• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtbitmap.h"
27 #include "xfs_ag.h"
28 
29 /* Convert an xfs_fsmap to an fsmap. */
30 static void
xfs_fsmap_from_internal(struct fsmap * dest,struct xfs_fsmap * src)31 xfs_fsmap_from_internal(
32 	struct fsmap		*dest,
33 	struct xfs_fsmap	*src)
34 {
35 	dest->fmr_device = src->fmr_device;
36 	dest->fmr_flags = src->fmr_flags;
37 	dest->fmr_physical = BBTOB(src->fmr_physical);
38 	dest->fmr_owner = src->fmr_owner;
39 	dest->fmr_offset = BBTOB(src->fmr_offset);
40 	dest->fmr_length = BBTOB(src->fmr_length);
41 	dest->fmr_reserved[0] = 0;
42 	dest->fmr_reserved[1] = 0;
43 	dest->fmr_reserved[2] = 0;
44 }
45 
46 /* Convert an fsmap to an xfs_fsmap. */
47 static void
xfs_fsmap_to_internal(struct xfs_fsmap * dest,struct fsmap * src)48 xfs_fsmap_to_internal(
49 	struct xfs_fsmap	*dest,
50 	struct fsmap		*src)
51 {
52 	dest->fmr_device = src->fmr_device;
53 	dest->fmr_flags = src->fmr_flags;
54 	dest->fmr_physical = BTOBBT(src->fmr_physical);
55 	dest->fmr_owner = src->fmr_owner;
56 	dest->fmr_offset = BTOBBT(src->fmr_offset);
57 	dest->fmr_length = BTOBBT(src->fmr_length);
58 }
59 
60 /* Convert an fsmap owner into an rmapbt owner. */
61 static int
xfs_fsmap_owner_to_rmap(struct xfs_rmap_irec * dest,const struct xfs_fsmap * src)62 xfs_fsmap_owner_to_rmap(
63 	struct xfs_rmap_irec	*dest,
64 	const struct xfs_fsmap	*src)
65 {
66 	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 		dest->rm_owner = src->fmr_owner;
68 		return 0;
69 	}
70 
71 	switch (src->fmr_owner) {
72 	case 0:			/* "lowest owner id possible" */
73 	case -1ULL:		/* "highest owner id possible" */
74 		dest->rm_owner = src->fmr_owner;
75 		break;
76 	case XFS_FMR_OWN_FREE:
77 		dest->rm_owner = XFS_RMAP_OWN_NULL;
78 		break;
79 	case XFS_FMR_OWN_UNKNOWN:
80 		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
81 		break;
82 	case XFS_FMR_OWN_FS:
83 		dest->rm_owner = XFS_RMAP_OWN_FS;
84 		break;
85 	case XFS_FMR_OWN_LOG:
86 		dest->rm_owner = XFS_RMAP_OWN_LOG;
87 		break;
88 	case XFS_FMR_OWN_AG:
89 		dest->rm_owner = XFS_RMAP_OWN_AG;
90 		break;
91 	case XFS_FMR_OWN_INOBT:
92 		dest->rm_owner = XFS_RMAP_OWN_INOBT;
93 		break;
94 	case XFS_FMR_OWN_INODES:
95 		dest->rm_owner = XFS_RMAP_OWN_INODES;
96 		break;
97 	case XFS_FMR_OWN_REFC:
98 		dest->rm_owner = XFS_RMAP_OWN_REFC;
99 		break;
100 	case XFS_FMR_OWN_COW:
101 		dest->rm_owner = XFS_RMAP_OWN_COW;
102 		break;
103 	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
104 		/* fall through */
105 	default:
106 		return -EINVAL;
107 	}
108 	return 0;
109 }
110 
111 /* Convert an rmapbt owner into an fsmap owner. */
112 static int
xfs_fsmap_owner_from_rmap(struct xfs_fsmap * dest,const struct xfs_rmap_irec * src)113 xfs_fsmap_owner_from_rmap(
114 	struct xfs_fsmap		*dest,
115 	const struct xfs_rmap_irec	*src)
116 {
117 	dest->fmr_flags = 0;
118 	if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 		dest->fmr_owner = src->rm_owner;
120 		return 0;
121 	}
122 	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
123 
124 	switch (src->rm_owner) {
125 	case XFS_RMAP_OWN_FS:
126 		dest->fmr_owner = XFS_FMR_OWN_FS;
127 		break;
128 	case XFS_RMAP_OWN_LOG:
129 		dest->fmr_owner = XFS_FMR_OWN_LOG;
130 		break;
131 	case XFS_RMAP_OWN_AG:
132 		dest->fmr_owner = XFS_FMR_OWN_AG;
133 		break;
134 	case XFS_RMAP_OWN_INOBT:
135 		dest->fmr_owner = XFS_FMR_OWN_INOBT;
136 		break;
137 	case XFS_RMAP_OWN_INODES:
138 		dest->fmr_owner = XFS_FMR_OWN_INODES;
139 		break;
140 	case XFS_RMAP_OWN_REFC:
141 		dest->fmr_owner = XFS_FMR_OWN_REFC;
142 		break;
143 	case XFS_RMAP_OWN_COW:
144 		dest->fmr_owner = XFS_FMR_OWN_COW;
145 		break;
146 	case XFS_RMAP_OWN_NULL:	/* "free" */
147 		dest->fmr_owner = XFS_FMR_OWN_FREE;
148 		break;
149 	default:
150 		ASSERT(0);
151 		return -EFSCORRUPTED;
152 	}
153 	return 0;
154 }
155 
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 	struct xfs_fsmap_head	*head;
159 	struct fsmap		*fsmap_recs;	/* mapping records */
160 	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
161 	struct xfs_perag	*pag;		/* AG info, if applicable */
162 	xfs_daddr_t		next_daddr;	/* next daddr we expect */
163 	/* daddr of low fsmap key when we're using the rtbitmap */
164 	xfs_daddr_t		low_daddr;
165 	/* daddr of high fsmap key, or the last daddr on the device */
166 	xfs_daddr_t		end_daddr;
167 	u64			missing_owner;	/* owner of holes */
168 	u32			dev;		/* device id */
169 	/*
170 	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
171 	 * is the second (or later) call to retrieve the recordset in pieces.
