1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32 unsigned short seg_type)
33 {
34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define IS_CURSEG(sbi, seg) \
38 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
46
47 #define IS_CURSEC(sbi, secno) \
48 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
49 SEGS_PER_SEC(sbi)) || \
50 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
51 SEGS_PER_SEC(sbi)) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
53 SEGS_PER_SEC(sbi)) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
55 SEGS_PER_SEC(sbi)) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
57 SEGS_PER_SEC(sbi)) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
59 SEGS_PER_SEC(sbi)) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
61 SEGS_PER_SEC(sbi)) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
63 SEGS_PER_SEC(sbi)))
64
65 #define MAIN_BLKADDR(sbi) \
66 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
67 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
68 #define SEG0_BLKADDR(sbi) \
69 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
70 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
71
72 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
73 #define MAIN_SECS(sbi) ((sbi)->total_sections)
74
75 #define TOTAL_SEGS(sbi) \
76 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
77 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
79
80 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
81 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
82 (sbi)->log_blocks_per_seg))
83
84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
85 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
86
87 #define NEXT_FREE_BLKADDR(sbi, curseg) \
88 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
89
90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
92 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
95
96 #define GET_SEGNO(sbi, blk_addr) \
97 ((!__is_valid_data_blkaddr(blk_addr)) ? \
98 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
99 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
100 #define CAP_BLKS_PER_SEC(sbi) \
101 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
102 #define CAP_SEGS_PER_SEC(sbi) \
103 (SEGS_PER_SEC(sbi) - \
104 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
105 #define GET_START_SEG_FROM_SEC(sbi, segno) \
106 (rounddown(segno, SEGS_PER_SEC(sbi)))
107 #define GET_SEC_FROM_SEG(sbi, segno) \
108 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno) \
110 ((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno) \
112 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno) \
114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116 #define GET_SUM_BLOCK(sbi, segno) \
117 ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122 #define SIT_ENTRY_OFFSET(sit_i, segno) \
123 ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno) \
125 ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno) \
127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi) \
129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr) \
131 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133 #define SECTOR_FROM_BLOCK(blk_addr) \
134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors) \
136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138 /*
139 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140 * LFS writes data sequentially with cleaning operations.
141 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143 * fragmented segment which has similar aging degree.
144 */
145 enum {
146 LFS = 0,
147 SSR,
148 AT_SSR,
149 };
150
151 /*
152 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153 * GC_CB is based on cost-benefit algorithm.
154 * GC_GREEDY is based on greedy algorithm.
155 * GC_AT is based on age-threshold algorithm.
156 */
157 enum {
158 GC_CB = 0,
159 GC_GREEDY,
160 GC_AT,
161 ALLOC_NEXT,
162 FLUSH_DEVICE,
163 MAX_GC_POLICY,
164 };
165
166 /*
167 * BG_GC means the background cleaning job.
168 * FG_GC means the on-demand cleaning job.
169 */
170 enum {
171 BG_GC = 0,
172 FG_GC,
173 };
174
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177 int alloc_mode; /* LFS or SSR */
178 int gc_mode; /* GC_CB or GC_GREEDY */
179 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
180 unsigned int max_search; /*
181 * maximum # of segments/sections
182 * to search
183 */
184 unsigned int offset; /* last scanned bitmap offset */
185 unsigned int ofs_unit; /* bitmap search unit */
186 unsigned int min_cost; /* minimum cost */
187 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
188 unsigned int min_segno; /* segment # having min. cost */
189 unsigned long long age; /* mtime of GCed section*/
190 unsigned long long age_threshold;/* age threshold */
191 bool one_time_gc; /* one time GC */
192 };
193
194 struct seg_entry {
195 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
196 unsigned int valid_blocks:10; /* # of valid blocks */
197 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
198 unsigned int padding:6; /* padding */
199 unsigned char *cur_valid_map; /* validity bitmap of blocks */
200 #ifdef CONFIG_F2FS_CHECK_FS
201 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
202 #endif
203 /*
204 * # of valid blocks and the validity bitmap stored in the last
205 * checkpoint pack. This information is used by the SSR mode.
206 */
207 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
208 unsigned char *discard_map;
209 unsigned long long mtime; /* modification time of the segment */
210 };
211
212 struct sec_entry {
213 unsigned int valid_blocks; /* # of valid blocks in a section */
214 };
215
216 /*
217 * This is supposed to be in the above struct sec_entry from the below
218 * patch merged in 6.16-rc1, but applied to avoid ABI breakages in Android.
