1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 #include <linux/rw_hint.h>
31 
32 #include <linux/poll.h>
33 #include <asm/siginfo.h>
34 #include <linux/uaccess.h>
35 #include <trace/hooks/fs.h>
36 
37 #include "internal.h"
38 
39 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
40 
setfl(int fd,struct file * filp,unsigned int arg)41 static int setfl(int fd, struct file * filp, unsigned int arg)
42 {
43 	struct inode * inode = file_inode(filp);
44 	int error = 0;
45 
46 	/*
47 	 * O_APPEND cannot be cleared if the file is marked as append-only
48 	 * and the file is open for write.
49 	 */
50 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
51 		return -EPERM;
52 
53 	/* O_NOATIME can only be set by the owner or superuser */
54 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
55 		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
56 			return -EPERM;
57 
58 	/* required for strict SunOS emulation */
59 	if (O_NONBLOCK != O_NDELAY)
60 	       if (arg & O_NDELAY)
61 		   arg |= O_NONBLOCK;
62 
63 	/* Pipe packetized mode is controlled by O_DIRECT flag */
64 	if (!S_ISFIFO(inode->i_mode) &&
65 	    (arg & O_DIRECT) &&
66 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
67 		return -EINVAL;
68 
69 	if (filp->f_op->check_flags)
70 		error = filp->f_op->check_flags(arg);
71 	if (error)
72 		return error;
73 
74 	/*
75 	 * ->fasync() is responsible for setting the FASYNC bit.
76 	 */
77 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
78 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
79 		if (error < 0)
80 			goto out;
81 		if (error > 0)
82 			error = 0;
83 	}
84 	spin_lock(&filp->f_lock);
85 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
86 	filp->f_iocb_flags = iocb_flags(filp);
87 	spin_unlock(&filp->f_lock);
88 
89  out:
90 	return error;
91 }
92 
93 /*
94  * Allocate an file->f_owner struct if it doesn't exist, handling racing
95  * allocations correctly.
96  */
file_f_owner_allocate(struct file * file)97 int file_f_owner_allocate(struct file *file)
98 {
99 	struct fown_struct *f_owner;
100 
101 	f_owner = file_f_owner(file);
102 	if (f_owner)
103 		return 0;
104 
105 	f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL);
106 	if (!f_owner)
107 		return -ENOMEM;
108 
109 	rwlock_init(&f_owner->lock);
110 	f_owner->file = file;
111 	/* If someone else raced us, drop our allocation. */
112 	if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner)))
113 		kfree(f_owner);
114 	return 0;
115 }
116 EXPORT_SYMBOL(file_f_owner_allocate);
117 
file_f_owner_release(struct file * file)118 void file_f_owner_release(struct file *file)
119 {
120 	struct fown_struct *f_owner;
121 
122 	f_owner = file_f_owner(file);
123 	if (f_owner) {
124 		put_pid(f_owner->pid);
125 		kfree(f_owner);
126 	}
127 }
128 
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)129 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
130 		int force)
131 {
132 	struct fown_struct *f_owner;
133 
134 	f_owner = file_f_owner(filp);
135 	if (WARN_ON_ONCE(!f_owner))
136 		return;
137 
138 	write_lock_irq(&f_owner->lock);
139 	if (force || !f_owner->pid) {
140 		put_pid(f_owner->pid);
141 		f_owner->pid = get_pid(pid);
142 		f_owner->pid_type = type;
143 
144 		if (pid) {
145 			const struct cred *cred = current_cred();
146 			security_file_set_fowner(filp);
147 			f_owner->uid = cred->uid;
148 			f_owner->euid = cred->euid;
149 		}
150 	}
151 	write_unlock_irq(&f_owner->lock);
152 }
153 EXPORT_SYMBOL(__f_setown);
154 
f_setown(struct file * filp,int who,int force)155 int f_setown(struct file *filp, int who, int force)
156 {
157 	enum pid_type type;
158 	struct pid *pid = NULL;
159 	int ret = 0;
160 
161 	might_sleep();
162 
163 	type = PIDTYPE_TGID;
164 	if (who < 0) {
165 		/* avoid overflow below */
166 		if (who == INT_MIN)
167 			return -EINVAL;
168 
169 		type = PIDTYPE_PGID;
170 		who = -who;
171 	}
172 
173 	ret = file_f_owner_allocate(filp);
174 	if (ret)
175 		return ret;
176 
177 	rcu_read_lock();
178 	if (who) {
179 		pid = find_vpid(who);
180 		if (!pid)
181 			ret = -ESRCH;
182 	}
183 
184 	if (!ret)
185 		__f_setown(filp, pid, type, force);
186 	rcu_read_unlock();
187 
188 	return ret;
189 }
190 EXPORT_SYMBOL(f_setown);
191 
f_delown(struct file * filp)192 void f_delown(struct file *filp)
