1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46
47 struct kmem_cache *xfs_inode_cache;
48
49 /*
50 * These two are wrapper routines around the xfs_ilock() routine used to
51 * centralize some grungy code. They are used in places that wish to lock the
52 * inode solely for reading the extents. The reason these places can't just
53 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
54 * bringing in of the extents from disk for a file in b-tree format. If the
55 * inode is in b-tree format, then we need to lock the inode exclusively until
56 * the extents are read in. Locking it exclusively all the time would limit
57 * our parallelism unnecessarily, though. What we do instead is check to see
58 * if the extents have been read in yet, and only lock the inode exclusively
59 * if they have not.
60 *
61 * The functions return a value which should be given to the corresponding
62 * xfs_iunlock() call.
63 */
64 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)65 xfs_ilock_data_map_shared(
66 struct xfs_inode *ip)
67 {
68 uint lock_mode = XFS_ILOCK_SHARED;
69
70 if (xfs_need_iread_extents(&ip->i_df))
71 lock_mode = XFS_ILOCK_EXCL;
72 xfs_ilock(ip, lock_mode);
73 return lock_mode;
74 }
75
76 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)77 xfs_ilock_attr_map_shared(
78 struct xfs_inode *ip)
79 {
80 uint lock_mode = XFS_ILOCK_SHARED;
81
82 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
83 lock_mode = XFS_ILOCK_EXCL;
84 xfs_ilock(ip, lock_mode);
85 return lock_mode;
86 }
87
88 /*
89 * You can't set both SHARED and EXCL for the same lock,
90 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
91 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
92 * to set in lock_flags.
93 */
94 static inline void
xfs_lock_flags_assert(uint lock_flags)95 xfs_lock_flags_assert(
96 uint lock_flags)
97 {
98 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
99 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
100 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
101 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
102 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
103 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
104 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
105 ASSERT(lock_flags != 0);
106 }
107
108 /*
109 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
110 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
111 * various combinations of the locks to be obtained.
112 *
113 * The 3 locks should always be ordered so that the IO lock is obtained first,
114 * the mmap lock second and the ilock last in order to prevent deadlock.
115 *
116 * Basic locking order:
117 *
118 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
119 *
120 * mmap_lock locking order:
121 *
122 * i_rwsem -> page lock -> mmap_lock
123 * mmap_lock -> invalidate_lock -> page_lock
124 *
125 * The difference in mmap_lock locking order mean that we cannot hold the
126 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
127 * can fault in pages during copy in/out (for buffered IO) or require the
128 * mmap_lock in get_user_pages() to map the user pages into the kernel address
129 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
130 * fault because page faults already hold the mmap_lock.
131 *
132 * Hence to serialise fully against both syscall and mmap based IO, we need to
133 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
134 * both taken in places where we need to invalidate the page cache in a race
135 * free manner (e.g. truncate, hole punch and other extent manipulation
136 * functions).
137 */
138 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)139 xfs_ilock(
140 xfs_inode_t *ip,
141 uint lock_flags)
142 {
143 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
144
145 xfs_lock_flags_assert(lock_flags);
146
147 if (lock_flags & XFS_IOLOCK_EXCL) {
148 down_write_nested(&VFS_I(ip)->i_rwsem,
149 XFS_IOLOCK_DEP(lock_flags));
150 } else if (lock_flags & XFS_IOLOCK_SHARED) {
151 down_read_nested(&VFS_I(ip)->i_rwsem,
152 XFS_IOLOCK_DEP(lock_flags));
153 }
154
155 if (lock_flags & XFS_MMAPLOCK_EXCL) {
156 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
157 XFS_MMAPLOCK_DEP(lock_flags));
158 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
159 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
160 XFS_MMAPLOCK_DEP(lock_flags));
161 }
162
163 if (lock_flags & XFS_ILOCK_EXCL)
164 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_ILOCK_SHARED)
166 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
167 }
168
169 /*
170 * This is just like xfs_ilock(), except that the caller
171 * is guaranteed not to sleep. It returns 1 if it gets
172 * the requested locks and 0 otherwise. If the IO lock is
173 * obtained but the inode lock cannot be, then the IO lock
174 * is dropped before returning.
175 *
176 * ip -- the inode being locked
177 * lock_flags -- this parameter indicates the inode's locks to be
178 * to be locked. See the comment for xfs_ilock() for a list
179 * of valid values.
180 */
181 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)182 xfs_ilock_nowait(
183 xfs_inode_t *ip,
184 uint lock_flags)
185 {
186 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
187
188 xfs_lock_flags_assert(lock_flags);
189
190 if (lock_flags & XFS_IOLOCK_EXCL) {
191 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
192 goto out;
193 } else if (lock_flags & XFS_IOLOCK_SHARED) {
194 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
195 goto out;
196 }
197
198 if (lock_flags & XFS_MMAPLOCK_EXCL) {
199 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
200 goto out_undo_iolock;
201 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
202 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
203 goto out_undo_iolock;
204 }
205
206 if (lock_flags & XFS_ILOCK_EXCL) {
207 if (!down_write_trylock(&ip->i_lock))
208 goto out_undo_mmaplock;
209 } else if (lock_flags & XFS_ILOCK_SHARED) {
210 if (!down_read_trylock(&ip->i_lock))
211 goto out_undo_mmaplock;
212 }
213 return 1;
214
215 out_undo_mmaplock:
216 if (lock_flags & XFS_MMAPLOCK_EXCL)
217 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
218 else if (lock_flags & XFS_MMAPLOCK_SHARED)
219 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
220 out_undo_iolock:
221 if (lock_flags & XFS_IOLOCK_EXCL)
222 up_write(&VFS_I(ip)->i_rwsem);
223 else if (lock_flags & XFS_IOLOCK_SHARED)
224 up_read(&VFS_I(ip)->i_rwsem);
225 out:
226 return 0;
227 }
228
229 /*
230 * xfs_iunlock() is used to drop the inode locks acquired with
231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233 * that we know which locks to drop.
234 *
235 * ip -- the inode being unlocked
236 * lock_flags -- this parameter indicates the inode's locks to be
237 * to be unlocked. See the comment for xfs_ilock() for a list
238 * of valid values for this parameter.
239 *
240 */
241 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)242 xfs_iunlock(
243 xfs_inode_t *ip,
244 uint lock_flags)
245 {
246 xfs_lock_flags_assert(lock_flags);
247
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 up_write(&VFS_I(ip)->i_rwsem);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 up_read(&VFS_I(ip)->i_rwsem);
252
253 if (lock_flags & XFS_MMAPLOCK_EXCL)
254 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
255 else if (lock_flags & XFS_MMAPLOCK_SHARED)
256 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
257
258 if (lock_flags & XFS_ILOCK_EXCL)
259 up_write(&ip->i_lock);
260 else if (lock_flags & XFS_ILOCK_SHARED)
261 up_read(&ip->i_lock);
262
263 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
264 }
265
266 /*
267 * give up write locks. the i/o lock cannot be held nested
268 * if it is being demoted.
269 */
270 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)271 xfs_ilock_demote(
272 xfs_inode_t *ip,
273 uint lock_flags)
274 {
275 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
276 ASSERT((lock_flags &
277 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278
279 if (lock_flags & XFS_ILOCK_EXCL)
280 downgrade_write(&ip->i_lock);
281 if (lock_flags & XFS_MMAPLOCK_EXCL)
282 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
283 if (lock_flags & XFS_IOLOCK_EXCL)
284 downgrade_write(&VFS_I(ip)->i_rwsem);
285
286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287 }
288
289 void
xfs_assert_ilocked(struct xfs_inode * ip,uint lock_flags)290 xfs_assert_ilocked(
291 struct xfs_inode *ip,
292 uint lock_flags)
293 {
294 /*
295 * Sometimes we assert the ILOCK is held exclusively, but we're in
296 * a workqueue, so lockdep doesn't know we're the owner.
297 */
298 if (lock_flags & XFS_ILOCK_SHARED)
299 rwsem_assert_held(&ip->i_lock);
300 else if (lock_flags & XFS_ILOCK_EXCL)
301 rwsem_assert_held_write_nolockdep(&ip->i_lock);
302
303 if (lock_flags & XFS_MMAPLOCK_SHARED)
304 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
305 else if (lock_flags & XFS_MMAPLOCK_EXCL)
306 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
307
308 if (lock_flags & XFS_IOLOCK_SHARED)
309 rwsem_assert_held(&VFS_I(ip)->i_rwsem);
310 else if (lock_flags & XFS_IOLOCK_EXCL)
311 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
312 }
313
314 /*
315 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
316 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
317 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
318 * errors and warnings.
319 */
320 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
321 static bool
xfs_lockdep_subclass_ok(int subclass)322 xfs_lockdep_subclass_ok(
323 int subclass)
324 {
325 return subclass < MAX_LOCKDEP_SUBCLASSES;
326 }
327 #else
328 #define xfs_lockdep_subclass_ok(subclass) (true)
329 #endif
330
331 /*
332 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
333 * value. This can be called for any type of inode lock combination, including
334 * parent locking. Care must be taken to ensure we don't overrun the subclass
335 * storage fields in the class mask we build.
336 */
337 static inline uint
xfs_lock_inumorder(uint lock_mode,uint subclass)338 xfs_lock_inumorder(
339 uint lock_mode,
340 uint subclass)
341 {
342 uint class = 0;
343
344 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
345 XFS_ILOCK_RTSUM)));
346 ASSERT(xfs_lockdep_subclass_ok(subclass));
347
348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 class += subclass << XFS_IOLOCK_SHIFT;
351 }
352
353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 class += subclass << XFS_MMAPLOCK_SHIFT;
356 }
357
358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 class += subclass << XFS_ILOCK_SHIFT;
361 }
362
363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364 }
365
366 /*
367 * The following routine will lock n inodes in exclusive mode. We assume the
368 * caller calls us with the inodes in i_ino order.
369 *
370 * We need to detect deadlock where an inode that we lock is in the AIL and we
371 * start waiting for another inode that is locked by a thread in a long running
372 * transaction (such as truncate). This can result in deadlock since the long
373 * running trans might need to wait for the inode we just locked in order to
374 * push the tail and free space in the log.
375 *
376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378 * lock more than one at a time, lockdep will report false positives saying we
379 * have violated locking orders.
