1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 umode_t mode, int open_flags);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .iterate_shared = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_closedir,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct address_space_operations nfs_dir_aops = {
72 .free_folio = nfs_readdir_clear_array,
73 };
74
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76
77 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80 struct nfs_inode *nfsi = NFS_I(dir);
81 struct nfs_open_dir_context *ctx;
82
83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84 if (ctx != NULL) {
85 ctx->attr_gencount = nfsi->attr_gencount;
86 ctx->dtsize = NFS_INIT_DTSIZE;
87 spin_lock(&dir->i_lock);
88 if (list_empty(&nfsi->open_files) &&
89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90 nfs_set_cache_invalid(dir,
91 NFS_INO_INVALID_DATA |
92 NFS_INO_REVAL_FORCED);
93 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95 spin_unlock(&dir->i_lock);
96 return ctx;
97 }
98 return ERR_PTR(-ENOMEM);
99 }
100
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103 spin_lock(&dir->i_lock);
104 list_del_rcu(&ctx->list);
105 spin_unlock(&dir->i_lock);
106 kfree_rcu(ctx, rcu_head);
107 }
108
109 /*
110 * Open file
111 */
112 static int
nfs_opendir(struct inode * inode,struct file * filp)113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115 int res = 0;
116 struct nfs_open_dir_context *ctx;
117
118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119
120 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121
122 ctx = alloc_nfs_open_dir_context(inode);
123 if (IS_ERR(ctx)) {
124 res = PTR_ERR(ctx);
125 goto out;
126 }
127 filp->private_data = ctx;
128 out:
129 return res;
130 }
131
132 static int
nfs_closedir(struct inode * inode,struct file * filp)133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 return 0;
137 }
138
139 struct nfs_cache_array_entry {
140 u64 cookie;
141 u64 ino;
142 const char *name;
143 unsigned int name_len;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 u64 change_attr;
149 u64 last_cookie;
150 unsigned int size;
151 unsigned char folio_full : 1,
152 folio_is_eof : 1,
153 cookies_are_ordered : 1;
154 struct nfs_cache_array_entry array[] __counted_by(size);
155 };
156
157 struct nfs_readdir_descriptor {
158 struct file *file;
159 struct folio *folio;
160 struct dir_context *ctx;
161 pgoff_t folio_index;
162 pgoff_t folio_index_max;
163 u64 dir_cookie;
164 u64 last_cookie;
165 loff_t current_index;
166
167 __be32 verf[NFS_DIR_VERIFIER_SIZE];
168 unsigned long dir_verifier;
169 unsigned long timestamp;
170 unsigned long gencount;
171 unsigned long attr_gencount;
172 unsigned int cache_entry_index;
173 unsigned int buffer_fills;
174 unsigned int dtsize;
175 bool clear_cache;
176 bool plus;
177 bool eob;
178 bool eof;
179 };
180
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184 unsigned int maxsize = server->dtsize;
185
186 if (sz > maxsize)
187 sz = maxsize;
188 if (sz < NFS_MIN_FILE_IO_SIZE)
189 sz = NFS_MIN_FILE_IO_SIZE;
190 desc->dtsize = sz;
191 }
192
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195 nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200 nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204 u64 change_attr)
205 {
206 struct nfs_cache_array *array;
207
208 array = kmap_local_folio(folio, 0);
209 array->change_attr = change_attr;
210 array->last_cookie = last_cookie;
211 array->size = 0;
212 array->folio_full = 0;
213 array->folio_is_eof = 0;
214 array->cookies_are_ordered = 1;
215 kunmap_local(array);
216 }
217
218 /*
219 * we are freeing strings created by nfs_add_to_readdir_array()
220 */
nfs_readdir_clear_array(struct folio * folio)221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223 struct nfs_cache_array *array;
224 unsigned int i;
225
226 array = kmap_local_folio(folio, 0);
227 for (i = 0; i < array->size; i++)
228 kfree(array->array[i].name);
229 array->size = 0;
230 kunmap_local(array);
231 }
232
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234 u64 change_attr)
235 {
236 nfs_readdir_clear_array(folio);
237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239
240 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243 struct folio *folio = folio_alloc(gfp_flags, 0);
244 if (folio)
245 nfs_readdir_folio_init_array(folio, last_cookie, 0);
246 return folio;
247 }
248
nfs_readdir_folio_array_free(struct folio * folio)249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251 if (folio) {
252 nfs_readdir_clear_array(folio);
253 folio_put(folio);
254 }
255 }
256
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261
nfs_readdir_array_set_eof(struct nfs_cache_array * array)262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264 array->folio_is_eof = 1;
265 array->folio_full = 1;
266 }
267
nfs_readdir_array_is_full(struct nfs_cache_array * array)268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270 return array->folio_full;
271 }
272
273 /*
274 * the caller is responsible for freeing qstr.name
275 * when called by nfs_readdir_add_to_array, the strings will be freed in
276 * nfs_clear_readdir_array()
277 */
nfs_readdir_copy_name(const char * name,unsigned int len)278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281
282 /*
283 * Avoid a kmemleak false positive. The pointer to the name is stored
284 * in a page cache page which kmemleak does not scan.
285 */
286 if (ret != NULL)
287 kmemleak_not_leak(ret);
288 return ret;
289 }
290
nfs_readdir_array_maxentries(void)291 static size_t nfs_readdir_array_maxentries(void)
292 {
293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294 sizeof(struct nfs_cache_array_entry);
295 }
296
297 /*
298 * Check that the next array entry lies entirely within the page bounds
299 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302 if (array->folio_full)
303 return -ENOSPC;
304 if (array->size == nfs_readdir_array_maxentries()) {
305 array->folio_full = 1;
306 return -ENOSPC;
307 }
308 return 0;
309 }
310
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)311 static int nfs_readdir_folio_array_append(struct folio *folio,
312 const struct nfs_entry *entry,
313 u64 *cookie)
314 {
315 struct nfs_cache_array *array;
316 struct nfs_cache_array_entry *cache_entry;
317 const char *name;
318 int ret = -ENOMEM;
319
320 name = nfs_readdir_copy_name(entry->name, entry->len);
321
322 array = kmap_local_folio(folio, 0);
323 if (!name)
324 goto out;
325 ret = nfs_readdir_array_can_expand(array);
326 if (ret) {
327 kfree(name);
328 goto out;
329 }
330
331 array->size++;
332 cache_entry = &array->array[array->size - 1];
333 cache_entry->cookie = array->last_cookie;
334 cache_entry->ino = entry->ino;
335 cache_entry->d_type = entry->d_type;
336 cache_entry->name_len = entry->len;
337 cache_entry->name = name;
338 array->last_cookie = entry->cookie;
339 if (array->last_cookie <= cache_entry->cookie)
340 array->cookies_are_ordered = 0;
341 if (entry->eof != 0)
342 nfs_readdir_array_set_eof(array);
343 out:
344 *cookie = array->last_cookie;
345 kunmap_local(array);
346 return ret;
347 }
348
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351 * Hash algorithm allowing content addressible access to sequences
352 * of directory cookies. Content is addressed by the value of the
353 * cookie index of the first readdir entry in a page.
354 *
355 * We select only the first 18 bits to avoid issues with excessive
356 * memory use for the page cache XArray. 18 bits should allow the caching
357 * of 262144 pages of sequences of readdir entries. Since each page holds
358 * 127 readdir entries for a typical 64-bit system, that works out to a
359 * cache of ~ 33 million entries per directory.
360 */
nfs_readdir_folio_cookie_hash(u64 cookie)361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363 if (cookie == 0)
364 return 0;
365 return hash_64(cookie, 18);
366 }
367
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369 u64 change_attr)
370 {
371 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372 int ret = true;
373
374 if (array->change_attr != change_attr)
375 ret = false;
376 if (nfs_readdir_array_index_cookie(array) != last_cookie)
377 ret = false;
378 kunmap_local(array);
379 return ret;
380 }
381
nfs_readdir_folio_unlock_and_put(struct folio * folio)382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384 folio_unlock(folio);
385 folio_put(folio);
386 }
387
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389 u64 change_attr)
390 {
391 if (folio_test_uptodate(folio)) {
392 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393 return;
394 nfs_readdir_clear_array(folio);
395 }
396 nfs_readdir_folio_init_array(folio, cookie, change_attr);
397 folio_mark_uptodate(folio);
398 }
399
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401 u64 cookie, u64 change_attr)
402 {
403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404 struct folio *folio;
405
406 folio = filemap_grab_folio(mapping, index);
407 if (IS_ERR(folio))
408 return NULL;
409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410 return folio;
411 }
412
nfs_readdir_folio_last_cookie(struct folio * folio)413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415 struct nfs_cache_array *array;
416 u64 ret;
417
418 array = kmap_local_folio(folio, 0);
419 ret = array->last_cookie;
420 kunmap_local(array);
421 return ret;
422 }
423
nfs_readdir_folio_needs_filling(struct folio * folio)424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426 struct nfs_cache_array *array;
427 bool ret;
428
429 array = kmap_local_folio(folio, 0);
430 ret = !nfs_readdir_array_is_full(array);
431 kunmap_local(array);
432 return ret;
433 }
434
nfs_readdir_folio_set_eof(struct folio * folio)435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437 struct nfs_cache_array *array;
438
439 array = kmap_local_folio(folio, 0);
440 nfs_readdir_array_set_eof(array);
441 kunmap_local(array);
442 }
443
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445 u64 cookie, u64 change_attr)
446 {
447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448 struct folio *folio;
449
450 folio = __filemap_get_folio(mapping, index,
451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452 mapping_gfp_mask(mapping));
453 if (IS_ERR(folio))
454 return NULL;
455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456 if (nfs_readdir_folio_last_cookie(folio) != cookie)
457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458 return folio;
459 }
460
461 static inline
is_32bit_api(void)462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465 return in_compat_syscall();
466 #else
467 return (BITS_PER_LONG == 32);
468 #endif
469 }
470
471 static
nfs_readdir_use_cookie(const struct file * filp)472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474 if ((filp->f_mode & FMODE_32BITHASH) ||
475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476 return false;
477 return true;
478 }
479
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481 struct nfs_readdir_descriptor *desc)
482 {
483 if (array->folio_full) {
484 desc->last_cookie = array->last_cookie;
485 desc->current_index += array->size;
486 desc->cache_entry_index = 0;
487 desc->folio_index++;
488 } else
489 desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494 desc->current_index = 0;
495 desc->last_cookie = 0;
496 desc->folio_index = 0;
497 }
498
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500 struct nfs_readdir_descriptor *desc)
501 {
502 loff_t diff = desc->ctx->pos - desc->current_index;
503 unsigned int index;
504
505 if (diff < 0)
506 goto out_eof;
507 if (diff >= array->size) {
508 if (array->folio_is_eof)
509 goto out_eof;
510 nfs_readdir_seek_next_array(array, desc);
511 return -EAGAIN;
512 }
513
514 index = (unsigned int)diff;
515 desc->dir_cookie = array->array[index].cookie;
516 desc->cache_entry_index = index;
517 return 0;
518 out_eof:
519 desc->eof = true;
520 return -EBADCOOKIE;
521 }
522
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524 u64 cookie)
525 {
526 if (!array->cookies_are_ordered)
527 return true;
528 /* Optimisation for monotonically increasing cookies */
529 if (cookie >= array->last_cookie)
530 return false;
531 if (array->size && cookie < array->array[0].cookie)
532 return false;
533 return true;
534 }
535
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537 struct nfs_readdir_descriptor *desc)
538 {
539 unsigned int i;
540 int status = -EAGAIN;
541
542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543 goto check_eof;
544
545 for (i = 0; i < array->size; i++) {
546 if (array->array[i].cookie == desc->dir_cookie) {
547 if (nfs_readdir_use_cookie(desc->file))
548 desc->ctx->pos = desc->dir_cookie;
549 else
550 desc->ctx->pos = desc->current_index + i;
551 desc->cache_entry_index = i;
552 return 0;
553 }
554 }
555 check_eof:
556 if (array->folio_is_eof) {
557 status = -EBADCOOKIE;
558 if (desc->dir_cookie == array->last_cookie)
559 desc->eof = true;
560 } else
561 nfs_readdir_seek_next_array(array, desc);
562 return status;
563 }
564
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567 struct nfs_cache_array *array;
568 int status;
569
570 array = kmap_local_folio(desc->folio, 0);
571
572 if (desc->dir_cookie == 0)
573 status = nfs_readdir_search_for_pos(array, desc);
574 else
575 status = nfs_readdir_search_for_cookie(array, desc);
576
577 kunmap_local(array);
578 return status;
579 }
580
581 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583 __be32 *verf, u64 cookie,
584 struct page **pages, size_t bufsize,
585 __be32 *verf_res)
586 {
587 struct inode *inode = file_inode(desc->file);
588 struct nfs_readdir_arg arg = {
589 .dentry = file_dentry(desc->file),
590 .cred = desc->file->f_cred,
591 .verf = verf,
592 .cookie = cookie,
593 .pages = pages,
594 .page_len = bufsize,
595 .plus = desc->plus,
596 };
597 struct nfs_readdir_res res = {
598 .verf = verf_res,
599 };
600 unsigned long timestamp, gencount;
601 int error;
602
603 again:
604 timestamp = jiffies;
605 gencount = nfs_inc_attr_generation_counter();
606 desc->dir_verifier = nfs_save_change_attribute(inode);
607 error = NFS_PROTO(inode)->readdir(&arg, &res);
608 if (error < 0) {
609 /* We requested READDIRPLUS, but the server doesn't grok it */
610 if (error == -ENOTSUPP && desc->plus) {
611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612 desc->plus = arg.plus = false;
613 goto again;
614 }
615 goto error;
616 }
617 desc->timestamp = timestamp;
618 desc->gencount = gencount;
619 error:
620 return error;
621 }
622
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624 struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626 struct inode *inode = file_inode(desc->file);
627 int error;
628
629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630 if (error)
631 return error;
632 entry->fattr->time_start = desc->timestamp;
633 entry->fattr->gencount = desc->gencount;
634 return 0;
635 }
636
637 /* Match file and dirent using either filehandle or fileid
638 * Note: caller is responsible for checking the fsid
639 */
640 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643 struct inode *inode;
644 struct nfs_inode *nfsi;
645
646 if (d_really_is_negative(dentry))
647 return 0;
648
649 inode = d_inode(dentry);
650 if (is_bad_inode(inode) || NFS_STALE(inode))
651 return 0;
652
653 nfsi = NFS_I(inode);
654 if (entry->fattr->fileid != nfsi->fileid)
655 return 0;
656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657 return 0;
658 return 1;
659 }
660
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664 unsigned int cache_hits,
665 unsigned int cache_misses)
666 {
667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668 return false;
669 if (ctx->pos == 0 ||
670 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
671 return true;
672 return false;
673 }
674
675 /*
676 * This function is called by the getattr code to request the
677 * use of readdirplus to accelerate any future lookups in the same
678 * directory.