193 {
194 	__f_setown(filp, NULL, PIDTYPE_TGID, 1);
195 }
196 
f_getown(struct file * filp)197 pid_t f_getown(struct file *filp)
198 {
199 	pid_t pid = 0;
200 	struct fown_struct *f_owner;
201 
202 	f_owner = file_f_owner(filp);
203 	if (!f_owner)
204 		return pid;
205 
206 	read_lock_irq(&f_owner->lock);
207 	rcu_read_lock();
208 	if (pid_task(f_owner->pid, f_owner->pid_type)) {
209 		pid = pid_vnr(f_owner->pid);
210 		if (f_owner->pid_type == PIDTYPE_PGID)
211 			pid = -pid;
212 	}
213 	rcu_read_unlock();
214 	read_unlock_irq(&f_owner->lock);
215 	return pid;
216 }
217 
f_setown_ex(struct file * filp,unsigned long arg)218 static int f_setown_ex(struct file *filp, unsigned long arg)
219 {
220 	struct f_owner_ex __user *owner_p = (void __user *)arg;
221 	struct f_owner_ex owner;
222 	struct pid *pid;
223 	int type;
224 	int ret;
225 
226 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
227 	if (ret)
228 		return -EFAULT;
229 
230 	switch (owner.type) {
231 	case F_OWNER_TID:
232 		type = PIDTYPE_PID;
233 		break;
234 
235 	case F_OWNER_PID:
236 		type = PIDTYPE_TGID;
237 		break;
238 
239 	case F_OWNER_PGRP:
240 		type = PIDTYPE_PGID;
241 		break;
242 
243 	default:
244 		return -EINVAL;
245 	}
246 
247 	ret = file_f_owner_allocate(filp);
248 	if (ret)
249 		return ret;
250 
251 	rcu_read_lock();
252 	pid = find_vpid(owner.pid);
253 	if (owner.pid && !pid)
254 		ret = -ESRCH;
255 	else
256 		 __f_setown(filp, pid, type, 1);
257 	rcu_read_unlock();
258 
259 	return ret;
260 }
261 
f_getown_ex(struct file * filp,unsigned long arg)262 static int f_getown_ex(struct file *filp, unsigned long arg)
263 {
264 	struct f_owner_ex __user *owner_p = (void __user *)arg;
265 	struct f_owner_ex owner = {};
266 	int ret = 0;
267 	struct fown_struct *f_owner;
268 	enum pid_type pid_type = PIDTYPE_PID;
269 
270 	f_owner = file_f_owner(filp);
271 	if (f_owner) {
272 		read_lock_irq(&f_owner->lock);
273 		rcu_read_lock();
274 		if (pid_task(f_owner->pid, f_owner->pid_type))
275 			owner.pid = pid_vnr(f_owner->pid);
276 		rcu_read_unlock();
277 		pid_type = f_owner->pid_type;
278 	}
279 
280 	switch (pid_type) {
281 	case PIDTYPE_PID:
282 		owner.type = F_OWNER_TID;
283 		break;
284 
285 	case PIDTYPE_TGID:
286 		owner.type = F_OWNER_PID;
287 		break;
288 
289 	case PIDTYPE_PGID:
290 		owner.type = F_OWNER_PGRP;
291 		break;
292 
293 	default:
294 		WARN_ON(1);
295 		ret = -EINVAL;
296 		break;
297 	}
298 	if (f_owner)
299 		read_unlock_irq(&f_owner->lock);
300 
301 	if (!ret) {
302 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
303 		if (ret)
304 			ret = -EFAULT;
305 	}
306 	return ret;
307 }
308 
309 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)310 static int f_getowner_uids(struct file *filp, unsigned long arg)
311 {
312 	struct user_namespace *user_ns = current_user_ns();
313 	struct fown_struct *f_owner;
314 	uid_t __user *dst = (void __user *)arg;
315 	uid_t src[2] = {0, 0};
316 	int err;
317 
318 	f_owner = file_f_owner(filp);
319 	if (f_owner) {
320 		read_lock_irq(&f_owner->lock);
321 		src[0] = from_kuid(user_ns, f_owner->uid);
322 		src[1] = from_kuid(user_ns, f_owner->euid);
323 		read_unlock_irq(&f_owner->lock);
324 	}
325 
326 	err  = put_user(src[0], &dst[0]);
327 	err |= put_user(src[1], &dst[1]);
328 
329 	return err;
330 }
331 #else
f_getowner_uids(struct file * filp,unsigned long arg)332 static int f_getowner_uids(struct file *filp, unsigned long arg)
333 {
334 	return -EINVAL;
335 }
336 #endif
337 
rw_hint_valid(u64 hint)338 static bool rw_hint_valid(u64 hint)
339 {
340 	BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
341 	BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
342 	BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
343 	BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
344 	BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
345 	BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
346 
347 	switch (hint) {
348 	case RWH_WRITE_LIFE_NOT_SET:
349 	case RWH_WRITE_LIFE_NONE:
350 	case RWH_WRITE_LIFE_SHORT:
351 	case RWH_WRITE_LIFE_MEDIUM:
352 	case RWH_WRITE_LIFE_LONG:
353 	case RWH_WRITE_LIFE_EXTREME:
354 		return true;
355 	default:
356 		return false;
357 	}
358 }
359 
fcntl_get_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)360 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
