1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 /*
205 * The vfs inode keeps clean during commit, but the f2fs inode
206 * doesn't. So clear the dirty state after commit and let
207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 */
209 f2fs_inode_synced(inode);
210 f2fs_mark_inode_dirty_sync(inode, true);
211 }
212 stat_dec_atomic_inode(inode);
213
214 F2FS_I(inode)->atomic_write_task = NULL;
215
216 if (clean) {
217 f2fs_i_size_write(inode, fi->original_i_size);
218 fi->original_i_size = 0;
219 }
220 /* avoid stale dirty inode during eviction */
221 sync_inode_metadata(inode, 0);
222 }
223
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 block_t new_addr, block_t *old_addr, bool recover)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct dnode_of_data dn;
229 struct node_info ni;
230 int err;
231
232 retry:
233 set_new_dnode(&dn, inode, NULL, NULL, 0);
234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 if (err) {
236 if (err == -ENOMEM) {
237 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 goto retry;
239 }
240 return err;
241 }
242
243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 if (err) {
245 f2fs_put_dnode(&dn);
246 return err;
247 }
248
249 if (recover) {
250 /* dn.data_blkaddr is always valid */
251 if (!__is_valid_data_blkaddr(new_addr)) {
252 if (new_addr == NULL_ADDR)
253 dec_valid_block_count(sbi, inode, 1);
254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 f2fs_update_data_blkaddr(&dn, new_addr);
256 } else {
257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 new_addr, ni.version, true, true);
259 }
260 } else {
261 blkcnt_t count = 1;
262
263 err = inc_valid_block_count(sbi, inode, &count, true);
264 if (err) {
265 f2fs_put_dnode(&dn);
266 return err;
267 }
268
269 *old_addr = dn.data_blkaddr;
270 f2fs_truncate_data_blocks_range(&dn, 1);
271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272
273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 ni.version, true, false);
275 }
276
277 f2fs_put_dnode(&dn);
278
279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 index, old_addr ? *old_addr : 0, new_addr, recover);
281 return 0;
282 }
283
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 bool revoke)
286 {
287 struct revoke_entry *cur, *tmp;
288 pgoff_t start_index = 0;
289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290
291 list_for_each_entry_safe(cur, tmp, head, list) {
292 if (revoke) {
293 __replace_atomic_write_block(inode, cur->index,
294 cur->old_addr, NULL, true);
295 } else if (truncate) {
296 f2fs_truncate_hole(inode, start_index, cur->index);
297 start_index = cur->index + 1;
298 }
299
300 list_del(&cur->list);
301 kmem_cache_free(revoke_entry_slab, cur);
302 }
303
304 if (!revoke && truncate)
305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct inode *cow_inode = fi->cow_inode;
313 struct revoke_entry *new;
314 struct list_head revoke_list;
315 block_t blkaddr;
316 struct dnode_of_data dn;
317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 pgoff_t off = 0, blen, index;
319 int ret = 0, i;
320
321 INIT_LIST_HEAD(&revoke_list);
322
323 while (len) {
324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325
326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 if (ret && ret != -ENOENT) {
329 goto out;
330 } else if (ret == -ENOENT) {
331 ret = 0;
332 if (dn.max_level == 0)
333 goto out;
334 goto next;
335 }
336
337 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
338 len);
339 index = off;
340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 blkaddr = f2fs_data_blkaddr(&dn);
342
343 if (!__is_valid_data_blkaddr(blkaddr)) {
344 continue;
345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 DATA_GENERIC_ENHANCE)) {
347 f2fs_put_dnode(&dn);
348 ret = -EFSCORRUPTED;
349 goto out;
350 }
351
352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 true, NULL);
354
355 ret = __replace_atomic_write_block(inode, index, blkaddr,
356 &new->old_addr, false);
357 if (ret) {
358 f2fs_put_dnode(&dn);
359 kmem_cache_free(revoke_entry_slab, new);
360 goto out;
361 }
362
363 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 new->index = index;
365 list_add_tail(&new->list, &revoke_list);
366 }
367 f2fs_put_dnode(&dn);
368 next:
369 off += blen;
370 len -= blen;
371 }
372
373 out:
374 if (ret) {
375 sbi->revoked_atomic_block += fi->atomic_write_cnt;
376 } else {
377 sbi->committed_atomic_block += fi->atomic_write_cnt;
378 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
379
380 /*
381 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
382 * before commit.
383 */
384 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
385 /* clear atomic dirty status and set vfs dirty status */
386 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
387 f2fs_mark_inode_dirty_sync(inode, true);
388 }
389 }
390
391 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
392
393 return ret;
394 }
395
f2fs_commit_atomic_write(struct inode * inode)396 int f2fs_commit_atomic_write(struct inode *inode)
397 {
398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
399 struct f2fs_inode_info *fi = F2FS_I(inode);
400 int err;
401
402 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
403 if (err)
404 return err;
405
406 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
407 f2fs_lock_op(sbi);
408
409 err = __f2fs_commit_atomic_write(inode);
410
411 f2fs_unlock_op(sbi);
412 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
413
414 return err;
415 }
416
417 /*
418 * This function balances dirty node and dentry pages.
419 * In addition, it controls garbage collection.
420 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)421 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
422 {
423 if (f2fs_cp_error(sbi))
424 return;
425
426 if (time_to_inject(sbi, FAULT_CHECKPOINT))
427 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
428
429 /* balance_fs_bg is able to be pending */
430 if (need && excess_cached_nats(sbi))
431 f2fs_balance_fs_bg(sbi, false);
432
433 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
434 return;
435
436 /*
437 * We should do GC or end up with checkpoint, if there are so many dirty
438 * dir/node pages without enough free segments.
439 */
440 if (has_enough_free_secs(sbi, 0, 0))
441 return;
442
443 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
444 sbi->gc_thread->f2fs_gc_task) {
445 DEFINE_WAIT(wait);
446
447 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
448 TASK_UNINTERRUPTIBLE);
449 wake_up(&sbi->gc_thread->gc_wait_queue_head);
450 io_schedule();
451 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
452 } else {
453 struct f2fs_gc_control gc_control = {
454 .victim_segno = NULL_SEGNO,
455 .init_gc_type = BG_GC,
456 .no_bg_gc = true,
457 .should_migrate_blocks = false,
458 .err_gc_skipped = false,
459 .nr_free_secs = 1 };
460 f2fs_down_write(&sbi->gc_lock);
461 stat_inc_gc_call_count(sbi, FOREGROUND);
462 f2fs_gc(sbi, &gc_control);
463 }
464 }
465
excess_dirty_threshold(struct f2fs_sb_info * sbi)466 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
467 {
468 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
469 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
470 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
471 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
472 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
473 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
474 unsigned int threshold =
475 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
476 unsigned int global_threshold = threshold * 3 / 2;
477
478 if (dents >= threshold || qdata >= threshold ||
479 nodes >= threshold || meta >= threshold ||
480 imeta >= threshold)
481 return true;
482 return dents + qdata + nodes + meta + imeta > global_threshold;
483 }
484
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)485 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
486 {
487 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
488 return;
489
490 /* try to shrink extent cache when there is no enough memory */
491 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
492 f2fs_shrink_read_extent_tree(sbi,
493 READ_EXTENT_CACHE_SHRINK_NUMBER);
494
495 /* try to shrink age extent cache when there is no enough memory */
496 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
497 f2fs_shrink_age_extent_tree(sbi,
498 AGE_EXTENT_CACHE_SHRINK_NUMBER);
499
500 /* check the # of cached NAT entries */
501 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
502 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
503
504 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
505 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
506 else
507 f2fs_build_free_nids(sbi, false, false);
508
509 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
510 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
511 goto do_sync;
512
513 /* there is background inflight IO or foreground operation recently */
514 if (is_inflight_io(sbi, REQ_TIME) ||
515 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
516 return;
517
518 /* exceed periodical checkpoint timeout threshold */
519 if (f2fs_time_over(sbi, CP_TIME))
520 goto do_sync;
521
522 /* checkpoint is the only way to shrink partial cached entries */
523 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
524 f2fs_available_free_memory(sbi, INO_ENTRIES))
525 return;
526
527 do_sync:
528 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
529 struct blk_plug plug;
530
531 mutex_lock(&sbi->flush_lock);
532
533 blk_start_plug(&plug);
534 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
535 blk_finish_plug(&plug);
536
537 mutex_unlock(&sbi->flush_lock);
538 }
539 stat_inc_cp_call_count(sbi, BACKGROUND);
540 f2fs_sync_fs(sbi->sb, 1);
541 }
542
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)543 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
544 struct block_device *bdev)
545 {
546 int ret = blkdev_issue_flush(bdev);
547
548 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
549 test_opt(sbi, FLUSH_MERGE), ret);
550 if (!ret)
551 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
552 return ret;
553 }
554
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)555 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
556 {
557 int ret = 0;
558 int i;
559
560 if (!f2fs_is_multi_device(sbi))
561 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
562
563 for (i = 0; i < sbi->s_ndevs; i++) {
564 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
565 continue;
566 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
567 if (ret)
568 break;
569 }
570 return ret;
571 }
572
issue_flush_thread(void * data)573 static int issue_flush_thread(void *data)
574 {
575 struct f2fs_sb_info *sbi = data;
576 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
577 wait_queue_head_t *q = &fcc->flush_wait_queue;
578 repeat:
579 if (kthread_should_stop())
580 return 0;
581
582 if (!llist_empty(&fcc->issue_list)) {
583 struct flush_cmd *cmd, *next;
584 int ret;
585
586 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
587 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
588
589 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
590
591 ret = submit_flush_wait(sbi, cmd->ino);
592 atomic_inc(&fcc->issued_flush);
593
594 llist_for_each_entry_safe(cmd, next,
595 fcc->dispatch_list, llnode) {
596 cmd->ret = ret;
597 complete(&cmd->wait);
598 }
599 fcc->dispatch_list = NULL;
600 }
601
602 wait_event_interruptible(*q,
603 kthread_should_stop() || !llist_empty(&fcc->issue_list));
604 goto repeat;
605 }
606
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)607 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
608 {
609 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
610 struct flush_cmd cmd;
611 int ret;
612
613 if (test_opt(sbi, NOBARRIER))
614 return 0;
615
616 if (!test_opt(sbi, FLUSH_MERGE)) {
617 atomic_inc(&fcc->queued_flush);
618 ret = submit_flush_wait(sbi, ino);
619 atomic_dec(&fcc->queued_flush);
620 atomic_inc(&fcc->issued_flush);
621 return ret;
622 }
623
624 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
625 f2fs_is_multi_device(sbi)) {
626 ret = submit_flush_wait(sbi, ino);
627 atomic_dec(&fcc->queued_flush);
628
629 atomic_inc(&fcc->issued_flush);
630 return ret;
631 }
632
633 cmd.ino = ino;
634 init_completion(&cmd.wait);
635
636 llist_add(&cmd.llnode, &fcc->issue_list);
637
638 /*
639 * update issue_list before we wake up issue_flush thread, this
640 * smp_mb() pairs with another barrier in ___wait_event(), see
641 * more details in comments of waitqueue_active().
642 */
643 smp_mb();
644
645 if (waitqueue_active(&fcc->flush_wait_queue))
646 wake_up(&fcc->flush_wait_queue);
647
648 if (fcc->f2fs_issue_flush) {
649 wait_for_completion(&cmd.wait);
650 atomic_dec(&fcc->queued_flush);
651 } else {
652 struct llist_node *list;
653
654 list = llist_del_all(&fcc->issue_list);
655 if (!list) {
656 wait_for_completion(&cmd.wait);
657 atomic_dec(&fcc->queued_flush);
658 } else {
659 struct flush_cmd *tmp, *next;
660
661 ret = submit_flush_wait(sbi, ino);
662
663 llist_for_each_entry_safe(tmp, next, list, llnode) {
664 if (tmp == &cmd) {
665 cmd.ret = ret;
666 atomic_dec(&fcc->queued_flush);
667 continue;
668 }
669 tmp->ret = ret;
670 complete(&tmp->wait);
671 }
672 }
673 }
674
675 return cmd.ret;
676 }
677
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)678 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
679 {
680 dev_t dev = sbi->sb->s_bdev->bd_dev;
681 struct flush_cmd_control *fcc;
682
683 if (SM_I(sbi)->fcc_info) {
684 fcc = SM_I(sbi)->fcc_info;
685 if (fcc->f2fs_issue_flush)
686 return 0;
687 goto init_thread;
688 }
689
690 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
691 if (!fcc)
692 return -ENOMEM;
693 atomic_set(&fcc->issued_flush, 0);
694 atomic_set(&fcc->queued_flush, 0);
695 init_waitqueue_head(&fcc->flush_wait_queue);
696 init_llist_head(&fcc->issue_list);
697 SM_I(sbi)->fcc_info = fcc;
698 if (!test_opt(sbi, FLUSH_MERGE))
699 return 0;
700
701 init_thread:
702 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
703 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
704 if (IS_ERR(fcc->f2fs_issue_flush)) {
705 int err = PTR_ERR(fcc->f2fs_issue_flush);
706
707 fcc->f2fs_issue_flush = NULL;
708 return err;
709 }
710
711 return 0;
712 }
713
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)714 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
715 {
716 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
717
718 if (fcc && fcc->f2fs_issue_flush) {
719 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
720
721 fcc->f2fs_issue_flush = NULL;
722 kthread_stop(flush_thread);
723 }
724 if (free) {
725 kfree(fcc);
726 SM_I(sbi)->fcc_info = NULL;
727 }
728 }
729
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)730 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
731 {
732 int ret = 0, i;
733
734 if (!f2fs_is_multi_device(sbi))
735 return 0;
736
737 if (test_opt(sbi, NOBARRIER))
738 return 0;
739
740 for (i = 1; i < sbi->s_ndevs; i++) {
741 int count = DEFAULT_RETRY_IO_COUNT;
742
743 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
744 continue;
745
746 do {
747 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
748 if (ret)
749 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
750 } while (ret && --count);
751
752 if (ret) {
753 f2fs_stop_checkpoint(sbi, false,
754 STOP_CP_REASON_FLUSH_FAIL);
755 break;
756 }
757
758 spin_lock(&sbi->dev_lock);
759 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
760 spin_unlock(&sbi->dev_lock);
761 }
762
763 return ret;
764 }
765
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)766 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
767 enum dirty_type dirty_type)
768 {
769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
770
771 /* need not be added */
772 if (IS_CURSEG(sbi, segno))
773 return;
774
775 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
776 dirty_i->nr_dirty[dirty_type]++;
777
778 if (dirty_type == DIRTY) {
779 struct seg_entry *sentry = get_seg_entry(sbi, segno);
780 enum dirty_type t = sentry->type;
781
782 if (unlikely(t >= DIRTY)) {
783 f2fs_bug_on(sbi, 1);
784 return;
785 }
786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
787 dirty_i->nr_dirty[t]++;
788
789 if (__is_large_section(sbi)) {
790 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
791 block_t valid_blocks =
792 get_valid_blocks(sbi, segno, true);
793
794 f2fs_bug_on(sbi,
795 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
796 !valid_blocks) ||
797 valid_blocks == CAP_BLKS_PER_SEC(sbi));
798
799 if (!IS_CURSEC(sbi, secno))
800 set_bit(secno, dirty_i->dirty_secmap);
801 }
802 }
803 }
804
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
806 enum dirty_type dirty_type)
807 {
808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 block_t valid_blocks;
810
811 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
812 dirty_i->nr_dirty[dirty_type]--;
813
814 if (dirty_type == DIRTY) {
815 struct seg_entry *sentry = get_seg_entry(sbi, segno);
816 enum dirty_type t = sentry->type;
817
818 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
819 dirty_i->nr_dirty[t]--;
820
821 valid_blocks = get_valid_blocks(sbi, segno, true);
822 if (valid_blocks == 0) {
823 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
824 dirty_i->victim_secmap);
825 #ifdef CONFIG_F2FS_CHECK_FS
826 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
827 #endif
828 }
829 if (__is_large_section(sbi)) {
830 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
831
832 if (!valid_blocks ||
833 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
834 clear_bit(secno, dirty_i->dirty_secmap);
835 return;
836 }
837
838 if (!IS_CURSEC(sbi, secno))
839 set_bit(secno, dirty_i->dirty_secmap);
840 }
841 }
842 }
843
844 /*
845 * Should not occur error such as -ENOMEM.
846 * Adding dirty entry into seglist is not critical operation.
847 * If a given segment is one of current working segments, it won't be added.