219 *
220 * deecd282bc39 "f2fs: add ckpt_valid_blocks to the section entry" in 6.16+
221 */
222 struct android_sec_entry {
223 unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */
224 };
225
226 #define MAX_SKIP_GC_COUNT 16
227
228 struct revoke_entry {
229 struct list_head list;
230 block_t old_addr; /* for revoking when fail to commit */
231 pgoff_t index;
232 };
233
234 struct sit_info {
235 block_t sit_base_addr; /* start block address of SIT area */
236 block_t sit_blocks; /* # of blocks used by SIT area */
237 block_t written_valid_blocks; /* # of valid blocks in main area */
238 char *bitmap; /* all bitmaps pointer */
239 char *sit_bitmap; /* SIT bitmap pointer */
240 #ifdef CONFIG_F2FS_CHECK_FS
241 char *sit_bitmap_mir; /* SIT bitmap mirror */
242
243 /* bitmap of segments to be ignored by GC in case of errors */
244 unsigned long *invalid_segmap;
245 #endif
246 unsigned int bitmap_size; /* SIT bitmap size */
247
248 unsigned long *tmp_map; /* bitmap for temporal use */
249 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
250 unsigned int dirty_sentries; /* # of dirty sentries */
251 unsigned int sents_per_block; /* # of SIT entries per block */
252 struct rw_semaphore sentry_lock; /* to protect SIT cache */
253 struct seg_entry *sentries; /* SIT segment-level cache */
254 struct sec_entry *sec_entries; /* SIT section-level cache */
255
256 /* for cost-benefit algorithm in cleaning procedure */
257 unsigned long long elapsed_time; /* elapsed time after mount */
258 unsigned long long mounted_time; /* mount time */
259 unsigned long long min_mtime; /* min. modification time */
260 unsigned long long max_mtime; /* max. modification time */
261 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
262 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
263
264 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
265 };
266
267 struct free_segmap_info {
268 unsigned int start_segno; /* start segment number logically */
269 unsigned int free_segments; /* # of free segments */
270 unsigned int free_sections; /* # of free sections */
271 spinlock_t segmap_lock; /* free segmap lock */
272 unsigned long *free_segmap; /* free segment bitmap */
273 unsigned long *free_secmap; /* free section bitmap */
274 };
275
276 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
277 enum dirty_type {
278 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
279 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
280 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
281 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
282 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
283 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
284 DIRTY, /* to count # of dirty segments */
285 PRE, /* to count # of entirely obsolete segments */
286 NR_DIRTY_TYPE
287 };
288
289 struct dirty_seglist_info {
290 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291 unsigned long *dirty_secmap;
292 struct mutex seglist_lock; /* lock for segment bitmaps */
293 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
294 unsigned long *victim_secmap; /* background GC victims */
295 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
296 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
297 bool enable_pin_section; /* enable pinning section */
298 };
299
300 /* for active log information */
301 struct curseg_info {
302 struct mutex curseg_mutex; /* lock for consistency */
303 struct f2fs_summary_block *sum_blk; /* cached summary block */
304 struct rw_semaphore journal_rwsem; /* protect journal area */
305 struct f2fs_journal *journal; /* cached journal info */
306 unsigned char alloc_type; /* current allocation type */
307 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
308 unsigned int segno; /* current segment number */
309 unsigned short next_blkoff; /* next block offset to write */
310 unsigned int zone; /* current zone number */
311 unsigned int next_segno; /* preallocated segment */
312 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
313 bool inited; /* indicate inmem log is inited */
314 };
315
316 struct sit_entry_set {
317 struct list_head set_list; /* link with all sit sets */
318 unsigned int start_segno; /* start segno of sits in set */
319 unsigned int entry_cnt; /* the # of sit entries in set */
320 };
321
322 /*
323 * inline functions
324 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)325 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
326 {
327 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
328 }
329
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)330 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
331 unsigned int segno)
332 {
333 struct sit_info *sit_i = SIT_I(sbi);
334 return &sit_i->sentries[segno];
335 }
336
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)337 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
338 unsigned int segno)
339 {
340 struct sit_info *sit_i = SIT_I(sbi);
341 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
342 }
343
344 /*
345 * This is shared with all other mounts, but ensure only /data will
346 * get memory allocated when a large section is defined.