361 			      unsigned long arg)
362 {
363 	struct inode *inode = file_inode(file);
364 	u64 __user *argp = (u64 __user *)arg;
365 	u64 hint = READ_ONCE(inode->i_write_hint);
366 
367 	if (copy_to_user(argp, &hint, sizeof(*argp)))
368 		return -EFAULT;
369 	return 0;
370 }
371 
fcntl_set_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)372 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
373 			      unsigned long arg)
374 {
375 	struct inode *inode = file_inode(file);
376 	u64 __user *argp = (u64 __user *)arg;
377 	u64 hint;
378 
379 	if (copy_from_user(&hint, argp, sizeof(hint)))
380 		return -EFAULT;
381 	if (!rw_hint_valid(hint))
382 		return -EINVAL;
383 
384 	WRITE_ONCE(inode->i_write_hint, hint);
385 
386 	/*
387 	 * file->f_mapping->host may differ from inode. As an example,
388 	 * blkdev_open() modifies file->f_mapping.
389 	 */
390 	if (file->f_mapping->host != inode)
391 		WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
392 
393 	return 0;
394 }
395 
396 /* Is the file descriptor a dup of the file? */
f_dupfd_query(int fd,struct file * filp)397 static long f_dupfd_query(int fd, struct file *filp)
398 {
399 	CLASS(fd_raw, f)(fd);
400 
401 	if (fd_empty(f))
402 		return -EBADF;
403 
404 	/*
405 	 * We can do the 'fdput()' immediately, as the only thing that
406 	 * matters is the pointer value which isn't changed by the fdput.
407 	 *
408 	 * Technically we didn't need a ref at all, and 'fdget()' was
409 	 * overkill, but given our lockless file pointer lookup, the
410 	 * alternatives are complicated.
411 	 */
412 	return fd_file(f) == filp;
413 }
414 
415 /* Let the caller figure out whether a given file was just created. */
f_created_query(const struct file * filp)416 static long f_created_query(const struct file *filp)
417 {
418 	return !!(filp->f_mode & FMODE_CREATED);
419 }
420 
f_owner_sig(struct file * filp,int signum,bool setsig)421 static int f_owner_sig(struct file *filp, int signum, bool setsig)
422 {
423 	int ret = 0;
424 	struct fown_struct *f_owner;
425 
426 	might_sleep();
427 
428 	if (setsig) {
429 		if (!valid_signal(signum))
430 			return -EINVAL;
431 
432 		ret = file_f_owner_allocate(filp);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	f_owner = file_f_owner(filp);
438 	if (setsig)
439 		f_owner->signum = signum;
440 	else if (f_owner)
441 		ret = f_owner->signum;
442 	return ret;
443 }
444 
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)445 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
446 		struct file *filp)
447 {
448 	void __user *argp = (void __user *)arg;
449 	int argi = (int)arg;
450 	struct flock flock;
451 	long err = -EINVAL;
452 
453 	switch (cmd) {
454 	case F_CREATED_QUERY:
455 		err = f_created_query(filp);
456 		break;
457 	case F_DUPFD:
458 		err = f_dupfd(argi, filp, 0);
459 		break;
460 	case F_DUPFD_CLOEXEC:
461 		err = f_dupfd(argi, filp, O_CLOEXEC);
462 		break;
463 	case F_DUPFD_QUERY:
464 		err = f_dupfd_query(argi, filp);
465 		break;
466 	case F_GETFD:
467 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
468 		break;
469 	case F_SETFD:
470 		err = 0;
471 		set_close_on_exec(fd, argi & FD_CLOEXEC);
472 		break;
473 	case F_GETFL:
474 		err = filp->f_flags;
475 		break;
476 	case F_SETFL:
477 		err = setfl(fd, filp, argi);
478 		break;
479 #if BITS_PER_LONG != 32
480 	/* 32-bit arches must use fcntl64() */
481 	case F_OFD_GETLK:
482 #endif
483 	case F_GETLK:
484 		if (copy_from_user(&flock, argp, sizeof(flock)))
485 			return -EFAULT;
486 		err = fcntl_getlk(filp, cmd, &flock);
487 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
488 			return -EFAULT;
489 		break;
490 #if BITS_PER_LONG != 32
491 	/* 32-bit arches must use fcntl64() */
492 	case F_OFD_SETLK:
493 	case F_OFD_SETLKW:
494 		fallthrough;
495 #endif
496 	case F_SETLK:
497 	case F_SETLKW:
498 		if (copy_from_user(&flock, argp, sizeof(flock)))
499 			return -EFAULT;
500 		err = fcntl_setlk(fd, filp, cmd, &flock);
501 		break;
502 	case F_GETOWN:
503 		/*
504 		 * XXX If f_owner is a process group, the
505 		 * negative return value will get converted
506 		 * into an error.  Oops.  If we keep the
507 		 * current syscall conventions, the only way
508 		 * to fix this will be in libc.