172 	 * xfs_getfsmap_rec_before_start will compare all records retrieved
173 	 * by the rmapbt query to filter out any records that start before
174 	 * the last record.
175 	 */
176 	struct xfs_rmap_irec	low;
177 	struct xfs_rmap_irec	high;		/* high rmap key */
178 	bool			last;		/* last extent? */
179 };
180 
181 /* Associate a device with a getfsmap handler. */
182 struct xfs_getfsmap_dev {
183 	u32			dev;
184 	int			(*fn)(struct xfs_trans *tp,
185 				      const struct xfs_fsmap *keys,
186 				      struct xfs_getfsmap_info *info);
187 	sector_t		nr_sectors;
188 };
189 
190 /* Compare two getfsmap device handlers. */
191 static int
xfs_getfsmap_dev_compare(const void * p1,const void * p2)192 xfs_getfsmap_dev_compare(
193 	const void			*p1,
194 	const void			*p2)
195 {
196 	const struct xfs_getfsmap_dev	*d1 = p1;
197 	const struct xfs_getfsmap_dev	*d2 = p2;
198 
199 	return d1->dev - d2->dev;
200 }
201 
202 /* Decide if this mapping is shared. */
203 STATIC int
xfs_getfsmap_is_shared(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,bool * stat)204 xfs_getfsmap_is_shared(
205 	struct xfs_trans		*tp,
206 	struct xfs_getfsmap_info	*info,
207 	const struct xfs_rmap_irec	*rec,
208 	bool				*stat)
209 {
210 	struct xfs_mount		*mp = tp->t_mountp;
211 	struct xfs_btree_cur		*cur;
212 	xfs_agblock_t			fbno;
213 	xfs_extlen_t			flen;
214 	int				error;
215 
216 	*stat = false;
217 	if (!xfs_has_reflink(mp))
218 		return 0;
219 	/* rt files will have no perag structure */
220 	if (!info->pag)
221 		return 0;
222 
223 	/* Are there any shared blocks here? */
224 	flen = 0;
225 	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
226 
227 	error = xfs_refcount_find_shared(cur, rec->rm_startblock,
228 			rec->rm_blockcount, &fbno, &flen, false);
229 
230 	xfs_btree_del_cursor(cur, error);
231 	if (error)
232 		return error;
233 
234 	*stat = flen > 0;
235 	return 0;
236 }
237 
238 static inline void
xfs_getfsmap_format(struct xfs_mount * mp,struct xfs_fsmap * xfm,struct xfs_getfsmap_info * info)239 xfs_getfsmap_format(
240 	struct xfs_mount		*mp,
241 	struct xfs_fsmap		*xfm,
242 	struct xfs_getfsmap_info	*info)
243 {
244 	struct fsmap			*rec;
245 
246 	trace_xfs_getfsmap_mapping(mp, xfm);
247 
248 	rec = &info->fsmap_recs[info->head->fmh_entries++];
249 	xfs_fsmap_from_internal(rec, xfm);
250 }
251 
252 static inline bool
xfs_getfsmap_rec_before_start(struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,xfs_daddr_t rec_daddr)253 xfs_getfsmap_rec_before_start(
254 	struct xfs_getfsmap_info	*info,
255 	const struct xfs_rmap_irec	*rec,
256 	xfs_daddr_t			rec_daddr)
257 {
258 	if (info->low_daddr != XFS_BUF_DADDR_NULL)
259 		return rec_daddr < info->low_daddr;
260 	if (info->low.rm_blockcount)
261 		return xfs_rmap_compare(rec, &info->low) < 0;
262 	return false;
263 }
264 
265 /*
266  * Format a reverse mapping for getfsmap, having translated rm_startblock
267  * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
268  * length could be larger than rm_blockcount in struct xfs_rmap_irec.