848 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)849 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
850 {
851 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
852 unsigned short valid_blocks, ckpt_valid_blocks;
853 unsigned int usable_blocks;
854
855 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
856 return;
857
858 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
859 mutex_lock(&dirty_i->seglist_lock);
860
861 valid_blocks = get_valid_blocks(sbi, segno, false);
862 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
863
864 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
865 ckpt_valid_blocks == usable_blocks)) {
866 __locate_dirty_segment(sbi, segno, PRE);
867 __remove_dirty_segment(sbi, segno, DIRTY);
868 } else if (valid_blocks < usable_blocks) {
869 __locate_dirty_segment(sbi, segno, DIRTY);
870 } else {
871 /* Recovery routine with SSR needs this */
872 __remove_dirty_segment(sbi, segno, DIRTY);
873 }
874
875 mutex_unlock(&dirty_i->seglist_lock);
876 }
877
878 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)879 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
880 {
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 unsigned int segno;
883
884 mutex_lock(&dirty_i->seglist_lock);
885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
886 if (get_valid_blocks(sbi, segno, false))
887 continue;
888 if (IS_CURSEG(sbi, segno))
889 continue;
890 __locate_dirty_segment(sbi, segno, PRE);
891 __remove_dirty_segment(sbi, segno, DIRTY);
892 }
893 mutex_unlock(&dirty_i->seglist_lock);
894 }
895
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)896 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
897 {
898 int ovp_hole_segs =
899 (overprovision_segments(sbi) - reserved_segments(sbi));
900 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
902 block_t holes[2] = {0, 0}; /* DATA and NODE */
903 block_t unusable;
904 struct seg_entry *se;
905 unsigned int segno;
906
907 mutex_lock(&dirty_i->seglist_lock);
908 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
909 se = get_seg_entry(sbi, segno);
910 if (IS_NODESEG(se->type))
911 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
912 se->valid_blocks;
913 else
914 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
915 se->valid_blocks;
916 }
917 mutex_unlock(&dirty_i->seglist_lock);
918
919 unusable = max(holes[DATA], holes[NODE]);
920 if (unusable > ovp_holes)
921 return unusable - ovp_holes;
922 return 0;
923 }
924
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)925 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
926 {
927 int ovp_hole_segs =
928 (overprovision_segments(sbi) - reserved_segments(sbi));
929
930 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
931 return 0;
932 if (unusable > F2FS_OPTION(sbi).unusable_cap)
933 return -EAGAIN;
934 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
935 dirty_segments(sbi) > ovp_hole_segs)
936 return -EAGAIN;
937 if (has_not_enough_free_secs(sbi, 0, 0))
938 return -EAGAIN;
939 return 0;
940 }
941
942 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
944 {
945 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946 unsigned int segno = 0;
947
948 mutex_lock(&dirty_i->seglist_lock);
949 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950 if (get_valid_blocks(sbi, segno, false))
951 continue;
952 if (get_ckpt_valid_blocks(sbi, segno, false))
953 continue;
954 mutex_unlock(&dirty_i->seglist_lock);
955 return segno;
956 }
957 mutex_unlock(&dirty_i->seglist_lock);
958 return NULL_SEGNO;
959 }
960
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962 struct block_device *bdev, block_t lstart,
963 block_t start, block_t len)
964 {
965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 struct list_head *pend_list;
967 struct discard_cmd *dc;
968
969 f2fs_bug_on(sbi, !len);
970
971 pend_list = &dcc->pend_list[plist_idx(len)];
972
973 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
974 INIT_LIST_HEAD(&dc->list);
975 dc->bdev = bdev;
976 dc->di.lstart = lstart;
977 dc->di.start = start;
978 dc->di.len = len;
979 dc->ref = 0;
980 dc->state = D_PREP;
981 dc->queued = 0;
982 dc->error = 0;
983 init_completion(&dc->wait);
984 list_add_tail(&dc->list, pend_list);
985 spin_lock_init(&dc->lock);
986 dc->bio_ref = 0;
987 atomic_inc(&dcc->discard_cmd_cnt);
988 dcc->undiscard_blks += len;
989
990 return dc;
991 }
992
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)993 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
994 {
995 #ifdef CONFIG_F2FS_CHECK_FS
996 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
998 struct discard_cmd *cur_dc, *next_dc;
999
1000 while (cur) {
1001 next = rb_next(cur);
1002 if (!next)
1003 return true;
1004
1005 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1006 next_dc = rb_entry(next, struct discard_cmd, rb_node);
1007
1008 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1009 f2fs_info(sbi, "broken discard_rbtree, "
1010 "cur(%u, %u) next(%u, %u)",
1011 cur_dc->di.lstart, cur_dc->di.len,
1012 next_dc->di.lstart, next_dc->di.len);
1013 return false;
1014 }
1015 cur = next;
1016 }
1017 #endif
1018 return true;
1019 }
1020
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1021 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1022 block_t blkaddr)
1023 {
1024 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1025 struct rb_node *node = dcc->root.rb_root.rb_node;
1026 struct discard_cmd *dc;
1027
1028 while (node) {
1029 dc = rb_entry(node, struct discard_cmd, rb_node);
1030
1031 if (blkaddr < dc->di.lstart)
1032 node = node->rb_left;
1033 else if (blkaddr >= dc->di.lstart + dc->di.len)
1034 node = node->rb_right;
1035 else
1036 return dc;
1037 }
1038 return NULL;
1039 }
1040
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1041 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1042 block_t blkaddr,
1043 struct discard_cmd **prev_entry,
1044 struct discard_cmd **next_entry,
1045 struct rb_node ***insert_p,
1046 struct rb_node **insert_parent)
1047 {
1048 struct rb_node **pnode = &root->rb_root.rb_node;
1049 struct rb_node *parent = NULL, *tmp_node;
1050 struct discard_cmd *dc;
1051
1052 *insert_p = NULL;
1053 *insert_parent = NULL;
1054 *prev_entry = NULL;
1055 *next_entry = NULL;
1056
1057 if (RB_EMPTY_ROOT(&root->rb_root))
1058 return NULL;
1059
1060 while (*pnode) {
1061 parent = *pnode;
1062 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1063
1064 if (blkaddr < dc->di.lstart)
1065 pnode = &(*pnode)->rb_left;
1066 else if (blkaddr >= dc->di.lstart + dc->di.len)
1067 pnode = &(*pnode)->rb_right;
1068 else
1069 goto lookup_neighbors;
1070 }
1071
1072 *insert_p = pnode;
1073 *insert_parent = parent;
1074
1075 dc = rb_entry(parent, struct discard_cmd, rb_node);
1076 tmp_node = parent;
1077 if (parent && blkaddr > dc->di.lstart)
1078 tmp_node = rb_next(parent);
1079 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1080
1081 tmp_node = parent;
1082 if (parent && blkaddr < dc->di.lstart)
1083 tmp_node = rb_prev(parent);
1084 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1085 return NULL;
1086
1087 lookup_neighbors:
1088 /* lookup prev node for merging backward later */
1089 tmp_node = rb_prev(&dc->rb_node);
1090 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1091
1092 /* lookup next node for merging frontward later */
1093 tmp_node = rb_next(&dc->rb_node);
1094 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095 return dc;
1096 }
1097
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1098 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1099 struct discard_cmd *dc)
1100 {
1101 if (dc->state == D_DONE)
1102 atomic_sub(dc->queued, &dcc->queued_discard);
1103
1104 list_del(&dc->list);
1105 rb_erase_cached(&dc->rb_node, &dcc->root);
1106 dcc->undiscard_blks -= dc->di.len;
1107
1108 kmem_cache_free(discard_cmd_slab, dc);
1109
1110 atomic_dec(&dcc->discard_cmd_cnt);
1111 }
1112
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1113 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1114 struct discard_cmd *dc)
1115 {
1116 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1117 unsigned long flags;
1118
1119 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1120
1121 spin_lock_irqsave(&dc->lock, flags);
1122 if (dc->bio_ref) {
1123 spin_unlock_irqrestore(&dc->lock, flags);
1124 return;
1125 }
1126 spin_unlock_irqrestore(&dc->lock, flags);
1127
1128 f2fs_bug_on(sbi, dc->ref);
1129
1130 if (dc->error == -EOPNOTSUPP)
1131 dc->error = 0;
1132
1133 if (dc->error)
1134 f2fs_info_ratelimited(sbi,
1135 "Issue discard(%u, %u, %u) failed, ret: %d",
1136 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1137 __detach_discard_cmd(dcc, dc);
1138 }
1139
f2fs_submit_discard_endio(struct bio * bio)1140 static void f2fs_submit_discard_endio(struct bio *bio)
1141 {
1142 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1143 unsigned long flags;
1144
1145 spin_lock_irqsave(&dc->lock, flags);
1146 if (!dc->error)
1147 dc->error = blk_status_to_errno(bio->bi_status);
1148 dc->bio_ref--;
1149 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1150 dc->state = D_DONE;
1151 complete_all(&dc->wait);
1152 }
1153 spin_unlock_irqrestore(&dc->lock, flags);
1154 bio_put(bio);
1155 }
1156
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1157 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1158 block_t start, block_t end)
1159 {
1160 #ifdef CONFIG_F2FS_CHECK_FS
1161 struct seg_entry *sentry;
1162 unsigned int segno;
1163 block_t blk = start;
1164 unsigned long offset, size, *map;
1165
1166 while (blk < end) {
1167 segno = GET_SEGNO(sbi, blk);
1168 sentry = get_seg_entry(sbi, segno);
1169 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1170
1171 if (end < START_BLOCK(sbi, segno + 1))
1172 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1173 else
1174 size = BLKS_PER_SEG(sbi);
1175 map = (unsigned long *)(sentry->cur_valid_map);
1176 offset = __find_rev_next_bit(map, size, offset);
1177 f2fs_bug_on(sbi, offset != size);
1178 blk = START_BLOCK(sbi, segno + 1);
1179 }
1180 #endif
1181 }
1182
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1183 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1184 struct discard_policy *dpolicy,
1185 int discard_type, unsigned int granularity)
1186 {
1187 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188
1189 /* common policy */
1190 dpolicy->type = discard_type;
1191 dpolicy->sync = true;
1192 dpolicy->ordered = false;
1193 dpolicy->granularity = granularity;
1194
1195 dpolicy->max_requests = dcc->max_discard_request;
1196 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1197 dpolicy->timeout = false;
1198
1199 if (discard_type == DPOLICY_BG) {
1200 dpolicy->min_interval = dcc->min_discard_issue_time;
1201 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1202 dpolicy->max_interval = dcc->max_discard_issue_time;
1203 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1204 dpolicy->io_aware = true;
1205 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1206 dpolicy->io_aware = false;
1207 dpolicy->sync = false;
1208 dpolicy->ordered = true;
1209 if (utilization(sbi) > dcc->discard_urgent_util) {
1210 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1211 if (atomic_read(&dcc->discard_cmd_cnt))
1212 dpolicy->max_interval =
1213 dcc->min_discard_issue_time;
1214 }
1215 } else if (discard_type == DPOLICY_FORCE) {
1216 dpolicy->min_interval = dcc->min_discard_issue_time;
1217 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1218 dpolicy->max_interval = dcc->max_discard_issue_time;
1219 dpolicy->io_aware = false;
1220 } else if (discard_type == DPOLICY_FSTRIM) {
1221 dpolicy->io_aware = false;
1222 } else if (discard_type == DPOLICY_UMOUNT) {
1223 dpolicy->io_aware = false;
1224 /* we need to issue all to keep CP_TRIMMED_FLAG */
1225 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1226 dpolicy->timeout = true;
1227 }
1228 }
1229
1230 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1231 struct block_device *bdev, block_t lstart,
1232 block_t start, block_t len);
1233
1234 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1235 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1236 struct discard_cmd *dc, blk_opf_t flag,
1237 struct list_head *wait_list,
1238 unsigned int *issued)
1239 {
1240 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1241 struct block_device *bdev = dc->bdev;
1242 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1243 unsigned long flags;
1244
1245 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1246
1247 spin_lock_irqsave(&dc->lock, flags);
1248 dc->state = D_SUBMIT;
1249 dc->bio_ref++;
1250 spin_unlock_irqrestore(&dc->lock, flags);
1251
1252 if (issued)
1253 (*issued)++;
1254
1255 atomic_inc(&dcc->queued_discard);
1256 dc->queued++;
1257 list_move_tail(&dc->list, wait_list);
1258
1259 /* sanity check on discard range */
1260 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1261
1262 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1263 bio->bi_private = dc;
1264 bio->bi_end_io = f2fs_submit_discard_endio;
1265 submit_bio(bio);
1266
1267 atomic_inc(&dcc->issued_discard);
1268 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1269 }
1270 #endif
1271
1272 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1273 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1274 struct discard_policy *dpolicy,
1275 struct discard_cmd *dc, int *issued)
1276 {
1277 struct block_device *bdev = dc->bdev;
1278 unsigned int max_discard_blocks =
1279 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1282 &(dcc->fstrim_list) : &(dcc->wait_list);
1283 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1284 block_t lstart, start, len, total_len;
1285 int err = 0;
1286
1287 if (dc->state != D_PREP)
1288 return 0;
1289
1290 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1291 return 0;
1292
1293 #ifdef CONFIG_BLK_DEV_ZONED
1294 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1295 int devi = f2fs_bdev_index(sbi, bdev);
1296
1297 if (devi < 0)
1298 return -EINVAL;
1299
1300 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1301 __submit_zone_reset_cmd(sbi, dc, flag,
1302 wait_list, issued);
1303 return 0;
1304 }
1305 }
1306 #endif
1307
1308 /*
1309 * stop issuing discard for any of below cases:
1310 * 1. device is conventional zone, but it doesn't support discard.
1311 * 2. device is regulare device, after snapshot it doesn't support
1312 * discard.
1313 */
1314 if (!bdev_max_discard_sectors(bdev))
1315 return -EOPNOTSUPP;
1316
1317 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1318
1319 lstart = dc->di.lstart;
1320 start = dc->di.start;
1321 len = dc->di.len;
1322 total_len = len;
1323
1324 dc->di.len = 0;
1325
1326 while (total_len && *issued < dpolicy->max_requests && !err) {
1327 struct bio *bio = NULL;
1328 unsigned long flags;
1329 bool last = true;
1330
1331 if (len > max_discard_blocks) {
1332 len = max_discard_blocks;
1333 last = false;
1334 }
1335
1336 (*issued)++;
1337 if (*issued == dpolicy->max_requests)
1338 last = true;
1339
1340 dc->di.len += len;
1341
1342 if (time_to_inject(sbi, FAULT_DISCARD)) {
1343 err = -EIO;
1344 } else {
1345 err = __blkdev_issue_discard(bdev,
1346 SECTOR_FROM_BLOCK(start),
1347 SECTOR_FROM_BLOCK(len),
1348 GFP_NOFS, &bio);
1349 }
1350 if (err) {
1351 spin_lock_irqsave(&dc->lock, flags);
1352 if (dc->state == D_PARTIAL)
1353 dc->state = D_SUBMIT;
1354 spin_unlock_irqrestore(&dc->lock, flags);
1355
1356 break;
1357 }
1358
1359 f2fs_bug_on(sbi, !bio);
1360
1361 /*
1362 * should keep before submission to avoid D_DONE
1363 * right away
1364 */
1365 spin_lock_irqsave(&dc->lock, flags);
1366 if (last)
1367 dc->state = D_SUBMIT;
1368 else
1369 dc->state = D_PARTIAL;
1370 dc->bio_ref++;
1371 spin_unlock_irqrestore(&dc->lock, flags);
1372
1373 atomic_inc(&dcc->queued_discard);
1374 dc->queued++;
1375 list_move_tail(&dc->list, wait_list);
1376
1377 /* sanity check on discard range */
1378 __check_sit_bitmap(sbi, lstart, lstart + len);
1379
1380 bio->bi_private = dc;
1381 bio->bi_end_io = f2fs_submit_discard_endio;
1382 bio->bi_opf |= flag;
1383 submit_bio(bio);
1384
1385 atomic_inc(&dcc->issued_discard);
1386
1387 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1388
1389 lstart += len;
1390 start += len;
1391 total_len -= len;
1392 len = total_len;
1393 }
1394
1395 if (!err && len) {
1396 dcc->undiscard_blks -= len;
1397 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1398 }
1399 return err;
1400 }
1401
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1402 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1403 struct block_device *bdev, block_t lstart,
1404 block_t start, block_t len)
1405 {
1406 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 struct rb_node **p = &dcc->root.rb_root.rb_node;
1408 struct rb_node *parent = NULL;
1409 struct discard_cmd *dc;
1410 bool leftmost = true;
1411
1412 /* look up rb tree to find parent node */
1413 while (*p) {
1414 parent = *p;
1415 dc = rb_entry(parent, struct discard_cmd, rb_node);
1416
1417 if (lstart < dc->di.lstart) {
1418 p = &(*p)->rb_left;
1419 } else if (lstart >= dc->di.lstart + dc->di.len) {
1420 p = &(*p)->rb_right;
1421 leftmost = false;
1422 } else {
1423 /* Let's skip to add, if exists */
1424 return;
1425 }
1426 }
1427
1428 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1429
1430 rb_link_node(&dc->rb_node, parent, p);
1431 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1432 }
1433
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1434 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1435 struct discard_cmd *dc)
1436 {
1437 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1438 }
1439
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1440 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1441 struct discard_cmd *dc, block_t blkaddr)
1442 {
1443 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 struct discard_info di = dc->di;
1445 bool modified = false;
1446
1447 if (dc->state == D_DONE || dc->di.len == 1) {
1448 __remove_discard_cmd(sbi, dc);
1449 return;
1450 }
1451
1452 dcc->undiscard_blks -= di.len;
1453
1454 if (blkaddr > di.lstart) {
1455 dc->di.len = blkaddr - dc->di.lstart;
1456 dcc->undiscard_blks += dc->di.len;
1457 __relocate_discard_cmd(dcc, dc);
1458 modified = true;
1459 }
1460
1461 if (blkaddr < di.lstart + di.len - 1) {
1462 if (modified) {
1463 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1464 di.start + blkaddr + 1 - di.lstart,
1465 di.lstart + di.len - 1 - blkaddr);
1466 } else {
1467 dc->di.lstart++;
1468 dc->di.len--;
1469 dc->di.start++;
1470 dcc->undiscard_blks += dc->di.len;
1471 __relocate_discard_cmd(dcc, dc);
1472 }
1473 }
1474 }
1475
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1476 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1477 struct block_device *bdev, block_t lstart,
1478 block_t start, block_t len)
1479 {
1480 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1481 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1482 struct discard_cmd *dc;
1483 struct discard_info di = {0};
1484 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1485 unsigned int max_discard_blocks =
1486 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1487 block_t end = lstart + len;
1488
1489 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1490 &prev_dc, &next_dc, &insert_p, &insert_parent);
1491 if (dc)
1492 prev_dc = dc;
1493
1494 if (!prev_dc) {
1495 di.lstart = lstart;
1496 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1497 di.len = min(di.len, len);
1498 di.start = start;
1499 }
1500
1501 while (1) {
1502 struct rb_node *node;
1503 bool merged = false;
1504 struct discard_cmd *tdc = NULL;
1505
1506 if (prev_dc) {
1507 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1508 if (di.lstart < lstart)
1509 di.lstart = lstart;
1510 if (di.lstart >= end)
1511 break;
1512
1513 if (!next_dc || next_dc->di.lstart > end)
1514 di.len = end - di.lstart;
1515 else
1516 di.len = next_dc->di.lstart - di.lstart;
1517 di.start = start + di.lstart - lstart;
1518 }
1519
1520 if (!di.len)
1521 goto next;
1522
1523 if (prev_dc && prev_dc->state == D_PREP &&
1524 prev_dc->bdev == bdev &&
1525 __is_discard_back_mergeable(&di, &prev_dc->di,
1526 max_discard_blocks)) {
1527 prev_dc->di.len += di.len;
1528 dcc->undiscard_blks += di.len;
1529 __relocate_discard_cmd(dcc, prev_dc);
1530 di = prev_dc->di;
1531 tdc = prev_dc;
1532 merged = true;
1533 }
1534
1535 if (next_dc && next_dc->state == D_PREP &&
1536 next_dc->bdev == bdev &&
1537 __is_discard_front_mergeable(&di, &next_dc->di,
1538 max_discard_blocks)) {
1539 next_dc->di.lstart = di.lstart;
1540 next_dc->di.len += di.len;
1541 next_dc->di.start = di.start;
1542 dcc->undiscard_blks += di.len;
1543 __relocate_discard_cmd(dcc, next_dc);
1544 if (tdc)
1545 __remove_discard_cmd(sbi, tdc);
1546 merged = true;
1547 }
1548
1549 if (!merged)
1550 __insert_discard_cmd(sbi, bdev,
1551 di.lstart, di.start, di.len);
1552 next:
1553 prev_dc = next_dc;
1554 if (!prev_dc)
1555 break;
1556
1557 node = rb_next(&prev_dc->rb_node);
1558 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1559 }
1560 }
1561
1562 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1563 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1564 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1565 block_t blklen)
1566 {
1567 trace_f2fs_queue_reset_zone(bdev, blkstart);
1568
1569 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1570 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1571 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1572 }
1573 #endif
1574
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1575 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1576 struct block_device *bdev, block_t blkstart, block_t blklen)
1577 {
1578 block_t lblkstart = blkstart;
1579
1580 if (!f2fs_bdev_support_discard(bdev))
1581 return;
1582
1583 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1584
1585 if (f2fs_is_multi_device(sbi)) {
1586 int devi = f2fs_target_device_index(sbi, blkstart);
1587
1588 blkstart -= FDEV(devi).start_blk;
1589 }
1590 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1591 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1592 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1593 }
1594
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1595 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1596 struct discard_policy *dpolicy, int *issued)
1597 {
1598 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1600 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1601 struct discard_cmd *dc;
1602 struct blk_plug plug;
1603 bool io_interrupted = false;
1604
1605 mutex_lock(&dcc->cmd_lock);
1606 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1607 &prev_dc, &next_dc, &insert_p, &insert_parent);
1608 if (!dc)
1609 dc = next_dc;
1610
1611 blk_start_plug(&plug);
1612
1613 while (dc) {
