1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 
26 struct kmem_cache *xfs_buf_cache;
27 
28 /*
29  * Locking orders
30  *
31  * xfs_buf_ioacct_inc:
32  * xfs_buf_ioacct_dec:
33  *	b_sema (caller holds)
34  *	  b_lock
35  *
36  * xfs_buf_stale:
37  *	b_sema (caller holds)
38  *	  b_lock
39  *	    lru_lock
40  *
41  * xfs_buf_rele:
42  *	b_lock
43  *	  pag_buf_lock
44  *	    lru_lock
45  *
46  * xfs_buftarg_drain_rele
47  *	lru_lock
48  *	  b_lock (trylock due to inversion)
49  *
50  * xfs_buftarg_isolate
51  *	lru_lock
52  *	  b_lock (trylock due to inversion)
53  */
54 
55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56 
57 static inline int
xfs_buf_submit(struct xfs_buf * bp)58 xfs_buf_submit(
59 	struct xfs_buf		*bp)
60 {
61 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62 }
63 
xfs_buf_is_uncached(struct xfs_buf * bp)64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
65 {
66 	return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
67 }
68 
69 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)70 xfs_buf_is_vmapped(
71 	struct xfs_buf	*bp)
72 {
73 	/*
74 	 * Return true if the buffer is vmapped.
75 	 *
76 	 * b_addr is null if the buffer is not mapped, but the code is clever
77 	 * enough to know it doesn't have to map a single page, so the check has
78 	 * to be both for b_addr and bp->b_page_count > 1.
79 	 */
80 	return bp->b_addr && bp->b_page_count > 1;
81 }
82 
83 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)84 xfs_buf_vmap_len(
85 	struct xfs_buf	*bp)
86 {
87 	return (bp->b_page_count * PAGE_SIZE);
88 }
89 
90 /*
91  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92  * this buffer. The count is incremented once per buffer (per hold cycle)
93  * because the corresponding decrement is deferred to buffer release. Buffers
94  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95  * tracking adds unnecessary overhead. This is used for sychronization purposes
96  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
97  * in-flight buffers.
98  *
99  * Buffers that are never released (e.g., superblock, iclog buffers) must set
100  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101  * never reaches zero and unmount hangs indefinitely.
102  */
103 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)104 xfs_buf_ioacct_inc(
105 	struct xfs_buf	*bp)
106 {
107 	if (bp->b_flags & XBF_NO_IOACCT)
108 		return;
109 
110 	ASSERT(bp->b_flags & XBF_ASYNC);
111 	spin_lock(&bp->b_lock);
112 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_inc(&bp->b_target->bt_io_count);
115 	}
116 	spin_unlock(&bp->b_lock);
117 }
118 
119 /*
120  * Clear the in-flight state on a buffer about to be released to the LRU or
121  * freed and unaccount from the buftarg.
122  */
123 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)124 __xfs_buf_ioacct_dec(
125 	struct xfs_buf	*bp)
126 {
127 	lockdep_assert_held(&bp->b_lock);
128 
129 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 		percpu_counter_dec(&bp->b_target->bt_io_count);
132 	}
133 }
134 
135 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)136 xfs_buf_ioacct_dec(
137 	struct xfs_buf	*bp)
138 {
139 	spin_lock(&bp->b_lock);
140 	__xfs_buf_ioacct_dec(bp);
141 	spin_unlock(&bp->b_lock);
142 }
143 
144 /*
145  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146  * b_lru_ref count so that the buffer is freed immediately when the buffer
147  * reference count falls to zero. If the buffer is already on the LRU, we need
148  * to remove the reference that LRU holds on the buffer.
149  *
150  * This prevents build-up of stale buffers on the LRU.
151  */
152 void
xfs_buf_stale(struct xfs_buf * bp)153 xfs_buf_stale(
154 	struct xfs_buf	*bp)
155 {
156 	ASSERT(xfs_buf_islocked(bp));
157 
158 	bp->b_flags |= XBF_STALE;
159 
160 	/*
161 	 * Clear the delwri status so that a delwri queue walker will not
162 	 * flush this buffer to disk now that it is stale. The delwri queue has
163 	 * a reference to the buffer, so this is safe to do.
164 	 */
165 	bp->b_flags &= ~_XBF_DELWRI_Q;
166 
167 	/*
168 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 	 * could reset b_flags. There is no guarantee that the buffer is
170 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 	 * status now to preserve accounting consistency.
172 	 */
173 	spin_lock(&bp->b_lock);
174 	__xfs_buf_ioacct_dec(bp);
175 
176 	atomic_set(&bp->b_lru_ref, 0);
177 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 		atomic_dec(&bp->b_hold);
180 
181 	ASSERT(atomic_read(&bp->b_hold) >= 1);
182 	spin_unlock(&bp->b_lock);
183 }
184 
185 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)186 xfs_buf_get_maps(
187 	struct xfs_buf		*bp,
188 	int			map_count)
189 {
190 	ASSERT(bp->b_maps == NULL);
191 	bp->b_map_count = map_count;
192 
193 	if (map_count == 1) {
194 		bp->b_maps = &bp->__b_map;
195 		return 0;
196 	}
197 
198 	bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200 	if (!bp->b_maps)
201 		return -ENOMEM;
202 	return 0;
203 }
204 
205 /*
206  *	Frees b_pages if it was allocated.
207  */
208 static void
xfs_buf_free_maps(struct xfs_buf * bp)209 xfs_buf_free_maps(
210 	struct xfs_buf	*bp)
211 {
212 	if (bp->b_maps != &bp->__b_map) {
213 		kfree(bp->b_maps);
214 		bp->b_maps = NULL;
215 	}
216 }
217 
218 static int
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)219 _xfs_buf_alloc(
220 	struct xfs_buftarg	*target,
221 	struct xfs_buf_map	*map,
222 	int			nmaps,
223 	xfs_buf_flags_t		flags,
224 	struct xfs_buf		**bpp)
225 {
226 	struct xfs_buf		*bp;
227 	int			error;
228 	int			i;
229 
230 	*bpp = NULL;
231 	bp = kmem_cache_zalloc(xfs_buf_cache,
232 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233 
234 	/*
235 	 * We don't want certain flags to appear in b_flags unless they are
236 	 * specifically set by later operations on the buffer.
237 	 */
238 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239 
240 	atomic_set(&bp->b_hold, 1);
241 	atomic_set(&bp->b_lru_ref, 1);
242 	init_completion(&bp->b_iowait);
243 	INIT_LIST_HEAD(&bp->b_lru);
244 	INIT_LIST_HEAD(&bp->b_list);
245 	INIT_LIST_HEAD(&bp->b_li_list);
246 	sema_init(&bp->b_sema, 0); /* held, no waiters */
247 	spin_lock_init(&bp->b_lock);
248 	bp->b_target = target;
249 	bp->b_mount = target->bt_mount;
250 	bp->b_flags = flags;
251 
252 	/*
253 	 * Set length and io_length to the same value initially.
254 	 * I/O routines should use io_length, which will be the same in
255 	 * most cases but may be reset (e.g. XFS recovery).
256 	 */
257 	error = xfs_buf_get_maps(bp, nmaps);
258 	if (error)  {
259 		kmem_cache_free(xfs_buf_cache, bp);
260 		return error;
261 	}
262 
263 	bp->b_rhash_key = map[0].bm_bn;
264 	bp->b_length = 0;
265 	for (i = 0; i < nmaps; i++) {
266 		bp->b_maps[i].bm_bn = map[i].bm_bn;
267 		bp->b_maps[i].bm_len = map[i].bm_len;
268 		bp->b_length += map[i].bm_len;
269 	}
270 
271 	atomic_set(&bp->b_pin_count, 0);
272 	init_waitqueue_head(&bp->b_waiters);
273 
274 	XFS_STATS_INC(bp->b_mount, xb_create);
275 	trace_xfs_buf_init(bp, _RET_IP_);
276 
277 	*bpp = bp;
278 	return 0;
279 }
280 
281 static void
xfs_buf_free_pages(struct xfs_buf * bp)282 xfs_buf_free_pages(
283 	struct xfs_buf	*bp)
284 {
285 	uint		i;
286 
287 	ASSERT(bp->b_flags & _XBF_PAGES);
288 
289 	if (xfs_buf_is_vmapped(bp))
290 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
291 
292 	for (i = 0; i < bp->b_page_count; i++) {
293 		if (bp->b_pages[i])
294 			__free_page(bp->b_pages[i]);
295 	}
296 	mm_account_reclaimed_pages(bp->b_page_count);
297 
298 	if (bp->b_pages != bp->b_page_array)
299 		kfree(bp->b_pages);
300 	bp->b_pages = NULL;
301 	bp->b_flags &= ~_XBF_PAGES;
302 }
303 
304 static void
xfs_buf_free_callback(struct callback_head * cb)305 xfs_buf_free_callback(
306 	struct callback_head	*cb)
307 {
308 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
309 
310 	xfs_buf_free_maps(bp);
311 	kmem_cache_free(xfs_buf_cache, bp);
312 }
313 
314 static void
xfs_buf_free(struct xfs_buf * bp)315 xfs_buf_free(
316 	struct xfs_buf		*bp)
317 {
318 	trace_xfs_buf_free(bp, _RET_IP_);
319 
320 	ASSERT(list_empty(&bp->b_lru));
321 
322 	if (xfs_buftarg_is_mem(bp->b_target))
323 		xmbuf_unmap_page(bp);
324 	else if (bp->b_flags & _XBF_PAGES)
325 		xfs_buf_free_pages(bp);
326 	else if (bp->b_flags & _XBF_KMEM)
327 		kfree(bp->b_addr);
328 
329 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330 }
331 
332 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,xfs_buf_flags_t flags)333 xfs_buf_alloc_kmem(
334 	struct xfs_buf	*bp,
335 	xfs_buf_flags_t	flags)
336 {
337 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 	size_t		size = BBTOB(bp->b_length);
339 
340 	/* Assure zeroed buffer for non-read cases. */
341 	if (!(flags & XBF_READ))
342 		gfp_mask |= __GFP_ZERO;
343 
344 	bp->b_addr = kmalloc(size, gfp_mask);
345 	if (!bp->b_addr)
346 		return -ENOMEM;
347 
348 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 		/* b_addr spans two pages - use alloc_page instead */
351 		kfree(bp->b_addr);
352 		bp->b_addr = NULL;
353 		return -ENOMEM;
354 	}
355 	bp->b_offset = offset_in_page(bp->b_addr);
356 	bp->b_pages = bp->b_page_array;
357 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 	bp->b_page_count = 1;
359 	bp->b_flags |= _XBF_KMEM;
360 	return 0;
361 }
362 
363 static int
xfs_buf_alloc_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)364 xfs_buf_alloc_pages(
365 	struct xfs_buf	*bp,
366 	xfs_buf_flags_t	flags)
367 {
368 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369 	long		filled = 0;
370 
371 	if (flags & XBF_READ_AHEAD)
372 		gfp_mask |= __GFP_NORETRY;
373 
374 	/* Make sure that we have a page list */
375 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 	if (bp->b_page_count <= XB_PAGES) {
377 		bp->b_pages = bp->b_page_array;
378 	} else {
379 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380 					gfp_mask);
381 		if (!bp->b_pages)
382 			return -ENOMEM;
383 	}
384 	bp->b_flags |= _XBF_PAGES;
385 
386 	/* Assure zeroed buffer for non-read cases. */
387 	if (!(flags & XBF_READ))
388 		gfp_mask |= __GFP_ZERO;
389 
390 	/*
391 	 * Bulk filling of pages can take multiple calls. Not filling the entire
392 	 * array is not an allocation failure, so don't back off if we get at
393 	 * least one extra page.