269  */
270 STATIC int
xfs_getfsmap_helper(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_rmap_irec * rec,xfs_daddr_t rec_daddr,xfs_daddr_t len_daddr)271 xfs_getfsmap_helper(
272 	struct xfs_trans		*tp,
273 	struct xfs_getfsmap_info	*info,
274 	const struct xfs_rmap_irec	*rec,
275 	xfs_daddr_t			rec_daddr,
276 	xfs_daddr_t			len_daddr)
277 {
278 	struct xfs_fsmap		fmr;
279 	struct xfs_mount		*mp = tp->t_mountp;
280 	bool				shared;
281 	int				error;
282 
283 	if (fatal_signal_pending(current))
284 		return -EINTR;
285 
286 	if (len_daddr == 0)
287 		len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
288 
289 	/*
290 	 * Filter out records that start before our startpoint, if the
291 	 * caller requested that.
292 	 */
293 	if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
294 		rec_daddr += len_daddr;
295 		if (info->next_daddr < rec_daddr)
296 			info->next_daddr = rec_daddr;
297 		return 0;
298 	}
299 
300 	/*
301 	 * For an info->last query, we're looking for a gap between the last
302 	 * mapping emitted and the high key specified by userspace.  If the
303 	 * user's query spans less than 1 fsblock, then info->high and
304 	 * info->low will have the same rm_startblock, which causes rec_daddr
305 	 * and next_daddr to be the same.  Therefore, use the end_daddr that
306 	 * we calculated from userspace's high key to synthesize the record.
307 	 * Note that if the btree query found a mapping, there won't be a gap.
308 	 */
309 	if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
310 		rec_daddr = info->end_daddr + 1;
311 
312 	/* Are we just counting mappings? */
313 	if (info->head->fmh_count == 0) {
314 		if (info->head->fmh_entries == UINT_MAX)
315 			return -ECANCELED;
316 
317 		if (rec_daddr > info->next_daddr)
318 			info->head->fmh_entries++;
319 
320 		if (info->last)
321 			return 0;
322 
323 		info->head->fmh_entries++;
324 
325 		rec_daddr += len_daddr;
326 		if (info->next_daddr < rec_daddr)
327 			info->next_daddr = rec_daddr;
328 		return 0;
329 	}
330 
331 	/*
332 	 * If the record starts past the last physical block we saw,
333 	 * then we've found a gap.  Report the gap as being owned by
334 	 * whatever the caller specified is the missing owner.
335 	 */
336 	if (rec_daddr > info->next_daddr) {
337 		if (info->head->fmh_entries >= info->head->fmh_count)
338 			return -ECANCELED;
339 
340 		fmr.fmr_device = info->dev;
341 		fmr.fmr_physical = info->next_daddr;
342 		fmr.fmr_owner = info->missing_owner;
343 		fmr.fmr_offset = 0;
344 		fmr.fmr_length = rec_daddr - info->next_daddr;
345 		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
346 		xfs_getfsmap_format(mp, &fmr, info);
347 	}
348 
349 	if (info->last)
350 		goto out;
351 
352 	/* Fill out the extent we found */
353 	if (info->head->fmh_entries >= info->head->fmh_count)
354 		return -ECANCELED;
355 
356 	trace_xfs_fsmap_mapping(mp, info->dev,
357 			info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
358 
359 	fmr.fmr_device = info->dev;
360 	fmr.fmr_physical = rec_daddr;
361 	error = xfs_fsmap_owner_from_rmap(&fmr, rec);
362 	if (error)
363 		return error;
364 	fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
365 	fmr.fmr_length = len_daddr;
366 	if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
367 		fmr.fmr_flags |= FMR_OF_PREALLOC;
368 	if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
369 		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
370 	if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
371 		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
372 	if (fmr.fmr_flags == 0) {
373 		error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
374 		if (error)
375 			return error;
376 		if (shared)
377 			fmr.fmr_flags |= FMR_OF_SHARED;
378 	}
379 
380 	xfs_getfsmap_format(mp, &fmr, info);
381 out:
382 	rec_daddr += len_daddr;
383 	if (info->next_daddr < rec_daddr)
384 		info->next_daddr = rec_daddr;
385 	return 0;
386 }
387 
388 /* Transform a rmapbt irec into a fsmap */
389 STATIC int
xfs_getfsmap_datadev_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)390 xfs_getfsmap_datadev_helper(
391 	struct xfs_btree_cur		*cur,
392 	const struct xfs_rmap_irec	*rec,
393 	void				*priv)
394 {
395 	struct xfs_mount		*mp = cur->bc_mp;
396 	struct xfs_getfsmap_info	*info = priv;
397 	xfs_fsblock_t			fsb;
398 	xfs_daddr_t			rec_daddr;
399 
400 	fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
401 	rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
402 
403 	return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
404 }
405 
406 /* Transform a bnobt irec into a fsmap */
407 STATIC int
xfs_getfsmap_datadev_bnobt_helper(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * rec,void * priv)408 xfs_getfsmap_datadev_bnobt_helper(
409 	struct xfs_btree_cur		*cur,
410 	const struct xfs_alloc_rec_incore *rec,
411 	void				*priv)
412 {
413 	struct xfs_mount		*mp = cur->bc_mp;
414 	struct xfs_getfsmap_info	*info = priv;
415 	struct xfs_rmap_irec		irec;
416 	xfs_daddr_t			rec_daddr;
417 
418 	rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
419 			rec->ar_startblock);
420 
421 	irec.rm_startblock = rec->ar_startblock;
422 	irec.rm_blockcount = rec->ar_blockcount;
423 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