1614 struct rb_node *node;
1615 int err = 0;
1616
1617 if (dc->state != D_PREP)
1618 goto next;
1619
1620 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1621 io_interrupted = true;
1622 break;
1623 }
1624
1625 dcc->next_pos = dc->di.lstart + dc->di.len;
1626 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1627
1628 if (*issued >= dpolicy->max_requests)
1629 break;
1630 next:
1631 node = rb_next(&dc->rb_node);
1632 if (err)
1633 __remove_discard_cmd(sbi, dc);
1634 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1635 }
1636
1637 blk_finish_plug(&plug);
1638
1639 if (!dc)
1640 dcc->next_pos = 0;
1641
1642 mutex_unlock(&dcc->cmd_lock);
1643
1644 if (!(*issued) && io_interrupted)
1645 *issued = -1;
1646 }
1647 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1648 struct discard_policy *dpolicy);
1649
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1650 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1651 struct discard_policy *dpolicy)
1652 {
1653 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 struct list_head *pend_list;
1655 struct discard_cmd *dc, *tmp;
1656 struct blk_plug plug;
1657 int i, issued;
1658 bool io_interrupted = false;
1659
1660 if (dpolicy->timeout)
1661 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1662
1663 retry:
1664 issued = 0;
1665 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1666 if (dpolicy->timeout &&
1667 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 break;
1669
1670 if (i + 1 < dpolicy->granularity)
1671 break;
1672
1673 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1674 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1675 return issued;
1676 }
1677
1678 pend_list = &dcc->pend_list[i];
1679
1680 mutex_lock(&dcc->cmd_lock);
1681 if (list_empty(pend_list))
1682 goto next;
1683 if (unlikely(dcc->rbtree_check))
1684 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1685 blk_start_plug(&plug);
1686 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1687 f2fs_bug_on(sbi, dc->state != D_PREP);
1688
1689 if (dpolicy->timeout &&
1690 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1691 break;
1692
1693 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1694 !is_idle(sbi, DISCARD_TIME)) {
1695 io_interrupted = true;
1696 break;
1697 }
1698
1699 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1700
1701 if (issued >= dpolicy->max_requests)
1702 break;
1703 }
1704 blk_finish_plug(&plug);
1705 next:
1706 mutex_unlock(&dcc->cmd_lock);
1707
1708 if (issued >= dpolicy->max_requests || io_interrupted)
1709 break;
1710 }
1711
1712 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1713 __wait_all_discard_cmd(sbi, dpolicy);
1714 goto retry;
1715 }
1716
1717 if (!issued && io_interrupted)
1718 issued = -1;
1719
1720 return issued;
1721 }
1722
__drop_discard_cmd(struct f2fs_sb_info * sbi)1723 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1724 {
1725 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1726 struct list_head *pend_list;
1727 struct discard_cmd *dc, *tmp;
1728 int i;
1729 bool dropped = false;
1730
1731 mutex_lock(&dcc->cmd_lock);
1732 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1733 pend_list = &dcc->pend_list[i];
1734 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1735 f2fs_bug_on(sbi, dc->state != D_PREP);
1736 __remove_discard_cmd(sbi, dc);
1737 dropped = true;
1738 }
1739 }
1740 mutex_unlock(&dcc->cmd_lock);
1741
1742 return dropped;
1743 }
1744
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1745 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1746 {
1747 __drop_discard_cmd(sbi);
1748 }
1749
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1750 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1751 struct discard_cmd *dc)
1752 {
1753 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 unsigned int len = 0;
1755
1756 wait_for_completion_io(&dc->wait);
1757 mutex_lock(&dcc->cmd_lock);
1758 f2fs_bug_on(sbi, dc->state != D_DONE);
1759 dc->ref--;
1760 if (!dc->ref) {
1761 if (!dc->error)
1762 len = dc->di.len;
1763 __remove_discard_cmd(sbi, dc);
1764 }
1765 mutex_unlock(&dcc->cmd_lock);
1766
1767 return len;
1768 }
1769
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1770 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1771 struct discard_policy *dpolicy,
1772 block_t start, block_t end)
1773 {
1774 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1775 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1776 &(dcc->fstrim_list) : &(dcc->wait_list);
1777 struct discard_cmd *dc = NULL, *iter, *tmp;
1778 unsigned int trimmed = 0;
1779
1780 next:
1781 dc = NULL;
1782
1783 mutex_lock(&dcc->cmd_lock);
1784 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1785 if (iter->di.lstart + iter->di.len <= start ||
1786 end <= iter->di.lstart)
1787 continue;
1788 if (iter->di.len < dpolicy->granularity)
1789 continue;
1790 if (iter->state == D_DONE && !iter->ref) {
1791 wait_for_completion_io(&iter->wait);
1792 if (!iter->error)
1793 trimmed += iter->di.len;
1794 __remove_discard_cmd(sbi, iter);
1795 } else {
1796 iter->ref++;
1797 dc = iter;
1798 break;
1799 }
1800 }
1801 mutex_unlock(&dcc->cmd_lock);
1802
1803 if (dc) {
1804 trimmed += __wait_one_discard_bio(sbi, dc);
1805 goto next;
1806 }
1807
1808 return trimmed;
1809 }
1810
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1811 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1812 struct discard_policy *dpolicy)
1813 {
1814 struct discard_policy dp;
1815 unsigned int discard_blks;
1816
1817 if (dpolicy)
1818 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1819
1820 /* wait all */
1821 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1822 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1823 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1824 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1825
1826 return discard_blks;
1827 }
1828
1829 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1830 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1831 {
1832 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1833 struct discard_cmd *dc;
1834 bool need_wait = false;
1835
1836 mutex_lock(&dcc->cmd_lock);
1837 dc = __lookup_discard_cmd(sbi, blkaddr);
1838 #ifdef CONFIG_BLK_DEV_ZONED
1839 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1840 int devi = f2fs_bdev_index(sbi, dc->bdev);
1841
1842 if (devi < 0) {
1843 mutex_unlock(&dcc->cmd_lock);
1844 return;
1845 }
1846
1847 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1848 /* force submit zone reset */
1849 if (dc->state == D_PREP)
1850 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1851 &dcc->wait_list, NULL);
1852 dc->ref++;
1853 mutex_unlock(&dcc->cmd_lock);
1854 /* wait zone reset */
1855 __wait_one_discard_bio(sbi, dc);
1856 return;
1857 }
1858 }
1859 #endif
1860 if (dc) {
1861 if (dc->state == D_PREP) {
1862 __punch_discard_cmd(sbi, dc, blkaddr);
1863 } else {
1864 dc->ref++;
1865 need_wait = true;
1866 }
1867 }
1868 mutex_unlock(&dcc->cmd_lock);
1869
1870 if (need_wait)
1871 __wait_one_discard_bio(sbi, dc);
1872 }
1873
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1874 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1875 {
1876 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1877
1878 if (dcc && dcc->f2fs_issue_discard) {
1879 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1880
1881 dcc->f2fs_issue_discard = NULL;
1882 kthread_stop(discard_thread);
1883 }
1884 }
1885
1886 /**
1887 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1888 * @sbi: the f2fs_sb_info data for discard cmd to issue
1889 *
1890 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1891 *
1892 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1893 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1894 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1895 {
1896 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1897 struct discard_policy dpolicy;
1898 bool dropped;
1899
1900 if (!atomic_read(&dcc->discard_cmd_cnt))
1901 return true;
1902
1903 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1904 dcc->discard_granularity);
1905 __issue_discard_cmd(sbi, &dpolicy);
1906 dropped = __drop_discard_cmd(sbi);
1907
1908 /* just to make sure there is no pending discard commands */
1909 __wait_all_discard_cmd(sbi, NULL);
1910
1911 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1912 return !dropped;
1913 }
1914
issue_discard_thread(void * data)1915 static int issue_discard_thread(void *data)
1916 {
1917 struct f2fs_sb_info *sbi = data;
1918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 wait_queue_head_t *q = &dcc->discard_wait_queue;
1920 struct discard_policy dpolicy;
1921 unsigned int wait_ms = dcc->min_discard_issue_time;
1922 int issued;
1923
1924 set_freezable();
1925
1926 do {
1927 wait_event_freezable_timeout(*q,
1928 kthread_should_stop() || dcc->discard_wake,
1929 msecs_to_jiffies(wait_ms));
1930
1931 if (sbi->gc_mode == GC_URGENT_HIGH ||
1932 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1933 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1934 MIN_DISCARD_GRANULARITY);
1935 else
1936 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1937 dcc->discard_granularity);
1938
1939 if (dcc->discard_wake)
1940 dcc->discard_wake = false;
1941
1942 /* clean up pending candidates before going to sleep */
1943 if (atomic_read(&dcc->queued_discard))
1944 __wait_all_discard_cmd(sbi, NULL);
1945
1946 if (f2fs_readonly(sbi->sb))
1947 continue;
1948 if (kthread_should_stop())
1949 return 0;
1950 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1951 !atomic_read(&dcc->discard_cmd_cnt)) {
1952 wait_ms = dpolicy.max_interval;
1953 continue;
1954 }
1955
1956 sb_start_intwrite(sbi->sb);
1957
1958 issued = __issue_discard_cmd(sbi, &dpolicy);
1959 if (issued > 0) {
1960 __wait_all_discard_cmd(sbi, &dpolicy);
1961 wait_ms = dpolicy.min_interval;
1962 } else if (issued == -1) {
1963 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1964 if (!wait_ms)
1965 wait_ms = dpolicy.mid_interval;
1966 } else {
1967 wait_ms = dpolicy.max_interval;
1968 }
1969 if (!atomic_read(&dcc->discard_cmd_cnt))
1970 wait_ms = dpolicy.max_interval;
1971
1972 sb_end_intwrite(sbi->sb);
1973
1974 } while (!kthread_should_stop());
1975 return 0;
1976 }
1977
1978 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1979 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1980 struct block_device *bdev, block_t blkstart, block_t blklen)
1981 {
1982 sector_t sector, nr_sects;
1983 block_t lblkstart = blkstart;
1984 int devi = 0;
1985 u64 remainder = 0;
1986
1987 if (f2fs_is_multi_device(sbi)) {
1988 devi = f2fs_target_device_index(sbi, blkstart);
1989 if (blkstart < FDEV(devi).start_blk ||
1990 blkstart > FDEV(devi).end_blk) {
1991 f2fs_err(sbi, "Invalid block %x", blkstart);
1992 return -EIO;
1993 }
1994 blkstart -= FDEV(devi).start_blk;
1995 }
1996
1997 /* For sequential zones, reset the zone write pointer */
1998 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1999 sector = SECTOR_FROM_BLOCK(blkstart);
2000 nr_sects = SECTOR_FROM_BLOCK(blklen);
2001 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2002
2003 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2004 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2005 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2006 blkstart, blklen);
2007 return -EIO;
2008 }
2009
2010 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2011 unsigned int nofs_flags;
2012 int ret;
2013
2014 trace_f2fs_issue_reset_zone(bdev, blkstart);
2015 nofs_flags = memalloc_nofs_save();
2016 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2017 sector, nr_sects);
2018 memalloc_nofs_restore(nofs_flags);
2019 return ret;
2020 }
2021
2022 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2023 return 0;
2024 }
2025
2026 /* For conventional zones, use regular discard if supported */
2027 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2028 return 0;
2029 }
2030 #endif
2031
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2032 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2033 struct block_device *bdev, block_t blkstart, block_t blklen)
2034 {
2035 #ifdef CONFIG_BLK_DEV_ZONED
2036 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2037 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2038 #endif
2039 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2040 return 0;
2041 }
2042
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2043 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2044 block_t blkstart, block_t blklen)
2045 {
2046 sector_t start = blkstart, len = 0;
2047 struct block_device *bdev;
2048 struct seg_entry *se;
2049 unsigned int offset;
2050 block_t i;
2051 int err = 0;
2052
2053 bdev = f2fs_target_device(sbi, blkstart, NULL);
2054
2055 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2056 if (i != start) {
2057 struct block_device *bdev2 =
2058 f2fs_target_device(sbi, i, NULL);
2059
2060 if (bdev2 != bdev) {
2061 err = __issue_discard_async(sbi, bdev,
2062 start, len);
2063 if (err)
2064 return err;
2065 bdev = bdev2;
2066 start = i;
2067 len = 0;
2068 }
2069 }
2070
2071 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2072 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2073
2074 if (f2fs_block_unit_discard(sbi) &&
2075 !f2fs_test_and_set_bit(offset, se->discard_map))
2076 sbi->discard_blks--;
2077 }
2078
2079 if (len)
2080 err = __issue_discard_async(sbi, bdev, start, len);
2081 return err;
2082 }
2083
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2084 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2085 bool check_only)
2086 {
2087 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2088 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2089 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2090 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2091 unsigned long *discard_map = (unsigned long *)se->discard_map;
2092 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2093 unsigned int start = 0, end = -1;
2094 bool force = (cpc->reason & CP_DISCARD);
2095 struct discard_entry *de = NULL;
2096 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2097 int i;
2098
2099 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2100 !f2fs_hw_support_discard(sbi) ||
2101 !f2fs_block_unit_discard(sbi))
2102 return false;
2103
2104 if (!force) {
2105 if (!f2fs_realtime_discard_enable(sbi) ||
2106 (!se->valid_blocks &&
2107 !IS_CURSEG(sbi, cpc->trim_start)) ||
2108 SM_I(sbi)->dcc_info->nr_discards >=
2109 SM_I(sbi)->dcc_info->max_discards)
2110 return false;
2111 }
2112
2113 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2114 for (i = 0; i < entries; i++)
2115 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2116 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2117
2118 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2119 SM_I(sbi)->dcc_info->max_discards) {
2120 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2121 if (start >= BLKS_PER_SEG(sbi))
2122 break;
2123
2124 end = __find_rev_next_zero_bit(dmap,
2125 BLKS_PER_SEG(sbi), start + 1);
2126 if (force && start && end != BLKS_PER_SEG(sbi) &&
2127 (end - start) < cpc->trim_minlen)
2128 continue;
2129
2130 if (check_only)
2131 return true;
2132
2133 if (!de) {
2134 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2135 GFP_F2FS_ZERO, true, NULL);
2136 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2137 list_add_tail(&de->list, head);
2138 }
2139
2140 for (i = start; i < end; i++)
2141 __set_bit_le(i, (void *)de->discard_map);
2142
2143 SM_I(sbi)->dcc_info->nr_discards += end - start;
2144 }
2145 return false;
2146 }
2147
release_discard_addr(struct discard_entry * entry)2148 static void release_discard_addr(struct discard_entry *entry)
2149 {
2150 list_del(&entry->list);
2151 kmem_cache_free(discard_entry_slab, entry);
2152 }
2153
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2154 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2155 {
2156 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2157 struct discard_entry *entry, *this;
2158
2159 /* drop caches */
2160 list_for_each_entry_safe(entry, this, head, list)
2161 release_discard_addr(entry);
2162 }
2163
2164 /*
2165 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2166 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2167 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2168 {
2169 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2170 unsigned int segno;
2171
2172 mutex_lock(&dirty_i->seglist_lock);
2173 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2174 __set_test_and_free(sbi, segno, false);
2175 mutex_unlock(&dirty_i->seglist_lock);
2176 }
2177
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2178 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2179 struct cp_control *cpc)
2180 {
2181 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2182 struct list_head *head = &dcc->entry_list;
2183 struct discard_entry *entry, *this;
2184 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2185 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2186 unsigned int start = 0, end = -1;
2187 unsigned int secno, start_segno;
2188 bool force = (cpc->reason & CP_DISCARD);
2189 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2190 DISCARD_UNIT_SECTION;
2191
2192 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2193 section_alignment = true;
2194
2195 mutex_lock(&dirty_i->seglist_lock);
2196
2197 while (1) {
2198 int i;
2199
2200 if (section_alignment && end != -1)
2201 end--;
2202 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2203 if (start >= MAIN_SEGS(sbi))
2204 break;
2205 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2206 start + 1);
2207
2208 if (section_alignment) {
2209 start = rounddown(start, SEGS_PER_SEC(sbi));
2210 end = roundup(end, SEGS_PER_SEC(sbi));
2211 }
2212
2213 for (i = start; i < end; i++) {
2214 if (test_and_clear_bit(i, prefree_map))
2215 dirty_i->nr_dirty[PRE]--;
2216 }
2217
2218 if (!f2fs_realtime_discard_enable(sbi))
2219 continue;
2220
2221 if (force && start >= cpc->trim_start &&
2222 (end - 1) <= cpc->trim_end)
2223 continue;
2224
2225 /* Should cover 2MB zoned device for zone-based reset */
2226 if (!f2fs_sb_has_blkzoned(sbi) &&
2227 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2228 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2229 SEGS_TO_BLKS(sbi, end - start));
2230 continue;
2231 }
2232 next:
2233 secno = GET_SEC_FROM_SEG(sbi, start);
2234 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2235 if (!IS_CURSEC(sbi, secno) &&
2236 !get_valid_blocks(sbi, start, true))
2237 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2238 BLKS_PER_SEC(sbi));
2239
2240 start = start_segno + SEGS_PER_SEC(sbi);
2241 if (start < end)
2242 goto next;
2243 else
2244 end = start - 1;
2245 }
2246 mutex_unlock(&dirty_i->seglist_lock);
2247
2248 if (!f2fs_block_unit_discard(sbi))
2249 goto wakeup;
2250
2251 /* send small discards */
2252 list_for_each_entry_safe(entry, this, head, list) {
2253 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2254 bool is_valid = test_bit_le(0, entry->discard_map);
2255
2256 find_next:
2257 if (is_valid) {
2258 next_pos = find_next_zero_bit_le(entry->discard_map,
2259 BLKS_PER_SEG(sbi), cur_pos);
2260 len = next_pos - cur_pos;
2261
2262 if (f2fs_sb_has_blkzoned(sbi) ||
2263 (force && len < cpc->trim_minlen))
2264 goto skip;
2265
2266 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2267 len);
2268 total_len += len;
2269 } else {
2270 next_pos = find_next_bit_le(entry->discard_map,
2271 BLKS_PER_SEG(sbi), cur_pos);
2272 }
2273 skip:
2274 cur_pos = next_pos;
2275 is_valid = !is_valid;
2276
2277 if (cur_pos < BLKS_PER_SEG(sbi))
2278 goto find_next;
2279
2280 release_discard_addr(entry);
2281 dcc->nr_discards -= total_len;
2282 }
2283
2284 wakeup:
2285 wake_up_discard_thread(sbi, false);
2286 }
2287
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2288 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2289 {
2290 dev_t dev = sbi->sb->s_bdev->bd_dev;
2291 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2292 int err = 0;
2293
2294 if (f2fs_sb_has_readonly(sbi)) {
2295 f2fs_info(sbi,
2296 "Skip to start discard thread for readonly image");
2297 return 0;
2298 }
2299
2300 if (!f2fs_realtime_discard_enable(sbi))
2301 return 0;
2302
2303 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2304 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2305 if (IS_ERR(dcc->f2fs_issue_discard)) {
2306 err = PTR_ERR(dcc->f2fs_issue_discard);
2307 dcc->f2fs_issue_discard = NULL;
2308 }
2309
2310 return err;
2311 }
2312
create_discard_cmd_control(struct f2fs_sb_info * sbi)2313 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2314 {
2315 struct discard_cmd_control *dcc;
2316 int err = 0, i;
2317
2318 if (SM_I(sbi)->dcc_info) {
2319 dcc = SM_I(sbi)->dcc_info;
2320 goto init_thread;
2321 }
2322
2323 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2324 if (!dcc)
2325 return -ENOMEM;
2326
2327 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2328 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2329 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2330 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2331 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2332 F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2333 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2334
2335 INIT_LIST_HEAD(&dcc->entry_list);
2336 for (i = 0; i < MAX_PLIST_NUM; i++)
2337 INIT_LIST_HEAD(&dcc->pend_list[i]);
2338 INIT_LIST_HEAD(&dcc->wait_list);
2339 INIT_LIST_HEAD(&dcc->fstrim_list);
2340 mutex_init(&dcc->cmd_lock);
2341 atomic_set(&dcc->issued_discard, 0);
2342 atomic_set(&dcc->queued_discard, 0);
2343 atomic_set(&dcc->discard_cmd_cnt, 0);
2344 dcc->nr_discards = 0;
2345 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2346 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2347 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2348 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2349 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2350 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2351 dcc->undiscard_blks = 0;
2352 dcc->next_pos = 0;
2353 dcc->root = RB_ROOT_CACHED;
2354 dcc->rbtree_check = false;
2355
2356 init_waitqueue_head(&dcc->discard_wait_queue);
2357 SM_I(sbi)->dcc_info = dcc;
2358 init_thread:
2359 err = f2fs_start_discard_thread(sbi);
2360 if (err) {
2361 kfree(dcc);
2362 SM_I(sbi)->dcc_info = NULL;
2363 }
2364
2365 return err;
2366 }
2367
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2368 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2369 {
2370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2371
2372 if (!dcc)
2373 return;
2374
2375 f2fs_stop_discard_thread(sbi);
2376
2377 /*
2378 * Recovery can cache discard commands, so in error path of
2379 * fill_super(), it needs to give a chance to handle them.