380 */
381 void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)382 xfs_lock_inodes(
383 struct xfs_inode **ips,
384 int inodes,
385 uint lock_mode)
386 {
387 int attempts = 0;
388 uint i;
389 int j;
390 bool try_lock;
391 struct xfs_log_item *lp;
392
393 /*
394 * Currently supports between 2 and 5 inodes with exclusive locking. We
395 * support an arbitrary depth of locking here, but absolute limits on
396 * inodes depend on the type of locking and the limits placed by
397 * lockdep annotations in xfs_lock_inumorder. These are all checked by
398 * the asserts.
399 */
400 ASSERT(ips && inodes >= 2 && inodes <= 5);
401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 XFS_ILOCK_EXCL));
403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 XFS_ILOCK_SHARED)));
405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409
410 if (lock_mode & XFS_IOLOCK_EXCL) {
411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414
415 again:
416 try_lock = false;
417 i = 0;
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
423
424 /*
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
427 */
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = &ips[j]->i_itemp->ili_item;
431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 try_lock = true;
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
451
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
458 /*
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
462 */
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
465
466 xfs_iunlock(ips[j], lock_mode);
467 }
468
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 }
472 goto again;
473 }
474 }
475
476 /*
477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478 * mmaplock must be double-locked separately since we use i_rwsem and
479 * invalidate_lock for that. We now support taking one lock EXCL and the
480 * other SHARED.
481 */
482 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)483 xfs_lock_two_inodes(
484 struct xfs_inode *ip0,
485 uint ip0_mode,
486 struct xfs_inode *ip1,
487 uint ip1_mode)
488 {
489 int attempts = 0;
490 struct xfs_log_item *lp;
491
492 ASSERT(hweight32(ip0_mode) == 1);
493 ASSERT(hweight32(ip1_mode) == 1);
494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 ASSERT(ip0->i_ino != ip1->i_ino);
499
500 if (ip0->i_ino > ip1->i_ino) {
501 swap(ip0, ip1);
502 swap(ip0_mode, ip1_mode);
503 }
504
505 again:
506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507
508 /*
509 * If the first lock we have locked is in the AIL, we must TRY to get
510 * the second lock. If we can't get it, we must release the first one
511 * and try again.
512 */
513 lp = &ip0->i_itemp->ili_item;
514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 xfs_iunlock(ip0, ip0_mode);
517 if ((++attempts % 5) == 0)
518 delay(1); /* Don't just spin the CPU */
519 goto again;
520 }
521 } else {
522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 }
524 }
525
526 /*
527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
529 * ci_name->name will point to a the actual name (caller must free) or
530 * will be set to NULL if an exact match is found.
531 */
532 int
xfs_lookup(struct xfs_inode * dp,const struct xfs_name * name,struct xfs_inode ** ipp,struct xfs_name * ci_name)533 xfs_lookup(
534 struct xfs_inode *dp,
535 const struct xfs_name *name,
536 struct xfs_inode **ipp,
537 struct xfs_name *ci_name)
538 {
539 xfs_ino_t inum;
540 int error;
541
542 trace_xfs_lookup(dp, name);
543
544 if (xfs_is_shutdown(dp->i_mount))
545 return -EIO;
546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 return -EIO;
548
549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 if (error)
551 goto out_unlock;
552
553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 if (error)
555 goto out_free_name;
556
557 return 0;
558
559 out_free_name:
560 if (ci_name)
561 kfree(ci_name->name);
562 out_unlock:
563 *ipp = NULL;
564 return error;
565 }
566
567 /*
568 * Initialise a newly allocated inode and return the in-core inode to the
569 * caller locked exclusively.
570 *
571 * Caller is responsible for unlocking the inode manually upon return
572 */
573 int
xfs_icreate(struct xfs_trans * tp,xfs_ino_t ino,const struct xfs_icreate_args * args,struct xfs_inode ** ipp)574 xfs_icreate(
575 struct xfs_trans *tp,
576 xfs_ino_t ino,
577 const struct xfs_icreate_args *args,
578 struct xfs_inode **ipp)
579 {
580 struct xfs_mount *mp = tp->t_mountp;
581 struct xfs_inode *ip = NULL;
582 int error;
583
584 /*
585 * Get the in-core inode with the lock held exclusively to prevent
586 * others from looking at until we're done.
587 */
588 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
589 if (error)
590 return error;
591
592 ASSERT(ip != NULL);
593 xfs_trans_ijoin(tp, ip, 0);
594 xfs_inode_init(tp, args, ip);
595
596 /* now that we have an i_mode we can setup the inode structure */
597 xfs_setup_inode(ip);
598
599 *ipp = ip;
600 return 0;
601 }
602
603 /* Return dquots for the ids that will be assigned to a new file. */
604 int
xfs_icreate_dqalloc(const struct xfs_icreate_args * args,struct xfs_dquot ** udqpp,struct xfs_dquot ** gdqpp,struct xfs_dquot ** pdqpp)605 xfs_icreate_dqalloc(
606 const struct xfs_icreate_args *args,
607 struct xfs_dquot **udqpp,
608 struct xfs_dquot **gdqpp,
609 struct xfs_dquot **pdqpp)
610 {
611 struct inode *dir = VFS_I(args->pip);
612 kuid_t uid = GLOBAL_ROOT_UID;
613 kgid_t gid = GLOBAL_ROOT_GID;
614 prid_t prid = 0;
615 unsigned int flags = XFS_QMOPT_QUOTALL;
616
617 if (args->idmap) {
618 /*
619 * The uid/gid computation code must match what the VFS uses to
620 * assign i_[ug]id. INHERIT adjusts the gid computation for
621 * setgid/grpid systems.
622 */
623 uid = mapped_fsuid(args->idmap, i_user_ns(dir));
624 gid = mapped_fsgid(args->idmap, i_user_ns(dir));
625 prid = xfs_get_initial_prid(args->pip);
626 flags |= XFS_QMOPT_INHERIT;
627 }
628
629 *udqpp = *gdqpp = *pdqpp = NULL;
630
631 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
632 gdqpp, pdqpp);
633 }
634
635 int
xfs_create(const struct xfs_icreate_args * args,struct xfs_name * name,struct xfs_inode ** ipp)636 xfs_create(
637 const struct xfs_icreate_args *args,
638 struct xfs_name *name,
639 struct xfs_inode **ipp)
640 {
641 struct xfs_inode *dp = args->pip;
642 struct xfs_dir_update du = {
643 .dp = dp,
644 .name = name,
645 };
646 struct xfs_mount *mp = dp->i_mount;
647 struct xfs_trans *tp = NULL;
648 struct xfs_dquot *udqp;
649 struct xfs_dquot *gdqp;
650 struct xfs_dquot *pdqp;
651 struct xfs_trans_res *tres;
652 xfs_ino_t ino;
653 bool unlock_dp_on_error = false;
654 bool is_dir = S_ISDIR(args->mode);
655 uint resblks;
656 int error;
657
658 trace_xfs_create(dp, name);
659
660 if (xfs_is_shutdown(mp))
661 return -EIO;
662 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
663 return -EIO;
664
665 /* Make sure that we have allocated dquot(s) on disk. */
666 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
667 if (error)
668 return error;
669
670 if (is_dir) {
671 resblks = xfs_mkdir_space_res(mp, name->len);
672 tres = &M_RES(mp)->tr_mkdir;
673 } else {
674 resblks = xfs_create_space_res(mp, name->len);
675 tres = &M_RES(mp)->tr_create;
676 }
677
678 error = xfs_parent_start(mp, &du.ppargs);
679 if (error)
680 goto out_release_dquots;
681
682 /*
683 * Initially assume that the file does not exist and
684 * reserve the resources for that case. If that is not
685 * the case we'll drop the one we have and get a more
686 * appropriate transaction later.
687 */
688 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
689 &tp);
690 if (error == -ENOSPC) {
691 /* flush outstanding delalloc blocks and retry */
692 xfs_flush_inodes(mp);
693 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
694 resblks, &tp);
695 }
696 if (error)
697 goto out_parent;
698
699 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
700 unlock_dp_on_error = true;
701
702 /*
703 * A newly created regular or special file just has one directory
704 * entry pointing to them, but a directory also the "." entry
705 * pointing to itself.
706 */
707 error = xfs_dialloc(&tp, args, &ino);
708 if (!error)
709 error = xfs_icreate(tp, ino, args, &du.ip);
710 if (error)
711 goto out_trans_cancel;
712
713 /*
714 * Now we join the directory inode to the transaction. We do not do it
715 * earlier because xfs_dialloc might commit the previous transaction
716 * (and release all the locks). An error from here on will result in
717 * the transaction cancel unlocking dp so don't do it explicitly in the
718 * error path.
719 */
720 xfs_trans_ijoin(tp, dp, 0);
721
722 error = xfs_dir_create_child(tp, resblks, &du);
723 if (error)
724 goto out_trans_cancel;
725
726 /*
727 * If this is a synchronous mount, make sure that the
728 * create transaction goes to disk before returning to
729 * the user.
730 */
731 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
732 xfs_trans_set_sync(tp);
733
734 /*
735 * Attach the dquot(s) to the inodes and modify them incore.
736 * These ids of the inode couldn't have changed since the new
737 * inode has been locked ever since it was created.
738 */
739 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
740
741 error = xfs_trans_commit(tp);
742 if (error)
743 goto out_release_inode;
744
745 xfs_qm_dqrele(udqp);
746 xfs_qm_dqrele(gdqp);
747 xfs_qm_dqrele(pdqp);
748
749 *ipp = du.ip;
750 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
751 xfs_iunlock(dp, XFS_ILOCK_EXCL);
752 xfs_parent_finish(mp, du.ppargs);
753 return 0;
754
755 out_trans_cancel:
756 xfs_trans_cancel(tp);
757 out_release_inode:
758 /*
759 * Wait until after the current transaction is aborted to finish the
760 * setup of the inode and release the inode. This prevents recursive
761 * transactions and deadlocks from xfs_inactive.