424 	irec.rm_offset = 0;
425 	irec.rm_flags = 0;
426 
427 	return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
428 }
429 
430 /* Set rmap flags based on the getfsmap flags */
431 static void
xfs_getfsmap_set_irec_flags(struct xfs_rmap_irec * irec,const struct xfs_fsmap * fmr)432 xfs_getfsmap_set_irec_flags(
433 	struct xfs_rmap_irec	*irec,
434 	const struct xfs_fsmap	*fmr)
435 {
436 	irec->rm_flags = 0;
437 	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
438 		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
439 	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
440 		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
441 	if (fmr->fmr_flags & FMR_OF_PREALLOC)
442 		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
443 }
444 
445 static inline bool
rmap_not_shareable(struct xfs_mount * mp,const struct xfs_rmap_irec * r)446 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
447 {
448 	if (!xfs_has_reflink(mp))
449 		return true;
450 	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
451 		return true;
452 	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
453 			   XFS_RMAP_UNWRITTEN))
454 		return true;
455 	return false;
456 }
457 
458 /* Execute a getfsmap query against the regular data device. */
459 STATIC int
__xfs_getfsmap_datadev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info,int (* query_fn)(struct xfs_trans *,struct xfs_getfsmap_info *,struct xfs_btree_cur **,void *),void * priv)460 __xfs_getfsmap_datadev(
461 	struct xfs_trans		*tp,
462 	const struct xfs_fsmap		*keys,
463 	struct xfs_getfsmap_info	*info,
464 	int				(*query_fn)(struct xfs_trans *,
465 						    struct xfs_getfsmap_info *,
466 						    struct xfs_btree_cur **,
467 						    void *),
468 	void				*priv)
469 {
470 	struct xfs_mount		*mp = tp->t_mountp;
471 	struct xfs_perag		*pag;
472 	struct xfs_btree_cur		*bt_cur = NULL;
473 	xfs_fsblock_t			start_fsb;
474 	xfs_fsblock_t			end_fsb;
475 	xfs_agnumber_t			start_ag;
476 	xfs_agnumber_t			end_ag;
477 	uint64_t			eofs;
478 	int				error = 0;
479 
480 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
481 	if (keys[0].fmr_physical >= eofs)
482 		return 0;
483 	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
484 	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
485 
486 	/*
487 	 * Convert the fsmap low/high keys to AG based keys.  Initialize
488 	 * low to the fsmap low key and max out the high key to the end
489 	 * of the AG.
490 	 */
491 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
492 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
493 	if (error)
494 		return error;
495 	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
496 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
497 
498 	/* Adjust the low key if we are continuing from where we left off. */
499 	if (info->low.rm_blockcount == 0) {
500 		/* No previous record from which to continue */
501 	} else if (rmap_not_shareable(mp, &info->low)) {
502 		/* Last record seen was an unshareable extent */
503 		info->low.rm_owner = 0;
504 		info->low.rm_offset = 0;
505 
506 		start_fsb += info->low.rm_blockcount;
507 		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
508 			return 0;
509 	} else {
510 		/* Last record seen was a shareable file data extent */
511 		info->low.rm_offset += info->low.rm_blockcount;
512 	}
513 	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
514 
515 	info->high.rm_startblock = -1U;
516 	info->high.rm_owner = ULLONG_MAX;
517 	info->high.rm_offset = ULLONG_MAX;
518 	info->high.rm_blockcount = 0;
519 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
520 
521 	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
522 	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
523 
524 	for_each_perag_range(mp, start_ag, end_ag, pag) {
525 		/*
526 		 * Set the AG high key from the fsmap high key if this
527 		 * is the last AG that we're querying.
528 		 */
529 		info->pag = pag;
530 		if (pag->pag_agno == end_ag) {
531 			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
532 					end_fsb);
533 			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
534 					keys[1].fmr_offset);
535 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
536 			if (error)
537 				break;
538 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
539 		}
540 
541 		if (bt_cur) {
542 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
543 			bt_cur = NULL;
544 			xfs_trans_brelse(tp, info->agf_bp);
545 			info->agf_bp = NULL;
546 		}
547 
548 		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
549 		if (error)
550 			break;
551 
552 		trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
553 				&info->low);
554 		trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
555 				&info->high);
556 
557 		error = query_fn(tp, info, &bt_cur, priv);
558 		if (error)
559 			break;
560 
561 		/*
562 		 * Set the AG low key to the start of the AG prior to
563 		 * moving on to the next AG.
564 		 */
565 		if (pag->pag_agno == start_ag)
566 			memset(&info->low, 0, sizeof(info->low));
567 
568 		/*
569 		 * If this is the last AG, report any gap at the end of it
570 		 * before we drop the reference to the perag when the loop
571 		 * terminates.
