1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 #include "xfs_health.h"
31
32 /*
33 * Lookup a record by ino in the btree given by cur.
34 */
35 int /* error */
xfs_inobt_lookup(struct xfs_btree_cur * cur,xfs_agino_t ino,xfs_lookup_t dir,int * stat)36 xfs_inobt_lookup(
37 struct xfs_btree_cur *cur, /* btree cursor */
38 xfs_agino_t ino, /* starting inode of chunk */
39 xfs_lookup_t dir, /* <=, >=, == */
40 int *stat) /* success/failure */
41 {
42 cur->bc_rec.i.ir_startino = ino;
43 cur->bc_rec.i.ir_holemask = 0;
44 cur->bc_rec.i.ir_count = 0;
45 cur->bc_rec.i.ir_freecount = 0;
46 cur->bc_rec.i.ir_free = 0;
47 return xfs_btree_lookup(cur, dir, stat);
48 }
49
50 /*
51 * Update the record referred to by cur to the value given.
52 * This either works (return 0) or gets an EFSCORRUPTED error.
53 */
54 STATIC int /* error */
xfs_inobt_update(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * irec)55 xfs_inobt_update(
56 struct xfs_btree_cur *cur, /* btree cursor */
57 xfs_inobt_rec_incore_t *irec) /* btree record */
58 {
59 union xfs_btree_rec rec;
60
61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 if (xfs_has_sparseinodes(cur->bc_mp)) {
63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 } else {
67 /* ir_holemask/ir_count not supported on-disk */
68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 }
70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 return xfs_btree_update(cur, &rec);
72 }
73
74 /* Convert on-disk btree record to incore inobt record. */
75 void
xfs_inobt_btrec_to_irec(struct xfs_mount * mp,const union xfs_btree_rec * rec,struct xfs_inobt_rec_incore * irec)76 xfs_inobt_btrec_to_irec(
77 struct xfs_mount *mp,
78 const union xfs_btree_rec *rec,
79 struct xfs_inobt_rec_incore *irec)
80 {
81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 if (xfs_has_sparseinodes(mp)) {
83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 } else {
87 /*
88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 * values for full inode chunks.
90 */
91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 irec->ir_count = XFS_INODES_PER_CHUNK;
93 irec->ir_freecount =
94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 }
96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97 }
98
99 /* Compute the freecount of an incore inode record. */
100 uint8_t
xfs_inobt_rec_freecount(const struct xfs_inobt_rec_incore * irec)101 xfs_inobt_rec_freecount(
102 const struct xfs_inobt_rec_incore *irec)
103 {
104 uint64_t realfree = irec->ir_free;
105
106 if (xfs_inobt_issparse(irec->ir_holemask))
107 realfree &= xfs_inobt_irec_to_allocmask(irec);
108 return hweight64(realfree);
109 }
110
111 /* Simple checks for inode records. */
112 xfs_failaddr_t
xfs_inobt_check_irec(struct xfs_perag * pag,const struct xfs_inobt_rec_incore * irec)113 xfs_inobt_check_irec(
114 struct xfs_perag *pag,
115 const struct xfs_inobt_rec_incore *irec)
116 {
117 /* Record has to be properly aligned within the AG. */
118 if (!xfs_verify_agino(pag, irec->ir_startino))
119 return __this_address;
120 if (!xfs_verify_agino(pag,
121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 return __this_address;
123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 irec->ir_count > XFS_INODES_PER_CHUNK)
125 return __this_address;
126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 return __this_address;
128
129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 return __this_address;
131
132 return NULL;
133 }
134
135 static inline int
xfs_inobt_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_inobt_rec_incore * irec)136 xfs_inobt_complain_bad_rec(
137 struct xfs_btree_cur *cur,
138 xfs_failaddr_t fa,
139 const struct xfs_inobt_rec_incore *irec)
140 {
141 struct xfs_mount *mp = cur->bc_mp;
142
143 xfs_warn(mp,
144 "%sbt record corruption in AG %d detected at %pS!",
145 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146 xfs_warn(mp,
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 xfs_btree_mark_sick(cur);
151 return -EFSCORRUPTED;
152 }
153
154 /*
155 * Get the data from the pointed-to record.
156 */
157 int
xfs_inobt_get_rec(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * irec,int * stat)158 xfs_inobt_get_rec(
159 struct xfs_btree_cur *cur,
160 struct xfs_inobt_rec_incore *irec,
161 int *stat)
162 {
163 struct xfs_mount *mp = cur->bc_mp;
164 union xfs_btree_rec *rec;
165 xfs_failaddr_t fa;
166 int error;
167
168 error = xfs_btree_get_rec(cur, &rec, stat);
169 if (error || *stat == 0)
170 return error;
171
172 xfs_inobt_btrec_to_irec(mp, rec, irec);
173 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174 if (fa)
175 return xfs_inobt_complain_bad_rec(cur, fa, irec);
176
177 return 0;
178 }
179
180 /*
181 * Insert a single inobt record. Cursor must already point to desired location.
182 */
183 int
xfs_inobt_insert_rec(struct xfs_btree_cur * cur,uint16_t holemask,uint8_t count,int32_t freecount,xfs_inofree_t free,int * stat)184 xfs_inobt_insert_rec(
185 struct xfs_btree_cur *cur,
186 uint16_t holemask,
187 uint8_t count,
188 int32_t freecount,
189 xfs_inofree_t free,
190 int *stat)
191 {
192 cur->bc_rec.i.ir_holemask = holemask;
193 cur->bc_rec.i.ir_count = count;
194 cur->bc_rec.i.ir_freecount = freecount;
195 cur->bc_rec.i.ir_free = free;
196 return xfs_btree_insert(cur, stat);
197 }
198
199 /*
200 * Insert records describing a newly allocated inode chunk into the inobt.
201 */
202 STATIC int
xfs_inobt_insert(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t newino,xfs_agino_t newlen,bool is_finobt)203 xfs_inobt_insert(
204 struct xfs_perag *pag,
205 struct xfs_trans *tp,
206 struct xfs_buf *agbp,
207 xfs_agino_t newino,
208 xfs_agino_t newlen,
209 bool is_finobt)
210 {
211 struct xfs_btree_cur *cur;
212 xfs_agino_t thisino;
213 int i;
214 int error;
215
216 if (is_finobt)
217 cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 else
219 cur = xfs_inobt_init_cursor(pag, tp, agbp);
220
221 for (thisino = newino;
222 thisino < newino + newlen;
223 thisino += XFS_INODES_PER_CHUNK) {
224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 if (error) {
226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 return error;
228 }
229 ASSERT(i == 0);
230
231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 XFS_INODES_PER_CHUNK,
233 XFS_INODES_PER_CHUNK,
234 XFS_INOBT_ALL_FREE, &i);
235 if (error) {
236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 return error;
238 }
239 ASSERT(i == 1);
240 }
241
242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243
244 return 0;
245 }
246
247 /*
248 * Verify that the number of free inodes in the AGI is correct.
249 */
250 #ifdef DEBUG
251 static int
xfs_check_agi_freecount(struct xfs_btree_cur * cur)252 xfs_check_agi_freecount(
253 struct xfs_btree_cur *cur)
254 {
255 if (cur->bc_nlevels == 1) {
256 xfs_inobt_rec_incore_t rec;
257 int freecount = 0;
258 int error;
259 int i;
260
261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 if (error)
263 return error;
264
265 do {
266 error = xfs_inobt_get_rec(cur, &rec, &i);
267 if (error)
268 return error;
269
270 if (i) {
271 freecount += rec.ir_freecount;
272 error = xfs_btree_increment(cur, 0, &i);
273 if (error)
274 return error;
275 }
276 } while (i == 1);
277
278 if (!xfs_is_shutdown(cur->bc_mp))
279 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280 }
281 return 0;
282 }
283 #else
284 #define xfs_check_agi_freecount(cur) 0
285 #endif
286
287 /*
288 * Initialise a new set of inodes. When called without a transaction context
289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290 * than logging them (which in a transaction context puts them into the AIL
291 * for writeback rather than the xfsbufd queue).
292 */
293 int
xfs_ialloc_inode_init(struct xfs_mount * mp,struct xfs_trans * tp,struct list_head * buffer_list,int icount,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_agblock_t length,unsigned int gen)294 xfs_ialloc_inode_init(
295 struct xfs_mount *mp,
296 struct xfs_trans *tp,
297 struct list_head *buffer_list,
298 int icount,
299 xfs_agnumber_t agno,
300 xfs_agblock_t agbno,
301 xfs_agblock_t length,
302 unsigned int gen)
303 {
304 struct xfs_buf *fbuf;
305 struct xfs_dinode *free;
306 int nbufs;
307 int version;
308 int i, j;
309 xfs_daddr_t d;
310 xfs_ino_t ino = 0;
311 int error;
312
313 /*
314 * Loop over the new block(s), filling in the inodes. For small block
315 * sizes, manipulate the inodes in buffers which are multiples of the
316 * blocks size.
317 */
318 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319
320 /*
321 * Figure out what version number to use in the inodes we create. If
322 * the superblock version has caught up to the one that supports the new
323 * inode format, then use the new inode version. Otherwise use the old
324 * version so that old kernels will continue to be able to use the file
325 * system.
326 *
327 * For v3 inodes, we also need to write the inode number into the inode,
328 * so calculate the first inode number of the chunk here as
329 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330 * across multiple filesystem blocks (such as a cluster) and so cannot
331 * be used in the cluster buffer loop below.
332 *
333 * Further, because we are writing the inode directly into the buffer
334 * and calculating a CRC on the entire inode, we have ot log the entire
335 * inode so that the entire range the CRC covers is present in the log.
336 * That means for v3 inode we log the entire buffer rather than just the
337 * inode cores.
338 */
339 if (xfs_has_v3inodes(mp)) {
340 version = 3;
341 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342
343 /*
344 * log the initialisation that is about to take place as an
345 * logical operation. This means the transaction does not
346 * need to log the physical changes to the inode buffers as log
347 * recovery will know what initialisation is actually needed.
348 * Hence we only need to log the buffers as "ordered" buffers so
349 * they track in the AIL as if they were physically logged.
350 */
351 if (tp)
352 xfs_icreate_log(tp, agno, agbno, icount,
353 mp->m_sb.sb_inodesize, length, gen);
354 } else
355 version = 2;
356
357 for (j = 0; j < nbufs; j++) {
358 /*
359 * Get the block.
360 */
361 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362 (j * M_IGEO(mp)->blocks_per_cluster));
363 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365 XBF_UNMAPPED, &fbuf);
366 if (error)
367 return error;
368
369 /* Initialize the inode buffers and log them appropriately. */
370 fbuf->b_ops = &xfs_inode_buf_ops;
371 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373 int ioffset = i << mp->m_sb.sb_inodelog;
374
375 free = xfs_make_iptr(mp, fbuf, i);
376 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377 free->di_version = version;
378 free->di_gen = cpu_to_be32(gen);
379 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380
381 if (version == 3) {
382 free->di_ino = cpu_to_be64(ino);
383 ino++;
384 uuid_copy(&free->di_uuid,
385 &mp->m_sb.sb_meta_uuid);
386 xfs_dinode_calc_crc(mp, free);
387 } else if (tp) {
388 /* just log the inode core */
389 xfs_trans_log_buf(tp, fbuf, ioffset,
390 ioffset + XFS_DINODE_SIZE(mp) - 1);
391 }
392 }
393
394 if (tp) {
395 /*
396 * Mark the buffer as an inode allocation buffer so it
397 * sticks in AIL at the point of this allocation
398 * transaction. This ensures the they are on disk before
399 * the tail of the log can be moved past this
400 * transaction (i.e. by preventing relogging from moving
401 * it forward in the log).
402 */
403 xfs_trans_inode_alloc_buf(tp, fbuf);
404 if (version == 3) {
405 /*
406 * Mark the buffer as ordered so that they are
407 * not physically logged in the transaction but
408 * still tracked in the AIL as part of the
409 * transaction and pin the log appropriately.