394 	 */
395 	for (;;) {
396 		long	last = filled;
397 
398 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399 						bp->b_pages);
400 		if (filled == bp->b_page_count) {
401 			XFS_STATS_INC(bp->b_mount, xb_page_found);
402 			break;
403 		}
404 
405 		if (filled != last)
406 			continue;
407 
408 		if (flags & XBF_READ_AHEAD) {
409 			xfs_buf_free_pages(bp);
410 			return -ENOMEM;
411 		}
412 
413 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 		memalloc_retry_wait(gfp_mask);
415 	}
416 	return 0;
417 }
418 
419 /*
420  *	Map buffer into kernel address-space if necessary.
421  */
422 STATIC int
_xfs_buf_map_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)423 _xfs_buf_map_pages(
424 	struct xfs_buf		*bp,
425 	xfs_buf_flags_t		flags)
426 {
427 	ASSERT(bp->b_flags & _XBF_PAGES);
428 	if (bp->b_page_count == 1) {
429 		/* A single page buffer is always mappable */
430 		bp->b_addr = page_address(bp->b_pages[0]);
431 	} else if (flags & XBF_UNMAPPED) {
432 		bp->b_addr = NULL;
433 	} else {
434 		int retried = 0;
435 		unsigned nofs_flag;
436 
437 		/*
438 		 * vm_map_ram() will allocate auxiliary structures (e.g.
439 		 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 		 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 		 * from the same call site that can be run from both above and
442 		 * below memory reclaim causes lockdep false positives. Hence we
443 		 * always need to force this allocation to nofs context because
444 		 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 		 * prevent false positive lockdep reports.
446 		 *
447 		 * XXX(dgc): I think dquot reclaim is the only place we can get
448 		 * to this function from memory reclaim context now. If we fix
449 		 * that like we've fixed inode reclaim to avoid writeback from
450 		 * reclaim, this nofs wrapping can go away.
451 		 */
452 		nofs_flag = memalloc_nofs_save();
453 		do {
454 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455 						-1);
456 			if (bp->b_addr)
457 				break;
458 			vm_unmap_aliases();
459 		} while (retried++ <= 1);
460 		memalloc_nofs_restore(nofs_flag);
461 
462 		if (!bp->b_addr)
463 			return -ENOMEM;
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  *	Finding and Reading Buffers
471  */
472 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)473 _xfs_buf_obj_cmp(
474 	struct rhashtable_compare_arg	*arg,
475 	const void			*obj)
476 {
477 	const struct xfs_buf_map	*map = arg->key;
478 	const struct xfs_buf		*bp = obj;
479 
480 	/*
481 	 * The key hashing in the lookup path depends on the key being the
482 	 * first element of the compare_arg, make sure to assert this.
483 	 */
484 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485 
486 	if (bp->b_rhash_key != map->bm_bn)
487 		return 1;
488 
489 	if (unlikely(bp->b_length != map->bm_len)) {
490 		/*
491 		 * found a block number match. If the range doesn't
492 		 * match, the only way this is allowed is if the buffer
493 		 * in the cache is stale and the transaction that made
494 		 * it stale has not yet committed. i.e. we are
495 		 * reallocating a busy extent. Skip this buffer and
496 		 * continue searching for an exact match.
497 		 *
498 		 * Note: If we're scanning for incore buffers to stale, don't
499 		 * complain if we find non-stale buffers.
500 		 */
501 		if (!(map->bm_flags & XBM_LIVESCAN))
502 			ASSERT(bp->b_flags & XBF_STALE);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 static const struct rhashtable_params xfs_buf_hash_params = {
509 	.min_size		= 32,	/* empty AGs have minimal footprint */
510 	.nelem_hint		= 16,
511 	.key_len		= sizeof(xfs_daddr_t),
512 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
513 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
514 	.automatic_shrinking	= true,
515 	.obj_cmpfn		= _xfs_buf_obj_cmp,
516 };
517 
518 int
xfs_buf_cache_init(struct xfs_buf_cache * bch)519 xfs_buf_cache_init(
520 	struct xfs_buf_cache	*bch)
521 {
522 	spin_lock_init(&bch->bc_lock);
523 	return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
524 }
525 
526 void
xfs_buf_cache_destroy(struct xfs_buf_cache * bch)527 xfs_buf_cache_destroy(
528 	struct xfs_buf_cache	*bch)
529 {
530 	rhashtable_destroy(&bch->bc_hash);
531 }
532 
533 static int
xfs_buf_map_verify(struct xfs_buftarg * btp,struct xfs_buf_map * map)534 xfs_buf_map_verify(
535 	struct xfs_buftarg	*btp,
536 	struct xfs_buf_map	*map)
537 {
538 	xfs_daddr_t		eofs;
539 
540 	/* Check for IOs smaller than the sector size / not sector aligned */
541 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
542 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
543 
544 	/*
545 	 * Corrupted block numbers can get through to here, unfortunately, so we
546 	 * have to check that the buffer falls within the filesystem bounds.
547 	 */
548 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
549 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
550 		xfs_alert(btp->bt_mount,
551 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552 			  __func__, map->bm_bn, eofs);
553 		WARN_ON(1);
554 		return -EFSCORRUPTED;
555 	}
556 	return 0;
557 }
558 
559 static int
xfs_buf_find_lock(struct xfs_buf * bp,xfs_buf_flags_t flags)560 xfs_buf_find_lock(
561 	struct xfs_buf          *bp,
562 	xfs_buf_flags_t		flags)
563 {
564 	if (flags & XBF_TRYLOCK) {
565 		if (!xfs_buf_trylock(bp)) {
566 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
567 			return -EAGAIN;
568 		}
569 	} else {
570 		xfs_buf_lock(bp);
571 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
572 	}
573 
574 	/*
575 	 * if the buffer is stale, clear all the external state associated with
576 	 * it. We need to keep flags such as how we allocated the buffer memory
577 	 * intact here.
578 	 */
579 	if (bp->b_flags & XBF_STALE) {
580 		if (flags & XBF_LIVESCAN) {
581 			xfs_buf_unlock(bp);
582 			return -ENOENT;
583 		}
584 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
585 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
586 		bp->b_ops = NULL;
587 	}
588 	return 0;
589 }
590 
591 static inline int
xfs_buf_lookup(struct xfs_buf_cache * bch,struct xfs_buf_map * map,xfs_buf_flags_t flags,struct xfs_buf ** bpp)592 xfs_buf_lookup(
593 	struct xfs_buf_cache	*bch,
594 	struct xfs_buf_map	*map,
595 	xfs_buf_flags_t		flags,
596 	struct xfs_buf		**bpp)
597 {
598 	struct xfs_buf          *bp;
599 	int			error;
600 
601 	rcu_read_lock();
602 	bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
603 	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
604 		rcu_read_unlock();
605 		return -ENOENT;
606 	}
607 	rcu_read_unlock();
608 
609 	error = xfs_buf_find_lock(bp, flags);
610 	if (error) {
611 		xfs_buf_rele(bp);
612 		return error;
613 	}
614 
615 	trace_xfs_buf_find(bp, flags, _RET_IP_);
616 	*bpp = bp;
617 	return 0;
618 }
619 
620 /*
621  * Insert the new_bp into the hash table. This consumes the perag reference
622  * taken for the lookup regardless of the result of the insert.
623  */
624 static int
xfs_buf_find_insert(struct xfs_buftarg * btp,struct xfs_buf_cache * bch,struct xfs_perag * pag,struct xfs_buf_map * cmap,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)625 xfs_buf_find_insert(
626 	struct xfs_buftarg	*btp,
627 	struct xfs_buf_cache	*bch,
628 	struct xfs_perag	*pag,
629 	struct xfs_buf_map	*cmap,
630 	struct xfs_buf_map	*map,
631 	int			nmaps,
632 	xfs_buf_flags_t		flags,
633 	struct xfs_buf		**bpp)
634 {
635 	struct xfs_buf		*new_bp;
636 	struct xfs_buf		*bp;
637 	int			error;
638 
639 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
640 	if (error)
641 		goto out_drop_pag;
642 
643 	if (xfs_buftarg_is_mem(new_bp->b_target)) {
644 		error = xmbuf_map_page(new_bp);
645 	} else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
646 		   xfs_buf_alloc_kmem(new_bp, flags) < 0) {
647 		/*
648 		 * For buffers that fit entirely within a single page, first
649 		 * attempt to allocate the memory from the heap to minimise
650 		 * memory usage. If we can't get heap memory for these small
651 		 * buffers, we fall back to using the page allocator.