572 		 */
573 		if (pag->pag_agno == end_ag) {
574 			info->last = true;
575 			error = query_fn(tp, info, &bt_cur, priv);
576 			if (error)
577 				break;
578 		}
579 		info->pag = NULL;
580 	}
581 
582 	if (bt_cur)
583 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
584 							 XFS_BTREE_NOERROR);
585 	if (info->agf_bp) {
586 		xfs_trans_brelse(tp, info->agf_bp);
587 		info->agf_bp = NULL;
588 	}
589 	if (info->pag) {
590 		xfs_perag_rele(info->pag);
591 		info->pag = NULL;
592 	} else if (pag) {
593 		/* loop termination case */
594 		xfs_perag_rele(pag);
595 	}
596 
597 	return error;
598 }
599 
600 /* Actually query the rmap btree. */
601 STATIC int
xfs_getfsmap_datadev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)602 xfs_getfsmap_datadev_rmapbt_query(
603 	struct xfs_trans		*tp,
604 	struct xfs_getfsmap_info	*info,
605 	struct xfs_btree_cur		**curpp,
606 	void				*priv)
607 {
608 	/* Report any gap at the end of the last AG. */
609 	if (info->last)
610 		return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
611 
612 	/* Allocate cursor for this AG and query_range it. */
613 	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
614 			info->pag);
615 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
616 			xfs_getfsmap_datadev_helper, info);
617 }
618 
619 /* Execute a getfsmap query against the regular data device rmapbt. */
620 STATIC int
xfs_getfsmap_datadev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)621 xfs_getfsmap_datadev_rmapbt(
622 	struct xfs_trans		*tp,
623 	const struct xfs_fsmap		*keys,
624 	struct xfs_getfsmap_info	*info)
625 {
626 	info->missing_owner = XFS_FMR_OWN_FREE;
627 	return __xfs_getfsmap_datadev(tp, keys, info,
628 			xfs_getfsmap_datadev_rmapbt_query, NULL);
629 }
630 
631 /* Actually query the bno btree. */
632 STATIC int
xfs_getfsmap_datadev_bnobt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)633 xfs_getfsmap_datadev_bnobt_query(
634 	struct xfs_trans		*tp,
635 	struct xfs_getfsmap_info	*info,
636 	struct xfs_btree_cur		**curpp,
637 	void				*priv)
638 {
639 	struct xfs_alloc_rec_incore	*key = priv;
640 
641 	/* Report any gap at the end of the last AG. */
642 	if (info->last)
643 		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
644 
645 	/* Allocate cursor for this AG and query_range it. */
646 	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
647 			info->pag);
648 	key->ar_startblock = info->low.rm_startblock;
649 	key[1].ar_startblock = info->high.rm_startblock;
650 	return xfs_alloc_query_range(*curpp, key, &key[1],
651 			xfs_getfsmap_datadev_bnobt_helper, info);
652 }
653 
654 /* Execute a getfsmap query against the regular data device's bnobt. */
655 STATIC int
xfs_getfsmap_datadev_bnobt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)656 xfs_getfsmap_datadev_bnobt(
657 	struct xfs_trans		*tp,
658 	const struct xfs_fsmap		*keys,
659 	struct xfs_getfsmap_info	*info)
660 {
661 	struct xfs_alloc_rec_incore	akeys[2];
662 
663 	memset(akeys, 0, sizeof(akeys));
664 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
665 	return __xfs_getfsmap_datadev(tp, keys, info,
666 			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
667 }
668 
669 /* Execute a getfsmap query against the log device. */
670 STATIC int
xfs_getfsmap_logdev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)671 xfs_getfsmap_logdev(
672 	struct xfs_trans		*tp,
673 	const struct xfs_fsmap		*keys,
674 	struct xfs_getfsmap_info	*info)
675 {
676 	struct xfs_mount		*mp = tp->t_mountp;
677 	struct xfs_rmap_irec		rmap;
678 	xfs_daddr_t			rec_daddr, len_daddr;
679 	xfs_fsblock_t			start_fsb, end_fsb;
680 	uint64_t			eofs;
681 
682 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
683 	if (keys[0].fmr_physical >= eofs)
684 		return 0;
685 	start_fsb = XFS_BB_TO_FSBT(mp,
686 				keys[0].fmr_physical + keys[0].fmr_length);
687 	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
688 
689 	/* Adjust the low key if we are continuing from where we left off. */
690 	if (keys[0].fmr_length > 0)
691 		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
692 
693 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
694 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
695 
696 	if (start_fsb > 0)
697 		return 0;
698 
699 	/* Fabricate an rmap entry for the external log device. */
700 	rmap.rm_startblock = 0;
701 	rmap.rm_blockcount = mp->m_sb.sb_logblocks;
702 	rmap.rm_owner = XFS_RMAP_OWN_LOG;
703 	rmap.rm_offset = 0;
704 	rmap.rm_flags = 0;
705 
706 	rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
707 	len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
708 	return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
709 }
710 
711 #ifdef CONFIG_XFS_RT
712 /* Transform a rtbitmap "record" into a fsmap */
713 STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(struct xfs_mount * mp,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)714 xfs_getfsmap_rtdev_rtbitmap_helper(