410 */
411 xfs_trans_ordered_buf(tp, fbuf);
412 }
413 } else {
414 fbuf->b_flags |= XBF_DONE;
415 xfs_buf_delwri_queue(fbuf, buffer_list);
416 xfs_buf_relse(fbuf);
417 }
418 }
419 return 0;
420 }
421
422 /*
423 * Align startino and allocmask for a recently allocated sparse chunk such that
424 * they are fit for insertion (or merge) into the on-disk inode btrees.
425 *
426 * Background:
427 *
428 * When enabled, sparse inode support increases the inode alignment from cluster
429 * size to inode chunk size. This means that the minimum range between two
430 * non-adjacent inode records in the inobt is large enough for a full inode
431 * record. This allows for cluster sized, cluster aligned block allocation
432 * without need to worry about whether the resulting inode record overlaps with
433 * another record in the tree. Without this basic rule, we would have to deal
434 * with the consequences of overlap by potentially undoing recent allocations in
435 * the inode allocation codepath.
436 *
437 * Because of this alignment rule (which is enforced on mount), there are two
438 * inobt possibilities for newly allocated sparse chunks. One is that the
439 * aligned inode record for the chunk covers a range of inodes not already
440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441 * other is that a record already exists at the aligned startino that considers
442 * the newly allocated range as sparse. In the latter case, record content is
443 * merged in hope that sparse inode chunks fill to full chunks over time.
444 */
445 STATIC void
xfs_align_sparse_ino(struct xfs_mount * mp,xfs_agino_t * startino,uint16_t * allocmask)446 xfs_align_sparse_ino(
447 struct xfs_mount *mp,
448 xfs_agino_t *startino,
449 uint16_t *allocmask)
450 {
451 xfs_agblock_t agbno;
452 xfs_agblock_t mod;
453 int offset;
454
455 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456 mod = agbno % mp->m_sb.sb_inoalignmt;
457 if (!mod)
458 return;
459
460 /* calculate the inode offset and align startino */
461 offset = XFS_AGB_TO_AGINO(mp, mod);
462 *startino -= offset;
463
464 /*
465 * Since startino has been aligned down, left shift allocmask such that
466 * it continues to represent the same physical inodes relative to the
467 * new startino.
468 */
469 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470 }
471
472 /*
473 * Determine whether the source inode record can merge into the target. Both
474 * records must be sparse, the inode ranges must match and there must be no
475 * allocation overlap between the records.
476 */
477 STATIC bool
__xfs_inobt_can_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)478 __xfs_inobt_can_merge(
479 struct xfs_inobt_rec_incore *trec, /* tgt record */
480 struct xfs_inobt_rec_incore *srec) /* src record */
481 {
482 uint64_t talloc;
483 uint64_t salloc;
484
485 /* records must cover the same inode range */
486 if (trec->ir_startino != srec->ir_startino)
487 return false;
488
489 /* both records must be sparse */
490 if (!xfs_inobt_issparse(trec->ir_holemask) ||
491 !xfs_inobt_issparse(srec->ir_holemask))
492 return false;
493
494 /* both records must track some inodes */
495 if (!trec->ir_count || !srec->ir_count)
496 return false;
497
498 /* can't exceed capacity of a full record */
499 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500 return false;
501
502 /* verify there is no allocation overlap */
503 talloc = xfs_inobt_irec_to_allocmask(trec);
504 salloc = xfs_inobt_irec_to_allocmask(srec);
505 if (talloc & salloc)
506 return false;
507
508 return true;
509 }
510
511 /*
512 * Merge the source inode record into the target. The caller must call
513 * __xfs_inobt_can_merge() to ensure the merge is valid.
514 */
515 STATIC void
__xfs_inobt_rec_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)516 __xfs_inobt_rec_merge(
517 struct xfs_inobt_rec_incore *trec, /* target */
518 struct xfs_inobt_rec_incore *srec) /* src */
519 {
520 ASSERT(trec->ir_startino == srec->ir_startino);
521
522 /* combine the counts */
523 trec->ir_count += srec->ir_count;
524 trec->ir_freecount += srec->ir_freecount;
525
526 /*
527 * Merge the holemask and free mask. For both fields, 0 bits refer to
528 * allocated inodes. We combine the allocated ranges with bitwise AND.
529 */
530 trec->ir_holemask &= srec->ir_holemask;
531 trec->ir_free &= srec->ir_free;
532 }
533
534 /*
535 * Insert a new sparse inode chunk into the associated inode allocation btree.
536 * The inode record for the sparse chunk is pre-aligned to a startino that
537 * should match any pre-existing sparse inode record in the tree. This allows
538 * sparse chunks to fill over time.
539 *
540 * If no preexisting record exists, the provided record is inserted.
541 * If there is a preexisting record, the provided record is merged with the
542 * existing record and updated in place. The merged record is returned in nrec.
543 *
544 * It is considered corruption if a merge is requested and not possible. Given
545 * the sparse inode alignment constraints, this should never happen.
546 */
547 STATIC int
xfs_inobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)548 xfs_inobt_insert_sprec(
549 struct xfs_perag *pag,
550 struct xfs_trans *tp,
551 struct xfs_buf *agbp,
552 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
553 {
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
556 int error;
557 int i;
558 struct xfs_inobt_rec_incore rec;
559
560 cur = xfs_inobt_init_cursor(pag, tp, agbp);
561
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 if (error)
565 goto error;
566 /* if nothing there, insert a new record and return */
567 if (i == 0) {
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
570 nrec->ir_free, &i);
571 if (error)
572 goto error;
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 xfs_btree_mark_sick(cur);
575 error = -EFSCORRUPTED;
576 goto error;
577 }
578
579 goto out;
580 }
581
582 /*
583 * A record exists at this startino. Merge the records.
584 */
585 error = xfs_inobt_get_rec(cur, &rec, &i);
586 if (error)
587 goto error;
588 if (XFS_IS_CORRUPT(mp, i != 1)) {
589 xfs_btree_mark_sick(cur);
590 error = -EFSCORRUPTED;
591 goto error;
592 }
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 xfs_btree_mark_sick(cur);
595 error = -EFSCORRUPTED;
596 goto error;
597 }
598
599 /*
600 * This should never fail. If we have coexisting records that
601 * cannot merge, something is seriously wrong.
602 */
603 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604 xfs_btree_mark_sick(cur);
605 error = -EFSCORRUPTED;
606 goto error;
607 }
608
609 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610 rec.ir_holemask, nrec->ir_startino,
611 nrec->ir_holemask);
612
613 /* merge to nrec to output the updated record */
614 __xfs_inobt_rec_merge(nrec, &rec);
615
616 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617 nrec->ir_holemask);
618
619 error = xfs_inobt_rec_check_count(mp, nrec);
620 if (error)
621 goto error;
622
623 error = xfs_inobt_update(cur, nrec);
624 if (error)
625 goto error;
626
627 out:
628 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629 return 0;
630 error:
631 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632 return error;
633 }
634
635 /*
636 * Insert a new sparse inode chunk into the free inode btree. The inode
637 * record for the sparse chunk is pre-aligned to a startino that should match
638 * any pre-existing sparse inode record in the tree. This allows sparse chunks
639 * to fill over time.
640 *
641 * The new record is always inserted, overwriting a pre-existing record if
642 * there is one.
643 */
644 STATIC int
xfs_finobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)645 xfs_finobt_insert_sprec(
646 struct xfs_perag *pag,
647 struct xfs_trans *tp,
648 struct xfs_buf *agbp,
649 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
650 {
651 struct xfs_mount *mp = pag->pag_mount;
652 struct xfs_btree_cur *cur;
653 int error;
654 int i;
655
656 cur = xfs_finobt_init_cursor(pag, tp, agbp);
657
658 /* the new record is pre-aligned so we know where to look */
659 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660 if (error)
661 goto error;
662 /* if nothing there, insert a new record and return */
663 if (i == 0) {
664 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665 nrec->ir_count, nrec->ir_freecount,
666 nrec->ir_free, &i);
667 if (error)
668 goto error;
669 if (XFS_IS_CORRUPT(mp, i != 1)) {
670 xfs_btree_mark_sick(cur);
671 error = -EFSCORRUPTED;
672 goto error;
673 }
674 } else {
675 error = xfs_inobt_update(cur, nrec);
676 if (error)
677 goto error;
678 }
679
680 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681 return 0;
682 error:
683 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684 return error;
685 }
686
687
688 /*
689 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692 * inode count threshold, or the usual negative error code for other errors.
693 */
694 STATIC int
xfs_ialloc_ag_alloc(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)695 xfs_ialloc_ag_alloc(
696 struct xfs_perag *pag,
697 struct xfs_trans *tp,
698 struct xfs_buf *agbp)
699 {
700 struct xfs_agi *agi;
701 struct xfs_alloc_arg args;
702 int error;
703 xfs_agino_t newino; /* new first inode's number */
704 xfs_agino_t newlen; /* new number of inodes */
705 int isaligned = 0; /* inode allocation at stripe */
706 /* unit boundary */
707 /* init. to full chunk */
708 struct xfs_inobt_rec_incore rec;
709 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
710 uint16_t allocmask = (uint16_t) -1;
711 int do_sparse = 0;
712
713 memset(&args, 0, sizeof(args));
714 args.tp = tp;
715 args.mp = tp->t_mountp;
716 args.fsbno = NULLFSBLOCK;
717 args.oinfo = XFS_RMAP_OINFO_INODES;
718 args.pag = pag;
719
720 #ifdef DEBUG
721 /* randomly do sparse inode allocations */
722 if (xfs_has_sparseinodes(tp->t_mountp) &&
723 igeo->ialloc_min_blks < igeo->ialloc_blks)
724 do_sparse = get_random_u32_below(2);
725 #endif
726
727 /*
728 * Locking will ensure that we don't have two callers in here
729 * at one time.
730 */
731 newlen = igeo->ialloc_inos;
732 if (igeo->maxicount &&
733 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734 igeo->maxicount)
735 return -ENOSPC;
736 args.minlen = args.maxlen = igeo->ialloc_blks;
737 /*
738 * First try to allocate inodes contiguous with the last-allocated
739 * chunk of inodes. If the filesystem is striped, this will fill
740 * an entire stripe unit with inodes.
741 */
742 agi = agbp->b_addr;
743 newino = be32_to_cpu(agi->agi_newino);
744 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745 igeo->ialloc_blks;
746 if (do_sparse)
747 goto sparse_alloc;
748 if (likely(newino != NULLAGINO &&
749 (args.agbno < be32_to_cpu(agi->agi_length)))) {
750 args.prod = 1;
751
752 /*
753 * We need to take into account alignment here to ensure that
754 * we don't modify the free list if we fail to have an exact
755 * block. If we don't have an exact match, and every oher
756 * attempt allocation attempt fails, we'll end up cancelling
757 * a dirty transaction and shutting down.
758 *
759 * For an exact allocation, alignment must be 1,
760 * however we need to take cluster alignment into account when
761 * fixing up the freelist. Use the minalignslop field to
762 * indicate that extra blocks might be required for alignment,
763 * but not to use them in the actual exact allocation.
764 */
765 args.alignment = 1;
766 args.minalignslop = igeo->cluster_align - 1;
767
768 /* Allow space for the inode btree to split. */
769 args.minleft = igeo->inobt_maxlevels;
770 error = xfs_alloc_vextent_exact_bno(&args,
771 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772 args.agbno));
773 if (error)
774 return error;
775
776 /*
777 * This request might have dirtied the transaction if the AG can
778 * satisfy the request, but the exact block was not available.
779 * If the allocation did fail, subsequent requests will relax
780 * the exact agbno requirement and increase the alignment
781 * instead. It is critical that the total size of the request
782 * (len + alignment + slop) does not increase from this point
783 * on, so reset minalignslop to ensure it is not included in
784 * subsequent requests.
785 */
786 args.minalignslop = 0;
787 }
788
789 if (unlikely(args.fsbno == NULLFSBLOCK)) {
790 /*
791 * Set the alignment for the allocation.