762 */
763 if (du.ip) {
764 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
765 xfs_finish_inode_setup(du.ip);
766 xfs_irele(du.ip);
767 }
768 out_parent:
769 xfs_parent_finish(mp, du.ppargs);
770 out_release_dquots:
771 xfs_qm_dqrele(udqp);
772 xfs_qm_dqrele(gdqp);
773 xfs_qm_dqrele(pdqp);
774
775 if (unlock_dp_on_error)
776 xfs_iunlock(dp, XFS_ILOCK_EXCL);
777 return error;
778 }
779
780 int
xfs_create_tmpfile(const struct xfs_icreate_args * args,struct xfs_inode ** ipp)781 xfs_create_tmpfile(
782 const struct xfs_icreate_args *args,
783 struct xfs_inode **ipp)
784 {
785 struct xfs_inode *dp = args->pip;
786 struct xfs_mount *mp = dp->i_mount;
787 struct xfs_inode *ip = NULL;
788 struct xfs_trans *tp = NULL;
789 struct xfs_dquot *udqp;
790 struct xfs_dquot *gdqp;
791 struct xfs_dquot *pdqp;
792 struct xfs_trans_res *tres;
793 xfs_ino_t ino;
794 uint resblks;
795 int error;
796
797 ASSERT(args->flags & XFS_ICREATE_TMPFILE);
798
799 if (xfs_is_shutdown(mp))
800 return -EIO;
801
802 /* Make sure that we have allocated dquot(s) on disk. */
803 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
804 if (error)
805 return error;
806
807 resblks = XFS_IALLOC_SPACE_RES(mp);
808 tres = &M_RES(mp)->tr_create_tmpfile;
809
810 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
811 &tp);
812 if (error)
813 goto out_release_dquots;
814
815 error = xfs_dialloc(&tp, args, &ino);
816 if (!error)
817 error = xfs_icreate(tp, ino, args, &ip);
818 if (error)
819 goto out_trans_cancel;
820
821 if (xfs_has_wsync(mp))
822 xfs_trans_set_sync(tp);
823
824 /*
825 * Attach the dquot(s) to the inodes and modify them incore.
826 * These ids of the inode couldn't have changed since the new
827 * inode has been locked ever since it was created.
828 */
829 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
830
831 error = xfs_iunlink(tp, ip);
832 if (error)
833 goto out_trans_cancel;
834
835 error = xfs_trans_commit(tp);
836 if (error)
837 goto out_release_inode;
838
839 xfs_qm_dqrele(udqp);
840 xfs_qm_dqrele(gdqp);
841 xfs_qm_dqrele(pdqp);
842
843 *ipp = ip;
844 xfs_iunlock(ip, XFS_ILOCK_EXCL);
845 return 0;
846
847 out_trans_cancel:
848 xfs_trans_cancel(tp);
849 out_release_inode:
850 /*
851 * Wait until after the current transaction is aborted to finish the
852 * setup of the inode and release the inode. This prevents recursive
853 * transactions and deadlocks from xfs_inactive.
854 */
855 if (ip) {
856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 xfs_finish_inode_setup(ip);
858 xfs_irele(ip);
859 }
860 out_release_dquots:
861 xfs_qm_dqrele(udqp);
862 xfs_qm_dqrele(gdqp);
863 xfs_qm_dqrele(pdqp);
864
865 return error;
866 }
867
868 int
xfs_link(struct xfs_inode * tdp,struct xfs_inode * sip,struct xfs_name * target_name)869 xfs_link(
870 struct xfs_inode *tdp,
871 struct xfs_inode *sip,
872 struct xfs_name *target_name)
873 {
874 struct xfs_dir_update du = {
875 .dp = tdp,
876 .name = target_name,
877 .ip = sip,
878 };
879 struct xfs_mount *mp = tdp->i_mount;
880 struct xfs_trans *tp;
881 int error, nospace_error = 0;
882 int resblks;
883
884 trace_xfs_link(tdp, target_name);
885
886 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
887
888 if (xfs_is_shutdown(mp))
889 return -EIO;
890 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
891 return -EIO;
892
893 error = xfs_qm_dqattach(sip);
894 if (error)
895 goto std_return;
896
897 error = xfs_qm_dqattach(tdp);
898 if (error)
899 goto std_return;
900
901 error = xfs_parent_start(mp, &du.ppargs);
902 if (error)
903 goto std_return;
904
905 resblks = xfs_link_space_res(mp, target_name->len);
906 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
907 &tp, &nospace_error);
908 if (error)
909 goto out_parent;
910
911 /*
912 * We don't allow reservationless or quotaless hardlinking when parent
913 * pointers are enabled because we can't back out if the xattrs must
914 * grow.
915 */
916 if (du.ppargs && nospace_error) {
917 error = nospace_error;
918 goto error_return;
919 }
920
921 /*
922 * If we are using project inheritance, we only allow hard link
923 * creation in our tree when the project IDs are the same; else
924 * the tree quota mechanism could be circumvented.
925 */
926 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
927 tdp->i_projid != sip->i_projid)) {
928 /*
929 * Project quota setup skips special files which can
930 * leave inodes in a PROJINHERIT directory without a
931 * project ID set. We need to allow links to be made
932 * to these "project-less" inodes because userspace
933 * expects them to succeed after project ID setup,
934 * but everything else should be rejected.
935 */
936 if (!special_file(VFS_I(sip)->i_mode) ||
937 sip->i_projid != 0) {
938 error = -EXDEV;
939 goto error_return;
940 }
941 }
942
943 error = xfs_dir_add_child(tp, resblks, &du);
944 if (error)
945 goto error_return;
946
947 /*
948 * If this is a synchronous mount, make sure that the
949 * link transaction goes to disk before returning to
950 * the user.
951 */
952 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
953 xfs_trans_set_sync(tp);
954
955 error = xfs_trans_commit(tp);
956 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
957 xfs_iunlock(sip, XFS_ILOCK_EXCL);
958 xfs_parent_finish(mp, du.ppargs);
959 return error;
960
961 error_return:
962 xfs_trans_cancel(tp);
963 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
964 xfs_iunlock(sip, XFS_ILOCK_EXCL);
965 out_parent:
966 xfs_parent_finish(mp, du.ppargs);
967 std_return:
968 if (error == -ENOSPC && nospace_error)
969 error = nospace_error;
970 return error;
971 }
972
973 /* Clear the reflink flag and the cowblocks tag if possible. */
974 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)975 xfs_itruncate_clear_reflink_flags(
976 struct xfs_inode *ip)
977 {
978 struct xfs_ifork *dfork;
979 struct xfs_ifork *cfork;
980
981 if (!xfs_is_reflink_inode(ip))
982 return;
983 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
984 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
985 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
986 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
987 if (cfork->if_bytes == 0)
988 xfs_inode_clear_cowblocks_tag(ip);
989 }
990
991 /*
992 * Free up the underlying blocks past new_size. The new size must be smaller
993 * than the current size. This routine can be used both for the attribute and
994 * data fork, and does not modify the inode size, which is left to the caller.
995 *
996 * The transaction passed to this routine must have made a permanent log
997 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
998 * given transaction and start new ones, so make sure everything involved in
999 * the transaction is tidy before calling here. Some transaction will be
1000 * returned to the caller to be committed. The incoming transaction must
1001 * already include the inode, and both inode locks must be held exclusively.
1002 * The inode must also be "held" within the transaction. On return the inode
1003 * will be "held" within the returned transaction. This routine does NOT
1004 * require any disk space to be reserved for it within the transaction.
1005 *
1006 * If we get an error, we must return with the inode locked and linked into the
1007 * current transaction. This keeps things simple for the higher level code,
1008 * because it always knows that the inode is locked and held in the transaction
1009 * that returns to it whether errors occur or not. We don't mark the inode
1010 * dirty on error so that transactions can be easily aborted if possible.
1011 */
1012 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1013 xfs_itruncate_extents_flags(
1014 struct xfs_trans **tpp,
1015 struct xfs_inode *ip,
1016 int whichfork,
1017 xfs_fsize_t new_size,
1018 int flags)
1019 {
1020 struct xfs_mount *mp = ip->i_mount;
1021 struct xfs_trans *tp = *tpp;
1022 xfs_fileoff_t first_unmap_block;
1023 int error = 0;
1024
1025 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1026 if (atomic_read(&VFS_I(ip)->i_count))
1027 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1028 ASSERT(new_size <= XFS_ISIZE(ip));
1029 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1030 ASSERT(ip->i_itemp != NULL);
1031 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1032 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1033
1034 trace_xfs_itruncate_extents_start(ip, new_size);
1035
1036 flags |= xfs_bmapi_aflag(whichfork);
1037
1038 /*
1039 * Since it is possible for space to become allocated beyond
1040 * the end of the file (in a crash where the space is allocated
1041 * but the inode size is not yet updated), simply remove any
1042 * blocks which show up between the new EOF and the maximum
1043 * possible file size.
1044 *
1045 * We have to free all the blocks to the bmbt maximum offset, even if
1046 * the page cache can't scale that far.
1047 */
1048 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1049 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1050 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1051 return 0;
1052 }
1053
1054 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1055 XFS_MAX_FILEOFF);
1056 if (error)
1057 goto out;
1058
1059 if (whichfork == XFS_DATA_FORK) {
1060 /* Remove all pending CoW reservations. */
1061 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1062 first_unmap_block, XFS_MAX_FILEOFF, true);
1063 if (error)
1064 goto out;
1065
1066 xfs_itruncate_clear_reflink_flags(ip);
1067 }
1068
1069 /*
1070 * Always re-log the inode so that our permanent transaction can keep
1071 * on rolling it forward in the log.
1072 */
1073 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1074
1075 trace_xfs_itruncate_extents_end(ip, new_size);
1076
1077 out:
1078 *tpp = tp;
1079 return error;
1080 }
1081
1082 /*
1083 * Mark all the buffers attached to this directory stale. In theory we should
1084 * never be freeing a directory with any blocks at all, but this covers the
1085 * case where we've recovered a directory swap with a "temporary" directory
1086 * created by online repair and now need to dump it.
1087 */
1088 STATIC void
xfs_inactive_dir(struct xfs_inode * dp)1089 xfs_inactive_dir(
1090 struct xfs_inode *dp)
1091 {
1092 struct xfs_iext_cursor icur;
1093 struct xfs_bmbt_irec got;
1094 struct xfs_mount *mp = dp->i_mount;
1095 struct xfs_da_geometry *geo = mp->m_dir_geo;
1096 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1097 xfs_fileoff_t off;
1098
1099 /*
1100 * Invalidate each directory block. All directory blocks are of
1101 * fsbcount length and alignment, so we only need to walk those same
1102 * offsets. We hold the only reference to this inode, so we must wait
1103 * for the buffer locks.
1104 */
1105 for_each_xfs_iext(ifp, &icur, &got) {
1106 for (off = round_up(got.br_startoff, geo->fsbcount);
1107 off < got.br_startoff + got.br_blockcount;
1108 off += geo->fsbcount) {
1109 struct xfs_buf *bp = NULL;
1110 xfs_fsblock_t fsbno;
1111 int error;
1112
1113 fsbno = (off - got.br_startoff) + got.br_startblock;
1114 error = xfs_buf_incore(mp->m_ddev_targp,
1115 XFS_FSB_TO_DADDR(mp, fsbno),
1116 XFS_FSB_TO_BB(mp, geo->fsbcount),
1117 XBF_LIVESCAN, &bp);
1118 if (error)
1119 continue;
1120
1121 xfs_buf_stale(bp);
1122 xfs_buf_relse(bp);
1123 }
1124 }
1125 }
1126
1127 /*
1128 * xfs_inactive_truncate
1129 *
1130 * Called to perform a truncate when an inode becomes unlinked.