679 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)680 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
681 {
682 struct nfs_inode *nfsi = NFS_I(dir);
683 struct nfs_open_dir_context *ctx;
684
685 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
686 S_ISDIR(dir->i_mode)) {
687 rcu_read_lock();
688 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
689 atomic_inc(&ctx->cache_hits);
690 rcu_read_unlock();
691 }
692 }
693
694 /*
695 * This function is mainly for use by nfs_getattr().
696 *
697 * If this is an 'ls -l', we want to force use of readdirplus.
698 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)699 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
700 {
701 struct nfs_inode *nfsi = NFS_I(dir);
702 struct nfs_open_dir_context *ctx;
703
704 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
705 S_ISDIR(dir->i_mode)) {
706 rcu_read_lock();
707 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
708 atomic_inc(&ctx->cache_misses);
709 rcu_read_unlock();
710 }
711 }
712
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)713 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
714 unsigned int flags)
715 {
716 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
717 return;
718 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
719 return;
720 nfs_readdir_record_entry_cache_miss(dir);
721 }
722
723 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)724 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
725 unsigned long dir_verifier)
726 {
727 struct qstr filename = QSTR_INIT(entry->name, entry->len);
728 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
729 struct dentry *dentry;
730 struct dentry *alias;
731 struct inode *inode;
732 int status;
733
734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
735 return;
736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
737 return;
738 if (filename.len == 0)
739 return;
740 /* Validate that the name doesn't contain any illegal '\0' */
741 if (strnlen(filename.name, filename.len) != filename.len)
742 return;
743 /* ...or '/' */
744 if (strnchr(filename.name, filename.len, '/'))
745 return;
746 if (filename.name[0] == '.') {
747 if (filename.len == 1)
748 return;
749 if (filename.len == 2 && filename.name[1] == '.')
750 return;
751 }
752 filename.hash = full_name_hash(parent, filename.name, filename.len);
753
754 dentry = d_lookup(parent, &filename);
755 again:
756 if (!dentry) {
757 dentry = d_alloc_parallel(parent, &filename, &wq);
758 if (IS_ERR(dentry))
759 return;
760 }
761 if (!d_in_lookup(dentry)) {
762 /* Is there a mountpoint here? If so, just exit */
763 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
764 &entry->fattr->fsid))
765 goto out;
766 if (nfs_same_file(dentry, entry)) {
767 if (!entry->fh->size)
768 goto out;
769 nfs_set_verifier(dentry, dir_verifier);
770 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
771 if (!status)
772 nfs_setsecurity(d_inode(dentry), entry->fattr);
773 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
774 dentry, 0, status);
775 goto out;
776 } else {
777 trace_nfs_readdir_lookup_revalidate_failed(
778 d_inode(parent), dentry, 0);
779 d_invalidate(dentry);
780 dput(dentry);
781 dentry = NULL;
782 goto again;
783 }
784 }
785 if (!entry->fh->size) {
786 d_lookup_done(dentry);
787 goto out;
788 }
789
790 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
791 alias = d_splice_alias(inode, dentry);
792 d_lookup_done(dentry);
793 if (alias) {
794 if (IS_ERR(alias))
795 goto out;
796 dput(dentry);
797 dentry = alias;
798 }
799 nfs_set_verifier(dentry, dir_verifier);
800 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
801 out:
802 dput(dentry);
803 }
804
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)805 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
806 struct nfs_entry *entry,
807 struct xdr_stream *stream)
808 {
809 int ret;
810
811 if (entry->fattr->label)
812 entry->fattr->label->len = NFS4_MAXLABELLEN;
813 ret = xdr_decode(desc, entry, stream);
814 if (ret || !desc->plus)
815 return ret;
816 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
817 return 0;
818 }
819
820 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)821 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
822 struct nfs_entry *entry,
823 struct page **xdr_pages, unsigned int buflen,
824 struct folio **arrays, size_t narrays,
825 u64 change_attr)
826 {
827 struct address_space *mapping = desc->file->f_mapping;
828 struct folio *new, *folio = *arrays;
829 struct xdr_stream stream;
830 struct page *scratch;
831 struct xdr_buf buf;
832 u64 cookie;
833 int status;
834
835 scratch = alloc_page(GFP_KERNEL);
836 if (scratch == NULL)
837 return -ENOMEM;
838
839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 xdr_set_scratch_page(&stream, scratch);
841
842 do {
843 status = nfs_readdir_entry_decode(desc, entry, &stream);
844 if (status != 0)
845 break;
846
847 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
848 if (status != -ENOSPC)
849 continue;
850
851 if (folio->mapping != mapping) {
852 if (!--narrays)
853 break;
854 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
855 if (!new)
856 break;
857 arrays++;
858 *arrays = folio = new;
859 } else {
860 new = nfs_readdir_folio_get_next(mapping, cookie,
861 change_attr);
862 if (!new)
863 break;
864 if (folio != *arrays)
865 nfs_readdir_folio_unlock_and_put(folio);
866 folio = new;
867 }
868 desc->folio_index_max++;
869 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
870 } while (!status && !entry->eof);
871
872 switch (status) {
873 case -EBADCOOKIE:
874 if (!entry->eof)
875 break;
876 nfs_readdir_folio_set_eof(folio);
877 fallthrough;
878 case -EAGAIN:
879 status = 0;
880 break;
881 case -ENOSPC:
882 status = 0;
883 if (!desc->plus)
884 break;
885 while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 ;
887 }
888
889 if (folio != *arrays)
890 nfs_readdir_folio_unlock_and_put(folio);
891
892 put_page(scratch);
893 return status;
894 }
895
nfs_readdir_free_pages(struct page ** pages,size_t npages)896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 while (npages--)
899 put_page(pages[npages]);
900 kfree(pages);
901 }
902
903 /*
904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905 * to nfs_readdir_free_pages()
906 */
nfs_readdir_alloc_pages(size_t npages)907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 struct page **pages;
910 size_t i;
911
912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 if (!pages)
914 return NULL;
915 for (i = 0; i < npages; i++) {
916 struct page *page = alloc_page(GFP_KERNEL);
917 if (page == NULL)
918 goto out_freepages;
919 pages[i] = page;
920 }
921 return pages;
922
923 out_freepages:
924 nfs_readdir_free_pages(pages, i);
925 return NULL;
926 }
927
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 __be32 *verf_arg, __be32 *verf_res,
930 struct folio **arrays, size_t narrays)
931 {
932 u64 change_attr;
933 struct page **pages;
934 struct folio *folio = *arrays;
935 struct nfs_entry *entry;
936 size_t array_size;
937 struct inode *inode = file_inode(desc->file);
938 unsigned int dtsize = desc->dtsize;
939 unsigned int pglen;
940 int status = -ENOMEM;
941
942 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 if (!entry)
944 return -ENOMEM;
945 entry->cookie = nfs_readdir_folio_last_cookie(folio);
946 entry->fh = nfs_alloc_fhandle();
947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 entry->server = NFS_SERVER(inode);
949 if (entry->fh == NULL || entry->fattr == NULL)
950 goto out;
951
952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 pages = nfs_readdir_alloc_pages(array_size);
954 if (!pages)
955 goto out;
956
957 change_attr = inode_peek_iversion_raw(inode);
958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 dtsize, verf_res);
960 if (status < 0)
961 goto free_pages;
962
963 pglen = status;
964 if (pglen != 0)
965 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
966 arrays, narrays, change_attr);
967 else
968 nfs_readdir_folio_set_eof(folio);
969 desc->buffer_fills++;
970
971 free_pages:
972 nfs_readdir_free_pages(pages, array_size);
973 out:
974 nfs_free_fattr(entry->fattr);
975 nfs_free_fhandle(entry->fh);
976 kfree(entry);
977 return status;
978 }
979
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)980 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
981 {
982 folio_put(desc->folio);
983 desc->folio = NULL;
984 }
985
986 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)987 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 folio_unlock(desc->folio);
990 nfs_readdir_folio_put(desc);
991 }
992
993 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)994 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 struct address_space *mapping = desc->file->f_mapping;
997 u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 u64 cookie = desc->last_cookie;
999 struct folio *folio;
1000
1001 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002 if (!folio)
1003 return NULL;
1004 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006 return folio;
1007 }
1008
1009 /*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 struct inode *inode = file_inode(desc->file);
1016 struct nfs_inode *nfsi = NFS_I(inode);
1017 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 int res;
1019
1020 desc->folio = nfs_readdir_folio_get_cached(desc);
1021 if (!desc->folio)
1022 return -ENOMEM;
1023 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024 /* Grow the dtsize if we had to go back for more pages */
1025 if (desc->folio_index == desc->folio_index_max)
1026 nfs_grow_dtsize(desc);
1027 desc->folio_index_max = desc->folio_index;
1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 desc->last_cookie,
1030 desc->folio->index, desc->dtsize);
1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 &desc->folio, 1);
1033 if (res < 0) {
1034 nfs_readdir_folio_unlock_and_put_cached(desc);
1035 trace_nfs_readdir_cache_fill_done(inode, res);
1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 invalidate_inode_pages2(desc->file->f_mapping);
1038 nfs_readdir_rewind_search(desc);
1039 trace_nfs_readdir_invalidate_cache_range(
1040 inode, 0, MAX_LFS_FILESIZE);
1041 return -EAGAIN;
1042 }
1043 return res;
1044 }
1045 /*
1046 * Set the cookie verifier if the page cache was empty
1047 */
1048 if (desc->last_cookie == 0 &&
1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 memcpy(nfsi->cookieverf, verf,
1051 sizeof(nfsi->cookieverf));
1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 -1);
1054 trace_nfs_readdir_invalidate_cache_range(
1055 inode, 1, MAX_LFS_FILESIZE);
1056 }
1057 desc->clear_cache = false;
1058 }
1059 res = nfs_readdir_search_array(desc);
1060 if (res == 0)
1061 return 0;
1062 nfs_readdir_folio_unlock_and_put_cached(desc);
1063 return res;
1064 }
1065
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 int res;
1070
1071 do {
1072 res = find_and_lock_cache_page(desc);
1073 } while (res == -EAGAIN);
1074 return res;
1075 }
1076
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079 /*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083 const __be32 *verf)
1084 {
1085 struct file *file = desc->file;
1086 struct nfs_cache_array *array;
1087 unsigned int i;
1088 bool first_emit = !desc->dir_cookie;
1089
1090 array = kmap_local_folio(desc->folio, 0);
1091 for (i = desc->cache_entry_index; i < array->size; i++) {
1092 struct nfs_cache_array_entry *ent;
1093
1094 /*
1095 * nfs_readdir_handle_cache_misses return force clear at
1096 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098 * entries need be emitted here.