509 		 */
510 		err = f_getown(filp);
511 		force_successful_syscall_return();
512 		break;
513 	case F_SETOWN:
514 		err = f_setown(filp, argi, 1);
515 		break;
516 	case F_GETOWN_EX:
517 		err = f_getown_ex(filp, arg);
518 		break;
519 	case F_SETOWN_EX:
520 		err = f_setown_ex(filp, arg);
521 		break;
522 	case F_GETOWNER_UIDS:
523 		err = f_getowner_uids(filp, arg);
524 		break;
525 	case F_GETSIG:
526 		err = f_owner_sig(filp, 0, false);
527 		break;
528 	case F_SETSIG:
529 		err = f_owner_sig(filp, argi, true);
530 		break;
531 	case F_GETLEASE:
532 		err = fcntl_getlease(filp);
533 		break;
534 	case F_SETLEASE:
535 		err = fcntl_setlease(fd, filp, argi);
536 		break;
537 	case F_NOTIFY:
538 		err = fcntl_dirnotify(fd, filp, argi);
539 		break;
540 	case F_SETPIPE_SZ:
541 	case F_GETPIPE_SZ:
542 		err = pipe_fcntl(filp, cmd, argi);
543 		break;
544 	case F_ADD_SEALS:
545 	case F_GET_SEALS:
546 		err = memfd_fcntl(filp, cmd, argi);
547 		break;
548 	case F_GET_RW_HINT:
549 		err = fcntl_get_rw_hint(filp, cmd, arg);
550 		break;
551 	case F_SET_RW_HINT:
552 		err = fcntl_set_rw_hint(filp, cmd, arg);
553 		break;
554 	default:
555 		trace_android_rvh_do_fcntl(filp, cmd, arg, &err);
556 		break;
557 	}
558 	return err;
559 }
560 
check_fcntl_cmd(unsigned cmd)561 static int check_fcntl_cmd(unsigned cmd)
562 {
563 	switch (cmd) {
564 	case F_CREATED_QUERY:
565 	case F_DUPFD:
566 	case F_DUPFD_CLOEXEC:
567 	case F_DUPFD_QUERY:
568 	case F_GETFD:
569 	case F_SETFD:
570 	case F_GETFL:
571 		return 1;
572 	}
573 	return 0;
574 }
575 
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)576 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
577 {
578 	struct fd f = fdget_raw(fd);
579 	long err = -EBADF;
580 
581 	if (!fd_file(f))
582 		goto out;
583 
584 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
585 		if (!check_fcntl_cmd(cmd))
586 			goto out1;
587 	}
588 
589 	err = security_file_fcntl(fd_file(f), cmd, arg);
590 	if (!err)
591 		err = do_fcntl(fd, cmd, arg, fd_file(f));
592 
593 out1:
594  	fdput(f);
595 out:
596 	return err;
597 }
598 
599 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)600 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
601 		unsigned long, arg)
602 {
603 	void __user *argp = (void __user *)arg;
604 	struct fd f = fdget_raw(fd);
605 	struct flock64 flock;
606 	long err = -EBADF;
607 
608 	if (!fd_file(f))
609 		goto out;
610 
611 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
612 		if (!check_fcntl_cmd(cmd))
613 			goto out1;
614 	}
615 
616 	err = security_file_fcntl(fd_file(f), cmd, arg);
617 	if (err)
618 		goto out1;
619 
620 	switch (cmd) {
621 	case F_GETLK64:
622 	case F_OFD_GETLK:
623 		err = -EFAULT;
624 		if (copy_from_user(&flock, argp, sizeof(flock)))
625 			break;
