1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69
70 /*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80 d_add(dentry, NULL);
81 return NULL;
82 }
83 EXPORT_SYMBOL(simple_lookup);
84
dcache_dir_open(struct inode * inode,struct file * file)85 int dcache_dir_open(struct inode *inode, struct file *file)
86 {
87 file->private_data = d_alloc_cursor(file->f_path.dentry);
88
89 return file->private_data ? 0 : -ENOMEM;
90 }
91 EXPORT_SYMBOL(dcache_dir_open);
92
dcache_dir_close(struct inode * inode,struct file * file)93 int dcache_dir_close(struct inode *inode, struct file *file)
94 {
95 dput(file->private_data);
96 return 0;
97 }
98 EXPORT_SYMBOL(dcache_dir_close);
99
100 /* parent is locked at least shared */
101 /*
102 * Returns an element of siblings' list.
103 * We are looking for <count>th positive after <p>; if
104 * found, dentry is grabbed and returned to caller.
105 * If no such element exists, NULL is returned.
106 */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)107 static struct dentry *scan_positives(struct dentry *cursor,
108 struct hlist_node **p,
109 loff_t count,
110 struct dentry *last)
111 {
112 struct dentry *dentry = cursor->d_parent, *found = NULL;
113
114 spin_lock(&dentry->d_lock);
115 while (*p) {
116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117 p = &d->d_sib.next;
118 // we must at least skip cursors, to avoid livelocks
119 if (d->d_flags & DCACHE_DENTRY_CURSOR)
120 continue;
121 if (simple_positive(d) && !--count) {
122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123 if (simple_positive(d))
124 found = dget_dlock(d);
125 spin_unlock(&d->d_lock);
126 if (likely(found))
127 break;
128 count = 1;
129 }
130 if (need_resched()) {
131 if (!hlist_unhashed(&cursor->d_sib))
132 __hlist_del(&cursor->d_sib);
133 hlist_add_behind(&cursor->d_sib, &d->d_sib);
134 p = &cursor->d_sib.next;
135 spin_unlock(&dentry->d_lock);
136 cond_resched();
137 spin_lock(&dentry->d_lock);
138 }
139 }
140 spin_unlock(&dentry->d_lock);
141 dput(last);
142 return found;
143 }
144
dcache_dir_lseek(struct file * file,loff_t offset,int whence)145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146 {
147 struct dentry *dentry = file->f_path.dentry;
148 switch (whence) {
149 case 1:
150 offset += file->f_pos;
151 fallthrough;
152 case 0:
153 if (offset >= 0)
154 break;
155 fallthrough;
156 default:
157 return -EINVAL;
158 }
159 if (offset != file->f_pos) {
160 struct dentry *cursor = file->private_data;
161 struct dentry *to = NULL;
162
163 inode_lock_shared(dentry->d_inode);
164
165 if (offset > 2)
166 to = scan_positives(cursor, &dentry->d_children.first,
167 offset - 2, NULL);
168 spin_lock(&dentry->d_lock);
169 hlist_del_init(&cursor->d_sib);
170 if (to)
171 hlist_add_behind(&cursor->d_sib, &to->d_sib);
172 spin_unlock(&dentry->d_lock);
173 dput(to);
174
175 file->f_pos = offset;
176
177 inode_unlock_shared(dentry->d_inode);
178 }
179 return offset;
180 }
181 EXPORT_SYMBOL(dcache_dir_lseek);
182
183 /*
184 * Directory is locked and all positive dentries in it are safe, since
185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
186 * both impossible due to the lock on directory.
187 */
188
dcache_readdir(struct file * file,struct dir_context * ctx)189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191 struct dentry *dentry = file->f_path.dentry;
192 struct dentry *cursor = file->private_data;
193 struct dentry *next = NULL;
194 struct hlist_node **p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = &dentry->d_children.first;
201 else
202 p = &cursor->d_sib.next;
203
204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 d_inode(next)->i_ino,
207 fs_umode_to_dtype(d_inode(next)->i_mode)))
208 break;
209 ctx->pos++;
210 p = &next->d_sib.next;
211 }
212 spin_lock(&dentry->d_lock);
213 hlist_del_init(&cursor->d_sib);
214 if (next)
215 hlist_add_before(&cursor->d_sib, &next->d_sib);
216 spin_unlock(&dentry->d_lock);
217 dput(next);
218
219 return 0;
220 }
221 EXPORT_SYMBOL(dcache_readdir);
222
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224 {
225 return -EISDIR;
226 }
227 EXPORT_SYMBOL(generic_read_dir);
228
229 const struct file_operations simple_dir_operations = {
230 .open = dcache_dir_open,
231 .release = dcache_dir_close,
232 .llseek = dcache_dir_lseek,
233 .read = generic_read_dir,
234 .iterate_shared = dcache_readdir,
235 .fsync = noop_fsync,
236 };
237 EXPORT_SYMBOL(simple_dir_operations);
238
239 const struct inode_operations simple_dir_inode_operations = {
240 .lookup = simple_lookup,
241 };
242 EXPORT_SYMBOL(simple_dir_inode_operations);
243
244 /* simple_offset_add() never assigns these to a dentry */
245 enum {
246 DIR_OFFSET_FIRST = 2, /* Find first real entry */
247 DIR_OFFSET_EOD = S32_MAX,
248 };
249
250 /* simple_offset_add() allocation range */
251 enum {
252 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
253 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
254 };
255
offset_set(struct dentry * dentry,long offset)256 static void offset_set(struct dentry *dentry, long offset)
257 {
258 dentry->d_fsdata = (void *)offset;
259 }
260
dentry2offset(struct dentry * dentry)261 static long dentry2offset(struct dentry *dentry)
262 {
263 return (long)dentry->d_fsdata;
264 }
265
266 static struct lock_class_key simple_offset_lock_class;
267
268 /**
269 * simple_offset_init - initialize an offset_ctx
270 * @octx: directory offset map to be initialized
271 *
272 */
simple_offset_init(struct offset_ctx * octx)273 void simple_offset_init(struct offset_ctx *octx)
274 {
275 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
276 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
277 octx->next_offset = DIR_OFFSET_MIN;
278 }
279
280 /**
281 * simple_offset_add - Add an entry to a directory's offset map
282 * @octx: directory offset ctx to be updated
283 * @dentry: new dentry being added
284 *
285 * Returns zero on success. @octx and the dentry's offset are updated.
286 * Otherwise, a negative errno value is returned.
287 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)288 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
289 {
290 unsigned long offset;
291 int ret;
292
293 if (dentry2offset(dentry) != 0)
294 return -EBUSY;
295
296 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
297 DIR_OFFSET_MAX, &octx->next_offset,
298 GFP_KERNEL);
299 if (unlikely(ret < 0))
300 return ret == -EBUSY ? -ENOSPC : ret;
301
302 offset_set(dentry, offset);
303 return 0;
304 }
305
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)306 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
307 long offset)
308 {
309 int ret;
310
311 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
312 if (ret)
313 return ret;
314 offset_set(dentry, offset);
315 return 0;
316 }
317
318 /**
319 * simple_offset_remove - Remove an entry to a directory's offset map
320 * @octx: directory offset ctx to be updated
321 * @dentry: dentry being removed
322 *
323 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)324 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
325 {
326 long offset;
327
328 offset = dentry2offset(dentry);
329 if (offset == 0)
330 return;
331
332 mtree_erase(&octx->mt, offset);
333 offset_set(dentry, 0);
334 }
335
336 /**
337 * simple_offset_rename - handle directory offsets for rename
338 * @old_dir: parent directory of source entry
339 * @old_dentry: dentry of source entry
340 * @new_dir: parent_directory of destination entry
341 * @new_dentry: dentry of destination
342 *
343 * Caller provides appropriate serialization.
344 *
345 * User space expects the directory offset value of the replaced
346 * (new) directory entry to be unchanged after a rename.
347 *
348 * Returns zero on success, a negative errno value on failure.
349 */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)350 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
351 struct inode *new_dir, struct dentry *new_dentry)
352 {
353 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
354 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
355 long new_offset = dentry2offset(new_dentry);
356
357 simple_offset_remove(old_ctx, old_dentry);
358
359 if (new_offset) {
360 offset_set(new_dentry, 0);
361 return simple_offset_replace(new_ctx, old_dentry, new_offset);
362 }
363 return simple_offset_add(new_ctx, old_dentry);
364 }
365
366 /**
367 * simple_offset_rename_exchange - exchange rename with directory offsets
368 * @old_dir: parent of dentry being moved
369 * @old_dentry: dentry being moved
370 * @new_dir: destination parent
371 * @new_dentry: destination dentry
372 *
373 * This API preserves the directory offset values. Caller provides
374 * appropriate serialization.