715 	struct xfs_mount		*mp,
716 	struct xfs_trans		*tp,
717 	const struct xfs_rtalloc_rec	*rec,
718 	void				*priv)
719 {
720 	struct xfs_getfsmap_info	*info = priv;
721 	struct xfs_rmap_irec		irec;
722 	xfs_rtblock_t			rtbno;
723 	xfs_daddr_t			rec_daddr, len_daddr;
724 
725 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
726 	rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
727 	irec.rm_startblock = rtbno;
728 
729 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount);
730 	len_daddr = XFS_FSB_TO_BB(mp, rtbno);
731 	irec.rm_blockcount = rtbno;
732 
733 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
734 	irec.rm_offset = 0;
735 	irec.rm_flags = 0;
736 
737 	return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
738 }
739 
740 /* Execute a getfsmap query against the realtime device rtbitmap. */
741 STATIC int
xfs_getfsmap_rtdev_rtbitmap(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)742 xfs_getfsmap_rtdev_rtbitmap(
743 	struct xfs_trans		*tp,
744 	const struct xfs_fsmap		*keys,
745 	struct xfs_getfsmap_info	*info)
746 {
747 
748 	struct xfs_rtalloc_rec		ahigh = { 0 };
749 	struct xfs_mount		*mp = tp->t_mountp;
750 	xfs_rtblock_t			start_rtb;
751 	xfs_rtblock_t			end_rtb;
752 	xfs_rtxnum_t			high;
753 	uint64_t			eofs;
754 	int				error;
755 
756 	eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents));
757 	if (keys[0].fmr_physical >= eofs)
758 		return 0;
759 	start_rtb = XFS_BB_TO_FSBT(mp,
760 				keys[0].fmr_physical + keys[0].fmr_length);
761 	end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
762 
763 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
764 
765 	/* Adjust the low key if we are continuing from where we left off. */
766 	if (keys[0].fmr_length > 0) {
767 		info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
768 		if (info->low_daddr >= eofs)
769 			return 0;
770 	}
771 
772 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
773 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
774 
775 	xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
776 
777 	/*
778 	 * Set up query parameters to return free rtextents covering the range
779 	 * we want.
780 	 */
781 	high = xfs_rtb_to_rtxup(mp, end_rtb);
782 	error = xfs_rtalloc_query_range(mp, tp, xfs_rtb_to_rtx(mp, start_rtb),
783 			high, xfs_getfsmap_rtdev_rtbitmap_helper, info);
784 	if (error)
785 		goto err;
786 
787 	/*
788 	 * Report any gaps at the end of the rtbitmap by simulating a null
789 	 * rmap starting at the block after the end of the query range.
790 	 */
791 	info->last = true;
792 	ahigh.ar_startext = min(mp->m_sb.sb_rextents, high);
793 
794 	error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
795 	if (error)
796 		goto err;
797 err:
798 	xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
799 	return error;
800 }
801 #endif /* CONFIG_XFS_RT */
802 
803 /* Do we recognize the device? */
804 STATIC bool
xfs_getfsmap_is_valid_device(struct xfs_mount * mp,struct xfs_fsmap * fm)805 xfs_getfsmap_is_valid_device(
806 	struct xfs_mount	*mp,
807 	struct xfs_fsmap	*fm)
808 {
809 	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
810 	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
811 		return true;
812 	if (mp->m_logdev_targp &&
813 	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
814 		return true;
815 	if (mp->m_rtdev_targp &&
816 	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
817 		return true;
818 	return false;
819 }
820 
821 /* Ensure that the low key is less than the high key. */
822 STATIC bool
xfs_getfsmap_check_keys(struct xfs_fsmap * low_key,struct xfs_fsmap * high_key)823 xfs_getfsmap_check_keys(
824 	struct xfs_fsmap		*low_key,
825 	struct xfs_fsmap		*high_key)
826 {
827 	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
828 		if (low_key->fmr_offset)
829 			return false;
830 	}
831 	if (high_key->fmr_flags != -1U &&
832 	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
833 				    FMR_OF_EXTENT_MAP))) {
834 		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
835 			return false;
836 	}
837 	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
838 		return false;
839 
840 	if (low_key->fmr_device > high_key->fmr_device)
841 		return false;
842 	if (low_key->fmr_device < high_key->fmr_device)
843 		return true;
844 
845 	if (low_key->fmr_physical > high_key->fmr_physical)
846 		return false;
847 	if (low_key->fmr_physical < high_key->fmr_physical)
848 		return true;
849 
850 	if (low_key->fmr_owner > high_key->fmr_owner)
851 		return false;
852 	if (low_key->fmr_owner < high_key->fmr_owner)
853 		return true;
854 
855 	if (low_key->fmr_offset > high_key->fmr_offset)
856 		return false;
857 	if (low_key->fmr_offset < high_key->fmr_offset)
858 		return true;
859 
860 	return false;
861 }
862 
863 /*
864  * There are only two devices if we didn't configure RT devices at build time.