1131 */
1132 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1133 xfs_inactive_truncate(
1134 struct xfs_inode *ip)
1135 {
1136 struct xfs_mount *mp = ip->i_mount;
1137 struct xfs_trans *tp;
1138 int error;
1139
1140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1141 if (error) {
1142 ASSERT(xfs_is_shutdown(mp));
1143 return error;
1144 }
1145 xfs_ilock(ip, XFS_ILOCK_EXCL);
1146 xfs_trans_ijoin(tp, ip, 0);
1147
1148 /*
1149 * Log the inode size first to prevent stale data exposure in the event
1150 * of a system crash before the truncate completes. See the related
1151 * comment in xfs_vn_setattr_size() for details.
1152 */
1153 ip->i_disk_size = 0;
1154 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1155
1156 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1157 if (error)
1158 goto error_trans_cancel;
1159
1160 ASSERT(ip->i_df.if_nextents == 0);
1161
1162 error = xfs_trans_commit(tp);
1163 if (error)
1164 goto error_unlock;
1165
1166 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1167 return 0;
1168
1169 error_trans_cancel:
1170 xfs_trans_cancel(tp);
1171 error_unlock:
1172 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1173 return error;
1174 }
1175
1176 /*
1177 * xfs_inactive_ifree()
1178 *
1179 * Perform the inode free when an inode is unlinked.
1180 */
1181 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1182 xfs_inactive_ifree(
1183 struct xfs_inode *ip)
1184 {
1185 struct xfs_mount *mp = ip->i_mount;
1186 struct xfs_trans *tp;
1187 int error;
1188
1189 /*
1190 * We try to use a per-AG reservation for any block needed by the finobt
1191 * tree, but as the finobt feature predates the per-AG reservation
1192 * support a degraded file system might not have enough space for the
1193 * reservation at mount time. In that case try to dip into the reserved
1194 * pool and pray.
1195 *
1196 * Send a warning if the reservation does happen to fail, as the inode
1197 * now remains allocated and sits on the unlinked list until the fs is
1198 * repaired.
1199 */
1200 if (unlikely(mp->m_finobt_nores)) {
1201 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1202 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1203 &tp);
1204 } else {
1205 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1206 }
1207 if (error) {
1208 if (error == -ENOSPC) {
1209 xfs_warn_ratelimited(mp,
1210 "Failed to remove inode(s) from unlinked list. "
1211 "Please free space, unmount and run xfs_repair.");
1212 } else {
1213 ASSERT(xfs_is_shutdown(mp));
1214 }
1215 return error;
1216 }
1217
1218 /*
1219 * We do not hold the inode locked across the entire rolling transaction
1220 * here. We only need to hold it for the first transaction that
1221 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1222 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1223 * here breaks the relationship between cluster buffer invalidation and
1224 * stale inode invalidation on cluster buffer item journal commit
1225 * completion, and can result in leaving dirty stale inodes hanging
1226 * around in memory.
1227 *
1228 * We have no need for serialising this inode operation against other
1229 * operations - we freed the inode and hence reallocation is required
1230 * and that will serialise on reallocating the space the deferops need
1231 * to free. Hence we can unlock the inode on the first commit of
1232 * the transaction rather than roll it right through the deferops. This
1233 * avoids relogging the XFS_ISTALE inode.
1234 *
1235 * We check that xfs_ifree() hasn't grown an internal transaction roll
1236 * by asserting that the inode is still locked when it returns.
1237 */
1238 xfs_ilock(ip, XFS_ILOCK_EXCL);
1239 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1240
1241 error = xfs_ifree(tp, ip);
1242 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1243 if (error) {
1244 /*
1245 * If we fail to free the inode, shut down. The cancel
1246 * might do that, we need to make sure. Otherwise the
1247 * inode might be lost for a long time or forever.
1248 */
1249 if (!xfs_is_shutdown(mp)) {
1250 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1251 __func__, error);
1252 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1253 }
1254 xfs_trans_cancel(tp);
1255 return error;
1256 }
1257
1258 /*
1259 * Credit the quota account(s). The inode is gone.
1260 */
1261 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1262
1263 return xfs_trans_commit(tp);
1264 }
1265
1266 /*
1267 * Returns true if we need to update the on-disk metadata before we can free
1268 * the memory used by this inode. Updates include freeing post-eof
1269 * preallocations; freeing COW staging extents; and marking the inode free in
1270 * the inobt if it is on the unlinked list.
1271 */
1272 bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1273 xfs_inode_needs_inactive(
1274 struct xfs_inode *ip)
1275 {
1276 struct xfs_mount *mp = ip->i_mount;
1277 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1278
1279 /*
1280 * If the inode is already free, then there can be nothing
1281 * to clean up here.
1282 */
1283 if (VFS_I(ip)->i_mode == 0)
1284 return false;
1285
1286 /*
1287 * If this is a read-only mount, don't do this (would generate I/O)
1288 * unless we're in log recovery and cleaning the iunlinked list.
1289 */
1290 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1291 return false;
1292
1293 /* If the log isn't running, push inodes straight to reclaim. */
1294 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1295 return false;
1296
1297 /* Metadata inodes require explicit resource cleanup. */
1298 if (xfs_is_metadata_inode(ip))
1299 return false;
1300
1301 /* Want to clean out the cow blocks if there are any. */
1302 if (cow_ifp && cow_ifp->if_bytes > 0)
1303 return true;
1304
1305 /* Unlinked files must be freed. */
1306 if (VFS_I(ip)->i_nlink == 0)
1307 return true;
1308
1309 /*
1310 * This file isn't being freed, so check if there are post-eof blocks
1311 * to free.
1312 *
1313 * Note: don't bother with iolock here since lockdep complains about
1314 * acquiring it in reclaim context. We have the only reference to the
1315 * inode at this point anyways.
1316 */
1317 return xfs_can_free_eofblocks(ip);
1318 }
1319
1320 /*
1321 * Save health status somewhere, if we're dumping an inode with uncorrected
1322 * errors and online repair isn't running.
1323 */
1324 static inline void
xfs_inactive_health(struct xfs_inode * ip)1325 xfs_inactive_health(
1326 struct xfs_inode *ip)
1327 {
1328 struct xfs_mount *mp = ip->i_mount;
1329 struct xfs_perag *pag;
1330 unsigned int sick;
1331 unsigned int checked;
1332
1333 xfs_inode_measure_sickness(ip, &sick, &checked);
1334 if (!sick)
1335 return;
1336
1337 trace_xfs_inode_unfixed_corruption(ip, sick);
1338
1339 if (sick & XFS_SICK_INO_FORGET)
1340 return;
1341
1342 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1343 if (!pag) {
1344 /* There had better still be a perag structure! */
1345 ASSERT(0);
1346 return;
1347 }
1348
1349 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1350 xfs_perag_put(pag);
1351 }
1352
1353 /*
1354 * xfs_inactive
1355 *
1356 * This is called when the vnode reference count for the vnode
1357 * goes to zero. If the file has been unlinked, then it must
1358 * now be truncated. Also, we clear all of the read-ahead state
1359 * kept for the inode here since the file is now closed.
1360 */
1361 int
xfs_inactive(xfs_inode_t * ip)1362 xfs_inactive(
1363 xfs_inode_t *ip)
1364 {
1365 struct xfs_mount *mp;
1366 int error = 0;
1367 int truncate = 0;
1368
1369 /*
1370 * If the inode is already free, then there can be nothing
1371 * to clean up here.
1372 */
1373 if (VFS_I(ip)->i_mode == 0) {
1374 ASSERT(ip->i_df.if_broot_bytes == 0);
1375 goto out;
1376 }
1377
1378 mp = ip->i_mount;
1379 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1380
1381 xfs_inactive_health(ip);
1382
1383 /*
1384 * If this is a read-only mount, don't do this (would generate I/O)
1385 * unless we're in log recovery and cleaning the iunlinked list.
1386 */
1387 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1388 goto out;
1389
1390 /* Metadata inodes require explicit resource cleanup. */
1391 if (xfs_is_metadata_inode(ip))
1392 goto out;
1393
1394 /* Try to clean out the cow blocks if there are any. */
1395 if (xfs_inode_has_cow_data(ip)) {
1396 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1397 if (error)
1398 goto out;
1399 }
1400
1401 if (VFS_I(ip)->i_nlink != 0) {
1402 /*
1403 * Note: don't bother with iolock here since lockdep complains
1404 * about acquiring it in reclaim context. We have the only
1405 * reference to the inode at this point anyways.
1406 */
1407 if (xfs_can_free_eofblocks(ip))
1408 error = xfs_free_eofblocks(ip);
1409
1410 goto out;
1411 }
1412
1413 if (S_ISREG(VFS_I(ip)->i_mode) &&
1414 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1415 xfs_inode_has_filedata(ip)))
1416 truncate = 1;
1417
1418 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1419 /*
1420 * If this inode is being inactivated during a quotacheck and
1421 * has not yet been scanned by quotacheck, we /must/ remove
1422 * the dquots from the inode before inactivation changes the
1423 * block and inode counts. Most probably this is a result of
1424 * reloading the incore iunlinked list to purge unrecovered
1425 * unlinked inodes.
1426 */
1427 xfs_qm_dqdetach(ip);
1428 } else {
1429 error = xfs_qm_dqattach(ip);
1430 if (error)
1431 goto out;
1432 }
1433
1434 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1435 xfs_inactive_dir(ip);
1436 truncate = 1;
1437 }
1438
1439 if (S_ISLNK(VFS_I(ip)->i_mode))
1440 error = xfs_inactive_symlink(ip);
1441 else if (truncate)
1442 error = xfs_inactive_truncate(ip);
1443 if (error)
1444 goto out;
1445
1446 /*
1447 * If there are attributes associated with the file then blow them away
1448 * now. The code calls a routine that recursively deconstructs the
1449 * attribute fork. If also blows away the in-core attribute fork.
