1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level buffered write support.
3 *
4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15
__netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)16 static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
17 {
18 if (netfs_group)
19 folio_attach_private(folio, netfs_get_group(netfs_group));
20 }
21
netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)22 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
23 {
24 void *priv = folio_get_private(folio);
25
26 if (unlikely(priv != netfs_group)) {
27 if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
28 folio_attach_private(folio, netfs_get_group(netfs_group));
29 else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
30 folio_detach_private(folio);
31 }
32 }
33
34 /*
35 * Grab a folio for writing and lock it. Attempt to allocate as large a folio
36 * as possible to hold as much of the remaining length as possible in one go.
37 */
netfs_grab_folio_for_write(struct address_space * mapping,loff_t pos,size_t part)38 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
39 loff_t pos, size_t part)
40 {
41 pgoff_t index = pos / PAGE_SIZE;
42 fgf_t fgp_flags = FGP_WRITEBEGIN;
43
44 if (mapping_large_folio_support(mapping))
45 fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
46
47 return __filemap_get_folio(mapping, index, fgp_flags,
48 mapping_gfp_mask(mapping));
49 }
50
51 /*
52 * Update i_size and estimate the update to i_blocks to reflect the additional
53 * data written into the pagecache until we can find out from the server what
54 * the values actually are.
55 */
netfs_update_i_size(struct netfs_inode * ctx,struct inode * inode,loff_t i_size,loff_t pos,size_t copied)56 static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
57 loff_t i_size, loff_t pos, size_t copied)
58 {
59 blkcnt_t add;
60 size_t gap;
61
62 if (ctx->ops->update_i_size) {
63 ctx->ops->update_i_size(inode, pos);
64 return;
65 }
66
67 spin_lock(&inode->i_lock);
68 i_size_write(inode, pos);
69 #if IS_ENABLED(CONFIG_FSCACHE)
70 fscache_update_cookie(ctx->cache, NULL, &pos);
71 #endif
72
73 gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
74 if (copied > gap) {
75 add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);
76
77 inode->i_blocks = min_t(blkcnt_t,
78 DIV_ROUND_UP(pos, SECTOR_SIZE),
79 inode->i_blocks + add);
80 }
81 spin_unlock(&inode->i_lock);
82 }
83
84 /**
85 * netfs_perform_write - Copy data into the pagecache.
86 * @iocb: The operation parameters
87 * @iter: The source buffer
88 * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
89 *
90 * Copy data into pagecache pages attached to the inode specified by @iocb.
91 * The caller must hold appropriate inode locks.
92 *
93 * Dirty pages are tagged with a netfs_folio struct if they're not up to date
94 * to indicate the range modified. Dirty pages may also be tagged with a
95 * netfs-specific grouping such that data from an old group gets flushed before
96 * a new one is started.
97 */
netfs_perform_write(struct kiocb * iocb,struct iov_iter * iter,struct netfs_group * netfs_group)98 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
99 struct netfs_group *netfs_group)
100 {
101 struct file *file = iocb->ki_filp;
102 struct inode *inode = file_inode(file);
103 struct address_space *mapping = inode->i_mapping;
104 struct netfs_inode *ctx = netfs_inode(inode);
105 struct writeback_control wbc = {
106 .sync_mode = WB_SYNC_NONE,
107 .for_sync = true,
108 .nr_to_write = LONG_MAX,
109 .range_start = iocb->ki_pos,
110 .range_end = iocb->ki_pos + iter->count,
111 };
112 struct netfs_io_request *wreq = NULL;
113 struct folio *folio = NULL, *writethrough = NULL;
114 unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
115 ssize_t written = 0, ret, ret2;
116 loff_t i_size, pos = iocb->ki_pos;
117 size_t max_chunk = mapping_max_folio_size(mapping);
118 bool maybe_trouble = false;
119
120 if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
121 iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
122 ) {
123 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
124
125 ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
126 if (ret < 0) {
127 wbc_detach_inode(&wbc);
128 goto out;
129 }
130
131 wreq = netfs_begin_writethrough(iocb, iter->count);
132 if (IS_ERR(wreq)) {
133 wbc_detach_inode(&wbc);
134 ret = PTR_ERR(wreq);
135 wreq = NULL;
136 goto out;
137 }
138 if (!is_sync_kiocb(iocb))
139 wreq->iocb = iocb;
140 netfs_stat(&netfs_n_wh_writethrough);
141 } else {
142 netfs_stat(&netfs_n_wh_buffered_write);
143 }
144
145 do {
146 struct netfs_folio *finfo;
147 struct netfs_group *group;
148 unsigned long long fpos;
149 size_t flen;
150 size_t offset; /* Offset into pagecache folio */
151 size_t part; /* Bytes to write to folio */
152 size_t copied; /* Bytes copied from user */
153
154 offset = pos & (max_chunk - 1);
155 part = min(max_chunk - offset, iov_iter_count(iter));
156
157 /* Bring in the user pages that we will copy from _first_ lest
158 * we hit a nasty deadlock on copying from the same page as
159 * we're writing to, without it being marked uptodate.