792 * If stripe alignment is turned on then align at stripe unit
793 * boundary.
794 * If the cluster size is smaller than a filesystem block
795 * then we're doing I/O for inodes in filesystem block size
796 * pieces, so don't need alignment anyway.
797 */
798 isaligned = 0;
799 if (igeo->ialloc_align) {
800 ASSERT(!xfs_has_noalign(args.mp));
801 args.alignment = args.mp->m_dalign;
802 isaligned = 1;
803 } else
804 args.alignment = igeo->cluster_align;
805 /*
806 * Allocate a fixed-size extent of inodes.
807 */
808 args.prod = 1;
809 /*
810 * Allow space for the inode btree to split.
811 */
812 args.minleft = igeo->inobt_maxlevels;
813 error = xfs_alloc_vextent_near_bno(&args,
814 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815 be32_to_cpu(agi->agi_root)));
816 if (error)
817 return error;
818 }
819
820 /*
821 * If stripe alignment is turned on, then try again with cluster
822 * alignment.
823 */
824 if (isaligned && args.fsbno == NULLFSBLOCK) {
825 args.alignment = igeo->cluster_align;
826 error = xfs_alloc_vextent_near_bno(&args,
827 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828 be32_to_cpu(agi->agi_root)));
829 if (error)
830 return error;
831 }
832
833 /*
834 * Finally, try a sparse allocation if the filesystem supports it and
835 * the sparse allocation length is smaller than a full chunk.
836 */
837 if (xfs_has_sparseinodes(args.mp) &&
838 igeo->ialloc_min_blks < igeo->ialloc_blks &&
839 args.fsbno == NULLFSBLOCK) {
840 sparse_alloc:
841 args.alignment = args.mp->m_sb.sb_spino_align;
842 args.prod = 1;
843
844 args.minlen = igeo->ialloc_min_blks;
845 args.maxlen = args.minlen;
846
847 /*
848 * The inode record will be aligned to full chunk size. We must
849 * prevent sparse allocation from AG boundaries that result in
850 * invalid inode records, such as records that start at agbno 0
851 * or extend beyond the AG.
852 *
853 * Set min agbno to the first aligned, non-zero agbno and max to
854 * the last aligned agbno that is at least one full chunk from
855 * the end of the AG.
856 */
857 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858 args.max_agbno = round_down(xfs_ag_block_count(args.mp,
859 pag->pag_agno),
860 args.mp->m_sb.sb_inoalignmt) -
861 igeo->ialloc_blks;
862
863 error = xfs_alloc_vextent_near_bno(&args,
864 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
865 be32_to_cpu(agi->agi_root)));
866 if (error)
867 return error;
868
869 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
870 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
871 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
872 }
873
874 if (args.fsbno == NULLFSBLOCK)
875 return -EAGAIN;
876
877 ASSERT(args.len == args.minlen);
878
879 /*
880 * Stamp and write the inode buffers.
881 *
882 * Seed the new inode cluster with a random generation number. This
883 * prevents short-term reuse of generation numbers if a chunk is
884 * freed and then immediately reallocated. We use random numbers
885 * rather than a linear progression to prevent the next generation
886 * number from being easily guessable.
887 */
888 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
889 args.agbno, args.len, get_random_u32());
890
891 if (error)
892 return error;
893 /*
894 * Convert the results.
895 */
896 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
897
898 if (xfs_inobt_issparse(~allocmask)) {
899 /*
900 * We've allocated a sparse chunk. Align the startino and mask.
901 */
902 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
903
904 rec.ir_startino = newino;
905 rec.ir_holemask = ~allocmask;
906 rec.ir_count = newlen;
907 rec.ir_freecount = newlen;
908 rec.ir_free = XFS_INOBT_ALL_FREE;
909
910 /*
911 * Insert the sparse record into the inobt and allow for a merge
912 * if necessary. If a merge does occur, rec is updated to the
913 * merged record.
914 */
915 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
916 if (error == -EFSCORRUPTED) {
917 xfs_alert(args.mp,
918 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
919 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
920 rec.ir_startino),
921 rec.ir_holemask, rec.ir_count);
922 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
923 }
924 if (error)
925 return error;
926
927 /*
928 * We can't merge the part we've just allocated as for the inobt
929 * due to finobt semantics. The original record may or may not
930 * exist independent of whether physical inodes exist in this
931 * sparse chunk.
932 *
933 * We must update the finobt record based on the inobt record.
934 * rec contains the fully merged and up to date inobt record
935 * from the previous call. Set merge false to replace any
936 * existing record with this one.
937 */
938 if (xfs_has_finobt(args.mp)) {
939 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
940 if (error)
941 return error;
942 }
943 } else {
944 /* full chunk - insert new records to both btrees */
945 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
946 if (error)
947 return error;
948
949 if (xfs_has_finobt(args.mp)) {
950 error = xfs_inobt_insert(pag, tp, agbp, newino,
951 newlen, true);
952 if (error)
953 return error;
954 }
955 }
956
957 /*
958 * Update AGI counts and newino.
959 */
960 be32_add_cpu(&agi->agi_count, newlen);
961 be32_add_cpu(&agi->agi_freecount, newlen);
962 pag->pagi_freecount += newlen;
963 pag->pagi_count += newlen;
964 agi->agi_newino = cpu_to_be32(newino);
965
966 /*
967 * Log allocation group header fields
968 */
969 xfs_ialloc_log_agi(tp, agbp,
970 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
971 /*
972 * Modify/log superblock values for inode count and inode free count.
973 */
974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
976 return 0;
977 }
978
979 /*
980 * Try to retrieve the next record to the left/right from the current one.
981 */
982 STATIC int
xfs_ialloc_next_rec(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * rec,int * done,int left)983 xfs_ialloc_next_rec(
984 struct xfs_btree_cur *cur,
985 xfs_inobt_rec_incore_t *rec,
986 int *done,
987 int left)
988 {
989 int error;
990 int i;
991
992 if (left)
993 error = xfs_btree_decrement(cur, 0, &i);
994 else
995 error = xfs_btree_increment(cur, 0, &i);
996
997 if (error)
998 return error;
999 *done = !i;
1000 if (i) {
1001 error = xfs_inobt_get_rec(cur, rec, &i);
1002 if (error)
1003 return error;
1004 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1005 xfs_btree_mark_sick(cur);
1006 return -EFSCORRUPTED;
1007 }
1008 }
1009
1010 return 0;
1011 }
1012
1013 STATIC int
xfs_ialloc_get_rec(struct xfs_btree_cur * cur,xfs_agino_t agino,xfs_inobt_rec_incore_t * rec,int * done)1014 xfs_ialloc_get_rec(
1015 struct xfs_btree_cur *cur,
1016 xfs_agino_t agino,
1017 xfs_inobt_rec_incore_t *rec,
1018 int *done)
1019 {
1020 int error;
1021 int i;
1022
1023 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1024 if (error)
1025 return error;
1026 *done = !i;
1027 if (i) {
1028 error = xfs_inobt_get_rec(cur, rec, &i);
1029 if (error)
1030 return error;
1031 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1032 xfs_btree_mark_sick(cur);
1033 return -EFSCORRUPTED;
1034 }
1035 }
1036
1037 return 0;
1038 }
1039
1040 /*
1041 * Return the offset of the first free inode in the record. If the inode chunk
1042 * is sparsely allocated, we convert the record holemask to inode granularity
1043 * and mask off the unallocated regions from the inode free mask.
1044 */
1045 STATIC int
xfs_inobt_first_free_inode(struct xfs_inobt_rec_incore * rec)1046 xfs_inobt_first_free_inode(
1047 struct xfs_inobt_rec_incore *rec)
1048 {
1049 xfs_inofree_t realfree;
1050
1051 /* if there are no holes, return the first available offset */
1052 if (!xfs_inobt_issparse(rec->ir_holemask))
1053 return xfs_lowbit64(rec->ir_free);
1054
1055 realfree = xfs_inobt_irec_to_allocmask(rec);
1056 realfree &= rec->ir_free;
1057
1058 return xfs_lowbit64(realfree);
1059 }
1060
1061 /*
1062 * If this AG has corrupt inodes, check if allocating this inode would fail
1063 * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again
1064 * somewhere else.
1065 */
1066 static int
xfs_dialloc_check_ino(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino)1067 xfs_dialloc_check_ino(
1068 struct xfs_perag *pag,
1069 struct xfs_trans *tp,
1070 xfs_ino_t ino)
1071 {
1072 struct xfs_imap imap;
1073 struct xfs_buf *bp;
1074 int error;
1075
1076 error = xfs_imap(pag, tp, ino, &imap, 0);
1077 if (error)
1078 return -EAGAIN;
1079
1080 error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp);
1081 if (error)
1082 return -EAGAIN;
1083
1084 xfs_trans_brelse(tp, bp);
1085 return 0;
1086 }
1087
1088 /*
1089 * Allocate an inode using the inobt-only algorithm.
1090 */
1091 STATIC int
xfs_dialloc_ag_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1092 xfs_dialloc_ag_inobt(
1093 struct xfs_perag *pag,
1094 struct xfs_trans *tp,
1095 struct xfs_buf *agbp,
1096 xfs_ino_t parent,
1097 xfs_ino_t *inop)
1098 {
1099 struct xfs_mount *mp = tp->t_mountp;
1100 struct xfs_agi *agi = agbp->b_addr;
1101 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1102 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1103 struct xfs_btree_cur *cur, *tcur;
1104 struct xfs_inobt_rec_incore rec, trec;
1105 xfs_ino_t ino;
1106 int error;
1107 int offset;
1108 int i, j;
1109 int searchdistance = 10;
1110
1111 ASSERT(xfs_perag_initialised_agi(pag));
1112 ASSERT(xfs_perag_allows_inodes(pag));
1113 ASSERT(pag->pagi_freecount > 0);
1114
1115 restart_pagno:
1116 cur = xfs_inobt_init_cursor(pag, tp, agbp);
1117 /*
1118 * If pagino is 0 (this is the root inode allocation) use newino.
1119 * This must work because we've just allocated some.
1120 */
1121 if (!pagino)
1122 pagino = be32_to_cpu(agi->agi_newino);
1123
1124 error = xfs_check_agi_freecount(cur);
1125 if (error)
1126 goto error0;
1127
1128 /*
1129 * If in the same AG as the parent, try to get near the parent.
1130 */
1131 if (pagno == pag->pag_agno) {
1132 int doneleft; /* done, to the left */
1133 int doneright; /* done, to the right */
1134
1135 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1136 if (error)
1137 goto error0;
1138 if (XFS_IS_CORRUPT(mp, i != 1)) {
1139 xfs_btree_mark_sick(cur);
1140 error = -EFSCORRUPTED;
1141 goto error0;
1142 }
1143
1144 error = xfs_inobt_get_rec(cur, &rec, &j);
1145 if (error)
1146 goto error0;
1147 if (XFS_IS_CORRUPT(mp, j != 1)) {
1148 xfs_btree_mark_sick(cur);
1149 error = -EFSCORRUPTED;
1150 goto error0;
1151 }
1152
1153 if (rec.ir_freecount > 0) {
1154 /*
1155 * Found a free inode in the same chunk
1156 * as the parent, done.
1157 */
1158 goto alloc_inode;
1159 }
1160
1161
1162 /*
1163 * In the same AG as parent, but parent's chunk is full.
1164 */
1165
1166 /* duplicate the cursor, search left & right simultaneously */
1167 error = xfs_btree_dup_cursor(cur, &tcur);
1168 if (error)
1169 goto error0;
1170
1171 /*
1172 * Skip to last blocks looked up if same parent inode.