1450 */
1451 if (xfs_inode_has_attr_fork(ip)) {
1452 error = xfs_attr_inactive(ip);
1453 if (error)
1454 goto out;
1455 }
1456
1457 ASSERT(ip->i_forkoff == 0);
1458
1459 /*
1460 * Free the inode.
1461 */
1462 error = xfs_inactive_ifree(ip);
1463
1464 out:
1465 /*
1466 * We're done making metadata updates for this inode, so we can release
1467 * the attached dquots.
1468 */
1469 xfs_qm_dqdetach(ip);
1470 return error;
1471 }
1472
1473 /*
1474 * Find an inode on the unlinked list. This does not take references to the
1475 * inode as we have existence guarantees by holding the AGI buffer lock and that
1476 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1477 * don't find the inode in cache, then let the caller handle the situation.
1478 */
1479 struct xfs_inode *
xfs_iunlink_lookup(struct xfs_perag * pag,xfs_agino_t agino)1480 xfs_iunlink_lookup(
1481 struct xfs_perag *pag,
1482 xfs_agino_t agino)
1483 {
1484 struct xfs_inode *ip;
1485
1486 rcu_read_lock();
1487 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1488 if (!ip) {
1489 /* Caller can handle inode not being in memory. */
1490 rcu_read_unlock();
1491 return NULL;
1492 }
1493
1494 /*
1495 * Inode in RCU freeing limbo should not happen. Warn about this and
1496 * let the caller handle the failure.
1497 */
1498 if (WARN_ON_ONCE(!ip->i_ino)) {
1499 rcu_read_unlock();
1500 return NULL;
1501 }
1502 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1503 rcu_read_unlock();
1504 return ip;
1505 }
1506
1507 /*
1508 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1509 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1510 * to the unlinked list.
1511 */
1512 int
xfs_iunlink_reload_next(struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agino_t prev_agino,xfs_agino_t next_agino)1513 xfs_iunlink_reload_next(
1514 struct xfs_trans *tp,
1515 struct xfs_buf *agibp,
1516 xfs_agino_t prev_agino,
1517 xfs_agino_t next_agino)
1518 {
1519 struct xfs_perag *pag = agibp->b_pag;
1520 struct xfs_mount *mp = pag->pag_mount;
1521 struct xfs_inode *next_ip = NULL;
1522 xfs_ino_t ino;
1523 int error;
1524
1525 ASSERT(next_agino != NULLAGINO);
1526
1527 #ifdef DEBUG
1528 rcu_read_lock();
1529 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1530 ASSERT(next_ip == NULL);
1531 rcu_read_unlock();
1532 #endif
1533
1534 xfs_info_ratelimited(mp,
1535 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1536 next_agino, pag->pag_agno);
1537
1538 /*
1539 * Use an untrusted lookup just to be cautious in case the AGI has been
1540 * corrupted and now points at a free inode. That shouldn't happen,
1541 * but we'd rather shut down now since we're already running in a weird
1542 * situation.
1543 */
1544 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1545 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1546 if (error) {
1547 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1548 return error;
1549 }
1550
1551 /* If this is not an unlinked inode, something is very wrong. */
1552 if (VFS_I(next_ip)->i_nlink != 0) {
1553 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1554 error = -EFSCORRUPTED;
1555 goto rele;
1556 }
1557
1558 next_ip->i_prev_unlinked = prev_agino;
1559 trace_xfs_iunlink_reload_next(next_ip);
1560 rele:
1561 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1562 if (xfs_is_quotacheck_running(mp) && next_ip)
1563 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1564 xfs_irele(next_ip);
1565 return error;
1566 }
1567
1568 /*
1569 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1570 * mark it stale. We should only find clean inodes in this lookup that aren't
1571 * already stale.
1572 */
1573 static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)1574 xfs_ifree_mark_inode_stale(
1575 struct xfs_perag *pag,
1576 struct xfs_inode *free_ip,
1577 xfs_ino_t inum)
1578 {
1579 struct xfs_mount *mp = pag->pag_mount;
1580 struct xfs_inode_log_item *iip;
1581 struct xfs_inode *ip;
1582
1583 retry:
1584 rcu_read_lock();
1585 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1586
1587 /* Inode not in memory, nothing to do */
1588 if (!ip) {
1589 rcu_read_unlock();
1590 return;
1591 }
1592
1593 /*
1594 * because this is an RCU protected lookup, we could find a recently
1595 * freed or even reallocated inode during the lookup. We need to check
1596 * under the i_flags_lock for a valid inode here. Skip it if it is not
1597 * valid, the wrong inode or stale.
1598 */
1599 spin_lock(&ip->i_flags_lock);
1600 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1601 goto out_iflags_unlock;
1602
1603 /*
1604 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1605 * other inodes that we did not find in the list attached to the buffer
1606 * and are not already marked stale. If we can't lock it, back off and
1607 * retry.
1608 */
1609 if (ip != free_ip) {
1610 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1611 spin_unlock(&ip->i_flags_lock);
1612 rcu_read_unlock();
1613 delay(1);
1614 goto retry;
1615 }
1616 }
1617 ip->i_flags |= XFS_ISTALE;
1618
1619 /*
1620 * If the inode is flushing, it is already attached to the buffer. All
1621 * we needed to do here is mark the inode stale so buffer IO completion
1622 * will remove it from the AIL.
1623 */
1624 iip = ip->i_itemp;
1625 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1626 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1627 ASSERT(iip->ili_last_fields);
1628 goto out_iunlock;
1629 }
1630
1631 /*
1632 * Inodes not attached to the buffer can be released immediately.
1633 * Everything else has to go through xfs_iflush_abort() on journal
1634 * commit as the flock synchronises removal of the inode from the
1635 * cluster buffer against inode reclaim.
1636 */
1637 if (!iip || list_empty(&iip->ili_item.li_bio_list))
1638 goto out_iunlock;
1639
1640 __xfs_iflags_set(ip, XFS_IFLUSHING);
1641 spin_unlock(&ip->i_flags_lock);
1642 rcu_read_unlock();
1643
1644 /* we have a dirty inode in memory that has not yet been flushed. */
1645 spin_lock(&iip->ili_lock);
1646 iip->ili_last_fields = iip->ili_fields;
1647 iip->ili_fields = 0;
1648 iip->ili_fsync_fields = 0;
1649 spin_unlock(&iip->ili_lock);
1650 ASSERT(iip->ili_last_fields);
1651
1652 if (ip != free_ip)
1653 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1654 return;
1655
1656 out_iunlock:
1657 if (ip != free_ip)
1658 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1659 out_iflags_unlock:
1660 spin_unlock(&ip->i_flags_lock);
1661 rcu_read_unlock();
1662 }
1663
1664 /*
1665 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1666 * inodes that are in memory - they all must be marked stale and attached to
1667 * the cluster buffer.
1668 */
1669 static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)1670 xfs_ifree_cluster(
1671 struct xfs_trans *tp,
1672 struct xfs_perag *pag,
1673 struct xfs_inode *free_ip,
1674 struct xfs_icluster *xic)
1675 {
1676 struct xfs_mount *mp = free_ip->i_mount;
1677 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1678 struct xfs_buf *bp;
1679 xfs_daddr_t blkno;
1680 xfs_ino_t inum = xic->first_ino;
1681 int nbufs;
1682 int i, j;
1683 int ioffset;
1684 int error;
1685
1686 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1687
1688 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1689 /*
1690 * The allocation bitmap tells us which inodes of the chunk were
1691 * physically allocated. Skip the cluster if an inode falls into
1692 * a sparse region.
1693 */
1694 ioffset = inum - xic->first_ino;
1695 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1696 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1697 continue;
1698 }
1699
1700 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1701 XFS_INO_TO_AGBNO(mp, inum));
1702
1703 /*
1704 * We obtain and lock the backing buffer first in the process
1705 * here to ensure dirty inodes attached to the buffer remain in
1706 * the flushing state while we mark them stale.
1707 *
1708 * If we scan the in-memory inodes first, then buffer IO can
1709 * complete before we get a lock on it, and hence we may fail
1710 * to mark all the active inodes on the buffer stale.
1711 */
1712 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1713 mp->m_bsize * igeo->blocks_per_cluster,
1714 XBF_UNMAPPED, &bp);
1715 if (error)
1716 return error;
1717
1718 /*
1719 * This buffer may not have been correctly initialised as we
1720 * didn't read it from disk. That's not important because we are
1721 * only using to mark the buffer as stale in the log, and to
1722 * attach stale cached inodes on it.
1723 *
1724 * For the inode that triggered the cluster freeing, this
1725 * attachment may occur in xfs_inode_item_precommit() after we
1726 * have marked this buffer stale. If this buffer was not in
1727 * memory before xfs_ifree_cluster() started, it will not be
1728 * marked XBF_DONE and this will cause problems later in
1729 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1730 * buffer to attached to the transaction.
1731 *
1732 * Hence we have to mark the buffer as XFS_DONE here. This is
1733 * safe because we are also marking the buffer as XBF_STALE and
1734 * XFS_BLI_STALE. That means it will never be dispatched for
1735 * IO and it won't be unlocked until the cluster freeing has
1736 * been committed to the journal and the buffer unpinned. If it
1737 * is written, we want to know about it, and we want it to
1738 * fail. We can acheive this by adding a write verifier to the
1739 * buffer.
1740 */
1741 bp->b_flags |= XBF_DONE;
1742 bp->b_ops = &xfs_inode_buf_ops;
1743
1744 /*
1745 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1746 * too. This requires lookups, and will skip inodes that we've
1747 * already marked XFS_ISTALE.
1748 */
1749 for (i = 0; i < igeo->inodes_per_cluster; i++)
1750 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1751
1752 xfs_trans_stale_inode_buf(tp, bp);
1753 xfs_trans_binval(tp, bp);
1754 }
1755 return 0;
1756 }
1757
1758 /*
1759 * This is called to return an inode to the inode free list. The inode should
1760 * already be truncated to 0 length and have no pages associated with it. This
1761 * routine also assumes that the inode is already a part of the transaction.
1762 *
1763 * The on-disk copy of the inode will have been added to the list of unlinked
1764 * inodes in the AGI. We need to remove the inode from that list atomically with
1765 * respect to freeing it here.