160 *
161 * Not only is this an optimisation, but it is also required to
162 * check that the address is actually valid, when atomic
163 * usercopies are used below.
164 *
165 * We rely on the page being held onto long enough by the LRU
166 * that we can grab it below if this causes it to be read.
167 */
168 ret = -EFAULT;
169 if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
170 break;
171
172 folio = netfs_grab_folio_for_write(mapping, pos, part);
173 if (IS_ERR(folio)) {
174 ret = PTR_ERR(folio);
175 break;
176 }
177
178 flen = folio_size(folio);
179 fpos = folio_pos(folio);
180 offset = pos - fpos;
181 part = min_t(size_t, flen - offset, part);
182
183 /* Wait for writeback to complete. The writeback engine owns
184 * the info in folio->private and may change it until it
185 * removes the WB mark.
186 */
187 if (folio_get_private(folio) &&
188 folio_wait_writeback_killable(folio)) {
189 ret = written ? -EINTR : -ERESTARTSYS;
190 goto error_folio_unlock;
191 }
192
193 if (signal_pending(current)) {
194 ret = written ? -EINTR : -ERESTARTSYS;
195 goto error_folio_unlock;
196 }
197
198 /* Decide how we should modify a folio. We might be attempting
199 * to do write-streaming, in which case we don't want to a
200 * local RMW cycle if we can avoid it. If we're doing local
201 * caching or content crypto, we award that priority over
202 * avoiding RMW. If the file is open readably, then we also
203 * assume that we may want to read what we wrote.
204 */
205 finfo = netfs_folio_info(folio);
206 group = netfs_folio_group(folio);
207
208 if (unlikely(group != netfs_group) &&
209 group != NETFS_FOLIO_COPY_TO_CACHE)
210 goto flush_content;
211
212 if (folio_test_uptodate(folio)) {
213 if (mapping_writably_mapped(mapping))
214 flush_dcache_folio(folio);
215 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
216 if (unlikely(copied == 0))
217 goto copy_failed;
218 netfs_set_group(folio, netfs_group);
219 trace_netfs_folio(folio, netfs_folio_is_uptodate);
220 goto copied;
221 }
222
223 /* If the page is above the zero-point then we assume that the
224 * server would just return a block of zeros or a short read if
225 * we try to read it.
226 */
227 if (fpos >= ctx->zero_point) {
228 zero_user_segment(&folio->page, 0, offset);
229 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
230 if (unlikely(copied == 0))
231 goto copy_failed;
232 zero_user_segment(&folio->page, offset + copied, flen);
233 __netfs_set_group(folio, netfs_group);
234 folio_mark_uptodate(folio);
235 trace_netfs_folio(folio, netfs_modify_and_clear);
236 goto copied;
237 }
238
239 /* See if we can write a whole folio in one go. */
240 if (!maybe_trouble && offset == 0 && part >= flen) {
241 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
242 if (unlikely(copied == 0))
243 goto copy_failed;
244 if (unlikely(copied < part)) {
245 maybe_trouble = true;
246 iov_iter_revert(iter, copied);
247 copied = 0;
248 folio_unlock(folio);
249 goto retry;
250 }
251 __netfs_set_group(folio, netfs_group);
252 folio_mark_uptodate(folio);
253 trace_netfs_folio(folio, netfs_whole_folio_modify);
254 goto copied;
255 }
256
257 /* We don't want to do a streaming write on a file that loses
258 * caching service temporarily because the backing store got
259 * culled and we don't really want to get a streaming write on
260 * a file that's open for reading as ->read_folio() then has to
261 * be able to flush it.
