg_start, off_start,
1268 off_end - off_start);
1269 if (ret)
1270 return ret;
1271 } else {
1272 if (off_start) {
1273 ret = fill_zero(inode, pg_start++, off_start,
1274 PAGE_SIZE - off_start);
1275 if (ret)
1276 return ret;
1277 }
1278 if (off_end) {
1279 ret = fill_zero(inode, pg_end, 0, off_end);
1280 if (ret)
1281 return ret;
1282 }
1283
1284 if (pg_start < pg_end) {
1285 loff_t blk_start, blk_end;
1286 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1287
1288 f2fs_balance_fs(sbi, true);
1289
1290 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1291 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1292
1293 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1294 filemap_invalidate_lock(inode->i_mapping);
1295
1296 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1297
1298 f2fs_lock_op(sbi);
1299 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1300 f2fs_unlock_op(sbi);
1301
1302 filemap_invalidate_unlock(inode->i_mapping);
1303 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1304 }
1305 }
1306
1307 return ret;
1308 }
1309
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1310 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1311 int *do_replace, pgoff_t off, pgoff_t len)
1312 {
1313 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1314 struct dnode_of_data dn;
1315 int ret, done, i;
1316
1317 next_dnode:
1318 set_new_dnode(&dn, inode, NULL, NULL, 0);
1319 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1320 if (ret && ret != -ENOENT) {
1321 return ret;
1322 } else if (ret == -ENOENT) {
1323 if (dn.max_level == 0)
1324 return -ENOENT;
1325 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1326 dn.ofs_in_node, len);
1327 blkaddr += done;
1328 do_replace += done;
1329 goto next;
1330 }
1331
1332 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1333 dn.ofs_in_node, len);
1334 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1335 *blkaddr = f2fs_data_blkaddr(&dn);
1336
1337 if (__is_valid_data_blkaddr(*blkaddr) &&
1338 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1339 DATA_GENERIC_ENHANCE)) {
1340 f2fs_put_dnode(&dn);
1341 return -EFSCORRUPTED;
1342 }
1343
1344 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1345
1346 if (f2fs_lfs_mode(sbi)) {
1347 f2fs_put_dnode(&dn);
1348 return -EOPNOTSUPP;
1349 }
1350
1351 /* do not invalidate this block address */
1352 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1353 *do_replace = 1;
1354 }
1355 }
1356 f2fs_put_dnode(&dn);
1357 next:
1358 len -= done;
1359 off += done;
1360 if (len)
1361 goto next_dnode;
1362 return 0;
1363 }
1364
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1365 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1366 int *do_replace, pgoff_t off, int len)
1367 {
1368 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1369 struct dnode_of_data dn;
1370 int ret, i;
1371
1372 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1373 if (*do_replace == 0)
1374 continue;
1375
1376 set_new_dnode(&dn, inode, NULL, NULL, 0);
1377 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1378 if (ret) {
1379 dec_valid_block_count(sbi, inode, 1);
1380 f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1381 } else {
1382 f2fs_update_data_blkaddr(&dn, *blkaddr);
1383 }
1384 f2fs_put_dnode(&dn);
1385 }
1386 return 0;
1387 }
1388
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1389 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1390 block_t *blkaddr, int *do_replace,
1391 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1392 {
1393 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1394 pgoff_t i = 0;
1395 int ret;
1396
1397 while (i < len) {
1398 if (blkaddr[i] == NULL_ADDR && !full) {
1399 i++;
1400 continue;
1401 }
1402
1403 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1404 struct dnode_of_data dn;
1405 struct node_info ni;
1406 size_t new_size;
1407 pgoff_t ilen;
1408
1409 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1410 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1411 if (ret)
1412 return ret;
1413
1414 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1415 if (ret) {
1416 f2fs_put_dnode(&dn);
1417 return ret;
1418 }
1419
1420 ilen = min((pgoff_t)
1421 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1422 dn.ofs_in_node, len - i);
1423 do {
1424 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1425 f2fs_truncate_data_blocks_range(&dn, 1);
1426
1427 if (do_replace[i]) {
1428 f2fs_i_blocks_write(src_inode,
1429 1, false, false);
1430 f2fs_i_blocks_write(dst_inode,
1431 1, true, false);
1432 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1433 blkaddr[i], ni.version, true, false);
1434
1435 do_replace[i] = 0;
1436 }
1437 dn.ofs_in_node++;
1438 i++;
1439 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1440 if (dst_inode->i_size < new_size)
1441 f2fs_i_size_write(dst_inode, new_size);
1442 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1443
1444 f2fs_put_dnode(&dn);
1445 } else {
1446 struct page *psrc, *pdst;
1447
1448 psrc = f2fs_get_lock_data_page(src_inode,
1449 src + i, true);
1450 if (IS_ERR(psrc))
1451 return PTR_ERR(psrc);
1452 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1453 true);
1454 if (IS_ERR(pdst)) {
1455 f2fs_put_page(psrc, 1);
1456 return PTR_ERR(pdst);
1457 }
1458
1459 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1460
1461 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1462 set_page_dirty(pdst);
1463 set_page_private_gcing(pdst);
1464 f2fs_put_page(pdst, 1);
1465 f2fs_put_page(psrc, 1);
1466
1467 ret = f2fs_truncate_hole(src_inode,
1468 src + i, src + i + 1);
1469 if (ret)
1470 return ret;
1471 i++;
1472 }
1473 }
1474 return 0;
1475 }
1476
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1477 static int __exchange_data_block(struct inode *src_inode,
1478 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1479 pgoff_t len, bool full)
1480 {
1481 block_t *src_blkaddr;
1482 int *do_replace;
1483 pgoff_t olen;
1484 int ret;
1485
1486 while (len) {
1487 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1488
1489 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1490 array_size(olen, sizeof(block_t)),
1491 GFP_NOFS);
1492 if (!src_blkaddr)
1493 return -ENOMEM;
1494
1495 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1496 array_size(olen, sizeof(int)),
1497 GFP_NOFS);
1498 if (!do_replace) {
1499 kvfree(src_blkaddr);
1500 return -ENOMEM;
1501 }
1502
1503 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1504 do_replace, src, olen);
1505 if (ret)
1506 goto roll_back;
1507
1508 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1509 do_replace, src, dst, olen, full);
1510 if (ret)
1511 goto roll_back;
1512
1513 src += olen;
1514 dst += olen;
1515 len -= olen;
1516
1517 kvfree(src_blkaddr);
1518 kvfree(do_replace);
1519 }
1520 return 0;
1521
1522 roll_back:
1523 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1524 kvfree(src_blkaddr);
1525 kvfree(do_replace);
1526 return ret;
1527 }
1528
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1529 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1530 {
1531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1532 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1533 pgoff_t start = offset >> PAGE_SHIFT;
1534 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1535 int ret;
1536
1537 f2fs_balance_fs(sbi, true);
1538
1539 /* avoid gc operation during block exchange */
1540 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1541 filemap_invalidate_lock(inode->i_mapping);
1542
1543 f2fs_zero_post_eof_page(inode, offset + len);
1544
1545 f2fs_lock_op(sbi);
1546 f2fs_drop_extent_tree(inode);
1547 truncate_pagecache(inode, offset);
1548 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1549 f2fs_unlock_op(sbi);
1550
1551 filemap_invalidate_unlock(inode->i_mapping);
1552 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1553 return ret;
1554 }
1555
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1556 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1557 {
1558 loff_t new_size;
1559 int ret;
1560
1561 if (offset + len >= i_size_read(inode))
1562 return -EINVAL;
1563
1564 /* collapse range should be aligned to block size of f2fs. */
1565 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1566 return -EINVAL;
1567
1568 ret = f2fs_convert_inline_inode(inode);
1569 if (ret)
1570 return ret;
1571
1572 /* write out all dirty pages from offset */
1573 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1574 if (ret)
1575 return ret;
1576
1577 ret = f2fs_do_collapse(inode, offset, len);
1578 if (ret)
1579 return ret;
1580
1581 /* write out all moved pages, if possible */
1582 filemap_invalidate_lock(inode->i_mapping);
1583 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1584 truncate_pagecache(inode, offset);
1585
1586 new_size = i_size_read(inode) - len;
1587 ret = f2fs_truncate_blocks(inode, new_size, true);
1588 filemap_invalidate_unlock(inode->i_mapping);
1589 if (!ret)
1590 f2fs_i_size_write(inode, new_size);
1591 return ret;
1592 }
1593
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1594 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1595 pgoff_t end)
1596 {
1597 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1598 pgoff_t index = start;
1599 unsigned int ofs_in_node = dn->ofs_in_node;
1600 blkcnt_t count = 0;
1601 int ret;
1602
1603 for (; index < end; index++, dn->ofs_in_node++) {
1604 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1605 count++;
1606 }
1607
1608 dn->ofs_in_node = ofs_in_node;
1609 ret = f2fs_reserve_new_blocks(dn, count);
1610 if (ret)
1611 return ret;
1612
1613 dn->ofs_in_node = ofs_in_node;
1614 for (index = start; index < end; index++, dn->ofs_in_node++) {
1615 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1616 /*
1617 * f2fs_reserve_new_blocks will not guarantee entire block
1618 * allocation.
1619 */
1620 if (dn->data_blkaddr == NULL_ADDR) {
1621 ret = -ENOSPC;
1622 break;
1623 }
1624
1625 if (dn->data_blkaddr == NEW_ADDR)
1626 continue;
1627
1628 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1629 DATA_GENERIC_ENHANCE)) {
1630 ret = -EFSCORRUPTED;
1631 break;
1632 }
1633
1634 f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1635 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1636 }
1637
1638 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1639 f2fs_update_age_extent_cache_range(dn, start, index - start);
1640
1641 return ret;
1642 }
1643
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1644 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1645 int mode)
1646 {
1647 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1648 struct address_space *mapping = inode->i_mapping;
1649 pgoff_t index, pg_start, pg_end;
1650 loff_t new_size = i_size_read(inode);
1651 loff_t off_start, off_end;
1652 int ret = 0;
1653
1654 ret = inode_newsize_ok(inode, (len + offset));
1655 if (ret)
1656 return ret;
1657
1658 ret = f2fs_convert_inline_inode(inode);
1659 if (ret)
1660 return ret;
1661
1662 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1663 if (ret)
1664 return ret;
1665
1666 filemap_invalidate_lock(mapping);
1667 f2fs_zero_post_eof_page(inode, offset + len);
1668 filemap_invalidate_unlock(mapping);
1669
1670 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1671 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1672
1673 off_start = offset & (PAGE_SIZE - 1);
1674 off_end = (offset + len) & (PAGE_SIZE - 1);
1675
1676 if (pg_start == pg_end) {
1677 ret = fill_zero(inode, pg_start, off_start,
1678 off_end - off_start);
1679 if (ret)
1680 return ret;
1681
1682 new_size = max_t(loff_t, new_size, offset + len);
1683 } else {
1684 if (off_start) {
1685 ret = fill_zero(inode, pg_start++, off_start,
1686 PAGE_SIZE - off_start);
1687 if (ret)
1688 return ret;
1689
1690 new_size = max_t(loff_t, new_size,
1691 (loff_t)pg_start << PAGE_SHIFT);
1692 }
1693
1694 for (index = pg_start; index < pg_end;) {
1695 struct dnode_of_data dn;
1696 unsigned int end_offset;
1697 pgoff_t end;
1698
1699 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1700 filemap_invalidate_lock(mapping);
1701
1702 truncate_pagecache_range(inode,
1703 (loff_t)index << PAGE_SHIFT,
1704 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1705
1706 f2fs_lock_op(sbi);
1707
1708 set_new_dnode(&dn, inode, NULL, NULL, 0);
1709 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1710 if (ret) {
1711 f2fs_unlock_op(sbi);
1712 filemap_invalidate_unlock(mapping);
1713 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1714 goto out;
1715 }
1716
1717 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1718 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1719
1720 ret = f2fs_do_zero_range(&dn, index, end);
1721 f2fs_put_dnode(&dn);
1722
1723 f2fs_unlock_op(sbi);
1724 filemap_invalidate_unlock(mapping);
1725 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1726
1727 f2fs_balance_fs(sbi, dn.node_changed);
1728
1729 if (ret)
1730 goto out;
1731
1732 index = end;
1733 new_size = max_t(loff_t, new_size,
1734 (loff_t)index << PAGE_SHIFT);
1735 }
1736
1737 if (off_end) {
1738 ret = fill_zero(inode, pg_end, 0, off_end);
1739 if (ret)
1740 goto out;
1741
1742 new_size = max_t(loff_t, new_size, offset + len);
1743 }
1744 }
1745
1746 out:
1747 if (new_size > i_size_read(inode)) {
1748 if (mode & FALLOC_FL_KEEP_SIZE)
1749 file_set_keep_isize(inode);
1750 else
1751 f2fs_i_size_write(inode, new_size);
1752 }
1753 return ret;
1754 }
1755
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1756 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1757 {
1758 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1759 struct address_space *mapping = inode->i_mapping;
1760 pgoff_t nr, pg_start, pg_end, delta, idx;
1761 loff_t new_size;
1762 int ret = 0;
1763
1764 new_size = i_size_read(inode) + len;
1765 ret = inode_newsize_ok(inode, new_size);
1766 if (ret)
1767 return ret;
1768
1769 if (offset >= i_size_read(inode))
1770 return -EINVAL;
1771
1772 /* insert range should be aligned to block size of f2fs. */
1773 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1774 return -EINVAL;
1775
1776 ret = f2fs_convert_inline_inode(inode);
1777 if (ret)
1778 return ret;
1779
1780 f2fs_balance_fs(sbi, true);
1781
1782 filemap_invalidate_lock(mapping);