626 		err = fcntl_getlk64(fd_file(f), cmd, &flock);
627 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
628 			err = -EFAULT;
629 		break;
630 	case F_SETLK64:
631 	case F_SETLKW64:
632 	case F_OFD_SETLK:
633 	case F_OFD_SETLKW:
634 		err = -EFAULT;
635 		if (copy_from_user(&flock, argp, sizeof(flock)))
636 			break;
637 		err = fcntl_setlk64(fd, fd_file(f), cmd, &flock);
638 		break;
639 	default:
640 		err = do_fcntl(fd, cmd, arg, fd_file(f));
641 		break;
642 	}
643 out1:
644 	fdput(f);
645 out:
646 	return err;
647 }
648 #endif
649 
650 #ifdef CONFIG_COMPAT
651 /* careful - don't use anywhere else */
652 #define copy_flock_fields(dst, src)		\
653 	(dst)->l_type = (src)->l_type;		\
654 	(dst)->l_whence = (src)->l_whence;	\
655 	(dst)->l_start = (src)->l_start;	\
656 	(dst)->l_len = (src)->l_len;		\
657 	(dst)->l_pid = (src)->l_pid;
658 
get_compat_flock(struct flock * kfl,const struct compat_flock __user * ufl)659 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
660 {
661 	struct compat_flock fl;
662 
663 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
664 		return -EFAULT;
665 	copy_flock_fields(kfl, &fl);
666 	return 0;
667 }
668 
get_compat_flock64(struct flock * kfl,const struct compat_flock64 __user * ufl)669 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
670 {
671 	struct compat_flock64 fl;
672 
673 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
674 		return -EFAULT;
675 	copy_flock_fields(kfl, &fl);
676 	return 0;
677 }
678 
put_compat_flock(const struct flock * kfl,struct compat_flock __user * ufl)679 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
680 {
681 	struct compat_flock fl;
682 
683 	memset(&fl, 0, sizeof(struct compat_flock));
684 	copy_flock_fields(&fl, kfl);
685 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
686 		return -EFAULT;
687 	return 0;
688 }
689 
put_compat_flock64(const struct flock * kfl,struct compat_flock64 __user * ufl)690 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
691 {
692 	struct compat_flock64 fl;
693 
694 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
695 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
696 
697 	memset(&fl, 0, sizeof(struct compat_flock64));
698 	copy_flock_fields(&fl, kfl);
699 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
700 		return -EFAULT;
701 	return 0;
702 }
703 #undef copy_flock_fields
704 
705 static unsigned int
convert_fcntl_cmd(unsigned int cmd)706 convert_fcntl_cmd(unsigned int cmd)
707 {
708 	switch (cmd) {
709 	case F_GETLK64:
710 		return F_GETLK;
711 	case F_SETLK64:
712 		return F_SETLK;
713 	case F_SETLKW64:
714 		return F_SETLKW;
715 	}
716 
717 	return cmd;
718 }
719 
720 /*
721  * GETLK was successful and we need to return the data, but it needs to fit in
722  * the compat structure.