375 *
376 * Returns zero on success. Otherwise a negative errno is returned and the
377 * rename is rolled back.
378 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)379 int simple_offset_rename_exchange(struct inode *old_dir,
380 struct dentry *old_dentry,
381 struct inode *new_dir,
382 struct dentry *new_dentry)
383 {
384 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
385 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
386 long old_index = dentry2offset(old_dentry);
387 long new_index = dentry2offset(new_dentry);
388 int ret;
389
390 simple_offset_remove(old_ctx, old_dentry);
391 simple_offset_remove(new_ctx, new_dentry);
392
393 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
394 if (ret)
395 goto out_restore;
396
397 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
398 if (ret) {
399 simple_offset_remove(new_ctx, old_dentry);
400 goto out_restore;
401 }
402
403 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
404 if (ret) {
405 simple_offset_remove(new_ctx, old_dentry);
406 simple_offset_remove(old_ctx, new_dentry);
407 goto out_restore;
408 }
409 return 0;
410
411 out_restore:
412 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
413 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
414 return ret;
415 }
416
417 /**
418 * simple_offset_destroy - Release offset map
419 * @octx: directory offset ctx that is about to be destroyed
420 *
421 * During fs teardown (eg. umount), a directory's offset map might still
422 * contain entries. xa_destroy() cleans out anything that remains.
423 */
simple_offset_destroy(struct offset_ctx * octx)424 void simple_offset_destroy(struct offset_ctx *octx)
425 {
426 mtree_destroy(&octx->mt);
427 }
428
429 /**
430 * offset_dir_llseek - Advance the read position of a directory descriptor
431 * @file: an open directory whose position is to be updated
432 * @offset: a byte offset
433 * @whence: enumerator describing the starting position for this update
434 *
435 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
436 *
437 * Returns the updated read position if successful; otherwise a
438 * negative errno is returned and the read position remains unchanged.
439 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)440 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
441 {
442 switch (whence) {
443 case SEEK_CUR:
444 offset += file->f_pos;
445 fallthrough;
446 case SEEK_SET:
447 if (offset >= 0)
448 break;
449 fallthrough;
450 default:
451 return -EINVAL;
452 }
453
454 return vfs_setpos(file, offset, LONG_MAX);
455 }
456
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)457 static struct dentry *find_positive_dentry(struct dentry *parent,
458 struct dentry *dentry,
459 bool next)
460 {
461 struct dentry *found = NULL;
462
463 spin_lock(&parent->d_lock);
464 if (next)
465 dentry = d_next_sibling(dentry);
466 else if (!dentry)
467 dentry = d_first_child(parent);
468 hlist_for_each_entry_from(dentry, d_sib) {
469 if (!simple_positive(dentry))
470 continue;
471 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
472 if (simple_positive(dentry))
473 found = dget_dlock(dentry);
474 spin_unlock(&dentry->d_lock);
475 if (likely(found))
476 break;
477 }
478 spin_unlock(&parent->d_lock);
479 return found;
480 }
481
482 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)483 offset_dir_lookup(struct dentry *parent, loff_t offset)
484 {
485 struct inode *inode = d_inode(parent);
486 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
487 struct dentry *child, *found = NULL;
488
489 MA_STATE(mas, &octx->mt, offset, offset);
490
491 if (offset == DIR_OFFSET_FIRST)
492 found = find_positive_dentry(parent, NULL, false);
493 else {
494 rcu_read_lock();
495 child = mas_find_rev(&mas, DIR_OFFSET_MIN);
496 found = find_positive_dentry(parent, child, false);
497 rcu_read_unlock();
498 }
499 return found;
500 }
501
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)502 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
503 {
504 struct inode *inode = d_inode(dentry);
505
506 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
507 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
508 }
509
offset_iterate_dir(struct file * file,struct dir_context * ctx)510 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
511 {
512 struct dentry *dir = file->f_path.dentry;
513 struct dentry *dentry;
514
515 dentry = offset_dir_lookup(dir, ctx->pos);
516 if (!dentry)
517 goto out_eod;
518 while (true) {
519 struct dentry *next;
520
521 ctx->pos = dentry2offset(dentry);
522 if (!offset_dir_emit(ctx, dentry))
523 break;
524
525 next = find_positive_dentry(dir, dentry, true);
526 dput(dentry);
527
528 if (!next)
529 goto out_eod;
530 dentry = next;
531 }
532 dput(dentry);
533 return;
534
535 out_eod:
536 ctx->pos = DIR_OFFSET_EOD;
537 }
538
539 /**
540 * offset_readdir - Emit entries starting at offset @ctx->pos
541 * @file: an open directory to iterate over
542 * @ctx: directory iteration context
543 *
544 * Caller must hold @file's i_rwsem to prevent insertion or removal of
545 * entries during this call.
546 *
547 * On entry, @ctx->pos contains an offset that represents the first entry
548 * to be read from the directory.
549 *
550 * The operation continues until there are no more entries to read, or
551 * until the ctx->actor indicates there is no more space in the caller's
552 * output buffer.
553 *
554 * On return, @ctx->pos contains an offset that will read the next entry
555 * in this directory when offset_readdir() is called again with @ctx.
556 * Caller places this value in the d_off field of the last entry in the
557 * user's buffer.
558 *
559 * Return values:
560 * %0 - Complete
561 */
offset_readdir(struct file * file,struct dir_context * ctx)562 static int offset_readdir(struct file *file, struct dir_context *ctx)
563 {
564 struct dentry *dir = file->f_path.dentry;
565
566 lockdep_assert_held(&d_inode(dir)->i_rwsem);
567
568 if (!dir_emit_dots(file, ctx))
569 return 0;
570 if (ctx->pos != DIR_OFFSET_EOD)
571 offset_iterate_dir(file, ctx);
572 return 0;
573 }
574
575 const struct file_operations simple_offset_dir_operations = {
576 .llseek = offset_dir_llseek,
577 .iterate_shared = offset_readdir,
578 .read = generic_read_dir,
579 .fsync = noop_fsync,
580 };
581
find_next_child(struct dentry * parent,struct dentry * prev)582 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
583 {
584 struct dentry *child = NULL, *d;
585
586 spin_lock(&parent->d_lock);
587 d = prev ? d_next_sibling(prev) : d_first_child(parent);
588 hlist_for_each_entry_from(d, d_sib) {
589 if (simple_positive(d)) {
590 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
591 if (simple_positive(d))
592 child = dget_dlock(d);
593 spin_unlock(&d->d_lock);
594 if (likely(child))
595 break;
596 }
597 }
598 spin_unlock(&parent->d_lock);
599 dput(prev);
600 return child;
601 }
602
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))603 void simple_recursive_removal(struct dentry *dentry,
604 void (*callback)(struct dentry *))
605 {
606 struct dentry *this = dget(dentry);
607 while (true) {
608 struct dentry *victim = NULL, *child;
609 struct inode *inode = this->d_inode;
610
611 inode_lock_nested(inode, I_MUTEX_CHILD);
612 if (d_is_dir(this))
613 inode->i_flags |= S_DEAD;
614 while ((child = find_next_child(this, victim)) == NULL) {
615 // kill and ascend
616 // update metadata while it's still locked
617 inode_set_ctime_current(inode);
618 clear_nlink(inode);
619 inode_unlock(inode);
620 victim = this;
621 this = this->d_parent;
622 inode = this->d_inode;
623 inode_lock_nested(inode, I_MUTEX_CHILD);
624 if (simple_positive(victim)) {
625 d_invalidate(victim); // avoid lost mounts
626 if (d_is_dir(victim))
627 fsnotify_rmdir(inode, victim);
628 else
629 fsnotify_unlink(inode, victim);
630 if (callback)
631 callback(victim);
632 dput(victim); // unpin it
633 }
634 if (victim == dentry) {
635 inode_set_mtime_to_ts(inode,
636 inode_set_ctime_current(inode));
637 if (d_is_dir(dentry))
638 drop_nlink(inode);
639 inode_unlock(inode);
640 dput(dentry);
641 return;
642 }
643 }
644 inode_unlock(inode);
645 this = child;
646 }
647 }
648 EXPORT_SYMBOL(simple_recursive_removal);
649
650 static const struct super_operations simple_super_operations = {
651 .statfs = simple_statfs,
652 };
653
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)654 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
655 {
656 struct pseudo_fs_context *ctx = fc->fs_private;
657 struct inode *root;
658
659 s->s_maxbytes = MAX_LFS_FILESIZE;
660 s->s_blocksize = PAGE_SIZE;
661 s->s_blocksize_bits = PAGE_SHIFT;
662 s->s_magic = ctx->magic;
663 s->s_op = ctx->ops ?: &simple_super_operations;
664 s->s_xattr = ctx->xattr;
665 s->s_time_gran = 1;
666 root = new_inode(s);
667 if (!root)
668 return -ENOMEM;
669
670 /*
671 * since this is the first inode, make it number 1. New inodes created
672 * after this must take care not to collide with it (by passing
673 * max_reserved of 1 to iunique).