1099 */
1100 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101 desc->eob = true;
1102 break;
1103 }
1104
1105 ent = &array->array[i];
1106 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108 desc->eob = true;
1109 break;
1110 }
1111 memcpy(desc->verf, verf, sizeof(desc->verf));
1112 if (i == array->size - 1) {
1113 desc->dir_cookie = array->last_cookie;
1114 nfs_readdir_seek_next_array(array, desc);
1115 } else {
1116 desc->dir_cookie = array->array[i + 1].cookie;
1117 desc->last_cookie = array->array[0].cookie;
1118 }
1119 if (nfs_readdir_use_cookie(file))
1120 desc->ctx->pos = desc->dir_cookie;
1121 else
1122 desc->ctx->pos++;
1123 }
1124 if (array->folio_is_eof)
1125 desc->eof = !desc->eob;
1126
1127 kunmap_local(array);
1128 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129 (unsigned long long)desc->dir_cookie);
1130 }
1131
1132 /*
1133 * If we cannot find a cookie in our cache, we suspect that this is
1134 * because it points to a deleted file, so we ask the server to return
1135 * whatever it thinks is the next entry. We then feed this to filldir.
1136 * If all goes well, we should then be able to find our way round the
1137 * cache on the next call to readdir_search_pagecache();
1138 *
1139 * NOTE: we cannot add the anonymous page to the pagecache because
1140 * the data it contains might not be page aligned. Besides,
1141 * we should already have a complete representation of the
1142 * directory in the page cache by the time we get here.
1143 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1144 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1145 {
1146 struct folio **arrays;
1147 size_t i, sz = 512;
1148 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1149 int status = -ENOMEM;
1150
1151 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152 (unsigned long long)desc->dir_cookie);
1153
1154 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155 if (!arrays)
1156 goto out;
1157 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158 if (!arrays[0])
1159 goto out;
1160
1161 desc->folio_index = 0;
1162 desc->cache_entry_index = 0;
1163 desc->last_cookie = desc->dir_cookie;
1164 desc->folio_index_max = 0;
1165
1166 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167 -1, desc->dtsize);
1168
1169 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170 if (status < 0) {
1171 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172 goto out_free;
1173 }
1174
1175 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176 desc->folio = arrays[i];
1177 nfs_do_filldir(desc, verf);
1178 }
1179 desc->folio = NULL;
1180
1181 /*
1182 * Grow the dtsize if we have to go back for more pages,
1183 * or shrink it if we're reading too many.
1184 */
1185 if (!desc->eof) {
1186 if (!desc->eob)
1187 nfs_grow_dtsize(desc);
1188 else if (desc->buffer_fills == 1 &&
1189 i < (desc->folio_index_max >> 1))
1190 nfs_shrink_dtsize(desc);
1191 }
1192 out_free:
1193 for (i = 0; i < sz && arrays[i]; i++)
1194 nfs_readdir_folio_array_free(arrays[i]);
1195 out:
1196 if (!nfs_readdir_use_cookie(desc->file))
1197 nfs_readdir_rewind_search(desc);
1198 desc->folio_index_max = -1;
1199 kfree(arrays);
1200 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201 return status;
1202 }
1203
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1204 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205 struct nfs_readdir_descriptor *desc,
1206 unsigned int cache_misses,
1207 bool force_clear)
1208 {
1209 if (desc->ctx->pos == 0 || !desc->plus)
1210 return false;
1211 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212 return false;
1213 trace_nfs_readdir_force_readdirplus(inode);
1214 return true;
1215 }
1216
1217 /* The file offset position represents the dirent entry number. A
1218 last cookie cache takes care of the common case of reading the
1219 whole directory.
1220 */
nfs_readdir(struct file * file,struct dir_context * ctx)1221 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222 {
1223 struct dentry *dentry = file_dentry(file);
1224 struct inode *inode = d_inode(dentry);
1225 struct nfs_inode *nfsi = NFS_I(inode);
1226 struct nfs_open_dir_context *dir_ctx = file->private_data;
1227 struct nfs_readdir_descriptor *desc;
1228 unsigned int cache_hits, cache_misses;
1229 bool force_clear;
1230 int res;
1231
1232 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233 file, (long long)ctx->pos);
1234 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235
1236 /*
1237 * ctx->pos points to the dirent entry number.
1238 * *desc->dir_cookie has the cookie for the next entry. We have
1239 * to either find the entry with the appropriate number or
1240 * revalidate the cookie.
1241 */
1242 nfs_revalidate_mapping(inode, file->f_mapping);
1243
1244 res = -ENOMEM;
1245 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246 if (!desc)
1247 goto out;
1248 desc->file = file;
1249 desc->ctx = ctx;
1250 desc->folio_index_max = -1;
1251
1252 spin_lock(&file->f_lock);
1253 desc->dir_cookie = dir_ctx->dir_cookie;
1254 desc->folio_index = dir_ctx->page_index;
1255 desc->last_cookie = dir_ctx->last_cookie;
1256 desc->attr_gencount = dir_ctx->attr_gencount;
1257 desc->eof = dir_ctx->eof;
1258 nfs_set_dtsize(desc, dir_ctx->dtsize);
1259 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262 force_clear = dir_ctx->force_clear;
1263 spin_unlock(&file->f_lock);
1264
1265 if (desc->eof) {
1266 res = 0;
1267 goto out_free;
1268 }
1269
1270 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272 force_clear);
1273 desc->clear_cache = force_clear;
1274
1275 do {
1276 res = readdir_search_pagecache(desc);
1277
1278 if (res == -EBADCOOKIE) {
1279 res = 0;
1280 /* This means either end of directory */
1281 if (desc->dir_cookie && !desc->eof) {
1282 /* Or that the server has 'lost' a cookie */
1283 res = uncached_readdir(desc);
1284 if (res == 0)
1285 continue;
1286 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287 res = 0;
1288 }
1289 break;
1290 }
1291 if (res == -ETOOSMALL && desc->plus) {
1292 nfs_zap_caches(inode);
1293 desc->plus = false;
1294 desc->eof = false;
1295 continue;
1296 }
1297 if (res < 0)
1298 break;
1299
1300 nfs_do_filldir(desc, nfsi->cookieverf);
1301 nfs_readdir_folio_unlock_and_put_cached(desc);
1302 if (desc->folio_index == desc->folio_index_max)
1303 desc->clear_cache = force_clear;
1304 } while (!desc->eob && !desc->eof);
1305
1306 spin_lock(&file->f_lock);
1307 dir_ctx->dir_cookie = desc->dir_cookie;
1308 dir_ctx->last_cookie = desc->last_cookie;
1309 dir_ctx->attr_gencount = desc->attr_gencount;
1310 dir_ctx->page_index = desc->folio_index;
1311 dir_ctx->force_clear = force_clear;
1312 dir_ctx->eof = desc->eof;
1313 dir_ctx->dtsize = desc->dtsize;
1314 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315 spin_unlock(&file->f_lock);
1316 out_free:
1317 kfree(desc);
1318
1319 out:
1320 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321 return res;
1322 }
1323
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1324 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325 {
1326 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327
1328 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329 filp, offset, whence);
1330
1331 switch (whence) {
1332 default:
1333 return -EINVAL;
1334 case SEEK_SET:
1335 if (offset < 0)
1336 return -EINVAL;
1337 spin_lock(&filp->f_lock);
1338 break;
1339 case SEEK_CUR:
1340 if (offset == 0)
1341 return filp->f_pos;
1342 spin_lock(&filp->f_lock);
1343 offset += filp->f_pos;
1344 if (offset < 0) {
1345 spin_unlock(&filp->f_lock);
1346 return -EINVAL;
1347 }
1348 }
1349 if (offset != filp->f_pos) {
1350 filp->f_pos = offset;
1351 dir_ctx->page_index = 0;
1352 if (!nfs_readdir_use_cookie(filp)) {
1353 dir_ctx->dir_cookie = 0;
1354 dir_ctx->last_cookie = 0;
1355 } else {
1356 dir_ctx->dir_cookie = offset;
1357 dir_ctx->last_cookie = offset;
1358 }
1359 dir_ctx->eof = false;
1360 }
1361 spin_unlock(&filp->f_lock);
1362 return offset;
1363 }
1364
1365 /*
1366 * All directory operations under NFS are synchronous, so fsync()
1367 * is a dummy operation.
1368 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1369 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370 int datasync)
1371 {
1372 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373
1374 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1375 return 0;
1376 }
1377
1378 /**
1379 * nfs_force_lookup_revalidate - Mark the directory as having changed
1380 * @dir: pointer to directory inode
1381 *
1382 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383 * full lookup on all child dentries of 'dir' whenever a change occurs
1384 * on the server that might have invalidated our dcache.
1385 *
1386 * Note that we reserve bit '0' as a tag to let us know when a dentry
1387 * was revalidated while holding a delegation on its inode.
1388 *
1389 * The caller should be holding dir->i_lock
1390 */
nfs_force_lookup_revalidate(struct inode * dir)1391 void nfs_force_lookup_revalidate(struct inode *dir)
1392 {
1393 NFS_I(dir)->cache_change_attribute += 2;
1394 }
1395 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396
1397 /**
1398 * nfs_verify_change_attribute - Detects NFS remote directory changes
1399 * @dir: pointer to parent directory inode
1400 * @verf: previously saved change attribute
1401 *
1402 * Return "false" if the verifiers doesn't match the change attribute.
1403 * This would usually indicate that the directory contents have changed on
1404 * the server, and that any dentries need revalidating.