723  * l_start shouldn't be too big, unless the original start + end is greater than
724  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
725  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
726  * truncate it, and only allow the app to see that part of the conflicting lock
727  * that might make sense to it anyway
728  */
fixup_compat_flock(struct flock * flock)729 static int fixup_compat_flock(struct flock *flock)
730 {
731 	if (flock->l_start > COMPAT_OFF_T_MAX)
732 		return -EOVERFLOW;
733 	if (flock->l_len > COMPAT_OFF_T_MAX)
734 		flock->l_len = COMPAT_OFF_T_MAX;
735 	return 0;
736 }
737 
do_compat_fcntl64(unsigned int fd,unsigned int cmd,compat_ulong_t arg)738 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
739 			     compat_ulong_t arg)
740 {
741 	struct fd f = fdget_raw(fd);
742 	struct flock flock;
743 	long err = -EBADF;
744 
745 	if (!fd_file(f))
746 		return err;
747 
748 	if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) {
749 		if (!check_fcntl_cmd(cmd))
750 			goto out_put;
751 	}
752 
753 	err = security_file_fcntl(fd_file(f), cmd, arg);
754 	if (err)
755 		goto out_put;
756 
757 	switch (cmd) {
758 	case F_GETLK:
759 		err = get_compat_flock(&flock, compat_ptr(arg));
760 		if (err)
761 			break;
762 		err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
763 		if (err)
764 			break;
765 		err = fixup_compat_flock(&flock);
766 		if (!err)
767 			err = put_compat_flock(&flock, compat_ptr(arg));
768 		break;
769 	case F_GETLK64:
770 	case F_OFD_GETLK:
771 		err = get_compat_flock64(&flock, compat_ptr(arg));
772 		if (err)
773 			break;
774 		err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock);
775 		if (!err)
776 			err = put_compat_flock64(&flock, compat_ptr(arg));
777 		break;
778 	case F_SETLK:
779 	case F_SETLKW:
780 		err = get_compat_flock(&flock, compat_ptr(arg));
781 		if (err)
782 			break;
783 		err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
784 		break;
785 	case F_SETLK64:
786 	case F_SETLKW64:
787 	case F_OFD_SETLK:
788 	case F_OFD_SETLKW:
789 		err = get_compat_flock64(&flock, compat_ptr(arg));
790 		if (err)
791 			break;
792 		err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock);
793 		break;
794 	default:
795 		err = do_fcntl(fd, cmd, arg, fd_file(f));
796 		break;
797 	}
798 out_put:
799 	fdput(f);
800 	return err;
801 }
802 
COMPAT_SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)803 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
804 		       compat_ulong_t, arg)
805 {
806 	return do_compat_fcntl64(fd, cmd, arg);
807 }
808 
COMPAT_SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)809 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
810 		       compat_ulong_t, arg)
811 {
812 	switch (cmd) {
813 	case F_GETLK64:
814 	case F_SETLK64:
815 	case F_SETLKW64:
816 	case F_OFD_GETLK:
817 	case F_OFD_SETLK:
818 	case F_OFD_SETLKW:
819 		return -EINVAL;
820 	}
821 	return do_compat_fcntl64(fd, cmd, arg);
822 }
823 #endif
824 
825 /* Table to convert sigio signal codes into poll band bitmaps */
826 
827 static const __poll_t band_table[NSIGPOLL] = {
828 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
829 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
830 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
831 	EPOLLERR,				/* POLL_ERR */
832 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
833 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
834 };
835 
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)836 static inline int sigio_perm(struct task_struct *p,
837                              struct fown_struct *fown, int sig)
838 {
839 	const struct cred *cred;
840 	int ret;
841 
842 	rcu_read_lock();
843 	cred = __task_cred(p);
844 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
845 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
846 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
847 	       !security_file_send_sigiotask(p, fown, sig));
848 	rcu_read_unlock();
849 	return ret;
850 }
851 
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,enum pid_type type)852 static void send_sigio_to_task(struct task_struct *p,
853 			       struct fown_struct *fown,
854 			       int fd, int reason, enum pid_type type)
855 {
856 	/*
857 	 * F_SETSIG can change ->signum lockless in parallel, make
858 	 * sure we read it once and use the same value throughout.
859 	 */
860 	int signum = READ_ONCE(fown->signum);
861 
862 	if (!sigio_perm(p, fown, signum))
863 		return;
864 
865 	switch (signum) {
866 		default: {
867 			kernel_siginfo_t si;
868 
869 			/* Queue a rt signal with the appropriate fd as its
870 			   value.  We use SI_SIGIO as the source, not
871 			   SI_KERNEL, since kernel signals always get
872 			   delivered even if we can't queue.  Failure to
873 			   queue in this case _should_ be reported; we fall
874 			   back to SIGIO in that case. --sct */
875 			clear_siginfo(&si);
876 			si.si_signo = signum;
877 			si.si_errno = 0;
878 		        si.si_code  = reason;
879 			/*
880 			 * Posix definies POLL_IN and friends to be signal
881 			 * specific si_codes for SIG_POLL.  Linux extended
882 			 * these si_codes to other signals in a way that is
883 			 * ambiguous if other signals also have signal
884 			 * specific si_codes.  In that case use SI_SIGIO instead
885 			 * to remove the ambiguity.