1766 */
1767 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)1768 xfs_ifree(
1769 struct xfs_trans *tp,
1770 struct xfs_inode *ip)
1771 {
1772 struct xfs_mount *mp = ip->i_mount;
1773 struct xfs_perag *pag;
1774 struct xfs_icluster xic = { 0 };
1775 struct xfs_inode_log_item *iip = ip->i_itemp;
1776 int error;
1777
1778 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1779 ASSERT(VFS_I(ip)->i_nlink == 0);
1780 ASSERT(ip->i_df.if_nextents == 0);
1781 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1782 ASSERT(ip->i_nblocks == 0);
1783
1784 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1785
1786 error = xfs_inode_uninit(tp, pag, ip, &xic);
1787 if (error)
1788 goto out;
1789
1790 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1791 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1792
1793 /* Don't attempt to replay owner changes for a deleted inode */
1794 spin_lock(&iip->ili_lock);
1795 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1796 spin_unlock(&iip->ili_lock);
1797
1798 if (xic.deleted)
1799 error = xfs_ifree_cluster(tp, pag, ip, &xic);
1800 out:
1801 xfs_perag_put(pag);
1802 return error;
1803 }
1804
1805 /*
1806 * This is called to unpin an inode. The caller must have the inode locked
1807 * in at least shared mode so that the buffer cannot be subsequently pinned
1808 * once someone is waiting for it to be unpinned.
1809 */
1810 static void
xfs_iunpin(struct xfs_inode * ip)1811 xfs_iunpin(
1812 struct xfs_inode *ip)
1813 {
1814 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1815
1816 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1817
1818 /* Give the log a push to start the unpinning I/O */
1819 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1820
1821 }
1822
1823 static void
__xfs_iunpin_wait(struct xfs_inode * ip)1824 __xfs_iunpin_wait(
1825 struct xfs_inode *ip)
1826 {
1827 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1828 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1829
1830 xfs_iunpin(ip);
1831
1832 do {
1833 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1834 if (xfs_ipincount(ip))
1835 io_schedule();
1836 } while (xfs_ipincount(ip));
1837 finish_wait(wq, &wait.wq_entry);
1838 }
1839
1840 void
xfs_iunpin_wait(struct xfs_inode * ip)1841 xfs_iunpin_wait(
1842 struct xfs_inode *ip)
1843 {
1844 if (xfs_ipincount(ip))
1845 __xfs_iunpin_wait(ip);
1846 }
1847
1848 /*
1849 * Removing an inode from the namespace involves removing the directory entry
1850 * and dropping the link count on the inode. Removing the directory entry can
1851 * result in locking an AGF (directory blocks were freed) and removing a link
1852 * count can result in placing the inode on an unlinked list which results in
1853 * locking an AGI.
1854 *
1855 * The big problem here is that we have an ordering constraint on AGF and AGI
1856 * locking - inode allocation locks the AGI, then can allocate a new extent for
1857 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1858 * removes the inode from the unlinked list, requiring that we lock the AGI
1859 * first, and then freeing the inode can result in an inode chunk being freed
1860 * and hence freeing disk space requiring that we lock an AGF.
1861 *
1862 * Hence the ordering that is imposed by other parts of the code is AGI before
1863 * AGF. This means we cannot remove the directory entry before we drop the inode
1864 * reference count and put it on the unlinked list as this results in a lock
1865 * order of AGF then AGI, and this can deadlock against inode allocation and
1866 * freeing. Therefore we must drop the link counts before we remove the
1867 * directory entry.
1868 *
1869 * This is still safe from a transactional point of view - it is not until we
1870 * get to xfs_defer_finish() that we have the possibility of multiple
1871 * transactions in this operation. Hence as long as we remove the directory
1872 * entry and drop the link count in the first transaction of the remove
1873 * operation, there are no transactional constraints on the ordering here.
1874 */
1875 int
xfs_remove(struct xfs_inode * dp,struct xfs_name * name,struct xfs_inode * ip)1876 xfs_remove(
1877 struct xfs_inode *dp,
1878 struct xfs_name *name,
1879 struct xfs_inode *ip)
1880 {
1881 struct xfs_dir_update du = {
1882 .dp = dp,
1883 .name = name,
1884 .ip = ip,
1885 };
1886 struct xfs_mount *mp = dp->i_mount;
1887 struct xfs_trans *tp = NULL;
1888 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1889 int dontcare;
1890 int error = 0;
1891 uint resblks;
1892
1893 trace_xfs_remove(dp, name);
1894
1895 if (xfs_is_shutdown(mp))
1896 return -EIO;
1897 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1898 return -EIO;
1899
1900 error = xfs_qm_dqattach(dp);
1901 if (error)
1902 goto std_return;
1903
1904 error = xfs_qm_dqattach(ip);
1905 if (error)
1906 goto std_return;
1907
1908 error = xfs_parent_start(mp, &du.ppargs);
1909 if (error)
1910 goto std_return;
1911
1912 /*
1913 * We try to get the real space reservation first, allowing for
1914 * directory btree deletion(s) implying possible bmap insert(s). If we
1915 * can't get the space reservation then we use 0 instead, and avoid the
1916 * bmap btree insert(s) in the directory code by, if the bmap insert
1917 * tries to happen, instead trimming the LAST block from the directory.
1918 *
1919 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1920 * the directory code can handle a reservationless update and we don't
1921 * want to prevent a user from trying to free space by deleting things.
1922 */
1923 resblks = xfs_remove_space_res(mp, name->len);
1924 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1925 &tp, &dontcare);
1926 if (error) {
1927 ASSERT(error != -ENOSPC);
1928 goto out_parent;
1929 }
1930
1931 error = xfs_dir_remove_child(tp, resblks, &du);
1932 if (error)
1933 goto out_trans_cancel;
1934
1935 /*
1936 * If this is a synchronous mount, make sure that the
1937 * remove transaction goes to disk before returning to
1938 * the user.
1939 */
1940 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1941 xfs_trans_set_sync(tp);
1942
1943 error = xfs_trans_commit(tp);
1944 if (error)
1945 goto out_unlock;
1946
1947 if (is_dir && xfs_inode_is_filestream(ip))
1948 xfs_filestream_deassociate(ip);
1949
1950 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1951 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1952 xfs_parent_finish(mp, du.ppargs);
1953 return 0;
1954
1955 out_trans_cancel:
1956 xfs_trans_cancel(tp);
1957 out_unlock:
1958 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1959 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1960 out_parent:
1961 xfs_parent_finish(mp, du.ppargs);
1962 std_return:
1963 return error;
1964 }
1965
1966 static inline void
xfs_iunlock_rename(struct xfs_inode ** i_tab,int num_inodes)1967 xfs_iunlock_rename(
1968 struct xfs_inode **i_tab,
1969 int num_inodes)
1970 {
1971 int i;
1972
1973 for (i = num_inodes - 1; i >= 0; i--) {
1974 /* Skip duplicate inodes if src and target dps are the same */
1975 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1976 continue;
1977 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1978 }
1979 }
1980
1981 /*
1982 * Enter all inodes for a rename transaction into a sorted array.
1983 */
1984 #define __XFS_SORT_INODES 5
1985 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)1986 xfs_sort_for_rename(
1987 struct xfs_inode *dp1, /* in: old (source) directory inode */
1988 struct xfs_inode *dp2, /* in: new (target) directory inode */
1989 struct xfs_inode *ip1, /* in: inode of old entry */
1990 struct xfs_inode *ip2, /* in: inode of new entry */
1991 struct xfs_inode *wip, /* in: whiteout inode */
1992 struct xfs_inode **i_tab,/* out: sorted array of inodes */
1993 int *num_inodes) /* in/out: inodes in array */
1994 {
1995 int i;
1996
1997 ASSERT(*num_inodes == __XFS_SORT_INODES);
1998 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
1999
2000 /*
2001 * i_tab contains a list of pointers to inodes. We initialize
2002 * the table here & we'll sort it. We will then use it to
2003 * order the acquisition of the inode locks.
2004 *
2005 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2006 */
2007 i = 0;
2008 i_tab[i++] = dp1;
2009 i_tab[i++] = dp2;
2010 i_tab[i++] = ip1;
2011 if (ip2)
2012 i_tab[i++] = ip2;
2013 if (wip)
2014 i_tab[i++] = wip;
2015 *num_inodes = i;
2016
2017 xfs_sort_inodes(i_tab, *num_inodes);
2018 }
2019
2020 void
xfs_sort_inodes(struct xfs_inode ** i_tab,unsigned int num_inodes)2021 xfs_sort_inodes(
2022 struct xfs_inode **i_tab,
2023 unsigned int num_inodes)
2024 {
2025 int i, j;
2026
2027 ASSERT(num_inodes <= __XFS_SORT_INODES);
2028
2029 /*
2030 * Sort the elements via bubble sort. (Remember, there are at
2031 * most 5 elements to sort, so this is adequate.)
2032 */
2033 for (i = 0; i < num_inodes; i++) {
2034 for (j = 1; j < num_inodes; j++) {
2035 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2036 swap(i_tab[j], i_tab[j - 1]);
2037 }
2038 }
2039 }
2040
2041 /*
2042 * xfs_rename_alloc_whiteout()
2043 *
2044 * Return a referenced, unlinked, unlocked inode that can be used as a
2045 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2046 * crash between allocating the inode and linking it into the rename transaction
2047 * recovery will free the inode and we won't leak it.
2048 */
2049 static int
xfs_rename_alloc_whiteout(struct mnt_idmap * idmap,struct xfs_name * src_name,struct xfs_inode * dp,struct xfs_inode ** wip)2050 xfs_rename_alloc_whiteout(
2051 struct mnt_idmap *idmap,
2052 struct xfs_name *src_name,
2053 struct xfs_inode *dp,
2054 struct xfs_inode **wip)
2055 {
2056 struct xfs_icreate_args args = {
2057 .idmap = idmap,
2058 .pip = dp,
2059 .mode = S_IFCHR | WHITEOUT_MODE,
2060 .flags = XFS_ICREATE_TMPFILE,
2061 };
2062 struct xfs_inode *tmpfile;
2063 struct qstr name;
2064 int error;
2065
2066 error = xfs_create_tmpfile(&args, &tmpfile);
2067 if (error)
2068 return error;
2069
2070 name.name = src_name->name;
2071 name.len = src_name->len;
2072 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2073 if (error) {
2074 xfs_finish_inode_setup(tmpfile);
2075 xfs_irele(tmpfile);
2076 return error;
2077 }
2078
2079 /*
2080 * Prepare the tmpfile inode as if it were created through the VFS.
2081 * Complete the inode setup and flag it as linkable. nlink is already
2082 * zero, so we can skip the drop_nlink.