652 		 */
653 		error = xfs_buf_alloc_pages(new_bp, flags);
654 	}
655 	if (error)
656 		goto out_free_buf;
657 
658 	spin_lock(&bch->bc_lock);
659 	bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 			&new_bp->b_rhash_head, xfs_buf_hash_params);
661 	if (IS_ERR(bp)) {
662 		error = PTR_ERR(bp);
663 		spin_unlock(&bch->bc_lock);
664 		goto out_free_buf;
665 	}
666 	if (bp && atomic_inc_not_zero(&bp->b_hold)) {
667 		/* found an existing buffer */
668 		spin_unlock(&bch->bc_lock);
669 		error = xfs_buf_find_lock(bp, flags);
670 		if (error)
671 			xfs_buf_rele(bp);
672 		else
673 			*bpp = bp;
674 		goto out_free_buf;
675 	}
676 
677 	/* The new buffer keeps the perag reference until it is freed. */
678 	new_bp->b_pag = pag;
679 	spin_unlock(&bch->bc_lock);
680 	*bpp = new_bp;
681 	return 0;
682 
683 out_free_buf:
684 	xfs_buf_free(new_bp);
685 out_drop_pag:
686 	if (pag)
687 		xfs_perag_put(pag);
688 	return error;
689 }
690 
691 static inline struct xfs_perag *
xfs_buftarg_get_pag(struct xfs_buftarg * btp,const struct xfs_buf_map * map)692 xfs_buftarg_get_pag(
693 	struct xfs_buftarg		*btp,
694 	const struct xfs_buf_map	*map)
695 {
696 	struct xfs_mount		*mp = btp->bt_mount;
697 
698 	if (xfs_buftarg_is_mem(btp))
699 		return NULL;
700 	return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
701 }
702 
703 static inline struct xfs_buf_cache *
xfs_buftarg_buf_cache(struct xfs_buftarg * btp,struct xfs_perag * pag)704 xfs_buftarg_buf_cache(
705 	struct xfs_buftarg		*btp,
706 	struct xfs_perag		*pag)
707 {
708 	if (pag)
709 		return &pag->pag_bcache;
710 	return btp->bt_cache;
711 }
712 
713 /*
714  * Assembles a buffer covering the specified range. The code is optimised for
715  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
716  * more hits than misses.
717  */
718 int
xfs_buf_get_map(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)719 xfs_buf_get_map(
720 	struct xfs_buftarg	*btp,
721 	struct xfs_buf_map	*map,
722 	int			nmaps,
723 	xfs_buf_flags_t		flags,
724 	struct xfs_buf		**bpp)
725 {
726 	struct xfs_buf_cache	*bch;
727 	struct xfs_perag	*pag;
728 	struct xfs_buf		*bp = NULL;
729 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
730 	int			error;
731 	int			i;
732 
733 	if (flags & XBF_LIVESCAN)
734 		cmap.bm_flags |= XBM_LIVESCAN;
735 	for (i = 0; i < nmaps; i++)
736 		cmap.bm_len += map[i].bm_len;
737 
738 	error = xfs_buf_map_verify(btp, &cmap);
739 	if (error)
740 		return error;
741 
742 	pag = xfs_buftarg_get_pag(btp, &cmap);
743 	bch = xfs_buftarg_buf_cache(btp, pag);
744 
745 	error = xfs_buf_lookup(bch, &cmap, flags, &bp);
746 	if (error && error != -ENOENT)
747 		goto out_put_perag;
748 
749 	/* cache hits always outnumber misses by at least 10:1 */
750 	if (unlikely(!bp)) {
751 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
752 
753 		if (flags & XBF_INCORE)
754 			goto out_put_perag;
755 
756 		/* xfs_buf_find_insert() consumes the perag reference. */
757 		error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
758 				flags, &bp);
759 		if (error)
760 			return error;
761 	} else {
762 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
763 		if (pag)
764 			xfs_perag_put(pag);
765 	}
766 
767 	/* We do not hold a perag reference anymore. */
768 	if (!bp->b_addr) {
769 		error = _xfs_buf_map_pages(bp, flags);
770 		if (unlikely(error)) {
771 			xfs_warn_ratelimited(btp->bt_mount,
772 				"%s: failed to map %u pages", __func__,
773 				bp->b_page_count);
774 			xfs_buf_relse(bp);
775 			return error;
776 		}
777 	}
778 
779 	/*
780 	 * Clear b_error if this is a lookup from a caller that doesn't expect
781 	 * valid data to be found in the buffer.
782 	 */
783 	if (!(flags & XBF_READ))
784 		xfs_buf_ioerror(bp, 0);
785 
786 	XFS_STATS_INC(btp->bt_mount, xb_get);
787 	trace_xfs_buf_get(bp, flags, _RET_IP_);
788 	*bpp = bp;
789 	return 0;
790 
791 out_put_perag:
792 	if (pag)
793 		xfs_perag_put(pag);
794 	return error;
795 }
796 
797 int
_xfs_buf_read(struct xfs_buf * bp,xfs_buf_flags_t flags)798 _xfs_buf_read(
799 	struct xfs_buf		*bp,
800 	xfs_buf_flags_t		flags)
801 {
802 	ASSERT(!(flags & XBF_WRITE));
803 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
804 
805 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
806 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
807 
808 	return xfs_buf_submit(bp);
809 }
810 
811 /*
812  * Reverify a buffer found in cache without an attached ->b_ops.
813  *
814  * If the caller passed an ops structure and the buffer doesn't have ops
815  * assigned, set the ops and use it to verify the contents. If verification
816  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
817  * already in XBF_DONE state on entry.
818  *
819  * Under normal operations, every in-core buffer is verified on read I/O
820  * completion. There are two scenarios that can lead to in-core buffers without
821  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
822  * filesystem, though these buffers are purged at the end of recovery. The
823  * other is online repair, which intentionally reads with a NULL buffer ops to
824  * run several verifiers across an in-core buffer in order to establish buffer
825  * type.  If repair can't establish that, the buffer will be left in memory
826  * with NULL buffer ops.
827  */
828 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)829 xfs_buf_reverify(
830 	struct xfs_buf		*bp,
831 	const struct xfs_buf_ops *ops)
832 {
833 	ASSERT(bp->b_flags & XBF_DONE);
834 	ASSERT(bp->b_error == 0);
835 
836 	if (!ops || bp->b_ops)
837 		return 0;
838 
839 	bp->b_ops = ops;
840 	bp->b_ops->verify_read(bp);
841 	if (bp->b_error)
842 		bp->b_flags &= ~XBF_DONE;
843 	return bp->b_error;
844 }
845 
846 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)847 xfs_buf_read_map(
848 	struct xfs_buftarg	*target,
849 	struct xfs_buf_map	*map,
850 	int			nmaps,
851 	xfs_buf_flags_t		flags,
852 	struct xfs_buf		**bpp,
853 	const struct xfs_buf_ops *ops,
854 	xfs_failaddr_t		fa)
855 {
856 	struct xfs_buf		*bp;
857 	int			error;
858 
859 	flags |= XBF_READ;
860 	*bpp = NULL;
861 
862 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
863 	if (error)
864 		return error;
865 
866 	trace_xfs_buf_read(bp, flags, _RET_IP_);
867 
868 	if (!(bp->b_flags & XBF_DONE)) {
869 		/* Initiate the buffer read and wait. */
870 		XFS_STATS_INC(target->bt_mount, xb_get_read);
871 		bp->b_ops = ops;
872 		error = _xfs_buf_read(bp, flags);
873 
874 		/* Readahead iodone already dropped the buffer, so exit. */
875 		if (flags & XBF_ASYNC)
876 			return 0;
877 	} else {
878 		/* Buffer already read; all we need to do is check it. */
879 		error = xfs_buf_reverify(bp, ops);
880 
881 		/* Readahead already finished; drop the buffer and exit. */
882 		if (flags & XBF_ASYNC) {
883 			xfs_buf_relse(bp);
884 			return 0;
885 		}
886 
887 		/* We do not want read in the flags */
888 		bp->b_flags &= ~XBF_READ;
889 		ASSERT(bp->b_ops != NULL || ops == NULL);
890 	}
891 
892 	/*
893 	 * If we've had a read error, then the contents of the buffer are
894 	 * invalid and should not be used. To ensure that a followup read tries
895 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
896 	 * mark the buffer stale. This ensures that anyone who has a current
897 	 * reference to the buffer will interpret it's contents correctly and
898 	 * future cache lookups will also treat it as an empty, uninitialised
899 	 * buffer.
900 	 */
901 	if (error) {
902 		/*
903 		 * Check against log shutdown for error reporting because
904 		 * metadata writeback may require a read first and we need to
905 		 * report errors in metadata writeback until the log is shut
906 		 * down. High level transaction read functions already check
907 		 * against mount shutdown, anyway, so we only need to be
908 		 * concerned about low level IO interactions here.
909 		 */
910 		if (!xlog_is_shutdown(target->bt_mount->m_log))
911 			xfs_buf_ioerror_alert(bp, fa);
912 
913 		bp->b_flags &= ~XBF_DONE;
914 		xfs_buf_stale(bp);
915 		xfs_buf_relse(bp);
916 
917 		/* bad CRC means corrupted metadata */
918 		if (error == -EFSBADCRC)
919 			error = -EFSCORRUPTED;
920 		return error;
921 	}
922 
923 	*bpp = bp;
924 	return 0;
925 }
926 
927 /*
928  *	If we are not low on memory then do the readahead in a deadlock
929  *	safe manner.
930  */
931 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)932 xfs_buf_readahead_map(
933 	struct xfs_buftarg	*target,
934 	struct xfs_buf_map	*map,
935 	int			nmaps,
936 	const struct xfs_buf_ops *ops)
937 {
938 	struct xfs_buf		*bp;
939 
940 	/*
941 	 * Currently we don't have a good means or justification for performing
942 	 * xmbuf_map_page asynchronously, so we don't do readahead.
943 	 */
944 	if (xfs_buftarg_is_mem(target))
945 		return;
946 
947 	xfs_buf_read_map(target, map, nmaps,
948 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
949 		     __this_address);
950 }
951 
952 /*
953  * Read an uncached buffer from disk. Allocates and returns a locked
954  * buffer containing the disk contents or nothing. Uncached buffers always have
955  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
956  * is cached or uncached during fault diagnosis.