347 * Note, the below android_* are only applied to android16-6.12, since
348 * the orignal patch [1] adds ckpt_valid_blocks in struct sec_entry,
349 * which breaks ABI.
350 *
351 * [1] deecd282bc39 "f2fs: add ckpt_valid_blocks to the section entry" in 6.16+
352 */
353 static struct android_sec_entry *android_sec_entries = NULL;
android_get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)354 static inline struct android_sec_entry *android_get_sec_entry(
355 struct f2fs_sb_info *sbi, unsigned int segno)
356 {
357 return &android_sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
358 }
359
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)360 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
361 unsigned int segno, bool use_section)
362 {
363 /*
364 * In order to get # of valid blocks in a section instantly from many
365 * segments, f2fs manages two counting structures separately.
366 */
367 if (use_section && __is_large_section(sbi))
368 return get_sec_entry(sbi, segno)->valid_blocks;
369 else
370 return get_seg_entry(sbi, segno)->valid_blocks;
371 }
372
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)373 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
374 unsigned int segno, bool use_section)
375 {
376 if (use_section && __is_large_section(sbi))
377 return android_get_sec_entry(sbi, segno)->ckpt_valid_blocks;
378 else
379 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
380 }
381
set_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)382 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
383 unsigned int segno)
384 {
385 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
386 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
387 unsigned int blocks = 0;
388 int i;
389
390 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
391 struct seg_entry *se = get_seg_entry(sbi, start_segno);
392
393 blocks += se->ckpt_valid_blocks;
394 }
395 android_get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks;
396 }
397
398 #ifdef CONFIG_F2FS_CHECK_FS
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)399 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
400 unsigned int segno)
401 {
402 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
403 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
404 unsigned int blocks = 0;
405 int i;
406
407 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
408 struct seg_entry *se = get_seg_entry(sbi, start_segno);
409
410 blocks += se->ckpt_valid_blocks;
411 }
412
413 if (blocks != android_get_sec_entry(sbi, segno)->ckpt_valid_blocks) {
414 f2fs_err(sbi,
415 "Inconsistent ckpt valid blocks: "
416 "seg entry(%d) vs sec entry(%d) at secno %d",
417 blocks,
418 android_get_sec_entry(sbi, segno)->ckpt_valid_blocks,
419 secno);
420 f2fs_bug_on(sbi, 1);
421 }
422 }
423 #else
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)424 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
425 unsigned int segno)
426 {
427 }
428 #endif
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)429 static inline void seg_info_from_raw_sit(struct seg_entry *se,
430 struct f2fs_sit_entry *rs)
431 {
432 se->valid_blocks = GET_SIT_VBLOCKS(rs);
433 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
434 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
435 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
436 #ifdef CONFIG_F2FS_CHECK_FS
437 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
438 #endif
439 se->type = GET_SIT_TYPE(rs);
440 se->mtime = le64_to_cpu(rs->mtime);
441 }
442
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)443 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
444 struct f2fs_sit_entry *rs)
445 {
446 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
447 se->valid_blocks;
448 rs->vblocks = cpu_to_le16(raw_vblocks);
449 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
450 rs->mtime = cpu_to_le64(se->mtime);
451 }
452
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)453 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
454 struct page *page, unsigned int start)
455 {
456 struct f2fs_sit_block *raw_sit;
457 struct seg_entry *se;
458 struct f2fs_sit_entry *rs;
459 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
460 (unsigned long)MAIN_SEGS(sbi));
461 int i;
462
463 raw_sit = (struct f2fs_sit_block *)page_address(page);
464 memset(raw_sit, 0, PAGE_SIZE);
465 for (i = 0; i < end - start; i++) {
466 rs = &raw_sit->entries[i];
467 se = get_seg_entry(sbi, start + i);
468 __seg_info_to_raw_sit(se, rs);
469 }
470 }
471
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)472 static inline void seg_info_to_raw_sit(struct seg_entry *se,
473 struct f2fs_sit_entry *rs)
474 {
475 __seg_info_to_raw_sit(se, rs);
476
477 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
478 se->ckpt_valid_blocks = se->valid_blocks;
479 }
480
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)481 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
482 unsigned int max, unsigned int segno)
483 {
484 unsigned int ret;
485 spin_lock(&free_i->segmap_lock);
486 ret = find_next_bit(free_i->free_segmap, max, segno);
487 spin_unlock(&free_i->segmap_lock);