1173 */
1174 if (pagino != NULLAGINO &&
1175 pag->pagl_pagino == pagino &&
1176 pag->pagl_leftrec != NULLAGINO &&
1177 pag->pagl_rightrec != NULLAGINO) {
1178 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1179 &trec, &doneleft);
1180 if (error)
1181 goto error1;
1182
1183 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1184 &rec, &doneright);
1185 if (error)
1186 goto error1;
1187 } else {
1188 /* search left with tcur, back up 1 record */
1189 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1190 if (error)
1191 goto error1;
1192
1193 /* search right with cur, go forward 1 record. */
1194 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1195 if (error)
1196 goto error1;
1197 }
1198
1199 /*
1200 * Loop until we find an inode chunk with a free inode.
1201 */
1202 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1203 int useleft; /* using left inode chunk this time */
1204
1205 /* figure out the closer block if both are valid. */
1206 if (!doneleft && !doneright) {
1207 useleft = pagino -
1208 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1209 rec.ir_startino - pagino;
1210 } else {
1211 useleft = !doneleft;
1212 }
1213
1214 /* free inodes to the left? */
1215 if (useleft && trec.ir_freecount) {
1216 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1217 cur = tcur;
1218
1219 pag->pagl_leftrec = trec.ir_startino;
1220 pag->pagl_rightrec = rec.ir_startino;
1221 pag->pagl_pagino = pagino;
1222 rec = trec;
1223 goto alloc_inode;
1224 }
1225
1226 /* free inodes to the right? */
1227 if (!useleft && rec.ir_freecount) {
1228 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1229
1230 pag->pagl_leftrec = trec.ir_startino;
1231 pag->pagl_rightrec = rec.ir_startino;
1232 pag->pagl_pagino = pagino;
1233 goto alloc_inode;
1234 }
1235
1236 /* get next record to check */
1237 if (useleft) {
1238 error = xfs_ialloc_next_rec(tcur, &trec,
1239 &doneleft, 1);
1240 } else {
1241 error = xfs_ialloc_next_rec(cur, &rec,
1242 &doneright, 0);
1243 }
1244 if (error)
1245 goto error1;
1246 }
1247
1248 if (searchdistance <= 0) {
1249 /*
1250 * Not in range - save last search
1251 * location and allocate a new inode
1252 */
1253 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1254 pag->pagl_leftrec = trec.ir_startino;
1255 pag->pagl_rightrec = rec.ir_startino;
1256 pag->pagl_pagino = pagino;
1257
1258 } else {
1259 /*
1260 * We've reached the end of the btree. because
1261 * we are only searching a small chunk of the
1262 * btree each search, there is obviously free
1263 * inodes closer to the parent inode than we
1264 * are now. restart the search again.
1265 */
1266 pag->pagl_pagino = NULLAGINO;
1267 pag->pagl_leftrec = NULLAGINO;
1268 pag->pagl_rightrec = NULLAGINO;
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1271 goto restart_pagno;
1272 }
1273 }
1274
1275 /*
1276 * In a different AG from the parent.
1277 * See if the most recently allocated block has any free.
1278 */
1279 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1280 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1281 XFS_LOOKUP_EQ, &i);
1282 if (error)
1283 goto error0;
1284
1285 if (i == 1) {
1286 error = xfs_inobt_get_rec(cur, &rec, &j);
1287 if (error)
1288 goto error0;
1289
1290 if (j == 1 && rec.ir_freecount > 0) {
1291 /*
1292 * The last chunk allocated in the group
1293 * still has a free inode.
1294 */
1295 goto alloc_inode;
1296 }
1297 }
1298 }
1299
1300 /*
1301 * None left in the last group, search the whole AG
1302 */
1303 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1304 if (error)
1305 goto error0;
1306 if (XFS_IS_CORRUPT(mp, i != 1)) {
1307 xfs_btree_mark_sick(cur);
1308 error = -EFSCORRUPTED;
1309 goto error0;
1310 }
1311
1312 for (;;) {
1313 error = xfs_inobt_get_rec(cur, &rec, &i);
1314 if (error)
1315 goto error0;
1316 if (XFS_IS_CORRUPT(mp, i != 1)) {
1317 xfs_btree_mark_sick(cur);
1318 error = -EFSCORRUPTED;
1319 goto error0;
1320 }
1321 if (rec.ir_freecount > 0)
1322 break;
1323 error = xfs_btree_increment(cur, 0, &i);
1324 if (error)
1325 goto error0;
1326 if (XFS_IS_CORRUPT(mp, i != 1)) {
1327 xfs_btree_mark_sick(cur);
1328 error = -EFSCORRUPTED;
1329 goto error0;
1330 }
1331 }
1332
1333 alloc_inode:
1334 offset = xfs_inobt_first_free_inode(&rec);
1335 ASSERT(offset >= 0);
1336 ASSERT(offset < XFS_INODES_PER_CHUNK);
1337 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338 XFS_INODES_PER_CHUNK) == 0);
1339 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1340
1341 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1342 error = xfs_dialloc_check_ino(pag, tp, ino);
1343 if (error)
1344 goto error0;
1345 }
1346
1347 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1348 rec.ir_freecount--;
1349 error = xfs_inobt_update(cur, &rec);
1350 if (error)
1351 goto error0;
1352 be32_add_cpu(&agi->agi_freecount, -1);
1353 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1354 pag->pagi_freecount--;
1355
1356 error = xfs_check_agi_freecount(cur);
1357 if (error)
1358 goto error0;
1359
1360 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1361 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1362 *inop = ino;
1363 return 0;
1364 error1:
1365 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366 error0:
1367 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1368 return error;
1369 }
1370
1371 /*
1372 * Use the free inode btree to allocate an inode based on distance from the
1373 * parent. Note that the provided cursor may be deleted and replaced.
1374 */
1375 STATIC int
xfs_dialloc_ag_finobt_near(xfs_agino_t pagino,struct xfs_btree_cur ** ocur,struct xfs_inobt_rec_incore * rec)1376 xfs_dialloc_ag_finobt_near(
1377 xfs_agino_t pagino,
1378 struct xfs_btree_cur **ocur,
1379 struct xfs_inobt_rec_incore *rec)
1380 {
1381 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1382 struct xfs_btree_cur *rcur; /* right search cursor */
1383 struct xfs_inobt_rec_incore rrec;
1384 int error;
1385 int i, j;
1386
1387 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1388 if (error)
1389 return error;
1390
1391 if (i == 1) {
1392 error = xfs_inobt_get_rec(lcur, rec, &i);
1393 if (error)
1394 return error;
1395 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1396 xfs_btree_mark_sick(lcur);
1397 return -EFSCORRUPTED;
1398 }
1399
1400 /*
1401 * See if we've landed in the parent inode record. The finobt
1402 * only tracks chunks with at least one free inode, so record
1403 * existence is enough.
1404 */
1405 if (pagino >= rec->ir_startino &&
1406 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1407 return 0;
1408 }
1409
1410 error = xfs_btree_dup_cursor(lcur, &rcur);
1411 if (error)
1412 return error;
1413
1414 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1415 if (error)
1416 goto error_rcur;
1417 if (j == 1) {
1418 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1419 if (error)
1420 goto error_rcur;
1421 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1422 xfs_btree_mark_sick(lcur);
1423 error = -EFSCORRUPTED;
1424 goto error_rcur;
1425 }
1426 }
1427
1428 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1429 xfs_btree_mark_sick(lcur);
1430 error = -EFSCORRUPTED;
1431 goto error_rcur;
1432 }
1433 if (i == 1 && j == 1) {
1434 /*
1435 * Both the left and right records are valid. Choose the closer
1436 * inode chunk to the target.
1437 */
1438 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1439 (rrec.ir_startino - pagino)) {
1440 *rec = rrec;
1441 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1442 *ocur = rcur;
1443 } else {
1444 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1445 }
1446 } else if (j == 1) {
1447 /* only the right record is valid */
1448 *rec = rrec;
1449 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1450 *ocur = rcur;
1451 } else if (i == 1) {
1452 /* only the left record is valid */
1453 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1454 }
1455
1456 return 0;
1457
1458 error_rcur:
1459 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1460 return error;
1461 }
1462
1463 /*
1464 * Use the free inode btree to find a free inode based on a newino hint. If
1465 * the hint is NULL, find the first free inode in the AG.
1466 */
1467 STATIC int
xfs_dialloc_ag_finobt_newino(struct xfs_agi * agi,struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * rec)1468 xfs_dialloc_ag_finobt_newino(
1469 struct xfs_agi *agi,
1470 struct xfs_btree_cur *cur,
1471 struct xfs_inobt_rec_incore *rec)
1472 {
1473 int error;
1474 int i;
1475
1476 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1477 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1478 XFS_LOOKUP_EQ, &i);
1479 if (error)
1480 return error;
1481 if (i == 1) {
1482 error = xfs_inobt_get_rec(cur, rec, &i);
1483 if (error)
1484 return error;
1485 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1486 xfs_btree_mark_sick(cur);
1487 return -EFSCORRUPTED;
1488 }
1489 return 0;
1490 }
1491 }
1492
1493 /*
1494 * Find the first inode available in the AG.
1495 */
1496 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1497 if (error)
1498 return error;
1499 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1500 xfs_btree_mark_sick(cur);
1501 return -EFSCORRUPTED;
1502 }
1503
1504 error = xfs_inobt_get_rec(cur, rec, &i);
1505 if (error)
1506 return error;
1507 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1508 xfs_btree_mark_sick(cur);
1509 return -EFSCORRUPTED;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /*
1516 * Update the inobt based on a modification made to the finobt. Also ensure that
1517 * the records from both trees are equivalent post-modification.
1518 */
1519 STATIC int
xfs_dialloc_ag_update_inobt(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * frec,int offset)1520 xfs_dialloc_ag_update_inobt(
1521 struct xfs_btree_cur *cur, /* inobt cursor */
1522 struct xfs_inobt_rec_incore *frec, /* finobt record */
1523 int offset) /* inode offset */
1524 {
1525 struct xfs_inobt_rec_incore rec;
1526 int error;
1527 int i;
1528
1529 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1530 if (error)
1531 return error;
1532 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1533 xfs_btree_mark_sick(cur);
1534 return -EFSCORRUPTED;
1535 }
1536
1537 error = xfs_inobt_get_rec(cur, &rec, &i);
1538 if (error)
1539 return error;
1540 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1541 xfs_btree_mark_sick(cur);
1542 return -EFSCORRUPTED;
1543 }
1544 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1545 XFS_INODES_PER_CHUNK) == 0);
1546
1547 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1548 rec.ir_freecount--;
1549
1550 if (XFS_IS_CORRUPT(cur->bc_mp,
1551 rec.ir_free != frec->ir_free ||
1552 rec.ir_freecount != frec->ir_freecount)) {
1553 xfs_btree_mark_sick(cur);
1554 return -EFSCORRUPTED;
1555 }
1556
1557 return xfs_inobt_update(cur, &rec);
1558 }
1559
1560 /*
1561 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1562 * back to the inobt search algorithm.
1563 *
1564 * The caller selected an AG for us, and made sure that free inodes are
1565 * available.
1566 */
1567 static int
xfs_dialloc_ag(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1568 xfs_dialloc_ag(
1569 struct xfs_perag *pag,
1570 struct xfs_trans *tp,
1571 struct xfs_buf *agbp,
1572 xfs_ino_t parent,
1573 xfs_ino_t *inop)
1574 {
1575 struct xfs_mount *mp = tp->t_mountp;
1576 struct xfs_agi *agi = agbp->b_addr;
1577 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1578 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1579 struct xfs_btree_cur *cur; /* finobt cursor */
1580 struct xfs_btree_cur *icur; /* inobt cursor */
1581 struct xfs_inobt_rec_incore rec;
1582 xfs_ino_t ino;
1583 int error;
1584 int offset;
1585 int i;
1586
1587 if (!xfs_has_finobt(mp))
1588 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1589
1590 /*
1591 * If pagino is 0 (this is the root inode allocation) use newino.
1592 * This must work because we've just allocated some.