674 */
675 root->i_ino = 1;
676 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
677 simple_inode_init_ts(root);
678 s->s_root = d_make_root(root);
679 if (!s->s_root)
680 return -ENOMEM;
681 s->s_d_op = ctx->dops;
682 return 0;
683 }
684
pseudo_fs_get_tree(struct fs_context * fc)685 static int pseudo_fs_get_tree(struct fs_context *fc)
686 {
687 return get_tree_nodev(fc, pseudo_fs_fill_super);
688 }
689
pseudo_fs_free(struct fs_context * fc)690 static void pseudo_fs_free(struct fs_context *fc)
691 {
692 kfree(fc->fs_private);
693 }
694
695 static const struct fs_context_operations pseudo_fs_context_ops = {
696 .free = pseudo_fs_free,
697 .get_tree = pseudo_fs_get_tree,
698 };
699
700 /*
701 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
702 * will never be mountable)
703 */
init_pseudo(struct fs_context * fc,unsigned long magic)704 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
705 unsigned long magic)
706 {
707 struct pseudo_fs_context *ctx;
708
709 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
710 if (likely(ctx)) {
711 ctx->magic = magic;
712 fc->fs_private = ctx;
713 fc->ops = &pseudo_fs_context_ops;
714 fc->sb_flags |= SB_NOUSER;
715 fc->global = true;
716 }
717 return ctx;
718 }
719 EXPORT_SYMBOL(init_pseudo);
720
simple_open(struct inode * inode,struct file * file)721 int simple_open(struct inode *inode, struct file *file)
722 {
723 if (inode->i_private)
724 file->private_data = inode->i_private;
725 return 0;
726 }
727 EXPORT_SYMBOL(simple_open);
728
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)729 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
730 {
731 struct inode *inode = d_inode(old_dentry);
732
733 inode_set_mtime_to_ts(dir,
734 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
735 inc_nlink(inode);
736 ihold(inode);
737 dget(dentry);
738 d_instantiate(dentry, inode);
739 return 0;
740 }
741 EXPORT_SYMBOL(simple_link);
742
simple_empty(struct dentry * dentry)743 int simple_empty(struct dentry *dentry)
744 {
745 struct dentry *child;
746 int ret = 0;
747
748 spin_lock(&dentry->d_lock);
749 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
750 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
751 if (simple_positive(child)) {
752 spin_unlock(&child->d_lock);
753 goto out;
754 }
755 spin_unlock(&child->d_lock);
756 }
757 ret = 1;
758 out:
759 spin_unlock(&dentry->d_lock);
760 return ret;
761 }
762 EXPORT_SYMBOL(simple_empty);
763
simple_unlink(struct inode * dir,struct dentry * dentry)764 int simple_unlink(struct inode *dir, struct dentry *dentry)
765 {
766 struct inode *inode = d_inode(dentry);
767
768 inode_set_mtime_to_ts(dir,
769 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
770 drop_nlink(inode);
771 dput(dentry);
772 return 0;
773 }
774 EXPORT_SYMBOL(simple_unlink);
775
simple_rmdir(struct inode * dir,struct dentry * dentry)776 int simple_rmdir(struct inode *dir, struct dentry *dentry)
777 {
778 if (!simple_empty(dentry))
779 return -ENOTEMPTY;
780
781 drop_nlink(d_inode(dentry));
782 simple_unlink(dir, dentry);
783 drop_nlink(dir);
784 return 0;
785 }
786 EXPORT_SYMBOL(simple_rmdir);
787
788 /**
789 * simple_rename_timestamp - update the various inode timestamps for rename
790 * @old_dir: old parent directory
791 * @old_dentry: dentry that is being renamed
792 * @new_dir: new parent directory
793 * @new_dentry: target for rename
794 *
795 * POSIX mandates that the old and new parent directories have their ctime and
796 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
797 * their ctime updated.
798 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)799 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
800 struct inode *new_dir, struct dentry *new_dentry)
801 {
802 struct inode *newino = d_inode(new_dentry);
803
804 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
805 if (new_dir != old_dir)
806 inode_set_mtime_to_ts(new_dir,
807 inode_set_ctime_current(new_dir));
808 inode_set_ctime_current(d_inode(old_dentry));
809 if (newino)
810 inode_set_ctime_current(newino);
811 }
812 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
813
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)814 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
815 struct inode *new_dir, struct dentry *new_dentry)
816 {
817 bool old_is_dir = d_is_dir(old_dentry);
818 bool new_is_dir = d_is_dir(new_dentry);
819
820 if (old_dir != new_dir && old_is_dir != new_is_dir) {
821 if (old_is_dir) {
822 drop_nlink(old_dir);
823 inc_nlink(new_dir);
824 } else {
825 drop_nlink(new_dir);
826 inc_nlink(old_dir);
827 }
828 }
829 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
830 return 0;
831 }
832 EXPORT_SYMBOL_GPL(simple_rename_exchange);
833
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)834 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
835 struct dentry *old_dentry, struct inode *new_dir,
836 struct dentry *new_dentry, unsigned int flags)
837 {
838 int they_are_dirs = d_is_dir(old_dentry);
839
840 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
841 return -EINVAL;
842
843 if (flags & RENAME_EXCHANGE)
844 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
845
846 if (!simple_empty(new_dentry))
847 return -ENOTEMPTY;
848
849 if (d_really_is_positive(new_dentry)) {
850 simple_unlink(new_dir, new_dentry);
851 if (they_are_dirs) {
852 drop_nlink(d_inode(new_dentry));
853 drop_nlink(old_dir);
854 }
855 } else if (they_are_dirs) {
856 drop_nlink(old_dir);
857 inc_nlink(new_dir);
858 }
859
860 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
861 return 0;
862 }
863 EXPORT_SYMBOL(simple_rename);
864
865 /**
866 * simple_setattr - setattr for simple filesystem
867 * @idmap: idmap of the target mount
868 * @dentry: dentry
869 * @iattr: iattr structure
870 *
871 * Returns 0 on success, -error on failure.
872 *
873 * simple_setattr is a simple ->setattr implementation without a proper
874 * implementation of size changes.
875 *
876 * It can either be used for in-memory filesystems or special files
877 * on simple regular filesystems. Anything that needs to change on-disk
878 * or wire state on size changes needs its own setattr method.
879 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)880 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
881 struct iattr *iattr)
882 {
883 struct inode *inode = d_inode(dentry);
884 int error;
885
886 error = setattr_prepare(idmap, dentry, iattr);
887 if (error)
888 return error;
889
890 if (iattr->ia_valid & ATTR_SIZE)
891 truncate_setsize(inode, iattr->ia_size);
892 setattr_copy(idmap, inode, iattr);
893 mark_inode_dirty(inode);
894 return 0;
895 }
896 EXPORT_SYMBOL(simple_setattr);
897
simple_read_folio(struct file * file,struct folio * folio)898 static int simple_read_folio(struct file *file, struct folio *folio)
899 {
900 folio_zero_range(folio, 0, folio_size(folio));
901 flush_dcache_folio(folio);
902 folio_mark_uptodate(folio);
903 folio_unlock(folio);
904 return 0;
905 }
906
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)907 int simple_write_begin(struct file *file, struct address_space *mapping,
908 loff_t pos, unsigned len,
909 struct folio **foliop, void **fsdata)
910 {
911 struct folio *folio;
912
913 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
914 mapping_gfp_mask(mapping));
915 if (IS_ERR(folio))
916 return PTR_ERR(folio);
917
918 *foliop = folio;
919
920 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
921 size_t from = offset_in_folio(folio, pos);
922
923 folio_zero_segments(folio, 0, from,
924 from + len, folio_size(folio));
925 }
926 return 0;
927 }
928 EXPORT_SYMBOL(simple_write_begin);
929
930 /**
931 * simple_write_end - .write_end helper for non-block-device FSes
932 * @file: See .write_end of address_space_operations
933 * @mapping: "
934 * @pos: "
935 * @len: "
936 * @copied: "
937 * @folio: "
938 * @fsdata: "
939 *
940 * simple_write_end does the minimum needed for updating a folio after
941 * writing is done. It has the same API signature as the .write_end of
942 * address_space_operations vector. So it can just be set onto .write_end for
943 * FSes that don't need any other processing. i_mutex is assumed to be held.