957  */
958 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)959 xfs_buf_read_uncached(
960 	struct xfs_buftarg	*target,
961 	xfs_daddr_t		daddr,
962 	size_t			numblks,
963 	xfs_buf_flags_t		flags,
964 	struct xfs_buf		**bpp,
965 	const struct xfs_buf_ops *ops)
966 {
967 	struct xfs_buf		*bp;
968 	int			error;
969 
970 	*bpp = NULL;
971 
972 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
973 	if (error)
974 		return error;
975 
976 	/* set up the buffer for a read IO */
977 	ASSERT(bp->b_map_count == 1);
978 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
979 	bp->b_maps[0].bm_bn = daddr;
980 	bp->b_flags |= XBF_READ;
981 	bp->b_ops = ops;
982 
983 	xfs_buf_submit(bp);
984 	if (bp->b_error) {
985 		error = bp->b_error;
986 		xfs_buf_relse(bp);
987 		return error;
988 	}
989 
990 	*bpp = bp;
991 	return 0;
992 }
993 
994 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,xfs_buf_flags_t flags,struct xfs_buf ** bpp)995 xfs_buf_get_uncached(
996 	struct xfs_buftarg	*target,
997 	size_t			numblks,
998 	xfs_buf_flags_t		flags,
999 	struct xfs_buf		**bpp)
1000 {
1001 	int			error;
1002 	struct xfs_buf		*bp;
1003 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1004 
1005 	*bpp = NULL;
1006 
1007 	/* flags might contain irrelevant bits, pass only what we care about */
1008 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1009 	if (error)
1010 		return error;
1011 
1012 	if (xfs_buftarg_is_mem(bp->b_target))
1013 		error = xmbuf_map_page(bp);
1014 	else
1015 		error = xfs_buf_alloc_pages(bp, flags);
1016 	if (error)
1017 		goto fail_free_buf;
1018 
1019 	error = _xfs_buf_map_pages(bp, 0);
1020 	if (unlikely(error)) {
1021 		xfs_warn(target->bt_mount,
1022 			"%s: failed to map pages", __func__);
1023 		goto fail_free_buf;
1024 	}
1025 
1026 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1027 	*bpp = bp;
1028 	return 0;
1029 
1030 fail_free_buf:
1031 	xfs_buf_free(bp);
1032 	return error;
1033 }
1034 
1035 /*
1036  *	Increment reference count on buffer, to hold the buffer concurrently
1037  *	with another thread which may release (free) the buffer asynchronously.
1038  *	Must hold the buffer already to call this function.
1039  */
1040 void
xfs_buf_hold(struct xfs_buf * bp)1041 xfs_buf_hold(
1042 	struct xfs_buf		*bp)
1043 {
1044 	trace_xfs_buf_hold(bp, _RET_IP_);
1045 	atomic_inc(&bp->b_hold);
1046 }
1047 
1048 static void
xfs_buf_rele_uncached(struct xfs_buf * bp)1049 xfs_buf_rele_uncached(
1050 	struct xfs_buf		*bp)
1051 {
1052 	ASSERT(list_empty(&bp->b_lru));
1053 	if (atomic_dec_and_test(&bp->b_hold)) {
1054 		xfs_buf_ioacct_dec(bp);
1055 		xfs_buf_free(bp);
1056 	}
1057 }
1058 
1059 static void
xfs_buf_rele_cached(struct xfs_buf * bp)1060 xfs_buf_rele_cached(
1061 	struct xfs_buf		*bp)
1062 {
1063 	struct xfs_buftarg	*btp = bp->b_target;
1064 	struct xfs_perag	*pag = bp->b_pag;
1065 	struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag);
1066 	bool			release;
1067 	bool			freebuf = false;
1068 
1069 	trace_xfs_buf_rele(bp, _RET_IP_);
1070 
1071 	ASSERT(atomic_read(&bp->b_hold) > 0);
1072 
1073 	/*
1074 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1075 	 * calls. The pag_buf_lock being taken on the last reference only
1076 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1077 	 * to last reference we drop here is not serialised against the last
1078 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1079 	 * first, the last "release" reference can win the race to the lock and
1080 	 * free the buffer before the second-to-last reference is processed,
1081 	 * leading to a use-after-free scenario.
1082 	 */
1083 	spin_lock(&bp->b_lock);
1084 	release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1085 	if (!release) {
1086 		/*
1087 		 * Drop the in-flight state if the buffer is already on the LRU
1088 		 * and it holds the only reference. This is racy because we
1089 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1090 		 * ensures the decrement occurs only once per-buf.
1091 		 */
1092 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1093 			__xfs_buf_ioacct_dec(bp);
1094 		goto out_unlock;
1095 	}
1096 
1097 	/* the last reference has been dropped ... */
1098 	__xfs_buf_ioacct_dec(bp);
1099 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1100 		/*
1101 		 * If the buffer is added to the LRU take a new reference to the
1102 		 * buffer for the LRU and clear the (now stale) dispose list
1103 		 * state flag
1104 		 */
1105 		if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1106 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1107 			atomic_inc(&bp->b_hold);
1108 		}
1109 		spin_unlock(&bch->bc_lock);
1110 	} else {
1111 		/*
1112 		 * most of the time buffers will already be removed from the
1113 		 * LRU, so optimise that case by checking for the
1114 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1115 		 * was on was the disposal list
1116 		 */
1117 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1118 			list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1119 		} else {
1120 			ASSERT(list_empty(&bp->b_lru));
1121 		}
1122 
1123 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1124 		rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1125 				xfs_buf_hash_params);
1126 		spin_unlock(&bch->bc_lock);
1127 		if (pag)
1128 			xfs_perag_put(pag);
1129 		freebuf = true;
1130 	}
1131 
1132 out_unlock:
1133 	spin_unlock(&bp->b_lock);
1134 
1135 	if (freebuf)
1136 		xfs_buf_free(bp);
1137 }
1138 
1139 /*
1140  * Release a hold on the specified buffer.
1141  */
1142 void
xfs_buf_rele(struct xfs_buf * bp)1143 xfs_buf_rele(
1144 	struct xfs_buf		*bp)
1145 {
1146 	trace_xfs_buf_rele(bp, _RET_IP_);
1147 	if (xfs_buf_is_uncached(bp))
1148 		xfs_buf_rele_uncached(bp);
1149 	else
1150 		xfs_buf_rele_cached(bp);
1151 }
1152 
1153 /*
1154  *	Lock a buffer object, if it is not already locked.
1155  *
1156  *	If we come across a stale, pinned, locked buffer, we know that we are
1157  *	being asked to lock a buffer that has been reallocated. Because it is
1158  *	pinned, we know that the log has not been pushed to disk and hence it
1159  *	will still be locked.  Rather than continuing to have trylock attempts
1160  *	fail until someone else pushes the log, push it ourselves before
1161  *	returning.  This means that the xfsaild will not get stuck trying
1162  *	to push on stale inode buffers.
1163  */
1164 int
xfs_buf_trylock(struct xfs_buf * bp)1165 xfs_buf_trylock(
1166 	struct xfs_buf		*bp)
1167 {
1168 	int			locked;
1169 
1170 	locked = down_trylock(&bp->b_sema) == 0;
1171 	if (locked)
1172 		trace_xfs_buf_trylock(bp, _RET_IP_);
1173 	else
1174 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1175 	return locked;
1176 }
1177 
1178 /*
1179  *	Lock a buffer object.
1180  *
1181  *	If we come across a stale, pinned, locked buffer, we know that we
1182  *	are being asked to lock a buffer that has been reallocated. Because
1183  *	it is pinned, we know that the log has not been pushed to disk and
1184  *	hence it will still be locked. Rather than sleeping until someone
1185  *	else pushes the log, push it ourselves before trying to get the lock.
1186  */
1187 void
xfs_buf_lock(struct xfs_buf * bp)1188 xfs_buf_lock(
1189 	struct xfs_buf		*bp)
1190 {
1191 	trace_xfs_buf_lock(bp, _RET_IP_);
1192 
1193 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1194 		xfs_log_force(bp->b_mount, 0);
1195 	down(&bp->b_sema);
1196 
1197 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1198 }
1199 
1200 void
xfs_buf_unlock(struct xfs_buf * bp)1201 xfs_buf_unlock(
1202 	struct xfs_buf		*bp)
1203 {
1204 	ASSERT(xfs_buf_islocked(bp));
1205 
1206 	up(&bp->b_sema);
1207 	trace_xfs_buf_unlock(bp, _RET_IP_);
1208 }
1209 
1210 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1211 xfs_buf_wait_unpin(
1212 	struct xfs_buf		*bp)
1213 {
1214 	DECLARE_WAITQUEUE	(wait, current);
1215 
1216 	if (atomic_read(&bp->b_pin_count) == 0)
1217 		return;
1218 
1219 	add_wait_queue(&bp->b_waiters, &wait);
1220 	for (;;) {
1221 		set_current_state(TASK_UNINTERRUPTIBLE);
1222 		if (atomic_read(&bp->b_pin_count) == 0)
1223 			break;
1224 		io_schedule();
1225 	}
1226 	remove_wait_queue(&bp->b_waiters, &wait);
1227 	set_current_state(TASK_RUNNING);
1228 }
1229 
1230 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1231 xfs_buf_ioerror_alert_ratelimited(
1232 	struct xfs_buf		*bp)
1233 {
1234 	static unsigned long	lasttime;
1235 	static struct xfs_buftarg *lasttarg;
1236 
1237 	if (bp->b_target != lasttarg ||
1238 	    time_after(jiffies, (lasttime + 5*HZ))) {
1239 		lasttime = jiffies;
1240 		xfs_buf_ioerror_alert(bp, __this_address);
1241 	}
1242 	lasttarg = bp->b_target;
1243 }
1244 
1245 /*
1246  * Account for this latest trip around the retry handler, and decide if
1247  * we've failed enough times to constitute a permanent failure.
1248  */
1249 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1250 xfs_buf_ioerror_permanent(
1251 	struct xfs_buf		*bp,
1252 	struct xfs_error_cfg	*cfg)
1253 {
1254 	struct xfs_mount	*mp = bp->b_mount;
1255 
1256 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1257 	    ++bp->b_retries > cfg->max_retries)
1258 		return true;
1259 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1260 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1261 		return true;
1262 
1263 	/* At unmount we may treat errors differently */
1264 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1265 		return true;
1266 
1267 	return false;
1268 }
1269 
1270 /*
1271  * On a sync write or shutdown we just want to stale the buffer and let the
1272  * caller handle the error in bp->b_error appropriately.