2380 */
2381 f2fs_issue_discard_timeout(sbi);
2382
2383 kfree(dcc);
2384 SM_I(sbi)->dcc_info = NULL;
2385 }
2386
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2387 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2388 {
2389 struct sit_info *sit_i = SIT_I(sbi);
2390
2391 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2392 sit_i->dirty_sentries++;
2393 return false;
2394 }
2395
2396 return true;
2397 }
2398
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2399 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2400 unsigned int segno, int modified)
2401 {
2402 struct seg_entry *se = get_seg_entry(sbi, segno);
2403
2404 se->type = type;
2405 if (modified)
2406 __mark_sit_entry_dirty(sbi, segno);
2407 }
2408
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2409 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2410 block_t blkaddr)
2411 {
2412 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2413
2414 if (segno == NULL_SEGNO)
2415 return 0;
2416 return get_seg_entry(sbi, segno)->mtime;
2417 }
2418
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2419 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2420 unsigned long long old_mtime)
2421 {
2422 struct seg_entry *se;
2423 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2424 unsigned long long ctime = get_mtime(sbi, false);
2425 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2426
2427 if (segno == NULL_SEGNO)
2428 return;
2429
2430 se = get_seg_entry(sbi, segno);
2431
2432 if (!se->mtime)
2433 se->mtime = mtime;
2434 else
2435 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2436 se->valid_blocks + 1);
2437
2438 if (ctime > SIT_I(sbi)->max_mtime)
2439 SIT_I(sbi)->max_mtime = ctime;
2440 }
2441
2442 /*
2443 * NOTE: when updating multiple blocks at the same time, please ensure
2444 * that the consecutive input blocks belong to the same segment.
2445 */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2446 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2447 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2448 {
2449 bool exist;
2450 #ifdef CONFIG_F2FS_CHECK_FS
2451 bool mir_exist;
2452 #endif
2453 int i;
2454 int del_count = -del;
2455
2456 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2457
2458 for (i = 0; i < del_count; i++) {
2459 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2460 #ifdef CONFIG_F2FS_CHECK_FS
2461 mir_exist = f2fs_test_and_clear_bit(offset + i,
2462 se->cur_valid_map_mir);
2463 if (unlikely(exist != mir_exist)) {
2464 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2465 blkaddr + i, exist);
2466 f2fs_bug_on(sbi, 1);
2467 }
2468 #endif
2469 if (unlikely(!exist)) {
2470 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2471 f2fs_bug_on(sbi, 1);
2472 se->valid_blocks++;
2473 del += 1;
2474 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2475 /*
2476 * If checkpoints are off, we must not reuse data that
2477 * was used in the previous checkpoint. If it was used
2478 * before, we must track that to know how much space we
2479 * really have.
2480 */
2481 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2482 spin_lock(&sbi->stat_lock);
2483 sbi->unusable_block_count++;
2484 spin_unlock(&sbi->stat_lock);
2485 }
2486 }
2487
2488 if (f2fs_block_unit_discard(sbi) &&
2489 f2fs_test_and_clear_bit(offset + i, se->discard_map))
2490 sbi->discard_blks++;
2491
2492 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2493 se->ckpt_valid_blocks -= 1;
2494 if (__is_large_section(sbi))
2495 android_get_sec_entry(sbi, segno)->
2496 ckpt_valid_blocks -= 1;
2497 }
2498 }
2499
2500 if (__is_large_section(sbi))
2501 sanity_check_valid_blocks(sbi, segno);
2502
2503 return del;
2504 }
2505
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2506 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2507 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2508 {
2509 bool exist;
2510 #ifdef CONFIG_F2FS_CHECK_FS
2511 bool mir_exist;
2512 #endif
2513
2514 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2515 #ifdef CONFIG_F2FS_CHECK_FS
2516 mir_exist = f2fs_test_and_set_bit(offset,
2517 se->cur_valid_map_mir);
2518 if (unlikely(exist != mir_exist)) {
2519 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2520 blkaddr, exist);
2521 f2fs_bug_on(sbi, 1);
2522 }
2523 #endif
2524 if (unlikely(exist)) {
2525 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2526 f2fs_bug_on(sbi, 1);
2527 se->valid_blocks--;
2528 del = 0;
2529 }
2530
2531 if (f2fs_block_unit_discard(sbi) &&
2532 !f2fs_test_and_set_bit(offset, se->discard_map))
2533 sbi->discard_blks--;
2534
2535 /*
2536 * SSR should never reuse block which is checkpointed
2537 * or newly invalidated.
2538 */
2539 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2540 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2541 se->ckpt_valid_blocks++;
2542 if (__is_large_section(sbi))
2543 android_get_sec_entry(sbi, segno)->
2544 ckpt_valid_blocks++;
2545 }
2546 }
2547
2548 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2549 se->ckpt_valid_blocks += del;
2550 if (__is_large_section(sbi))
2551 android_get_sec_entry(sbi, segno)->
2552 ckpt_valid_blocks += del;
2553 }
2554
2555 if (__is_large_section(sbi))
2556 sanity_check_valid_blocks(sbi, segno);
2557
2558 return del;
2559 }
2560
2561 /*
2562 * If releasing blocks, this function supports updating multiple consecutive blocks
2563 * at one time, but please note that these consecutive blocks need to belong to the
2564 * same segment.
2565 */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2566 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2567 {
2568 struct seg_entry *se;
2569 unsigned int segno, offset;
2570 long int new_vblocks;
2571
2572 segno = GET_SEGNO(sbi, blkaddr);
2573 if (segno == NULL_SEGNO)
2574 return;
2575
2576 se = get_seg_entry(sbi, segno);
2577 new_vblocks = se->valid_blocks + del;
2578 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2579
2580 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2581 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2582
2583 se->valid_blocks = new_vblocks;
2584
2585 /* Update valid block bitmap */
2586 if (del > 0) {
2587 del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2588 } else {
2589 del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2590 }
2591
2592 __mark_sit_entry_dirty(sbi, segno);
2593
2594 /* update total number of valid blocks to be written in ckpt area */
2595 SIT_I(sbi)->written_valid_blocks += del;
2596
2597 if (__is_large_section(sbi))
2598 get_sec_entry(sbi, segno)->valid_blocks += del;
2599 }
2600
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2601 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2602 unsigned int len)
2603 {
2604 unsigned int segno = GET_SEGNO(sbi, addr);
2605 struct sit_info *sit_i = SIT_I(sbi);
2606 block_t addr_start = addr, addr_end = addr + len - 1;
2607 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2608 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2609
2610 f2fs_bug_on(sbi, addr == NULL_ADDR);
2611 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2612 return;
2613
2614 f2fs_invalidate_internal_cache(sbi, addr, len);
2615
2616 /* add it into sit main buffer */
2617 down_write(&sit_i->sentry_lock);
2618
2619 if (seg_num == 1)
2620 cnt = len;
2621 else
2622 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2623
2624 do {
2625 update_segment_mtime(sbi, addr_start, 0);
2626 update_sit_entry(sbi, addr_start, -cnt);
2627
2628 /* add it into dirty seglist */
2629 locate_dirty_segment(sbi, segno);
2630
2631 /* update @addr_start and @cnt and @segno */
2632 addr_start = START_BLOCK(sbi, ++segno);
2633 if (++i == seg_num)
2634 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2635 else
2636 cnt = max_blocks;
2637 } while (i <= seg_num);
2638
2639 up_write(&sit_i->sentry_lock);
2640 }
2641
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2642 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2643 {
2644 struct sit_info *sit_i = SIT_I(sbi);
2645 unsigned int segno, offset;
2646 struct seg_entry *se;
2647 bool is_cp = false;
2648
2649 if (!__is_valid_data_blkaddr(blkaddr))
2650 return true;
2651
2652 down_read(&sit_i->sentry_lock);
2653
2654 segno = GET_SEGNO(sbi, blkaddr);
2655 se = get_seg_entry(sbi, segno);
2656 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2657
2658 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2659 is_cp = true;
2660
2661 up_read(&sit_i->sentry_lock);
2662
2663 return is_cp;
2664 }
2665
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2666 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2667 {
2668 struct curseg_info *curseg = CURSEG_I(sbi, type);
2669
2670 if (sbi->ckpt->alloc_type[type] == SSR)
2671 return BLKS_PER_SEG(sbi);
2672 return curseg->next_blkoff;
2673 }
2674
2675 /*
2676 * Calculate the number of current summary pages for writing
2677 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2678 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2679 {
2680 int valid_sum_count = 0;
2681 int i, sum_in_page;
2682
2683 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2684 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2685 valid_sum_count +=
2686 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2687 else
2688 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2689 }
2690
2691 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2692 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2693 if (valid_sum_count <= sum_in_page)
2694 return 1;
2695 else if ((valid_sum_count - sum_in_page) <=
2696 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2697 return 2;
2698 return 3;
2699 }
2700
2701 /*
2702 * Caller should put this summary page
2703 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2704 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2705 {
2706 if (unlikely(f2fs_cp_error(sbi)))
2707 return ERR_PTR(-EIO);
2708 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2709 }
2710
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2711 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2712 void *src, block_t blk_addr)
2713 {
2714 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2715
2716 memcpy(page_address(page), src, PAGE_SIZE);
2717 set_page_dirty(page);
2718 f2fs_put_page(page, 1);
2719 }
2720
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2721 static void write_sum_page(struct f2fs_sb_info *sbi,
2722 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2723 {
2724 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2725 }
2726
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2727 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2728 int type, block_t blk_addr)
2729 {
2730 struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2732 struct f2fs_summary_block *src = curseg->sum_blk;
2733 struct f2fs_summary_block *dst;
2734
2735 dst = (struct f2fs_summary_block *)page_address(page);
2736 memset(dst, 0, PAGE_SIZE);
2737
2738 mutex_lock(&curseg->curseg_mutex);
2739
2740 down_read(&curseg->journal_rwsem);
2741 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2742 up_read(&curseg->journal_rwsem);
2743
2744 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2745 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2746
2747 mutex_unlock(&curseg->curseg_mutex);
2748
2749 set_page_dirty(page);
2750 f2fs_put_page(page, 1);
2751 }
2752
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2753 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2754 struct curseg_info *curseg)
2755 {
2756 unsigned int segno = curseg->segno + 1;
2757 struct free_segmap_info *free_i = FREE_I(sbi);
2758
2759 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2760 return !test_bit(segno, free_i->free_segmap);
2761 return 0;
2762 }
2763
2764 /*
2765 * Find a new segment from the free segments bitmap to right order
2766 * This function should be returned with success, otherwise BUG
2767 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2768 static int get_new_segment(struct f2fs_sb_info *sbi,
2769 unsigned int *newseg, bool new_sec, bool pinning)
2770 {
2771 struct free_segmap_info *free_i = FREE_I(sbi);
2772 unsigned int segno, secno, zoneno;
2773 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2774 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2775 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2776 bool init = true;
2777 int i;
2778 int ret = 0;
2779
2780 spin_lock(&free_i->segmap_lock);
2781
2782 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2783 ret = -ENOSPC;
2784 goto out_unlock;
2785 }
2786
2787 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2788 segno = find_next_zero_bit(free_i->free_segmap,
2789 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2790 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2791 goto got_it;
2792 }
2793
2794 #ifdef CONFIG_BLK_DEV_ZONED
2795 /*
2796 * If we format f2fs on zoned storage, let's try to get pinned sections
2797 * from beginning of the storage, which should be a conventional one.
2798 */
2799 if (f2fs_sb_has_blkzoned(sbi)) {
2800 /* Prioritize writing to conventional zones */
2801 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2802 segno = 0;
2803 else
2804 segno = max(sbi->first_zoned_segno, *newseg);
2805 hint = GET_SEC_FROM_SEG(sbi, segno);
2806 }
2807 #endif
2808
2809 find_other_zone:
2810 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2811
2812 #ifdef CONFIG_BLK_DEV_ZONED
2813 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2814 /* Write only to sequential zones */
2815 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2816 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2817 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2818 } else
2819 secno = find_first_zero_bit(free_i->free_secmap,
2820 MAIN_SECS(sbi));
2821 if (secno >= MAIN_SECS(sbi)) {
2822 ret = -ENOSPC;
2823 f2fs_bug_on(sbi, 1);
2824 goto out_unlock;
2825 }
2826 }
2827 #endif
2828
2829 if (secno >= MAIN_SECS(sbi)) {
2830 secno = find_first_zero_bit(free_i->free_secmap,
2831 MAIN_SECS(sbi));
2832 if (secno >= MAIN_SECS(sbi)) {
2833 ret = -ENOSPC;
2834 f2fs_bug_on(sbi, !pinning);
2835 goto out_unlock;
2836 }
2837 }
2838 segno = GET_SEG_FROM_SEC(sbi, secno);
2839 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2840
2841 /* give up on finding another zone */
2842 if (!init)
2843 goto got_it;
2844 if (sbi->secs_per_zone == 1)
2845 goto got_it;
2846 if (zoneno == old_zoneno)
2847 goto got_it;
2848 for (i = 0; i < NR_CURSEG_TYPE; i++)
2849 if (CURSEG_I(sbi, i)->zone == zoneno)
2850 break;
2851
2852 if (i < NR_CURSEG_TYPE) {
2853 /* zone is in user, try another */
2854 if (zoneno + 1 >= total_zones)
2855 hint = 0;
2856 else
2857 hint = (zoneno + 1) * sbi->secs_per_zone;
2858 init = false;
2859 goto find_other_zone;
2860 }
2861 got_it:
2862 /* set it as dirty segment in free segmap */
2863 if (test_bit(segno, free_i->free_segmap)) {
2864 ret = -EFSCORRUPTED;
2865 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2866 goto out_unlock;
2867 }
2868
2869 /* no free section in conventional device or conventional zone */
2870 if (new_sec && pinning &&
2871 f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2872 ret = -EAGAIN;
2873 goto out_unlock;
2874 }
2875 __set_inuse(sbi, segno);
2876 *newseg = segno;
2877 out_unlock:
2878 spin_unlock(&free_i->segmap_lock);
2879
2880 if (ret == -ENOSPC && !pinning)
2881 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2882 return ret;
2883 }
2884
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2885 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2886 {
2887 struct curseg_info *curseg = CURSEG_I(sbi, type);
2888 struct summary_footer *sum_footer;
2889 unsigned short seg_type = curseg->seg_type;
2890
2891 /* only happen when get_new_segment() fails */
2892 if (curseg->next_segno == NULL_SEGNO)
2893 return;
2894
2895 curseg->inited = true;
2896 curseg->segno = curseg->next_segno;
2897 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2898 curseg->next_blkoff = 0;
2899 curseg->next_segno = NULL_SEGNO;
2900
2901 sum_footer = &(curseg->sum_blk->footer);
2902 memset(sum_footer, 0, sizeof(struct summary_footer));
2903
2904 sanity_check_seg_type(sbi, seg_type);
2905
2906 if (IS_DATASEG(seg_type))
2907 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2908 if (IS_NODESEG(seg_type))
2909 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2910 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2911 }
2912
__get_next_segno(struct f2fs_sb_info * sbi,int type)2913 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2914 {
2915 struct curseg_info *curseg = CURSEG_I(sbi, type);
2916 unsigned short seg_type = curseg->seg_type;
2917
2918 sanity_check_seg_type(sbi, seg_type);
2919 if (__is_large_section(sbi)) {
2920 if (f2fs_need_rand_seg(sbi)) {
2921 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2922
2923 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2924 return curseg->segno;
2925 return get_random_u32_inclusive(curseg->segno + 1,
2926 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2927 }
2928 return curseg->segno;
2929 } else if (f2fs_need_rand_seg(sbi)) {
2930 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2931 }
2932
2933 /* inmem log may not locate on any segment after mount */
2934 if (!curseg->inited)
2935 return 0;
2936
2937 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2938 return 0;
2939
2940 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2941 return 0;
2942
2943 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2944 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2945
2946 /* find segments from 0 to reuse freed segments */
2947 if (f2fs_get_alloc_mode(sbi) == ALLOC_MODE_REUSE)
2948 return 0;
2949
2950 return curseg->segno;
2951 }
2952
reset_curseg_fields(struct curseg_info * curseg)2953 static void reset_curseg_fields(struct curseg_info *curseg)
2954 {
2955 curseg->inited = false;
2956 curseg->segno = NULL_SEGNO;
2957 curseg->next_segno = 0;
2958 }
2959
2960 /*
2961 * Allocate a current working segment.
2962 * This function always allocates a free segment in LFS manner.