1783 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1784 filemap_invalidate_unlock(mapping);
1785 if (ret)
1786 return ret;
1787
1788 /* write out all dirty pages from offset */
1789 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1790 if (ret)
1791 return ret;
1792
1793 pg_start = offset >> PAGE_SHIFT;
1794 pg_end = (offset + len) >> PAGE_SHIFT;
1795 delta = pg_end - pg_start;
1796 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1797
1798 /* avoid gc operation during block exchange */
1799 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1800 filemap_invalidate_lock(mapping);
1801
1802 f2fs_zero_post_eof_page(inode, offset + len);
1803 truncate_pagecache(inode, offset);
1804
1805 while (!ret && idx > pg_start) {
1806 nr = idx - pg_start;
1807 if (nr > delta)
1808 nr = delta;
1809 idx -= nr;
1810
1811 f2fs_lock_op(sbi);
1812 f2fs_drop_extent_tree(inode);
1813
1814 ret = __exchange_data_block(inode, inode, idx,
1815 idx + delta, nr, false);
1816 f2fs_unlock_op(sbi);
1817 }
1818 filemap_invalidate_unlock(mapping);
1819 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1820 if (ret)
1821 return ret;
1822
1823 /* write out all moved pages, if possible */
1824 filemap_invalidate_lock(mapping);
1825 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1826 truncate_pagecache(inode, offset);
1827 filemap_invalidate_unlock(mapping);
1828
1829 if (!ret)
1830 f2fs_i_size_write(inode, new_size);
1831 return ret;
1832 }
1833
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1834 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1835 loff_t len, int mode)
1836 {
1837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1839 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1840 .m_may_create = true };
1841 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1842 .init_gc_type = FG_GC,
1843 .should_migrate_blocks = false,
1844 .err_gc_skipped = true,
1845 .nr_free_secs = 0 };
1846 pgoff_t pg_start, pg_end;
1847 loff_t new_size;
1848 loff_t off_end;
1849 block_t expanded = 0;
1850 int err;
1851
1852 err = inode_newsize_ok(inode, (len + offset));
1853 if (err)
1854 return err;
1855
1856 err = f2fs_convert_inline_inode(inode);
1857 if (err)
1858 return err;
1859
1860 filemap_invalidate_lock(inode->i_mapping);
1861 f2fs_zero_post_eof_page(inode, offset + len);
1862 filemap_invalidate_unlock(inode->i_mapping);
1863
1864 f2fs_balance_fs(sbi, true);
1865
1866 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1867 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1868 off_end = (offset + len) & (PAGE_SIZE - 1);
1869
1870 map.m_lblk = pg_start;
1871 map.m_len = pg_end - pg_start;
1872 if (off_end)
1873 map.m_len++;
1874
1875 if (!map.m_len)
1876 return 0;
1877
1878 if (f2fs_is_pinned_file(inode)) {
1879 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1880 block_t sec_len = roundup(map.m_len, sec_blks);
1881
1882 map.m_len = sec_blks;
1883 next_alloc:
1884 f2fs_down_write(&sbi->pin_sem);
1885
1886 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1887 if (has_not_enough_free_secs(sbi, 0, 0)) {
1888 f2fs_up_write(&sbi->pin_sem);
1889 err = -ENOSPC;
1890 f2fs_warn_ratelimited(sbi,
1891 "ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1892 "reclaim enough free segment when checkpoint is enabled",
1893 inode->i_ino, pg_start, pg_end);
1894 goto out_err;
1895 }
1896 }
1897
1898 if (has_not_enough_free_secs(sbi, 0,
1899 sbi->reserved_pin_section)) {
1900 f2fs_down_write(&sbi->gc_lock);
1901 stat_inc_gc_call_count(sbi, FOREGROUND);
1902 err = f2fs_gc(sbi, &gc_control);
1903 if (err && err != -ENODATA) {
1904 f2fs_up_write(&sbi->pin_sem);
1905 goto out_err;
1906 }
1907 }
1908
1909 err = f2fs_allocate_pinning_section(sbi);
1910 if (err) {
1911 f2fs_up_write(&sbi->pin_sem);
1912 goto out_err;
1913 }
1914
1915 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1916 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1917 file_dont_truncate(inode);
1918
1919 f2fs_up_write(&sbi->pin_sem);
1920
1921 expanded += map.m_len;
1922 sec_len -= map.m_len;
1923 map.m_lblk += map.m_len;
1924 if (!err && sec_len)
1925 goto next_alloc;
1926
1927 map.m_len = expanded;
1928 } else {
1929 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1930 expanded = map.m_len;
1931 }
1932 out_err:
1933 if (err) {
1934 pgoff_t last_off;
1935
1936 if (!expanded)
1937 return err;
1938
1939 last_off = pg_start + expanded - 1;
1940
1941 /* update new size to the failed position */
1942 new_size = (last_off == pg_end) ? offset + len :
1943 (loff_t)(last_off + 1) << PAGE_SHIFT;
1944 } else {
1945 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1946 }
1947
1948 if (new_size > i_size_read(inode)) {
1949 if (mode & FALLOC_FL_KEEP_SIZE)
1950 file_set_keep_isize(inode);
1951 else
1952 f2fs_i_size_write(inode, new_size);
1953 }
1954
1955 return err;
1956 }
1957
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1958 static long f2fs_fallocate(struct file *file, int mode,
1959 loff_t offset, loff_t len)
1960 {
1961 struct inode *inode = file_inode(file);
1962 long ret = 0;
1963
1964 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1965 return -EIO;
1966 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1967 return -ENOSPC;
1968 if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1969 return -EOPNOTSUPP;
1970
1971 /* f2fs only support ->fallocate for regular file */
1972 if (!S_ISREG(inode->i_mode))
1973 return -EINVAL;
1974
1975 if (IS_ENCRYPTED(inode) &&
1976 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1977 return -EOPNOTSUPP;
1978
1979 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1980 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1981 FALLOC_FL_INSERT_RANGE))
1982 return -EOPNOTSUPP;
1983
1984 inode_lock(inode);
1985
1986 /*
1987 * Pinned file should not support partial truncation since the block
1988 * can be used by applications.
1989 */
1990 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1991 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1992 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1993 ret = -EOPNOTSUPP;
1994 goto out;
1995 }
1996
1997 ret = file_modified(file);
1998 if (ret)
1999 goto out;
2000
2001 /*
2002 * wait for inflight dio, blocks should be removed after IO
2003 * completion.
2004 */
2005 inode_dio_wait(inode);
2006
2007 if (mode & FALLOC_FL_PUNCH_HOLE) {
2008 if (offset >= inode->i_size)
2009 goto out;
2010
2011 ret = f2fs_punch_hole(inode, offset, len);
2012 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
2013 ret = f2fs_collapse_range(inode, offset, len);
2014 } else if (mode & FALLOC_FL_ZERO_RANGE) {
2015 ret = f2fs_zero_range(inode, offset, len, mode);
2016 } else if (mode & FALLOC_FL_INSERT_RANGE) {
2017 ret = f2fs_insert_range(inode, offset, len);
2018 } else {
2019 ret = f2fs_expand_inode_data(inode, offset, len, mode);
2020 }
2021
2022 if (!ret) {
2023 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2024 f2fs_mark_inode_dirty_sync(inode, false);
2025 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2026 }
2027
2028 out:
2029 inode_unlock(inode);
2030
2031 trace_f2fs_fallocate(inode, mode, offset, len, ret);
2032 return ret;
2033 }
2034
f2fs_release_file(struct inode * inode,struct file * filp)2035 static int f2fs_release_file(struct inode *inode, struct file *filp)
2036 {
2037 if (atomic_dec_and_test(&F2FS_I(inode)->open_count))
2038 f2fs_remove_donate_inode(inode);
2039
2040 /*
2041 * f2fs_release_file is called at every close calls. So we should
2042 * not drop any inmemory pages by close called by other process.
2043 */
2044 if (!(filp->f_mode & FMODE_WRITE) ||
2045 atomic_read(&inode->i_writecount) != 1)
2046 return 0;
2047
2048 inode_lock(inode);
2049 f2fs_abort_atomic_write(inode, true);
2050 inode_unlock(inode);
2051
2052 return 0;
2053 }
2054
f2fs_file_flush(struct file * file,fl_owner_t id)2055 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2056 {
2057 struct inode *inode = file_inode(file);
2058
2059 /*
2060 * If the process doing a transaction is crashed, we should do
2061 * roll-back. Otherwise, other reader/write can see corrupted database
2062 * until all the writers close its file. Since this should be done
2063 * before dropping file lock, it needs to do in ->flush.
2064 */
2065 if (F2FS_I(inode)->atomic_write_task == current &&
2066 (current->flags & PF_EXITING)) {
2067 inode_lock(inode);
2068 f2fs_abort_atomic_write(inode, true);
2069 inode_unlock(inode);
2070 }
2071
2072 return 0;
2073 }
2074
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)2075 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2076 {
2077 struct f2fs_inode_info *fi = F2FS_I(inode);
2078 u32 masked_flags = fi->i_flags & mask;
2079
2080 /* mask can be shrunk by flags_valid selector */
2081 iflags &= mask;
2082
2083 /* Is it quota file? Do not allow user to mess with it */
2084 if (IS_NOQUOTA(inode))
2085 return -EPERM;
2086
2087 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2088 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2089 return -EOPNOTSUPP;
2090 if (!f2fs_empty_dir(inode))
2091 return -ENOTEMPTY;
2092 }
2093
2094 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2095 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2096 return -EOPNOTSUPP;
2097 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2098 return -EINVAL;
2099 }
2100
2101 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2102 if (masked_flags & F2FS_COMPR_FL) {
2103 if (!f2fs_disable_compressed_file(inode))
2104 return -EINVAL;
2105 } else {
2106 /* try to convert inline_data to support compression */
2107 int err = f2fs_convert_inline_inode(inode);
2108 if (err)
2109 return err;
2110
2111 f2fs_down_write(&fi->i_sem);
2112 if (!f2fs_may_compress(inode) ||
2113 (S_ISREG(inode->i_mode) &&
2114 F2FS_HAS_BLOCKS(inode))) {
2115 f2fs_up_write(&fi->i_sem);
2116 return -EINVAL;
2117 }
2118 err = set_compress_context(inode);
2119 f2fs_up_write(&fi->i_sem);
2120
2121 if (err)
2122 return err;
2123 }
2124 }
2125
2126 fi->i_flags = iflags | (fi->i_flags & ~mask);
2127 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2128 (fi->i_flags & F2FS_NOCOMP_FL));
2129
2130 if (fi->i_flags & F2FS_PROJINHERIT_FL)
2131 set_inode_flag(inode, FI_PROJ_INHERIT);
2132 else
2133 clear_inode_flag(inode, FI_PROJ_INHERIT);
2134
2135 inode_set_ctime_current(inode);
2136 f2fs_set_inode_flags(inode);
2137 f2fs_mark_inode_dirty_sync(inode, true);
2138 return 0;
2139 }
2140
2141 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2142
2143 /*
2144 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2145 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2146 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2147 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2148 *
2149 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2150 * FS_IOC_FSSETXATTR is done by the VFS.
2151 */
2152
2153 static const struct {
2154 u32 iflag;
2155 u32 fsflag;
2156 } f2fs_fsflags_map[] = {
2157 { F2FS_COMPR_FL, FS_COMPR_FL },
2158 { F2FS_SYNC_FL, FS_SYNC_FL },
2159 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2160 { F2FS_APPEND_FL, FS_APPEND_FL },
2161 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2162 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2163 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2164 { F2FS_INDEX_FL, FS_INDEX_FL },
2165 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2166 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2167 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2168 };
2169
2170 #define F2FS_GETTABLE_FS_FL ( \
2171 FS_COMPR_FL | \
2172 FS_SYNC_FL | \
2173 FS_IMMUTABLE_FL | \
2174 FS_APPEND_FL | \
2175 FS_NODUMP_FL | \
2176 FS_NOATIME_FL | \
2177 FS_NOCOMP_FL | \
2178 FS_INDEX_FL | \
2179 FS_DIRSYNC_FL | \
2180 FS_PROJINHERIT_FL | \
2181 FS_ENCRYPT_FL | \
2182 FS_INLINE_DATA_FL | \
2183 FS_NOCOW_FL | \
2184 FS_VERITY_FL | \
2185 FS_CASEFOLD_FL)
2186
2187 #define F2FS_SETTABLE_FS_FL ( \
2188 FS_COMPR_FL | \
2189 FS_SYNC_FL | \
2190 FS_IMMUTABLE_FL | \
2191 FS_APPEND_FL | \
2192 FS_NODUMP_FL | \
2193 FS_NOATIME_FL | \
2194 FS_NOCOMP_FL | \
2195 FS_DIRSYNC_FL | \
2196 FS_PROJINHERIT_FL | \
2197 FS_CASEFOLD_FL)
2198
2199 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2200 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2201 {
2202 u32 fsflags = 0;
2203 int i;
2204
2205 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2206 if (iflags & f2fs_fsflags_map[i].iflag)
2207 fsflags |= f2fs_fsflags_map[i].fsflag;
2208
2209 return fsflags;
2210 }
2211
2212 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2213 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2214 {
2215 u32 iflags = 0;
2216 int i;
2217
2218 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2219 if (fsflags & f2fs_fsflags_map[i].fsflag)
2220 iflags |= f2fs_fsflags_map[i].iflag;
2221
2222 return iflags;
2223 }
2224
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2225 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2226 {
2227 struct inode *inode = file_inode(filp);
2228
2229 return put_user(inode->i_generation, (int __user *)arg);
2230 }
2231
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2232 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2233 {
2234 struct inode *inode = file_inode(filp);
2235 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2236 struct f2fs_inode_info *fi = F2FS_I(inode);
2237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2238 loff_t isize;
2239 int ret;
2240
2241 if (!(filp->f_mode & FMODE_WRITE))
2242 return -EBADF;
2243
2244 if (!inode_owner_or_capable(idmap, inode))
2245 return -EACCES;
2246
2247 if (!S_ISREG(inode->i_mode))
2248 return -EINVAL;
2249
2250 if (filp->f_flags & O_DIRECT)
2251 return -EINVAL;
2252
2253 ret = mnt_want_write_file(filp);
2254 if (ret)
2255 return ret;
2256
2257 inode_lock(inode);
2258
2259 if (!f2fs_disable_compressed_file(inode) ||
2260 f2fs_is_pinned_file(inode)) {
2261 ret = -EINVAL;
2262 goto out;
2263 }
2264
2265 if (f2fs_is_atomic_file(inode))
2266 goto out;
2267
2268 ret = f2fs_convert_inline_inode(inode);
2269 if (ret)
2270 goto out;
2271
2272 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2273 f2fs_down_write(&fi->i_gc_rwsem[READ]);
2274
2275 /*
2276 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2277 * f2fs_is_atomic_file.