944 * Block based filesystems should use generic_write_end().
945 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
946 * is not called, so a filesystem that actually does store data in .write_inode
947 * should extend on what's done here with a call to mark_inode_dirty() in the
948 * case that i_size has changed.
949 *
950 * Use *ONLY* with simple_read_folio()
951 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)952 static int simple_write_end(struct file *file, struct address_space *mapping,
953 loff_t pos, unsigned len, unsigned copied,
954 struct folio *folio, void *fsdata)
955 {
956 struct inode *inode = folio->mapping->host;
957 loff_t last_pos = pos + copied;
958
959 /* zero the stale part of the folio if we did a short copy */
960 if (!folio_test_uptodate(folio)) {
961 if (copied < len) {
962 size_t from = offset_in_folio(folio, pos);
963
964 folio_zero_range(folio, from + copied, len - copied);
965 }
966 folio_mark_uptodate(folio);
967 }
968 /*
969 * No need to use i_size_read() here, the i_size
970 * cannot change under us because we hold the i_mutex.
971 */
972 if (last_pos > inode->i_size)
973 i_size_write(inode, last_pos);
974
975 folio_mark_dirty(folio);
976 folio_unlock(folio);
977 folio_put(folio);
978
979 return copied;
980 }
981
982 /*
983 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
984 */
985 const struct address_space_operations ram_aops = {
986 .read_folio = simple_read_folio,
987 .write_begin = simple_write_begin,
988 .write_end = simple_write_end,
989 .dirty_folio = noop_dirty_folio,
990 };
991 EXPORT_SYMBOL(ram_aops);
992
993 /*
994 * the inodes created here are not hashed. If you use iunique to generate
995 * unique inode values later for this filesystem, then you must take care
996 * to pass it an appropriate max_reserved value to avoid collisions.
997 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)998 int simple_fill_super(struct super_block *s, unsigned long magic,
999 const struct tree_descr *files)
1000 {
1001 struct inode *inode;
1002 struct dentry *dentry;
1003 int i;
1004
1005 s->s_blocksize = PAGE_SIZE;
1006 s->s_blocksize_bits = PAGE_SHIFT;
1007 s->s_magic = magic;
1008 s->s_op = &simple_super_operations;
1009 s->s_time_gran = 1;
1010
1011 inode = new_inode(s);
1012 if (!inode)
1013 return -ENOMEM;
1014 /*
1015 * because the root inode is 1, the files array must not contain an
1016 * entry at index 1
1017 */
1018 inode->i_ino = 1;
1019 inode->i_mode = S_IFDIR | 0755;
1020 simple_inode_init_ts(inode);
1021 inode->i_op = &simple_dir_inode_operations;
1022 inode->i_fop = &simple_dir_operations;
1023 set_nlink(inode, 2);
1024 s->s_root = d_make_root(inode);
1025 if (!s->s_root)
1026 return -ENOMEM;
1027 for (i = 0; !files->name || files->name[0]; i++, files++) {
1028 if (!files->name)
1029 continue;
1030
1031 /* warn if it tries to conflict with the root inode */
1032 if (unlikely(i == 1))
1033 printk(KERN_WARNING "%s: %s passed in a files array"
1034 "with an index of 1!\n", __func__,
1035 s->s_type->name);
1036
1037 dentry = d_alloc_name(s->s_root, files->name);
1038 if (!dentry)
1039 return -ENOMEM;
1040 inode = new_inode(s);
1041 if (!inode) {
1042 dput(dentry);
1043 return -ENOMEM;
1044 }
1045 inode->i_mode = S_IFREG | files->mode;
1046 simple_inode_init_ts(inode);
1047 inode->i_fop = files->ops;
1048 inode->i_ino = i;
1049 d_add(dentry, inode);
1050 }
1051 return 0;
1052 }
1053 EXPORT_SYMBOL(simple_fill_super);
1054
1055 static DEFINE_SPINLOCK(pin_fs_lock);
1056
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1057 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1058 {
1059 struct vfsmount *mnt = NULL;
1060 spin_lock(&pin_fs_lock);
1061 if (unlikely(!*mount)) {
1062 spin_unlock(&pin_fs_lock);
1063 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1064 if (IS_ERR(mnt))
1065 return PTR_ERR(mnt);
1066 spin_lock(&pin_fs_lock);
1067 if (!*mount)
1068 *mount = mnt;
1069 }
1070 mntget(*mount);
1071 ++*count;
1072 spin_unlock(&pin_fs_lock);
1073 mntput(mnt);
1074 return 0;
1075 }
1076 EXPORT_SYMBOL(simple_pin_fs);
1077
simple_release_fs(struct vfsmount ** mount,int * count)1078 void simple_release_fs(struct vfsmount **mount, int *count)
1079 {
1080 struct vfsmount *mnt;
1081 spin_lock(&pin_fs_lock);
1082 mnt = *mount;
1083 if (!--*count)
1084 *mount = NULL;
1085 spin_unlock(&pin_fs_lock);
1086 mntput(mnt);
1087 }
1088 EXPORT_SYMBOL(simple_release_fs);
1089
1090 /**
1091 * simple_read_from_buffer - copy data from the buffer to user space
1092 * @to: the user space buffer to read to
1093 * @count: the maximum number of bytes to read
1094 * @ppos: the current position in the buffer
1095 * @from: the buffer to read from
1096 * @available: the size of the buffer
1097 *
1098 * The simple_read_from_buffer() function reads up to @count bytes from the
1099 * buffer @from at offset @ppos into the user space address starting at @to.
1100 *
1101 * On success, the number of bytes read is returned and the offset @ppos is
1102 * advanced by this number, or negative value is returned on error.
1103 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1104 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1105 const void *from, size_t available)
1106 {
1107 loff_t pos = *ppos;
1108 size_t ret;
1109
1110 if (pos < 0)
1111 return -EINVAL;
1112 if (pos >= available || !count)
1113 return 0;
1114 if (count > available - pos)
1115 count = available - pos;
1116 ret = copy_to_user(to, from + pos, count);
1117 if (ret == count)
1118 return -EFAULT;
1119 count -= ret;
1120 *ppos = pos + count;
1121 return count;
1122 }
1123 EXPORT_SYMBOL(simple_read_from_buffer);
1124
1125 /**
1126 * simple_write_to_buffer - copy data from user space to the buffer
1127 * @to: the buffer to write to
1128 * @available: the size of the buffer
1129 * @ppos: the current position in the buffer
1130 * @from: the user space buffer to read from
1131 * @count: the maximum number of bytes to read
1132 *
1133 * The simple_write_to_buffer() function reads up to @count bytes from the user
1134 * space address starting at @from into the buffer @to at offset @ppos.
1135 *
1136 * On success, the number of bytes written is returned and the offset @ppos is
1137 * advanced by this number, or negative value is returned on error.
1138 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1139 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1140 const void __user *from, size_t count)
1141 {
1142 loff_t pos = *ppos;
1143 size_t res;
1144
1145 if (pos < 0)
1146 return -EINVAL;
1147 if (pos >= available || !count)
1148 return 0;
1149 if (count > available - pos)
1150 count = available - pos;
1151 res = copy_from_user(to + pos, from, count);
1152 if (res == count)
1153 return -EFAULT;
1154 count -= res;
1155 *ppos = pos + count;
1156 return count;
1157 }
1158 EXPORT_SYMBOL(simple_write_to_buffer);
1159
1160 /**
1161 * memory_read_from_buffer - copy data from the buffer
1162 * @to: the kernel space buffer to read to
1163 * @count: the maximum number of bytes to read
1164 * @ppos: the current position in the buffer
1165 * @from: the buffer to read from
1166 * @available: the size of the buffer
1167 *
1168 * The memory_read_from_buffer() function reads up to @count bytes from the
1169 * buffer @from at offset @ppos into the kernel space address starting at @to.
1170 *
1171 * On success, the number of bytes read is returned and the offset @ppos is
1172 * advanced by this number, or negative value is returned on error.
1173 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1174 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1175 const void *from, size_t available)
1176 {
1177 loff_t pos = *ppos;
1178
1179 if (pos < 0)
1180 return -EINVAL;
1181 if (pos >= available)
1182 return 0;
1183 if (count > available - pos)
1184 count = available - pos;
1185 memcpy(to, from + pos, count);
1186 *ppos = pos + count;
1187
1188 return count;
1189 }
1190 EXPORT_SYMBOL(memory_read_from_buffer);
1191
1192 /*
1193 * Transaction based IO.