2963 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2964 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2965 {
2966 struct curseg_info *curseg = CURSEG_I(sbi, type);
2967 unsigned int segno = curseg->segno;
2968 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2969 int ret;
2970
2971 if (curseg->inited)
2972 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2973
2974 segno = __get_next_segno(sbi, type);
2975 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2976 if (ret) {
2977 if (ret == -ENOSPC)
2978 reset_curseg_fields(curseg);
2979 return ret;
2980 }
2981
2982 curseg->next_segno = segno;
2983 reset_curseg(sbi, type, 1);
2984 curseg->alloc_type = LFS;
2985 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2986 curseg->fragment_remained_chunk =
2987 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2988 return 0;
2989 }
2990
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2991 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2992 int segno, block_t start)
2993 {
2994 struct seg_entry *se = get_seg_entry(sbi, segno);
2995 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2996 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2997 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2998 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2999 int i;
3000
3001 for (i = 0; i < entries; i++)
3002 target_map[i] = ckpt_map[i] | cur_map[i];
3003
3004 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3005 }
3006
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3007 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3008 struct curseg_info *seg)
3009 {
3010 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3011 }
3012
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3013 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3014 {
3015 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3016 }
3017
3018 /*
3019 * This function always allocates a used segment(from dirty seglist) by SSR
3020 * manner, so it should recover the existing segment information of valid blocks
3021 */
change_curseg(struct f2fs_sb_info * sbi,int type)3022 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3023 {
3024 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3025 struct curseg_info *curseg = CURSEG_I(sbi, type);
3026 unsigned int new_segno = curseg->next_segno;
3027 struct f2fs_summary_block *sum_node;
3028 struct page *sum_page;
3029
3030 if (curseg->inited)
3031 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3032
3033 __set_test_and_inuse(sbi, new_segno);
3034
3035 mutex_lock(&dirty_i->seglist_lock);
3036 __remove_dirty_segment(sbi, new_segno, PRE);
3037 __remove_dirty_segment(sbi, new_segno, DIRTY);
3038 mutex_unlock(&dirty_i->seglist_lock);
3039
3040 reset_curseg(sbi, type, 1);
3041 curseg->alloc_type = SSR;
3042 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3043
3044 sum_page = f2fs_get_sum_page(sbi, new_segno);
3045 if (IS_ERR(sum_page)) {
3046 /* GC won't be able to use stale summary pages by cp_error */
3047 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3048 return PTR_ERR(sum_page);
3049 }
3050 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
3051 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3052 f2fs_put_page(sum_page, 1);
3053 return 0;
3054 }
3055
3056 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3057 int alloc_mode, unsigned long long age);
3058
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3059 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3060 int target_type, int alloc_mode,
3061 unsigned long long age)
3062 {
3063 struct curseg_info *curseg = CURSEG_I(sbi, type);
3064 int ret = 0;
3065
3066 curseg->seg_type = target_type;
3067
3068 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3069 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3070
3071 curseg->seg_type = se->type;
3072 ret = change_curseg(sbi, type);
3073 } else {
3074 /* allocate cold segment by default */
3075 curseg->seg_type = CURSEG_COLD_DATA;
3076 ret = new_curseg(sbi, type, true);
3077 }
3078 stat_inc_seg_type(sbi, curseg);
3079 return ret;
3080 }
3081
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3082 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3083 {
3084 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3085 int ret = 0;
3086
3087 if (!sbi->am.atgc_enabled && !force)
3088 return 0;
3089
3090 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3091
3092 mutex_lock(&curseg->curseg_mutex);
3093 down_write(&SIT_I(sbi)->sentry_lock);
3094
3095 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3096 CURSEG_COLD_DATA, SSR, 0);
3097
3098 up_write(&SIT_I(sbi)->sentry_lock);
3099 mutex_unlock(&curseg->curseg_mutex);
3100
3101 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3102 return ret;
3103 }
3104
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3105 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3106 {
3107 return __f2fs_init_atgc_curseg(sbi, false);
3108 }
3109
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3110 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3111 {
3112 int ret;
3113
3114 if (!test_opt(sbi, ATGC))
3115 return 0;
3116 if (sbi->am.atgc_enabled)
3117 return 0;
3118 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3119 sbi->am.age_threshold)
3120 return 0;
3121
3122 ret = __f2fs_init_atgc_curseg(sbi, true);
3123 if (!ret) {
3124 sbi->am.atgc_enabled = true;
3125 f2fs_info(sbi, "reenabled age threshold GC");
3126 }
3127 return ret;
3128 }
3129
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3130 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3131 {
3132 struct curseg_info *curseg = CURSEG_I(sbi, type);
3133
3134 mutex_lock(&curseg->curseg_mutex);
3135 if (!curseg->inited)
3136 goto out;
3137
3138 if (get_valid_blocks(sbi, curseg->segno, false)) {
3139 write_sum_page(sbi, curseg->sum_blk,
3140 GET_SUM_BLOCK(sbi, curseg->segno));
3141 } else {
3142 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3143 __set_test_and_free(sbi, curseg->segno, true);
3144 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3145 }
3146 out:
3147 mutex_unlock(&curseg->curseg_mutex);
3148 }
3149
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3150 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3151 {
3152 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3153
3154 if (sbi->am.atgc_enabled)
3155 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3156 }
3157
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3158 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3159 {
3160 struct curseg_info *curseg = CURSEG_I(sbi, type);
3161
3162 mutex_lock(&curseg->curseg_mutex);
3163 if (!curseg->inited)
3164 goto out;
3165 if (get_valid_blocks(sbi, curseg->segno, false))
3166 goto out;
3167
3168 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3169 __set_test_and_inuse(sbi, curseg->segno);
3170 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3171 out:
3172 mutex_unlock(&curseg->curseg_mutex);
3173 }
3174
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3175 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3176 {
3177 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3178
3179 if (sbi->am.atgc_enabled)
3180 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3181 }
3182
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3183 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3184 int alloc_mode, unsigned long long age)
3185 {
3186 struct curseg_info *curseg = CURSEG_I(sbi, type);
3187 unsigned segno = NULL_SEGNO;
3188 unsigned short seg_type = curseg->seg_type;
3189 int i, cnt;
3190 bool reversed = false;
3191
3192 sanity_check_seg_type(sbi, seg_type);
3193
3194 /* f2fs_need_SSR() already forces to do this */
3195 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3196 alloc_mode, age, false)) {
3197 curseg->next_segno = segno;
3198 return 1;
3199 }
3200
3201 /* For node segments, let's do SSR more intensively */
3202 if (IS_NODESEG(seg_type)) {
3203 if (seg_type >= CURSEG_WARM_NODE) {
3204 reversed = true;
3205 i = CURSEG_COLD_NODE;
3206 } else {
3207 i = CURSEG_HOT_NODE;
3208 }
3209 cnt = NR_CURSEG_NODE_TYPE;
3210 } else {
3211 if (seg_type >= CURSEG_WARM_DATA) {
3212 reversed = true;
3213 i = CURSEG_COLD_DATA;
3214 } else {
3215 i = CURSEG_HOT_DATA;
3216 }
3217 cnt = NR_CURSEG_DATA_TYPE;
3218 }
3219
3220 for (; cnt-- > 0; reversed ? i-- : i++) {
3221 if (i == seg_type)
3222 continue;
3223 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3224 alloc_mode, age, false)) {
3225 curseg->next_segno = segno;
3226 return 1;
3227 }
3228 }
3229
3230 /* find valid_blocks=0 in dirty list */
3231 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3232 segno = get_free_segment(sbi);
3233 if (segno != NULL_SEGNO) {
3234 curseg->next_segno = segno;
3235 return 1;
3236 }
3237 }
3238 return 0;
3239 }
3240
need_new_seg(struct f2fs_sb_info * sbi,int type)3241 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3242 {
3243 struct curseg_info *curseg = CURSEG_I(sbi, type);
3244
3245 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3246 curseg->seg_type == CURSEG_WARM_NODE)
3247 return true;
3248 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3249 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3250 return true;
3251 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3252 return true;
3253 return false;
3254 }
3255
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3256 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3257 unsigned int start, unsigned int end)
3258 {
3259 struct curseg_info *curseg = CURSEG_I(sbi, type);
3260 unsigned int segno;
3261 int ret = 0;
3262
3263 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3264 mutex_lock(&curseg->curseg_mutex);
3265 down_write(&SIT_I(sbi)->sentry_lock);
3266
3267 segno = CURSEG_I(sbi, type)->segno;
3268 if (segno < start || segno > end)
3269 goto unlock;
3270
3271 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3272 ret = change_curseg(sbi, type);
3273 else
3274 ret = new_curseg(sbi, type, true);
3275
3276 stat_inc_seg_type(sbi, curseg);
3277
3278 locate_dirty_segment(sbi, segno);
3279 unlock:
3280 up_write(&SIT_I(sbi)->sentry_lock);
3281
3282 if (segno != curseg->segno)
3283 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3284 type, segno, curseg->segno);
3285
3286 mutex_unlock(&curseg->curseg_mutex);
3287 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3288 return ret;
3289 }
3290
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3291 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3292 bool new_sec, bool force)
3293 {
3294 struct curseg_info *curseg = CURSEG_I(sbi, type);
3295 unsigned int old_segno;
3296 int err = 0;
3297
3298 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3299 goto allocate;
3300
3301 if (!force && curseg->inited &&
3302 !curseg->next_blkoff &&
3303 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3304 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3305 return 0;
3306
3307 allocate:
3308 old_segno = curseg->segno;
3309 err = new_curseg(sbi, type, true);
3310 if (err)
3311 return err;
3312 stat_inc_seg_type(sbi, curseg);
3313 locate_dirty_segment(sbi, old_segno);
3314 return 0;
3315 }
3316
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3317 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3318 {
3319 int ret;
3320
3321 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3322 down_write(&SIT_I(sbi)->sentry_lock);
3323 ret = __allocate_new_segment(sbi, type, true, force);
3324 up_write(&SIT_I(sbi)->sentry_lock);
3325 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3326
3327 return ret;
3328 }
3329
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3330 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3331 {
3332 int err;
3333 bool gc_required = true;
3334
3335 retry:
3336 f2fs_lock_op(sbi);
3337 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3338 f2fs_unlock_op(sbi);
3339
3340 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3341 f2fs_down_write(&sbi->gc_lock);
3342 err = f2fs_gc_range(sbi, 0, sbi->first_zoned_segno - 1,
3343 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3344 f2fs_up_write(&sbi->gc_lock);
3345
3346 gc_required = false;
3347 if (!err)
3348 goto retry;
3349 }
3350
3351 return err;
3352 }
3353
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3354 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3355 {
3356 int i;
3357 int err = 0;
3358
3359 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3360 down_write(&SIT_I(sbi)->sentry_lock);
3361 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3362 err += __allocate_new_segment(sbi, i, false, false);
3363 up_write(&SIT_I(sbi)->sentry_lock);
3364 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3365
3366 return err;
3367 }
3368
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3369 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3370 struct cp_control *cpc)
3371 {
3372 __u64 trim_start = cpc->trim_start;
3373 bool has_candidate = false;
3374
3375 down_write(&SIT_I(sbi)->sentry_lock);
3376 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3377 if (add_discard_addrs(sbi, cpc, true)) {
3378 has_candidate = true;
3379 break;
3380 }
3381 }
3382 up_write(&SIT_I(sbi)->sentry_lock);
3383
3384 cpc->trim_start = trim_start;
3385 return has_candidate;
3386 }
3387
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3388 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3389 struct discard_policy *dpolicy,
3390 unsigned int start, unsigned int end)
3391 {
3392 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3393 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3394 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3395 struct discard_cmd *dc;
3396 struct blk_plug plug;
3397 int issued;
3398 unsigned int trimmed = 0;
3399
3400 next:
3401 issued = 0;
3402
3403 mutex_lock(&dcc->cmd_lock);
3404 if (unlikely(dcc->rbtree_check))
3405 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3406
3407 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3408 &prev_dc, &next_dc, &insert_p, &insert_parent);
3409 if (!dc)
3410 dc = next_dc;
3411
3412 blk_start_plug(&plug);
3413
3414 while (dc && dc->di.lstart <= end) {
3415 struct rb_node *node;
3416 int err = 0;
3417
3418 if (dc->di.len < dpolicy->granularity)
3419 goto skip;
3420
3421 if (dc->state != D_PREP) {
3422 list_move_tail(&dc->list, &dcc->fstrim_list);
3423 goto skip;
3424 }
3425
3426 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3427
3428 if (issued >= dpolicy->max_requests) {
3429 start = dc->di.lstart + dc->di.len;
3430
3431 if (err)
3432 __remove_discard_cmd(sbi, dc);
3433
3434 blk_finish_plug(&plug);
3435 mutex_unlock(&dcc->cmd_lock);
3436 trimmed += __wait_all_discard_cmd(sbi, NULL);
3437 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3438 goto next;
3439 }
3440 skip:
3441 node = rb_next(&dc->rb_node);
3442 if (err)
3443 __remove_discard_cmd(sbi, dc);
3444 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3445
3446 if (fatal_signal_pending(current))
3447 break;
3448 }
3449
3450 blk_finish_plug(&plug);
3451 mutex_unlock(&dcc->cmd_lock);
3452
3453 return trimmed;
3454 }
3455
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3456 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3457 {
3458 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3459 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3460 unsigned int start_segno, end_segno;
3461 block_t start_block, end_block;
3462 struct cp_control cpc;
3463 struct discard_policy dpolicy;
3464 unsigned long long trimmed = 0;
3465 int err = 0;
3466 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3467
3468 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3469 return -EINVAL;
3470
3471 if (end < MAIN_BLKADDR(sbi))
3472 goto out;
3473
3474 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3475 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3476 return -EFSCORRUPTED;
3477 }
3478
3479 /* start/end segment number in main_area */
3480 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3481 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3482 GET_SEGNO(sbi, end);
3483 if (need_align) {
3484 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3485 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3486 }
3487
3488 cpc.reason = CP_DISCARD;
3489 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3490 cpc.trim_start = start_segno;
3491 cpc.trim_end = end_segno;
3492
3493 if (sbi->discard_blks == 0)
3494 goto out;
3495
3496 f2fs_down_write(&sbi->gc_lock);
3497 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3498 err = f2fs_write_checkpoint(sbi, &cpc);
3499 f2fs_up_write(&sbi->gc_lock);
3500 if (err)
3501 goto out;
3502
3503 /*
3504 * We filed discard candidates, but actually we don't need to wait for
3505 * all of them, since they'll be issued in idle time along with runtime
3506 * discard option. User configuration looks like using runtime discard
3507 * or periodic fstrim instead of it.
3508 */
3509 if (f2fs_realtime_discard_enable(sbi))
3510 goto out;
3511
3512 start_block = START_BLOCK(sbi, start_segno);
3513 end_block = START_BLOCK(sbi, end_segno + 1);
3514
3515 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3516 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3517 start_block, end_block);
3518
3519 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3520 start_block, end_block);
3521 out:
3522 if (!err)
3523 range->len = F2FS_BLK_TO_BYTES(trimmed);
3524 return err;
3525 }
3526
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3527 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3528 {
3529 if (F2FS_OPTION(sbi).active_logs == 2)
3530 return CURSEG_HOT_DATA;
3531 else if (F2FS_OPTION(sbi).active_logs == 4)
3532 return CURSEG_COLD_DATA;
3533
3534 /* active_log == 6 */
3535 switch (hint) {
3536 case WRITE_LIFE_SHORT:
3537 return CURSEG_HOT_DATA;
3538 case WRITE_LIFE_EXTREME:
3539 return CURSEG_COLD_DATA;
3540 default:
3541 return CURSEG_WARM_DATA;
3542 }
3543 }
3544
3545 /*
3546 * This returns write hints for each segment type. This hints will be
3547 * passed down to block layer as below by default.
3548 *
3549 * User F2FS Block
3550 * ---- ---- -----
3551 * META WRITE_LIFE_NONE|REQ_META
3552 * HOT_NODE WRITE_LIFE_NONE
3553 * WARM_NODE WRITE_LIFE_MEDIUM
3554 * COLD_NODE WRITE_LIFE_LONG
3555 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3556 * extension list " "
3557 *
3558 * -- buffered io
3559 * COLD_DATA WRITE_LIFE_EXTREME
3560 * HOT_DATA WRITE_LIFE_SHORT
3561 * WARM_DATA WRITE_LIFE_NOT_SET
3562 *
3563 * -- direct io
3564 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3565 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3566 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3567 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3568 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3569 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3570 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3571 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3572 enum page_type type, enum temp_type temp)
3573 {
3574 switch (type) {
3575 case DATA:
3576 switch (temp) {
3577 case WARM:
3578 return WRITE_LIFE_NOT_SET;
3579 case HOT:
3580 return WRITE_LIFE_SHORT;
3581 case COLD:
3582 return WRITE_LIFE_EXTREME;
3583 default:
3584 return WRITE_LIFE_NONE;
3585 }
3586 case NODE:
3587 switch (temp) {
3588 case WARM:
3589 return WRITE_LIFE_MEDIUM;
3590 case HOT:
3591 return WRITE_LIFE_NONE;
3592 case COLD:
3593 return WRITE_LIFE_LONG;
3594 default:
3595 return WRITE_LIFE_NONE;
3596 }
3597 case META:
3598 return WRITE_LIFE_NONE;
3599 default:
3600 return WRITE_LIFE_NONE;
3601 }
3602 }
3603
__get_segment_type_2(struct f2fs_io_info * fio)3604 static int __get_segment_type_2(struct f2fs_io_info *fio)
3605 {
3606 if (fio->type == DATA)
3607 return CURSEG_HOT_DATA;
3608 else
3609 return CURSEG_HOT_NODE;
3610 }
3611
__get_segment_type_4(struct f2fs_io_info * fio)3612 static int __get_segment_type_4(struct f2fs_io_info *fio)
3613 {
3614 if (fio->type == DATA) {
3615 struct inode *inode = fio->page->mapping->host;
3616
3617 if (S_ISDIR(inode->i_mode))
3618 return CURSEG_HOT_DATA;
3619 else
3620 return CURSEG_COLD_DATA;
3621 } else {
3622 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3623 return CURSEG_WARM_NODE;
3624 else
3625 return CURSEG_COLD_NODE;
3626 }
3627 }
3628
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3629 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3630 {
3631 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3632 struct extent_info ei = {};
3633
3634 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3635 if (!ei.age)
3636 return NO_CHECK_TYPE;
3637 if (ei.age <= sbi->hot_data_age_threshold)
3638 return CURSEG_HOT_DATA;
3639 if (ei.age <= sbi->warm_data_age_threshold)
3640 return CURSEG_WARM_DATA;
3641 return CURSEG_COLD_DATA;
3642 }
3643 return NO_CHECK_TYPE;
3644 }
3645
__get_segment_type_6(struct f2fs_io_info * fio)3646 static int __get_segment_type_6(struct f2fs_io_info *fio)
3647 {
3648 if (fio->type == DATA) {
3649 struct inode *inode = fio->page->mapping->host;
3650 int type;
3651
3652 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3653 return CURSEG_COLD_DATA_PINNED;
3654
3655 if (page_private_gcing(fio->page)) {
3656 if (fio->sbi->am.atgc_enabled &&
3657 (fio->io_type == FS_DATA_IO) &&
3658 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3659 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3660 !is_inode_flag_set(inode, FI_OPU_WRITE))
3661 return CURSEG_ALL_DATA_ATGC;
3662 else
3663 return CURSEG_COLD_DATA;
3664 }
3665 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3666 return CURSEG_COLD_DATA;
3667
3668 type = __get_age_segment_type(inode,
3669 page_folio(fio->page)->index);
3670 if (type != NO_CHECK_TYPE)
3671 return type;
3672
3673 if (file_is_hot(inode) ||
3674 is_inode_flag_set(inode, FI_HOT_DATA) ||
3675 f2fs_is_cow_file(inode))
3676 return CURSEG_HOT_DATA;
3677 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3678 inode->i_write_hint);
3679 } else {
3680 if (IS_DNODE(fio->page))
3681 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3682 CURSEG_HOT_NODE;
3683 return CURSEG_COLD_NODE;
3684 }
3685 }
3686
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3687 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3688 enum log_type type)
3689 {
3690 struct curseg_info *curseg = CURSEG_I(sbi, type);
3691 enum temp_type temp = COLD;
3692
3693 switch (curseg->seg_type) {
3694 case CURSEG_HOT_NODE:
3695 case CURSEG_HOT_DATA:
3696 temp = HOT;
3697 break;
3698 case CURSEG_WARM_NODE:
3699 case CURSEG_WARM_DATA:
3700 temp = WARM;
3701 break;
3702 case CURSEG_COLD_NODE:
3703 case CURSEG_COLD_DATA:
3704 temp = COLD;
3705 break;
3706 default:
3707 f2fs_bug_on(sbi, 1);
3708 }
3709
3710 return temp;
3711 }
3712
__get_segment_type(struct f2fs_io_info * fio)3713 static int __get_segment_type(struct f2fs_io_info *fio)
3714 {
3715 enum log_type type = CURSEG_HOT_DATA;
3716
3717 switch (F2FS_OPTION(fio->sbi).active_logs) {
3718 case 2:
3719 type = __get_segment_type_2(fio);
3720 break;
3721 case 4:
3722 type = __get_segment_type_4(fio);
3723 break;
3724 case 6:
3725 type = __get_segment_type_6(fio);
3726 break;
3727 default:
3728 f2fs_bug_on(fio->sbi, true);
3729 }
3730
3731 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3732
3733 return type;
3734 }
3735
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3736 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3737 struct curseg_info *seg)
3738 {
3739 /* To allocate block chunks in different sizes, use random number */
3740 if (--seg->fragment_remained_chunk > 0)
3741 return;
3742
3743 seg->fragment_remained_chunk =
3744 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3745 seg->next_blkoff +=
3746 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3747 }
3748
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3749 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3750 block_t old_blkaddr, block_t *new_blkaddr,
3751 struct f2fs_summary *sum, int type,
3752 struct f2fs_io_info *fio)
3753 {
3754 struct sit_info *sit_i = SIT_I(sbi);
3755 struct curseg_info *curseg = CURSEG_I(sbi, type);
3756 unsigned long long old_mtime;
3757 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3758 struct seg_entry *se = NULL;
3759 bool segment_full = false;
3760 int ret = 0;
3761
3762 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3763
3764 mutex_lock(&curseg->curseg_mutex);
3765 down_write(&sit_i->sentry_lock);
3766
3767 if (curseg->segno == NULL_SEGNO) {
3768 ret = -ENOSPC;
3769 goto out_err;
3770 }
3771
3772 if (from_gc) {
3773 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3774 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3775 sanity_check_seg_type(sbi, se->type);
3776 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3777 }
3778 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3779
3780 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3781
3782 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3783
3784 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3785 if (curseg->alloc_type == SSR) {
3786 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3787 } else {
3788 curseg->next_blkoff++;
3789 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3790 f2fs_randomize_chunk(sbi, curseg);
3791 }
3792 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3793 segment_full = true;
3794 stat_inc_block_count(sbi, curseg);
3795
3796 if (from_gc) {
3797 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3798 } else {
3799 update_segment_mtime(sbi, old_blkaddr, 0);
3800 old_mtime = 0;
3801 }
3802 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3803
3804 /*
3805 * SIT information should be updated before segment allocation,
3806 * since SSR needs latest valid block information.