1405 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1406 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407 {
1408 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409 }
1410
nfs_set_verifier_delegated(unsigned long * verf)1411 static void nfs_set_verifier_delegated(unsigned long *verf)
1412 {
1413 *verf |= 1UL;
1414 }
1415
1416 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1417 static void nfs_unset_verifier_delegated(unsigned long *verf)
1418 {
1419 *verf &= ~1UL;
1420 }
1421 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422
nfs_test_verifier_delegated(unsigned long verf)1423 static bool nfs_test_verifier_delegated(unsigned long verf)
1424 {
1425 return verf & 1;
1426 }
1427
nfs_verifier_is_delegated(struct dentry * dentry)1428 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429 {
1430 return nfs_test_verifier_delegated(dentry->d_time);
1431 }
1432
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1433 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434 {
1435 struct inode *inode = d_inode(dentry);
1436 struct inode *dir = d_inode_rcu(dentry->d_parent);
1437
1438 if (!dir || !nfs_verify_change_attribute(dir, verf))
1439 return;
1440 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1441 nfs_set_verifier_delegated(&verf);
1442 dentry->d_time = verf;
1443 }
1444
1445 /**
1446 * nfs_set_verifier - save a parent directory verifier in the dentry
1447 * @dentry: pointer to dentry
1448 * @verf: verifier to save
1449 *
1450 * Saves the parent directory verifier in @dentry. If the inode has
1451 * a delegation, we also tag the dentry as having been revalidated
1452 * while holding a delegation so that we know we don't have to
1453 * look it up again after a directory change.
1454 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1455 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456 {
1457
1458 spin_lock(&dentry->d_lock);
1459 nfs_set_verifier_locked(dentry, verf);
1460 spin_unlock(&dentry->d_lock);
1461 }
1462 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463
1464 #if IS_ENABLED(CONFIG_NFS_V4)
1465 /**
1466 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467 * @inode: pointer to inode
1468 *
1469 * Iterates through the dentries in the inode alias list and clears
1470 * the tag used to indicate that the dentry has been revalidated
1471 * while holding a delegation.
1472 * This function is intended for use when the delegation is being
1473 * returned or revoked.
1474 */
nfs_clear_verifier_delegated(struct inode * inode)1475 void nfs_clear_verifier_delegated(struct inode *inode)
1476 {
1477 struct dentry *alias;
1478
1479 if (!inode)
1480 return;
1481 spin_lock(&inode->i_lock);
1482 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483 spin_lock(&alias->d_lock);
1484 nfs_unset_verifier_delegated(&alias->d_time);
1485 spin_unlock(&alias->d_lock);
1486 }
1487 spin_unlock(&inode->i_lock);
1488 }
1489 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1492 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493 {
1494 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495 d_really_is_negative(dentry))
1496 return dentry->d_time == inode_peek_iversion_raw(dir);
1497 return nfs_verify_change_attribute(dir, dentry->d_time);
1498 }
1499
1500 /*
1501 * A check for whether or not the parent directory has changed.
1502 * In the case it has, we assume that the dentries are untrustworthy
1503 * and may need to be looked up again.
1504 * If rcu_walk prevents us from performing a full check, return 0.
1505 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1506 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507 int rcu_walk)
1508 {
1509 if (IS_ROOT(dentry))
1510 return 1;
1511 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512 return 0;
1513 if (!nfs_dentry_verify_change(dir, dentry))
1514 return 0;
1515 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1516 if (nfs_mapping_need_revalidate_inode(dir)) {
1517 if (rcu_walk)
1518 return 0;
1519 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520 return 0;
1521 }
1522 if (!nfs_dentry_verify_change(dir, dentry))
1523 return 0;
1524 return 1;
1525 }
1526
1527 /*
1528 * Use intent information to check whether or not we're going to do
1529 * an O_EXCL create using this path component.
1530 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1531 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532 {
1533 if (NFS_PROTO(dir)->version == 2)
1534 return 0;
1535 return flags & LOOKUP_EXCL;
1536 }
1537
1538 /*
1539 * Inode and filehandle revalidation for lookups.
1540 *
1541 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542 * or if the intent information indicates that we're about to open this
1543 * particular file and the "nocto" mount flag is not set.
1544 *
1545 */
1546 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1547 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548 {
1549 struct nfs_server *server = NFS_SERVER(inode);
1550 int ret;
1551
1552 if (IS_AUTOMOUNT(inode))
1553 return 0;
1554
1555 if (flags & LOOKUP_OPEN) {
1556 switch (inode->i_mode & S_IFMT) {
1557 case S_IFREG:
1558 /* A NFSv4 OPEN will revalidate later */
1559 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560 goto out;
1561 fallthrough;
1562 case S_IFDIR:
1563 if (server->flags & NFS_MOUNT_NOCTO)
1564 break;
1565 /* NFS close-to-open cache consistency validation */
1566 goto out_force;
1567 }
1568 }
1569
1570 /* VFS wants an on-the-wire revalidation */
1571 if (flags & LOOKUP_REVAL)
1572 goto out_force;
1573 out:
1574 if (inode->i_nlink > 0 ||
1575 (inode->i_nlink == 0 &&
1576 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577 return 0;
1578 else
1579 return -ESTALE;
1580 out_force:
1581 if (flags & LOOKUP_RCU)
1582 return -ECHILD;
1583 ret = __nfs_revalidate_inode(server, inode);
1584 if (ret != 0)
1585 return ret;
1586 goto out;
1587 }
1588
nfs_mark_dir_for_revalidate(struct inode * inode)1589 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590 {
1591 spin_lock(&inode->i_lock);
1592 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593 spin_unlock(&inode->i_lock);
1594 }
1595
1596 /*
1597 * We judge how long we want to trust negative
1598 * dentries by looking at the parent inode mtime.
1599 *
1600 * If parent mtime has changed, we revalidate, else we wait for a
1601 * period corresponding to the parent's attribute cache timeout value.
1602 *
1603 * If LOOKUP_RCU prevents us from performing a full check, return 1
1604 * suggesting a reval is needed.
1605 *
1606 * Note that when creating a new file, or looking up a rename target,
1607 * then it shouldn't be necessary to revalidate a negative dentry.
1608 */
1609 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1610 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611 unsigned int flags)
1612 {
1613 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1614 return 0;
1615 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616 return 1;
1617 /* Case insensitive server? Revalidate negative dentries */
1618 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619 return 1;
1620 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621 }
1622
1623 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1624 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625 struct inode *inode, int error)
1626 {
1627 switch (error) {
1628 case 1:
1629 break;
1630 case -ETIMEDOUT:
1631 if (inode && (IS_ROOT(dentry) ||
1632 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1633 error = 1;
1634 break;
1635 case -ESTALE:
1636 case -ENOENT:
1637 error = 0;
1638 fallthrough;
1639 default:
1640 /*
1641 * We can't d_drop the root of a disconnected tree:
1642 * its d_hash is on the s_anon list and d_drop() would hide
1643 * it from shrink_dcache_for_unmount(), leading to busy
1644 * inodes on unmount and further oopses.
1645 */
1646 if (inode && IS_ROOT(dentry))
1647 error = 1;
1648 break;
1649 }
1650 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1651 return error;
1652 }
1653
1654 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1655 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1656 unsigned int flags)
1657 {
1658 int ret = 1;
1659 if (nfs_neg_need_reval(dir, dentry, flags)) {
1660 if (flags & LOOKUP_RCU)
1661 return -ECHILD;
1662 ret = 0;
1663 }
1664 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1665 }
1666
1667 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1668 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1669 struct inode *inode)
1670 {
1671 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1672 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1673 }
1674
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode,unsigned int flags)1675 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1676 struct dentry *dentry,
1677 struct inode *inode, unsigned int flags)
1678 {
1679 struct nfs_fh *fhandle;
1680 struct nfs_fattr *fattr;
1681 unsigned long dir_verifier;
1682 int ret;
1683
1684 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1685
1686 ret = -ENOMEM;
1687 fhandle = nfs_alloc_fhandle();
1688 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1689 if (fhandle == NULL || fattr == NULL)
1690 goto out;
1691
1692 dir_verifier = nfs_save_change_attribute(dir);
1693 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1694 if (ret < 0)
1695 goto out;
1696
1697 /* Request help from readdirplus */
1698 nfs_lookup_advise_force_readdirplus(dir, flags);
1699
1700 ret = 0;
1701 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1702 goto out;
1703 if (nfs_refresh_inode(inode, fattr) < 0)
1704 goto out;
1705
1706 nfs_setsecurity(inode, fattr);
1707 nfs_set_verifier(dentry, dir_verifier);
1708
1709 ret = 1;
1710 out:
1711 nfs_free_fattr(fattr);
1712 nfs_free_fhandle(fhandle);
1713
1714 /*
1715 * If the lookup failed despite the dentry change attribute being
1716 * a match, then we should revalidate the directory cache.
1717 */
1718 if (!ret && nfs_dentry_verify_change(dir, dentry))
1719 nfs_mark_dir_for_revalidate(dir);
1720 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1721 }
1722
1723 /*
1724 * This is called every time the dcache has a lookup hit,
1725 * and we should check whether we can really trust that
1726 * lookup.
1727 *
1728 * NOTE! The hit can be a negative hit too, don't assume
1729 * we have an inode!
1730 *
1731 * If the parent directory is seen to have changed, we throw out the
1732 * cached dentry and do a new lookup.
1733 */
1734 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1735 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1736 unsigned int flags)
1737 {
1738 struct inode *inode;
1739 int error = 0;
1740
1741 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1742 inode = d_inode(dentry);
1743
1744 if (!inode)
1745 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1746
1747 if (is_bad_inode(inode)) {
1748 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1749 __func__, dentry);
1750 goto out_bad;
1751 }
1752
1753 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1754 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1755 goto out_bad;
1756
1757 if (nfs_verifier_is_delegated(dentry))
1758 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1759
1760 /* Force a full look up iff the parent directory has changed */
1761 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1762 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1763 error = nfs_lookup_verify_inode(inode, flags);
1764 if (error) {
1765 if (error == -ESTALE)
1766 nfs_mark_dir_for_revalidate(dir);
1767 goto out_bad;
1768 }
1769 goto out_valid;
1770 }
1771
1772 if (flags & LOOKUP_RCU)
1773 return -ECHILD;
1774
1775 if (NFS_STALE(inode))
1776 goto out_bad;
1777
1778 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1779 out_valid:
1780 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1781 out_bad:
1782 if (flags & LOOKUP_RCU)
1783 return -ECHILD;
1784 return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1785 }
1786
1787 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1788 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1789 int (*reval)(struct inode *, struct dentry *, unsigned int))
1790 {
1791 struct dentry *parent;
1792 struct inode *dir;
1793 int ret;
1794
1795 if (flags & LOOKUP_RCU) {
1796 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1797 return -ECHILD;
1798 parent = READ_ONCE(dentry->d_parent);
1799 dir = d_inode_rcu(parent);
1800 if (!dir)
1801 return -ECHILD;
1802 ret = reval(dir, dentry, flags);
1803 if (parent != READ_ONCE(dentry->d_parent))
1804 return -ECHILD;
1805 } else {
1806 /* Wait for unlink to complete - see unblock_revalidate() */
1807 wait_var_event(&dentry->d_fsdata,
1808 smp_load_acquire(&dentry->d_fsdata)
1809 != NFS_FSDATA_BLOCKED);
1810 parent = dget_parent(dentry);
1811 ret = reval(d_inode(parent), dentry, flags);
1812 dput(parent);
1813 }
1814 return ret;
1815 }
1816
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1817 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818 {
1819 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820 }
1821
block_revalidate(struct dentry * dentry)1822 static void block_revalidate(struct dentry *dentry)
1823 {
1824 /* old devname - just in case */
1825 kfree(dentry->d_fsdata);
1826
1827 /* Any new reference that could lead to an open
1828 * will take ->d_lock in lookup_open() -> d_lookup().
1829 * Holding this lock ensures we cannot race with
1830 * __nfs_lookup_revalidate() and removes and need
1831 * for further barriers.