1194 * The file expects a single write which triggers the transaction, and then
1195 * possibly a read which collects the result - which is stored in a
1196 * file-local buffer.
1197 */
1198
simple_transaction_set(struct file * file,size_t n)1199 void simple_transaction_set(struct file *file, size_t n)
1200 {
1201 struct simple_transaction_argresp *ar = file->private_data;
1202
1203 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1204
1205 /*
1206 * The barrier ensures that ar->size will really remain zero until
1207 * ar->data is ready for reading.
1208 */
1209 smp_mb();
1210 ar->size = n;
1211 }
1212 EXPORT_SYMBOL(simple_transaction_set);
1213
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1214 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1215 {
1216 struct simple_transaction_argresp *ar;
1217 static DEFINE_SPINLOCK(simple_transaction_lock);
1218
1219 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1220 return ERR_PTR(-EFBIG);
1221
1222 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1223 if (!ar)
1224 return ERR_PTR(-ENOMEM);
1225
1226 spin_lock(&simple_transaction_lock);
1227
1228 /* only one write allowed per open */
1229 if (file->private_data) {
1230 spin_unlock(&simple_transaction_lock);
1231 free_page((unsigned long)ar);
1232 return ERR_PTR(-EBUSY);
1233 }
1234
1235 file->private_data = ar;
1236
1237 spin_unlock(&simple_transaction_lock);
1238
1239 if (copy_from_user(ar->data, buf, size))
1240 return ERR_PTR(-EFAULT);
1241
1242 return ar->data;
1243 }
1244 EXPORT_SYMBOL(simple_transaction_get);
1245
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1246 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1247 {
1248 struct simple_transaction_argresp *ar = file->private_data;
1249
1250 if (!ar)
1251 return 0;
1252 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1253 }
1254 EXPORT_SYMBOL(simple_transaction_read);
1255
simple_transaction_release(struct inode * inode,struct file * file)1256 int simple_transaction_release(struct inode *inode, struct file *file)
1257 {
1258 free_page((unsigned long)file->private_data);
1259 return 0;
1260 }
1261 EXPORT_SYMBOL(simple_transaction_release);
1262
1263 /* Simple attribute files */
1264
1265 struct simple_attr {
1266 int (*get)(void *, u64 *);
1267 int (*set)(void *, u64);
1268 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1269 char set_buf[24];
1270 void *data;
1271 const char *fmt; /* format for read operation */
1272 struct mutex mutex; /* protects access to these buffers */
1273 };
1274
1275 /* simple_attr_open is called by an actual attribute open file operation
1276 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1277 int simple_attr_open(struct inode *inode, struct file *file,
1278 int (*get)(void *, u64 *), int (*set)(void *, u64),
1279 const char *fmt)
1280 {
1281 struct simple_attr *attr;
1282
1283 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1284 if (!attr)
1285 return -ENOMEM;
1286
1287 attr->get = get;
1288 attr->set = set;
1289 attr->data = inode->i_private;
1290 attr->fmt = fmt;
1291 mutex_init(&attr->mutex);
1292
1293 file->private_data = attr;
1294
1295 return nonseekable_open(inode, file);
1296 }
1297 EXPORT_SYMBOL_GPL(simple_attr_open);
1298
simple_attr_release(struct inode * inode,struct file * file)1299 int simple_attr_release(struct inode *inode, struct file *file)
1300 {
1301 kfree(file->private_data);
1302 return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1305
1306 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1307 ssize_t simple_attr_read(struct file *file, char __user *buf,
1308 size_t len, loff_t *ppos)
1309 {
1310 struct simple_attr *attr;
1311 size_t size;
1312 ssize_t ret;
1313
1314 attr = file->private_data;
1315
1316 if (!attr->get)
1317 return -EACCES;
1318
1319 ret = mutex_lock_interruptible(&attr->mutex);
1320 if (ret)
1321 return ret;
1322
1323 if (*ppos && attr->get_buf[0]) {
1324 /* continued read */
1325 size = strlen(attr->get_buf);
1326 } else {
1327 /* first read */
1328 u64 val;
1329 ret = attr->get(attr->data, &val);
1330 if (ret)
1331 goto out;
1332
1333 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1334 attr->fmt, (unsigned long long)val);
1335 }
1336
1337 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1338 out:
1339 mutex_unlock(&attr->mutex);
1340 return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(simple_attr_read);
1343
1344 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1345 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1346 size_t len, loff_t *ppos, bool is_signed)
1347 {
1348 struct simple_attr *attr;
1349 unsigned long long val;
1350 size_t size;
1351 ssize_t ret;
1352
1353 attr = file->private_data;
1354 if (!attr->set)
1355 return -EACCES;
1356
1357 ret = mutex_lock_interruptible(&attr->mutex);
1358 if (ret)
1359 return ret;
1360
1361 ret = -EFAULT;
1362 size = min(sizeof(attr->set_buf) - 1, len);
1363 if (copy_from_user(attr->set_buf, buf, size))
1364 goto out;
1365
1366 attr->set_buf[size] = '\0';
1367 if (is_signed)
1368 ret = kstrtoll(attr->set_buf, 0, &val);
1369 else
1370 ret = kstrtoull(attr->set_buf, 0, &val);
1371 if (ret)
1372 goto out;
1373 ret = attr->set(attr->data, val);
1374 if (ret == 0)
1375 ret = len; /* on success, claim we got the whole input */
1376 out:
1377 mutex_unlock(&attr->mutex);
1378 return ret;
1379 }
1380
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1381 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1382 size_t len, loff_t *ppos)
1383 {
1384 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1385 }
1386 EXPORT_SYMBOL_GPL(simple_attr_write);
1387
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1388 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1389 size_t len, loff_t *ppos)
1390 {
1391 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1392 }
1393 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1394
1395 /**
1396 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1397 * @inode: the object to encode
1398 * @fh: where to store the file handle fragment
1399 * @max_len: maximum length to store there (in 4 byte units)
1400 * @parent: parent directory inode, if wanted
1401 *
1402 * This generic encode_fh function assumes that the 32 inode number
1403 * is suitable for locating an inode, and that the generation number
1404 * can be used to check that it is still valid. It places them in the
1405 * filehandle fragment where export_decode_fh expects to find them.
1406 */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1407 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1408 struct inode *parent)
1409 {
1410 struct fid *fid = (void *)fh;
1411 int len = *max_len;
1412 int type = FILEID_INO32_GEN;
1413
1414 if (parent && (len < 4)) {
1415 *max_len = 4;
1416 return FILEID_INVALID;
1417 } else if (len < 2) {
1418 *max_len = 2;
1419 return FILEID_INVALID;
1420 }
1421
1422 len = 2;
1423 fid->i32.ino = inode->i_ino;
1424 fid->i32.gen = inode->i_generation;
1425 if (parent) {
1426 fid->i32.parent_ino = parent->i_ino;
1427 fid->i32.parent_gen = parent->i_generation;
1428 len = 4;
1429 type = FILEID_INO32_GEN_PARENT;
1430 }
1431 *max_len = len;
1432 return type;
1433 }
1434 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1435
1436 /**
1437 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1438 * @sb: filesystem to do the file handle conversion on
1439 * @fid: file handle to convert
1440 * @fh_len: length of the file handle in bytes
1441 * @fh_type: type of file handle
1442 * @get_inode: filesystem callback to retrieve inode
1443 *
1444 * This function decodes @fid as long as it has one of the well-known
1445 * Linux filehandle types and calls @get_inode on it to retrieve the
1446 * inode for the object specified in the file handle.
1447 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1448 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1449 int fh_len, int fh_type, struct inode *(*get_inode)
1450 (struct super_block *sb, u64 ino, u32 gen))
1451 {
1452 struct inode *inode = NULL;
1453
1454 if (fh_len < 2)
1455 return NULL;
1456
1457 switch (fh_type) {
1458 case FILEID_INO32_GEN:
1459 case FILEID_INO32_GEN_PARENT:
1460 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1461 break;
1462 }
1463
1464 return d_obtain_alias(inode);
1465 }
1466 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1467
1468 /**
1469 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1470 * @sb: filesystem to do the file handle conversion on
1471 * @fid: file handle to convert
1472 * @fh_len: length of the file handle in bytes
1473 * @fh_type: type of file handle
1474 * @get_inode: filesystem callback to retrieve inode
1475 *
1476 * This function decodes @fid as long as it has one of the well-known
1477 * Linux filehandle types and calls @get_inode on it to retrieve the
1478 * inode for the _parent_ object specified in the file handle if it
1479 * is specified in the file handle, or NULL otherwise.