3807 */
3808 update_sit_entry(sbi, *new_blkaddr, 1);
3809 update_sit_entry(sbi, old_blkaddr, -1);
3810
3811 /*
3812 * If the current segment is full, flush it out and replace it with a
3813 * new segment.
3814 */
3815 if (segment_full) {
3816 if (type == CURSEG_COLD_DATA_PINNED &&
3817 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3818 write_sum_page(sbi, curseg->sum_blk,
3819 GET_SUM_BLOCK(sbi, curseg->segno));
3820 reset_curseg_fields(curseg);
3821 goto skip_new_segment;
3822 }
3823
3824 if (from_gc) {
3825 ret = get_atssr_segment(sbi, type, se->type,
3826 AT_SSR, se->mtime);
3827 } else {
3828 if (need_new_seg(sbi, type))
3829 ret = new_curseg(sbi, type, false);
3830 else
3831 ret = change_curseg(sbi, type);
3832 stat_inc_seg_type(sbi, curseg);
3833 }
3834
3835 if (ret)
3836 goto out_err;
3837 }
3838
3839 skip_new_segment:
3840 /*
3841 * segment dirty status should be updated after segment allocation,
3842 * so we just need to update status only one time after previous
3843 * segment being closed.
3844 */
3845 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3846 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3847
3848 if (IS_DATASEG(curseg->seg_type))
3849 atomic64_inc(&sbi->allocated_data_blocks);
3850
3851 up_write(&sit_i->sentry_lock);
3852
3853 if (page && IS_NODESEG(curseg->seg_type)) {
3854 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3855
3856 f2fs_inode_chksum_set(sbi, page);
3857 }
3858
3859 if (fio) {
3860 struct f2fs_bio_info *io;
3861
3862 INIT_LIST_HEAD(&fio->list);
3863 fio->in_list = 1;
3864 io = sbi->write_io[fio->type] + fio->temp;
3865 spin_lock(&io->io_lock);
3866 list_add_tail(&fio->list, &io->io_list);
3867 spin_unlock(&io->io_lock);
3868 }
3869
3870 mutex_unlock(&curseg->curseg_mutex);
3871 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3872 return 0;
3873
3874 out_err:
3875 *new_blkaddr = NULL_ADDR;
3876 up_write(&sit_i->sentry_lock);
3877 mutex_unlock(&curseg->curseg_mutex);
3878 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3879 return ret;
3880 }
3881
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3882 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3883 block_t blkaddr, unsigned int blkcnt)
3884 {
3885 if (!f2fs_is_multi_device(sbi))
3886 return;
3887
3888 while (1) {
3889 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3890 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3891
3892 /* update device state for fsync */
3893 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3894
3895 /* update device state for checkpoint */
3896 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3897 spin_lock(&sbi->dev_lock);
3898 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3899 spin_unlock(&sbi->dev_lock);
3900 }
3901
3902 if (blkcnt <= blks)
3903 break;
3904 blkcnt -= blks;
3905 blkaddr += blks;
3906 }
3907 }
3908
log_type_to_seg_type(enum log_type type)3909 static int log_type_to_seg_type(enum log_type type)
3910 {
3911 int seg_type = CURSEG_COLD_DATA;
3912
3913 switch (type) {
3914 case CURSEG_HOT_DATA:
3915 case CURSEG_WARM_DATA:
3916 case CURSEG_COLD_DATA:
3917 case CURSEG_HOT_NODE:
3918 case CURSEG_WARM_NODE:
3919 case CURSEG_COLD_NODE:
3920 seg_type = (int)type;
3921 break;
3922 case CURSEG_COLD_DATA_PINNED:
3923 case CURSEG_ALL_DATA_ATGC:
3924 seg_type = CURSEG_COLD_DATA;
3925 break;
3926 default:
3927 break;
3928 }
3929 return seg_type;
3930 }
3931
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3932 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3933 {
3934 struct folio *folio = page_folio(fio->page);
3935 enum log_type type = __get_segment_type(fio);
3936 int seg_type = log_type_to_seg_type(type);
3937 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3938 seg_type == CURSEG_COLD_DATA);
3939
3940 if (keep_order)
3941 f2fs_down_read(&fio->sbi->io_order_lock);
3942
3943 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3944 &fio->new_blkaddr, sum, type, fio)) {
3945 if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3946 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3947 folio_end_writeback(folio);
3948 if (f2fs_in_warm_node_list(fio->sbi, folio))
3949 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3950 goto out;
3951 }
3952 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3953 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3954
3955 /* writeout dirty page into bdev */
3956 f2fs_submit_page_write(fio);
3957
3958 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3959 out:
3960 if (keep_order)
3961 f2fs_up_read(&fio->sbi->io_order_lock);
3962 }
3963
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3964 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3965 enum iostat_type io_type)
3966 {
3967 struct f2fs_io_info fio = {
3968 .sbi = sbi,
3969 .type = META,
3970 .temp = HOT,
3971 .op = REQ_OP_WRITE,
3972 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3973 .old_blkaddr = folio->index,
3974 .new_blkaddr = folio->index,
3975 .page = folio_page(folio, 0),
3976 .encrypted_page = NULL,
3977 .in_list = 0,
3978 };
3979
3980 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3981 fio.op_flags &= ~REQ_META;
3982
3983 folio_start_writeback(folio);
3984 f2fs_submit_page_write(&fio);
3985
3986 stat_inc_meta_count(sbi, folio->index);
3987 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3988 }
3989
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3990 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3991 {
3992 struct f2fs_summary sum;
3993
3994 set_summary(&sum, nid, 0, 0);
3995 do_write_page(&sum, fio);
3996
3997 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3998 }
3999
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4000 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4001 struct f2fs_io_info *fio)
4002 {
4003 struct f2fs_sb_info *sbi = fio->sbi;
4004 struct f2fs_summary sum;
4005
4006 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4007 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4008 f2fs_update_age_extent_cache(dn);
4009 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4010 do_write_page(&sum, fio);
4011 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4012
4013 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4014 }
4015
f2fs_inplace_write_data(struct f2fs_io_info * fio)4016 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4017 {
4018 int err;
4019 struct f2fs_sb_info *sbi = fio->sbi;
4020 unsigned int segno;
4021
4022 fio->new_blkaddr = fio->old_blkaddr;
4023 /* i/o temperature is needed for passing down write hints */
4024 __get_segment_type(fio);
4025
4026 segno = GET_SEGNO(sbi, fio->new_blkaddr);
4027
4028 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4029 set_sbi_flag(sbi, SBI_NEED_FSCK);
4030 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4031 __func__, segno);
4032 err = -EFSCORRUPTED;
4033 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4034 goto drop_bio;
4035 }
4036
4037 if (f2fs_cp_error(sbi)) {
4038 err = -EIO;
4039 goto drop_bio;
4040 }
4041
4042 if (fio->meta_gc)
4043 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4044
4045 stat_inc_inplace_blocks(fio->sbi);
4046
4047 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4048 err = f2fs_merge_page_bio(fio);
4049 else
4050 err = f2fs_submit_page_bio(fio);
4051 if (!err) {
4052 f2fs_update_device_state(fio->sbi, fio->ino,
4053 fio->new_blkaddr, 1);
4054 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
4055 fio->io_type, F2FS_BLKSIZE);
4056 }
4057
4058 return err;
4059 drop_bio:
4060 if (fio->bio && *(fio->bio)) {
4061 struct bio *bio = *(fio->bio);
4062
4063 bio->bi_status = BLK_STS_IOERR;
4064 bio_endio(bio);
4065 *(fio->bio) = NULL;
4066 }
4067 return err;
4068 }
4069
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4070 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4071 unsigned int segno)
4072 {
4073 int i;
4074
4075 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4076 if (CURSEG_I(sbi, i)->segno == segno)
4077 break;
4078 }
4079 return i;
4080 }
4081
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4082 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4083 block_t old_blkaddr, block_t new_blkaddr,
4084 bool recover_curseg, bool recover_newaddr,
4085 bool from_gc)
4086 {
4087 struct sit_info *sit_i = SIT_I(sbi);
4088 struct curseg_info *curseg;
4089 unsigned int segno, old_cursegno;
4090 struct seg_entry *se;
4091 int type;
4092 unsigned short old_blkoff;
4093 unsigned char old_alloc_type;
4094
4095 segno = GET_SEGNO(sbi, new_blkaddr);
4096 se = get_seg_entry(sbi, segno);
4097 type = se->type;
4098
4099 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4100
4101 if (!recover_curseg) {
4102 /* for recovery flow */
4103 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4104 if (old_blkaddr == NULL_ADDR)
4105 type = CURSEG_COLD_DATA;
4106 else
4107 type = CURSEG_WARM_DATA;
4108 }
4109 } else {
4110 if (IS_CURSEG(sbi, segno)) {
4111 /* se->type is volatile as SSR allocation */
4112 type = __f2fs_get_curseg(sbi, segno);
4113 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4114 } else {
4115 type = CURSEG_WARM_DATA;
4116 }
4117 }
4118
4119 curseg = CURSEG_I(sbi, type);
4120 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4121
4122 mutex_lock(&curseg->curseg_mutex);
4123 down_write(&sit_i->sentry_lock);
4124
4125 old_cursegno = curseg->segno;
4126 old_blkoff = curseg->next_blkoff;
4127 old_alloc_type = curseg->alloc_type;
4128
4129 /* change the current segment */
4130 if (segno != curseg->segno) {
4131 curseg->next_segno = segno;
4132 if (change_curseg(sbi, type))
4133 goto out_unlock;
4134 }
4135
4136 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4137 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4138
4139 if (!recover_curseg || recover_newaddr) {
4140 if (!from_gc)
4141 update_segment_mtime(sbi, new_blkaddr, 0);
4142 update_sit_entry(sbi, new_blkaddr, 1);
4143 }
4144 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4145 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4146 if (!from_gc)
4147 update_segment_mtime(sbi, old_blkaddr, 0);
4148 update_sit_entry(sbi, old_blkaddr, -1);
4149 }
4150
4151 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4152 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4153
4154 locate_dirty_segment(sbi, old_cursegno);
4155
4156 if (recover_curseg) {
4157 if (old_cursegno != curseg->segno) {
4158 curseg->next_segno = old_cursegno;
4159 if (change_curseg(sbi, type))
4160 goto out_unlock;
4161 }
4162 curseg->next_blkoff = old_blkoff;
4163 curseg->alloc_type = old_alloc_type;
4164 }
4165
4166 out_unlock:
4167 up_write(&sit_i->sentry_lock);
4168 mutex_unlock(&curseg->curseg_mutex);
4169 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4170 }
4171
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4172 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4173 block_t old_addr, block_t new_addr,
4174 unsigned char version, bool recover_curseg,
4175 bool recover_newaddr)
4176 {
4177 struct f2fs_summary sum;
4178
4179 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4180
4181 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4182 recover_curseg, recover_newaddr, false);
4183
4184 f2fs_update_data_blkaddr(dn, new_addr);
4185 }
4186
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4187 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4188 bool ordered, bool locked)
4189 {
4190 if (folio_test_writeback(folio)) {
4191 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4192
4193 /* submit cached LFS IO */
4194 f2fs_submit_merged_write_cond(sbi, NULL, &folio->page, 0, type);
4195 /* submit cached IPU IO */
4196 f2fs_submit_merged_ipu_write(sbi, NULL, &folio->page);
4197 if (ordered) {
4198 folio_wait_writeback(folio);
4199 f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4200 } else {
4201 folio_wait_stable(folio);
4202 }
4203 }
4204 }
4205
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4206 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4207 {
4208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 struct page *cpage;
4210
4211 if (!f2fs_meta_inode_gc_required(inode))
4212 return;
4213
4214 if (!__is_valid_data_blkaddr(blkaddr))
4215 return;
4216
4217 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4218 if (cpage) {
4219 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4220 f2fs_put_page(cpage, 1);
4221 }
4222 }
4223
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4224 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4225 block_t len)
4226 {
4227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228 block_t i;
4229
4230 if (!f2fs_meta_inode_gc_required(inode))
4231 return;
4232
4233 for (i = 0; i < len; i++)
4234 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4235
4236 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4237 }
4238
read_compacted_summaries(struct f2fs_sb_info * sbi)4239 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4240 {
4241 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4242 struct curseg_info *seg_i;
4243 unsigned char *kaddr;
4244 struct page *page;
4245 block_t start;
4246 int i, j, offset;
4247
4248 start = start_sum_block(sbi);
4249
4250 page = f2fs_get_meta_page(sbi, start++);
4251 if (IS_ERR(page))
4252 return PTR_ERR(page);
4253 kaddr = (unsigned char *)page_address(page);
4254
4255 /* Step 1: restore nat cache */
4256 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4257 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4258
4259 /* Step 2: restore sit cache */
4260 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4261 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4262 offset = 2 * SUM_JOURNAL_SIZE;
4263
4264 /* Step 3: restore summary entries */
4265 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4266 unsigned short blk_off;
4267 unsigned int segno;
4268
4269 seg_i = CURSEG_I(sbi, i);
4270 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4271 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4272 seg_i->next_segno = segno;
4273 reset_curseg(sbi, i, 0);
4274 seg_i->alloc_type = ckpt->alloc_type[i];
4275 seg_i->next_blkoff = blk_off;
4276
4277 if (seg_i->alloc_type == SSR)
4278 blk_off = BLKS_PER_SEG(sbi);
4279
4280 for (j = 0; j < blk_off; j++) {
4281 struct f2fs_summary *s;
4282
4283 s = (struct f2fs_summary *)(kaddr + offset);
4284 seg_i->sum_blk->entries[j] = *s;
4285 offset += SUMMARY_SIZE;
4286 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4287 SUM_FOOTER_SIZE)
4288 continue;
4289
4290 f2fs_put_page(page, 1);
4291 page = NULL;
4292
4293 page = f2fs_get_meta_page(sbi, start++);
4294 if (IS_ERR(page))
4295 return PTR_ERR(page);
4296 kaddr = (unsigned char *)page_address(page);
4297 offset = 0;
4298 }
4299 }
4300 f2fs_put_page(page, 1);
4301 return 0;
4302 }
4303
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4304 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4305 {
4306 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4307 struct f2fs_summary_block *sum;
4308 struct curseg_info *curseg;
4309 struct page *new;
4310 unsigned short blk_off;
4311 unsigned int segno = 0;
4312 block_t blk_addr = 0;
4313 int err = 0;
4314
4315 /* get segment number and block addr */
4316 if (IS_DATASEG(type)) {
4317 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4318 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4319 CURSEG_HOT_DATA]);
4320 if (__exist_node_summaries(sbi))
4321 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4322 else
4323 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4324 } else {
4325 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4326 CURSEG_HOT_NODE]);
4327 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4328 CURSEG_HOT_NODE]);
4329 if (__exist_node_summaries(sbi))
4330 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4331 type - CURSEG_HOT_NODE);
4332 else
4333 blk_addr = GET_SUM_BLOCK(sbi, segno);
4334 }
4335
4336 new = f2fs_get_meta_page(sbi, blk_addr);
4337 if (IS_ERR(new))
4338 return PTR_ERR(new);
4339 sum = (struct f2fs_summary_block *)page_address(new);
4340
4341 if (IS_NODESEG(type)) {
4342 if (__exist_node_summaries(sbi)) {
4343 struct f2fs_summary *ns = &sum->entries[0];
4344 int i;
4345
4346 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4347 ns->version = 0;
4348 ns->ofs_in_node = 0;
4349 }
4350 } else {
4351 err = f2fs_restore_node_summary(sbi, segno, sum);
4352 if (err)
4353 goto out;
4354 }
4355 }
4356
4357 /* set uncompleted segment to curseg */
4358 curseg = CURSEG_I(sbi, type);
4359 mutex_lock(&curseg->curseg_mutex);
4360
4361 /* update journal info */
4362 down_write(&curseg->journal_rwsem);
4363 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4364 up_write(&curseg->journal_rwsem);
4365
4366 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4367 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4368 curseg->next_segno = segno;
4369 reset_curseg(sbi, type, 0);
4370 curseg->alloc_type = ckpt->alloc_type[type];
4371 curseg->next_blkoff = blk_off;
4372 mutex_unlock(&curseg->curseg_mutex);
4373 out:
4374 f2fs_put_page(new, 1);
4375 return err;
4376 }
4377
restore_curseg_summaries(struct f2fs_sb_info * sbi)4378 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4379 {
4380 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4381 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4382 int type = CURSEG_HOT_DATA;
4383 int err;
4384
4385 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4386 int npages = f2fs_npages_for_summary_flush(sbi, true);
4387
4388 if (npages >= 2)
4389 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4390 META_CP, true);
4391
4392 /* restore for compacted data summary */
4393 err = read_compacted_summaries(sbi);
4394 if (err)
4395 return err;
4396 type = CURSEG_HOT_NODE;
4397 }
4398
4399 if (__exist_node_summaries(sbi))
4400 f2fs_ra_meta_pages(sbi,
4401 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4402 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4403
4404 for (; type <= CURSEG_COLD_NODE; type++) {
4405 err = read_normal_summaries(sbi, type);
4406 if (err)
4407 return err;
4408 }
4409
4410 /* sanity check for summary blocks */
4411 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4412 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4413 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4414 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4415 return -EINVAL;
4416 }
4417
4418 return 0;
4419 }
4420
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4421 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4422 {
4423 struct page *page;
4424 unsigned char *kaddr;
4425 struct f2fs_summary *summary;
4426 struct curseg_info *seg_i;
4427 int written_size = 0;
4428 int i, j;
4429
4430 page = f2fs_grab_meta_page(sbi, blkaddr++);
4431 kaddr = (unsigned char *)page_address(page);
4432 memset(kaddr, 0, PAGE_SIZE);
4433
4434 /* Step 1: write nat cache */
4435 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4436 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4437 written_size += SUM_JOURNAL_SIZE;
4438
4439 /* Step 2: write sit cache */
4440 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4441 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4442 written_size += SUM_JOURNAL_SIZE;
4443
4444 /* Step 3: write summary entries */
4445 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4446 seg_i = CURSEG_I(sbi, i);
4447 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4448 if (!page) {
4449 page = f2fs_grab_meta_page(sbi, blkaddr++);
4450 kaddr = (unsigned char *)page_address(page);
4451 memset(kaddr, 0, PAGE_SIZE);
4452 written_size = 0;
4453 }
4454 summary = (struct f2fs_summary *)(kaddr + written_size);
4455 *summary = seg_i->sum_blk->entries[j];
4456 written_size += SUMMARY_SIZE;
4457
4458 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4459 SUM_FOOTER_SIZE)
4460 continue;
4461
4462 set_page_dirty(page);
4463 f2fs_put_page(page, 1);
4464 page = NULL;
4465 }
4466 }
4467 if (page) {
4468 set_page_dirty(page);
4469 f2fs_put_page(page, 1);
4470 }
4471 }
4472
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4473 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4474 block_t blkaddr, int type)
4475 {
4476 int i, end;
4477
4478 if (IS_DATASEG(type))
4479 end = type + NR_CURSEG_DATA_TYPE;
4480 else
4481 end = type + NR_CURSEG_NODE_TYPE;
4482
4483 for (i = type; i < end; i++)
4484 write_current_sum_page(sbi, i, blkaddr + (i - type));
4485 }
4486
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4487 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4488 {
4489 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4490 write_compacted_summaries(sbi, start_blk);
4491 else
4492 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4493 }
4494
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4495 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4496 {
4497 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4498 }
4499
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4500 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4501 unsigned int val, int alloc)
4502 {
4503 int i;
4504
4505 if (type == NAT_JOURNAL) {
4506 for (i = 0; i < nats_in_cursum(journal); i++) {
4507 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4508 return i;
4509 }
4510 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4511 return update_nats_in_cursum(journal, 1);
4512 } else if (type == SIT_JOURNAL) {
4513 for (i = 0; i < sits_in_cursum(journal); i++)
4514 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4515 return i;
4516 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4517 return update_sits_in_cursum(journal, 1);
4518 }
4519 return -1;
4520 }
4521
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4522 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4523 unsigned int segno)
4524 {
4525 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4526 }
4527
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4528 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4529 unsigned int start)
4530 {
4531 struct sit_info *sit_i = SIT_I(sbi);
4532 struct page *page;
4533 pgoff_t src_off, dst_off;
4534
4535 src_off = current_sit_addr(sbi, start);
4536 dst_off = next_sit_addr(sbi, src_off);
4537
4538 page = f2fs_grab_meta_page(sbi, dst_off);
4539 seg_info_to_sit_page(sbi, page, start);
4540
4541 set_page_dirty(page);
4542 set_to_next_sit(sit_i, start);
4543
4544 return page;
4545 }
4546
grab_sit_entry_set(void)4547 static struct sit_entry_set *grab_sit_entry_set(void)
4548 {
4549 struct sit_entry_set *ses =
4550 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4551 GFP_NOFS, true, NULL);
4552
4553 ses->entry_cnt = 0;
4554 INIT_LIST_HEAD(&ses->set_list);
4555 return ses;
4556 }
4557
release_sit_entry_set(struct sit_entry_set * ses)4558 static void release_sit_entry_set(struct sit_entry_set *ses)
4559 {
4560 list_del(&ses->set_list);
4561 kmem_cache_free(sit_entry_set_slab, ses);
4562 }
4563
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4564 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4565 struct list_head *head)
4566 {
4567 struct sit_entry_set *next = ses;
4568
4569 if (list_is_last(&ses->set_list, head))
4570 return;
4571
4572 list_for_each_entry_continue(next, head, set_list)
4573 if (ses->entry_cnt <= next->entry_cnt) {
4574 list_move_tail(&ses->set_list, &next->set_list);
4575 return;
4576 }
4577
4578 list_move_tail(&ses->set_list, head);
4579 }
4580
add_sit_entry(unsigned int segno,struct list_head * head)4581 static void add_sit_entry(unsigned int segno, struct list_head *head)
4582 {
4583 struct sit_entry_set *ses;
4584 unsigned int start_segno = START_SEGNO(segno);
4585
4586 list_for_each_entry(ses, head, set_list) {
4587 if (ses->start_segno == start_segno) {
4588 ses->entry_cnt++;
4589 adjust_sit_entry_set(ses, head);
4590 return;
4591 }
4592 }
4593
4594 ses = grab_sit_entry_set();
4595
4596 ses->start_segno = start_segno;
4597 ses->entry_cnt++;
4598 list_add(&ses->set_list, head);
4599 }
4600
add_sits_in_set(struct f2fs_sb_info * sbi)4601 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4602 {
4603 struct f2fs_sm_info *sm_info = SM_I(sbi);
4604 struct list_head *set_list = &sm_info->sit_entry_set;
4605 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4606 unsigned int segno;
4607
4608 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4609 add_sit_entry(segno, set_list);
4610 }
4611
remove_sits_in_journal(struct f2fs_sb_info * sbi)4612 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4613 {
4614 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4615 struct f2fs_journal *journal = curseg->journal;
4616 int i;
4617
4618 down_write(&curseg->journal_rwsem);
4619 for (i = 0; i < sits_in_cursum(journal); i++) {
4620 unsigned int segno;
4621 bool dirtied;
4622
4623 segno = le32_to_cpu(segno_in_journal(journal, i));
4624 dirtied = __mark_sit_entry_dirty(sbi, segno);
4625
4626 if (!dirtied)
4627 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4628 }
4629 update_sits_in_cursum(journal, -i);
4630 up_write(&curseg->journal_rwsem);
4631 }
4632
4633 /*
4634 * CP calls this function, which flushes SIT entries including sit_journal,
4635 * and moves prefree segs to free segs.