1593 */
1594 if (!pagino)
1595 pagino = be32_to_cpu(agi->agi_newino);
1596
1597 cur = xfs_finobt_init_cursor(pag, tp, agbp);
1598
1599 error = xfs_check_agi_freecount(cur);
1600 if (error)
1601 goto error_cur;
1602
1603 /*
1604 * The search algorithm depends on whether we're in the same AG as the
1605 * parent. If so, find the closest available inode to the parent. If
1606 * not, consider the agi hint or find the first free inode in the AG.
1607 */
1608 if (pag->pag_agno == pagno)
1609 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1610 else
1611 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1612 if (error)
1613 goto error_cur;
1614
1615 offset = xfs_inobt_first_free_inode(&rec);
1616 ASSERT(offset >= 0);
1617 ASSERT(offset < XFS_INODES_PER_CHUNK);
1618 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1619 XFS_INODES_PER_CHUNK) == 0);
1620 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1621
1622 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1623 error = xfs_dialloc_check_ino(pag, tp, ino);
1624 if (error)
1625 goto error_cur;
1626 }
1627
1628 /*
1629 * Modify or remove the finobt record.
1630 */
1631 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 rec.ir_freecount--;
1633 if (rec.ir_freecount)
1634 error = xfs_inobt_update(cur, &rec);
1635 else
1636 error = xfs_btree_delete(cur, &i);
1637 if (error)
1638 goto error_cur;
1639
1640 /*
1641 * The finobt has now been updated appropriately. We haven't updated the
1642 * agi and superblock yet, so we can create an inobt cursor and validate
1643 * the original freecount. If all is well, make the equivalent update to
1644 * the inobt using the finobt record and offset information.
1645 */
1646 icur = xfs_inobt_init_cursor(pag, tp, agbp);
1647
1648 error = xfs_check_agi_freecount(icur);
1649 if (error)
1650 goto error_icur;
1651
1652 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653 if (error)
1654 goto error_icur;
1655
1656 /*
1657 * Both trees have now been updated. We must update the perag and
1658 * superblock before we can check the freecount for each btree.
1659 */
1660 be32_add_cpu(&agi->agi_freecount, -1);
1661 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662 pag->pagi_freecount--;
1663
1664 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665
1666 error = xfs_check_agi_freecount(icur);
1667 if (error)
1668 goto error_icur;
1669 error = xfs_check_agi_freecount(cur);
1670 if (error)
1671 goto error_icur;
1672
1673 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675 *inop = ino;
1676 return 0;
1677
1678 error_icur:
1679 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680 error_cur:
1681 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682 return error;
1683 }
1684
1685 static int
xfs_dialloc_roll(struct xfs_trans ** tpp,struct xfs_buf * agibp)1686 xfs_dialloc_roll(
1687 struct xfs_trans **tpp,
1688 struct xfs_buf *agibp)
1689 {
1690 struct xfs_trans *tp = *tpp;
1691 struct xfs_dquot_acct *dqinfo;
1692 int error;
1693
1694 /*
1695 * Hold to on to the agibp across the commit so no other allocation can
1696 * come in and take the free inodes we just allocated for our caller.
1697 */
1698 xfs_trans_bhold(tp, agibp);
1699
1700 /*
1701 * We want the quota changes to be associated with the next transaction,
1702 * NOT this one. So, detach the dqinfo from this and attach it to the
1703 * next transaction.
1704 */
1705 dqinfo = tp->t_dqinfo;
1706 tp->t_dqinfo = NULL;
1707
1708 error = xfs_trans_roll(&tp);
1709
1710 /* Re-attach the quota info that we detached from prev trx. */
1711 tp->t_dqinfo = dqinfo;
1712
1713 /*
1714 * Join the buffer even on commit error so that the buffer is released
1715 * when the caller cancels the transaction and doesn't have to handle
1716 * this error case specially.
1717 */
1718 xfs_trans_bjoin(tp, agibp);
1719 *tpp = tp;
1720 return error;
1721 }
1722
1723 static bool
xfs_dialloc_good_ag(struct xfs_perag * pag,struct xfs_trans * tp,umode_t mode,int flags,bool ok_alloc)1724 xfs_dialloc_good_ag(
1725 struct xfs_perag *pag,
1726 struct xfs_trans *tp,
1727 umode_t mode,
1728 int flags,
1729 bool ok_alloc)
1730 {
1731 struct xfs_mount *mp = tp->t_mountp;
1732 xfs_extlen_t ineed;
1733 xfs_extlen_t longest = 0;
1734 int needspace;
1735 int error;
1736
1737 if (!pag)
1738 return false;
1739 if (!xfs_perag_allows_inodes(pag))
1740 return false;
1741
1742 if (!xfs_perag_initialised_agi(pag)) {
1743 error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1744 if (error)
1745 return false;
1746 }
1747
1748 if (pag->pagi_freecount)
1749 return true;
1750 if (!ok_alloc)
1751 return false;
1752
1753 if (!xfs_perag_initialised_agf(pag)) {
1754 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1755 if (error)
1756 return false;
1757 }
1758
1759 /*
1760 * Check that there is enough free space for the file plus a chunk of
1761 * inodes if we need to allocate some. If this is the first pass across
1762 * the AGs, take into account the potential space needed for alignment
1763 * of inode chunks when checking the longest contiguous free space in
1764 * the AG - this prevents us from getting ENOSPC because we have free
1765 * space larger than ialloc_blks but alignment constraints prevent us
1766 * from using it.
1767 *
1768 * If we can't find an AG with space for full alignment slack to be
1769 * taken into account, we must be near ENOSPC in all AGs. Hence we
1770 * don't include alignment for the second pass and so if we fail
1771 * allocation due to alignment issues then it is most likely a real
1772 * ENOSPC condition.
1773 *
1774 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1775 * reservations that xfs_alloc_fix_freelist() now does via
1776 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1777 * be more than large enough for the check below to succeed, but
1778 * xfs_alloc_space_available() will fail because of the non-zero
1779 * metadata reservation and hence we won't actually be able to allocate
1780 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1781 * because of this.
1782 */
1783 ineed = M_IGEO(mp)->ialloc_min_blks;
1784 if (flags && ineed > 1)
1785 ineed += M_IGEO(mp)->cluster_align;
1786 longest = pag->pagf_longest;
1787 if (!longest)
1788 longest = pag->pagf_flcount > 0;
1789 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1790
1791 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1792 return false;
1793 return true;
1794 }
1795
1796 static int
xfs_dialloc_try_ag(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_ino_t parent,xfs_ino_t * new_ino,bool ok_alloc)1797 xfs_dialloc_try_ag(
1798 struct xfs_perag *pag,
1799 struct xfs_trans **tpp,
1800 xfs_ino_t parent,
1801 xfs_ino_t *new_ino,
1802 bool ok_alloc)
1803 {
1804 struct xfs_buf *agbp;
1805 xfs_ino_t ino;
1806 int error;
1807
1808 /*
1809 * Then read in the AGI buffer and recheck with the AGI buffer
1810 * lock held.
1811 */
1812 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1813 if (error)
1814 return error;
1815
1816 if (!pag->pagi_freecount) {
1817 if (!ok_alloc) {
1818 error = -EAGAIN;
1819 goto out_release;
1820 }
1821
1822 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1823 if (error < 0)
1824 goto out_release;
1825
1826 /*
1827 * We successfully allocated space for an inode cluster in this
1828 * AG. Roll the transaction so that we can allocate one of the
1829 * new inodes.
1830 */
1831 ASSERT(pag->pagi_freecount > 0);
1832 error = xfs_dialloc_roll(tpp, agbp);
1833 if (error)
1834 goto out_release;
1835 }
1836
1837 /* Allocate an inode in the found AG */
1838 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1839 if (!error)
1840 *new_ino = ino;
1841 return error;
1842
1843 out_release:
1844 xfs_trans_brelse(*tpp, agbp);
1845 return error;
1846 }
1847
1848 /*
1849 * Allocate an on-disk inode.
1850 *
1851 * Mode is used to tell whether the new inode is a directory and hence where to
1852 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1853 * on success, otherwise an error will be set to indicate the failure (e.g.
1854 * -ENOSPC).
1855 */
1856 int
xfs_dialloc(struct xfs_trans ** tpp,const struct xfs_icreate_args * args,xfs_ino_t * new_ino)1857 xfs_dialloc(
1858 struct xfs_trans **tpp,
1859 const struct xfs_icreate_args *args,
1860 xfs_ino_t *new_ino)
1861 {
1862 struct xfs_mount *mp = (*tpp)->t_mountp;
1863 xfs_ino_t parent = args->pip ? args->pip->i_ino : 0;
1864 umode_t mode = args->mode & S_IFMT;
1865 xfs_agnumber_t agno;
1866 int error = 0;
1867 xfs_agnumber_t start_agno;
1868 struct xfs_perag *pag;
1869 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1870 bool ok_alloc = true;
1871 bool low_space = false;
1872 int flags;
1873 xfs_ino_t ino = NULLFSINO;
1874
1875 /*
1876 * Directories, symlinks, and regular files frequently allocate at least
1877 * one block, so factor that potential expansion when we examine whether
1878 * an AG has enough space for file creation.
1879 */
1880 if (S_ISDIR(mode))
1881 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1882 mp->m_maxagi;
1883 else {
1884 start_agno = XFS_INO_TO_AGNO(mp, parent);
1885 if (start_agno >= mp->m_maxagi)
1886 start_agno = 0;
1887 }
1888
1889 /*
1890 * If we have already hit the ceiling of inode blocks then clear
1891 * ok_alloc so we scan all available agi structures for a free
1892 * inode.
1893 *
1894 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1895 * which will sacrifice the preciseness but improve the performance.
1896 */
1897 if (igeo->maxicount &&
1898 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1899 > igeo->maxicount) {
1900 ok_alloc = false;
1901 }
1902
1903 /*
1904 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1905 * have free inodes in them rather than use up free space allocating new
1906 * inode chunks. Hence we turn off allocation for the first non-blocking
1907 * pass through the AGs if we are near ENOSPC to consume free inodes
1908 * that we can immediately allocate, but then we allow allocation on the
1909 * second pass if we fail to find an AG with free inodes in it.
1910 */
1911 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1912 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1913 ok_alloc = false;
1914 low_space = true;
1915 }
1916
1917 /*
1918 * Loop until we find an allocation group that either has free inodes
1919 * or in which we can allocate some inodes. Iterate through the
1920 * allocation groups upward, wrapping at the end.
1921 */
1922 flags = XFS_ALLOC_FLAG_TRYLOCK;
1923 retry:
1924 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1925 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1926 error = xfs_dialloc_try_ag(pag, tpp, parent,
1927 &ino, ok_alloc);
1928 if (error != -EAGAIN)
1929 break;
1930 error = 0;
1931 }
1932
1933 if (xfs_is_shutdown(mp)) {
1934 error = -EFSCORRUPTED;
1935 break;
1936 }
1937 }
1938 if (pag)
1939 xfs_perag_rele(pag);
1940 if (error)
1941 return error;
1942 if (ino == NULLFSINO) {
1943 if (flags) {
1944 flags = 0;
1945 if (low_space)
1946 ok_alloc = true;
1947 goto retry;
1948 }
1949 return -ENOSPC;
1950 }
1951
1952 /*
1953 * Protect against obviously corrupt allocation btree records. Later
1954 * xfs_iget checks will catch re-allocation of other active in-memory
1955 * and on-disk inodes. If we don't catch reallocating the parent inode
1956 * here we will deadlock in xfs_iget() so we have to do these checks
1957 * first.
1958 */
1959 if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1960 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1961 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1962 XFS_SICK_AG_INOBT);
1963 return -EFSCORRUPTED;
1964 }
1965
1966 *new_ino = ino;
1967 return 0;
1968 }
1969
1970 /*
1971 * Free the blocks of an inode chunk. We must consider that the inode chunk
1972 * might be sparse and only free the regions that are allocated as part of the
1973 * chunk.