886 			 */
887 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
888 				si.si_code = SI_SIGIO;
889 
890 			/* Make sure we are called with one of the POLL_*
891 			   reasons, otherwise we could leak kernel stack into
892 			   userspace.  */
893 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
894 			if (reason - POLL_IN >= NSIGPOLL)
895 				si.si_band  = ~0L;
896 			else
897 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
898 			si.si_fd    = fd;
899 			if (!do_send_sig_info(signum, &si, p, type))
900 				break;
901 		}
902 			fallthrough;	/* fall back on the old plain SIGIO signal */
903 		case 0:
904 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
905 	}
906 }
907 
send_sigio(struct fown_struct * fown,int fd,int band)908 void send_sigio(struct fown_struct *fown, int fd, int band)
909 {
910 	struct task_struct *p;
911 	enum pid_type type;
912 	unsigned long flags;
913 	struct pid *pid;
914 
915 	read_lock_irqsave(&fown->lock, flags);
916 
917 	type = fown->pid_type;
918 	pid = fown->pid;
919 	if (!pid)
920 		goto out_unlock_fown;
921 
922 	if (type <= PIDTYPE_TGID) {
923 		rcu_read_lock();
924 		p = pid_task(pid, PIDTYPE_PID);
925 		if (p)
926 			send_sigio_to_task(p, fown, fd, band, type);
927 		rcu_read_unlock();
928 	} else {
929 		read_lock(&tasklist_lock);
930 		do_each_pid_task(pid, type, p) {
931 			send_sigio_to_task(p, fown, fd, band, type);
932 		} while_each_pid_task(pid, type, p);
933 		read_unlock(&tasklist_lock);
934 	}
935  out_unlock_fown:
936 	read_unlock_irqrestore(&fown->lock, flags);
937 }
938 
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,enum pid_type type)939 static void send_sigurg_to_task(struct task_struct *p,
940 				struct fown_struct *fown, enum pid_type type)
941 {
942 	if (sigio_perm(p, fown, SIGURG))
943 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
944 }
945 
send_sigurg(struct file * file)946 int send_sigurg(struct file *file)
947 {
948 	struct fown_struct *fown;
949 	struct task_struct *p;
950 	enum pid_type type;
951 	struct pid *pid;
952 	unsigned long flags;
953 	int ret = 0;
954 
955 	fown = file_f_owner(file);
956 	if (!fown)
957 		return 0;
958 
959 	read_lock_irqsave(&fown->lock, flags);
960 
961 	type = fown->pid_type;
962 	pid = fown->pid;
963 	if (!pid)
964 		goto out_unlock_fown;
965 
966 	ret = 1;
967 
968 	if (type <= PIDTYPE_TGID) {
969 		rcu_read_lock();
970 		p = pid_task(pid, PIDTYPE_PID);
971 		if (p)
972 			send_sigurg_to_task(p, fown, type);
973 		rcu_read_unlock();
974 	} else {
975 		read_lock(&tasklist_lock);
976 		do_each_pid_task(pid, type, p) {
977 			send_sigurg_to_task(p, fown, type);
978 		} while_each_pid_task(pid, type, p);
979 		read_unlock(&tasklist_lock);
980 	}
981  out_unlock_fown:
982 	read_unlock_irqrestore(&fown->lock, flags);
983 	return ret;
984 }
985 
986 static DEFINE_SPINLOCK(fasync_lock);
987 static struct kmem_cache *fasync_cache __ro_after_init;
988 
989 /*
990  * Remove a fasync entry. If successfully removed, return
991  * positive and clear the FASYNC flag. If no entry exists,
992  * do nothing and return 0.
993  *
994  * NOTE! It is very important that the FASYNC flag always
995  * match the state "is the filp on a fasync list".
996  *
997  */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)998 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
999 {
1000 	struct fasync_struct *fa, **fp;
1001 	int result = 0;
1002 
1003 	spin_lock(&filp->f_lock);
1004 	spin_lock(&fasync_lock);
1005 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1006 		if (fa->fa_file != filp)
1007 			continue;
1008 
1009 		write_lock_irq(&fa->fa_lock);
1010 		fa->fa_file = NULL;
1011 		write_unlock_irq(&fa->fa_lock);
1012 
1013 		*fp = fa->fa_next;
1014 		kfree_rcu(fa, fa_rcu);
1015 		filp->f_flags &= ~FASYNC;
1016 		result = 1;
1017 		break;
1018 	}
1019 	spin_unlock(&fasync_lock);
1020 	spin_unlock(&filp->f_lock);
1021 	return result;
1022 }
1023 
fasync_alloc(void)1024 struct fasync_struct *fasync_alloc(void)
1025 {
1026 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
1027 }
1028 
1029 /*
1030  * NOTE! This can be used only for unused fasync entries:
1031  * entries that actually got inserted on the fasync list
1032  * need to be released by rcu - see fasync_remove_entry.
1033  */
fasync_free(struct fasync_struct * new)1034 void fasync_free(struct fasync_struct *new)
1035 {
1036 	kmem_cache_free(fasync_cache, new);
1037 }
1038 
1039 /*
1040  * Insert a new entry into the fasync list.  Return the pointer to the
1041  * old one if we didn't use the new one.