1273  *
1274  * If the write was asynchronous then no one will be looking for the error.  If
1275  * this is the first failure of this type, clear the error state and write the
1276  * buffer out again. This means we always retry an async write failure at least
1277  * once, but we also need to set the buffer up to behave correctly now for
1278  * repeated failures.
1279  *
1280  * If we get repeated async write failures, then we take action according to the
1281  * error configuration we have been set up to use.
1282  *
1283  * Returns true if this function took care of error handling and the caller must
1284  * not touch the buffer again.  Return false if the caller should proceed with
1285  * normal I/O completion handling.
1286  */
1287 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1288 xfs_buf_ioend_handle_error(
1289 	struct xfs_buf		*bp)
1290 {
1291 	struct xfs_mount	*mp = bp->b_mount;
1292 	struct xfs_error_cfg	*cfg;
1293 
1294 	/*
1295 	 * If we've already shutdown the journal because of I/O errors, there's
1296 	 * no point in giving this a retry.
1297 	 */
1298 	if (xlog_is_shutdown(mp->m_log))
1299 		goto out_stale;
1300 
1301 	xfs_buf_ioerror_alert_ratelimited(bp);
1302 
1303 	/*
1304 	 * We're not going to bother about retrying this during recovery.
1305 	 * One strike!
1306 	 */
1307 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1308 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1309 		return false;
1310 	}
1311 
1312 	/*
1313 	 * Synchronous writes will have callers process the error.
1314 	 */
1315 	if (!(bp->b_flags & XBF_ASYNC))
1316 		goto out_stale;
1317 
1318 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1319 
1320 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1321 	if (bp->b_last_error != bp->b_error ||
1322 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1323 		bp->b_last_error = bp->b_error;
1324 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1325 		    !bp->b_first_retry_time)
1326 			bp->b_first_retry_time = jiffies;
1327 		goto resubmit;
1328 	}
1329 
1330 	/*
1331 	 * Permanent error - we need to trigger a shutdown if we haven't already
1332 	 * to indicate that inconsistency will result from this action.
1333 	 */
1334 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1335 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1336 		goto out_stale;
1337 	}
1338 
1339 	/* Still considered a transient error. Caller will schedule retries. */
1340 	if (bp->b_flags & _XBF_INODES)
1341 		xfs_buf_inode_io_fail(bp);
1342 	else if (bp->b_flags & _XBF_DQUOTS)
1343 		xfs_buf_dquot_io_fail(bp);
1344 	else
1345 		ASSERT(list_empty(&bp->b_li_list));
1346 	xfs_buf_ioerror(bp, 0);
1347 	xfs_buf_relse(bp);
1348 	return true;
1349 
1350 resubmit:
1351 	xfs_buf_ioerror(bp, 0);
1352 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1353 	xfs_buf_submit(bp);
1354 	return true;
1355 out_stale:
1356 	xfs_buf_stale(bp);
1357 	bp->b_flags |= XBF_DONE;
1358 	bp->b_flags &= ~XBF_WRITE;
1359 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1360 	return false;
1361 }
1362 
1363 static void
xfs_buf_ioend(struct xfs_buf * bp)1364 xfs_buf_ioend(
1365 	struct xfs_buf	*bp)
1366 {
1367 	trace_xfs_buf_iodone(bp, _RET_IP_);
1368 
1369 	/*
1370 	 * Pull in IO completion errors now. We are guaranteed to be running
1371 	 * single threaded, so we don't need the lock to read b_io_error.
1372 	 */
1373 	if (!bp->b_error && bp->b_io_error)
1374 		xfs_buf_ioerror(bp, bp->b_io_error);
1375 
1376 	if (bp->b_flags & XBF_READ) {
1377 		if (!bp->b_error && bp->b_ops)
1378 			bp->b_ops->verify_read(bp);
1379 		if (!bp->b_error)
1380 			bp->b_flags |= XBF_DONE;
1381 	} else {
1382 		if (!bp->b_error) {
1383 			bp->b_flags &= ~XBF_WRITE_FAIL;
1384 			bp->b_flags |= XBF_DONE;
1385 		}
1386 
1387 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1388 			return;
1389 
1390 		/* clear the retry state */
1391 		bp->b_last_error = 0;
1392 		bp->b_retries = 0;
1393 		bp->b_first_retry_time = 0;
1394 
1395 		/*
1396 		 * Note that for things like remote attribute buffers, there may
1397 		 * not be a buffer log item here, so processing the buffer log
1398 		 * item must remain optional.
1399 		 */
1400 		if (bp->b_log_item)
1401 			xfs_buf_item_done(bp);
1402 
1403 		if (bp->b_flags & _XBF_INODES)
1404 			xfs_buf_inode_iodone(bp);
1405 		else if (bp->b_flags & _XBF_DQUOTS)
1406 			xfs_buf_dquot_iodone(bp);
1407 
1408 	}
1409 
1410 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1411 			 _XBF_LOGRECOVERY);
1412 
1413 	if (bp->b_flags & XBF_ASYNC)
1414 		xfs_buf_relse(bp);
1415 	else
1416 		complete(&bp->b_iowait);
1417 }
1418 
1419 static void
xfs_buf_ioend_work(struct work_struct * work)1420 xfs_buf_ioend_work(
1421 	struct work_struct	*work)
1422 {
1423 	struct xfs_buf		*bp =
1424 		container_of(work, struct xfs_buf, b_ioend_work);
1425 
1426 	xfs_buf_ioend(bp);
1427 }
1428 
1429 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1430 xfs_buf_ioend_async(
1431 	struct xfs_buf	*bp)
1432 {
1433 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1434 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1435 }
1436 
1437 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1438 __xfs_buf_ioerror(
1439 	struct xfs_buf		*bp,
1440 	int			error,
1441 	xfs_failaddr_t		failaddr)
1442 {
1443 	ASSERT(error <= 0 && error >= -1000);
1444 	bp->b_error = error;
1445 	trace_xfs_buf_ioerror(bp, error, failaddr);
1446 }
1447 
1448 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1449 xfs_buf_ioerror_alert(
1450 	struct xfs_buf		*bp,
1451 	xfs_failaddr_t		func)
1452 {
1453 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1454 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1455 				  func, (uint64_t)xfs_buf_daddr(bp),
1456 				  bp->b_length, -bp->b_error);
1457 }
1458 
1459 /*
1460  * To simulate an I/O failure, the buffer must be locked and held with at least
1461  * three references. The LRU reference is dropped by the stale call. The buf
1462  * item reference is dropped via ioend processing. The third reference is owned
1463  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1464  */
1465 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1466 xfs_buf_ioend_fail(
1467 	struct xfs_buf	*bp)
1468 {
1469 	bp->b_flags &= ~XBF_DONE;
1470 	xfs_buf_stale(bp);
1471 	xfs_buf_ioerror(bp, -EIO);
1472 	xfs_buf_ioend(bp);
1473 }
1474 
1475 int
xfs_bwrite(struct xfs_buf * bp)1476 xfs_bwrite(
1477 	struct xfs_buf		*bp)
1478 {
1479 	int			error;
1480 
1481 	ASSERT(xfs_buf_islocked(bp));
1482 
1483 	bp->b_flags |= XBF_WRITE;
1484 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1485 			 XBF_DONE);
1486 
1487 	error = xfs_buf_submit(bp);
1488 	if (error)
1489 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1490 	return error;
1491 }
1492 
1493 static void
xfs_buf_bio_end_io(struct bio * bio)1494 xfs_buf_bio_end_io(
1495 	struct bio		*bio)
1496 {
1497 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1498 
1499 	if (!bio->bi_status &&
1500 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1501 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1502 		bio->bi_status = BLK_STS_IOERR;
1503 
1504 	/*
1505 	 * don't overwrite existing errors - otherwise we can lose errors on
1506 	 * buffers that require multiple bios to complete.
1507 	 */
1508 	if (bio->bi_status) {
1509 		int error = blk_status_to_errno(bio->bi_status);
1510 
1511 		cmpxchg(&bp->b_io_error, 0, error);
1512 	}
1513 
1514 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1515 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1516 
1517 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1518 		xfs_buf_ioend_async(bp);
1519 	bio_put(bio);
1520 }
1521 
1522 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,blk_opf_t op)1523 xfs_buf_ioapply_map(
1524 	struct xfs_buf	*bp,
1525 	int		map,
1526 	int		*buf_offset,
1527 	int		*count,
1528 	blk_opf_t	op)
1529 {
1530 	int		page_index;
1531 	unsigned int	total_nr_pages = bp->b_page_count;
1532 	int		nr_pages;
1533 	struct bio	*bio;
1534 	sector_t	sector =  bp->b_maps[map].bm_bn;
1535 	int		size;
1536 	int		offset;
1537 
1538 	/* skip the pages in the buffer before the start offset */
1539 	page_index = 0;
1540 	offset = *buf_offset;
1541 	while (offset >= PAGE_SIZE) {
1542 		page_index++;
1543 		offset -= PAGE_SIZE;
1544 	}
1545 
1546 	/*
1547 	 * Limit the IO size to the length of the current vector, and update the
1548 	 * remaining IO count for the next time around.
1549 	 */
1550 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1551 	*count -= size;
1552 	*buf_offset += size;
1553 
1554 next_chunk:
1555 	atomic_inc(&bp->b_io_remaining);
1556 	nr_pages = bio_max_segs(total_nr_pages);
1557 
1558 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1559 	bio->bi_iter.bi_sector = sector;
1560 	bio->bi_end_io = xfs_buf_bio_end_io;
1561 	bio->bi_private = bp;
1562 
1563 	for (; size && nr_pages; nr_pages--, page_index++) {
1564 		int	rbytes, nbytes = PAGE_SIZE - offset;
1565 
1566 		if (nbytes > size)
1567 			nbytes = size;
1568 
1569 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1570 				      offset);
1571 		if (rbytes < nbytes)
1572 			break;
1573 
1574 		offset = 0;
1575 		sector += BTOBB(nbytes);
1576 		size -= nbytes;
1577 		total_nr_pages--;
1578 	}
1579 
1580 	if (likely(bio->bi_iter.bi_size)) {
1581 		if (xfs_buf_is_vmapped(bp)) {
1582 			flush_kernel_vmap_range(bp->b_addr,
1583 						xfs_buf_vmap_len(bp));
1584 		}
1585 		submit_bio(bio);
1586 		if (size)
1587 			goto next_chunk;
1588 	} else {
1589 		/*
1590 		 * This is guaranteed not to be the last io reference count
1591 		 * because the caller (xfs_buf_submit) holds a count itself.