1832 */
1833 lockdep_assert_held(&dentry->d_lock);
1834
1835 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1836 }
1837
unblock_revalidate(struct dentry * dentry)1838 static void unblock_revalidate(struct dentry *dentry)
1839 {
1840 store_release_wake_up(&dentry->d_fsdata, NULL);
1841 }
1842
1843 /*
1844 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1845 * when we don't really care about the dentry name. This is called when a
1846 * pathwalk ends on a dentry that was not found via a normal lookup in the
1847 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1848 *
1849 * In this situation, we just want to verify that the inode itself is OK
1850 * since the dentry might have changed on the server.
1851 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1852 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1853 {
1854 struct inode *inode = d_inode(dentry);
1855 int error = 0;
1856
1857 /*
1858 * I believe we can only get a negative dentry here in the case of a
1859 * procfs-style symlink. Just assume it's correct for now, but we may
1860 * eventually need to do something more here.
1861 */
1862 if (!inode) {
1863 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1864 __func__, dentry);
1865 return 1;
1866 }
1867
1868 if (is_bad_inode(inode)) {
1869 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1870 __func__, dentry);
1871 return 0;
1872 }
1873
1874 error = nfs_lookup_verify_inode(inode, flags);
1875 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1876 __func__, inode->i_ino, error ? "invalid" : "valid");
1877 return !error;
1878 }
1879
1880 /*
1881 * This is called from dput() when d_count is going to 0.
1882 */
nfs_dentry_delete(const struct dentry * dentry)1883 static int nfs_dentry_delete(const struct dentry *dentry)
1884 {
1885 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1886 dentry, dentry->d_flags);
1887
1888 /* Unhash any dentry with a stale inode */
1889 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1890 return 1;
1891
1892 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1893 /* Unhash it, so that ->d_iput() would be called */
1894 return 1;
1895 }
1896 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1897 /* Unhash it, so that ancestors of killed async unlink
1898 * files will be cleaned up during umount */
1899 return 1;
1900 }
1901 return 0;
1902
1903 }
1904
1905 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1906 static void nfs_drop_nlink(struct inode *inode)
1907 {
1908 spin_lock(&inode->i_lock);
1909 /* drop the inode if we're reasonably sure this is the last link */
1910 if (inode->i_nlink > 0)
1911 drop_nlink(inode);
1912 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1913 nfs_set_cache_invalid(
1914 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1915 NFS_INO_INVALID_NLINK);
1916 spin_unlock(&inode->i_lock);
1917 }
1918
1919 /*
1920 * Called when the dentry loses inode.
1921 * We use it to clean up silly-renamed files.
1922 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1923 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1924 {
1925 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1926 nfs_complete_unlink(dentry, inode);
1927 nfs_drop_nlink(inode);
1928 }
1929 iput(inode);
1930 }
1931
nfs_d_release(struct dentry * dentry)1932 static void nfs_d_release(struct dentry *dentry)
1933 {
1934 /* free cached devname value, if it survived that far */
1935 if (unlikely(dentry->d_fsdata)) {
1936 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1937 WARN_ON(1);
1938 else
1939 kfree(dentry->d_fsdata);
1940 }
1941 }
1942
1943 const struct dentry_operations nfs_dentry_operations = {
1944 .d_revalidate = nfs_lookup_revalidate,
1945 .d_weak_revalidate = nfs_weak_revalidate,
1946 .d_delete = nfs_dentry_delete,
1947 .d_iput = nfs_dentry_iput,
1948 .d_automount = nfs_d_automount,
1949 .d_release = nfs_d_release,
1950 };
1951 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1952
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1953 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1954 {
1955 struct dentry *res;
1956 struct inode *inode = NULL;
1957 struct nfs_fh *fhandle = NULL;
1958 struct nfs_fattr *fattr = NULL;
1959 unsigned long dir_verifier;
1960 int error;
1961
1962 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1963 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1964
1965 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1966 return ERR_PTR(-ENAMETOOLONG);
1967
1968 /*
1969 * If we're doing an exclusive create, optimize away the lookup
1970 * but don't hash the dentry.
1971 */
1972 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1973 return NULL;
1974
1975 res = ERR_PTR(-ENOMEM);
1976 fhandle = nfs_alloc_fhandle();
1977 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1978 if (fhandle == NULL || fattr == NULL)
1979 goto out;
1980
1981 dir_verifier = nfs_save_change_attribute(dir);
1982 trace_nfs_lookup_enter(dir, dentry, flags);
1983 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1984 if (error == -ENOENT) {
1985 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1986 dir_verifier = inode_peek_iversion_raw(dir);
1987 goto no_entry;
1988 }
1989 if (error < 0) {
1990 res = ERR_PTR(error);
1991 goto out;
1992 }
1993 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1994 res = ERR_CAST(inode);
1995 if (IS_ERR(res))
1996 goto out;
1997
1998 /* Notify readdir to use READDIRPLUS */
1999 nfs_lookup_advise_force_readdirplus(dir, flags);
2000
2001 no_entry:
2002 res = d_splice_alias(inode, dentry);
2003 if (res != NULL) {
2004 if (IS_ERR(res))
2005 goto out;
2006 dentry = res;
2007 }
2008 nfs_set_verifier(dentry, dir_verifier);
2009 out:
2010 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2011 nfs_free_fattr(fattr);
2012 nfs_free_fhandle(fhandle);
2013 return res;
2014 }
2015 EXPORT_SYMBOL_GPL(nfs_lookup);
2016
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2017 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2018 {
2019 /* Case insensitive server? Revalidate dentries */
2020 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2021 d_prune_aliases(inode);
2022 }
2023 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2024
2025 #if IS_ENABLED(CONFIG_NFS_V4)
2026 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2027
2028 const struct dentry_operations nfs4_dentry_operations = {
2029 .d_revalidate = nfs4_lookup_revalidate,
2030 .d_weak_revalidate = nfs_weak_revalidate,
2031 .d_delete = nfs_dentry_delete,
2032 .d_iput = nfs_dentry_iput,
2033 .d_automount = nfs_d_automount,
2034 .d_release = nfs_d_release,
2035 };
2036 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2037
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2038 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2039 {
2040 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2041 }
2042
do_open(struct inode * inode,struct file * filp)2043 static int do_open(struct inode *inode, struct file *filp)
2044 {
2045 nfs_fscache_open_file(inode, filp);
2046 return 0;
2047 }
2048
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2049 static int nfs_finish_open(struct nfs_open_context *ctx,
2050 struct dentry *dentry,
2051 struct file *file, unsigned open_flags)
2052 {
2053 int err;
2054
2055 err = finish_open(file, dentry, do_open);
2056 if (err)
2057 goto out;
2058 if (S_ISREG(file_inode(file)->i_mode))
2059 nfs_file_set_open_context(file, ctx);
2060 else
2061 err = -EOPENSTALE;
2062 out:
2063 return err;
2064 }
2065
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2066 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2067 struct file *file, unsigned open_flags,
2068 umode_t mode)
2069 {
2070 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2071 struct nfs_open_context *ctx;
2072 struct dentry *res;
2073 struct iattr attr = { .ia_valid = ATTR_OPEN };
2074 struct inode *inode;
2075 unsigned int lookup_flags = 0;
2076 unsigned long dir_verifier;
2077 bool switched = false;
2078 int created = 0;
2079 int err;
2080
2081 /* Expect a negative dentry */
2082 BUG_ON(d_inode(dentry));
2083
2084 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2085 dir->i_sb->s_id, dir->i_ino, dentry);
2086
2087 err = nfs_check_flags(open_flags);
2088 if (err)
2089 return err;
2090
2091 /* NFS only supports OPEN on regular files */
2092 if ((open_flags & O_DIRECTORY)) {
2093 if (!d_in_lookup(dentry)) {
2094 /*
2095 * Hashed negative dentry with O_DIRECTORY: dentry was
2096 * revalidated and is fine, no need to perform lookup
2097 * again
2098 */
2099 return -ENOENT;
2100 }
2101 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2102 goto no_open;
2103 }
2104
2105 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2106 return -ENAMETOOLONG;
2107
2108 if (open_flags & O_CREAT) {
2109 struct nfs_server *server = NFS_SERVER(dir);
2110
2111 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2112 mode &= ~current_umask();
2113
2114 attr.ia_valid |= ATTR_MODE;
2115 attr.ia_mode = mode;
2116 }
2117 if (open_flags & O_TRUNC) {
2118 attr.ia_valid |= ATTR_SIZE;
2119 attr.ia_size = 0;
2120 }
2121
2122 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2123 d_drop(dentry);
2124 switched = true;
2125 dentry = d_alloc_parallel(dentry->d_parent,
2126 &dentry->d_name, &wq);
2127 if (IS_ERR(dentry))
2128 return PTR_ERR(dentry);
2129 if (unlikely(!d_in_lookup(dentry)))
2130 return finish_no_open(file, dentry);
2131 }
2132
2133 ctx = create_nfs_open_context(dentry, open_flags, file);
2134 err = PTR_ERR(ctx);
2135 if (IS_ERR(ctx))
2136 goto out;
2137
2138 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2139 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2140 if (created)
2141 file->f_mode |= FMODE_CREATED;
2142 if (IS_ERR(inode)) {
2143 err = PTR_ERR(inode);
2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 put_nfs_open_context(ctx);
2146 d_drop(dentry);
2147 switch (err) {
2148 case -ENOENT:
2149 d_splice_alias(NULL, dentry);
2150 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2151 dir_verifier = inode_peek_iversion_raw(dir);
2152 else
2153 dir_verifier = nfs_save_change_attribute(dir);
2154 nfs_set_verifier(dentry, dir_verifier);
2155 break;
2156 case -EISDIR:
2157 case -ENOTDIR:
2158 goto no_open;
2159 case -ELOOP:
2160 if (!(open_flags & O_NOFOLLOW))
2161 goto no_open;
2162 break;
2163 /* case -EINVAL: */
2164 default:
2165 break;
2166 }
2167 goto out;
2168 }
2169 file->f_mode |= FMODE_CAN_ODIRECT;
2170
2171 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2172 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2173 put_nfs_open_context(ctx);
2174 out:
2175 if (unlikely(switched)) {
2176 d_lookup_done(dentry);
2177 dput(dentry);
2178 }
2179 return err;
2180
2181 no_open:
2182 res = nfs_lookup(dir, dentry, lookup_flags);
2183 if (!res) {
2184 inode = d_inode(dentry);
2185 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2186 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2187 res = ERR_PTR(-ENOTDIR);
2188 else if (inode && S_ISREG(inode->i_mode))
2189 res = ERR_PTR(-EOPENSTALE);
2190 } else if (!IS_ERR(res)) {
2191 inode = d_inode(res);
2192 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2193 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2194 dput(res);
2195 res = ERR_PTR(-ENOTDIR);
2196 } else if (inode && S_ISREG(inode->i_mode)) {
2197 dput(res);
2198 res = ERR_PTR(-EOPENSTALE);
2199 }
2200 }
2201 if (switched) {
2202 d_lookup_done(dentry);
2203 if (!res)
2204 res = dentry;
2205 else
2206 dput(dentry);
2207 }
2208 if (IS_ERR(res))
2209 return PTR_ERR(res);
2210 return finish_no_open(file, res);
2211 }
2212 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2213
2214 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2215 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2216 unsigned int flags)
2217 {
2218 struct inode *inode;
2219
2220 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2221
2222 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2223 goto full_reval;
2224 if (d_mountpoint(dentry))
2225 goto full_reval;
2226
2227 inode = d_inode(dentry);
2228
2229 /* We can't create new files in nfs_open_revalidate(), so we
2230 * optimize away revalidation of negative dentries.