262 */
263 if ((file->f_mode & FMODE_READ) ||
264 netfs_is_cache_enabled(ctx)) {
265 if (finfo) {
266 netfs_stat(&netfs_n_wh_wstream_conflict);
267 goto flush_content;
268 }
269 ret = netfs_prefetch_for_write(file, folio, offset, part);
270 if (ret < 0) {
271 _debug("prefetch = %zd", ret);
272 goto error_folio_unlock;
273 }
274 /* Note that copy-to-cache may have been set. */
275
276 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
277 if (unlikely(copied == 0))
278 goto copy_failed;
279 netfs_set_group(folio, netfs_group);
280 trace_netfs_folio(folio, netfs_just_prefetch);
281 goto copied;
282 }
283
284 if (!finfo) {
285 ret = -EIO;
286 if (WARN_ON(folio_get_private(folio)))
287 goto error_folio_unlock;
288 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
289 if (unlikely(copied == 0))
290 goto copy_failed;
291 if (offset == 0 && copied == flen) {
292 __netfs_set_group(folio, netfs_group);
293 folio_mark_uptodate(folio);
294 trace_netfs_folio(folio, netfs_streaming_filled_page);
295 goto copied;
296 }
297
298 finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
299 if (!finfo) {
300 iov_iter_revert(iter, copied);
301 ret = -ENOMEM;
302 goto error_folio_unlock;
303 }
304 finfo->netfs_group = netfs_get_group(netfs_group);
305 finfo->dirty_offset = offset;
306 finfo->dirty_len = copied;
307 folio_attach_private(folio, (void *)((unsigned long)finfo |
308 NETFS_FOLIO_INFO));
309 trace_netfs_folio(folio, netfs_streaming_write);
310 goto copied;
311 }
312
313 /* We can continue a streaming write only if it continues on
314 * from the previous. If it overlaps, we must flush lest we
315 * suffer a partial copy and disjoint dirty regions.
316 */
317 if (offset == finfo->dirty_offset + finfo->dirty_len) {
318 copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
319 if (unlikely(copied == 0))
320 goto copy_failed;
321 finfo->dirty_len += copied;
322 if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
323 if (finfo->netfs_group)
324 folio_change_private(folio, finfo->netfs_group);
325 else
326 folio_detach_private(folio);
327 folio_mark_uptodate(folio);
328 kfree(finfo);
329 trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
330 } else {
331 trace_netfs_folio(folio, netfs_streaming_write_cont);
332 }
333 goto copied;
334 }
335
336 /* Incompatible write; flush the folio and try again. */
337 flush_content:
338 trace_netfs_folio(folio, netfs_flush_content);
339 folio_unlock(folio);
340 folio_put(folio);
341 ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
342 if (ret < 0)
343 goto out;
344 continue;
345
346 copied:
347 flush_dcache_folio(folio);
348
349 /* Update the inode size if we moved the EOF marker */
350 pos += copied;
351 i_size = i_size_read(inode);
352 if (pos > i_size)
353 netfs_update_i_size(ctx, inode, i_size, pos, copied);
354 written += copied;
355
356 if (likely(!wreq)) {
357 folio_mark_dirty(folio);
358 folio_unlock(folio);
359 } else {
360 netfs_advance_writethrough(wreq, &wbc, folio, copied,
361 offset + copied == flen,
362 &writethrough);
363 /* Folio unlocked */
364 }
365 retry:
366 folio_put(folio);
367 folio = NULL;
368
369 ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
370 if (unlikely(ret < 0))
371 break;
372
373 cond_resched();
374 } while (iov_iter_count(iter));
375
376 out:
377 if (likely(written)) {
378 /* Set indication that ctime and mtime got updated in case
379 * close is deferred.
380 */
381 set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
382 if (unlikely(ctx->ops->post_modify))
383 ctx->ops->post_modify(inode);
384 }
385
386 if (unlikely(wreq)) {
387 ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
388 wbc_detach_inode(&wbc);
389 if (ret2 == -EIOCBQUEUED)
390 return ret2;
391 if (ret == 0)
392 ret = ret2;
393 }
394
395 iocb->ki_pos += written;
396 _leave(" = %zd [%zd]", written, ret);
397 return written ? written : ret;
398
399 copy_failed:
400 ret = -EFAULT;
401 error_folio_unlock:
402 folio_unlock(folio);
403 folio_put(folio);
404 goto out;
405 }
406 EXPORT_SYMBOL(netfs_perform_write);
407
408 /**
409 * netfs_buffered_write_iter_locked - write data to a file
410 * @iocb: IO state structure (file, offset, etc.)
411 * @from: iov_iter with data to write
412 * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
413 *
414 * This function does all the work needed for actually writing data to a
415 * file. It does all basic checks, removes SUID from the file, updates
416 * modification times and calls proper subroutines depending on whether we
417 * do direct IO or a standard buffered write.
418 *
419 * The caller must hold appropriate locks around this function and have called
420 * generic_write_checks() already. The caller is also responsible for doing
421 * any necessary syncing afterwards.