1480 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1481 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1482 int fh_len, int fh_type, struct inode *(*get_inode)
1483 (struct super_block *sb, u64 ino, u32 gen))
1484 {
1485 struct inode *inode = NULL;
1486
1487 if (fh_len <= 2)
1488 return NULL;
1489
1490 switch (fh_type) {
1491 case FILEID_INO32_GEN_PARENT:
1492 inode = get_inode(sb, fid->i32.parent_ino,
1493 (fh_len > 3 ? fid->i32.parent_gen : 0));
1494 break;
1495 }
1496
1497 return d_obtain_alias(inode);
1498 }
1499 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1500
1501 /**
1502 * __generic_file_fsync - generic fsync implementation for simple filesystems
1503 *
1504 * @file: file to synchronize
1505 * @start: start offset in bytes
1506 * @end: end offset in bytes (inclusive)
1507 * @datasync: only synchronize essential metadata if true
1508 *
1509 * This is a generic implementation of the fsync method for simple
1510 * filesystems which track all non-inode metadata in the buffers list
1511 * hanging off the address_space structure.
1512 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1513 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1514 int datasync)
1515 {
1516 struct inode *inode = file->f_mapping->host;
1517 int err;
1518 int ret;
1519
1520 err = file_write_and_wait_range(file, start, end);
1521 if (err)
1522 return err;
1523
1524 inode_lock(inode);
1525 ret = sync_mapping_buffers(inode->i_mapping);
1526 if (!(inode->i_state & I_DIRTY_ALL))
1527 goto out;
1528 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1529 goto out;
1530
1531 err = sync_inode_metadata(inode, 1);
1532 if (ret == 0)
1533 ret = err;
1534
1535 out:
1536 inode_unlock(inode);
1537 /* check and advance again to catch errors after syncing out buffers */
1538 err = file_check_and_advance_wb_err(file);
1539 if (ret == 0)
1540 ret = err;
1541 return ret;
1542 }
1543 EXPORT_SYMBOL(__generic_file_fsync);
1544
1545 /**
1546 * generic_file_fsync - generic fsync implementation for simple filesystems
1547 * with flush
1548 * @file: file to synchronize
1549 * @start: start offset in bytes
1550 * @end: end offset in bytes (inclusive)
1551 * @datasync: only synchronize essential metadata if true
1552 *
1553 */
1554
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1555 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1556 int datasync)
1557 {
1558 struct inode *inode = file->f_mapping->host;
1559 int err;
1560
1561 err = __generic_file_fsync(file, start, end, datasync);
1562 if (err)
1563 return err;
1564 return blkdev_issue_flush(inode->i_sb->s_bdev);
1565 }
1566 EXPORT_SYMBOL(generic_file_fsync);
1567
1568 /**
1569 * generic_check_addressable - Check addressability of file system
1570 * @blocksize_bits: log of file system block size
1571 * @num_blocks: number of blocks in file system
1572 *
1573 * Determine whether a file system with @num_blocks blocks (and a
1574 * block size of 2**@blocksize_bits) is addressable by the sector_t
1575 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1576 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1577 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1578 {
1579 u64 last_fs_block = num_blocks - 1;
1580 u64 last_fs_page =
1581 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1582
1583 if (unlikely(num_blocks == 0))
1584 return 0;
1585
1586 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1587 return -EINVAL;
1588
1589 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1590 (last_fs_page > (pgoff_t)(~0ULL))) {
1591 return -EFBIG;
1592 }
1593 return 0;
1594 }
1595 EXPORT_SYMBOL(generic_check_addressable);
1596
1597 /*
1598 * No-op implementation of ->fsync for in-memory filesystems.
1599 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1600 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1601 {
1602 return 0;
1603 }
1604 EXPORT_SYMBOL(noop_fsync);
1605
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1606 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1607 {
1608 /*
1609 * iomap based filesystems support direct I/O without need for
1610 * this callback. However, it still needs to be set in
1611 * inode->a_ops so that open/fcntl know that direct I/O is
1612 * generally supported.
1613 */
1614 return -EINVAL;
1615 }
1616 EXPORT_SYMBOL_GPL(noop_direct_IO);
1617
1618 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1619 void kfree_link(void *p)
1620 {
1621 kfree(p);
1622 }
1623 EXPORT_SYMBOL(kfree_link);
1624
alloc_anon_inode(struct super_block * s)1625 struct inode *alloc_anon_inode(struct super_block *s)
1626 {
1627 static const struct address_space_operations anon_aops = {
1628 .dirty_folio = noop_dirty_folio,
1629 };
1630 struct inode *inode = new_inode_pseudo(s);
1631
1632 if (!inode)
1633 return ERR_PTR(-ENOMEM);
1634
1635 inode->i_ino = get_next_ino();
1636 inode->i_mapping->a_ops = &anon_aops;
1637
1638 /*
1639 * Mark the inode dirty from the very beginning,
1640 * that way it will never be moved to the dirty
1641 * list because mark_inode_dirty() will think
1642 * that it already _is_ on the dirty list.
1643 */
1644 inode->i_state = I_DIRTY;
1645 inode->i_mode = S_IRUSR | S_IWUSR;
1646 inode->i_uid = current_fsuid();
1647 inode->i_gid = current_fsgid();
1648 inode->i_flags |= S_PRIVATE;
1649 simple_inode_init_ts(inode);
1650 return inode;
1651 }
1652 EXPORT_SYMBOL(alloc_anon_inode);
1653
1654 /**
1655 * simple_nosetlease - generic helper for prohibiting leases
1656 * @filp: file pointer
1657 * @arg: type of lease to obtain
1658 * @flp: new lease supplied for insertion
1659 * @priv: private data for lm_setup operation
1660 *
1661 * Generic helper for filesystems that do not wish to allow leases to be set.
1662 * All arguments are ignored and it just returns -EINVAL.
1663 */
1664 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1665 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1666 void **priv)
1667 {
1668 return -EINVAL;
1669 }
1670 EXPORT_SYMBOL(simple_nosetlease);
1671
1672 /**
1673 * simple_get_link - generic helper to get the target of "fast" symlinks
1674 * @dentry: not used here
1675 * @inode: the symlink inode
1676 * @done: not used here
1677 *
1678 * Generic helper for filesystems to use for symlink inodes where a pointer to
1679 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1680 * since as an optimization the path lookup code uses any non-NULL ->i_link
1681 * directly, without calling ->get_link(). But ->get_link() still must be set,
1682 * to mark the inode_operations as being for a symlink.
1683 *
1684 * Return: the symlink target
1685 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1686 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1687 struct delayed_call *done)
1688 {
1689 return inode->i_link;
1690 }
1691 EXPORT_SYMBOL(simple_get_link);
1692
1693 const struct inode_operations simple_symlink_inode_operations = {
1694 .get_link = simple_get_link,
1695 };
1696 EXPORT_SYMBOL(simple_symlink_inode_operations);
1697
1698 /*
1699 * Operations for a permanently empty directory.