1974 */
1975 static int
xfs_difree_inode_chunk(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_inobt_rec_incore * rec)1976 xfs_difree_inode_chunk(
1977 struct xfs_trans *tp,
1978 xfs_agnumber_t agno,
1979 struct xfs_inobt_rec_incore *rec)
1980 {
1981 struct xfs_mount *mp = tp->t_mountp;
1982 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1983 rec->ir_startino);
1984 int startidx, endidx;
1985 int nextbit;
1986 xfs_agblock_t agbno;
1987 int contigblk;
1988 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1989
1990 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1991 /* not sparse, calculate extent info directly */
1992 return xfs_free_extent_later(tp,
1993 XFS_AGB_TO_FSB(mp, agno, sagbno),
1994 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1995 XFS_AG_RESV_NONE, 0);
1996 }
1997
1998 /* holemask is only 16-bits (fits in an unsigned long) */
1999 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2000 holemask[0] = rec->ir_holemask;
2001
2002 /*
2003 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2004 * holemask and convert the start/end index of each range to an extent.
2005 * We start with the start and end index both pointing at the first 0 in
2006 * the mask.
2007 */
2008 startidx = endidx = find_first_zero_bit(holemask,
2009 XFS_INOBT_HOLEMASK_BITS);
2010 nextbit = startidx + 1;
2011 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2012 int error;
2013
2014 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2015 nextbit);
2016 /*
2017 * If the next zero bit is contiguous, update the end index of
2018 * the current range and continue.
2019 */
2020 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2021 nextbit == endidx + 1) {
2022 endidx = nextbit;
2023 goto next;
2024 }
2025
2026 /*
2027 * nextbit is not contiguous with the current end index. Convert
2028 * the current start/end to an extent and add it to the free
2029 * list.
2030 */
2031 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2032 mp->m_sb.sb_inopblock;
2033 contigblk = ((endidx - startidx + 1) *
2034 XFS_INODES_PER_HOLEMASK_BIT) /
2035 mp->m_sb.sb_inopblock;
2036
2037 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2038 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2039 error = xfs_free_extent_later(tp,
2040 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
2041 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0);
2042 if (error)
2043 return error;
2044
2045 /* reset range to current bit and carry on... */
2046 startidx = endidx = nextbit;
2047
2048 next:
2049 nextbit++;
2050 }
2051 return 0;
2052 }
2053
2054 STATIC int
xfs_difree_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_icluster * xic,struct xfs_inobt_rec_incore * orec)2055 xfs_difree_inobt(
2056 struct xfs_perag *pag,
2057 struct xfs_trans *tp,
2058 struct xfs_buf *agbp,
2059 xfs_agino_t agino,
2060 struct xfs_icluster *xic,
2061 struct xfs_inobt_rec_incore *orec)
2062 {
2063 struct xfs_mount *mp = pag->pag_mount;
2064 struct xfs_agi *agi = agbp->b_addr;
2065 struct xfs_btree_cur *cur;
2066 struct xfs_inobt_rec_incore rec;
2067 int ilen;
2068 int error;
2069 int i;
2070 int off;
2071
2072 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2073 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2074
2075 /*
2076 * Initialize the cursor.
2077 */
2078 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2079
2080 error = xfs_check_agi_freecount(cur);
2081 if (error)
2082 goto error0;
2083
2084 /*
2085 * Look for the entry describing this inode.
2086 */
2087 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2088 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2089 __func__, error);
2090 goto error0;
2091 }
2092 if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 xfs_btree_mark_sick(cur);
2094 error = -EFSCORRUPTED;
2095 goto error0;
2096 }
2097 error = xfs_inobt_get_rec(cur, &rec, &i);
2098 if (error) {
2099 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2100 __func__, error);
2101 goto error0;
2102 }
2103 if (XFS_IS_CORRUPT(mp, i != 1)) {
2104 xfs_btree_mark_sick(cur);
2105 error = -EFSCORRUPTED;
2106 goto error0;
2107 }
2108 /*
2109 * Get the offset in the inode chunk.
2110 */
2111 off = agino - rec.ir_startino;
2112 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2113 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2114 /*
2115 * Mark the inode free & increment the count.
2116 */
2117 rec.ir_free |= XFS_INOBT_MASK(off);
2118 rec.ir_freecount++;
2119
2120 /*
2121 * When an inode chunk is free, it becomes eligible for removal. Don't
2122 * remove the chunk if the block size is large enough for multiple inode
2123 * chunks (that might not be free).
2124 */
2125 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2126 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2127 xic->deleted = true;
2128 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2129 rec.ir_startino);
2130 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2131
2132 /*
2133 * Remove the inode cluster from the AGI B+Tree, adjust the
2134 * AGI and Superblock inode counts, and mark the disk space
2135 * to be freed when the transaction is committed.
2136 */
2137 ilen = rec.ir_freecount;
2138 be32_add_cpu(&agi->agi_count, -ilen);
2139 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2140 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2141 pag->pagi_freecount -= ilen - 1;
2142 pag->pagi_count -= ilen;
2143 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2144 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2145
2146 if ((error = xfs_btree_delete(cur, &i))) {
2147 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2148 __func__, error);
2149 goto error0;
2150 }
2151
2152 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2153 if (error)
2154 goto error0;
2155 } else {
2156 xic->deleted = false;
2157
2158 error = xfs_inobt_update(cur, &rec);
2159 if (error) {
2160 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2161 __func__, error);
2162 goto error0;
2163 }
2164
2165 /*
2166 * Change the inode free counts and log the ag/sb changes.
2167 */
2168 be32_add_cpu(&agi->agi_freecount, 1);
2169 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2170 pag->pagi_freecount++;
2171 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2172 }
2173
2174 error = xfs_check_agi_freecount(cur);
2175 if (error)
2176 goto error0;
2177
2178 *orec = rec;
2179 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2180 return 0;
2181
2182 error0:
2183 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2184 return error;
2185 }
2186
2187 /*
2188 * Free an inode in the free inode btree.
2189 */
2190 STATIC int
xfs_difree_finobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_inobt_rec_incore * ibtrec)2191 xfs_difree_finobt(
2192 struct xfs_perag *pag,
2193 struct xfs_trans *tp,
2194 struct xfs_buf *agbp,
2195 xfs_agino_t agino,
2196 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2197 {
2198 struct xfs_mount *mp = pag->pag_mount;
2199 struct xfs_btree_cur *cur;
2200 struct xfs_inobt_rec_incore rec;
2201 int offset = agino - ibtrec->ir_startino;
2202 int error;
2203 int i;
2204
2205 cur = xfs_finobt_init_cursor(pag, tp, agbp);
2206
2207 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2208 if (error)
2209 goto error;
2210 if (i == 0) {
2211 /*
2212 * If the record does not exist in the finobt, we must have just
2213 * freed an inode in a previously fully allocated chunk. If not,
2214 * something is out of sync.
2215 */
2216 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2217 xfs_btree_mark_sick(cur);
2218 error = -EFSCORRUPTED;
2219 goto error;
2220 }
2221
2222 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2223 ibtrec->ir_count,
2224 ibtrec->ir_freecount,
2225 ibtrec->ir_free, &i);
2226 if (error)
2227 goto error;
2228 ASSERT(i == 1);
2229
2230 goto out;
2231 }
2232
2233 /*
2234 * Read and update the existing record. We could just copy the ibtrec
2235 * across here, but that would defeat the purpose of having redundant
2236 * metadata. By making the modifications independently, we can catch
2237 * corruptions that we wouldn't see if we just copied from one record
2238 * to another.
2239 */
2240 error = xfs_inobt_get_rec(cur, &rec, &i);
2241 if (error)
2242 goto error;
2243 if (XFS_IS_CORRUPT(mp, i != 1)) {
2244 xfs_btree_mark_sick(cur);
2245 error = -EFSCORRUPTED;
2246 goto error;
2247 }
2248
2249 rec.ir_free |= XFS_INOBT_MASK(offset);
2250 rec.ir_freecount++;
2251
2252 if (XFS_IS_CORRUPT(mp,
2253 rec.ir_free != ibtrec->ir_free ||
2254 rec.ir_freecount != ibtrec->ir_freecount)) {
2255 xfs_btree_mark_sick(cur);
2256 error = -EFSCORRUPTED;
2257 goto error;
2258 }
2259
2260 /*
2261 * The content of inobt records should always match between the inobt
2262 * and finobt. The lifecycle of records in the finobt is different from
2263 * the inobt in that the finobt only tracks records with at least one
2264 * free inode. Hence, if all of the inodes are free and we aren't
2265 * keeping inode chunks permanently on disk, remove the record.
2266 * Otherwise, update the record with the new information.
2267 *
2268 * Note that we currently can't free chunks when the block size is large
2269 * enough for multiple chunks. Leave the finobt record to remain in sync
2270 * with the inobt.
2271 */
2272 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2273 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2274 error = xfs_btree_delete(cur, &i);
2275 if (error)
2276 goto error;
2277 ASSERT(i == 1);
2278 } else {
2279 error = xfs_inobt_update(cur, &rec);
2280 if (error)
2281 goto error;
2282 }
2283
2284 out:
2285 error = xfs_check_agi_freecount(cur);
2286 if (error)
2287 goto error;
2288
2289 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2290 return 0;
2291
2292 error:
2293 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2294 return error;
2295 }
2296
2297 /*
2298 * Free disk inode. Carefully avoids touching the incore inode, all
2299 * manipulations incore are the caller's responsibility.
2300 * The on-disk inode is not changed by this operation, only the
2301 * btree (free inode mask) is changed.
2302 */
2303 int
xfs_difree(struct xfs_trans * tp,struct xfs_perag * pag,xfs_ino_t inode,struct xfs_icluster * xic)2304 xfs_difree(
2305 struct xfs_trans *tp,
2306 struct xfs_perag *pag,
2307 xfs_ino_t inode,
2308 struct xfs_icluster *xic)
2309 {
2310 /* REFERENCED */
2311 xfs_agblock_t agbno; /* block number containing inode */
2312 struct xfs_buf *agbp; /* buffer for allocation group header */
2313 xfs_agino_t agino; /* allocation group inode number */
2314 int error; /* error return value */
2315 struct xfs_mount *mp = tp->t_mountp;
2316 struct xfs_inobt_rec_incore rec;/* btree record */
2317
2318 /*
2319 * Break up inode number into its components.
2320 */
2321 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2322 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2323 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2324 ASSERT(0);
2325 return -EINVAL;
2326 }
2327 agino = XFS_INO_TO_AGINO(mp, inode);
2328 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2329 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2330 __func__, (unsigned long long)inode,
2331 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2332 ASSERT(0);
2333 return -EINVAL;
2334 }
2335 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2336 if (agbno >= xfs_ag_block_count(mp, pag->pag_agno)) {
2337 xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).",
2338 __func__, agbno, xfs_ag_block_count(mp, pag->pag_agno));
2339 ASSERT(0);
2340 return -EINVAL;
2341 }
2342 /*
2343 * Get the allocation group header.
2344 */
2345 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2346 if (error) {
2347 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2348 __func__, error);
2349 return error;
2350 }
2351
2352 /*
2353 * Fix up the inode allocation btree.
2354 */
2355 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2356 if (error)
2357 goto error0;
2358
2359 /*
2360 * Fix up the free inode btree.
2361 */
2362 if (xfs_has_finobt(mp)) {
2363 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2364 if (error)
2365 goto error0;
2366 }
2367
2368 return 0;
2369
2370 error0:
2371 return error;
2372 }
2373
2374 STATIC int
xfs_imap_lookup(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agino_t agino,xfs_agblock_t agbno,xfs_agblock_t * chunk_agbno,xfs_agblock_t * offset_agbno,int flags)2375 xfs_imap_lookup(
2376 struct xfs_perag *pag,
2377 struct xfs_trans *tp,
2378 xfs_agino_t agino,
2379 xfs_agblock_t agbno,
2380 xfs_agblock_t *chunk_agbno,
2381 xfs_agblock_t *offset_agbno,
2382 int flags)
2383 {
2384 struct xfs_mount *mp = pag->pag_mount;
2385 struct xfs_inobt_rec_incore rec;
2386 struct xfs_btree_cur *cur;
2387 struct xfs_buf *agbp;
2388 int error;
2389 int i;
2390
2391 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2392 if (error) {
2393 xfs_alert(mp,
2394 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2395 __func__, error, pag->pag_agno);
2396 return error;
2397 }
2398
2399 /*
2400 * Lookup the inode record for the given agino. If the record cannot be
2401 * found, then it's an invalid inode number and we should abort. Once
2402 * we have a record, we need to ensure it contains the inode number
2403 * we are looking up.