2231 */
2232 if (inode == NULL)
2233 goto full_reval;
2234
2235 if (nfs_verifier_is_delegated(dentry))
2236 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2237
2238 /* NFS only supports OPEN on regular files */
2239 if (!S_ISREG(inode->i_mode))
2240 goto full_reval;
2241
2242 /* We cannot do exclusive creation on a positive dentry */
2243 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2244 goto reval_dentry;
2245
2246 /* Check if the directory changed */
2247 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2248 goto reval_dentry;
2249
2250 /* Let f_op->open() actually open (and revalidate) the file */
2251 return 1;
2252 reval_dentry:
2253 if (flags & LOOKUP_RCU)
2254 return -ECHILD;
2255 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2256
2257 full_reval:
2258 return nfs_do_lookup_revalidate(dir, dentry, flags);
2259 }
2260
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2261 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2262 {
2263 return __nfs_lookup_revalidate(dentry, flags,
2264 nfs4_do_lookup_revalidate);
2265 }
2266
2267 #endif /* CONFIG_NFSV4 */
2268
nfs_atomic_open_v23(struct inode * dir,struct dentry * dentry,struct file * file,unsigned int open_flags,umode_t mode)2269 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2270 struct file *file, unsigned int open_flags,
2271 umode_t mode)
2272 {
2273
2274 /* Same as look+open from lookup_open(), but with different O_TRUNC
2275 * handling.
2276 */
2277 int error = 0;
2278
2279 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2280 return -ENAMETOOLONG;
2281
2282 if (open_flags & O_CREAT) {
2283 file->f_mode |= FMODE_CREATED;
2284 error = nfs_do_create(dir, dentry, mode, open_flags);
2285 if (error)
2286 return error;
2287 return finish_open(file, dentry, NULL);
2288 } else if (d_in_lookup(dentry)) {
2289 /* The only flags nfs_lookup considers are
2290 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2291 * we want those to be zero so the lookup isn't skipped.
2292 */
2293 struct dentry *res = nfs_lookup(dir, dentry, 0);
2294
2295 d_lookup_done(dentry);
2296 if (unlikely(res)) {
2297 if (IS_ERR(res))
2298 return PTR_ERR(res);
2299 return finish_no_open(file, res);
2300 }
2301 }
2302 return finish_no_open(file, NULL);
2303
2304 }
2305 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2306
2307 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2308 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2309 struct nfs_fattr *fattr)
2310 {
2311 struct dentry *parent = dget_parent(dentry);
2312 struct inode *dir = d_inode(parent);
2313 struct inode *inode;
2314 struct dentry *d;
2315 int error;
2316
2317 d_drop(dentry);
2318
2319 if (fhandle->size == 0) {
2320 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2321 if (error)
2322 goto out_error;
2323 }
2324 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2325 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2326 struct nfs_server *server = NFS_SB(dentry->d_sb);
2327 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2328 fattr, NULL);
2329 if (error < 0)
2330 goto out_error;
2331 }
2332 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2333 d = d_splice_alias(inode, dentry);
2334 out:
2335 dput(parent);
2336 return d;
2337 out_error:
2338 d = ERR_PTR(error);
2339 goto out;
2340 }
2341 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2342
2343 /*
2344 * Code common to create, mkdir, and mknod.
2345 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2346 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2347 struct nfs_fattr *fattr)
2348 {
2349 struct dentry *d;
2350
2351 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2352 if (IS_ERR(d))
2353 return PTR_ERR(d);
2354
2355 /* Callers don't care */
2356 dput(d);
2357 return 0;
2358 }
2359 EXPORT_SYMBOL_GPL(nfs_instantiate);
2360
2361 /*
2362 * Following a failed create operation, we drop the dentry rather
2363 * than retain a negative dentry. This avoids a problem in the event
2364 * that the operation succeeded on the server, but an error in the
2365 * reply path made it appear to have failed.
2366 */
nfs_do_create(struct inode * dir,struct dentry * dentry,umode_t mode,int open_flags)2367 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2368 umode_t mode, int open_flags)
2369 {
2370 struct iattr attr;
2371 int error;
2372
2373 open_flags |= O_CREAT;
2374
2375 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2376 dir->i_sb->s_id, dir->i_ino, dentry);
2377
2378 attr.ia_mode = mode;
2379 attr.ia_valid = ATTR_MODE;
2380 if (open_flags & O_TRUNC) {
2381 attr.ia_size = 0;
2382 attr.ia_valid |= ATTR_SIZE;
2383 }
2384
2385 trace_nfs_create_enter(dir, dentry, open_flags);
2386 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2387 trace_nfs_create_exit(dir, dentry, open_flags, error);
2388 if (error != 0)
2389 goto out_err;
2390 return 0;
2391 out_err:
2392 d_drop(dentry);
2393 return error;
2394 }
2395
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2396 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2397 struct dentry *dentry, umode_t mode, bool excl)
2398 {
2399 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2400 }
2401 EXPORT_SYMBOL_GPL(nfs_create);
2402
2403 /*
2404 * See comments for nfs_proc_create regarding failed operations.
2405 */
2406 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2407 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2408 struct dentry *dentry, umode_t mode, dev_t rdev)
2409 {
2410 struct iattr attr;
2411 int status;
2412
2413 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2414 dir->i_sb->s_id, dir->i_ino, dentry);
2415
2416 attr.ia_mode = mode;
2417 attr.ia_valid = ATTR_MODE;
2418
2419 trace_nfs_mknod_enter(dir, dentry);
2420 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2421 trace_nfs_mknod_exit(dir, dentry, status);
2422 if (status != 0)
2423 goto out_err;
2424 return 0;
2425 out_err:
2426 d_drop(dentry);
2427 return status;
2428 }
2429 EXPORT_SYMBOL_GPL(nfs_mknod);
2430
2431 /*
2432 * See comments for nfs_proc_create regarding failed operations.
2433 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2434 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2435 struct dentry *dentry, umode_t mode)
2436 {
2437 struct iattr attr;
2438 int error;
2439
2440 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2441 dir->i_sb->s_id, dir->i_ino, dentry);
2442
2443 attr.ia_valid = ATTR_MODE;
2444 attr.ia_mode = mode | S_IFDIR;
2445
2446 trace_nfs_mkdir_enter(dir, dentry);
2447 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2448 trace_nfs_mkdir_exit(dir, dentry, error);
2449 if (error != 0)
2450 goto out_err;
2451 return 0;
2452 out_err:
2453 d_drop(dentry);
2454 return error;
2455 }
2456 EXPORT_SYMBOL_GPL(nfs_mkdir);
2457
nfs_dentry_handle_enoent(struct dentry * dentry)2458 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2459 {
2460 if (simple_positive(dentry))
2461 d_delete(dentry);
2462 }
2463
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2464 static void nfs_dentry_remove_handle_error(struct inode *dir,
2465 struct dentry *dentry, int error)
2466 {
2467 switch (error) {
2468 case -ENOENT:
2469 if (d_really_is_positive(dentry))
2470 d_delete(dentry);
2471 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2472 break;
2473 case 0:
2474 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2475 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2476 }
2477 }
2478
nfs_rmdir(struct inode * dir,struct dentry * dentry)2479 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2480 {
2481 int error;
2482
2483 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2484 dir->i_sb->s_id, dir->i_ino, dentry);
2485
2486 trace_nfs_rmdir_enter(dir, dentry);
2487 if (d_really_is_positive(dentry)) {
2488 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2489 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2490 /* Ensure the VFS deletes this inode */
2491 switch (error) {
2492 case 0:
2493 clear_nlink(d_inode(dentry));
2494 break;
2495 case -ENOENT:
2496 nfs_dentry_handle_enoent(dentry);
2497 }
2498 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2499 } else
2500 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2501 nfs_dentry_remove_handle_error(dir, dentry, error);
2502 trace_nfs_rmdir_exit(dir, dentry, error);
2503
2504 return error;
2505 }
2506 EXPORT_SYMBOL_GPL(nfs_rmdir);
2507
2508 /*
2509 * Remove a file after making sure there are no pending writes,
2510 * and after checking that the file has only one user.
2511 *
2512 * We invalidate the attribute cache and free the inode prior to the operation
2513 * to avoid possible races if the server reuses the inode.
2514 */
nfs_safe_remove(struct dentry * dentry)2515 static int nfs_safe_remove(struct dentry *dentry)
2516 {
2517 struct inode *dir = d_inode(dentry->d_parent);
2518 struct inode *inode = d_inode(dentry);
2519 int error = -EBUSY;
2520
2521 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2522
2523 /* If the dentry was sillyrenamed, we simply call d_delete() */
2524 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2525 error = 0;
2526 goto out;
2527 }
2528
2529 trace_nfs_remove_enter(dir, dentry);
2530 if (inode != NULL) {
2531 error = NFS_PROTO(dir)->remove(dir, dentry);
2532 if (error == 0)
2533 nfs_drop_nlink(inode);
2534 } else
2535 error = NFS_PROTO(dir)->remove(dir, dentry);
2536 if (error == -ENOENT)
2537 nfs_dentry_handle_enoent(dentry);
2538 trace_nfs_remove_exit(dir, dentry, error);
2539 out:
2540 return error;
2541 }
2542
2543 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2544 * belongs to an active ".nfs..." file and we return -EBUSY.
2545 *
2546 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2547 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2548 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2549 {
2550 int error;
2551
2552 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2553 dir->i_ino, dentry);
2554
2555 trace_nfs_unlink_enter(dir, dentry);
2556 spin_lock(&dentry->d_lock);
2557 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2558 &NFS_I(d_inode(dentry))->flags)) {
2559 spin_unlock(&dentry->d_lock);
2560 /* Start asynchronous writeout of the inode */
2561 write_inode_now(d_inode(dentry), 0);
2562 error = nfs_sillyrename(dir, dentry);
2563 goto out;
2564 }
2565 /* We must prevent any concurrent open until the unlink
2566 * completes. ->d_revalidate will wait for ->d_fsdata
2567 * to clear. We set it here to ensure no lookup succeeds until
2568 * the unlink is complete on the server.
2569 */
2570 error = -ETXTBSY;
2571 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2572 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2573 spin_unlock(&dentry->d_lock);
2574 goto out;
2575 }
2576 block_revalidate(dentry);
2577
2578 spin_unlock(&dentry->d_lock);
2579 error = nfs_safe_remove(dentry);
2580 nfs_dentry_remove_handle_error(dir, dentry, error);
2581 unblock_revalidate(dentry);
2582 out:
2583 trace_nfs_unlink_exit(dir, dentry, error);
2584 return error;
2585 }
2586 EXPORT_SYMBOL_GPL(nfs_unlink);
2587
2588 /*
2589 * To create a symbolic link, most file systems instantiate a new inode,
2590 * add a page to it containing the path, then write it out to the disk
2591 * using prepare_write/commit_write.
2592 *
2593 * Unfortunately the NFS client can't create the in-core inode first
2594 * because it needs a file handle to create an in-core inode (see
2595 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2596 * symlink request has completed on the server.
2597 *
2598 * So instead we allocate a raw page, copy the symname into it, then do
2599 * the SYMLINK request with the page as the buffer. If it succeeds, we
2600 * now have a new file handle and can instantiate an in-core NFS inode
2601 * and move the raw page into its mapping.