488 return ret;
489 }
490
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)491 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
492 {
493 struct free_segmap_info *free_i = FREE_I(sbi);
494 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
495 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
496 unsigned int next;
497
498 spin_lock(&free_i->segmap_lock);
499 clear_bit(segno, free_i->free_segmap);
500 free_i->free_segments++;
501
502 next = find_next_bit(free_i->free_segmap,
503 start_segno + SEGS_PER_SEC(sbi), start_segno);
504 if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) {
505 clear_bit(secno, free_i->free_secmap);
506 free_i->free_sections++;
507 }
508 spin_unlock(&free_i->segmap_lock);
509 }
510
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)511 static inline void __set_inuse(struct f2fs_sb_info *sbi,
512 unsigned int segno)
513 {
514 struct free_segmap_info *free_i = FREE_I(sbi);
515 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
516
517 set_bit(segno, free_i->free_segmap);
518 free_i->free_segments--;
519 if (!test_and_set_bit(secno, free_i->free_secmap))
520 free_i->free_sections--;
521 }
522
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)523 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
524 unsigned int segno, bool inmem)
525 {
526 struct free_segmap_info *free_i = FREE_I(sbi);
527 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
528 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
529 unsigned int next;
530 bool ret;
531
532 spin_lock(&free_i->segmap_lock);
533 ret = test_and_clear_bit(segno, free_i->free_segmap);
534 if (!ret)
535 goto unlock_out;
536
537 free_i->free_segments++;
538
539 if (!inmem && IS_CURSEC(sbi, secno))
540 goto unlock_out;
541
542 /* check large section */
543 next = find_next_bit(free_i->free_segmap,
544 start_segno + SEGS_PER_SEC(sbi), start_segno);
545 if (next < start_segno + f2fs_usable_segs_in_sec(sbi))
546 goto unlock_out;
547
548 ret = test_and_clear_bit(secno, free_i->free_secmap);
549 if (!ret)
550 goto unlock_out;
551
552 free_i->free_sections++;
553
554 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno)
555 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
556 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno)
557 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
558
559 unlock_out:
560 spin_unlock(&free_i->segmap_lock);
561 }
562
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)563 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
564 unsigned int segno)
565 {
566 struct free_segmap_info *free_i = FREE_I(sbi);
567 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
568
569 spin_lock(&free_i->segmap_lock);
570 if (!test_and_set_bit(segno, free_i->free_segmap)) {
571 free_i->free_segments--;
572 if (!test_and_set_bit(secno, free_i->free_secmap))
573 free_i->free_sections--;
574 }
575 spin_unlock(&free_i->segmap_lock);
576 }
577
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)578 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
579 void *dst_addr)
580 {
581 struct sit_info *sit_i = SIT_I(sbi);
582
583 #ifdef CONFIG_F2FS_CHECK_FS
584 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
585 sit_i->bitmap_size))
586 f2fs_bug_on(sbi, 1);
587 #endif
588 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
589 }
590
written_block_count(struct f2fs_sb_info * sbi)591 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
592 {
593 return SIT_I(sbi)->written_valid_blocks;
594 }
595
free_segments(struct f2fs_sb_info * sbi)596 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
597 {
598 return FREE_I(sbi)->free_segments;
599 }
600
reserved_segments(struct f2fs_sb_info * sbi)601 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
602 {
603 return SM_I(sbi)->reserved_segments;
604 }
605
free_sections(struct f2fs_sb_info * sbi)606 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
607 {
608 return FREE_I(sbi)->free_sections;
609 }
610
prefree_segments(struct f2fs_sb_info * sbi)611 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
612 {
613 return DIRTY_I(sbi)->nr_dirty[PRE];
614 }
615
dirty_segments(struct f2fs_sb_info * sbi)616 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
617 {
618 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
619 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
620 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
621 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
622 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
623 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
624 }
625
overprovision_segments(struct f2fs_sb_info * sbi)626 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
627 {
628 return SM_I(sbi)->ovp_segments;
629 }
630
reserved_sections(struct f2fs_sb_info * sbi)631 static inline int reserved_sections(struct f2fs_sb_info *sbi)
632 {
633 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
634 }
635
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int data_blocks,unsigned int dent_blocks)636 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
637 unsigned int node_blocks, unsigned int data_blocks,