2083 */
2084 xfs_setup_iops(tmpfile);
2085 xfs_finish_inode_setup(tmpfile);
2086 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2087
2088 *wip = tmpfile;
2089 return 0;
2090 }
2091
2092 /*
2093 * xfs_rename
2094 */
2095 int
xfs_rename(struct mnt_idmap * idmap,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2096 xfs_rename(
2097 struct mnt_idmap *idmap,
2098 struct xfs_inode *src_dp,
2099 struct xfs_name *src_name,
2100 struct xfs_inode *src_ip,
2101 struct xfs_inode *target_dp,
2102 struct xfs_name *target_name,
2103 struct xfs_inode *target_ip,
2104 unsigned int flags)
2105 {
2106 struct xfs_dir_update du_src = {
2107 .dp = src_dp,
2108 .name = src_name,
2109 .ip = src_ip,
2110 };
2111 struct xfs_dir_update du_tgt = {
2112 .dp = target_dp,
2113 .name = target_name,
2114 .ip = target_ip,
2115 };
2116 struct xfs_dir_update du_wip = { };
2117 struct xfs_mount *mp = src_dp->i_mount;
2118 struct xfs_trans *tp;
2119 struct xfs_inode *inodes[__XFS_SORT_INODES];
2120 int i;
2121 int num_inodes = __XFS_SORT_INODES;
2122 bool new_parent = (src_dp != target_dp);
2123 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2124 int spaceres;
2125 bool retried = false;
2126 int error, nospace_error = 0;
2127
2128 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2129
2130 if ((flags & RENAME_EXCHANGE) && !target_ip)
2131 return -EINVAL;
2132
2133 /*
2134 * If we are doing a whiteout operation, allocate the whiteout inode
2135 * we will be placing at the target and ensure the type is set
2136 * appropriately.
2137 */
2138 if (flags & RENAME_WHITEOUT) {
2139 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2140 &du_wip.ip);
2141 if (error)
2142 return error;
2143
2144 /* setup target dirent info as whiteout */
2145 src_name->type = XFS_DIR3_FT_CHRDEV;
2146 }
2147
2148 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2149 inodes, &num_inodes);
2150
2151 error = xfs_parent_start(mp, &du_src.ppargs);
2152 if (error)
2153 goto out_release_wip;
2154
2155 if (du_wip.ip) {
2156 error = xfs_parent_start(mp, &du_wip.ppargs);
2157 if (error)
2158 goto out_src_ppargs;
2159 }
2160
2161 if (target_ip) {
2162 error = xfs_parent_start(mp, &du_tgt.ppargs);
2163 if (error)
2164 goto out_wip_ppargs;
2165 }
2166
2167 retry:
2168 nospace_error = 0;
2169 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2170 target_name->len, du_wip.ip != NULL);
2171 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2172 if (error == -ENOSPC) {
2173 nospace_error = error;
2174 spaceres = 0;
2175 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2176 &tp);
2177 }
2178 if (error)
2179 goto out_tgt_ppargs;
2180
2181 /*
2182 * We don't allow reservationless renaming when parent pointers are
2183 * enabled because we can't back out if the xattrs must grow.
2184 */
2185 if (du_src.ppargs && nospace_error) {
2186 error = nospace_error;
2187 xfs_trans_cancel(tp);
2188 goto out_tgt_ppargs;
2189 }
2190
2191 /*
2192 * Attach the dquots to the inodes
2193 */
2194 error = xfs_qm_vop_rename_dqattach(inodes);
2195 if (error) {
2196 xfs_trans_cancel(tp);
2197 goto out_tgt_ppargs;
2198 }
2199
2200 /*
2201 * Lock all the participating inodes. Depending upon whether
2202 * the target_name exists in the target directory, and
2203 * whether the target directory is the same as the source
2204 * directory, we can lock from 2 to 5 inodes.
2205 */
2206 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2207
2208 /*
2209 * Join all the inodes to the transaction.
2210 */
2211 xfs_trans_ijoin(tp, src_dp, 0);
2212 if (new_parent)
2213 xfs_trans_ijoin(tp, target_dp, 0);
2214 xfs_trans_ijoin(tp, src_ip, 0);
2215 if (target_ip)
2216 xfs_trans_ijoin(tp, target_ip, 0);
2217 if (du_wip.ip)
2218 xfs_trans_ijoin(tp, du_wip.ip, 0);
2219
2220 /*
2221 * If we are using project inheritance, we only allow renames
2222 * into our tree when the project IDs are the same; else the
2223 * tree quota mechanism would be circumvented.
2224 */
2225 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2226 target_dp->i_projid != src_ip->i_projid)) {
2227 error = -EXDEV;
2228 goto out_trans_cancel;
2229 }
2230
2231 /* RENAME_EXCHANGE is unique from here on. */
2232 if (flags & RENAME_EXCHANGE) {
2233 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2234 spaceres);
2235 if (error)
2236 goto out_trans_cancel;
2237 goto out_commit;
2238 }
2239
2240 /*
2241 * Try to reserve quota to handle an expansion of the target directory.
2242 * We'll allow the rename to continue in reservationless mode if we hit
2243 * a space usage constraint. If we trigger reservationless mode, save
2244 * the errno if there isn't any free space in the target directory.
2245 */
2246 if (spaceres != 0) {
2247 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2248 0, false);
2249 if (error == -EDQUOT || error == -ENOSPC) {
2250 if (!retried) {
2251 xfs_trans_cancel(tp);
2252 xfs_iunlock_rename(inodes, num_inodes);
2253 xfs_blockgc_free_quota(target_dp, 0);
2254 retried = true;
2255 goto retry;
2256 }
2257
2258 nospace_error = error;
2259 spaceres = 0;
2260 error = 0;
2261 }
2262 if (error)
2263 goto out_trans_cancel;
2264 }
2265
2266 /*
2267 * We don't allow quotaless renaming when parent pointers are enabled
2268 * because we can't back out if the xattrs must grow.
2269 */
2270 if (du_src.ppargs && nospace_error) {
2271 error = nospace_error;
2272 goto out_trans_cancel;
2273 }
2274
2275 /*
2276 * Lock the AGI buffers we need to handle bumping the nlink of the
2277 * whiteout inode off the unlinked list and to handle dropping the
2278 * nlink of the target inode. Per locking order rules, do this in
2279 * increasing AG order and before directory block allocation tries to
2280 * grab AGFs because we grab AGIs before AGFs.
2281 *
2282 * The (vfs) caller must ensure that if src is a directory then
2283 * target_ip is either null or an empty directory.
2284 */
2285 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2286 if (inodes[i] == du_wip.ip ||
2287 (inodes[i] == target_ip &&
2288 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2289 struct xfs_perag *pag;
2290 struct xfs_buf *bp;
2291
2292 pag = xfs_perag_get(mp,
2293 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2294 error = xfs_read_agi(pag, tp, 0, &bp);
2295 xfs_perag_put(pag);
2296 if (error)
2297 goto out_trans_cancel;
2298 }
2299 }
2300
2301 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2302 &du_wip);
2303 if (error)
2304 goto out_trans_cancel;
2305
2306 if (du_wip.ip) {
2307 /*
2308 * Now we have a real link, clear the "I'm a tmpfile" state
2309 * flag from the inode so it doesn't accidentally get misused in
2310 * future.
2311 */
2312 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2313 }
2314
2315 out_commit:
2316 /*
2317 * If this is a synchronous mount, make sure that the rename
2318 * transaction goes to disk before returning to the user.
2319 */
2320 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2321 xfs_trans_set_sync(tp);
2322
2323 error = xfs_trans_commit(tp);
2324 nospace_error = 0;
2325 goto out_unlock;
2326
2327 out_trans_cancel:
2328 xfs_trans_cancel(tp);
2329 out_unlock:
2330 xfs_iunlock_rename(inodes, num_inodes);
2331 out_tgt_ppargs:
2332 xfs_parent_finish(mp, du_tgt.ppargs);
2333 out_wip_ppargs:
2334 xfs_parent_finish(mp, du_wip.ppargs);
2335 out_src_ppargs:
2336 xfs_parent_finish(mp, du_src.ppargs);
2337 out_release_wip:
2338 if (du_wip.ip)
2339 xfs_irele(du_wip.ip);
2340 if (error == -ENOSPC && nospace_error)
2341 error = nospace_error;
2342 return error;
2343 }
2344
2345 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)2346 xfs_iflush(
2347 struct xfs_inode *ip,
2348 struct xfs_buf *bp)
2349 {
2350 struct xfs_inode_log_item *iip = ip->i_itemp;
2351 struct xfs_dinode *dip;
2352 struct xfs_mount *mp = ip->i_mount;
2353 int error;
2354
2355 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2356 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2357 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2358 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2359 ASSERT(iip->ili_item.li_buf == bp);
2360
2361 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2362
2363 /*
2364 * We don't flush the inode if any of the following checks fail, but we
2365 * do still update the log item and attach to the backing buffer as if
2366 * the flush happened. This is a formality to facilitate predictable
2367 * error handling as the caller will shutdown and fail the buffer.
2368 */
2369 error = -EFSCORRUPTED;
2370 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2371 mp, XFS_ERRTAG_IFLUSH_1)) {
2372 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2373 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2374 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2375 goto flush_out;
2376 }
2377 if (S_ISREG(VFS_I(ip)->i_mode)) {
2378 if (XFS_TEST_ERROR(
2379 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2380 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2381 mp, XFS_ERRTAG_IFLUSH_3)) {
2382 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2383 "%s: Bad regular inode %llu, ptr "PTR_FMT,
2384 __func__, ip->i_ino, ip);
2385 goto flush_out;
2386 }
2387 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2388 if (XFS_TEST_ERROR(
2389 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2390 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2391 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2392 mp, XFS_ERRTAG_IFLUSH_4)) {
2393 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394 "%s: Bad directory inode %llu, ptr "PTR_FMT,
2395 __func__, ip->i_ino, ip);
2396 goto flush_out;
2397 }
2398 }
2399 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2400 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2401 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2402 "%s: detected corrupt incore inode %llu, "
2403 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2404 __func__, ip->i_ino,
2405 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2406 ip->i_nblocks, ip);
2407 goto flush_out;
2408 }
2409 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2410 mp, XFS_ERRTAG_IFLUSH_6)) {
2411 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2412 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2413 __func__, ip->i_ino, ip->i_forkoff, ip);
2414 goto flush_out;
2415 }
2416
2417 /*
2418 * Inode item log recovery for v2 inodes are dependent on the flushiter
2419 * count for correct sequencing. We bump the flush iteration count so
2420 * we can detect flushes which postdate a log record during recovery.
2421 * This is redundant as we now log every change and hence this can't
2422 * happen but we need to still do it to ensure backwards compatibility
2423 * with old kernels that predate logging all inode changes.