2278 */
2279 if (get_dirty_pages(inode))
2280 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2281 inode->i_ino, get_dirty_pages(inode));
2282 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2283 if (ret)
2284 goto out_unlock;
2285
2286 /* Check if the inode already has a COW inode */
2287 if (fi->cow_inode == NULL) {
2288 /* Create a COW inode for atomic write */
2289 struct dentry *dentry = file_dentry(filp);
2290 struct inode *dir = d_inode(dentry->d_parent);
2291
2292 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2293 if (ret)
2294 goto out_unlock;
2295
2296 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2297 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2298
2299 /* Set the COW inode's atomic_inode to the atomic inode */
2300 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2301 } else {
2302 /* Reuse the already created COW inode */
2303 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2304
2305 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2306
2307 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2308 if (ret)
2309 goto out_unlock;
2310 }
2311
2312 f2fs_write_inode(inode, NULL);
2313
2314 stat_inc_atomic_inode(inode);
2315
2316 set_inode_flag(inode, FI_ATOMIC_FILE);
2317
2318 isize = i_size_read(inode);
2319 fi->original_i_size = isize;
2320 if (truncate) {
2321 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2322 truncate_inode_pages_final(inode->i_mapping);
2323 f2fs_i_size_write(inode, 0);
2324 isize = 0;
2325 }
2326 f2fs_i_size_write(fi->cow_inode, isize);
2327
2328 out_unlock:
2329 f2fs_up_write(&fi->i_gc_rwsem[READ]);
2330 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2331 if (ret)
2332 goto out;
2333
2334 f2fs_update_time(sbi, REQ_TIME);
2335 fi->atomic_write_task = current;
2336 stat_update_max_atomic_write(inode);
2337 fi->atomic_write_cnt = 0;
2338 out:
2339 inode_unlock(inode);
2340 mnt_drop_write_file(filp);
2341 return ret;
2342 }
2343
f2fs_ioc_commit_atomic_write(struct file * filp)2344 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2345 {
2346 struct inode *inode = file_inode(filp);
2347 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2348 int ret;
2349
2350 if (!(filp->f_mode & FMODE_WRITE))
2351 return -EBADF;
2352
2353 if (!inode_owner_or_capable(idmap, inode))
2354 return -EACCES;
2355
2356 ret = mnt_want_write_file(filp);
2357 if (ret)
2358 return ret;
2359
2360 f2fs_balance_fs(F2FS_I_SB(inode), true);
2361
2362 inode_lock(inode);
2363
2364 if (f2fs_is_atomic_file(inode)) {
2365 ret = f2fs_commit_atomic_write(inode);
2366 if (!ret)
2367 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2368
2369 f2fs_abort_atomic_write(inode, ret);
2370 } else {
2371 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2372 }
2373
2374 inode_unlock(inode);
2375 mnt_drop_write_file(filp);
2376 return ret;
2377 }
2378
f2fs_ioc_abort_atomic_write(struct file * filp)2379 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2380 {
2381 struct inode *inode = file_inode(filp);
2382 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2383 int ret;
2384
2385 if (!(filp->f_mode & FMODE_WRITE))
2386 return -EBADF;
2387
2388 if (!inode_owner_or_capable(idmap, inode))
2389 return -EACCES;
2390
2391 ret = mnt_want_write_file(filp);
2392 if (ret)
2393 return ret;
2394
2395 inode_lock(inode);
2396
2397 f2fs_abort_atomic_write(inode, true);
2398
2399 inode_unlock(inode);
2400
2401 mnt_drop_write_file(filp);
2402 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2403 return ret;
2404 }
2405
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2406 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2407 bool readonly, bool need_lock)
2408 {
2409 struct super_block *sb = sbi->sb;
2410 int ret = 0;
2411
2412 switch (flag) {
2413 case F2FS_GOING_DOWN_FULLSYNC:
2414 ret = bdev_freeze(sb->s_bdev);
2415 if (ret)
2416 goto out;
2417 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2418 bdev_thaw(sb->s_bdev);
2419 break;
2420 case F2FS_GOING_DOWN_METASYNC:
2421 /* do checkpoint only */
2422 ret = f2fs_sync_fs(sb, 1);
2423 if (ret) {
2424 if (ret == -EIO)
2425 ret = 0;
2426 goto out;
2427 }
2428 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2429 break;
2430 case F2FS_GOING_DOWN_NOSYNC:
2431 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2432 break;
2433 case F2FS_GOING_DOWN_METAFLUSH:
2434 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2435 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2436 break;
2437 case F2FS_GOING_DOWN_NEED_FSCK:
2438 set_sbi_flag(sbi, SBI_NEED_FSCK);
2439 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2440 set_sbi_flag(sbi, SBI_IS_DIRTY);
2441 /* do checkpoint only */
2442 ret = f2fs_sync_fs(sb, 1);
2443 if (ret == -EIO)
2444 ret = 0;
2445 goto out;
2446 default:
2447 ret = -EINVAL;
2448 goto out;
2449 }
2450
2451 if (readonly)
2452 goto out;
2453
2454 /*
2455 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2456 * paths.
2457 */
2458 if (need_lock)
2459 down_write(&sbi->sb->s_umount);
2460
2461 f2fs_stop_gc_thread(sbi);
2462 f2fs_stop_discard_thread(sbi);
2463
2464 f2fs_drop_discard_cmd(sbi);
2465 clear_opt(sbi, DISCARD);
2466
2467 if (need_lock)
2468 up_write(&sbi->sb->s_umount);
2469
2470 f2fs_update_time(sbi, REQ_TIME);
2471 out:
2472
2473 trace_f2fs_shutdown(sbi, flag, ret);
2474
2475 return ret;
2476 }
2477
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2478 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2479 {
2480 struct inode *inode = file_inode(filp);
2481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2482 __u32 in;
2483 int ret;
2484 bool need_drop = false, readonly = false;
2485
2486 if (!capable(CAP_SYS_ADMIN))
2487 return -EPERM;
2488
2489 if (get_user(in, (__u32 __user *)arg))
2490 return -EFAULT;
2491
2492 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2493 ret = mnt_want_write_file(filp);
2494 if (ret) {
2495 if (ret != -EROFS)
2496 return ret;
2497
2498 /* fallback to nosync shutdown for readonly fs */
2499 in = F2FS_GOING_DOWN_NOSYNC;
2500 readonly = true;
2501 } else {
2502 need_drop = true;
2503 }
2504 }
2505
2506 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2507
2508 if (need_drop)
2509 mnt_drop_write_file(filp);
2510
2511 return ret;
2512 }
2513
f2fs_keep_noreuse_range(struct inode * inode,loff_t offset,loff_t len)2514 static int f2fs_keep_noreuse_range(struct inode *inode,
2515 loff_t offset, loff_t len)
2516 {
2517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2518 u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2519 u64 start, end;
2520 int ret = 0;
2521
2522 if (!S_ISREG(inode->i_mode))
2523 return 0;
2524
2525 if (offset >= max_bytes || len > max_bytes ||
2526 (offset + len) > max_bytes)
2527 return 0;
2528
2529 start = offset >> PAGE_SHIFT;
2530 end = DIV_ROUND_UP(offset + len, PAGE_SIZE);
2531
2532 inode_lock(inode);
2533 if (f2fs_is_atomic_file(inode)) {
2534 inode_unlock(inode);
2535 return 0;
2536 }
2537
2538 spin_lock(&sbi->inode_lock[DONATE_INODE]);
2539 /* let's remove the range, if len = 0 */
2540 if (!len) {
2541 if (!list_empty(&F2FS_I(inode)->gdonate_list)) {
2542 list_del_init(&F2FS_I(inode)->gdonate_list);
2543 sbi->donate_files--;
2544 if (is_inode_flag_set(inode, FI_DONATE_FINISHED))
2545 ret = -EALREADY;
2546 else
2547 set_inode_flag(inode, FI_DONATE_FINISHED);
2548 } else
2549 ret = -ENOENT;
2550 } else {
2551 if (list_empty(&F2FS_I(inode)->gdonate_list)) {
2552 list_add_tail(&F2FS_I(inode)->gdonate_list,
2553 &sbi->inode_list[DONATE_INODE]);
2554 sbi->donate_files++;
2555 } else {
2556 list_move_tail(&F2FS_I(inode)->gdonate_list,
2557 &sbi->inode_list[DONATE_INODE]);
2558 }
2559 F2FS_I(inode)->donate_start = start;
2560 F2FS_I(inode)->donate_end = end - 1;
2561 clear_inode_flag(inode, FI_DONATE_FINISHED);
2562 }
2563 spin_unlock(&sbi->inode_lock[DONATE_INODE]);
2564 inode_unlock(inode);
2565
2566 return ret;
2567 }
2568
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2569 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2570 {
2571 struct inode *inode = file_inode(filp);
2572 struct super_block *sb = inode->i_sb;
2573 struct fstrim_range range;
2574 int ret;
2575
2576 if (!capable(CAP_SYS_ADMIN))
2577 return -EPERM;
2578
2579 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2580 return -EOPNOTSUPP;
2581
2582 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2583 sizeof(range)))
2584 return -EFAULT;
2585
2586 ret = mnt_want_write_file(filp);
2587 if (ret)
2588 return ret;
2589
2590 range.minlen = max((unsigned int)range.minlen,
2591 bdev_discard_granularity(sb->s_bdev));
2592 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2593 mnt_drop_write_file(filp);
2594 if (ret < 0)
2595 return ret;
2596
2597 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2598 sizeof(range)))
2599 return -EFAULT;
2600 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2601 return 0;
2602 }
2603
uuid_is_nonzero(__u8 u[16])2604 static bool uuid_is_nonzero(__u8 u[16])
2605 {
2606 int i;
2607
2608 for (i = 0; i < 16; i++)
2609 if (u[i])
2610 return true;
2611 return false;
2612 }
2613
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2614 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2615 {
2616 struct inode *inode = file_inode(filp);
2617 int ret;
2618
2619 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2620 return -EOPNOTSUPP;
2621
2622 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2623 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2624 return ret;
2625 }
2626
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2627 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2628 {
2629 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2630 return -EOPNOTSUPP;
2631 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2632 }
2633
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2634 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2635 {
2636 struct inode *inode = file_inode(filp);
2637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 u8 encrypt_pw_salt[16];
2639 int err;
2640
2641 if (!f2fs_sb_has_encrypt(sbi))
2642 return -EOPNOTSUPP;
2643
2644 err = mnt_want_write_file(filp);
2645 if (err)
2646 return err;
2647
2648 f2fs_down_write(&sbi->sb_lock);
2649
2650 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2651 goto got_it;
2652
2653 /* update superblock with uuid */
2654 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2655
2656 err = f2fs_commit_super(sbi, false);
2657 if (err) {
2658 /* undo new data */
2659 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2660 goto out_err;
2661 }
2662 got_it:
2663 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2664 out_err:
2665 f2fs_up_write(&sbi->sb_lock);
2666 mnt_drop_write_file(filp);
2667
2668 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2669 err = -EFAULT;
2670
2671 return err;
2672 }
2673
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2674 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2675 unsigned long arg)
2676 {
2677 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2678 return -EOPNOTSUPP;
2679
2680 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2681 }
2682
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2683 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2684 {
2685 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2686 return -EOPNOTSUPP;
2687
2688 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2689 }
2690
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2691 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2692 {
2693 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2694 return -EOPNOTSUPP;
2695
2696 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2697 }
2698
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2699 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2700 unsigned long arg)
2701 {
2702 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2703 return -EOPNOTSUPP;
2704
2705 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2706 }
2707
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2708 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2709 unsigned long arg)
2710 {
2711 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2712 return -EOPNOTSUPP;
2713
2714 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2715 }
2716
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2717 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2718 {
2719 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2720 return -EOPNOTSUPP;
2721
2722 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2723 }
2724
f2fs_ioc_gc(struct file * filp,unsigned long arg)2725 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2726 {
2727 struct inode *inode = file_inode(filp);
2728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2729 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2730 .no_bg_gc = false,
2731 .should_migrate_blocks = false,
2732 .nr_free_secs = 0 };
2733 __u32 sync;
2734 int ret;
2735
2736 if (!capable(CAP_SYS_ADMIN))
2737 return -EPERM;
2738
2739 if (get_user(sync, (__u32 __user *)arg))
2740 return -EFAULT;
2741
2742 if (f2fs_readonly(sbi->sb))
2743 return -EROFS;
2744
2745 ret = mnt_want_write_file(filp);
2746 if (ret)
2747 return ret;
2748
2749 if (!sync) {
2750 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2751 ret = -EBUSY;
2752 goto out;
2753 }
2754 } else {
2755 f2fs_down_write(&sbi->gc_lock);
2756 }
2757
2758 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2759 gc_control.err_gc_skipped = sync;
2760 stat_inc_gc_call_count(sbi, FOREGROUND);
2761 ret = f2fs_gc(sbi, &gc_control);
2762 out:
2763 mnt_drop_write_file(filp);
2764 return ret;
2765 }
2766
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2767 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2768 {
2769 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2770 struct f2fs_gc_control gc_control = {
2771 .init_gc_type = range->sync ? FG_GC : BG_GC,
2772 .no_bg_gc = false,
2773 .should_migrate_blocks = false,
2774 .err_gc_skipped = range->sync,
2775 .nr_free_secs = 0 };
2776 u64 end;
2777 int ret;
2778
2779 if (!capable(CAP_SYS_ADMIN))
2780 return -EPERM;
2781 if (f2fs_readonly(sbi->sb))
2782 return -EROFS;
2783
2784 end = range->start + range->len;
2785 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2786 end >= MAX_BLKADDR(sbi))
2787 return -EINVAL;
2788
2789 ret = mnt_want_write_file(filp);
2790 if (ret)
2791 return ret;
2792
2793 do_more:
2794 if (!range->sync) {
2795 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2796 ret = -EBUSY;
2797 goto out;
2798 }
2799 } else {
2800 f2fs_down_write(&sbi->gc_lock);
2801 }
2802
2803 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2804 stat_inc_gc_call_count(sbi, FOREGROUND);
2805 ret = f2fs_gc(sbi, &gc_control);
2806 if (ret) {
2807 if (ret == -EBUSY)
2808 ret = -EAGAIN;
2809 goto out;
2810 }
2811 range->start += CAP_BLKS_PER_SEC(sbi);
2812 if (range->start <= end)
2813 goto do_more;
2814 out:
2815 mnt_drop_write_file(filp);
2816 return ret;
2817 }
2818
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2819 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2820 {
2821 struct f2fs_gc_range range;
2822
2823 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2824 sizeof(range)))
2825 return -EFAULT;
2826 return __f2fs_ioc_gc_range(filp, &range);
2827 }
2828
f2fs_ioc_write_checkpoint(struct file * filp)2829 static int f2fs_ioc_write_checkpoint(struct file *filp)
2830 {
2831 struct inode *inode = file_inode(filp);
2832 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2833 int ret;
2834
2835 if (!capable(CAP_SYS_ADMIN))
2836 return -EPERM;
2837
2838 if (f2fs_readonly(sbi->sb))
2839 return -EROFS;
2840
2841 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2842 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2843 return -EINVAL;
2844 }
2845
2846 ret = mnt_want_write_file(filp);
2847 if (ret)
2848 return ret;
2849
2850 ret = f2fs_sync_fs(sbi->sb, 1);
2851
2852 mnt_drop_write_file(filp);
2853 return ret;
2854 }
2855
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2856 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2857 struct file *filp,
2858 struct f2fs_defragment *range)
2859 {
2860 struct inode *inode = file_inode(filp);
2861 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2862 .m_seg_type = NO_CHECK_TYPE,
2863 .m_may_create = false };
2864 struct extent_info ei = {};
2865 pgoff_t pg_start, pg_end, next_pgofs;
2866 unsigned int total = 0, sec_num;
2867 block_t blk_end = 0;
2868 bool fragmented = false;
2869 int err;
2870
2871 f2fs_balance_fs(sbi, true);
2872
2873 inode_lock(inode);
2874 pg_start = range->start >> PAGE_SHIFT;
2875 pg_end = min_t(pgoff_t,
2876 (range->start + range->len) >> PAGE_SHIFT,
2877 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2878
2879 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2880 f2fs_is_atomic_file(inode)) {
2881 err = -EINVAL;
2882 goto unlock_out;
2883 }
2884
2885 /* if in-place-update policy is enabled, don't waste time here */
2886 set_inode_flag(inode, FI_OPU_WRITE);
2887 if (f2fs_should_update_inplace(inode, NULL)) {
2888 err = -EINVAL;
2889 goto out;
2890 }
2891
2892 /* writeback all dirty pages in the range */
2893 err = filemap_write_and_wait_range(inode->i_mapping,
2894 pg_start << PAGE_SHIFT,
2895 (pg_end << PAGE_SHIFT) - 1);
2896 if (err)
2897 goto out;
2898
2899 /*
2900 * lookup mapping info in extent cache, skip defragmenting if physical
2901 * block addresses are continuous.