638 unsigned int dent_blocks)
639 {
640 unsigned int segno, left_blocks, blocks;
641 int i;
642
643 /* check current data/node sections in the worst case. */
644 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
645 segno = CURSEG_I(sbi, i)->segno;
646
647 if (unlikely(segno == NULL_SEGNO))
648 return false;
649
650 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
651 left_blocks = CAP_BLKS_PER_SEC(sbi) -
652 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
653 CURSEG_I(sbi, i)->next_blkoff;
654 } else {
655 left_blocks = CAP_BLKS_PER_SEC(sbi) -
656 get_ckpt_valid_blocks(sbi, segno, true);
657 }
658
659 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
660 if (blocks > left_blocks)
661 return false;
662 }
663
664 /* check current data section for dentry blocks. */
665 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
666
667 if (unlikely(segno == NULL_SEGNO))
668 return false;
669
670 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
671 left_blocks = CAP_BLKS_PER_SEC(sbi) -
672 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
673 CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff;
674 } else {
675 left_blocks = CAP_BLKS_PER_SEC(sbi) -
676 get_ckpt_valid_blocks(sbi, segno, true);
677 }
678
679 if (dent_blocks > left_blocks)
680 return false;
681 return true;
682 }
683
684 /*
685 * calculate needed sections for dirty node/dentry and call
686 * has_curseg_enough_space, please note that, it needs to account
687 * dirty data as well in lfs mode when checkpoint is disabled.
688 */
__get_secs_required(struct f2fs_sb_info * sbi,unsigned int * lower_p,unsigned int * upper_p,bool * curseg_p)689 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
690 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
691 {
692 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
693 get_pages(sbi, F2FS_DIRTY_DENTS) +
694 get_pages(sbi, F2FS_DIRTY_IMETA);
695 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
696 unsigned int total_data_blocks = 0;
697 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
698 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
699 unsigned int data_secs = 0;
700 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
701 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
702 unsigned int data_blocks = 0;
703
704 if (f2fs_lfs_mode(sbi)) {
705 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
706 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
707 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
708 }
709
710 if (lower_p)
711 *lower_p = node_secs + dent_secs + data_secs;
712 if (upper_p)
713 *upper_p = node_secs + dent_secs + data_secs +
714 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
715 (data_blocks ? 1 : 0);
716 if (curseg_p)
717 *curseg_p = has_curseg_enough_space(sbi,
718 node_blocks, data_blocks, dent_blocks);
719 }
720
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)721 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
722 int freed, int needed)
723 {
724 unsigned int free_secs, lower_secs, upper_secs;
725 bool curseg_space;
726
727 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
728 return false;
729
730 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
731
732 free_secs = free_sections(sbi) + freed;
733 lower_secs += needed + reserved_sections(sbi);
734 upper_secs += needed + reserved_sections(sbi);
735
736 if (free_secs > upper_secs)
737 return false;
738 if (free_secs <= lower_secs)
739 return true;
740 return !curseg_space;
741 }
742
has_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)743 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
744 int freed, int needed)
745 {
746 return !has_not_enough_free_secs(sbi, freed, needed);
747 }
748
has_enough_free_blks(struct f2fs_sb_info * sbi)749 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
750 {
751 unsigned int total_free_blocks = 0;
752 unsigned int avail_user_block_count;
753
754 spin_lock(&sbi->stat_lock);
755
756 avail_user_block_count = get_available_block_count(sbi, NULL, true);
757 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
758
759 spin_unlock(&sbi->stat_lock);
760
761 return total_free_blocks > 0;
762 }
763
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)764 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
765 {
766 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
767 return true;
768 if (likely(has_enough_free_secs(sbi, 0, 0)))
769 return true;
770 if (!f2fs_lfs_mode(sbi) &&
771 likely(has_enough_free_blks(sbi)))
772 return true;
773 return false;
774 }
775
excess_prefree_segs(struct f2fs_sb_info * sbi)776 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
777 {
778 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
779 }
780
utilization(struct f2fs_sb_info * sbi)781 static inline int utilization(struct f2fs_sb_info *sbi)
782 {
783 return div_u64((u64)valid_user_blocks(sbi) * 100,
784 sbi->user_block_count);
785 }
786
787 /*
788 * Sometimes f2fs may be better to drop out-of-place update policy.
789 * And, users can control the policy through sysfs entries.
790 * There are five policies with triggering conditions as follows.