1592 		 */
1593 		atomic_dec(&bp->b_io_remaining);
1594 		xfs_buf_ioerror(bp, -EIO);
1595 		bio_put(bio);
1596 	}
1597 
1598 }
1599 
1600 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1601 _xfs_buf_ioapply(
1602 	struct xfs_buf	*bp)
1603 {
1604 	struct blk_plug	plug;
1605 	blk_opf_t	op;
1606 	int		offset;
1607 	int		size;
1608 	int		i;
1609 
1610 	/*
1611 	 * Make sure we capture only current IO errors rather than stale errors
1612 	 * left over from previous use of the buffer (e.g. failed readahead).
1613 	 */
1614 	bp->b_error = 0;
1615 
1616 	if (bp->b_flags & XBF_WRITE) {
1617 		op = REQ_OP_WRITE;
1618 
1619 		/*
1620 		 * Run the write verifier callback function if it exists. If
1621 		 * this function fails it will mark the buffer with an error and
1622 		 * the IO should not be dispatched.
1623 		 */
1624 		if (bp->b_ops) {
1625 			bp->b_ops->verify_write(bp);
1626 			if (bp->b_error) {
1627 				xfs_force_shutdown(bp->b_mount,
1628 						   SHUTDOWN_CORRUPT_INCORE);
1629 				return;
1630 			}
1631 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1632 			struct xfs_mount *mp = bp->b_mount;
1633 
1634 			/*
1635 			 * non-crc filesystems don't attach verifiers during
1636 			 * log recovery, so don't warn for such filesystems.
1637 			 */
1638 			if (xfs_has_crc(mp)) {
1639 				xfs_warn(mp,
1640 					"%s: no buf ops on daddr 0x%llx len %d",
1641 					__func__, xfs_buf_daddr(bp),
1642 					bp->b_length);
1643 				xfs_hex_dump(bp->b_addr,
1644 						XFS_CORRUPTION_DUMP_LEN);
1645 				dump_stack();
1646 			}
1647 		}
1648 	} else {
1649 		op = REQ_OP_READ;
1650 		if (bp->b_flags & XBF_READ_AHEAD)
1651 			op |= REQ_RAHEAD;
1652 	}
1653 
1654 	/* we only use the buffer cache for meta-data */
1655 	op |= REQ_META;
1656 
1657 	/* in-memory targets are directly mapped, no IO required. */
1658 	if (xfs_buftarg_is_mem(bp->b_target)) {
1659 		xfs_buf_ioend(bp);
1660 		return;
1661 	}
1662 
1663 	/*
1664 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1665 	 * into the buffer and the desired IO size before we start -
1666 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1667 	 * subsequent call.
1668 	 */
1669 	offset = bp->b_offset;
1670 	size = BBTOB(bp->b_length);
1671 	blk_start_plug(&plug);
1672 	for (i = 0; i < bp->b_map_count; i++) {
1673 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1674 		if (bp->b_error)
1675 			break;
1676 		if (size <= 0)
1677 			break;	/* all done */
1678 	}
1679 	blk_finish_plug(&plug);
1680 }
1681 
1682 /*
1683  * Wait for I/O completion of a sync buffer and return the I/O error code.
1684  */
1685 static int
xfs_buf_iowait(struct xfs_buf * bp)1686 xfs_buf_iowait(
1687 	struct xfs_buf	*bp)
1688 {
1689 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1690 
1691 	trace_xfs_buf_iowait(bp, _RET_IP_);
1692 	wait_for_completion(&bp->b_iowait);
1693 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1694 
1695 	return bp->b_error;
1696 }
1697 
1698 /*
1699  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1700  * the buffer lock ownership and the current reference to the IO. It is not
1701  * safe to reference the buffer after a call to this function unless the caller
1702  * holds an additional reference itself.
1703  */
1704 static int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1705 __xfs_buf_submit(
1706 	struct xfs_buf	*bp,
1707 	bool		wait)
1708 {
1709 	int		error = 0;
1710 
1711 	trace_xfs_buf_submit(bp, _RET_IP_);
1712 
1713 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1714 
1715 	/*
1716 	 * On log shutdown we stale and complete the buffer immediately. We can
1717 	 * be called to read the superblock before the log has been set up, so
1718 	 * be careful checking the log state.
1719 	 *
1720 	 * Checking the mount shutdown state here can result in the log tail
1721 	 * moving inappropriately on disk as the log may not yet be shut down.
1722 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1723 	 * and move the tail of the log forwards without having written this
1724 	 * buffer to disk. This corrupts the log tail state in memory, and
1725 	 * because the log may not be shut down yet, it can then be propagated
1726 	 * to disk before the log is shutdown. Hence we check log shutdown
1727 	 * state here rather than mount state to avoid corrupting the log tail
1728 	 * on shutdown.
1729 	 */
1730 	if (bp->b_mount->m_log &&
1731 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1732 		xfs_buf_ioend_fail(bp);
1733 		return -EIO;
1734 	}
1735 
1736 	/*
1737 	 * Grab a reference so the buffer does not go away underneath us. For
1738 	 * async buffers, I/O completion drops the callers reference, which
1739 	 * could occur before submission returns.
1740 	 */
1741 	xfs_buf_hold(bp);
1742 
1743 	if (bp->b_flags & XBF_WRITE)
1744 		xfs_buf_wait_unpin(bp);
1745 
1746 	/* clear the internal error state to avoid spurious errors */
1747 	bp->b_io_error = 0;
1748 
1749 	/*
1750 	 * Set the count to 1 initially, this will stop an I/O completion
1751 	 * callout which happens before we have started all the I/O from calling
1752 	 * xfs_buf_ioend too early.
1753 	 */
1754 	atomic_set(&bp->b_io_remaining, 1);
1755 	if (bp->b_flags & XBF_ASYNC)
1756 		xfs_buf_ioacct_inc(bp);
1757 	_xfs_buf_ioapply(bp);
1758 
1759 	/*
1760 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1761 	 * reference we took above. If we drop it to zero, run completion so
1762 	 * that we don't return to the caller with completion still pending.
1763 	 */
1764 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1765 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1766 			xfs_buf_ioend(bp);
1767 		else
1768 			xfs_buf_ioend_async(bp);
1769 	}
1770 
1771 	if (wait)
1772 		error = xfs_buf_iowait(bp);
1773 
1774 	/*
1775 	 * Release the hold that keeps the buffer referenced for the entire
1776 	 * I/O. Note that if the buffer is async, it is not safe to reference
1777 	 * after this release.
1778 	 */
1779 	xfs_buf_rele(bp);
1780 	return error;
1781 }
1782 
1783 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1784 xfs_buf_offset(
1785 	struct xfs_buf		*bp,
1786 	size_t			offset)
1787 {
1788 	struct page		*page;
1789 
1790 	if (bp->b_addr)
1791 		return bp->b_addr + offset;
1792 
1793 	page = bp->b_pages[offset >> PAGE_SHIFT];
1794 	return page_address(page) + (offset & (PAGE_SIZE-1));
1795 }
1796 
1797 void
xfs_buf_zero(struct xfs_buf * bp,size_t boff,size_t bsize)1798 xfs_buf_zero(
1799 	struct xfs_buf		*bp,
1800 	size_t			boff,
1801 	size_t			bsize)
1802 {
1803 	size_t			bend;
1804 
1805 	bend = boff + bsize;
1806 	while (boff < bend) {
1807 		struct page	*page;
1808 		int		page_index, page_offset, csize;
1809 
1810 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1811 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1812 		page = bp->b_pages[page_index];
1813 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1814 				      BBTOB(bp->b_length) - boff);
1815 
1816 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1817 
1818 		memset(page_address(page) + page_offset, 0, csize);
1819 
1820 		boff += csize;
1821 	}
1822 }
1823 
1824 /*
1825  * Log a message about and stale a buffer that a caller has decided is corrupt.
1826  *
1827  * This function should be called for the kinds of metadata corruption that
1828  * cannot be detect from a verifier, such as incorrect inter-block relationship
1829  * data.  Do /not/ call this function from a verifier function.
1830  *
1831  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1832  * be marked stale, but b_error will not be set.  The caller is responsible for
1833  * releasing the buffer or fixing it.
1834  */
1835 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1836 __xfs_buf_mark_corrupt(
1837 	struct xfs_buf		*bp,
1838 	xfs_failaddr_t		fa)
1839 {
1840 	ASSERT(bp->b_flags & XBF_DONE);
1841 
1842 	xfs_buf_corruption_error(bp, fa);
1843 	xfs_buf_stale(bp);
1844 }
1845 
1846 /*
1847  *	Handling of buffer targets (buftargs).
1848  */
1849 
1850 /*
1851  * Wait for any bufs with callbacks that have been submitted but have not yet
1852  * returned. These buffers will have an elevated hold count, so wait on those
1853  * while freeing all the buffers only held by the LRU.
1854  */
1855 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1856 xfs_buftarg_drain_rele(
1857 	struct list_head	*item,
1858 	struct list_lru_one	*lru,
1859 	spinlock_t		*lru_lock,
1860 	void			*arg)
1861 
1862 {
1863 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1864 	struct list_head	*dispose = arg;
1865 
1866 	if (atomic_read(&bp->b_hold) > 1) {
1867 		/* need to wait, so skip it this pass */
1868 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1869 		return LRU_SKIP;
1870 	}
1871 	if (!spin_trylock(&bp->b_lock))
1872 		return LRU_SKIP;
1873 
1874 	/*
1875 	 * clear the LRU reference count so the buffer doesn't get
1876 	 * ignored in xfs_buf_rele().
1877 	 */
1878 	atomic_set(&bp->b_lru_ref, 0);
1879 	bp->b_state |= XFS_BSTATE_DISPOSE;
1880 	list_lru_isolate_move(lru, item, dispose);
1881 	spin_unlock(&bp->b_lock);
1882 	return LRU_REMOVED;
1883 }
1884 
1885 /*
1886  * Wait for outstanding I/O on the buftarg to complete.