865  */
866 #ifdef CONFIG_XFS_RT
867 #define XFS_GETFSMAP_DEVS	3
868 #else
869 #define XFS_GETFSMAP_DEVS	2
870 #endif /* CONFIG_XFS_RT */
871 
872 /*
873  * Get filesystem's extents as described in head, and format for output. Fills
874  * in the supplied records array until there are no more reverse mappings to
875  * return or head.fmh_entries == head.fmh_count.  In the second case, this
876  * function returns -ECANCELED to indicate that more records would have been
877  * returned.
878  *
879  * Key to Confusion
880  * ----------------
881  * There are multiple levels of keys and counters at work here:
882  * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
883  *				   these reflect fs-wide sector addrs.
884  * dkeys			-- fmh_keys used to query each device;
885  *				   these are fmh_keys but w/ the low key
886  *				   bumped up by fmr_length.
887  * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
888  *				   is how we detect gaps in the fsmap
889 				   records and report them.
890  * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
891  *				   dkeys; used to query the metadata.
892  */
893 STATIC int
xfs_getfsmap(struct xfs_mount * mp,struct xfs_fsmap_head * head,struct fsmap * fsmap_recs)894 xfs_getfsmap(
895 	struct xfs_mount		*mp,
896 	struct xfs_fsmap_head		*head,
897 	struct fsmap			*fsmap_recs)
898 {
899 	struct xfs_trans		*tp = NULL;
900 	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
901 	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
902 	struct xfs_getfsmap_info	info = {
903 		.fsmap_recs		= fsmap_recs,
904 		.head			= head,
905 	};
906 	bool				use_rmap;
907 	int				i;
908 	int				error = 0;
909 
910 	if (head->fmh_iflags & ~FMH_IF_VALID)
911 		return -EINVAL;
912 	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
913 	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
914 		return -EINVAL;
915 	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
916 		return -EINVAL;
917 
918 	use_rmap = xfs_has_rmapbt(mp) &&
919 		   has_capability_noaudit(current, CAP_SYS_ADMIN);
920 	head->fmh_entries = 0;
921 
922 	/* Set up our device handlers. */
923 	memset(handlers, 0, sizeof(handlers));
924 	handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
925 	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
926 	if (use_rmap)
927 		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
928 	else
929 		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
930 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
931 		handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
932 						       mp->m_sb.sb_logblocks);
933 		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
934 		handlers[1].fn = xfs_getfsmap_logdev;
935 	}
936 #ifdef CONFIG_XFS_RT
937 	if (mp->m_rtdev_targp) {
938 		handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
939 		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
940 		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
941 	}
942 #endif /* CONFIG_XFS_RT */
943 
944 	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
945 			xfs_getfsmap_dev_compare);
946 
947 	/*
948 	 * To continue where we left off, we allow userspace to use the
949 	 * last mapping from a previous call as the low key of the next.
950 	 * This is identified by a non-zero length in the low key. We
951 	 * have to increment the low key in this scenario to ensure we
952 	 * don't return the same mapping again, and instead return the
953 	 * very next mapping.
954 	 *
955 	 * If the low key mapping refers to file data, the same physical
956 	 * blocks could be mapped to several other files/offsets.
957 	 * According to rmapbt record ordering, the minimal next
958 	 * possible record for the block range is the next starting
959 	 * offset in the same inode. Therefore, each fsmap backend bumps
960 	 * the file offset to continue the search appropriately.  For
961 	 * all other low key mapping types (attr blocks, metadata), each
962 	 * fsmap backend bumps the physical offset as there can be no
963 	 * other mapping for the same physical block range.
964 	 */
965 	dkeys[0] = head->fmh_keys[0];
966 	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
967 
968 	info.next_daddr = head->fmh_keys[0].fmr_physical +
969 			  head->fmh_keys[0].fmr_length;
970 
971 	/* For each device we support... */
972 	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
973 		/* Is this device within the range the user asked for? */
974 		if (!handlers[i].fn)
975 			continue;
976 		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
977 			continue;
978 		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
979 			break;
980 
981 		/*
982 		 * If this device number matches the high key, we have to pass
983 		 * the high key to the handler to limit the query results, and
984 		 * set the end_daddr so that we can synthesize records at the
985 		 * end of the query range or device.
986 		 */
987 		if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
988 			dkeys[1] = head->fmh_keys[1];
989 			info.end_daddr = min(handlers[i].nr_sectors - 1,
990 					     dkeys[1].fmr_physical);
991 		} else {
992 			info.end_daddr = handlers[i].nr_sectors - 1;
993 		}
994 
995 		/*
996 		 * If the device number exceeds the low key, zero out the low
997 		 * key so that we get everything from the beginning.
998 		 */
999 		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
1000 			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
1001 
1002 		/*
1003 		 * Grab an empty transaction so that we can use its recursive
1004 		 * buffer locking abilities to detect cycles in the rmapbt
1005 		 * without deadlocking.