791 * F2FS_IPU_FORCE - all the time,
792 * F2FS_IPU_SSR - if SSR mode is activated,
793 * F2FS_IPU_UTIL - if FS utilization is over threashold,
794 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
795 * threashold,
796 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
797 * storages. IPU will be triggered only if the # of dirty
798 * pages over min_fsync_blocks. (=default option)
799 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
800 * F2FS_IPU_NOCACHE - disable IPU bio cache.
801 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
802 * FI_OPU_WRITE flag.
803 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
804 */
805 #define DEF_MIN_IPU_UTIL 70
806 #define DEF_MIN_FSYNC_BLOCKS 8
807 #define DEF_MIN_HOT_BLOCKS 16
808
809 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
810
811 #define F2FS_IPU_DISABLE 0
812
813 /* Modification on enum should be synchronized with ipu_mode_names array */
814 enum {
815 F2FS_IPU_FORCE,
816 F2FS_IPU_SSR,
817 F2FS_IPU_UTIL,
818 F2FS_IPU_SSR_UTIL,
819 F2FS_IPU_FSYNC,
820 F2FS_IPU_ASYNC,
821 F2FS_IPU_NOCACHE,
822 F2FS_IPU_HONOR_OPU_WRITE,
823 F2FS_IPU_MAX,
824 };
825
IS_F2FS_IPU_DISABLE(struct f2fs_sb_info * sbi)826 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
827 {
828 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
829 }
830
831 #define F2FS_IPU_POLICY(name) \
832 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
833 { \
834 return SM_I(sbi)->ipu_policy & BIT(name); \
835 }
836
837 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
838 F2FS_IPU_POLICY(F2FS_IPU_SSR);
839 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
840 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
841 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
842 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
843 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
844 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
845
curseg_segno(struct f2fs_sb_info * sbi,int type)846 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
847 int type)
848 {
849 struct curseg_info *curseg = CURSEG_I(sbi, type);
850 return curseg->segno;
851 }
852
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)853 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
854 int type)
855 {
856 struct curseg_info *curseg = CURSEG_I(sbi, type);
857 return curseg->alloc_type;
858 }
859
valid_main_segno(struct f2fs_sb_info * sbi,unsigned int segno)860 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
861 unsigned int segno)
862 {
863 return segno <= (MAIN_SEGS(sbi) - 1);
864 }
865
verify_fio_blkaddr(struct f2fs_io_info * fio)866 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
867 {
868 struct f2fs_sb_info *sbi = fio->sbi;
869
870 if (__is_valid_data_blkaddr(fio->old_blkaddr))
871 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
872 META_GENERIC : DATA_GENERIC);
873 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
874 META_GENERIC : DATA_GENERIC_ENHANCE);
875 }
876
877 /*
878 * Summary block is always treated as an invalid block
879 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)880 static inline int check_block_count(struct f2fs_sb_info *sbi,
881 int segno, struct f2fs_sit_entry *raw_sit)
882 {
883 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
884 int valid_blocks = 0;
885 int cur_pos = 0, next_pos;
886 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
887
888 /* check bitmap with valid block count */
889 do {
890 if (is_valid) {
891 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
892 usable_blks_per_seg,
893 cur_pos);
894 valid_blocks += next_pos - cur_pos;
895 } else
896 next_pos = find_next_bit_le(&raw_sit->valid_map,
897 usable_blks_per_seg,
898 cur_pos);
899 cur_pos = next_pos;
900 is_valid = !is_valid;
901 } while (cur_pos < usable_blks_per_seg);
902
903 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
904 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
905 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
906 set_sbi_flag(sbi, SBI_NEED_FSCK);
907 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
908 return -EFSCORRUPTED;
909 }
910
911 if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
912 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
913 BLKS_PER_SEG(sbi),
914 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
915
916 /* check segment usage, and check boundary of a given segment number */
917 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
918 || !valid_main_segno(sbi, segno))) {
919 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
920 GET_SIT_VBLOCKS(raw_sit), segno);
921 set_sbi_flag(sbi, SBI_NEED_FSCK);
922 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
923 return -EFSCORRUPTED;
924 }
925 return 0;
926 }
927
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)928 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