1700 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1701 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1702 {
1703 return ERR_PTR(-ENOENT);
1704 }
1705
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1706 static int empty_dir_getattr(struct mnt_idmap *idmap,
1707 const struct path *path, struct kstat *stat,
1708 u32 request_mask, unsigned int query_flags)
1709 {
1710 struct inode *inode = d_inode(path->dentry);
1711 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1712 return 0;
1713 }
1714
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1715 static int empty_dir_setattr(struct mnt_idmap *idmap,
1716 struct dentry *dentry, struct iattr *attr)
1717 {
1718 return -EPERM;
1719 }
1720
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1721 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1722 {
1723 return -EOPNOTSUPP;
1724 }
1725
1726 static const struct inode_operations empty_dir_inode_operations = {
1727 .lookup = empty_dir_lookup,
1728 .permission = generic_permission,
1729 .setattr = empty_dir_setattr,
1730 .getattr = empty_dir_getattr,
1731 .listxattr = empty_dir_listxattr,
1732 };
1733
empty_dir_llseek(struct file * file,loff_t offset,int whence)1734 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1735 {
1736 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1737 return generic_file_llseek_size(file, offset, whence, 2, 2);
1738 }
1739
empty_dir_readdir(struct file * file,struct dir_context * ctx)1740 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1741 {
1742 dir_emit_dots(file, ctx);
1743 return 0;
1744 }
1745
1746 static const struct file_operations empty_dir_operations = {
1747 .llseek = empty_dir_llseek,
1748 .read = generic_read_dir,
1749 .iterate_shared = empty_dir_readdir,
1750 .fsync = noop_fsync,
1751 };
1752
1753
make_empty_dir_inode(struct inode * inode)1754 void make_empty_dir_inode(struct inode *inode)
1755 {
1756 set_nlink(inode, 2);
1757 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1758 inode->i_uid = GLOBAL_ROOT_UID;
1759 inode->i_gid = GLOBAL_ROOT_GID;
1760 inode->i_rdev = 0;
1761 inode->i_size = 0;
1762 inode->i_blkbits = PAGE_SHIFT;
1763 inode->i_blocks = 0;
1764
1765 inode->i_op = &empty_dir_inode_operations;
1766 inode->i_opflags &= ~IOP_XATTR;
1767 inode->i_fop = &empty_dir_operations;
1768 }
1769
is_empty_dir_inode(struct inode * inode)1770 bool is_empty_dir_inode(struct inode *inode)
1771 {
1772 return (inode->i_fop == &empty_dir_operations) &&
1773 (inode->i_op == &empty_dir_inode_operations);
1774 }
1775
1776 #if IS_ENABLED(CONFIG_UNICODE)
1777 /**
1778 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1779 * @dentry: dentry whose name we are checking against
1780 * @len: len of name of dentry
1781 * @str: str pointer to name of dentry
1782 * @name: Name to compare against
1783 *
1784 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1785 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1786 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1787 const char *str, const struct qstr *name)
1788 {
1789 const struct dentry *parent;
1790 const struct inode *dir;
1791 char strbuf[DNAME_INLINE_LEN];
1792 struct qstr qstr;
1793
1794 /*
1795 * Attempt a case-sensitive match first. It is cheaper and
1796 * should cover most lookups, including all the sane
1797 * applications that expect a case-sensitive filesystem.
1798 *
1799 * This comparison is safe under RCU because the caller
1800 * guarantees the consistency between str and len. See
1801 * __d_lookup_rcu_op_compare() for details.
1802 */
1803 if (len == name->len && !memcmp(str, name->name, len))
1804 return 0;
1805
1806 parent = READ_ONCE(dentry->d_parent);
1807 dir = READ_ONCE(parent->d_inode);
1808 if (!dir || !IS_CASEFOLDED(dir))
1809 return 1;
1810
1811 /*
1812 * If the dentry name is stored in-line, then it may be concurrently
1813 * modified by a rename. If this happens, the VFS will eventually retry
1814 * the lookup, so it doesn't matter what ->d_compare() returns.
1815 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1816 * string. Therefore, we have to copy the name into a temporary buffer.
1817 */
1818 if (len <= DNAME_INLINE_LEN - 1) {
1819 memcpy(strbuf, str, len);
1820 strbuf[len] = 0;
1821 str = strbuf;
1822 /* prevent compiler from optimizing out the temporary buffer */
1823 barrier();
1824 }
1825 qstr.len = len;
1826 qstr.name = str;
1827
1828 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1829 }
1830
1831 /**
1832 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1833 * @dentry: dentry of the parent directory
1834 * @str: qstr of name whose hash we should fill in
1835 *
1836 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1837 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1838 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1839 {
1840 const struct inode *dir = READ_ONCE(dentry->d_inode);
1841 struct super_block *sb = dentry->d_sb;
1842 const struct unicode_map *um = sb->s_encoding;
1843 int ret;
1844
1845 if (!dir || !IS_CASEFOLDED(dir))
1846 return 0;
1847
1848 ret = utf8_casefold_hash(um, dentry, str);
1849 if (ret < 0 && sb_has_strict_encoding(sb))
1850 return -EINVAL;
1851 return 0;
1852 }
1853
1854 static const struct dentry_operations generic_ci_dentry_ops = {
1855 .d_hash = generic_ci_d_hash,
1856 .d_compare = generic_ci_d_compare,
1857 #ifdef CONFIG_FS_ENCRYPTION
1858 .d_revalidate = fscrypt_d_revalidate,
1859 #endif
1860 };
1861
1862 /**
1863 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1864 * This is a filesystem helper for comparison with directory entries.
1865 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1866 *
1867 * @parent: Inode of the parent of the dirent under comparison
1868 * @name: name under lookup.
1869 * @folded_name: Optional pre-folded name under lookup
1870 * @de_name: Dirent name.
1871 * @de_name_len: dirent name length.
1872 *
1873 * Test whether a case-insensitive directory entry matches the filename
1874 * being searched. If @folded_name is provided, it is used instead of
1875 * recalculating the casefold of @name.
1876 *
1877 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1878 * < 0 on error.
1879 */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1880 int generic_ci_match(const struct inode *parent,
1881 const struct qstr *name,
1882 const struct qstr *folded_name,
1883 const u8 *de_name, u32 de_name_len)
1884 {
1885 const struct super_block *sb = parent->i_sb;
1886 const struct unicode_map *um = sb->s_encoding;
1887 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1888 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1889 int res = 0;
1890
1891 if (IS_ENCRYPTED(parent)) {
1892 const struct fscrypt_str encrypted_name =
1893 FSTR_INIT((u8 *) de_name, de_name_len);
1894
1895 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1896 return -EINVAL;
1897
1898 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1899 if (!decrypted_name.name)
1900 return -ENOMEM;
1901 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1902 &decrypted_name);
1903 if (res < 0) {
1904 kfree(decrypted_name.name);
1905 return res;
1906 }
1907 dirent.name = decrypted_name.name;
1908 dirent.len = decrypted_name.len;
1909 }
1910
1911 /*
1912 * Attempt a case-sensitive match first. It is cheaper and
1913 * should cover most lookups, including all the sane
1914 * applications that expect a case-sensitive filesystem.
1915 */
1916
1917 if (dirent.len == name->len &&
1918 !memcmp(name->name, dirent.name, dirent.len))
1919 goto out;
1920
1921 if (folded_name->name)
1922 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1923 else
1924 res = utf8_strncasecmp(um, name, &dirent);
1925
1926 out:
1927 kfree(decrypted_name.name);
1928 if (res < 0 && sb_has_strict_encoding(sb)) {
1929 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1930 return 0;
1931 }
1932 return !res;
1933 }
1934 EXPORT_SYMBOL(generic_ci_match);
1935 #endif
1936
1937 #ifdef CONFIG_FS_ENCRYPTION
1938 static const struct dentry_operations generic_encrypted_dentry_ops = {
1939 .d_revalidate = fscrypt_d_revalidate,
1940 };
1941 #endif
1942
1943 /**
1944 * generic_set_sb_d_ops - helper for choosing the set of
1945 * filesystem-wide dentry operations for the enabled features
1946 * @sb: superblock to be configured
1947 *
1948 * Filesystems supporting casefolding and/or fscrypt can call this
1949 * helper at mount-time to configure sb->s_d_op to best set of dentry
1950 * operations required for the enabled features. The helper must be
1951 * called after these have been configured, but before the root dentry
1952 * is created.
1953 */
generic_set_sb_d_ops(struct super_block * sb)1954 void generic_set_sb_d_ops(struct super_block *sb)
1955 {
1956 #if IS_ENABLED(CONFIG_UNICODE)
1957 if (sb->s_encoding) {
1958 sb->s_d_op = &generic_ci_dentry_ops;
1959 return;
1960 }
1961 #endif
1962 #ifdef CONFIG_FS_ENCRYPTION
1963 if (sb->s_cop) {
1964 sb->s_d_op = &generic_encrypted_dentry_ops;
1965 return;
1966 }
1967 #endif
1968 }
1969 EXPORT_SYMBOL(generic_set_sb_d_ops);
1970
1971 /**
1972 * inode_maybe_inc_iversion - increments i_version
1973 * @inode: inode with the i_version that should be updated
1974 * @force: increment the counter even if it's not necessary?
1975 *
1976 * Every time the inode is modified, the i_version field must be seen to have
1977 * changed by any observer.
1978 *
1979 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1980 * the value, and clear the queried flag.
1981 *
1982 * In the common case where neither is set, then we can return "false" without
1983 * updating i_version.
1984 *
1985 * If this function returns false, and no other metadata has changed, then we
1986 * can avoid logging the metadata.
1987 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1988 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1989 {
1990 u64 cur, new;
1991
1992 /*
1993 * The i_version field is not strictly ordered with any other inode
1994 * information, but the legacy inode_inc_iversion code used a spinlock
1995 * to serialize increments.