2602 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2603 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2604 struct dentry *dentry, const char *symname)
2605 {
2606 struct folio *folio;
2607 char *kaddr;
2608 struct iattr attr;
2609 unsigned int pathlen = strlen(symname);
2610 int error;
2611
2612 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2613 dir->i_ino, dentry, symname);
2614
2615 if (pathlen > PAGE_SIZE)
2616 return -ENAMETOOLONG;
2617
2618 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2619 attr.ia_valid = ATTR_MODE;
2620
2621 folio = folio_alloc(GFP_USER, 0);
2622 if (!folio)
2623 return -ENOMEM;
2624
2625 kaddr = folio_address(folio);
2626 memcpy(kaddr, symname, pathlen);
2627 if (pathlen < PAGE_SIZE)
2628 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2629
2630 trace_nfs_symlink_enter(dir, dentry);
2631 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2632 trace_nfs_symlink_exit(dir, dentry, error);
2633 if (error != 0) {
2634 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2635 dir->i_sb->s_id, dir->i_ino,
2636 dentry, symname, error);
2637 d_drop(dentry);
2638 folio_put(folio);
2639 return error;
2640 }
2641
2642 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2643
2644 /*
2645 * No big deal if we can't add this page to the page cache here.
2646 * READLINK will get the missing page from the server if needed.
2647 */
2648 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2649 GFP_KERNEL) == 0) {
2650 folio_mark_uptodate(folio);
2651 folio_unlock(folio);
2652 }
2653
2654 folio_put(folio);
2655 return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(nfs_symlink);
2658
2659 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2660 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2661 {
2662 struct inode *inode = d_inode(old_dentry);
2663 int error;
2664
2665 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2666 old_dentry, dentry);
2667
2668 trace_nfs_link_enter(inode, dir, dentry);
2669 d_drop(dentry);
2670 if (S_ISREG(inode->i_mode))
2671 nfs_sync_inode(inode);
2672 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2673 if (error == 0) {
2674 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2675 ihold(inode);
2676 d_add(dentry, inode);
2677 }
2678 trace_nfs_link_exit(inode, dir, dentry, error);
2679 return error;
2680 }
2681 EXPORT_SYMBOL_GPL(nfs_link);
2682
2683 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2684 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2685 {
2686 struct dentry *new_dentry = data->new_dentry;
2687
2688 unblock_revalidate(new_dentry);
2689 }
2690
nfs_rename_is_unsafe_cross_dir(struct dentry * old_dentry,struct dentry * new_dentry)2691 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry,
2692 struct dentry *new_dentry)
2693 {
2694 struct nfs_server *server = NFS_SB(old_dentry->d_sb);
2695
2696 if (old_dentry->d_parent != new_dentry->d_parent)
2697 return false;
2698 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE)
2699 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN);
2700 return true;
2701 }
2702
2703 /*
2704 * RENAME
2705 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2706 * different file handle for the same inode after a rename (e.g. when
2707 * moving to a different directory). A fail-safe method to do so would
2708 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2709 * rename the old file using the sillyrename stuff. This way, the original
2710 * file in old_dir will go away when the last process iput()s the inode.
2711 *
2712 * FIXED.
2713 *
2714 * It actually works quite well. One needs to have the possibility for
2715 * at least one ".nfs..." file in each directory the file ever gets
2716 * moved or linked to which happens automagically with the new
2717 * implementation that only depends on the dcache stuff instead of
2718 * using the inode layer
2719 *
2720 * Unfortunately, things are a little more complicated than indicated
2721 * above. For a cross-directory move, we want to make sure we can get
2722 * rid of the old inode after the operation. This means there must be
2723 * no pending writes (if it's a file), and the use count must be 1.
2724 * If these conditions are met, we can drop the dentries before doing
2725 * the rename.
2726 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2727 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2728 struct dentry *old_dentry, struct inode *new_dir,
2729 struct dentry *new_dentry, unsigned int flags)
2730 {
2731 struct inode *old_inode = d_inode(old_dentry);
2732 struct inode *new_inode = d_inode(new_dentry);
2733 struct dentry *dentry = NULL;
2734 struct rpc_task *task;
2735 bool must_unblock = false;
2736 int error = -EBUSY;
2737
2738 if (flags)
2739 return -EINVAL;
2740
2741 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2742 old_dentry, new_dentry,
2743 d_count(new_dentry));
2744
2745 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2746 /*
2747 * For non-directories, check whether the target is busy and if so,
2748 * make a copy of the dentry and then do a silly-rename. If the
2749 * silly-rename succeeds, the copied dentry is hashed and becomes
2750 * the new target.
2751 */
2752 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2753 /* We must prevent any concurrent open until the unlink
2754 * completes. ->d_revalidate will wait for ->d_fsdata
2755 * to clear. We set it here to ensure no lookup succeeds until
2756 * the unlink is complete on the server.
2757 */
2758 error = -ETXTBSY;
2759 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2760 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2761 goto out;
2762
2763 spin_lock(&new_dentry->d_lock);
2764 if (d_count(new_dentry) > 2) {
2765 int err;
2766
2767 spin_unlock(&new_dentry->d_lock);
2768
2769 /* copy the target dentry's name */
2770 dentry = d_alloc(new_dentry->d_parent,
2771 &new_dentry->d_name);
2772 if (!dentry)
2773 goto out;
2774
2775 /* silly-rename the existing target ... */
2776 err = nfs_sillyrename(new_dir, new_dentry);
2777 if (err)
2778 goto out;
2779
2780 new_dentry = dentry;
2781 new_inode = NULL;
2782 } else {
2783 block_revalidate(new_dentry);
2784 must_unblock = true;
2785 spin_unlock(&new_dentry->d_lock);
2786 }
2787
2788 }
2789
2790 if (S_ISREG(old_inode->i_mode) &&
2791 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry))
2792 nfs_sync_inode(old_inode);
2793 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2794 must_unblock ? nfs_unblock_rename : NULL);
2795 if (IS_ERR(task)) {
2796 if (must_unblock)
2797 unblock_revalidate(new_dentry);
2798 error = PTR_ERR(task);
2799 goto out;
2800 }
2801
2802 error = rpc_wait_for_completion_task(task);
2803 if (error != 0) {
2804 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2805 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2806 smp_wmb();
2807 } else
2808 error = task->tk_status;
2809 rpc_put_task(task);
2810 /* Ensure the inode attributes are revalidated */
2811 if (error == 0) {
2812 spin_lock(&old_inode->i_lock);
2813 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2814 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2815 NFS_INO_INVALID_CTIME |
2816 NFS_INO_REVAL_FORCED);
2817 spin_unlock(&old_inode->i_lock);
2818 }
2819 out:
2820 trace_nfs_rename_exit(old_dir, old_dentry,
2821 new_dir, new_dentry, error);
2822 if (!error) {
2823 if (new_inode != NULL)
2824 nfs_drop_nlink(new_inode);
2825 /*
2826 * The d_move() should be here instead of in an async RPC completion
2827 * handler because we need the proper locks to move the dentry. If
2828 * we're interrupted by a signal, the async RPC completion handler
2829 * should mark the directories for revalidation.
2830 */
2831 d_move(old_dentry, new_dentry);
2832 nfs_set_verifier(old_dentry,
2833 nfs_save_change_attribute(new_dir));
2834 } else if (error == -ENOENT)
2835 nfs_dentry_handle_enoent(old_dentry);
2836
2837 /* new dentry created? */
2838 if (dentry)
2839 dput(dentry);
2840 return error;
2841 }
2842 EXPORT_SYMBOL_GPL(nfs_rename);
2843
2844 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2845 static LIST_HEAD(nfs_access_lru_list);
2846 static atomic_long_t nfs_access_nr_entries;
2847
2848 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2849 module_param(nfs_access_max_cachesize, ulong, 0644);
2850 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2851
nfs_access_free_entry(struct nfs_access_entry * entry)2852 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2853 {
2854 put_group_info(entry->group_info);
2855 kfree_rcu(entry, rcu_head);
2856 smp_mb__before_atomic();
2857 atomic_long_dec(&nfs_access_nr_entries);
2858 smp_mb__after_atomic();
2859 }
2860
nfs_access_free_list(struct list_head * head)2861 static void nfs_access_free_list(struct list_head *head)
2862 {
2863 struct nfs_access_entry *cache;
2864
2865 while (!list_empty(head)) {
2866 cache = list_entry(head->next, struct nfs_access_entry, lru);
2867 list_del(&cache->lru);
2868 nfs_access_free_entry(cache);
2869 }
2870 }
2871
2872 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2873 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2874 {
2875 LIST_HEAD(head);
2876 struct nfs_inode *nfsi, *next;
2877 struct nfs_access_entry *cache;
2878 long freed = 0;
2879
2880 spin_lock(&nfs_access_lru_lock);
2881 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2882 struct inode *inode;
2883
2884 if (nr_to_scan-- == 0)
2885 break;
2886 inode = &nfsi->vfs_inode;
2887 spin_lock(&inode->i_lock);
2888 if (list_empty(&nfsi->access_cache_entry_lru))
2889 goto remove_lru_entry;
2890 cache = list_entry(nfsi->access_cache_entry_lru.next,
2891 struct nfs_access_entry, lru);
2892 list_move(&cache->lru, &head);
2893 rb_erase(&cache->rb_node, &nfsi->access_cache);
2894 freed++;
2895 if (!list_empty(&nfsi->access_cache_entry_lru))
2896 list_move_tail(&nfsi->access_cache_inode_lru,
2897 &nfs_access_lru_list);
2898 else {
2899 remove_lru_entry:
2900 list_del_init(&nfsi->access_cache_inode_lru);
2901 smp_mb__before_atomic();
2902 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2903 smp_mb__after_atomic();
2904 }
2905 spin_unlock(&inode->i_lock);
2906 }
2907 spin_unlock(&nfs_access_lru_lock);
2908 nfs_access_free_list(&head);
2909 return freed;
2910 }
2911
2912 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2913 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2914 {
2915 int nr_to_scan = sc->nr_to_scan;
2916 gfp_t gfp_mask = sc->gfp_mask;
2917
2918 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2919 return SHRINK_STOP;
2920 return nfs_do_access_cache_scan(nr_to_scan);
2921 }
2922
2923
2924 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2925 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2926 {
2927 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2928 }
2929
2930 static void
nfs_access_cache_enforce_limit(void)2931 nfs_access_cache_enforce_limit(void)
2932 {
2933 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2934 unsigned long diff;
2935 unsigned int nr_to_scan;
2936
2937 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2938 return;
2939 nr_to_scan = 100;
2940 diff = nr_entries - nfs_access_max_cachesize;
2941 if (diff < nr_to_scan)
2942 nr_to_scan = diff;
2943 nfs_do_access_cache_scan(nr_to_scan);
2944 }
2945
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2946 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2947 {
2948 struct rb_root *root_node = &nfsi->access_cache;
2949 struct rb_node *n;
2950 struct nfs_access_entry *entry;
2951
2952 /* Unhook entries from the cache */
2953 while ((n = rb_first(root_node)) != NULL) {
2954 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2955 rb_erase(n, root_node);
2956 list_move(&entry->lru, head);
2957 }
2958 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2959 }
2960
nfs_access_zap_cache(struct inode * inode)2961 void nfs_access_zap_cache(struct inode *inode)
2962 {
2963 LIST_HEAD(head);
2964
2965 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2966 return;
2967 /* Remove from global LRU init */
2968 spin_lock(&nfs_access_lru_lock);
2969 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2970 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2971
2972 spin_lock(&inode->i_lock);
2973 __nfs_access_zap_cache(NFS_I(inode), &head);
2974 spin_unlock(&inode->i_lock);
2975 spin_unlock(&nfs_access_lru_lock);
2976 nfs_access_free_list(&head);
2977 }
2978 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2979
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2980 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2981 {
2982 struct group_info *ga, *gb;
2983 int g;
2984
2985 if (uid_lt(a->fsuid, b->fsuid))
2986 return -1;
2987 if (uid_gt(a->fsuid, b->fsuid))
2988 return 1;
2989
2990 if (gid_lt(a->fsgid, b->fsgid))
2991 return -1;
2992 if (gid_gt(a->fsgid, b->fsgid))
2993 return 1;
2994
2995 ga = a->group_info;
2996 gb = b->group_info;
2997 if (ga == gb)
2998 return 0;
2999 if (ga == NULL)
3000 return -1;
3001 if (gb == NULL)
3002 return 1;
3003 if (ga->ngroups < gb->ngroups)
3004 return -1;
3005 if (ga->ngroups > gb->ngroups)
3006 return 1;
3007
3008 for (g = 0; g < ga->ngroups; g++) {
3009 if (gid_lt(ga->gid[g], gb->gid[g]))
3010 return -1;
3011 if (gid_gt(ga->gid[g], gb->gid[g]))
3012 return 1;
3013 }
3014 return 0;
3015 }
3016
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)3017 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3018 {
3019 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
3020
3021 while (n != NULL) {
3022 struct nfs_access_entry *entry =
3023 rb_entry(n, struct nfs_access_entry, rb_node);
3024 int cmp = access_cmp(cred, entry);
3025
3026 if (cmp < 0)
3027 n = n->rb_left;
3028 else if (cmp > 0)
3029 n = n->rb_right;
3030 else
3031 return entry;
3032 }
3033 return NULL;
3034 }
3035
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)3036 static u64 nfs_access_login_time(const struct task_struct *task,
3037 const struct cred *cred)
3038 {
3039 const struct task_struct *parent;
3040 const struct cred *pcred;
3041 u64 ret;
3042
3043 rcu_read_lock();
3044 for (;;) {
3045 parent = rcu_dereference(task->real_parent);
3046 pcred = __task_cred(parent);
3047 if (parent == task || cred_fscmp(pcred, cred) != 0)
3048 break;
3049 task = parent;
3050 }
3051 ret = task->start_time;
3052 rcu_read_unlock();
3053 return ret;
3054 }
3055
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3056 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3057 {
3058 struct nfs_inode *nfsi = NFS_I(inode);
3059 u64 login_time = nfs_access_login_time(current, cred);
3060 struct nfs_access_entry *cache;
3061 bool retry = true;
3062 int err;
3063
3064 spin_lock(&inode->i_lock);
3065 for(;;) {
3066 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3067 goto out_zap;
3068 cache = nfs_access_search_rbtree(inode, cred);
3069 err = -ENOENT;
3070 if (cache == NULL)
3071 goto out;
3072 /* Found an entry, is our attribute cache valid? */
3073 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3074 break;
3075 if (!retry)
3076 break;
3077 err = -ECHILD;
3078 if (!may_block)
3079 goto out;
3080 spin_unlock(&inode->i_lock);
3081 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3082 if (err)
3083 return err;
3084 spin_lock(&inode->i_lock);
3085 retry = false;
3086 }
3087 err = -ENOENT;
3088 if ((s64)(login_time - cache->timestamp) > 0)
3089 goto out;
3090 *mask = cache->mask;
3091 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3092 err = 0;
3093 out:
3094 spin_unlock(&inode->i_lock);
3095 return err;
3096 out_zap:
3097 spin_unlock(&inode->i_lock);
3098 nfs_access_zap_cache(inode);
3099 return -ENOENT;
3100 }
3101
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3102 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3103 {
3104 /* Only check the most recently returned cache entry,
3105 * but do it without locking.