929 unsigned int start)
930 {
931 struct sit_info *sit_i = SIT_I(sbi);
932 unsigned int offset = SIT_BLOCK_OFFSET(start);
933 block_t blk_addr = sit_i->sit_base_addr + offset;
934
935 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
936
937 #ifdef CONFIG_F2FS_CHECK_FS
938 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
939 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
940 f2fs_bug_on(sbi, 1);
941 #endif
942
943 /* calculate sit block address */
944 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
945 blk_addr += sit_i->sit_blocks;
946
947 return blk_addr;
948 }
949
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)950 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
951 pgoff_t block_addr)
952 {
953 struct sit_info *sit_i = SIT_I(sbi);
954 block_addr -= sit_i->sit_base_addr;
955 if (block_addr < sit_i->sit_blocks)
956 block_addr += sit_i->sit_blocks;
957 else
958 block_addr -= sit_i->sit_blocks;
959
960 return block_addr + sit_i->sit_base_addr;
961 }
962
set_to_next_sit(struct sit_info * sit_i,unsigned int start)963 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
964 {
965 unsigned int block_off = SIT_BLOCK_OFFSET(start);
966
967 f2fs_change_bit(block_off, sit_i->sit_bitmap);
968 #ifdef CONFIG_F2FS_CHECK_FS
969 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
970 #endif
971 }
972
get_mtime(struct f2fs_sb_info * sbi,bool base_time)973 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
974 bool base_time)
975 {
976 struct sit_info *sit_i = SIT_I(sbi);
977 time64_t diff, now = ktime_get_boottime_seconds();
978
979 if (now >= sit_i->mounted_time)
980 return sit_i->elapsed_time + now - sit_i->mounted_time;
981
982 /* system time is set to the past */
983 if (!base_time) {
984 diff = sit_i->mounted_time - now;
985 if (sit_i->elapsed_time >= diff)
986 return sit_i->elapsed_time - diff;
987 return 0;
988 }
989 return sit_i->elapsed_time;
990 }
991
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)992 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
993 unsigned int ofs_in_node, unsigned char version)
994 {
995 sum->nid = cpu_to_le32(nid);
996 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
997 sum->version = version;
998 }
999
start_sum_block(struct f2fs_sb_info * sbi)1000 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
1001 {
1002 return __start_cp_addr(sbi) +
1003 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1004 }
1005
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)1006 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
1007 {
1008 return __start_cp_addr(sbi) +
1009 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
1010 - (base + 1) + type;
1011 }
1012
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)1013 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
1014 {
1015 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
1016 return true;
1017 return false;
1018 }
1019
1020 /*
1021 * It is very important to gather dirty pages and write at once, so that we can
1022 * submit a big bio without interfering other data writes.
1023 * By default, 512 pages for directory data,
1024 * 512 pages (2MB) * 8 for nodes, and
1025 * 256 pages * 8 for meta are set.
1026 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)1027 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
1028 {
1029 if (sbi->sb->s_bdi->wb.dirty_exceeded)
1030 return 0;
1031
1032 if (type == DATA)
1033 return BLKS_PER_SEG(sbi);
1034 else if (type == NODE)
1035 return SEGS_TO_BLKS(sbi, 8);
1036 else if (type == META)
1037 return 8 * BIO_MAX_VECS;
1038 else
1039 return 0;
1040 }
1041
1042 /*
1043 * When writing pages, it'd better align nr_to_write for segment size.
1044 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)1045 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
1046 struct writeback_control *wbc)
1047 {
1048 long nr_to_write, desired;
1049
1050 if (wbc->sync_mode != WB_SYNC_NONE)
1051 return 0;
1052
1053 nr_to_write = wbc->nr_to_write;
1054 desired = BIO_MAX_VECS;
1055 if (type == NODE)
1056 desired <<= 1;
1057
1058 wbc->nr_to_write = desired;
1059 return desired - nr_to_write;
1060 }
1061
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)1062 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
1063 {
1064 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1065 bool wakeup = false;
1066 int i;
1067
1068 if (force)
1069 goto wake_up;
1070
1071 mutex_lock(&dcc->cmd_lock);
1072 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1073 if (i + 1 < dcc->discard_granularity)
1074 break;
1075 if (!list_empty(&dcc->pend_list[i])) {
1076 wakeup = true;
1077 break;
1078 }
1079 }
1080 mutex_unlock(&dcc->cmd_lock);
1081 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
1082 return;
1083 wake_up:
1084 dcc->discard_wake = true;
1085 wake_up_interruptible_all(&dcc->discard_wait_queue);
1086 }
1087