1996 *
1997 * We add a full memory barrier to ensure that any de facto ordering
1998 * with other state is preserved (either implicitly coming from cmpxchg
1999 * or explicitly from smp_mb if we don't know upfront if we will execute
2000 * the former).
2001 *
2002 * These barriers pair with inode_query_iversion().
2003 */
2004 cur = inode_peek_iversion_raw(inode);
2005 if (!force && !(cur & I_VERSION_QUERIED)) {
2006 smp_mb();
2007 cur = inode_peek_iversion_raw(inode);
2008 }
2009
2010 do {
2011 /* If flag is clear then we needn't do anything */
2012 if (!force && !(cur & I_VERSION_QUERIED))
2013 return false;
2014
2015 /* Since lowest bit is flag, add 2 to avoid it */
2016 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2017 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2018 return true;
2019 }
2020 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2021
2022 /**
2023 * inode_query_iversion - read i_version for later use
2024 * @inode: inode from which i_version should be read
2025 *
2026 * Read the inode i_version counter. This should be used by callers that wish
2027 * to store the returned i_version for later comparison. This will guarantee
2028 * that a later query of the i_version will result in a different value if
2029 * anything has changed.
2030 *
2031 * In this implementation, we fetch the current value, set the QUERIED flag and
2032 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2033 * that fails, we try again with the newly fetched value from the cmpxchg.
2034 */
inode_query_iversion(struct inode * inode)2035 u64 inode_query_iversion(struct inode *inode)
2036 {
2037 u64 cur, new;
2038 bool fenced = false;
2039
2040 /*
2041 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2042 * inode_maybe_inc_iversion(), see that routine for more details.
2043 */
2044 cur = inode_peek_iversion_raw(inode);
2045 do {
2046 /* If flag is already set, then no need to swap */
2047 if (cur & I_VERSION_QUERIED) {
2048 if (!fenced)
2049 smp_mb();
2050 break;
2051 }
2052
2053 fenced = true;
2054 new = cur | I_VERSION_QUERIED;
2055 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2056 return cur >> I_VERSION_QUERIED_SHIFT;
2057 }
2058 EXPORT_SYMBOL(inode_query_iversion);
2059
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2060 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2061 ssize_t direct_written, ssize_t buffered_written)
2062 {
2063 struct address_space *mapping = iocb->ki_filp->f_mapping;
2064 loff_t pos = iocb->ki_pos - buffered_written;
2065 loff_t end = iocb->ki_pos - 1;
2066 int err;
2067
2068 /*
2069 * If the buffered write fallback returned an error, we want to return
2070 * the number of bytes which were written by direct I/O, or the error
2071 * code if that was zero.
2072 *
2073 * Note that this differs from normal direct-io semantics, which will
2074 * return -EFOO even if some bytes were written.
2075 */
2076 if (unlikely(buffered_written < 0)) {
2077 if (direct_written)
2078 return direct_written;
2079 return buffered_written;
2080 }
2081
2082 /*
2083 * We need to ensure that the page cache pages are written to disk and
2084 * invalidated to preserve the expected O_DIRECT semantics.
2085 */
2086 err = filemap_write_and_wait_range(mapping, pos, end);
2087 if (err < 0) {
2088 /*
2089 * We don't know how much we wrote, so just return the number of
2090 * bytes which were direct-written
2091 */
2092 iocb->ki_pos -= buffered_written;
2093 if (direct_written)
2094 return direct_written;
2095 return err;
2096 }
2097 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2098 return direct_written + buffered_written;
2099 }
2100 EXPORT_SYMBOL_GPL(direct_write_fallback);
2101
2102 /**
2103 * simple_inode_init_ts - initialize the timestamps for a new inode
2104 * @inode: inode to be initialized
2105 *
2106 * When a new inode is created, most filesystems set the timestamps to the
2107 * current time. Add a helper to do this.
2108 */
simple_inode_init_ts(struct inode * inode)2109 struct timespec64 simple_inode_init_ts(struct inode *inode)
2110 {
2111 struct timespec64 ts = inode_set_ctime_current(inode);
2112
2113 inode_set_atime_to_ts(inode, ts);
2114 inode_set_mtime_to_ts(inode, ts);
2115 return ts;
2116 }
2117 EXPORT_SYMBOL(simple_inode_init_ts);
2118
get_stashed_dentry(struct dentry ** stashed)2119 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2120 {
2121 struct dentry *dentry;
2122
2123 guard(rcu)();
2124 dentry = rcu_dereference(*stashed);
2125 if (!dentry)
2126 return NULL;
2127 if (!lockref_get_not_dead(&dentry->d_lockref))
2128 return NULL;
2129 return dentry;
2130 }
2131
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2132 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2133 struct super_block *sb,
2134 void *data)
2135 {
2136 struct dentry *dentry;
2137 struct inode *inode;
2138 const struct stashed_operations *sops = sb->s_fs_info;
2139 int ret;
2140
2141 inode = new_inode_pseudo(sb);
2142 if (!inode) {
2143 sops->put_data(data);
2144 return ERR_PTR(-ENOMEM);
2145 }
2146
2147 inode->i_flags |= S_IMMUTABLE;
2148 inode->i_mode = S_IFREG;
2149 simple_inode_init_ts(inode);
2150
2151 ret = sops->init_inode(inode, data);
2152 if (ret < 0) {
2153 iput(inode);
2154 return ERR_PTR(ret);
2155 }
2156
2157 /* Notice when this is changed. */
2158 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2159 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2160
2161 dentry = d_alloc_anon(sb);
2162 if (!dentry) {
2163 iput(inode);
2164 return ERR_PTR(-ENOMEM);
2165 }
2166
2167 /* Store address of location where dentry's supposed to be stashed. */
2168 dentry->d_fsdata = stashed;
2169
2170 /* @data is now owned by the fs */
2171 d_instantiate(dentry, inode);
2172 return dentry;
2173 }
2174
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2175 static struct dentry *stash_dentry(struct dentry **stashed,
2176 struct dentry *dentry)
2177 {
2178 guard(rcu)();
2179 for (;;) {
2180 struct dentry *old;
2181
2182 /* Assume any old dentry was cleared out. */
2183 old = cmpxchg(stashed, NULL, dentry);
2184 if (likely(!old))
2185 return dentry;
2186
2187 /* Check if somebody else installed a reusable dentry. */
2188 if (lockref_get_not_dead(&old->d_lockref))
2189 return old;
2190
2191 /* There's an old dead dentry there, try to take it over. */
2192 if (likely(try_cmpxchg(stashed, &old, dentry)))
2193 return dentry;
2194 }
2195 }
2196
2197 /**
2198 * path_from_stashed - create path from stashed or new dentry
2199 * @stashed: where to retrieve or stash dentry
2200 * @mnt: mnt of the filesystems to use
2201 * @data: data to store in inode->i_private
2202 * @path: path to create
2203 *
2204 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2205 * is still valid then it will be reused. If the dentry isn't able the function
2206 * will allocate a new dentry and inode. It will then check again whether it
2207 * can reuse an existing dentry in case one has been added in the meantime or
2208 * update @stashed with the newly added dentry.
2209 *
2210 * Special-purpose helper for nsfs and pidfs.
2211 *
2212 * Return: On success zero and on failure a negative error is returned.
2213 */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2214 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2215 struct path *path)
2216 {
2217 struct dentry *dentry;
2218 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2219
2220 /* See if dentry can be reused. */
2221 path->dentry = get_stashed_dentry(stashed);
2222 if (path->dentry) {
2223 sops->put_data(data);
2224 goto out_path;
2225 }
2226
2227 /* Allocate a new dentry. */
2228 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2229 if (IS_ERR(dentry))
2230 return PTR_ERR(dentry);
2231
2232 /* Added a new dentry. @data is now owned by the filesystem. */
2233 path->dentry = stash_dentry(stashed, dentry);
2234 if (path->dentry != dentry)
2235 dput(dentry);
2236
2237 out_path:
2238 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2239 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2240 path->mnt = mntget(mnt);
2241 return 0;
2242 }
2243
stashed_dentry_prune(struct dentry * dentry)2244 void stashed_dentry_prune(struct dentry *dentry)
2245 {
2246 struct dentry **stashed = dentry->d_fsdata;
2247 struct inode *inode = d_inode(dentry);
2248
2249 if (WARN_ON_ONCE(!stashed))
2250 return;
2251
2252 if (!inode)
2253 return;
2254
2255 /*
2256 * Only replace our own @dentry as someone else might've
2257 * already cleared out @dentry and stashed their own
2258 * dentry in there.
2259 */
2260 cmpxchg(stashed, dentry, NULL);
2261 }
2262