1887  */
1888 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1889 xfs_buftarg_wait(
1890 	struct xfs_buftarg	*btp)
1891 {
1892 	/*
1893 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1894 	 * released. This is critical as new buffers do not make the LRU until
1895 	 * they are released.
1896 	 *
1897 	 * Next, flush the buffer workqueue to ensure all completion processing
1898 	 * has finished. Just waiting on buffer locks is not sufficient for
1899 	 * async IO as the reference count held over IO is not released until
1900 	 * after the buffer lock is dropped. Hence we need to ensure here that
1901 	 * all reference counts have been dropped before we start walking the
1902 	 * LRU list.
1903 	 */
1904 	while (percpu_counter_sum(&btp->bt_io_count))
1905 		delay(100);
1906 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1907 }
1908 
1909 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1910 xfs_buftarg_drain(
1911 	struct xfs_buftarg	*btp)
1912 {
1913 	LIST_HEAD(dispose);
1914 	int			loop = 0;
1915 	bool			write_fail = false;
1916 
1917 	xfs_buftarg_wait(btp);
1918 
1919 	/* loop until there is nothing left on the lru list. */
1920 	while (list_lru_count(&btp->bt_lru)) {
1921 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1922 			      &dispose, LONG_MAX);
1923 
1924 		while (!list_empty(&dispose)) {
1925 			struct xfs_buf *bp;
1926 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1927 			list_del_init(&bp->b_lru);
1928 			if (bp->b_flags & XBF_WRITE_FAIL) {
1929 				write_fail = true;
1930 				xfs_buf_alert_ratelimited(bp,
1931 					"XFS: Corruption Alert",
1932 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1933 					(long long)xfs_buf_daddr(bp));
1934 			}
1935 			xfs_buf_rele(bp);
1936 		}
1937 		if (loop++ != 0)
1938 			delay(100);
1939 	}
1940 
1941 	/*
1942 	 * If one or more failed buffers were freed, that means dirty metadata
1943 	 * was thrown away. This should only ever happen after I/O completion
1944 	 * handling has elevated I/O error(s) to permanent failures and shuts
1945 	 * down the journal.
1946 	 */
1947 	if (write_fail) {
1948 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1949 		xfs_alert(btp->bt_mount,
1950 	      "Please run xfs_repair to determine the extent of the problem.");
1951 	}
1952 }
1953 
1954 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1955 xfs_buftarg_isolate(
1956 	struct list_head	*item,
1957 	struct list_lru_one	*lru,
1958 	spinlock_t		*lru_lock,
1959 	void			*arg)
1960 {
1961 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1962 	struct list_head	*dispose = arg;
1963 
1964 	/*
1965 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1966 	 * If we fail to get the lock, just skip it.
1967 	 */
1968 	if (!spin_trylock(&bp->b_lock))
1969 		return LRU_SKIP;
1970 	/*
1971 	 * Decrement the b_lru_ref count unless the value is already
1972 	 * zero. If the value is already zero, we need to reclaim the
1973 	 * buffer, otherwise it gets another trip through the LRU.
1974 	 */
1975 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1976 		spin_unlock(&bp->b_lock);
1977 		return LRU_ROTATE;
1978 	}
1979 
1980 	bp->b_state |= XFS_BSTATE_DISPOSE;
1981 	list_lru_isolate_move(lru, item, dispose);
1982 	spin_unlock(&bp->b_lock);
1983 	return LRU_REMOVED;
1984 }
1985 
1986 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1987 xfs_buftarg_shrink_scan(
1988 	struct shrinker		*shrink,
1989 	struct shrink_control	*sc)
1990 {
1991 	struct xfs_buftarg	*btp = shrink->private_data;
1992 	LIST_HEAD(dispose);
1993 	unsigned long		freed;
1994 
1995 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1996 				     xfs_buftarg_isolate, &dispose);
1997 
1998 	while (!list_empty(&dispose)) {
1999 		struct xfs_buf *bp;
2000 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
2001 		list_del_init(&bp->b_lru);
2002 		xfs_buf_rele(bp);
2003 	}
2004 
2005 	return freed;
2006 }
2007 
2008 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)2009 xfs_buftarg_shrink_count(
2010 	struct shrinker		*shrink,
2011 	struct shrink_control	*sc)
2012 {
2013 	struct xfs_buftarg	*btp = shrink->private_data;
2014 	return list_lru_shrink_count(&btp->bt_lru, sc);
2015 }
2016 
2017 void
xfs_destroy_buftarg(struct xfs_buftarg * btp)2018 xfs_destroy_buftarg(
2019 	struct xfs_buftarg	*btp)
2020 {
2021 	shrinker_free(btp->bt_shrinker);
2022 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2023 	percpu_counter_destroy(&btp->bt_io_count);
2024 	list_lru_destroy(&btp->bt_lru);
2025 }
2026 
2027 void
xfs_free_buftarg(struct xfs_buftarg * btp)2028 xfs_free_buftarg(
2029 	struct xfs_buftarg	*btp)
2030 {
2031 	xfs_destroy_buftarg(btp);
2032 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2033 	/* the main block device is closed by kill_block_super */
2034 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2035 		bdev_fput(btp->bt_bdev_file);
2036 	kfree(btp);
2037 }
2038 
2039 int
xfs_setsize_buftarg(struct xfs_buftarg * btp,unsigned int sectorsize)2040 xfs_setsize_buftarg(
2041 	struct xfs_buftarg	*btp,
2042 	unsigned int		sectorsize)
2043 {
2044 	/* Set up metadata sector size info */
2045 	btp->bt_meta_sectorsize = sectorsize;
2046 	btp->bt_meta_sectormask = sectorsize - 1;
2047 
2048 	if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
2049 		xfs_warn(btp->bt_mount,
2050 			"Cannot set_blocksize to %u on device %pg",
2051 			sectorsize, btp->bt_bdev);
2052 		return -EINVAL;
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 int
xfs_init_buftarg(struct xfs_buftarg * btp,size_t logical_sectorsize,const char * descr)2059 xfs_init_buftarg(
2060 	struct xfs_buftarg		*btp,
2061 	size_t				logical_sectorsize,
2062 	const char			*descr)
2063 {
2064 	/* Set up device logical sector size mask */
2065 	btp->bt_logical_sectorsize = logical_sectorsize;
2066 	btp->bt_logical_sectormask = logical_sectorsize - 1;
2067 
2068 	/*
2069 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2070 	 * per 30 seconds so as to not spam logs too much on repeated errors.
2071 	 */
2072 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2073 			     DEFAULT_RATELIMIT_BURST);
2074 
2075 	if (list_lru_init(&btp->bt_lru))
2076 		return -ENOMEM;
2077 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2078 		goto out_destroy_lru;
2079 
2080 	btp->bt_shrinker =
2081 		shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2082 	if (!btp->bt_shrinker)
2083 		goto out_destroy_io_count;
2084 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2085 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2086 	btp->bt_shrinker->private_data = btp;
2087 	shrinker_register(btp->bt_shrinker);
2088 	return 0;
2089 
2090 out_destroy_io_count:
2091 	percpu_counter_destroy(&btp->bt_io_count);
2092 out_destroy_lru:
2093 	list_lru_destroy(&btp->bt_lru);
2094 	return -ENOMEM;
2095 }
2096 
2097 struct xfs_buftarg *
xfs_alloc_buftarg(struct xfs_mount * mp,struct file * bdev_file)2098 xfs_alloc_buftarg(
2099 	struct xfs_mount	*mp,
2100 	struct file		*bdev_file)
2101 {
2102 	struct xfs_buftarg	*btp;
2103 	const struct dax_holder_operations *ops = NULL;
2104 
2105 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2106 	ops = &xfs_dax_holder_operations;
2107 #endif
2108 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2109 
2110 	btp->bt_mount = mp;
2111 	btp->bt_bdev_file = bdev_file;
2112 	btp->bt_bdev = file_bdev(bdev_file);
2113 	btp->bt_dev = btp->bt_bdev->bd_dev;
2114 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2115 					    mp, ops);
2116 
2117 	/*
2118 	 * When allocating the buftargs we have not yet read the super block and
2119 	 * thus don't know the file system sector size yet.
2120 	 */
2121 	if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2122 		goto error_free;
2123 	if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2124 			mp->m_super->s_id))
2125 		goto error_free;
2126 
2127 	return btp;
2128 
2129 error_free:
2130 	kfree(btp);
2131 	return NULL;
2132 }
2133 
2134 static inline void
xfs_buf_list_del(struct xfs_buf * bp)2135 xfs_buf_list_del(
2136 	struct xfs_buf		*bp)
2137 {
2138 	list_del_init(&bp->b_list);
2139 	wake_up_var(&bp->b_list);
2140 }
2141 
2142 /*
2143  * Cancel a delayed write list.
2144  *
2145  * Remove each buffer from the list, clear the delwri queue flag and drop the
2146  * associated buffer reference.
2147  */
2148 void
xfs_buf_delwri_cancel(struct list_head * list)2149 xfs_buf_delwri_cancel(
2150 	struct list_head	*list)
2151 {
2152 	struct xfs_buf		*bp;
2153 
2154 	while (!list_empty(list)) {
2155 		bp = list_first_entry(list, struct xfs_buf, b_list);
2156 
2157 		xfs_buf_lock(bp);
2158 		bp->b_flags &= ~_XBF_DELWRI_Q;
2159 		xfs_buf_list_del(bp);
2160 		xfs_buf_relse(bp);
2161 	}
2162 }
2163 
2164 /*
2165  * Add a buffer to the delayed write list.
2166  *
2167  * This queues a buffer for writeout if it hasn't already been.  Note that
2168  * neither this routine nor the buffer list submission functions perform
2169  * any internal synchronization.  It is expected that the lists are thread-local
2170  * to the callers.
2171  *
2172  * Returns true if we queued up the buffer, or false if it already had
2173  * been on the buffer list.
2174  */
2175 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)2176 xfs_buf_delwri_queue(
2177 	struct xfs_buf		*bp,
2178 	struct list_head	*list)
2179 {
2180 	ASSERT(xfs_buf_islocked(bp));
2181 	ASSERT(!(bp->b_flags & XBF_READ));
2182 
2183 	/*
2184 	 * If the buffer is already marked delwri it already is queued up
2185 	 * by someone else for imediate writeout.  Just ignore it in that
2186 	 * case.