2404 */
2405 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2406 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2407 if (!error) {
2408 if (i)
2409 error = xfs_inobt_get_rec(cur, &rec, &i);
2410 if (!error && i == 0)
2411 error = -EINVAL;
2412 }
2413
2414 xfs_trans_brelse(tp, agbp);
2415 xfs_btree_del_cursor(cur, error);
2416 if (error)
2417 return error;
2418
2419 /* check that the returned record contains the required inode */
2420 if (rec.ir_startino > agino ||
2421 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2422 return -EINVAL;
2423
2424 /* for untrusted inodes check it is allocated first */
2425 if ((flags & XFS_IGET_UNTRUSTED) &&
2426 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2427 return -EINVAL;
2428
2429 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2430 *offset_agbno = agbno - *chunk_agbno;
2431 return 0;
2432 }
2433
2434 /*
2435 * Return the location of the inode in imap, for mapping it into a buffer.
2436 */
2437 int
xfs_imap(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino,struct xfs_imap * imap,uint flags)2438 xfs_imap(
2439 struct xfs_perag *pag,
2440 struct xfs_trans *tp,
2441 xfs_ino_t ino, /* inode to locate */
2442 struct xfs_imap *imap, /* location map structure */
2443 uint flags) /* flags for inode btree lookup */
2444 {
2445 struct xfs_mount *mp = pag->pag_mount;
2446 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2447 xfs_agino_t agino; /* inode number within alloc group */
2448 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2449 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2450 int error; /* error code */
2451 int offset; /* index of inode in its buffer */
2452 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2453
2454 ASSERT(ino != NULLFSINO);
2455
2456 /*
2457 * Split up the inode number into its parts.
2458 */
2459 agino = XFS_INO_TO_AGINO(mp, ino);
2460 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2461 if (agbno >= xfs_ag_block_count(mp, pag->pag_agno) ||
2462 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2463 error = -EINVAL;
2464 #ifdef DEBUG
2465 /*
2466 * Don't output diagnostic information for untrusted inodes
2467 * as they can be invalid without implying corruption.
2468 */
2469 if (flags & XFS_IGET_UNTRUSTED)
2470 return error;
2471 if (agbno >= xfs_ag_block_count(mp, pag->pag_agno)) {
2472 xfs_alert(mp,
2473 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2474 __func__, (unsigned long long)agbno,
2475 (unsigned long)xfs_ag_block_count(mp,
2476 pag->pag_agno));
2477 }
2478 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2479 xfs_alert(mp,
2480 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2481 __func__, ino,
2482 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2483 }
2484 xfs_stack_trace();
2485 #endif /* DEBUG */
2486 return error;
2487 }
2488
2489 /*
2490 * For bulkstat and handle lookups, we have an untrusted inode number
2491 * that we have to verify is valid. We cannot do this just by reading
2492 * the inode buffer as it may have been unlinked and removed leaving
2493 * inodes in stale state on disk. Hence we have to do a btree lookup
2494 * in all cases where an untrusted inode number is passed.
2495 */
2496 if (flags & XFS_IGET_UNTRUSTED) {
2497 error = xfs_imap_lookup(pag, tp, agino, agbno,
2498 &chunk_agbno, &offset_agbno, flags);
2499 if (error)
2500 return error;
2501 goto out_map;
2502 }
2503
2504 /*
2505 * If the inode cluster size is the same as the blocksize or
2506 * smaller we get to the buffer by simple arithmetics.
2507 */
2508 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2509 offset = XFS_INO_TO_OFFSET(mp, ino);
2510 ASSERT(offset < mp->m_sb.sb_inopblock);
2511
2512 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2513 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2514 imap->im_boffset = (unsigned short)(offset <<
2515 mp->m_sb.sb_inodelog);
2516 return 0;
2517 }
2518
2519 /*
2520 * If the inode chunks are aligned then use simple maths to
2521 * find the location. Otherwise we have to do a btree
2522 * lookup to find the location.
2523 */
2524 if (M_IGEO(mp)->inoalign_mask) {
2525 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2526 chunk_agbno = agbno - offset_agbno;
2527 } else {
2528 error = xfs_imap_lookup(pag, tp, agino, agbno,
2529 &chunk_agbno, &offset_agbno, flags);
2530 if (error)
2531 return error;
2532 }
2533
2534 out_map:
2535 ASSERT(agbno >= chunk_agbno);
2536 cluster_agbno = chunk_agbno +
2537 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2538 M_IGEO(mp)->blocks_per_cluster);
2539 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2540 XFS_INO_TO_OFFSET(mp, ino);
2541
2542 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2543 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2544 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2545
2546 /*
2547 * If the inode number maps to a block outside the bounds
2548 * of the file system then return NULL rather than calling
2549 * read_buf and panicing when we get an error from the
2550 * driver.
2551 */
2552 if ((imap->im_blkno + imap->im_len) >
2553 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2554 xfs_alert(mp,
2555 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2556 __func__, (unsigned long long) imap->im_blkno,
2557 (unsigned long long) imap->im_len,
2558 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2559 return -EINVAL;
2560 }
2561 return 0;
2562 }
2563
2564 /*
2565 * Log specified fields for the ag hdr (inode section). The growth of the agi
2566 * structure over time requires that we interpret the buffer as two logical
2567 * regions delineated by the end of the unlinked list. This is due to the size
2568 * of the hash table and its location in the middle of the agi.
2569 *
2570 * For example, a request to log a field before agi_unlinked and a field after
2571 * agi_unlinked could cause us to log the entire hash table and use an excessive
2572 * amount of log space. To avoid this behavior, log the region up through
2573 * agi_unlinked in one call and the region after agi_unlinked through the end of
2574 * the structure in another.
2575 */
2576 void
xfs_ialloc_log_agi(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2577 xfs_ialloc_log_agi(
2578 struct xfs_trans *tp,
2579 struct xfs_buf *bp,
2580 uint32_t fields)
2581 {
2582 int first; /* first byte number */
2583 int last; /* last byte number */
2584 static const short offsets[] = { /* field starting offsets */
2585 /* keep in sync with bit definitions */
2586 offsetof(xfs_agi_t, agi_magicnum),
2587 offsetof(xfs_agi_t, agi_versionnum),
2588 offsetof(xfs_agi_t, agi_seqno),
2589 offsetof(xfs_agi_t, agi_length),
2590 offsetof(xfs_agi_t, agi_count),
2591 offsetof(xfs_agi_t, agi_root),
2592 offsetof(xfs_agi_t, agi_level),
2593 offsetof(xfs_agi_t, agi_freecount),
2594 offsetof(xfs_agi_t, agi_newino),
2595 offsetof(xfs_agi_t, agi_dirino),
2596 offsetof(xfs_agi_t, agi_unlinked),
2597 offsetof(xfs_agi_t, agi_free_root),
2598 offsetof(xfs_agi_t, agi_free_level),
2599 offsetof(xfs_agi_t, agi_iblocks),
2600 sizeof(xfs_agi_t)
2601 };
2602 #ifdef DEBUG
2603 struct xfs_agi *agi = bp->b_addr;
2604
2605 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2606 #endif
2607
2608 /*
2609 * Compute byte offsets for the first and last fields in the first
2610 * region and log the agi buffer. This only logs up through
2611 * agi_unlinked.
2612 */
2613 if (fields & XFS_AGI_ALL_BITS_R1) {
2614 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2615 &first, &last);
2616 xfs_trans_log_buf(tp, bp, first, last);
2617 }
2618
2619 /*
2620 * Mask off the bits in the first region and calculate the first and
2621 * last field offsets for any bits in the second region.
2622 */
2623 fields &= ~XFS_AGI_ALL_BITS_R1;
2624 if (fields) {
2625 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2626 &first, &last);
2627 xfs_trans_log_buf(tp, bp, first, last);
2628 }
2629 }
2630
2631 static xfs_failaddr_t
xfs_agi_verify(struct xfs_buf * bp)2632 xfs_agi_verify(
2633 struct xfs_buf *bp)
2634 {
2635 struct xfs_mount *mp = bp->b_mount;
2636 struct xfs_agi *agi = bp->b_addr;
2637 xfs_failaddr_t fa;
2638 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2639 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2640 int i;
2641
2642 if (xfs_has_crc(mp)) {
2643 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2644 return __this_address;
2645 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2646 return __this_address;
2647 }
2648
2649 /*
2650 * Validate the magic number of the agi block.
2651 */
2652 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2653 return __this_address;
2654 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2655 return __this_address;
2656
2657 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2658 if (fa)
2659 return fa;
2660
2661 if (be32_to_cpu(agi->agi_level) < 1 ||
2662 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2663 return __this_address;
2664
2665 if (xfs_has_finobt(mp) &&
2666 (be32_to_cpu(agi->agi_free_level) < 1 ||
2667 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2668 return __this_address;
2669
2670 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2671 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2672 continue;
2673 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2674 return __this_address;
2675 }
2676
2677 return NULL;
2678 }
2679
2680 static void
xfs_agi_read_verify(struct xfs_buf * bp)2681 xfs_agi_read_verify(
2682 struct xfs_buf *bp)
2683 {
2684 struct xfs_mount *mp = bp->b_mount;
2685 xfs_failaddr_t fa;
2686
2687 if (xfs_has_crc(mp) &&
2688 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2689 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2690 else {
2691 fa = xfs_agi_verify(bp);
2692 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2693 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2694 }
2695 }
2696
2697 static void
xfs_agi_write_verify(struct xfs_buf * bp)2698 xfs_agi_write_verify(
2699 struct xfs_buf *bp)
2700 {
2701 struct xfs_mount *mp = bp->b_mount;
2702 struct xfs_buf_log_item *bip = bp->b_log_item;
2703 struct xfs_agi *agi = bp->b_addr;
2704 xfs_failaddr_t fa;
2705
2706 fa = xfs_agi_verify(bp);
2707 if (fa) {
2708 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2709 return;
2710 }
2711
2712 if (!xfs_has_crc(mp))
2713 return;
2714
2715 if (bip)
2716 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2717 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2718 }
2719
2720 const struct xfs_buf_ops xfs_agi_buf_ops = {
2721 .name = "xfs_agi",
2722 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2723 .verify_read = xfs_agi_read_verify,
2724 .verify_write = xfs_agi_write_verify,
2725 .verify_struct = xfs_agi_verify,
2726 };
2727
2728 /*
2729 * Read in the allocation group header (inode allocation section)
2730 */
2731 int
xfs_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,xfs_buf_flags_t flags,struct xfs_buf ** agibpp)2732 xfs_read_agi(
2733 struct xfs_perag *pag,
2734 struct xfs_trans *tp,
2735 xfs_buf_flags_t flags,
2736 struct xfs_buf **agibpp)
2737 {
2738 struct xfs_mount *mp = pag->pag_mount;
2739 int error;
2740
2741 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2742
2743 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2744 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2745 XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2746 if (xfs_metadata_is_sick(error))
2747 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2748 if (error)
2749 return error;
2750 if (tp)
2751 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2752
2753 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2754 return 0;
2755 }
2756
2757 /*
2758 * Read in the agi and initialise the per-ag data. If the caller supplies a
2759 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2760 */
2761 int
xfs_ialloc_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agibpp)2762 xfs_ialloc_read_agi(
2763 struct xfs_perag *pag,
2764 struct xfs_trans *tp,
2765 int flags,
2766 struct xfs_buf **agibpp)
2767 {
2768 struct xfs_buf *agibp;
2769 struct xfs_agi *agi;
2770 int error;
2771
2772 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2773
2774 error = xfs_read_agi(pag, tp,
2775 (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2776 &agibp);
2777 if (error)
2778 return error;
2779
2780 agi = agibp->b_addr;
2781 if (!xfs_perag_initialised_agi(pag)) {
2782 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2783 pag->pagi_count = be32_to_cpu(agi->agi_count);
2784 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2785 }
2786
2787 /*
2788 * It's possible for these to be out of sync if
2789 * we are in the middle of a forced shutdown.