2902 */
2903 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2904 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2905 goto out;
2906 }
2907
2908 map.m_lblk = pg_start;
2909 map.m_next_pgofs = &next_pgofs;
2910
2911 /*
2912 * lookup mapping info in dnode page cache, skip defragmenting if all
2913 * physical block addresses are continuous even if there are hole(s)
2914 * in logical blocks.
2915 */
2916 while (map.m_lblk < pg_end) {
2917 map.m_len = pg_end - map.m_lblk;
2918 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2919 if (err)
2920 goto out;
2921
2922 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2923 map.m_lblk = next_pgofs;
2924 continue;
2925 }
2926
2927 if (blk_end && blk_end != map.m_pblk)
2928 fragmented = true;
2929
2930 /* record total count of block that we're going to move */
2931 total += map.m_len;
2932
2933 blk_end = map.m_pblk + map.m_len;
2934
2935 map.m_lblk += map.m_len;
2936 }
2937
2938 if (!fragmented) {
2939 total = 0;
2940 goto out;
2941 }
2942
2943 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2944
2945 /*
2946 * make sure there are enough free section for LFS allocation, this can
2947 * avoid defragment running in SSR mode when free section are allocated
2948 * intensively
2949 */
2950 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2951 err = -EAGAIN;
2952 goto out;
2953 }
2954
2955 map.m_lblk = pg_start;
2956 map.m_len = pg_end - pg_start;
2957 total = 0;
2958
2959 while (map.m_lblk < pg_end) {
2960 pgoff_t idx;
2961 int cnt = 0;
2962
2963 do_map:
2964 map.m_len = pg_end - map.m_lblk;
2965 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2966 if (err)
2967 goto clear_out;
2968
2969 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2970 map.m_lblk = next_pgofs;
2971 goto check;
2972 }
2973
2974 set_inode_flag(inode, FI_SKIP_WRITES);
2975
2976 idx = map.m_lblk;
2977 while (idx < map.m_lblk + map.m_len &&
2978 cnt < BLKS_PER_SEG(sbi)) {
2979 struct page *page;
2980
2981 page = f2fs_get_lock_data_page(inode, idx, true);
2982 if (IS_ERR(page)) {
2983 err = PTR_ERR(page);
2984 goto clear_out;
2985 }
2986
2987 f2fs_wait_on_page_writeback(page, DATA, true, true);
2988
2989 set_page_dirty(page);
2990 set_page_private_gcing(page);
2991 f2fs_put_page(page, 1);
2992
2993 idx++;
2994 cnt++;
2995 total++;
2996 }
2997
2998 map.m_lblk = idx;
2999 check:
3000 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
3001 goto do_map;
3002
3003 clear_inode_flag(inode, FI_SKIP_WRITES);
3004
3005 err = filemap_fdatawrite(inode->i_mapping);
3006 if (err)
3007 goto out;
3008 }
3009 clear_out:
3010 clear_inode_flag(inode, FI_SKIP_WRITES);
3011 out:
3012 clear_inode_flag(inode, FI_OPU_WRITE);
3013 unlock_out:
3014 inode_unlock(inode);
3015 if (!err)
3016 range->len = (u64)total << PAGE_SHIFT;
3017 return err;
3018 }
3019
f2fs_ioc_defragment(struct file * filp,unsigned long arg)3020 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
3021 {
3022 struct inode *inode = file_inode(filp);
3023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3024 struct f2fs_defragment range;
3025 int err;
3026
3027 if (!capable(CAP_SYS_ADMIN))
3028 return -EPERM;
3029
3030 if (!S_ISREG(inode->i_mode))
3031 return -EINVAL;
3032
3033 if (f2fs_readonly(sbi->sb))
3034 return -EROFS;
3035
3036 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
3037 sizeof(range)))
3038 return -EFAULT;
3039
3040 /* verify alignment of offset & size */
3041 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
3042 return -EINVAL;
3043
3044 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
3045 max_file_blocks(inode)))
3046 return -EINVAL;
3047
3048 err = mnt_want_write_file(filp);
3049 if (err)
3050 return err;
3051
3052 err = f2fs_defragment_range(sbi, filp, &range);
3053 mnt_drop_write_file(filp);
3054
3055 if (range.len)
3056 f2fs_update_time(sbi, REQ_TIME);
3057 if (err < 0)
3058 return err;
3059
3060 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
3061 sizeof(range)))
3062 return -EFAULT;
3063
3064 return 0;
3065 }
3066
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)3067 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
3068 struct file *file_out, loff_t pos_out, size_t len)
3069 {
3070 struct inode *src = file_inode(file_in);
3071 struct inode *dst = file_inode(file_out);
3072 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
3073 size_t olen = len, dst_max_i_size = 0;
3074 size_t dst_osize;
3075 int ret;
3076
3077 if (file_in->f_path.mnt != file_out->f_path.mnt ||
3078 src->i_sb != dst->i_sb)
3079 return -EXDEV;
3080
3081 if (unlikely(f2fs_readonly(src->i_sb)))
3082 return -EROFS;
3083
3084 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
3085 return -EINVAL;
3086
3087 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
3088 return -EOPNOTSUPP;
3089
3090 if (pos_out < 0 || pos_in < 0)
3091 return -EINVAL;
3092
3093 if (src == dst) {
3094 if (pos_in == pos_out)
3095 return 0;
3096 if (pos_out > pos_in && pos_out < pos_in + len)
3097 return -EINVAL;
3098 }
3099
3100 inode_lock(src);
3101 if (src != dst) {
3102 ret = -EBUSY;
3103 if (!inode_trylock(dst))
3104 goto out;
3105 }
3106
3107 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3108 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3109 ret = -EOPNOTSUPP;
3110 goto out_unlock;
3111 }
3112
3113 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3114 ret = -EINVAL;
3115 goto out_unlock;
3116 }
3117
3118 ret = -EINVAL;
3119 if (pos_in + len > src->i_size || pos_in + len < pos_in)
3120 goto out_unlock;
3121 if (len == 0)
3122 olen = len = src->i_size - pos_in;
3123 if (pos_in + len == src->i_size)
3124 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3125 if (len == 0) {
3126 ret = 0;
3127 goto out_unlock;
3128 }
3129
3130 dst_osize = dst->i_size;
3131 if (pos_out + olen > dst->i_size)
3132 dst_max_i_size = pos_out + olen;
3133
3134 /* verify the end result is block aligned */
3135 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3136 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3137 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3138 goto out_unlock;
3139
3140 ret = f2fs_convert_inline_inode(src);
3141 if (ret)
3142 goto out_unlock;
3143
3144 ret = f2fs_convert_inline_inode(dst);
3145 if (ret)
3146 goto out_unlock;
3147
3148 /* write out all dirty pages from offset */
3149 ret = filemap_write_and_wait_range(src->i_mapping,
3150 pos_in, pos_in + len);
3151 if (ret)
3152 goto out_unlock;
3153
3154 ret = filemap_write_and_wait_range(dst->i_mapping,
3155 pos_out, pos_out + len);
3156 if (ret)
3157 goto out_unlock;
3158
3159 f2fs_balance_fs(sbi, true);
3160
3161 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3162 if (src != dst) {
3163 ret = -EBUSY;
3164 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3165 goto out_src;
3166 }
3167
3168 f2fs_lock_op(sbi);
3169 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3170 F2FS_BYTES_TO_BLK(pos_out),
3171 F2FS_BYTES_TO_BLK(len), false);
3172
3173 if (!ret) {
3174 if (dst_max_i_size)
3175 f2fs_i_size_write(dst, dst_max_i_size);
3176 else if (dst_osize != dst->i_size)
3177 f2fs_i_size_write(dst, dst_osize);
3178 }
3179 f2fs_unlock_op(sbi);
3180
3181 if (src != dst)
3182 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3183 out_src:
3184 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3185 if (ret)
3186 goto out_unlock;
3187
3188 inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3189 f2fs_mark_inode_dirty_sync(src, false);
3190 if (src != dst) {
3191 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3192 f2fs_mark_inode_dirty_sync(dst, false);
3193 }
3194 f2fs_update_time(sbi, REQ_TIME);
3195
3196 out_unlock:
3197 if (src != dst)
3198 inode_unlock(dst);
3199 out:
3200 inode_unlock(src);
3201 return ret;
3202 }
3203
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3204 static int __f2fs_ioc_move_range(struct file *filp,
3205 struct f2fs_move_range *range)
3206 {
3207 struct fd dst;
3208 int err;
3209
3210 if (!(filp->f_mode & FMODE_READ) ||
3211 !(filp->f_mode & FMODE_WRITE))
3212 return -EBADF;
3213
3214 dst = fdget(range->dst_fd);
3215 if (!fd_file(dst))
3216 return -EBADF;
3217
3218 if (!(fd_file(dst)->f_mode & FMODE_WRITE)) {
3219 err = -EBADF;
3220 goto err_out;
3221 }
3222
3223 err = mnt_want_write_file(filp);
3224 if (err)
3225 goto err_out;
3226
3227 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3228 range->pos_out, range->len);
3229
3230 mnt_drop_write_file(filp);
3231 err_out:
3232 fdput(dst);
3233 return err;
3234 }
3235
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3236 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3237 {
3238 struct f2fs_move_range range;
3239
3240 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3241 sizeof(range)))
3242 return -EFAULT;
3243 return __f2fs_ioc_move_range(filp, &range);
3244 }
3245
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3246 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3247 {
3248 struct inode *inode = file_inode(filp);
3249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3250 struct sit_info *sm = SIT_I(sbi);
3251 unsigned int start_segno = 0, end_segno = 0;
3252 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3253 struct f2fs_flush_device range;
3254 struct f2fs_gc_control gc_control = {
3255 .init_gc_type = FG_GC,
3256 .should_migrate_blocks = true,
3257 .err_gc_skipped = true,
3258 .nr_free_secs = 0 };
3259 int ret;
3260
3261 if (!capable(CAP_SYS_ADMIN))
3262 return -EPERM;
3263
3264 if (f2fs_readonly(sbi->sb))
3265 return -EROFS;
3266
3267 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3268 return -EINVAL;
3269
3270 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3271 sizeof(range)))
3272 return -EFAULT;
3273
3274 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3275 __is_large_section(sbi)) {
3276 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3277 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3278 return -EINVAL;
3279 }
3280
3281 ret = mnt_want_write_file(filp);
3282 if (ret)
3283 return ret;
3284
3285 if (range.dev_num != 0)
3286 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3287 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3288
3289 start_segno = sm->last_victim[FLUSH_DEVICE];
3290 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3291 start_segno = dev_start_segno;
3292 end_segno = min(start_segno + range.segments, dev_end_segno);
3293
3294 while (start_segno < end_segno) {
3295 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3296 ret = -EBUSY;
3297 goto out;
3298 }
3299 sm->last_victim[GC_CB] = end_segno + 1;
3300 sm->last_victim[GC_GREEDY] = end_segno + 1;
3301 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3302
3303 gc_control.victim_segno = start_segno;
3304 stat_inc_gc_call_count(sbi, FOREGROUND);
3305 ret = f2fs_gc(sbi, &gc_control);
3306 if (ret == -EAGAIN)
3307 ret = 0;
3308 else if (ret < 0)
3309 break;
3310 start_segno++;
3311 }
3312 out:
3313 mnt_drop_write_file(filp);
3314 return ret;
3315 }
3316
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3317 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3318 {
3319 struct inode *inode = file_inode(filp);
3320 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3321
3322 /* Must validate to set it with SQLite behavior in Android. */
3323 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3324
3325 return put_user(sb_feature, (u32 __user *)arg);
3326 }
3327
3328 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3329 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3330 {
3331 struct dquot *transfer_to[MAXQUOTAS] = {};
3332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3333 struct super_block *sb = sbi->sb;
3334 int err;
3335
3336 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3337 if (IS_ERR(transfer_to[PRJQUOTA]))
3338 return PTR_ERR(transfer_to[PRJQUOTA]);
3339
3340 err = __dquot_transfer(inode, transfer_to);
3341 if (err)
3342 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3343 dqput(transfer_to[PRJQUOTA]);
3344 return err;
3345 }
3346
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3347 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3348 {
3349 struct f2fs_inode_info *fi = F2FS_I(inode);
3350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3351 struct f2fs_inode *ri = NULL;
3352 kprojid_t kprojid;
3353 int err;
3354
3355 if (!f2fs_sb_has_project_quota(sbi)) {
3356 if (projid != F2FS_DEF_PROJID)
3357 return -EOPNOTSUPP;
3358 else
3359 return 0;
3360 }
3361
3362 if (!f2fs_has_extra_attr(inode))
3363 return -EOPNOTSUPP;
3364
3365 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3366
3367 if (projid_eq(kprojid, fi->i_projid))
3368 return 0;
3369
3370 err = -EPERM;
3371 /* Is it quota file? Do not allow user to mess with it */
3372 if (IS_NOQUOTA(inode))
3373 return err;
3374
3375 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3376 return -EOVERFLOW;
3377
3378 err = f2fs_dquot_initialize(inode);
3379 if (err)
3380 return err;
3381
3382 f2fs_lock_op(sbi);
3383 err = f2fs_transfer_project_quota(inode, kprojid);
3384 if (err)
3385 goto out_unlock;
3386
3387 fi->i_projid = kprojid;
3388 inode_set_ctime_current(inode);
3389 f2fs_mark_inode_dirty_sync(inode, true);
3390 out_unlock:
3391 f2fs_unlock_op(sbi);
3392 return err;
3393 }
3394 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3395 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3396 {
3397 return 0;
3398 }
3399
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3400 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3401 {
3402 if (projid != F2FS_DEF_PROJID)
3403 return -EOPNOTSUPP;
3404 return 0;
3405 }
3406 #endif
3407
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3408 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3409 {
3410 struct inode *inode = d_inode(dentry);
3411 struct f2fs_inode_info *fi = F2FS_I(inode);
3412 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3413
3414 if (IS_ENCRYPTED(inode))
3415 fsflags |= FS_ENCRYPT_FL;
3416 if (IS_VERITY(inode))
3417 fsflags |= FS_VERITY_FL;
3418 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3419 fsflags |= FS_INLINE_DATA_FL;
3420 if (is_inode_flag_set(inode, FI_PIN_FILE))
3421 fsflags |= FS_NOCOW_FL;
3422
3423 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3424
3425 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3426 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3427
3428 return 0;
3429 }
3430
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3431 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3432 struct dentry *dentry, struct fileattr *fa)
3433 {
3434 struct inode *inode = d_inode(dentry);
3435 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3436 u32 iflags;
3437 int err;
3438