3106 */
3107 struct nfs_inode *nfsi = NFS_I(inode);
3108 u64 login_time = nfs_access_login_time(current, cred);
3109 struct nfs_access_entry *cache;
3110 int err = -ECHILD;
3111 struct list_head *lh;
3112
3113 rcu_read_lock();
3114 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3115 goto out;
3116 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3117 cache = list_entry(lh, struct nfs_access_entry, lru);
3118 if (lh == &nfsi->access_cache_entry_lru ||
3119 access_cmp(cred, cache) != 0)
3120 cache = NULL;
3121 if (cache == NULL)
3122 goto out;
3123 if ((s64)(login_time - cache->timestamp) > 0)
3124 goto out;
3125 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3126 goto out;
3127 *mask = cache->mask;
3128 err = 0;
3129 out:
3130 rcu_read_unlock();
3131 return err;
3132 }
3133
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3134 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3135 u32 *mask, bool may_block)
3136 {
3137 int status;
3138
3139 status = nfs_access_get_cached_rcu(inode, cred, mask);
3140 if (status != 0)
3141 status = nfs_access_get_cached_locked(inode, cred, mask,
3142 may_block);
3143
3144 return status;
3145 }
3146 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3147
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3148 static void nfs_access_add_rbtree(struct inode *inode,
3149 struct nfs_access_entry *set,
3150 const struct cred *cred)
3151 {
3152 struct nfs_inode *nfsi = NFS_I(inode);
3153 struct rb_root *root_node = &nfsi->access_cache;
3154 struct rb_node **p = &root_node->rb_node;
3155 struct rb_node *parent = NULL;
3156 struct nfs_access_entry *entry;
3157 int cmp;
3158
3159 spin_lock(&inode->i_lock);
3160 while (*p != NULL) {
3161 parent = *p;
3162 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3163 cmp = access_cmp(cred, entry);
3164
3165 if (cmp < 0)
3166 p = &parent->rb_left;
3167 else if (cmp > 0)
3168 p = &parent->rb_right;
3169 else
3170 goto found;
3171 }
3172 rb_link_node(&set->rb_node, parent, p);
3173 rb_insert_color(&set->rb_node, root_node);
3174 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3175 spin_unlock(&inode->i_lock);
3176 return;
3177 found:
3178 rb_replace_node(parent, &set->rb_node, root_node);
3179 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3180 list_del(&entry->lru);
3181 spin_unlock(&inode->i_lock);
3182 nfs_access_free_entry(entry);
3183 }
3184
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3185 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3186 const struct cred *cred)
3187 {
3188 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3189 if (cache == NULL)
3190 return;
3191 RB_CLEAR_NODE(&cache->rb_node);
3192 cache->fsuid = cred->fsuid;
3193 cache->fsgid = cred->fsgid;
3194 cache->group_info = get_group_info(cred->group_info);
3195 cache->mask = set->mask;
3196 cache->timestamp = ktime_get_ns();
3197
3198 /* The above field assignments must be visible
3199 * before this item appears on the lru. We cannot easily
3200 * use rcu_assign_pointer, so just force the memory barrier.
3201 */
3202 smp_wmb();
3203 nfs_access_add_rbtree(inode, cache, cred);
3204
3205 /* Update accounting */
3206 smp_mb__before_atomic();
3207 atomic_long_inc(&nfs_access_nr_entries);
3208 smp_mb__after_atomic();
3209
3210 /* Add inode to global LRU list */
3211 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3212 spin_lock(&nfs_access_lru_lock);
3213 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3214 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3215 &nfs_access_lru_list);
3216 spin_unlock(&nfs_access_lru_lock);
3217 }
3218 nfs_access_cache_enforce_limit();
3219 }
3220 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3221
3222 #define NFS_MAY_READ (NFS_ACCESS_READ)
3223 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3224 NFS_ACCESS_EXTEND | \
3225 NFS_ACCESS_DELETE)
3226 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3227 NFS_ACCESS_EXTEND)
3228 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3229 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3230 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3231 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3232 nfs_access_calc_mask(u32 access_result, umode_t umode)
3233 {
3234 int mask = 0;
3235
3236 if (access_result & NFS_MAY_READ)
3237 mask |= MAY_READ;
3238 if (S_ISDIR(umode)) {
3239 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3240 mask |= MAY_WRITE;
3241 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3242 mask |= MAY_EXEC;
3243 } else if (S_ISREG(umode)) {
3244 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3245 mask |= MAY_WRITE;
3246 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3247 mask |= MAY_EXEC;
3248 } else if (access_result & NFS_MAY_WRITE)
3249 mask |= MAY_WRITE;
3250 return mask;
3251 }
3252
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3253 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3254 {
3255 entry->mask = access_result;
3256 }
3257 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3258
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3259 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3260 {
3261 struct nfs_access_entry cache;
3262 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3263 int cache_mask = -1;
3264 int status;
3265
3266 trace_nfs_access_enter(inode);
3267
3268 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3269 if (status == 0)
3270 goto out_cached;
3271
3272 status = -ECHILD;
3273 if (!may_block)
3274 goto out;
3275
3276 /*
3277 * Determine which access bits we want to ask for...
3278 */
3279 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3280 nfs_access_xattr_mask(NFS_SERVER(inode));
3281 if (S_ISDIR(inode->i_mode))
3282 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3283 else
3284 cache.mask |= NFS_ACCESS_EXECUTE;
3285 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3286 if (status != 0) {
3287 if (status == -ESTALE) {
3288 if (!S_ISDIR(inode->i_mode))
3289 nfs_set_inode_stale(inode);
3290 else
3291 nfs_zap_caches(inode);
3292 }
3293 goto out;
3294 }
3295 nfs_access_add_cache(inode, &cache, cred);
3296 out_cached:
3297 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3298 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3299 status = -EACCES;
3300 out:
3301 trace_nfs_access_exit(inode, mask, cache_mask, status);
3302 return status;
3303 }
3304
nfs_open_permission_mask(int openflags)3305 static int nfs_open_permission_mask(int openflags)
3306 {
3307 int mask = 0;
3308
3309 if (openflags & __FMODE_EXEC) {
3310 /* ONLY check exec rights */
3311 mask = MAY_EXEC;
3312 } else {
3313 if ((openflags & O_ACCMODE) != O_WRONLY)
3314 mask |= MAY_READ;
3315 if ((openflags & O_ACCMODE) != O_RDONLY)
3316 mask |= MAY_WRITE;
3317 }
3318
3319 return mask;
3320 }
3321
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3322 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3323 {
3324 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3325 }
3326 EXPORT_SYMBOL_GPL(nfs_may_open);
3327
nfs_execute_ok(struct inode * inode,int mask)3328 static int nfs_execute_ok(struct inode *inode, int mask)
3329 {
3330 struct nfs_server *server = NFS_SERVER(inode);
3331 int ret = 0;
3332
3333 if (S_ISDIR(inode->i_mode))
3334 return 0;
3335 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3336 if (mask & MAY_NOT_BLOCK)
3337 return -ECHILD;
3338 ret = __nfs_revalidate_inode(server, inode);
3339 }
3340 if (ret == 0 && !execute_ok(inode))
3341 ret = -EACCES;
3342 return ret;
3343 }
3344
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3345 int nfs_permission(struct mnt_idmap *idmap,
3346 struct inode *inode,
3347 int mask)
3348 {
3349 const struct cred *cred = current_cred();
3350 int res = 0;
3351
3352 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3353
3354 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3355 goto out;
3356 /* Is this sys_access() ? */
3357 if (mask & (MAY_ACCESS | MAY_CHDIR))
3358 goto force_lookup;
3359
3360 switch (inode->i_mode & S_IFMT) {
3361 case S_IFLNK:
3362 goto out;
3363 case S_IFREG:
3364 if ((mask & MAY_OPEN) &&
3365 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3366 return 0;
3367 break;
3368 case S_IFDIR:
3369 /*
3370 * Optimize away all write operations, since the server
3371 * will check permissions when we perform the op.
3372 */
3373 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3374 goto out;
3375 }
3376
3377 force_lookup:
3378 if (!NFS_PROTO(inode)->access)
3379 goto out_notsup;
3380
3381 res = nfs_do_access(inode, cred, mask);
3382 out:
3383 if (!res && (mask & MAY_EXEC))
3384 res = nfs_execute_ok(inode, mask);
3385
3386 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3387 inode->i_sb->s_id, inode->i_ino, mask, res);
3388 return res;
3389 out_notsup:
3390 if (mask & MAY_NOT_BLOCK)
3391 return -ECHILD;
3392
3393 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3394 NFS_INO_INVALID_OTHER);
3395 if (res == 0)
3396 res = generic_permission(&nop_mnt_idmap, inode, mask);
3397 goto out;
3398 }
3399 EXPORT_SYMBOL_GPL(nfs_permission);
3400