2187 	 */
2188 	if (bp->b_flags & _XBF_DELWRI_Q) {
2189 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2190 		return false;
2191 	}
2192 
2193 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2194 
2195 	/*
2196 	 * If a buffer gets written out synchronously or marked stale while it
2197 	 * is on a delwri list we lazily remove it. To do this, the other party
2198 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2199 	 * It remains referenced and on the list.  In a rare corner case it
2200 	 * might get readded to a delwri list after the synchronous writeout, in
2201 	 * which case we need just need to re-add the flag here.
2202 	 */
2203 	bp->b_flags |= _XBF_DELWRI_Q;
2204 	if (list_empty(&bp->b_list)) {
2205 		atomic_inc(&bp->b_hold);
2206 		list_add_tail(&bp->b_list, list);
2207 	}
2208 
2209 	return true;
2210 }
2211 
2212 /*
2213  * Queue a buffer to this delwri list as part of a data integrity operation.
2214  * If the buffer is on any other delwri list, we'll wait for that to clear
2215  * so that the caller can submit the buffer for IO and wait for the result.
2216  * Callers must ensure the buffer is not already on the list.
2217  */
2218 void
xfs_buf_delwri_queue_here(struct xfs_buf * bp,struct list_head * buffer_list)2219 xfs_buf_delwri_queue_here(
2220 	struct xfs_buf		*bp,
2221 	struct list_head	*buffer_list)
2222 {
2223 	/*
2224 	 * We need this buffer to end up on the /caller's/ delwri list, not any
2225 	 * old list.  This can happen if the buffer is marked stale (which
2226 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2227 	 * before the AIL has a chance to submit the list.
2228 	 */
2229 	while (!list_empty(&bp->b_list)) {
2230 		xfs_buf_unlock(bp);
2231 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2232 		xfs_buf_lock(bp);
2233 	}
2234 
2235 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2236 
2237 	xfs_buf_delwri_queue(bp, buffer_list);
2238 }
2239 
2240 /*
2241  * Compare function is more complex than it needs to be because
2242  * the return value is only 32 bits and we are doing comparisons
2243  * on 64 bit values
2244  */
2245 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)2246 xfs_buf_cmp(
2247 	void			*priv,
2248 	const struct list_head	*a,
2249 	const struct list_head	*b)
2250 {
2251 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2252 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2253 	xfs_daddr_t		diff;
2254 
2255 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2256 	if (diff < 0)
2257 		return -1;
2258 	if (diff > 0)
2259 		return 1;
2260 	return 0;
2261 }
2262 
2263 /*
2264  * Submit buffers for write. If wait_list is specified, the buffers are
2265  * submitted using sync I/O and placed on the wait list such that the caller can
2266  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2267  * at I/O completion time. In either case, buffers remain locked until I/O
2268  * completes and the buffer is released from the queue.
2269  */
2270 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)2271 xfs_buf_delwri_submit_buffers(
2272 	struct list_head	*buffer_list,
2273 	struct list_head	*wait_list)
2274 {
2275 	struct xfs_buf		*bp, *n;
2276 	int			pinned = 0;
2277 	struct blk_plug		plug;
2278 
2279 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2280 
2281 	blk_start_plug(&plug);
2282 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2283 		if (!wait_list) {
2284 			if (!xfs_buf_trylock(bp))
2285 				continue;
2286 			if (xfs_buf_ispinned(bp)) {
2287 				xfs_buf_unlock(bp);
2288 				pinned++;
2289 				continue;
2290 			}
2291 		} else {
2292 			xfs_buf_lock(bp);
2293 		}
2294 
2295 		/*
2296 		 * Someone else might have written the buffer synchronously or
2297 		 * marked it stale in the meantime.  In that case only the
2298 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2299 		 * reference and remove it from the list here.
2300 		 */
2301 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2302 			xfs_buf_list_del(bp);
2303 			xfs_buf_relse(bp);
2304 			continue;
2305 		}
2306 
2307 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2308 
2309 		/*
2310 		 * If we have a wait list, each buffer (and associated delwri
2311 		 * queue reference) transfers to it and is submitted
2312 		 * synchronously. Otherwise, drop the buffer from the delwri
2313 		 * queue and submit async.
2314 		 */
2315 		bp->b_flags &= ~_XBF_DELWRI_Q;
2316 		bp->b_flags |= XBF_WRITE;
2317 		if (wait_list) {
2318 			bp->b_flags &= ~XBF_ASYNC;
2319 			list_move_tail(&bp->b_list, wait_list);
2320 		} else {
2321 			bp->b_flags |= XBF_ASYNC;
2322 			xfs_buf_list_del(bp);
2323 		}
2324 		__xfs_buf_submit(bp, false);
2325 	}
2326 	blk_finish_plug(&plug);
2327 
2328 	return pinned;
2329 }
2330 
2331 /*
2332  * Write out a buffer list asynchronously.
2333  *
2334  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2335  * out and not wait for I/O completion on any of the buffers.  This interface
2336  * is only safely useable for callers that can track I/O completion by higher
2337  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2338  * function.
2339  *
2340  * Note: this function will skip buffers it would block on, and in doing so
2341  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2342  * it is up to the caller to ensure that the buffer list is fully submitted or
2343  * cancelled appropriately when they are finished with the list. Failure to
2344  * cancel or resubmit the list until it is empty will result in leaked buffers
2345  * at unmount time.
2346  */
2347 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2348 xfs_buf_delwri_submit_nowait(
2349 	struct list_head	*buffer_list)
2350 {
2351 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2352 }
2353 
2354 /*
2355  * Write out a buffer list synchronously.
2356  *
2357  * This will take the @buffer_list, write all buffers out and wait for I/O
2358  * completion on all of the buffers. @buffer_list is consumed by the function,
2359  * so callers must have some other way of tracking buffers if they require such
2360  * functionality.
2361  */
2362 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2363 xfs_buf_delwri_submit(
2364 	struct list_head	*buffer_list)
2365 {
2366 	LIST_HEAD		(wait_list);
2367 	int			error = 0, error2;
2368 	struct xfs_buf		*bp;
2369 
2370 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2371 
2372 	/* Wait for IO to complete. */
2373 	while (!list_empty(&wait_list)) {
2374 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2375 
2376 		xfs_buf_list_del(bp);
2377 
2378 		/*
2379 		 * Wait on the locked buffer, check for errors and unlock and
2380 		 * release the delwri queue reference.
2381 		 */
2382 		error2 = xfs_buf_iowait(bp);
2383 		xfs_buf_relse(bp);
2384 		if (!error)
2385 			error = error2;
2386 	}
2387 
2388 	return error;
2389 }
2390 
2391 /*
2392  * Push a single buffer on a delwri queue.
2393  *
2394  * The purpose of this function is to submit a single buffer of a delwri queue
2395  * and return with the buffer still on the original queue. The waiting delwri
2396  * buffer submission infrastructure guarantees transfer of the delwri queue
2397  * buffer reference to a temporary wait list. We reuse this infrastructure to
2398  * transfer the buffer back to the original queue.
2399  *
2400  * Note the buffer transitions from the queued state, to the submitted and wait
2401  * listed state and back to the queued state during this call. The buffer
2402  * locking and queue management logic between _delwri_pushbuf() and
2403  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2404  * before returning.
2405  */
2406 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2407 xfs_buf_delwri_pushbuf(
2408 	struct xfs_buf		*bp,
2409 	struct list_head	*buffer_list)
2410 {
2411 	LIST_HEAD		(submit_list);
2412 	int			error;
2413 
2414 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2415 
2416 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2417 
2418 	/*
2419 	 * Isolate the buffer to a new local list so we can submit it for I/O
2420 	 * independently from the rest of the original list.
2421 	 */
2422 	xfs_buf_lock(bp);
2423 	list_move(&bp->b_list, &submit_list);
2424 	xfs_buf_unlock(bp);
2425 
2426 	/*
2427 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2428 	 * the buffer on the wait list with the original reference. Rather than
2429 	 * bounce the buffer from a local wait list back to the original list
2430 	 * after I/O completion, reuse the original list as the wait list.
2431 	 */
2432 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2433 
2434 	/*
2435 	 * The buffer is now locked, under I/O and wait listed on the original
2436 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2437 	 * return with the buffer unlocked and on the original queue.
2438 	 */
2439 	error = xfs_buf_iowait(bp);
2440 	bp->b_flags |= _XBF_DELWRI_Q;
2441 	xfs_buf_unlock(bp);
2442 
2443 	return error;
2444 }
2445 
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2446 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2447 {
2448 	/*
2449 	 * Set the lru reference count to 0 based on the error injection tag.
2450 	 * This allows userspace to disrupt buffer caching for debug/testing
2451 	 * purposes.
2452 	 */
2453 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2454 		lru_ref = 0;
2455 
2456 	atomic_set(&bp->b_lru_ref, lru_ref);
2457 }
2458 
2459 /*
2460  * Verify an on-disk magic value against the magic value specified in the
2461  * verifier structure. The verifier magic is in disk byte order so the caller is
2462  * expected to pass the value directly from disk.
2463  */
2464 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2465 xfs_verify_magic(
2466 	struct xfs_buf		*bp,
2467 	__be32			dmagic)
2468 {
2469 	struct xfs_mount	*mp = bp->b_mount;
2470 	int			idx;
2471 
2472 	idx = xfs_has_crc(mp);
2473 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2474 		return false;
2475 	return dmagic == bp->b_ops->magic[idx];
2476 }
2477 /*
2478  * Verify an on-disk magic value against the magic value specified in the
2479  * verifier structure. The verifier magic is in disk byte order so the caller is
2480  * expected to pass the value directly from disk.
2481  */
2482 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2483 xfs_verify_magic16(
2484 	struct xfs_buf		*bp,
2485 	__be16			dmagic)
2486 {
2487 	struct xfs_mount	*mp = bp->b_mount;
2488 	int			idx;
2489 
2490 	idx = xfs_has_crc(mp);
2491 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2492 		return false;
2493 	return dmagic == bp->b_ops->magic16[idx];
2494 }
2495