3439 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3440 return -EIO;
3441 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3442 return -ENOSPC;
3443 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3444 return -EOPNOTSUPP;
3445 fsflags &= F2FS_SETTABLE_FS_FL;
3446 if (!fa->flags_valid)
3447 mask &= FS_COMMON_FL;
3448
3449 iflags = f2fs_fsflags_to_iflags(fsflags);
3450 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3451 return -EOPNOTSUPP;
3452
3453 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3454 if (!err)
3455 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3456
3457 return err;
3458 }
3459
f2fs_pin_file_control(struct inode * inode,bool inc)3460 int f2fs_pin_file_control(struct inode *inode, bool inc)
3461 {
3462 struct f2fs_inode_info *fi = F2FS_I(inode);
3463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3464
3465 if (IS_DEVICE_ALIASING(inode))
3466 return -EINVAL;
3467
3468 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3469 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3470 __func__, inode->i_ino, fi->i_gc_failures);
3471 clear_inode_flag(inode, FI_PIN_FILE);
3472 return -EAGAIN;
3473 }
3474
3475 /* Use i_gc_failures for normal file as a risk signal. */
3476 if (inc)
3477 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3478
3479 return 0;
3480 }
3481
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3482 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3483 {
3484 struct inode *inode = file_inode(filp);
3485 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3486 __u32 pin;
3487 int ret = 0;
3488
3489 if (get_user(pin, (__u32 __user *)arg))
3490 return -EFAULT;
3491
3492 if (!S_ISREG(inode->i_mode))
3493 return -EINVAL;
3494
3495 if (f2fs_readonly(sbi->sb))
3496 return -EROFS;
3497
3498 if (!pin && IS_DEVICE_ALIASING(inode))
3499 return -EOPNOTSUPP;
3500
3501 ret = mnt_want_write_file(filp);
3502 if (ret)
3503 return ret;
3504
3505 inode_lock(inode);
3506
3507 if (f2fs_is_atomic_file(inode)) {
3508 ret = -EINVAL;
3509 goto out;
3510 }
3511
3512 if (!pin) {
3513 clear_inode_flag(inode, FI_PIN_FILE);
3514 f2fs_i_gc_failures_write(inode, 0);
3515 goto done;
3516 } else if (f2fs_is_pinned_file(inode)) {
3517 goto done;
3518 }
3519
3520 if (F2FS_HAS_BLOCKS(inode)) {
3521 ret = -EFBIG;
3522 goto out;
3523 }
3524
3525 /* Let's allow file pinning on zoned device. */
3526 if (!f2fs_sb_has_blkzoned(sbi) &&
3527 f2fs_should_update_outplace(inode, NULL)) {
3528 ret = -EINVAL;
3529 goto out;
3530 }
3531
3532 if (f2fs_pin_file_control(inode, false)) {
3533 ret = -EAGAIN;
3534 goto out;
3535 }
3536
3537 ret = f2fs_convert_inline_inode(inode);
3538 if (ret)
3539 goto out;
3540
3541 if (!f2fs_disable_compressed_file(inode)) {
3542 ret = -EOPNOTSUPP;
3543 goto out;
3544 }
3545
3546 set_inode_flag(inode, FI_PIN_FILE);
3547 ret = F2FS_I(inode)->i_gc_failures;
3548 done:
3549 f2fs_update_time(sbi, REQ_TIME);
3550 out:
3551 inode_unlock(inode);
3552 mnt_drop_write_file(filp);
3553 return ret;
3554 }
3555
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3556 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3557 {
3558 struct inode *inode = file_inode(filp);
3559 __u32 pin = 0;
3560
3561 if (is_inode_flag_set(inode, FI_PIN_FILE))
3562 pin = F2FS_I(inode)->i_gc_failures;
3563 return put_user(pin, (u32 __user *)arg);
3564 }
3565
f2fs_ioc_get_dev_alias_file(struct file * filp,unsigned long arg)3566 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3567 {
3568 return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3569 (u32 __user *)arg);
3570 }
3571
f2fs_ioc_io_prio(struct file * filp,unsigned long arg)3572 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg)
3573 {
3574 struct inode *inode = file_inode(filp);
3575 __u32 level;
3576
3577 if (get_user(level, (__u32 __user *)arg))
3578 return -EFAULT;
3579
3580 if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX)
3581 return -EINVAL;
3582
3583 inode_lock(inode);
3584 F2FS_I(inode)->ioprio_hint = level;
3585 inode_unlock(inode);
3586 return 0;
3587 }
3588
f2fs_precache_extents(struct inode * inode)3589 int f2fs_precache_extents(struct inode *inode)
3590 {
3591 struct f2fs_inode_info *fi = F2FS_I(inode);
3592 struct f2fs_map_blocks map;
3593 pgoff_t m_next_extent;
3594 loff_t end;
3595 int err;
3596
3597 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3598 return -EOPNOTSUPP;
3599
3600 map.m_lblk = 0;
3601 map.m_pblk = 0;
3602 map.m_next_pgofs = NULL;
3603 map.m_next_extent = &m_next_extent;
3604 map.m_seg_type = NO_CHECK_TYPE;
3605 map.m_may_create = false;
3606 end = F2FS_BLK_ALIGN(i_size_read(inode));
3607
3608 while (map.m_lblk < end) {
3609 map.m_len = end - map.m_lblk;
3610
3611 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3612 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3613 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3614 if (err || !map.m_len)
3615 return err;
3616
3617 map.m_lblk = m_next_extent;
3618 }
3619
3620 return 0;
3621 }
3622
f2fs_ioc_precache_extents(struct file * filp)3623 static int f2fs_ioc_precache_extents(struct file *filp)
3624 {
3625 return f2fs_precache_extents(file_inode(filp));
3626 }
3627
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3628 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3629 {
3630 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3631 __u64 block_count;
3632
3633 if (!capable(CAP_SYS_ADMIN))
3634 return -EPERM;
3635
3636 if (f2fs_readonly(sbi->sb))
3637 return -EROFS;
3638
3639 if (copy_from_user(&block_count, (void __user *)arg,
3640 sizeof(block_count)))
3641 return -EFAULT;
3642
3643 return f2fs_resize_fs(filp, block_count);
3644 }
3645
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3646 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3647 {
3648 struct inode *inode = file_inode(filp);
3649
3650 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3651
3652 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3653 f2fs_warn(F2FS_I_SB(inode),
3654 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3655 inode->i_ino);
3656 return -EOPNOTSUPP;
3657 }
3658
3659 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3660 }
3661
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3662 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3663 {
3664 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3665 return -EOPNOTSUPP;
3666
3667 return fsverity_ioctl_measure(filp, (void __user *)arg);
3668 }
3669
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3670 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3671 {
3672 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3673 return -EOPNOTSUPP;
3674
3675 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3676 }
3677
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3678 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3679 {
3680 struct inode *inode = file_inode(filp);
3681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3682 char *vbuf;
3683 int count;
3684 int err = 0;
3685
3686 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3687 if (!vbuf)
3688 return -ENOMEM;
3689
3690 f2fs_down_read(&sbi->sb_lock);
3691 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3692 ARRAY_SIZE(sbi->raw_super->volume_name),
3693 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3694 f2fs_up_read(&sbi->sb_lock);
3695
3696 if (copy_to_user((char __user *)arg, vbuf,
3697 min(FSLABEL_MAX, count)))
3698 err = -EFAULT;
3699
3700 kfree(vbuf);
3701 return err;
3702 }
3703
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3704 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3705 {
3706 struct inode *inode = file_inode(filp);
3707 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708 char *vbuf;
3709 int err = 0;
3710
3711 if (!capable(CAP_SYS_ADMIN))
3712 return -EPERM;
3713
3714 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3715 if (IS_ERR(vbuf))
3716 return PTR_ERR(vbuf);
3717
3718 err = mnt_want_write_file(filp);
3719 if (err)
3720 goto out;
3721
3722 f2fs_down_write(&sbi->sb_lock);
3723
3724 memset(sbi->raw_super->volume_name, 0,
3725 sizeof(sbi->raw_super->volume_name));
3726 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3727 sbi->raw_super->volume_name,
3728 ARRAY_SIZE(sbi->raw_super->volume_name));
3729
3730 err = f2fs_commit_super(sbi, false);
3731
3732 f2fs_up_write(&sbi->sb_lock);
3733
3734 mnt_drop_write_file(filp);
3735 out:
3736 kfree(vbuf);
3737 return err;
3738 }
3739
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3740 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3741 {
3742 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3743 return -EOPNOTSUPP;
3744
3745 if (!f2fs_compressed_file(inode))
3746 return -EINVAL;
3747
3748 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3749
3750 return 0;
3751 }
3752
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3753 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3754 {
3755 struct inode *inode = file_inode(filp);
3756 __u64 blocks;
3757 int ret;
3758
3759 ret = f2fs_get_compress_blocks(inode, &blocks);
3760 if (ret < 0)
3761 return ret;
3762
3763 return put_user(blocks, (u64 __user *)arg);
3764 }
3765
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3766 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3767 {
3768 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3769 unsigned int released_blocks = 0;
3770 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3771 block_t blkaddr;
3772 int i;
3773
3774 for (i = 0; i < count; i++) {
3775 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3776 dn->ofs_in_node + i);
3777
3778 if (!__is_valid_data_blkaddr(blkaddr))
3779 continue;
3780 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3781 DATA_GENERIC_ENHANCE)))
3782 return -EFSCORRUPTED;
3783 }
3784
3785 while (count) {
3786 int compr_blocks = 0;
3787
3788 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3789 blkaddr = f2fs_data_blkaddr(dn);
3790
3791 if (i == 0) {
3792 if (blkaddr == COMPRESS_ADDR)
3793 continue;
3794 dn->ofs_in_node += cluster_size;
3795 goto next;
3796 }
3797
3798 if (__is_valid_data_blkaddr(blkaddr))
3799 compr_blocks++;
3800
3801 if (blkaddr != NEW_ADDR)
3802 continue;
3803
3804 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3805 }
3806
3807 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3808 dec_valid_block_count(sbi, dn->inode,
3809 cluster_size - compr_blocks);
3810
3811 released_blocks += cluster_size - compr_blocks;
3812 next:
3813 count -= cluster_size;
3814 }
3815
3816 return released_blocks;
3817 }
3818
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3819 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3820 {
3821 struct inode *inode = file_inode(filp);
3822 struct f2fs_inode_info *fi = F2FS_I(inode);
3823 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3824 pgoff_t page_idx = 0, last_idx;
3825 unsigned int released_blocks = 0;
3826 int ret;
3827 int writecount;
3828
3829 if (!f2fs_sb_has_compression(sbi))
3830 return -EOPNOTSUPP;
3831
3832 if (f2fs_readonly(sbi->sb))
3833 return -EROFS;
3834
3835 ret = mnt_want_write_file(filp);
3836 if (ret)
3837 return ret;
3838
3839 f2fs_balance_fs(sbi, true);
3840
3841 inode_lock(inode);
3842
3843 writecount = atomic_read(&inode->i_writecount);
3844 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3845 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3846 ret = -EBUSY;
3847 goto out;
3848 }
3849
3850 if (!f2fs_compressed_file(inode) ||
3851 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3852 ret = -EINVAL;
3853 goto out;
3854 }
3855
3856 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3857 if (ret)
3858 goto out;
3859
3860 if (!atomic_read(&fi->i_compr_blocks)) {
3861 ret = -EPERM;
3862 goto out;
3863 }
3864
3865 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3866 inode_set_ctime_current(inode);
3867 f2fs_mark_inode_dirty_sync(inode, true);
3868
3869 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3870 filemap_invalidate_lock(inode->i_mapping);
3871
3872 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3873
3874 while (page_idx < last_idx) {
3875 struct dnode_of_data dn;
3876 pgoff_t end_offset, count;
3877
3878 f2fs_lock_op(sbi);
3879
3880 set_new_dnode(&dn, inode, NULL, NULL, 0);
3881 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3882 if (ret) {
3883 f2fs_unlock_op(sbi);
3884 if (ret == -ENOENT) {
3885 page_idx = f2fs_get_next_page_offset(&dn,
3886 page_idx);
3887 ret = 0;
3888 continue;
3889 }
3890 break;
3891 }
3892
3893 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3894 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3895 count = round_up(count, fi->i_cluster_size);
3896
3897 ret = release_compress_blocks(&dn, count);
3898
3899 f2fs_put_dnode(&dn);
3900
3901 f2fs_unlock_op(sbi);
3902
3903 if (ret < 0)
3904 break;
3905
3906 page_idx += count;
3907 released_blocks += ret;
3908 }
3909
3910 filemap_invalidate_unlock(inode->i_mapping);
3911 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3912 out:
3913 if (released_blocks)
3914 f2fs_update_time(sbi, REQ_TIME);
3915 inode_unlock(inode);
3916
3917 mnt_drop_write_file(filp);
3918
3919 if (ret >= 0) {
3920 ret = put_user(released_blocks, (u64 __user *)arg);
3921 } else if (released_blocks &&
3922 atomic_read(&fi->i_compr_blocks)) {
3923 set_sbi_flag(sbi, SBI_NEED_FSCK);
3924 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3925 "iblocks=%llu, released=%u, compr_blocks=%u, "
3926 "run fsck to fix.",
3927 __func__, inode->i_ino, inode->i_blocks,
3928 released_blocks,
3929 atomic_read(&fi->i_compr_blocks));
3930 }
3931
3932 return ret;
3933 }
3934
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3935 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3936 unsigned int *reserved_blocks)
3937 {
3938 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3939 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3940 block_t blkaddr;
3941 int i;
3942
3943 for (i = 0; i < count; i++) {
3944 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3945 dn->ofs_in_node + i);
3946
3947 if (!__is_valid_data_blkaddr(blkaddr))
3948 continue;
3949 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3950 DATA_GENERIC_ENHANCE)))
3951 return -EFSCORRUPTED;
3952 }
3953
3954 while (count) {
3955 int compr_blocks = 0;
3956 blkcnt_t reserved = 0;
3957 blkcnt_t to_reserved;
3958 int ret;
3959
3960 for (i = 0; i < cluster_size; i++) {
3961 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3962 dn->ofs_in_node + i);
3963
3964 if (i == 0) {
3965 if (blkaddr != COMPRESS_ADDR) {
3966 dn->ofs_in_node += cluster_size;
3967 goto next;
3968 }
3969 continue;
3970 }
3971
3972 /*
3973 * compressed cluster was not released due to it
3974 * fails in release_compress_blocks(), so NEW_ADDR
3975 * is a possible case.