1042  *
1043  * NOTE! It is very important that the FASYNC flag always
1044  * match the state "is the filp on a fasync list".
1045  */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)1046 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
1047 {
1048         struct fasync_struct *fa, **fp;
1049 
1050 	spin_lock(&filp->f_lock);
1051 	spin_lock(&fasync_lock);
1052 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
1053 		if (fa->fa_file != filp)
1054 			continue;
1055 
1056 		write_lock_irq(&fa->fa_lock);
1057 		fa->fa_fd = fd;
1058 		write_unlock_irq(&fa->fa_lock);
1059 		goto out;
1060 	}
1061 
1062 	rwlock_init(&new->fa_lock);
1063 	new->magic = FASYNC_MAGIC;
1064 	new->fa_file = filp;
1065 	new->fa_fd = fd;
1066 	new->fa_next = *fapp;
1067 	rcu_assign_pointer(*fapp, new);
1068 	filp->f_flags |= FASYNC;
1069 
1070 out:
1071 	spin_unlock(&fasync_lock);
1072 	spin_unlock(&filp->f_lock);
1073 	return fa;
1074 }
1075 
1076 /*
1077  * Add a fasync entry. Return negative on error, positive if
1078  * added, and zero if did nothing but change an existing one.
1079  */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)1080 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
1081 {
1082 	struct fasync_struct *new;
1083 
1084 	new = fasync_alloc();
1085 	if (!new)
1086 		return -ENOMEM;
1087 
1088 	/*
1089 	 * fasync_insert_entry() returns the old (update) entry if
1090 	 * it existed.
1091 	 *
1092 	 * So free the (unused) new entry and return 0 to let the
1093 	 * caller know that we didn't add any new fasync entries.
1094 	 */
1095 	if (fasync_insert_entry(fd, filp, fapp, new)) {
1096 		fasync_free(new);
1097 		return 0;
1098 	}
1099 
1100 	return 1;
1101 }
1102 
1103 /*
1104  * fasync_helper() is used by almost all character device drivers
1105  * to set up the fasync queue, and for regular files by the file
1106  * lease code. It returns negative on error, 0 if it did no changes
1107  * and positive if it added/deleted the entry.
1108  */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)1109 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
1110 {
1111 	if (!on)
1112 		return fasync_remove_entry(filp, fapp);
1113 	return fasync_add_entry(fd, filp, fapp);
1114 }
1115 
1116 EXPORT_SYMBOL(fasync_helper);
1117 
1118 /*
1119  * rcu_read_lock() is held
1120  */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)1121 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1122 {
1123 	while (fa) {
1124 		struct fown_struct *fown;
1125 		unsigned long flags;
1126 
1127 		if (fa->magic != FASYNC_MAGIC) {
1128 			printk(KERN_ERR "kill_fasync: bad magic number in "
1129 			       "fasync_struct!\n");
1130 			return;
1131 		}
1132 		read_lock_irqsave(&fa->fa_lock, flags);
1133 		if (fa->fa_file) {
1134 			fown = file_f_owner(fa->fa_file);
1135 			if (!fown)
1136 				goto next;
1137 			/* Don't send SIGURG to processes which have not set a
1138 			   queued signum: SIGURG has its own default signalling
1139 			   mechanism. */
1140 			if (!(sig == SIGURG && fown->signum == 0))
1141 				send_sigio(fown, fa->fa_fd, band);
1142 		}
1143 next:
1144 		read_unlock_irqrestore(&fa->fa_lock, flags);
1145 		fa = rcu_dereference(fa->fa_next);
1146 	}
1147 }
1148 
kill_fasync(struct fasync_struct ** fp,int sig,int band)1149 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1150 {
1151 	/* First a quick test without locking: usually
1152 	 * the list is empty.
1153 	 */
1154 	if (*fp) {
1155 		rcu_read_lock();
1156 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1157 		rcu_read_unlock();
1158 	}
1159 }
1160 EXPORT_SYMBOL(kill_fasync);
1161 
fcntl_init(void)1162 static int __init fcntl_init(void)
1163 {
1164 	/*
1165 	 * Please add new bits here to ensure allocation uniqueness.
1166 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1167 	 * is defined as O_NONBLOCK on some platforms and not on others.
1168 	 */
1169 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1170 		HWEIGHT32(
1171 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1172 			__FMODE_EXEC | __FMODE_NONOTIFY));
1173 
1174 	fasync_cache = kmem_cache_create("fasync_cache",
1175 					 sizeof(struct fasync_struct), 0,
1176 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1177 	return 0;
1178 }
1179 
1180 module_init(fcntl_init)
1181