4636 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4637 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4638 {
4639 struct sit_info *sit_i = SIT_I(sbi);
4640 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4641 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4642 struct f2fs_journal *journal = curseg->journal;
4643 struct sit_entry_set *ses, *tmp;
4644 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4645 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4646 struct seg_entry *se;
4647
4648 down_write(&sit_i->sentry_lock);
4649
4650 if (!sit_i->dirty_sentries)
4651 goto out;
4652
4653 /*
4654 * add and account sit entries of dirty bitmap in sit entry
4655 * set temporarily
4656 */
4657 add_sits_in_set(sbi);
4658
4659 /*
4660 * if there are no enough space in journal to store dirty sit
4661 * entries, remove all entries from journal and add and account
4662 * them in sit entry set.
4663 */
4664 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4665 !to_journal)
4666 remove_sits_in_journal(sbi);
4667
4668 /*
4669 * there are two steps to flush sit entries:
4670 * #1, flush sit entries to journal in current cold data summary block.
4671 * #2, flush sit entries to sit page.
4672 */
4673 list_for_each_entry_safe(ses, tmp, head, set_list) {
4674 struct page *page = NULL;
4675 struct f2fs_sit_block *raw_sit = NULL;
4676 unsigned int start_segno = ses->start_segno;
4677 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4678 (unsigned long)MAIN_SEGS(sbi));
4679 unsigned int segno = start_segno;
4680
4681 if (to_journal &&
4682 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4683 to_journal = false;
4684
4685 if (to_journal) {
4686 down_write(&curseg->journal_rwsem);
4687 } else {
4688 page = get_next_sit_page(sbi, start_segno);
4689 raw_sit = page_address(page);
4690 }
4691
4692 /* flush dirty sit entries in region of current sit set */
4693 for_each_set_bit_from(segno, bitmap, end) {
4694 int offset, sit_offset;
4695
4696 se = get_seg_entry(sbi, segno);
4697 #ifdef CONFIG_F2FS_CHECK_FS
4698 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4699 SIT_VBLOCK_MAP_SIZE))
4700 f2fs_bug_on(sbi, 1);
4701 #endif
4702
4703 /* add discard candidates */
4704 if (!(cpc->reason & CP_DISCARD)) {
4705 cpc->trim_start = segno;
4706 add_discard_addrs(sbi, cpc, false);
4707 }
4708
4709 if (to_journal) {
4710 offset = f2fs_lookup_journal_in_cursum(journal,
4711 SIT_JOURNAL, segno, 1);
4712 f2fs_bug_on(sbi, offset < 0);
4713 segno_in_journal(journal, offset) =
4714 cpu_to_le32(segno);
4715 seg_info_to_raw_sit(se,
4716 &sit_in_journal(journal, offset));
4717 check_block_count(sbi, segno,
4718 &sit_in_journal(journal, offset));
4719 } else {
4720 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4721 seg_info_to_raw_sit(se,
4722 &raw_sit->entries[sit_offset]);
4723 check_block_count(sbi, segno,
4724 &raw_sit->entries[sit_offset]);
4725 }
4726
4727 /* update ckpt_valid_block */
4728 if (__is_large_section(sbi)) {
4729 set_ckpt_valid_blocks(sbi, segno);
4730 sanity_check_valid_blocks(sbi, segno);
4731 }
4732
4733 __clear_bit(segno, bitmap);
4734 sit_i->dirty_sentries--;
4735 ses->entry_cnt--;
4736 }
4737
4738 if (to_journal)
4739 up_write(&curseg->journal_rwsem);
4740 else
4741 f2fs_put_page(page, 1);
4742
4743 f2fs_bug_on(sbi, ses->entry_cnt);
4744 release_sit_entry_set(ses);
4745 }
4746
4747 f2fs_bug_on(sbi, !list_empty(head));
4748 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4749 out:
4750 if (cpc->reason & CP_DISCARD) {
4751 __u64 trim_start = cpc->trim_start;
4752
4753 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4754 add_discard_addrs(sbi, cpc, false);
4755
4756 cpc->trim_start = trim_start;
4757 }
4758 up_write(&sit_i->sentry_lock);
4759
4760 set_prefree_as_free_segments(sbi);
4761 }
4762
build_sit_info(struct f2fs_sb_info * sbi)4763 static int build_sit_info(struct f2fs_sb_info *sbi)
4764 {
4765 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4766 struct sit_info *sit_i;
4767 unsigned int sit_segs, start;
4768 char *src_bitmap, *bitmap;
4769 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4770 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4771
4772 /* allocate memory for SIT information */
4773 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4774 if (!sit_i)
4775 return -ENOMEM;
4776
4777 SM_I(sbi)->sit_info = sit_i;
4778
4779 sit_i->sentries =
4780 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4781 MAIN_SEGS(sbi)),
4782 GFP_KERNEL);
4783 if (!sit_i->sentries)
4784 return -ENOMEM;
4785
4786 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4787 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4788 GFP_KERNEL);
4789 if (!sit_i->dirty_sentries_bitmap)
4790 return -ENOMEM;
4791
4792 #ifdef CONFIG_F2FS_CHECK_FS
4793 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4794 #else
4795 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4796 #endif
4797 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4798 if (!sit_i->bitmap)
4799 return -ENOMEM;
4800
4801 bitmap = sit_i->bitmap;
4802
4803 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4804 sit_i->sentries[start].cur_valid_map = bitmap;
4805 bitmap += SIT_VBLOCK_MAP_SIZE;
4806
4807 sit_i->sentries[start].ckpt_valid_map = bitmap;
4808 bitmap += SIT_VBLOCK_MAP_SIZE;
4809
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4812 bitmap += SIT_VBLOCK_MAP_SIZE;
4813 #endif
4814
4815 if (discard_map) {
4816 sit_i->sentries[start].discard_map = bitmap;
4817 bitmap += SIT_VBLOCK_MAP_SIZE;
4818 }
4819 }
4820
4821 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4822 if (!sit_i->tmp_map)
4823 return -ENOMEM;
4824
4825 if (__is_large_section(sbi)) {
4826 sit_i->sec_entries =
4827 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4828 MAIN_SECS(sbi)),
4829 GFP_KERNEL);
4830 if (!sit_i->sec_entries)
4831 return -ENOMEM;
4832
4833 f2fs_bug_on(sbi, android_sec_entries);
4834 android_sec_entries =
4835 f2fs_kvzalloc(sbi, array_size(sizeof(struct android_sec_entry),
4836 MAIN_SECS(sbi)),
4837 GFP_KERNEL);
4838 if (!android_sec_entries)
4839 return -ENOMEM;
4840 }
4841
4842 /* get information related with SIT */
4843 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4844
4845 /* setup SIT bitmap from ckeckpoint pack */
4846 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4847 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4848
4849 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4850 if (!sit_i->sit_bitmap)
4851 return -ENOMEM;
4852
4853 #ifdef CONFIG_F2FS_CHECK_FS
4854 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4855 sit_bitmap_size, GFP_KERNEL);
4856 if (!sit_i->sit_bitmap_mir)
4857 return -ENOMEM;
4858
4859 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4860 main_bitmap_size, GFP_KERNEL);
4861 if (!sit_i->invalid_segmap)
4862 return -ENOMEM;
4863 #endif
4864
4865 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4866 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4867 sit_i->written_valid_blocks = 0;
4868 sit_i->bitmap_size = sit_bitmap_size;
4869 sit_i->dirty_sentries = 0;
4870 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4871 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4872 sit_i->mounted_time = ktime_get_boottime_seconds();
4873 init_rwsem(&sit_i->sentry_lock);
4874 return 0;
4875 }
4876
build_free_segmap(struct f2fs_sb_info * sbi)4877 static int build_free_segmap(struct f2fs_sb_info *sbi)
4878 {
4879 struct free_segmap_info *free_i;
4880 unsigned int bitmap_size, sec_bitmap_size;
4881
4882 /* allocate memory for free segmap information */
4883 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4884 if (!free_i)
4885 return -ENOMEM;
4886
4887 SM_I(sbi)->free_info = free_i;
4888
4889 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4890 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4891 if (!free_i->free_segmap)
4892 return -ENOMEM;
4893
4894 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4895 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4896 if (!free_i->free_secmap)
4897 return -ENOMEM;
4898
4899 /* set all segments as dirty temporarily */
4900 memset(free_i->free_segmap, 0xff, bitmap_size);
4901 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4902
4903 /* init free segmap information */
4904 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4905 free_i->free_segments = 0;
4906 free_i->free_sections = 0;
4907 spin_lock_init(&free_i->segmap_lock);
4908 return 0;
4909 }
4910
build_curseg(struct f2fs_sb_info * sbi)4911 static int build_curseg(struct f2fs_sb_info *sbi)
4912 {
4913 struct curseg_info *array;
4914 int i;
4915
4916 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4917 sizeof(*array)), GFP_KERNEL);
4918 if (!array)
4919 return -ENOMEM;
4920
4921 SM_I(sbi)->curseg_array = array;
4922
4923 for (i = 0; i < NO_CHECK_TYPE; i++) {
4924 mutex_init(&array[i].curseg_mutex);
4925 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4926 if (!array[i].sum_blk)
4927 return -ENOMEM;
4928 init_rwsem(&array[i].journal_rwsem);
4929 array[i].journal = f2fs_kzalloc(sbi,
4930 sizeof(struct f2fs_journal), GFP_KERNEL);
4931 if (!array[i].journal)
4932 return -ENOMEM;
4933 array[i].seg_type = log_type_to_seg_type(i);
4934 reset_curseg_fields(&array[i]);
4935 }
4936 return restore_curseg_summaries(sbi);
4937 }
4938
build_sit_entries(struct f2fs_sb_info * sbi)4939 static int build_sit_entries(struct f2fs_sb_info *sbi)
4940 {
4941 struct sit_info *sit_i = SIT_I(sbi);
4942 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4943 struct f2fs_journal *journal = curseg->journal;
4944 struct seg_entry *se;
4945 struct f2fs_sit_entry sit;
4946 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4947 unsigned int i, start, end;
4948 unsigned int readed, start_blk = 0;
4949 int err = 0;
4950 block_t sit_valid_blocks[2] = {0, 0};
4951
4952 do {
4953 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4954 META_SIT, true);
4955
4956 start = start_blk * sit_i->sents_per_block;
4957 end = (start_blk + readed) * sit_i->sents_per_block;
4958
4959 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4960 struct f2fs_sit_block *sit_blk;
4961 struct page *page;
4962
4963 se = &sit_i->sentries[start];
4964 page = get_current_sit_page(sbi, start);
4965 if (IS_ERR(page))
4966 return PTR_ERR(page);
4967 sit_blk = (struct f2fs_sit_block *)page_address(page);
4968 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4969 f2fs_put_page(page, 1);
4970
4971 err = check_block_count(sbi, start, &sit);
4972 if (err)
4973 return err;
4974 seg_info_from_raw_sit(se, &sit);
4975
4976 if (se->type >= NR_PERSISTENT_LOG) {
4977 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4978 se->type, start);
4979 f2fs_handle_error(sbi,
4980 ERROR_INCONSISTENT_SUM_TYPE);
4981 return -EFSCORRUPTED;
4982 }
4983
4984 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4985
4986 if (!f2fs_block_unit_discard(sbi))
4987 goto init_discard_map_done;
4988
4989 /* build discard map only one time */
4990 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4991 memset(se->discard_map, 0xff,
4992 SIT_VBLOCK_MAP_SIZE);
4993 goto init_discard_map_done;
4994 }
4995 memcpy(se->discard_map, se->cur_valid_map,
4996 SIT_VBLOCK_MAP_SIZE);
4997 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4998 se->valid_blocks;
4999 init_discard_map_done:
5000 if (__is_large_section(sbi))
5001 get_sec_entry(sbi, start)->valid_blocks +=
5002 se->valid_blocks;
5003 }
5004 start_blk += readed;
5005 } while (start_blk < sit_blk_cnt);
5006
5007 down_read(&curseg->journal_rwsem);
5008 for (i = 0; i < sits_in_cursum(journal); i++) {
5009 unsigned int old_valid_blocks;
5010
5011 start = le32_to_cpu(segno_in_journal(journal, i));
5012 if (start >= MAIN_SEGS(sbi)) {
5013 f2fs_err(sbi, "Wrong journal entry on segno %u",
5014 start);
5015 err = -EFSCORRUPTED;
5016 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5017 break;
5018 }
5019
5020 se = &sit_i->sentries[start];
5021 sit = sit_in_journal(journal, i);
5022
5023 old_valid_blocks = se->valid_blocks;
5024
5025 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5026
5027 err = check_block_count(sbi, start, &sit);
5028 if (err)
5029 break;
5030 seg_info_from_raw_sit(se, &sit);
5031
5032 if (se->type >= NR_PERSISTENT_LOG) {
5033 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5034 se->type, start);
5035 err = -EFSCORRUPTED;
5036 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5037 break;
5038 }
5039
5040 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5041
5042 if (f2fs_block_unit_discard(sbi)) {
5043 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5044 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5045 } else {
5046 memcpy(se->discard_map, se->cur_valid_map,
5047 SIT_VBLOCK_MAP_SIZE);
5048 sbi->discard_blks += old_valid_blocks;
5049 sbi->discard_blks -= se->valid_blocks;
5050 }
5051 }
5052
5053 if (__is_large_section(sbi)) {
5054 get_sec_entry(sbi, start)->valid_blocks +=
5055 se->valid_blocks;
5056 get_sec_entry(sbi, start)->valid_blocks -=
5057 old_valid_blocks;
5058 }
5059 }
5060 up_read(&curseg->journal_rwsem);
5061
5062 /* update ckpt_valid_block */
5063 if (__is_large_section(sbi)) {
5064 unsigned int segno;
5065
5066 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5067 set_ckpt_valid_blocks(sbi, segno);
5068 sanity_check_valid_blocks(sbi, segno);
5069 }
5070 }
5071
5072 if (err)
5073 return err;
5074
5075 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5076 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5077 sit_valid_blocks[NODE], valid_node_count(sbi));
5078 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5079 return -EFSCORRUPTED;
5080 }
5081
5082 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5083 valid_user_blocks(sbi)) {
5084 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5085 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5086 valid_user_blocks(sbi));
5087 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5088 return -EFSCORRUPTED;
5089 }
5090
5091 return 0;
5092 }
5093
init_free_segmap(struct f2fs_sb_info * sbi)5094 static void init_free_segmap(struct f2fs_sb_info *sbi)
5095 {
5096 unsigned int start;
5097 int type;
5098 struct seg_entry *sentry;
5099
5100 for (start = 0; start < MAIN_SEGS(sbi); start++) {
5101 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5102 continue;
5103 sentry = get_seg_entry(sbi, start);
5104 if (!sentry->valid_blocks)
5105 __set_free(sbi, start);
5106 else
5107 SIT_I(sbi)->written_valid_blocks +=
5108 sentry->valid_blocks;
5109 }
5110
5111 /* set use the current segments */
5112 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5113 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5114
5115 __set_test_and_inuse(sbi, curseg_t->segno);
5116 }
5117 }
5118
init_dirty_segmap(struct f2fs_sb_info * sbi)5119 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5120 {
5121 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5122 struct free_segmap_info *free_i = FREE_I(sbi);
5123 unsigned int segno = 0, offset = 0, secno;
5124 block_t valid_blocks, usable_blks_in_seg;
5125
5126 while (1) {
5127 /* find dirty segment based on free segmap */
5128 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5129 if (segno >= MAIN_SEGS(sbi))
5130 break;
5131 offset = segno + 1;
5132 valid_blocks = get_valid_blocks(sbi, segno, false);
5133 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5134 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5135 continue;
5136 if (valid_blocks > usable_blks_in_seg) {
5137 f2fs_bug_on(sbi, 1);
5138 continue;
5139 }
5140 mutex_lock(&dirty_i->seglist_lock);
5141 __locate_dirty_segment(sbi, segno, DIRTY);
5142 mutex_unlock(&dirty_i->seglist_lock);
5143 }
5144
5145 if (!__is_large_section(sbi))
5146 return;
5147
5148 mutex_lock(&dirty_i->seglist_lock);
5149 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5150 valid_blocks = get_valid_blocks(sbi, segno, true);
5151 secno = GET_SEC_FROM_SEG(sbi, segno);
5152
5153 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5154 continue;
5155 if (IS_CURSEC(sbi, secno))
5156 continue;
5157 set_bit(secno, dirty_i->dirty_secmap);
5158 }
5159 mutex_unlock(&dirty_i->seglist_lock);
5160 }
5161
init_victim_secmap(struct f2fs_sb_info * sbi)5162 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5163 {
5164 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5165 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5166
5167 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5168 if (!dirty_i->victim_secmap)
5169 return -ENOMEM;
5170
5171 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5172 if (!dirty_i->pinned_secmap)
5173 return -ENOMEM;
5174
5175 dirty_i->pinned_secmap_cnt = 0;
5176 dirty_i->enable_pin_section = true;
5177 return 0;
5178 }
5179
build_dirty_segmap(struct f2fs_sb_info * sbi)5180 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5181 {
5182 struct dirty_seglist_info *dirty_i;
5183 unsigned int bitmap_size, i;
5184
5185 /* allocate memory for dirty segments list information */
5186 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5187 GFP_KERNEL);
5188 if (!dirty_i)
5189 return -ENOMEM;
5190
5191 SM_I(sbi)->dirty_info = dirty_i;
5192 mutex_init(&dirty_i->seglist_lock);
5193
5194 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5195
5196 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5197 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5198 GFP_KERNEL);
5199 if (!dirty_i->dirty_segmap[i])
5200 return -ENOMEM;
5201 }
5202
5203 if (__is_large_section(sbi)) {
5204 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5205 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5206 bitmap_size, GFP_KERNEL);
5207 if (!dirty_i->dirty_secmap)
5208 return -ENOMEM;
5209 }
5210
5211 init_dirty_segmap(sbi);
5212 return init_victim_secmap(sbi);
5213 }
5214
sanity_check_curseg(struct f2fs_sb_info * sbi)5215 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5216 {
5217 int i;
5218
5219 /*
5220 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5221 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5222 */
5223 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5224 struct curseg_info *curseg = CURSEG_I(sbi, i);
5225 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5226 unsigned int blkofs = curseg->next_blkoff;
5227
5228 if (f2fs_sb_has_readonly(sbi) &&
5229 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5230 continue;
5231
5232 sanity_check_seg_type(sbi, curseg->seg_type);
5233
5234 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5235 f2fs_err(sbi,
5236 "Current segment has invalid alloc_type:%d",
5237 curseg->alloc_type);
5238 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5239 return -EFSCORRUPTED;
5240 }
5241
5242 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5243 goto out;
5244
5245 if (curseg->alloc_type == SSR)
5246 continue;
5247
5248 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5249 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5250 continue;
5251 out:
5252 f2fs_err(sbi,
5253 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5254 i, curseg->segno, curseg->alloc_type,
5255 curseg->next_blkoff, blkofs);
5256 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5257 return -EFSCORRUPTED;
5258 }
5259 }
5260 return 0;
5261 }
5262
5263 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5264 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5265 struct f2fs_dev_info *fdev,
5266 struct blk_zone *zone)
5267 {
5268 unsigned int zone_segno;
5269 block_t zone_block, valid_block_cnt;
5270 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5271 int ret;
5272 unsigned int nofs_flags;
5273
5274 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5275 return 0;
5276
5277 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5278 zone_segno = GET_SEGNO(sbi, zone_block);
5279
5280 /*
5281 * Skip check of zones cursegs point to, since
5282 * fix_curseg_write_pointer() checks them.