3976 */
3977 if (blkaddr == NEW_ADDR) {
3978 reserved++;
3979 continue;
3980 }
3981 if (__is_valid_data_blkaddr(blkaddr)) {
3982 compr_blocks++;
3983 continue;
3984 }
3985 }
3986
3987 to_reserved = cluster_size - compr_blocks - reserved;
3988
3989 /* for the case all blocks in cluster were reserved */
3990 if (reserved && to_reserved == 1) {
3991 dn->ofs_in_node += cluster_size;
3992 goto next;
3993 }
3994
3995 ret = inc_valid_block_count(sbi, dn->inode,
3996 &to_reserved, false);
3997 if (unlikely(ret))
3998 return ret;
3999
4000 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
4001 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
4002 f2fs_set_data_blkaddr(dn, NEW_ADDR);
4003 }
4004
4005 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
4006
4007 *reserved_blocks += to_reserved;
4008 next:
4009 count -= cluster_size;
4010 }
4011
4012 return 0;
4013 }
4014
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)4015 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
4016 {
4017 struct inode *inode = file_inode(filp);
4018 struct f2fs_inode_info *fi = F2FS_I(inode);
4019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4020 pgoff_t page_idx = 0, last_idx;
4021 unsigned int reserved_blocks = 0;
4022 int ret;
4023
4024 if (!f2fs_sb_has_compression(sbi))
4025 return -EOPNOTSUPP;
4026
4027 if (f2fs_readonly(sbi->sb))
4028 return -EROFS;
4029
4030 ret = mnt_want_write_file(filp);
4031 if (ret)
4032 return ret;
4033
4034 f2fs_balance_fs(sbi, true);
4035
4036 inode_lock(inode);
4037
4038 if (!f2fs_compressed_file(inode) ||
4039 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4040 ret = -EINVAL;
4041 goto unlock_inode;
4042 }
4043
4044 if (atomic_read(&fi->i_compr_blocks))
4045 goto unlock_inode;
4046
4047 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
4048 filemap_invalidate_lock(inode->i_mapping);
4049
4050 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4051
4052 while (page_idx < last_idx) {
4053 struct dnode_of_data dn;
4054 pgoff_t end_offset, count;
4055
4056 f2fs_lock_op(sbi);
4057
4058 set_new_dnode(&dn, inode, NULL, NULL, 0);
4059 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
4060 if (ret) {
4061 f2fs_unlock_op(sbi);
4062 if (ret == -ENOENT) {
4063 page_idx = f2fs_get_next_page_offset(&dn,
4064 page_idx);
4065 ret = 0;
4066 continue;
4067 }
4068 break;
4069 }
4070
4071 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4072 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
4073 count = round_up(count, fi->i_cluster_size);
4074
4075 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
4076
4077 f2fs_put_dnode(&dn);
4078
4079 f2fs_unlock_op(sbi);
4080
4081 if (ret < 0)
4082 break;
4083
4084 page_idx += count;
4085 }
4086
4087 filemap_invalidate_unlock(inode->i_mapping);
4088 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
4089
4090 if (!ret) {
4091 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
4092 inode_set_ctime_current(inode);
4093 f2fs_mark_inode_dirty_sync(inode, true);
4094 }
4095 unlock_inode:
4096 if (reserved_blocks)
4097 f2fs_update_time(sbi, REQ_TIME);
4098 inode_unlock(inode);
4099 mnt_drop_write_file(filp);
4100
4101 if (!ret) {
4102 ret = put_user(reserved_blocks, (u64 __user *)arg);
4103 } else if (reserved_blocks &&
4104 atomic_read(&fi->i_compr_blocks)) {
4105 set_sbi_flag(sbi, SBI_NEED_FSCK);
4106 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
4107 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
4108 "run fsck to fix.",
4109 __func__, inode->i_ino, inode->i_blocks,
4110 reserved_blocks,
4111 atomic_read(&fi->i_compr_blocks));
4112 }
4113
4114 return ret;
4115 }
4116
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)4117 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
4118 pgoff_t off, block_t block, block_t len, u32 flags)
4119 {
4120 sector_t sector = SECTOR_FROM_BLOCK(block);
4121 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
4122 int ret = 0;
4123
4124 if (flags & F2FS_TRIM_FILE_DISCARD) {
4125 if (bdev_max_secure_erase_sectors(bdev))
4126 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4127 GFP_NOFS);
4128 else
4129 ret = blkdev_issue_discard(bdev, sector, nr_sects,
4130 GFP_NOFS);
4131 }
4132
4133 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4134 if (IS_ENCRYPTED(inode))
4135 ret = fscrypt_zeroout_range(inode, off, block, len);
4136 else
4137 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4138 GFP_NOFS, 0);
4139 }
4140
4141 return ret;
4142 }
4143
f2fs_sec_trim_file(struct file * filp,unsigned long arg)4144 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4145 {
4146 struct inode *inode = file_inode(filp);
4147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4148 struct address_space *mapping = inode->i_mapping;
4149 struct block_device *prev_bdev = NULL;
4150 struct f2fs_sectrim_range range;
4151 pgoff_t index, pg_end, prev_index = 0;
4152 block_t prev_block = 0, len = 0;
4153 loff_t end_addr;
4154 bool to_end = false;
4155 int ret = 0;
4156
4157 if (!(filp->f_mode & FMODE_WRITE))
4158 return -EBADF;
4159
4160 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4161 sizeof(range)))
4162 return -EFAULT;
4163
4164 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4165 !S_ISREG(inode->i_mode))
4166 return -EINVAL;
4167
4168 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4169 !f2fs_hw_support_discard(sbi)) ||
4170 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4171 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4172 return -EOPNOTSUPP;
4173
4174 ret = mnt_want_write_file(filp);
4175 if (ret)
4176 return ret;
4177 inode_lock(inode);
4178
4179 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4180 range.start >= inode->i_size) {
4181 ret = -EINVAL;
4182 goto err;
4183 }
4184
4185 if (range.len == 0)
4186 goto err;
4187
4188 if (inode->i_size - range.start > range.len) {
4189 end_addr = range.start + range.len;
4190 } else {
4191 end_addr = range.len == (u64)-1 ?
4192 sbi->sb->s_maxbytes : inode->i_size;
4193 to_end = true;
4194 }
4195
4196 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4197 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4198 ret = -EINVAL;
4199 goto err;
4200 }
4201
4202 index = F2FS_BYTES_TO_BLK(range.start);
4203 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4204
4205 ret = f2fs_convert_inline_inode(inode);
4206 if (ret)
4207 goto err;
4208
4209 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4210 filemap_invalidate_lock(mapping);
4211
4212 ret = filemap_write_and_wait_range(mapping, range.start,
4213 to_end ? LLONG_MAX : end_addr - 1);
4214 if (ret)
4215 goto out;
4216
4217 truncate_inode_pages_range(mapping, range.start,
4218 to_end ? -1 : end_addr - 1);
4219
4220 while (index < pg_end) {
4221 struct dnode_of_data dn;
4222 pgoff_t end_offset, count;
4223 int i;
4224
4225 set_new_dnode(&dn, inode, NULL, NULL, 0);
4226 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4227 if (ret) {
4228 if (ret == -ENOENT) {
4229 index = f2fs_get_next_page_offset(&dn, index);
4230 continue;
4231 }
4232 goto out;
4233 }
4234
4235 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4236 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4237 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4238 struct block_device *cur_bdev;
4239 block_t blkaddr = f2fs_data_blkaddr(&dn);
4240
4241 if (!__is_valid_data_blkaddr(blkaddr))
4242 continue;
4243
4244 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4245 DATA_GENERIC_ENHANCE)) {
4246 ret = -EFSCORRUPTED;
4247 f2fs_put_dnode(&dn);
4248 goto out;
4249 }
4250
4251 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4252 if (f2fs_is_multi_device(sbi)) {
4253 int di = f2fs_target_device_index(sbi, blkaddr);
4254
4255 blkaddr -= FDEV(di).start_blk;
4256 }
4257
4258 if (len) {
4259 if (prev_bdev == cur_bdev &&
4260 index == prev_index + len &&
4261 blkaddr == prev_block + len) {
4262 len++;
4263 } else {
4264 ret = f2fs_secure_erase(prev_bdev,
4265 inode, prev_index, prev_block,
4266 len, range.flags);
4267 if (ret) {
4268 f2fs_put_dnode(&dn);
4269 goto out;
4270 }
4271
4272 len = 0;
4273 }
4274 }
4275
4276 if (!len) {
4277 prev_bdev = cur_bdev;
4278 prev_index = index;
4279 prev_block = blkaddr;
4280 len = 1;
4281 }
4282 }
4283
4284 f2fs_put_dnode(&dn);
4285
4286 if (fatal_signal_pending(current)) {
4287 ret = -EINTR;
4288 goto out;
4289 }
4290 cond_resched();
4291 }
4292
4293 if (len)
4294 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4295 prev_block, len, range.flags);
4296 f2fs_update_time(sbi, REQ_TIME);
4297 out:
4298 filemap_invalidate_unlock(mapping);
4299 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4300 err:
4301 inode_unlock(inode);
4302 mnt_drop_write_file(filp);
4303
4304 return ret;
4305 }
4306
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4307 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4308 {
4309 struct inode *inode = file_inode(filp);
4310 struct f2fs_comp_option option;
4311
4312 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4313 return -EOPNOTSUPP;
4314
4315 inode_lock_shared(inode);
4316
4317 if (!f2fs_compressed_file(inode)) {
4318 inode_unlock_shared(inode);
4319 return -ENODATA;
4320 }
4321
4322 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4323 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4324
4325 inode_unlock_shared(inode);
4326
4327 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4328 sizeof(option)))
4329 return -EFAULT;
4330
4331 return 0;
4332 }
4333
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4334 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4335 {
4336 struct inode *inode = file_inode(filp);
4337 struct f2fs_inode_info *fi = F2FS_I(inode);
4338 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4339 struct f2fs_comp_option option;
4340 int ret = 0;
4341
4342 if (!f2fs_sb_has_compression(sbi))
4343 return -EOPNOTSUPP;
4344
4345 if (!(filp->f_mode & FMODE_WRITE))
4346 return -EBADF;
4347
4348 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4349 sizeof(option)))
4350 return -EFAULT;
4351
4352 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4353 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4354 option.algorithm >= COMPRESS_MAX)
4355 return -EINVAL;
4356
4357 ret = mnt_want_write_file(filp);
4358 if (ret)
4359 return ret;
4360 inode_lock(inode);
4361
4362 f2fs_down_write(&F2FS_I(inode)->i_sem);
4363 if (!f2fs_compressed_file(inode)) {
4364 ret = -EINVAL;
4365 goto out;
4366 }
4367
4368 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4369 ret = -EBUSY;
4370 goto out;
4371 }
4372
4373 if (F2FS_HAS_BLOCKS(inode)) {
4374 ret = -EFBIG;
4375 goto out;
4376 }
4377
4378 fi->i_compress_algorithm = option.algorithm;
4379 fi->i_log_cluster_size = option.log_cluster_size;
4380 fi->i_cluster_size = BIT(option.log_cluster_size);
4381 /* Set default level */
4382 if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4383 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4384 else
4385 fi->i_compress_level = 0;
4386 /* Adjust mount option level */
4387 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4388 F2FS_OPTION(sbi).compress_level)
4389 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4390 f2fs_mark_inode_dirty_sync(inode, true);
4391
4392 if (!f2fs_is_compress_backend_ready(inode))
4393 f2fs_warn(sbi, "compression algorithm is successfully set, "
4394 "but current kernel doesn't support this algorithm.");
4395 out:
4396 f2fs_up_write(&fi->i_sem);
4397 inode_unlock(inode);
4398 mnt_drop_write_file(filp);
4399
4400 return ret;
4401 }
4402
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4403 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4404 {
4405 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4406 struct address_space *mapping = inode->i_mapping;
4407 struct page *page;
4408 pgoff_t redirty_idx = page_idx;
4409 int i, page_len = 0, ret = 0;
4410
4411 page_cache_ra_unbounded(&ractl, len, 0);
4412
4413 for (i = 0; i < len; i++, page_idx++) {
4414 page = read_cache_page(mapping, page_idx, NULL, NULL);
4415 if (IS_ERR(page)) {
4416 ret = PTR_ERR(page);
4417 break;
4418 }
4419 page_len++;
4420 }
4421
4422 for (i = 0; i < page_len; i++, redirty_idx++) {
4423 page = find_lock_page(mapping, redirty_idx);
4424
4425 /* It will never fail, when page has pinned above */
4426 f2fs_bug_on(F2FS_I_SB(inode), !page);
4427
4428 f2fs_wait_on_page_writeback(page, DATA, true, true);
4429
4430 set_page_dirty(page);
4431 set_page_private_gcing(page);
4432 f2fs_put_page(page, 1);
4433 f2fs_put_page(page, 0);
4434 }
4435
4436 return ret;
4437 }
4438
f2fs_ioc_decompress_file(struct file * filp)4439 static int f2fs_ioc_decompress_file(struct file *filp)
4440 {
4441 struct inode *inode = file_inode(filp);
4442 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4443 struct f2fs_inode_info *fi = F2FS_I(inode);
4444 pgoff_t page_idx = 0, last_idx, cluster_idx;
4445 int ret;
4446
4447 if (!f2fs_sb_has_compression(sbi) ||
4448 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4449 return -EOPNOTSUPP;
4450
4451 if (!(filp->f_mode & FMODE_WRITE))
4452 return -EBADF;
4453
4454 f2fs_balance_fs(sbi, true);
4455
4456 ret = mnt_want_write_file(filp);
4457 if (ret)
4458 return ret;
4459 inode_lock(inode);
4460
4461 if (!f2fs_is_compress_backend_ready(inode)) {
4462 ret = -EOPNOTSUPP;
4463 goto out;
4464 }
4465
4466 if (!f2fs_compressed_file(inode) ||
4467 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4468 ret = -EINVAL;
4469 goto out;
4470 }
4471
4472 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4473 if (ret)
4474 goto out;
4475
4476 if (!atomic_read(&fi->i_compr_blocks))
4477 goto out;
4478
4479 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4480 last_idx >>= fi->i_log_cluster_size;
4481
4482 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4483 page_idx = cluster_idx << fi->i_log_cluster_size;
4484
4485 if (!f2fs_is_compressed_cluster(inode, page_idx))
4486 continue;
4487
4488 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4489 if (ret < 0)
4490 break;
4491
4492 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4493 ret = filemap_fdatawrite(inode->i_mapping);
4494 if (ret < 0)
4495 break;
4496 }
4497
4498 cond_resched();
4499 if (fatal_signal_pending(current)) {
4500 ret = -EINTR;
4501 break;
4502 }
4503 }
4504
4505 if (!ret)
4506 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4507 LLONG_MAX);
4508