1006 		 */
1007 		error = xfs_trans_alloc_empty(mp, &tp);
1008 		if (error)
1009 			break;
1010 
1011 		info.dev = handlers[i].dev;
1012 		info.last = false;
1013 		info.pag = NULL;
1014 		info.low_daddr = XFS_BUF_DADDR_NULL;
1015 		info.low.rm_blockcount = 0;
1016 		error = handlers[i].fn(tp, dkeys, &info);
1017 		if (error)
1018 			break;
1019 		xfs_trans_cancel(tp);
1020 		tp = NULL;
1021 		info.next_daddr = 0;
1022 	}
1023 
1024 	if (tp)
1025 		xfs_trans_cancel(tp);
1026 	head->fmh_oflags = FMH_OF_DEV_T;
1027 	return error;
1028 }
1029 
1030 int
xfs_ioc_getfsmap(struct xfs_inode * ip,struct fsmap_head __user * arg)1031 xfs_ioc_getfsmap(
1032 	struct xfs_inode	*ip,
1033 	struct fsmap_head	__user *arg)
1034 {
1035 	struct xfs_fsmap_head	xhead = {0};
1036 	struct fsmap_head	head;
1037 	struct fsmap		*recs;
1038 	unsigned int		count;
1039 	__u32			last_flags = 0;
1040 	bool			done = false;
1041 	int			error;
1042 
1043 	if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1044 		return -EFAULT;
1045 	if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1046 	    memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1047 		       sizeof(head.fmh_keys[0].fmr_reserved)) ||
1048 	    memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1049 		       sizeof(head.fmh_keys[1].fmr_reserved)))
1050 		return -EINVAL;
1051 
1052 	/*
1053 	 * Use an internal memory buffer so that we don't have to copy fsmap
1054 	 * data to userspace while holding locks.  Start by trying to allocate
1055 	 * up to 128k for the buffer, but fall back to a single page if needed.
1056 	 */
1057 	count = min_t(unsigned int, head.fmh_count,
1058 			131072 / sizeof(struct fsmap));
1059 	recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1060 	if (!recs) {
1061 		count = min_t(unsigned int, head.fmh_count,
1062 				PAGE_SIZE / sizeof(struct fsmap));
1063 		recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1064 		if (!recs)
1065 			return -ENOMEM;
1066 	}
1067 
1068 	xhead.fmh_iflags = head.fmh_iflags;
1069 	xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1070 	xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1071 
1072 	trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1073 	trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1074 
1075 	head.fmh_entries = 0;
1076 	do {
1077 		struct fsmap __user	*user_recs;
1078 		struct fsmap		*last_rec;
1079 
1080 		user_recs = &arg->fmh_recs[head.fmh_entries];
1081 		xhead.fmh_entries = 0;
1082 		xhead.fmh_count = min_t(unsigned int, count,
1083 					head.fmh_count - head.fmh_entries);
1084 
1085 		/* Run query, record how many entries we got. */
1086 		error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1087 		switch (error) {
1088 		case 0:
1089 			/*
1090 			 * There are no more records in the result set.  Copy
1091 			 * whatever we got to userspace and break out.
1092 			 */
1093 			done = true;
1094 			break;
1095 		case -ECANCELED:
1096 			/*
1097 			 * The internal memory buffer is full.  Copy whatever
1098 			 * records we got to userspace and go again if we have
1099 			 * not yet filled the userspace buffer.
1100 			 */
1101 			error = 0;
1102 			break;
1103 		default:
1104 			goto out_free;
1105 		}
1106 		head.fmh_entries += xhead.fmh_entries;
1107 		head.fmh_oflags = xhead.fmh_oflags;
1108 
1109 		/*
1110 		 * If the caller wanted a record count or there aren't any
1111 		 * new records to return, we're done.
1112 		 */
1113 		if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1114 			break;
1115 
1116 		/* Copy all the records we got out to userspace. */
1117 		if (copy_to_user(user_recs, recs,
1118 				 xhead.fmh_entries * sizeof(struct fsmap))) {
1119 			error = -EFAULT;
1120 			goto out_free;
1121 		}
1122 
1123 		/* Remember the last record flags we copied to userspace. */
1124 		last_rec = &recs[xhead.fmh_entries - 1];
1125 		last_flags = last_rec->fmr_flags;
1126 
1127 		/* Set up the low key for the next iteration. */
1128 		xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1129 		trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1130 	} while (!done && head.fmh_entries < head.fmh_count);
1131 
1132 	/*
1133 	 * If there are no more records in the query result set and we're not
1134 	 * in counting mode, mark the last record returned with the LAST flag.
1135 	 */
1136 	if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1137 		struct fsmap __user	*user_rec;
1138 
1139 		last_flags |= FMR_OF_LAST;
1140 		user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1141 
1142 		if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1143 					sizeof(last_flags))) {
1144 			error = -EFAULT;
1145 			goto out_free;
1146 		}
1147 	}
1148 
1149 	/* copy back header */
1150 	if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1151 		error = -EFAULT;
1152 		goto out_free;
1153 	}
1154 
1155 out_free:
1156 	kvfree(recs);
1157 	return error;
1158 }
1159