5283 */
5284 if (zone_segno >= MAIN_SEGS(sbi))
5285 return 0;
5286
5287 /*
5288 * Get # of valid block of the zone.
5289 */
5290 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5291 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5292 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5293 zone_segno, valid_block_cnt,
5294 blk_zone_cond_str(zone->cond));
5295 return 0;
5296 }
5297
5298 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5299 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5300 return 0;
5301
5302 if (!valid_block_cnt) {
5303 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5304 "pointer. Reset the write pointer: cond[%s]",
5305 blk_zone_cond_str(zone->cond));
5306 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5307 zone->len >> log_sectors_per_block);
5308 if (ret)
5309 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5310 fdev->path, ret);
5311 return ret;
5312 }
5313
5314 /*
5315 * If there are valid blocks and the write pointer doesn't match
5316 * with them, we need to report the inconsistency and fill
5317 * the zone till the end to close the zone. This inconsistency
5318 * does not cause write error because the zone will not be
5319 * selected for write operation until it get discarded.
5320 */
5321 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5322 "pointer: valid block[0x%x,0x%x] cond[%s]",
5323 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5324
5325 nofs_flags = memalloc_nofs_save();
5326 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5327 zone->start, zone->len);
5328 memalloc_nofs_restore(nofs_flags);
5329 if (ret == -EOPNOTSUPP) {
5330 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5331 zone->len - (zone->wp - zone->start),
5332 GFP_NOFS, 0);
5333 if (ret)
5334 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5335 fdev->path, ret);
5336 } else if (ret) {
5337 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5338 fdev->path, ret);
5339 }
5340
5341 return ret;
5342 }
5343
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5344 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5345 block_t zone_blkaddr)
5346 {
5347 int i;
5348
5349 for (i = 0; i < sbi->s_ndevs; i++) {
5350 if (!bdev_is_zoned(FDEV(i).bdev))
5351 continue;
5352 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5353 zone_blkaddr <= FDEV(i).end_blk))
5354 return &FDEV(i);
5355 }
5356
5357 return NULL;
5358 }
5359
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5360 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5361 void *data)
5362 {
5363 memcpy(data, zone, sizeof(struct blk_zone));
5364 return 0;
5365 }
5366
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5367 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5368 {
5369 struct curseg_info *cs = CURSEG_I(sbi, type);
5370 struct f2fs_dev_info *zbd;
5371 struct blk_zone zone;
5372 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5373 block_t cs_zone_block, wp_block;
5374 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5375 sector_t zone_sector;
5376 int err;
5377
5378 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5379 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5380
5381 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5382 if (!zbd)
5383 return 0;
5384
5385 /* report zone for the sector the curseg points to */
5386 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5387 << log_sectors_per_block;
5388 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5389 report_one_zone_cb, &zone);
5390 if (err != 1) {
5391 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5392 zbd->path, err);
5393 return err;
5394 }
5395
5396 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5397 return 0;
5398
5399 /*
5400 * When safely unmounted in the previous mount, we could use current
5401 * segments. Otherwise, allocate new sections.
5402 */
5403 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5404 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5405 wp_segno = GET_SEGNO(sbi, wp_block);
5406 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5407 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5408
5409 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5410 wp_sector_off == 0)
5411 return 0;
5412
5413 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5414 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5415 cs->next_blkoff, wp_segno, wp_blkoff);
5416 }
5417
5418 /* Allocate a new section if it's not new. */
5419 if (cs->next_blkoff ||
5420 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5421 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5422
5423 f2fs_allocate_new_section(sbi, type, true);
5424 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5425 "[0x%x,0x%x] -> [0x%x,0x%x]",
5426 type, old_segno, old_blkoff,
5427 cs->segno, cs->next_blkoff);
5428 }
5429
5430 /* check consistency of the zone curseg pointed to */
5431 if (check_zone_write_pointer(sbi, zbd, &zone))
5432 return -EIO;
5433
5434 /* check newly assigned zone */
5435 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5436 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5437
5438 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5439 if (!zbd)
5440 return 0;
5441
5442 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5443 << log_sectors_per_block;
5444 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5445 report_one_zone_cb, &zone);
5446 if (err != 1) {
5447 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5448 zbd->path, err);
5449 return err;
5450 }
5451
5452 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5453 return 0;
5454
5455 if (zone.wp != zone.start) {
5456 f2fs_notice(sbi,
5457 "New zone for curseg[%d] is not yet discarded. "
5458 "Reset the zone: curseg[0x%x,0x%x]",
5459 type, cs->segno, cs->next_blkoff);
5460 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5461 zone.len >> log_sectors_per_block);
5462 if (err) {
5463 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5464 zbd->path, err);
5465 return err;
5466 }
5467 }
5468
5469 return 0;
5470 }
5471
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5472 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5473 {
5474 int i, ret;
5475
5476 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5477 ret = do_fix_curseg_write_pointer(sbi, i);
5478 if (ret)
5479 return ret;
5480 }
5481
5482 return 0;
5483 }
5484
5485 struct check_zone_write_pointer_args {
5486 struct f2fs_sb_info *sbi;
5487 struct f2fs_dev_info *fdev;
5488 };
5489
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5490 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5491 void *data)
5492 {
5493 struct check_zone_write_pointer_args *args;
5494
5495 args = (struct check_zone_write_pointer_args *)data;
5496
5497 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5498 }
5499
check_write_pointer(struct f2fs_sb_info * sbi)5500 static int check_write_pointer(struct f2fs_sb_info *sbi)
5501 {
5502 int i, ret;
5503 struct check_zone_write_pointer_args args;
5504
5505 for (i = 0; i < sbi->s_ndevs; i++) {
5506 if (!bdev_is_zoned(FDEV(i).bdev))
5507 continue;
5508
5509 args.sbi = sbi;
5510 args.fdev = &FDEV(i);
5511 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5512 check_zone_write_pointer_cb, &args);
5513 if (ret < 0)
5514 return ret;
5515 }
5516
5517 return 0;
5518 }
5519
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5520 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5521 {
5522 int ret;
5523
5524 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5525 f2fs_hw_is_readonly(sbi))
5526 return 0;
5527
5528 f2fs_notice(sbi, "Checking entire write pointers");
5529 ret = fix_curseg_write_pointer(sbi);
5530 if (!ret)
5531 ret = check_write_pointer(sbi);
5532 return ret;
5533 }
5534
5535 /*
5536 * Return the number of usable blocks in a segment. The number of blocks
5537 * returned is always equal to the number of blocks in a segment for
5538 * segments fully contained within a sequential zone capacity or a
5539 * conventional zone. For segments partially contained in a sequential
5540 * zone capacity, the number of usable blocks up to the zone capacity
5541 * is returned. 0 is returned in all other cases.
5542 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5543 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5544 struct f2fs_sb_info *sbi, unsigned int segno)
5545 {
5546 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5547 unsigned int secno;
5548
5549 if (!sbi->unusable_blocks_per_sec)
5550 return BLKS_PER_SEG(sbi);
5551
5552 secno = GET_SEC_FROM_SEG(sbi, segno);
5553 seg_start = START_BLOCK(sbi, segno);
5554 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5555 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5556
5557 /*
5558 * If segment starts before zone capacity and spans beyond
5559 * zone capacity, then usable blocks are from seg start to
5560 * zone capacity. If the segment starts after the zone capacity,
5561 * then there are no usable blocks.
5562 */
5563 if (seg_start >= sec_cap_blkaddr)
5564 return 0;
5565 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5566 return sec_cap_blkaddr - seg_start;
5567
5568 return BLKS_PER_SEG(sbi);
5569 }
5570 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5571 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5572 {
5573 return 0;
5574 }
5575
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5576 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5577 unsigned int segno)
5578 {
5579 return 0;
5580 }
5581
5582 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5583 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5584 unsigned int segno)
5585 {
5586 if (f2fs_sb_has_blkzoned(sbi))
5587 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5588
5589 return BLKS_PER_SEG(sbi);
5590 }
5591
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5592 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5593 {
5594 if (f2fs_sb_has_blkzoned(sbi))
5595 return CAP_SEGS_PER_SEC(sbi);
5596
5597 return SEGS_PER_SEC(sbi);
5598 }
5599
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5600 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5601 unsigned int segno)
5602 {
5603 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5604 unsigned int secno = 0, start = 0;
5605 unsigned int total_valid_blocks = 0;
5606 unsigned long long mtime = 0;
5607 unsigned int i = 0;
5608
5609 secno = GET_SEC_FROM_SEG(sbi, segno);
5610 start = GET_SEG_FROM_SEC(sbi, secno);
5611
5612 if (!__is_large_section(sbi)) {
5613 mtime = get_seg_entry(sbi, start + i)->mtime;
5614 goto out;
5615 }
5616
5617 for (i = 0; i < usable_segs_per_sec; i++) {
5618 /* for large section, only check the mtime of valid segments */
5619 struct seg_entry *se = get_seg_entry(sbi, start+i);
5620
5621 mtime += se->mtime * se->valid_blocks;
5622 total_valid_blocks += se->valid_blocks;
5623 }
5624
5625 if (total_valid_blocks == 0)
5626 return INVALID_MTIME;
5627
5628 mtime = div_u64(mtime, total_valid_blocks);
5629 out:
5630 if (unlikely(mtime == INVALID_MTIME))
5631 mtime -= 1;
5632 return mtime;
5633 }
5634
5635 /*
5636 * Update min, max modified time for cost-benefit GC algorithm
5637 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5638 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5639 {
5640 struct sit_info *sit_i = SIT_I(sbi);
5641 unsigned int segno;
5642
5643 down_write(&sit_i->sentry_lock);
5644
5645 sit_i->min_mtime = ULLONG_MAX;
5646
5647 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5648 unsigned long long mtime = 0;
5649
5650 mtime = f2fs_get_section_mtime(sbi, segno);
5651
5652 if (sit_i->min_mtime > mtime)
5653 sit_i->min_mtime = mtime;
5654 }
5655 sit_i->max_mtime = get_mtime(sbi, false);
5656 sit_i->dirty_max_mtime = 0;
5657 up_write(&sit_i->sentry_lock);
5658 }
5659
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5660 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5661 {
5662 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5663 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5664 struct f2fs_sm_info *sm_info;
5665 int err;
5666
5667 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5668 if (!sm_info)
5669 return -ENOMEM;
5670
5671 /* init sm info */
5672 sbi->sm_info = sm_info;
5673 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5674 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5675 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5676 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5677 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5678 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5679 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5680 sm_info->rec_prefree_segments = sm_info->main_segments *
5681 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5682 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5683 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5684
5685 if (!f2fs_lfs_mode(sbi))
5686 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5687 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5688 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5689 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5690 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5691 sm_info->min_ssr_sections = reserved_sections(sbi);
5692
5693 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5694
5695 init_f2fs_rwsem(&sm_info->curseg_lock);
5696
5697 err = f2fs_create_flush_cmd_control(sbi);
5698 if (err)
5699 return err;
5700
5701 err = create_discard_cmd_control(sbi);
5702 if (err)
5703 return err;
5704
5705 err = build_sit_info(sbi);
5706 if (err)
5707 return err;
5708 err = build_free_segmap(sbi);
5709 if (err)
5710 return err;
5711 err = build_curseg(sbi);
5712 if (err)
5713 return err;
5714
5715 /* reinit free segmap based on SIT */
5716 err = build_sit_entries(sbi);
5717 if (err)
5718 return err;
5719
5720 init_free_segmap(sbi);
5721 err = build_dirty_segmap(sbi);
5722 if (err)
5723 return err;
5724
5725 err = sanity_check_curseg(sbi);
5726 if (err)
5727 return err;
5728
5729 init_min_max_mtime(sbi);
5730 return 0;
5731 }
5732
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5733 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5734 enum dirty_type dirty_type)
5735 {
5736 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5737
5738 mutex_lock(&dirty_i->seglist_lock);
5739 kvfree(dirty_i->dirty_segmap[dirty_type]);
5740 dirty_i->nr_dirty[dirty_type] = 0;
5741 mutex_unlock(&dirty_i->seglist_lock);
5742 }
5743
destroy_victim_secmap(struct f2fs_sb_info * sbi)5744 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5745 {
5746 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5747
5748 kvfree(dirty_i->pinned_secmap);
5749 kvfree(dirty_i->victim_secmap);
5750 }
5751
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5752 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5753 {
5754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5755 int i;
5756
5757 if (!dirty_i)
5758 return;
5759
5760 /* discard pre-free/dirty segments list */
5761 for (i = 0; i < NR_DIRTY_TYPE; i++)
5762 discard_dirty_segmap(sbi, i);
5763
5764 if (__is_large_section(sbi)) {
5765 mutex_lock(&dirty_i->seglist_lock);
5766 kvfree(dirty_i->dirty_secmap);
5767 mutex_unlock(&dirty_i->seglist_lock);
5768 }
5769
5770 destroy_victim_secmap(sbi);
5771 SM_I(sbi)->dirty_info = NULL;
5772 kfree(dirty_i);
5773 }
5774
destroy_curseg(struct f2fs_sb_info * sbi)5775 static void destroy_curseg(struct f2fs_sb_info *sbi)
5776 {
5777 struct curseg_info *array = SM_I(sbi)->curseg_array;
5778 int i;
5779
5780 if (!array)
5781 return;
5782 SM_I(sbi)->curseg_array = NULL;
5783 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5784 kfree(array[i].sum_blk);
5785 kfree(array[i].journal);
5786 }
5787 kfree(array);
5788 }
5789
destroy_free_segmap(struct f2fs_sb_info * sbi)5790 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5791 {
5792 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5793
5794 if (!free_i)
5795 return;
5796 SM_I(sbi)->free_info = NULL;
5797 kvfree(free_i->free_segmap);
5798 kvfree(free_i->free_secmap);
5799 kfree(free_i);
5800 }
5801
destroy_sit_info(struct f2fs_sb_info * sbi)5802 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5803 {
5804 struct sit_info *sit_i = SIT_I(sbi);
5805
5806 if (!sit_i)
5807 return;
5808
5809 if (sit_i->sentries)
5810 kvfree(sit_i->bitmap);
5811 kfree(sit_i->tmp_map);
5812
5813 kvfree(sit_i->sentries);
5814 if (__is_large_section(sbi)) {
5815 kvfree(android_sec_entries);
5816 android_sec_entries = NULL;
5817 }
5818 kvfree(sit_i->sec_entries);
5819 kvfree(sit_i->dirty_sentries_bitmap);
5820
5821 SM_I(sbi)->sit_info = NULL;
5822 kvfree(sit_i->sit_bitmap);
5823 #ifdef CONFIG_F2FS_CHECK_FS
5824 kvfree(sit_i->sit_bitmap_mir);
5825 kvfree(sit_i->invalid_segmap);
5826 #endif
5827 kfree(sit_i);
5828 }
5829
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5830 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5831 {
5832 struct f2fs_sm_info *sm_info = SM_I(sbi);
5833
5834 if (!sm_info)
5835 return;
5836 f2fs_destroy_flush_cmd_control(sbi, true);
5837 destroy_discard_cmd_control(sbi);
5838 destroy_dirty_segmap(sbi);
5839 destroy_curseg(sbi);
5840 destroy_free_segmap(sbi);
5841 destroy_sit_info(sbi);
5842 sbi->sm_info = NULL;
5843 kfree(sm_info);
5844 }
5845
f2fs_create_segment_manager_caches(void)5846 int __init f2fs_create_segment_manager_caches(void)
5847 {
5848 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5849 sizeof(struct discard_entry));
5850 if (!discard_entry_slab)
5851 goto fail;
5852
5853 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5854 sizeof(struct discard_cmd));
5855 if (!discard_cmd_slab)
5856 goto destroy_discard_entry;
5857
5858 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5859 sizeof(struct sit_entry_set));
5860 if (!sit_entry_set_slab)
5861 goto destroy_discard_cmd;
5862
5863 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5864 sizeof(struct revoke_entry));
5865 if (!revoke_entry_slab)
5866 goto destroy_sit_entry_set;
5867 return 0;
5868
5869 destroy_sit_entry_set:
5870 kmem_cache_destroy(sit_entry_set_slab);
5871 destroy_discard_cmd:
5872 kmem_cache_destroy(discard_cmd_slab);
5873 destroy_discard_entry:
5874 kmem_cache_destroy(discard_entry_slab);
5875 fail:
5876 return -ENOMEM;
5877 }
5878
f2fs_destroy_segment_manager_caches(void)5879 void f2fs_destroy_segment_manager_caches(void)
5880 {
5881 kmem_cache_destroy(sit_entry_set_slab);
5882 kmem_cache_destroy(discard_cmd_slab);
5883 kmem_cache_destroy(discard_entry_slab);
5884 kmem_cache_destroy(revoke_entry_slab);
5885 }
5886