422 *
423 * This function does *not* take care of syncing data in case of O_SYNC write.
424 * A caller has to handle it. This is mainly due to the fact that we want to
425 * avoid syncing under i_rwsem.
426 *
427 * Return:
428 * * number of bytes written, even for truncated writes
429 * * negative error code if no data has been written at all
430 */
netfs_buffered_write_iter_locked(struct kiocb * iocb,struct iov_iter * from,struct netfs_group * netfs_group)431 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
432 struct netfs_group *netfs_group)
433 {
434 struct file *file = iocb->ki_filp;
435 ssize_t ret;
436
437 trace_netfs_write_iter(iocb, from);
438
439 ret = file_remove_privs(file);
440 if (ret)
441 return ret;
442
443 ret = file_update_time(file);
444 if (ret)
445 return ret;
446
447 return netfs_perform_write(iocb, from, netfs_group);
448 }
449 EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
450
451 /**
452 * netfs_file_write_iter - write data to a file
453 * @iocb: IO state structure
454 * @from: iov_iter with data to write
455 *
456 * Perform a write to a file, writing into the pagecache if possible and doing
457 * an unbuffered write instead if not.
458 *
459 * Return:
460 * * Negative error code if no data has been written at all of
461 * vfs_fsync_range() failed for a synchronous write
462 * * Number of bytes written, even for truncated writes
463 */
netfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)464 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
465 {
466 struct file *file = iocb->ki_filp;
467 struct inode *inode = file->f_mapping->host;
468 struct netfs_inode *ictx = netfs_inode(inode);
469 ssize_t ret;
470
471 _enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
472
473 if (!iov_iter_count(from))
474 return 0;
475
476 if ((iocb->ki_flags & IOCB_DIRECT) ||
477 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
478 return netfs_unbuffered_write_iter(iocb, from);
479
480 ret = netfs_start_io_write(inode);
481 if (ret < 0)
482 return ret;
483
484 ret = generic_write_checks(iocb, from);
485 if (ret > 0)
486 ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
487 netfs_end_io_write(inode);
488 if (ret > 0)
489 ret = generic_write_sync(iocb, ret);
490 return ret;
491 }
492 EXPORT_SYMBOL(netfs_file_write_iter);
493
494 /*
495 * Notification that a previously read-only page is about to become writable.
496 * Note that the caller indicates a single page of a multipage folio.
497 */
netfs_page_mkwrite(struct vm_fault * vmf,struct netfs_group * netfs_group)498 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
499 {
500 struct netfs_group *group;
501 struct folio *folio = page_folio(vmf->page);
502 struct file *file = vmf->vma->vm_file;
503 struct address_space *mapping = file->f_mapping;
504 struct inode *inode = file_inode(file);
505 struct netfs_inode *ictx = netfs_inode(inode);
506 vm_fault_t ret = VM_FAULT_RETRY;
507 int err;
508
509 _enter("%lx", folio->index);
510
511 sb_start_pagefault(inode->i_sb);
512
513 if (folio_lock_killable(folio) < 0)
514 goto out;
515 if (folio->mapping != mapping) {
516 folio_unlock(folio);
517 ret = VM_FAULT_NOPAGE;
518 goto out;
519 }
520
521 if (folio_wait_writeback_killable(folio)) {
522 ret = VM_FAULT_LOCKED;
523 goto out;
524 }
525
526 /* Can we see a streaming write here? */
527 if (WARN_ON(!folio_test_uptodate(folio))) {
528 ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
529 goto out;
530 }
531
532 group = netfs_folio_group(folio);
533 if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
534 folio_unlock(folio);
535 err = filemap_fdatawrite_range(mapping,
536 folio_pos(folio),
537 folio_pos(folio) + folio_size(folio));
538 switch (err) {
539 case 0:
540 ret = VM_FAULT_RETRY;
541 goto out;
542 case -ENOMEM:
543 ret = VM_FAULT_OOM;
544 goto out;
545 default:
546 ret = VM_FAULT_SIGBUS;
547 goto out;
548 }
549 }
550
551 if (folio_test_dirty(folio))
552 trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
553 else
554 trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
555 netfs_set_group(folio, netfs_group);
556 file_update_time(file);
557 set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
558 if (ictx->ops->post_modify)
559 ictx->ops->post_modify(inode);
560 ret = VM_FAULT_LOCKED;
561 out:
562 sb_end_pagefault(inode->i_sb);
563 return ret;
564 }
565 EXPORT_SYMBOL(netfs_page_mkwrite);
566