2790 */
2791 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2792 xfs_is_shutdown(pag->pag_mount));
2793 if (agibpp)
2794 *agibpp = agibp;
2795 else
2796 xfs_trans_brelse(tp, agibp);
2797 return 0;
2798 }
2799
2800 /* How many inodes are backed by inode clusters ondisk? */
2801 STATIC int
xfs_ialloc_count_ondisk(struct xfs_btree_cur * cur,xfs_agino_t low,xfs_agino_t high,unsigned int * allocated)2802 xfs_ialloc_count_ondisk(
2803 struct xfs_btree_cur *cur,
2804 xfs_agino_t low,
2805 xfs_agino_t high,
2806 unsigned int *allocated)
2807 {
2808 struct xfs_inobt_rec_incore irec;
2809 unsigned int ret = 0;
2810 int has_record;
2811 int error;
2812
2813 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2814 if (error)
2815 return error;
2816
2817 while (has_record) {
2818 unsigned int i, hole_idx;
2819
2820 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2821 if (error)
2822 return error;
2823 if (irec.ir_startino > high)
2824 break;
2825
2826 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2827 if (irec.ir_startino + i < low)
2828 continue;
2829 if (irec.ir_startino + i > high)
2830 break;
2831
2832 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2833 if (!(irec.ir_holemask & (1U << hole_idx)))
2834 ret++;
2835 }
2836
2837 error = xfs_btree_increment(cur, 0, &has_record);
2838 if (error)
2839 return error;
2840 }
2841
2842 *allocated = ret;
2843 return 0;
2844 }
2845
2846 /* Is there an inode record covering a given extent? */
2847 int
xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)2848 xfs_ialloc_has_inodes_at_extent(
2849 struct xfs_btree_cur *cur,
2850 xfs_agblock_t bno,
2851 xfs_extlen_t len,
2852 enum xbtree_recpacking *outcome)
2853 {
2854 xfs_agino_t agino;
2855 xfs_agino_t last_agino;
2856 unsigned int allocated;
2857 int error;
2858
2859 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2860 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2861
2862 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2863 if (error)
2864 return error;
2865
2866 if (allocated == 0)
2867 *outcome = XBTREE_RECPACKING_EMPTY;
2868 else if (allocated == last_agino - agino + 1)
2869 *outcome = XBTREE_RECPACKING_FULL;
2870 else
2871 *outcome = XBTREE_RECPACKING_SPARSE;
2872 return 0;
2873 }
2874
2875 struct xfs_ialloc_count_inodes {
2876 xfs_agino_t count;
2877 xfs_agino_t freecount;
2878 };
2879
2880 /* Record inode counts across all inobt records. */
2881 STATIC int
xfs_ialloc_count_inodes_rec(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)2882 xfs_ialloc_count_inodes_rec(
2883 struct xfs_btree_cur *cur,
2884 const union xfs_btree_rec *rec,
2885 void *priv)
2886 {
2887 struct xfs_inobt_rec_incore irec;
2888 struct xfs_ialloc_count_inodes *ci = priv;
2889 xfs_failaddr_t fa;
2890
2891 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2892 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2893 if (fa)
2894 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2895
2896 ci->count += irec.ir_count;
2897 ci->freecount += irec.ir_freecount;
2898
2899 return 0;
2900 }
2901
2902 /* Count allocated and free inodes under an inobt. */
2903 int
xfs_ialloc_count_inodes(struct xfs_btree_cur * cur,xfs_agino_t * count,xfs_agino_t * freecount)2904 xfs_ialloc_count_inodes(
2905 struct xfs_btree_cur *cur,
2906 xfs_agino_t *count,
2907 xfs_agino_t *freecount)
2908 {
2909 struct xfs_ialloc_count_inodes ci = {0};
2910 int error;
2911
2912 ASSERT(xfs_btree_is_ino(cur->bc_ops));
2913 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2914 if (error)
2915 return error;
2916
2917 *count = ci.count;
2918 *freecount = ci.freecount;
2919 return 0;
2920 }
2921
2922 /*
2923 * Initialize inode-related geometry information.
2924 *
2925 * Compute the inode btree min and max levels and set maxicount.
2926 *
2927 * Set the inode cluster size. This may still be overridden by the file
2928 * system block size if it is larger than the chosen cluster size.
2929 *
2930 * For v5 filesystems, scale the cluster size with the inode size to keep a
2931 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2932 * inode alignment value appropriately for larger cluster sizes.
2933 *
2934 * Then compute the inode cluster alignment information.
2935 */
2936 void
xfs_ialloc_setup_geometry(struct xfs_mount * mp)2937 xfs_ialloc_setup_geometry(
2938 struct xfs_mount *mp)
2939 {
2940 struct xfs_sb *sbp = &mp->m_sb;
2941 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2942 uint64_t icount;
2943 uint inodes;
2944
2945 igeo->new_diflags2 = 0;
2946 if (xfs_has_bigtime(mp))
2947 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2948 if (xfs_has_large_extent_counts(mp))
2949 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2950
2951 /* Compute inode btree geometry. */
2952 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2953 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2954 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2955 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2956 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2957
2958 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2959 sbp->sb_inopblock);
2960 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2961
2962 if (sbp->sb_spino_align)
2963 igeo->ialloc_min_blks = sbp->sb_spino_align;
2964 else
2965 igeo->ialloc_min_blks = igeo->ialloc_blks;
2966
2967 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2968 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2969 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2970 inodes);
2971 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2972
2973 /*
2974 * Set the maximum inode count for this filesystem, being careful not
2975 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2976 * users should never get here due to failing sb verification, but
2977 * certain users (xfs_db) need to be usable even with corrupt metadata.
2978 */
2979 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2980 /*
2981 * Make sure the maximum inode count is a multiple
2982 * of the units we allocate inodes in.
2983 */
2984 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2985 do_div(icount, 100);
2986 do_div(icount, igeo->ialloc_blks);
2987 igeo->maxicount = XFS_FSB_TO_INO(mp,
2988 icount * igeo->ialloc_blks);
2989 } else {
2990 igeo->maxicount = 0;
2991 }
2992
2993 /*
2994 * Compute the desired size of an inode cluster buffer size, which
2995 * starts at 8K and (on v5 filesystems) scales up with larger inode
2996 * sizes.
2997 *
2998 * Preserve the desired inode cluster size because the sparse inodes
2999 * feature uses that desired size (not the actual size) to compute the
3000 * sparse inode alignment. The mount code validates this value, so we
3001 * cannot change the behavior.
3002 */
3003 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3004 if (xfs_has_v3inodes(mp)) {
3005 int new_size = igeo->inode_cluster_size_raw;
3006
3007 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3008 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3009 igeo->inode_cluster_size_raw = new_size;
3010 }
3011
3012 /* Calculate inode cluster ratios. */
3013 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3014 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3015 igeo->inode_cluster_size_raw);
3016 else
3017 igeo->blocks_per_cluster = 1;
3018 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3019 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3020
3021 /* Calculate inode cluster alignment. */
3022 if (xfs_has_align(mp) &&
3023 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3024 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3025 else
3026 igeo->cluster_align = 1;
3027 igeo->inoalign_mask = igeo->cluster_align - 1;
3028 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3029
3030 /*
3031 * If we are using stripe alignment, check whether
3032 * the stripe unit is a multiple of the inode alignment
3033 */
3034 if (mp->m_dalign && igeo->inoalign_mask &&
3035 !(mp->m_dalign & igeo->inoalign_mask))
3036 igeo->ialloc_align = mp->m_dalign;
3037 else
3038 igeo->ialloc_align = 0;
3039
3040 if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3041 igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3042 else
3043 igeo->min_folio_order = 0;
3044 }
3045
3046 /* Compute the location of the root directory inode that is laid out by mkfs. */
3047 xfs_ino_t
xfs_ialloc_calc_rootino(struct xfs_mount * mp,int sunit)3048 xfs_ialloc_calc_rootino(
3049 struct xfs_mount *mp,
3050 int sunit)
3051 {
3052 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3053 xfs_agblock_t first_bno;
3054
3055 /*
3056 * Pre-calculate the geometry of AG 0. We know what it looks like
3057 * because libxfs knows how to create allocation groups now.
3058 *
3059 * first_bno is the first block in which mkfs could possibly have
3060 * allocated the root directory inode, once we factor in the metadata
3061 * that mkfs formats before it. Namely, the four AG headers...
3062 */
3063 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3064
3065 /* ...the two free space btree roots... */
3066 first_bno += 2;
3067
3068 /* ...the inode btree root... */
3069 first_bno += 1;
3070
3071 /* ...the initial AGFL... */
3072 first_bno += xfs_alloc_min_freelist(mp, NULL);
3073
3074 /* ...the free inode btree root... */
3075 if (xfs_has_finobt(mp))
3076 first_bno++;
3077
3078 /* ...the reverse mapping btree root... */
3079 if (xfs_has_rmapbt(mp))
3080 first_bno++;
3081
3082 /* ...the reference count btree... */
3083 if (xfs_has_reflink(mp))
3084 first_bno++;
3085
3086 /*
3087 * ...and the log, if it is allocated in the first allocation group.
3088 *
3089 * This can happen with filesystems that only have a single
3090 * allocation group, or very odd geometries created by old mkfs
3091 * versions on very small filesystems.
3092 */
3093 if (xfs_ag_contains_log(mp, 0))
3094 first_bno += mp->m_sb.sb_logblocks;
3095
3096 /*
3097 * Now round first_bno up to whatever allocation alignment is given
3098 * by the filesystem or was passed in.
3099 */
3100 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3101 first_bno = roundup(first_bno, sunit);
3102 else if (xfs_has_align(mp) &&
3103 mp->m_sb.sb_inoalignmt > 1)
3104 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3105
3106 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3107 }
3108
3109 /*
3110 * Ensure there are not sparse inode clusters that cross the new EOAG.
3111 *
3112 * This is a no-op for non-spinode filesystems since clusters are always fully
3113 * allocated and checking the bnobt suffices. However, a spinode filesystem
3114 * could have a record where the upper inodes are free blocks. If those blocks
3115 * were removed from the filesystem, the inode record would extend beyond EOAG,
3116 * which will be flagged as corruption.
3117 */
3118 int
xfs_ialloc_check_shrink(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agblock_t new_length)3119 xfs_ialloc_check_shrink(
3120 struct xfs_perag *pag,
3121 struct xfs_trans *tp,
3122 struct xfs_buf *agibp,
3123 xfs_agblock_t new_length)
3124 {
3125 struct xfs_inobt_rec_incore rec;
3126 struct xfs_btree_cur *cur;
3127 xfs_agino_t agino;
3128 int has;
3129 int error;
3130
3131 if (!xfs_has_sparseinodes(pag->pag_mount))
3132 return 0;
3133
3134 cur = xfs_inobt_init_cursor(pag, tp, agibp);
3135
3136 /* Look up the inobt record that would correspond to the new EOFS. */
3137 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3138 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3139 if (error || !has)
3140 goto out;
3141
3142 error = xfs_inobt_get_rec(cur, &rec, &has);
3143 if (error)
3144 goto out;
3145
3146 if (!has) {
3147 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3148 error = -EFSCORRUPTED;
3149 goto out;
3150 }
3151
3152 /* If the record covers inodes that would be beyond EOFS, bail out. */
3153 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3154 error = -ENOSPC;
3155 goto out;
3156 }
3157 out:
3158 xfs_btree_del_cursor(cur, error);
3159 return error;
3160 }
3161