4509 if (ret)
4510 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4511 __func__, ret);
4512 f2fs_update_time(sbi, REQ_TIME);
4513 out:
4514 inode_unlock(inode);
4515 mnt_drop_write_file(filp);
4516
4517 return ret;
4518 }
4519
f2fs_ioc_compress_file(struct file * filp)4520 static int f2fs_ioc_compress_file(struct file *filp)
4521 {
4522 struct inode *inode = file_inode(filp);
4523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4524 struct f2fs_inode_info *fi = F2FS_I(inode);
4525 pgoff_t page_idx = 0, last_idx, cluster_idx;
4526 int ret;
4527
4528 if (!f2fs_sb_has_compression(sbi) ||
4529 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4530 return -EOPNOTSUPP;
4531
4532 if (!(filp->f_mode & FMODE_WRITE))
4533 return -EBADF;
4534
4535 f2fs_balance_fs(sbi, true);
4536
4537 ret = mnt_want_write_file(filp);
4538 if (ret)
4539 return ret;
4540 inode_lock(inode);
4541
4542 if (!f2fs_is_compress_backend_ready(inode)) {
4543 ret = -EOPNOTSUPP;
4544 goto out;
4545 }
4546
4547 if (!f2fs_compressed_file(inode) ||
4548 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4549 ret = -EINVAL;
4550 goto out;
4551 }
4552
4553 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4554 if (ret)
4555 goto out;
4556
4557 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4558
4559 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4560 last_idx >>= fi->i_log_cluster_size;
4561
4562 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4563 page_idx = cluster_idx << fi->i_log_cluster_size;
4564
4565 if (f2fs_is_sparse_cluster(inode, page_idx))
4566 continue;
4567
4568 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4569 if (ret < 0)
4570 break;
4571
4572 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4573 ret = filemap_fdatawrite(inode->i_mapping);
4574 if (ret < 0)
4575 break;
4576 }
4577
4578 cond_resched();
4579 if (fatal_signal_pending(current)) {
4580 ret = -EINTR;
4581 break;
4582 }
4583 }
4584
4585 if (!ret)
4586 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4587 LLONG_MAX);
4588
4589 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4590
4591 if (ret)
4592 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4593 __func__, ret);
4594 f2fs_update_time(sbi, REQ_TIME);
4595 out:
4596 inode_unlock(inode);
4597 mnt_drop_write_file(filp);
4598
4599 return ret;
4600 }
4601
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4602 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4603 {
4604 switch (cmd) {
4605 case FS_IOC_GETVERSION:
4606 return f2fs_ioc_getversion(filp, arg);
4607 case F2FS_IOC_START_ATOMIC_WRITE:
4608 return f2fs_ioc_start_atomic_write(filp, false);
4609 case F2FS_IOC_START_ATOMIC_REPLACE:
4610 return f2fs_ioc_start_atomic_write(filp, true);
4611 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4612 return f2fs_ioc_commit_atomic_write(filp);
4613 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4614 return f2fs_ioc_abort_atomic_write(filp);
4615 case F2FS_IOC_START_VOLATILE_WRITE:
4616 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4617 return -EOPNOTSUPP;
4618 case F2FS_IOC_SHUTDOWN:
4619 return f2fs_ioc_shutdown(filp, arg);
4620 case FITRIM:
4621 return f2fs_ioc_fitrim(filp, arg);
4622 case FS_IOC_SET_ENCRYPTION_POLICY:
4623 return f2fs_ioc_set_encryption_policy(filp, arg);
4624 case FS_IOC_GET_ENCRYPTION_POLICY:
4625 return f2fs_ioc_get_encryption_policy(filp, arg);
4626 case FS_IOC_GET_ENCRYPTION_PWSALT:
4627 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4628 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4629 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4630 case FS_IOC_ADD_ENCRYPTION_KEY:
4631 return f2fs_ioc_add_encryption_key(filp, arg);
4632 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4633 return f2fs_ioc_remove_encryption_key(filp, arg);
4634 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4635 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4636 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4637 return f2fs_ioc_get_encryption_key_status(filp, arg);
4638 case FS_IOC_GET_ENCRYPTION_NONCE:
4639 return f2fs_ioc_get_encryption_nonce(filp, arg);
4640 case F2FS_IOC_GARBAGE_COLLECT:
4641 return f2fs_ioc_gc(filp, arg);
4642 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4643 return f2fs_ioc_gc_range(filp, arg);
4644 case F2FS_IOC_WRITE_CHECKPOINT:
4645 return f2fs_ioc_write_checkpoint(filp);
4646 case F2FS_IOC_DEFRAGMENT:
4647 return f2fs_ioc_defragment(filp, arg);
4648 case F2FS_IOC_MOVE_RANGE:
4649 return f2fs_ioc_move_range(filp, arg);
4650 case F2FS_IOC_FLUSH_DEVICE:
4651 return f2fs_ioc_flush_device(filp, arg);
4652 case F2FS_IOC_GET_FEATURES:
4653 return f2fs_ioc_get_features(filp, arg);
4654 case F2FS_IOC_GET_PIN_FILE:
4655 return f2fs_ioc_get_pin_file(filp, arg);
4656 case F2FS_IOC_SET_PIN_FILE:
4657 return f2fs_ioc_set_pin_file(filp, arg);
4658 case F2FS_IOC_PRECACHE_EXTENTS:
4659 return f2fs_ioc_precache_extents(filp);
4660 case F2FS_IOC_RESIZE_FS:
4661 return f2fs_ioc_resize_fs(filp, arg);
4662 case FS_IOC_ENABLE_VERITY:
4663 return f2fs_ioc_enable_verity(filp, arg);
4664 case FS_IOC_MEASURE_VERITY:
4665 return f2fs_ioc_measure_verity(filp, arg);
4666 case FS_IOC_READ_VERITY_METADATA:
4667 return f2fs_ioc_read_verity_metadata(filp, arg);
4668 case FS_IOC_GETFSLABEL:
4669 return f2fs_ioc_getfslabel(filp, arg);
4670 case FS_IOC_SETFSLABEL:
4671 return f2fs_ioc_setfslabel(filp, arg);
4672 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4673 return f2fs_ioc_get_compress_blocks(filp, arg);
4674 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4675 return f2fs_release_compress_blocks(filp, arg);
4676 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4677 return f2fs_reserve_compress_blocks(filp, arg);
4678 case F2FS_IOC_SEC_TRIM_FILE:
4679 return f2fs_sec_trim_file(filp, arg);
4680 case F2FS_IOC_GET_COMPRESS_OPTION:
4681 return f2fs_ioc_get_compress_option(filp, arg);
4682 case F2FS_IOC_SET_COMPRESS_OPTION:
4683 return f2fs_ioc_set_compress_option(filp, arg);
4684 case F2FS_IOC_DECOMPRESS_FILE:
4685 return f2fs_ioc_decompress_file(filp);
4686 case F2FS_IOC_COMPRESS_FILE:
4687 return f2fs_ioc_compress_file(filp);
4688 case F2FS_IOC_GET_DEV_ALIAS_FILE:
4689 return f2fs_ioc_get_dev_alias_file(filp, arg);
4690 case F2FS_IOC_IO_PRIO:
4691 return f2fs_ioc_io_prio(filp, arg);
4692 default:
4693 return -ENOTTY;
4694 }
4695 }
4696
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4697 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4698 {
4699 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4700 return -EIO;
4701 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4702 return -ENOSPC;
4703
4704 return __f2fs_ioctl(filp, cmd, arg);
4705 }
4706
4707 /*
4708 * Return %true if the given read or write request should use direct I/O, or
4709 * %false if it should use buffered I/O.
4710 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4711 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4712 struct iov_iter *iter)
4713 {
4714 unsigned int align;
4715
4716 if (!(iocb->ki_flags & IOCB_DIRECT))
4717 return false;
4718
4719 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4720 return false;
4721
4722 /*
4723 * Direct I/O not aligned to the disk's logical_block_size will be
4724 * attempted, but will fail with -EINVAL.
4725 *
4726 * f2fs additionally requires that direct I/O be aligned to the
4727 * filesystem block size, which is often a stricter requirement.
4728 * However, f2fs traditionally falls back to buffered I/O on requests
4729 * that are logical_block_size-aligned but not fs-block aligned.
4730 *
4731 * The below logic implements this behavior.
4732 */
4733 align = iocb->ki_pos | iov_iter_alignment(iter);
4734 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4735 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4736 return false;
4737
4738 return true;
4739 }
4740
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4741 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4742 unsigned int flags)
4743 {
4744 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4745
4746 dec_page_count(sbi, F2FS_DIO_READ);
4747 if (error)
4748 return error;
4749 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4750 return 0;
4751 }
4752
4753 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4754 .end_io = f2fs_dio_read_end_io,
4755 };
4756
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4757 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4758 {
4759 struct file *file = iocb->ki_filp;
4760 struct inode *inode = file_inode(file);
4761 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4762 struct f2fs_inode_info *fi = F2FS_I(inode);
4763 const loff_t pos = iocb->ki_pos;
4764 const size_t count = iov_iter_count(to);
4765 struct iomap_dio *dio;
4766 ssize_t ret;
4767
4768 if (count == 0)
4769 return 0; /* skip atime update */
4770
4771 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4772
4773 if (iocb->ki_flags & IOCB_NOWAIT) {
4774 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4775 ret = -EAGAIN;
4776 goto out;
4777 }
4778 } else {
4779 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4780 }
4781
4782 /* dio is not compatible w/ atomic file */
4783 if (f2fs_is_atomic_file(inode)) {
4784 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4785 ret = -EOPNOTSUPP;
4786 goto out;
4787 }
4788
4789 /*
4790 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4791 * the higher-level function iomap_dio_rw() in order to ensure that the
4792 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4793 */
4794 inc_page_count(sbi, F2FS_DIO_READ);
4795 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4796 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4797 if (IS_ERR_OR_NULL(dio)) {
4798 ret = PTR_ERR_OR_ZERO(dio);
4799 if (ret != -EIOCBQUEUED)
4800 dec_page_count(sbi, F2FS_DIO_READ);
4801 } else {
4802 ret = iomap_dio_complete(dio);
4803 }
4804
4805 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4806
4807 file_accessed(file);
4808 out:
4809 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4810 return ret;
4811 }
4812
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4813 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4814 int rw)
4815 {
4816 struct inode *inode = file_inode(file);
4817 char *buf, *path;
4818
4819 buf = f2fs_getname(F2FS_I_SB(inode));
4820 if (!buf)
4821 return;
4822 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4823 if (IS_ERR(path))
4824 goto free_buf;
4825 if (rw == WRITE)
4826 trace_f2fs_datawrite_start(inode, pos, count,
4827 current->pid, path, current->comm);
4828 else
4829 trace_f2fs_dataread_start(inode, pos, count,
4830 current->pid, path, current->comm);
4831 free_buf:
4832 f2fs_putname(buf);
4833 }
4834
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4835 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4836 {
4837 struct inode *inode = file_inode(iocb->ki_filp);
4838 const loff_t pos = iocb->ki_pos;
4839 ssize_t ret;
4840 bool dio;
4841
4842 if (!f2fs_is_compress_backend_ready(inode))
4843 return -EOPNOTSUPP;
4844
4845 if (trace_f2fs_dataread_start_enabled())
4846 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4847 iov_iter_count(to), READ);
4848
4849 dio = f2fs_should_use_dio(inode, iocb, to);
4850
4851 /* In LFS mode, if there is inflight dio, wait for its completion */
4852 if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4853 get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE) &&
4854 (!f2fs_is_pinned_file(inode) || !dio))
4855 inode_dio_wait(inode);
4856
4857 if (dio) {
4858 ret = f2fs_dio_read_iter(iocb, to);
4859 } else {
4860 ret = filemap_read(iocb, to, 0);
4861 if (ret > 0)
4862 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4863 APP_BUFFERED_READ_IO, ret);
4864 }
4865 if (trace_f2fs_dataread_end_enabled())
4866 trace_f2fs_dataread_end(inode, pos, ret);
4867 return ret;
4868 }
4869
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4870 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4871 struct pipe_inode_info *pipe,
4872 size_t len, unsigned int flags)
4873 {
4874 struct inode *inode = file_inode(in);
4875 const loff_t pos = *ppos;
4876 ssize_t ret;
4877
4878 if (!f2fs_is_compress_backend_ready(inode))
4879 return -EOPNOTSUPP;
4880
4881 if (trace_f2fs_dataread_start_enabled())
4882 f2fs_trace_rw_file_path(in, pos, len, READ);
4883
4884 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4885 if (ret > 0)
4886 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4887 APP_BUFFERED_READ_IO, ret);
4888
4889 if (trace_f2fs_dataread_end_enabled())
4890 trace_f2fs_dataread_end(inode, pos, ret);
4891 return ret;
4892 }
4893
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4894 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4895 {
4896 struct file *file = iocb->ki_filp;
4897 struct inode *inode = file_inode(file);
4898 ssize_t count;
4899 int err;
4900
4901 if (IS_IMMUTABLE(inode))
4902 return -EPERM;
4903
4904 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4905 return -EPERM;
4906
4907 count = generic_write_checks(iocb, from);
4908 if (count <= 0)
4909 return count;
4910
4911 err = file_modified(file);
4912 if (err)
4913 return err;
4914
4915 filemap_invalidate_lock(inode->i_mapping);
4916 f2fs_zero_post_eof_page(inode, iocb->ki_pos + iov_iter_count(from));
4917 filemap_invalidate_unlock(inode->i_mapping);
4918 return count;
4919 }
4920
4921 /*
4922 * Preallocate blocks for a write request, if it is possible and helpful to do
4923 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4924 * blocks were preallocated, or a negative errno value if something went
4925 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4926 * requested blocks (not just some of them) have been allocated.
4927 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4928 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4929 bool dio)
4930 {
4931 struct inode *inode = file_inode(iocb->ki_filp);
4932 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4933 const loff_t pos = iocb->ki_pos;
4934 const size_t count = iov_iter_count(iter);
4935 struct f2fs_map_blocks map = {};
4936 int flag;
4937 int ret;
4938
4939 /* If it will be an out-of-place direct write, don't bother. */
4940 if (dio && f2fs_lfs_mode(sbi))
4941 return 0;
4942 /*
4943 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4944 * buffered IO, if DIO meets any holes.
4945 */
4946 if (dio && i_size_read(inode) &&
4947 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4948 return 0;
4949
4950 /* No-wait I/O can't allocate blocks. */
4951 if (iocb->ki_flags & IOCB_NOWAIT)
4952 return 0;
4953
4954 /* If it will be a short write, don't bother. */
4955 if (fault_in_iov_iter_readable(iter, count))
4956 return 0;
4957
4958 if (f2fs_has_inline_data(inode)) {
4959 /* If the data will fit inline, don't bother. */
4960 if (pos + count <= MAX_INLINE_DATA(inode))
4961 return 0;
4962 ret = f2fs_convert_inline_inode(inode);
4963 if (ret)
4964 return ret;
4965 }
4966
4967 /* Do not preallocate blocks that will be written partially in 4KB. */
4968 map.m_lblk = F2FS_BLK_ALIGN(pos);
4969 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4970 if (map.m_len > map.m_lblk)
4971 map.m_len -= map.m_lblk;
4972 else
4973 return 0;
4974
4975 if (!IS_DEVICE_ALIASING(inode))
4976 map.m_may_create = true;
4977 if (dio) {
4978 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4979 inode->i_write_hint);
4980 flag = F2FS_GET_BLOCK_PRE_DIO;
4981 } else {
4982 map.m_seg_type = NO_CHECK_TYPE;
4983 flag = F2FS_GET_BLOCK_PRE_AIO;
4984 }
4985
4986 ret = f2fs_map_blocks(inode, &map, flag);
4987 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4988 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4989 return ret;
4990 if (ret == 0)
4991 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4992 return map.m_len;
4993 }
4994
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4995 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4996 struct iov_iter *from)
4997 {
4998 struct file *file = iocb->ki_filp;
4999 struct inode *inode = file_inode(file);
5000 ssize_t ret;
5001
5002 if (iocb->ki_flags & IOCB_NOWAIT)
5003 return -EOPNOTSUPP;
5004
5005 ret = generic_perform_write(iocb, from);
5006
5007 if (ret > 0) {
5008 f2fs_update_iostat(F2FS_I_SB(inode), inode,
5009 APP_BUFFERED_IO, ret);
5010 }
5011 return ret;
5012 }
5013
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)5014 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
5015 unsigned int flags)
5016 {
5017 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
5018
5019 dec_page_count(sbi, F2FS_DIO_WRITE);
5020 if (error)
5021 return error;
5022 f2fs_update_time(sbi, REQ_TIME);
5023 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
5024 return 0;
5025 }
5026
f2fs_dio_write_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)5027 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
5028 struct bio *bio, loff_t file_offset)
5029 {
5030 struct inode *inode = iter->inode;
5031 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5032 enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
5033 enum temp_type temp = f2fs_get_segment_temp(sbi, type);
5034
5035 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
5036 submit_bio(bio);
5037 }
5038
5039 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
5040 .end_io = f2fs_dio_write_end_io,
5041 .submit_io = f2fs_dio_write_submit_io,
5042 };
5043
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)5044 static void f2fs_flush_buffered_write(struct address_space *mapping,
5045 loff_t start_pos, loff_t end_pos)
5046 {
5047 int ret;
5048
5049 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
5050 if (ret < 0)
5051 return;
5052 invalidate_mapping_pages(mapping,
5053 start_pos >> PAGE_SHIFT,
5054 end_pos >> PAGE_SHIFT);
5055 }
5056
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)5057 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
5058 bool *may_need_sync)
5059 {
5060 struct file *file = iocb->ki_filp;
5061 struct inode *inode = file_inode(file);
5062 struct f2fs_inode_info *fi = F2FS_I(inode);
5063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5064 const bool do_opu = f2fs_lfs_mode(sbi);
5065 const loff_t pos = iocb->ki_pos;
5066 const ssize_t count = iov_iter_count(from);
5067 unsigned int dio_flags;
5068 struct iomap_dio *dio;
5069 ssize_t ret;
5070
5071 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
5072
5073 if (iocb->ki_flags & IOCB_NOWAIT) {
5074 /* f2fs_convert_inline_inode() and block allocation can block */
5075 if (f2fs_has_inline_data(inode) ||
5076 !f2fs_overwrite_io(inode, pos, count)) {
5077 ret = -EAGAIN;
5078 goto out;
5079 }
5080
5081 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
5082 ret = -EAGAIN;
5083 goto out;
5084 }
5085 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
5086 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5087 ret = -EAGAIN;
5088 goto out;
5089 }
5090 } else {
5091 ret = f2fs_convert_inline_inode(inode);
5092 if (ret)
5093 goto out;
5094
5095 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
5096 if (do_opu)
5097 f2fs_down_read(&fi->i_gc_rwsem[READ]);
5098 }
5099
5100 /*
5101 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
5102 * the higher-level function iomap_dio_rw() in order to ensure that the
5103 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
5104 */
5105 inc_page_count(sbi, F2FS_DIO_WRITE);
5106 dio_flags = 0;
5107 if (pos + count > inode->i_size)
5108 dio_flags |= IOMAP_DIO_FORCE_WAIT;
5109 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
5110 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
5111 if (IS_ERR_OR_NULL(dio)) {
5112 ret = PTR_ERR_OR_ZERO(dio);
5113 if (ret == -ENOTBLK)
5114 ret = 0;
5115 if (ret != -EIOCBQUEUED)
5116 dec_page_count(sbi, F2FS_DIO_WRITE);
5117 } else {
5118 ret = iomap_dio_complete(dio);
5119 }
5120
5121 if (do_opu)
5122 f2fs_up_read(&fi->i_gc_rwsem[READ]);
5123 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5124
5125 if (ret < 0)
5126 goto out;
5127 if (pos + ret > inode->i_size)
5128 f2fs_i_size_write(inode, pos + ret);
5129 if (!do_opu)
5130 set_inode_flag(inode, FI_UPDATE_WRITE);
5131
5132 if (iov_iter_count(from)) {
5133 ssize_t ret2;
5134 loff_t bufio_start_pos = iocb->ki_pos;
5135
5136 /*
5137 * The direct write was partial, so we need to fall back to a
5138 * buffered write for the remainder.
5139 */
5140
5141 ret2 = f2fs_buffered_write_iter(iocb, from);
5142 if (iov_iter_count(from))
5143 f2fs_write_failed(inode, iocb->ki_pos);
5144 if (ret2 < 0)
5145 goto out;
5146
5147 /*
5148 * Ensure that the pagecache pages are written to disk and
5149 * invalidated to preserve the expected O_DIRECT semantics.
5150 */
5151 if (ret2 > 0) {
5152 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5153
5154 ret += ret2;
5155
5156 f2fs_flush_buffered_write(file->f_mapping,
5157 bufio_start_pos,
5158 bufio_end_pos);
5159 }
5160 } else {
5161 /* iomap_dio_rw() already handled the generic_write_sync(). */
5162 *may_need_sync = false;
5163 }
5164 out:
5165 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5166 return ret;
5167 }
5168
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)5169 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5170 {
5171 struct inode *inode = file_inode(iocb->ki_filp);
5172 const loff_t orig_pos = iocb->ki_pos;
5173 const size_t orig_count = iov_iter_count(from);
5174 loff_t target_size;
5175 bool dio;
5176 bool may_need_sync = true;
5177 int preallocated;
5178 const loff_t pos = iocb->ki_pos;
5179 const ssize_t count = iov_iter_count(from);
5180 ssize_t ret;
5181
5182 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5183 ret = -EIO;
5184 goto out;
5185 }
5186
5187 if (iocb->ki_flags & IOCB_DONTCACHE) {
5188 ret = -EOPNOTSUPP;
5189 goto out;
5190 }
5191
5192 if (!f2fs_is_compress_backend_ready(inode)) {
5193 ret = -EOPNOTSUPP;
5194 goto out;
5195 }
5196
5197 if (iocb->ki_flags & IOCB_NOWAIT) {
5198 if (!inode_trylock(inode)) {
5199 ret = -EAGAIN;
5200 goto out;
5201 }
5202 } else {
5203 inode_lock(inode);
5204 }
5205
5206 if (f2fs_is_pinned_file(inode) &&
5207 !f2fs_overwrite_io(inode, pos, count)) {
5208 ret = -EIO;
5209 goto out_unlock;
5210 }
5211
5212 ret = f2fs_write_checks(iocb, from);
5213 if (ret <= 0)
5214 goto out_unlock;
5215
5216 /* Determine whether we will do a direct write or a buffered write. */
5217 dio = f2fs_should_use_dio(inode, iocb, from);
5218
5219 /* dio is not compatible w/ atomic write */
5220 if (dio && f2fs_is_atomic_file(inode)) {
5221 ret = -EOPNOTSUPP;
5222 goto out_unlock;
5223 }
5224
5225 /* Possibly preallocate the blocks for the write. */
5226 target_size = iocb->ki_pos + iov_iter_count(from);
5227 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5228 if (preallocated < 0) {
5229 ret = preallocated;
5230 } else {
5231 if (trace_f2fs_datawrite_start_enabled())
5232 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5233 orig_count, WRITE);
5234
5235 /* Do the actual write. */
5236 ret = dio ?
5237 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5238 f2fs_buffered_write_iter(iocb, from);
5239
5240 if (trace_f2fs_datawrite_end_enabled())
5241 trace_f2fs_datawrite_end(inode, orig_pos, ret);
5242 }
5243
5244 /* Don't leave any preallocated blocks around past i_size. */
5245 if (preallocated && i_size_read(inode) < target_size) {
5246 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5247 filemap_invalidate_lock(inode->i_mapping);
5248 if (!f2fs_truncate(inode))
5249 file_dont_truncate(inode);
5250 filemap_invalidate_unlock(inode->i_mapping);
5251 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5252 } else {
5253 file_dont_truncate(inode);
5254 }
5255
5256 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5257 out_unlock:
5258 inode_unlock(inode);
5259 out:
5260 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5261
5262 if (ret > 0 && may_need_sync)
5263 ret = generic_write_sync(iocb, ret);
5264
5265 /* If buffered IO was forced, flush and drop the data from
5266 * the page cache to preserve O_DIRECT semantics
5267 */
5268 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5269 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5270 orig_pos,
5271 orig_pos + ret - 1);
5272
5273 return ret;
5274 }
5275
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)5276 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5277 int advice)
5278 {
5279 struct address_space *mapping;
5280 struct backing_dev_info *bdi;
5281 struct inode *inode = file_inode(filp);
5282 int err;
5283
5284 if (advice == POSIX_FADV_SEQUENTIAL) {
5285 if (S_ISFIFO(inode->i_mode))
5286 return -ESPIPE;
5287
5288 mapping = filp->f_mapping;
5289 if (!mapping || len < 0)
5290 return -EINVAL;
5291
5292 bdi = inode_to_bdi(mapping->host);
5293 filp->f_ra.ra_pages = bdi->ra_pages *
5294 F2FS_I_SB(inode)->seq_file_ra_mul;
5295 spin_lock(&filp->f_lock);
5296 filp->f_mode &= ~FMODE_RANDOM;
5297 spin_unlock(&filp->f_lock);
5298 return 0;
5299 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5300 /* Load extent cache at the first readahead. */
5301 f2fs_precache_extents(inode);
5302 }
5303
5304 err = generic_fadvise(filp, offset, len, advice);
5305 if (err)
5306 return err;
5307
5308 if (advice == POSIX_FADV_DONTNEED &&
5309 (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5310 f2fs_compressed_file(inode)))
5311 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5312 else if (advice == POSIX_FADV_NOREUSE)
5313 err = f2fs_keep_noreuse_range(inode, offset, len);
5314 return err;
5315 }
5316
5317 #ifdef CONFIG_COMPAT
5318 struct compat_f2fs_gc_range {
5319 u32 sync;
5320 compat_u64 start;
5321 compat_u64 len;
5322 };
5323 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5324 struct compat_f2fs_gc_range)
5325
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5326 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5327 {
5328 struct compat_f2fs_gc_range __user *urange;
5329 struct f2fs_gc_range range;
5330 int err;
5331
5332 urange = compat_ptr(arg);
5333 err = get_user(range.sync, &urange->sync);
5334 err |= get_user(range.start, &urange->start);
5335 err |= get_user(range.len, &urange->len);
5336 if (err)
5337 return -EFAULT;
5338
5339 return __f2fs_ioc_gc_range(file, &range);
5340 }
5341
5342 struct compat_f2fs_move_range {
5343 u32 dst_fd;
5344 compat_u64 pos_in;
5345 compat_u64 pos_out;
5346 compat_u64 len;
5347 };
5348 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5349 struct compat_f2fs_move_range)
5350
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5351 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5352 {
5353 struct compat_f2fs_move_range __user *urange;
5354 struct f2fs_move_range range;
5355 int err;
5356
5357 urange = compat_ptr(arg);
5358 err = get_user(range.dst_fd, &urange->dst_fd);
5359 err |= get_user(range.pos_in, &urange->pos_in);
5360 err |= get_user(range.pos_out, &urange->pos_out);
5361 err |= get_user(range.len, &urange->len);
5362 if (err)
5363 return -EFAULT;
5364
5365 return __f2fs_ioc_move_range(file, &range);
5366 }
5367
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5368 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5369 {
5370 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5371 return -EIO;
5372 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5373 return -ENOSPC;
5374
5375 switch (cmd) {
5376 case FS_IOC32_GETVERSION:
5377 cmd = FS_IOC_GETVERSION;
5378 break;
5379 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5380 return f2fs_compat_ioc_gc_range(file, arg);
5381 case F2FS_IOC32_MOVE_RANGE:
5382 return f2fs_compat_ioc_move_range(file, arg);
5383 case F2FS_IOC_START_ATOMIC_WRITE:
5384 case F2FS_IOC_START_ATOMIC_REPLACE:
5385 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5386 case F2FS_IOC_START_VOLATILE_WRITE:
5387 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5388 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5389 case F2FS_IOC_SHUTDOWN:
5390 case FITRIM:
5391 case FS_IOC_SET_ENCRYPTION_POLICY:
5392 case FS_IOC_GET_ENCRYPTION_PWSALT:
5393 case FS_IOC_GET_ENCRYPTION_POLICY:
5394 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5395 case FS_IOC_ADD_ENCRYPTION_KEY:
5396 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5397 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5398 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5399 case FS_IOC_GET_ENCRYPTION_NONCE:
5400 case F2FS_IOC_GARBAGE_COLLECT:
5401 case F2FS_IOC_WRITE_CHECKPOINT:
5402 case F2FS_IOC_DEFRAGMENT:
5403 case F2FS_IOC_FLUSH_DEVICE:
5404 case F2FS_IOC_GET_FEATURES:
5405 case F2FS_IOC_GET_PIN_FILE:
5406 case F2FS_IOC_SET_PIN_FILE:
5407 case F2FS_IOC_PRECACHE_EXTENTS:
5408 case F2FS_IOC_RESIZE_FS:
5409 case FS_IOC_ENABLE_VERITY:
5410 case FS_IOC_MEASURE_VERITY:
5411 case FS_IOC_READ_VERITY_METADATA:
5412 case FS_IOC_GETFSLABEL:
5413 case FS_IOC_SETFSLABEL:
5414 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5415 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5416 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5417 case F2FS_IOC_SEC_TRIM_FILE:
5418 case F2FS_IOC_GET_COMPRESS_OPTION:
5419 case F2FS_IOC_SET_COMPRESS_OPTION:
5420 case F2FS_IOC_DECOMPRESS_FILE:
5421 case F2FS_IOC_COMPRESS_FILE:
5422 case F2FS_IOC_GET_DEV_ALIAS_FILE:
5423 case F2FS_IOC_IO_PRIO:
5424 break;
5425 default:
5426 return -ENOIOCTLCMD;
5427 }
5428 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5429 }
5430 #endif
5431
5432 const struct file_operations f2fs_file_operations = {
5433 .llseek = f2fs_llseek,
5434 .read_iter = f2fs_file_read_iter,
5435 .write_iter = f2fs_file_write_iter,
5436 .iopoll = iocb_bio_iopoll,
5437 .open = f2fs_file_open,
5438 .release = f2fs_release_file,
5439 .mmap = f2fs_file_mmap,
5440 .flush = f2fs_file_flush,
5441 .fsync = f2fs_sync_file,
5442 .fallocate = f2fs_fallocate,
5443 .unlocked_ioctl = f2fs_ioctl,
5444 #ifdef CONFIG_COMPAT
5445 .compat_ioctl = f2fs_compat_ioctl,
5446 #endif
5447 .splice_read = f2fs_file_splice_read,
5448 .splice_write = iter_file_splice_write,
5449 .fadvise = f2fs_file_fadvise,
5450 .fop_flags = FOP_BUFFER_RASYNC | FOP_DONTCACHE,
5451 };
5452