2424 */
2425 if (!xfs_has_v3inodes(mp))
2426 ip->i_flushiter++;
2427
2428 /*
2429 * If there are inline format data / attr forks attached to this inode,
2430 * make sure they are not corrupt.
2431 */
2432 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2433 xfs_ifork_verify_local_data(ip))
2434 goto flush_out;
2435 if (xfs_inode_has_attr_fork(ip) &&
2436 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2437 xfs_ifork_verify_local_attr(ip))
2438 goto flush_out;
2439
2440 /*
2441 * Copy the dirty parts of the inode into the on-disk inode. We always
2442 * copy out the core of the inode, because if the inode is dirty at all
2443 * the core must be.
2444 */
2445 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2446
2447 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2448 if (!xfs_has_v3inodes(mp)) {
2449 if (ip->i_flushiter == DI_MAX_FLUSH)
2450 ip->i_flushiter = 0;
2451 }
2452
2453 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2454 if (xfs_inode_has_attr_fork(ip))
2455 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2456
2457 /*
2458 * We've recorded everything logged in the inode, so we'd like to clear
2459 * the ili_fields bits so we don't log and flush things unnecessarily.
2460 * However, we can't stop logging all this information until the data
2461 * we've copied into the disk buffer is written to disk. If we did we
2462 * might overwrite the copy of the inode in the log with all the data
2463 * after re-logging only part of it, and in the face of a crash we
2464 * wouldn't have all the data we need to recover.
2465 *
2466 * What we do is move the bits to the ili_last_fields field. When
2467 * logging the inode, these bits are moved back to the ili_fields field.
2468 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2469 * we know that the information those bits represent is permanently on
2470 * disk. As long as the flush completes before the inode is logged
2471 * again, then both ili_fields and ili_last_fields will be cleared.
2472 */
2473 error = 0;
2474 flush_out:
2475 spin_lock(&iip->ili_lock);
2476 iip->ili_last_fields = iip->ili_fields;
2477 iip->ili_fields = 0;
2478 iip->ili_fsync_fields = 0;
2479 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2480 spin_unlock(&iip->ili_lock);
2481
2482 /*
2483 * Store the current LSN of the inode so that we can tell whether the
2484 * item has moved in the AIL from xfs_buf_inode_iodone().
2485 */
2486 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2487 &iip->ili_item.li_lsn);
2488
2489 /* generate the checksum. */
2490 xfs_dinode_calc_crc(mp, dip);
2491 if (error)
2492 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2493 return error;
2494 }
2495
2496 /*
2497 * Non-blocking flush of dirty inode metadata into the backing buffer.
2498 *
2499 * The caller must have a reference to the inode and hold the cluster buffer
2500 * locked. The function will walk across all the inodes on the cluster buffer it
2501 * can find and lock without blocking, and flush them to the cluster buffer.
2502 *
2503 * On successful flushing of at least one inode, the caller must write out the
2504 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2505 * the caller needs to release the buffer. On failure, the filesystem will be
2506 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2507 * will be returned.
2508 */
2509 int
xfs_iflush_cluster(struct xfs_buf * bp)2510 xfs_iflush_cluster(
2511 struct xfs_buf *bp)
2512 {
2513 struct xfs_mount *mp = bp->b_mount;
2514 struct xfs_log_item *lip, *n;
2515 struct xfs_inode *ip;
2516 struct xfs_inode_log_item *iip;
2517 int clcount = 0;
2518 int error = 0;
2519
2520 /*
2521 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2522 * will remove itself from the list.
2523 */
2524 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2525 iip = (struct xfs_inode_log_item *)lip;
2526 ip = iip->ili_inode;
2527
2528 /*
2529 * Quick and dirty check to avoid locks if possible.
2530 */
2531 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2532 continue;
2533 if (xfs_ipincount(ip))
2534 continue;
2535
2536 /*
2537 * The inode is still attached to the buffer, which means it is
2538 * dirty but reclaim might try to grab it. Check carefully for
2539 * that, and grab the ilock while still holding the i_flags_lock
2540 * to guarantee reclaim will not be able to reclaim this inode
2541 * once we drop the i_flags_lock.
2542 */
2543 spin_lock(&ip->i_flags_lock);
2544 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2545 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2546 spin_unlock(&ip->i_flags_lock);
2547 continue;
2548 }
2549
2550 /*
2551 * ILOCK will pin the inode against reclaim and prevent
2552 * concurrent transactions modifying the inode while we are
2553 * flushing the inode. If we get the lock, set the flushing
2554 * state before we drop the i_flags_lock.
2555 */
2556 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2557 spin_unlock(&ip->i_flags_lock);
2558 continue;
2559 }
2560 __xfs_iflags_set(ip, XFS_IFLUSHING);
2561 spin_unlock(&ip->i_flags_lock);
2562
2563 /*
2564 * Abort flushing this inode if we are shut down because the
2565 * inode may not currently be in the AIL. This can occur when
2566 * log I/O failure unpins the inode without inserting into the
2567 * AIL, leaving a dirty/unpinned inode attached to the buffer
2568 * that otherwise looks like it should be flushed.
2569 */
2570 if (xlog_is_shutdown(mp->m_log)) {
2571 xfs_iunpin_wait(ip);
2572 xfs_iflush_abort(ip);
2573 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2574 error = -EIO;
2575 continue;
2576 }
2577
2578 /* don't block waiting on a log force to unpin dirty inodes */
2579 if (xfs_ipincount(ip)) {
2580 xfs_iflags_clear(ip, XFS_IFLUSHING);
2581 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2582 continue;
2583 }
2584
2585 if (!xfs_inode_clean(ip))
2586 error = xfs_iflush(ip, bp);
2587 else
2588 xfs_iflags_clear(ip, XFS_IFLUSHING);
2589 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2590 if (error)
2591 break;
2592 clcount++;
2593 }
2594
2595 if (error) {
2596 /*
2597 * Shutdown first so we kill the log before we release this
2598 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2599 * of the log, failing it before the _log_ is shut down can
2600 * result in the log tail being moved forward in the journal
2601 * on disk because log writes can still be taking place. Hence
2602 * unpinning the tail will allow the ICREATE intent to be
2603 * removed from the log an recovery will fail with uninitialised
2604 * inode cluster buffers.
2605 */
2606 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2607 bp->b_flags |= XBF_ASYNC;
2608 xfs_buf_ioend_fail(bp);
2609 return error;
2610 }
2611
2612 if (!clcount)
2613 return -EAGAIN;
2614
2615 XFS_STATS_INC(mp, xs_icluster_flushcnt);
2616 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2617 return 0;
2618
2619 }
2620
2621 /* Release an inode. */
2622 void
xfs_irele(struct xfs_inode * ip)2623 xfs_irele(
2624 struct xfs_inode *ip)
2625 {
2626 trace_xfs_irele(ip, _RET_IP_);
2627 iput(VFS_I(ip));
2628 }
2629
2630 /*
2631 * Ensure all commited transactions touching the inode are written to the log.
2632 */
2633 int
xfs_log_force_inode(struct xfs_inode * ip)2634 xfs_log_force_inode(
2635 struct xfs_inode *ip)
2636 {
2637 xfs_csn_t seq = 0;
2638
2639 xfs_ilock(ip, XFS_ILOCK_SHARED);
2640 if (xfs_ipincount(ip))
2641 seq = ip->i_itemp->ili_commit_seq;
2642 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2643
2644 if (!seq)
2645 return 0;
2646 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2647 }
2648
2649 /*
2650 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2651 * abide vfs locking order (lowest pointer value goes first) and breaking the
2652 * layout leases before proceeding. The loop is needed because we cannot call
2653 * the blocking break_layout() with the iolocks held, and therefore have to
2654 * back out both locks.
2655 */
2656 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)2657 xfs_iolock_two_inodes_and_break_layout(
2658 struct inode *src,
2659 struct inode *dest)
2660 {
2661 int error;
2662
2663 if (src > dest)
2664 swap(src, dest);
2665
2666 retry:
2667 /* Wait to break both inodes' layouts before we start locking. */
2668 error = break_layout(src, true);
2669 if (error)
2670 return error;
2671 if (src != dest) {
2672 error = break_layout(dest, true);
2673 if (error)
2674 return error;
2675 }
2676
2677 /* Lock one inode and make sure nobody got in and leased it. */
2678 inode_lock(src);
2679 error = break_layout(src, false);
2680 if (error) {
2681 inode_unlock(src);
2682 if (error == -EWOULDBLOCK)
2683 goto retry;
2684 return error;
2685 }
2686
2687 if (src == dest)
2688 return 0;
2689
2690 /* Lock the other inode and make sure nobody got in and leased it. */
2691 inode_lock_nested(dest, I_MUTEX_NONDIR2);
2692 error = break_layout(dest, false);
2693 if (error) {
2694 inode_unlock(src);
2695 inode_unlock(dest);
2696 if (error == -EWOULDBLOCK)
2697 goto retry;
2698 return error;
2699 }
2700
2701 return 0;
2702 }
2703
2704 static int
xfs_mmaplock_two_inodes_and_break_dax_layout(struct xfs_inode * ip1,struct xfs_inode * ip2)2705 xfs_mmaplock_two_inodes_and_break_dax_layout(
2706 struct xfs_inode *ip1,
2707 struct xfs_inode *ip2)
2708 {
2709 int error;
2710 bool retry;
2711 struct page *page;
2712
2713 if (ip1->i_ino > ip2->i_ino)
2714 swap(ip1, ip2);
2715
2716 again:
2717 retry = false;
2718 /* Lock the first inode */
2719 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2720 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2721 if (error || retry) {
2722 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2723 if (error == 0 && retry)
2724 goto again;
2725 return error;
2726 }
2727
2728 if (ip1 == ip2)
2729 return 0;
2730
2731 /* Nested lock the second inode */
2732 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2733 /*
2734 * We cannot use xfs_break_dax_layouts() directly here because it may
2735 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2736 * for this nested lock case.
2737 */
2738 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2739 if (page && page_ref_count(page) != 1) {
2740 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2741 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2742 goto again;
2743 }
2744
2745 return 0;
2746 }
2747
2748 /*
2749 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2750 * mmap activity.
2751 */
2752 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2753 xfs_ilock2_io_mmap(
2754 struct xfs_inode *ip1,
2755 struct xfs_inode *ip2)
2756 {
2757 int ret;
2758
2759 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2760 if (ret)
2761 return ret;
2762
2763 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2764 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2765 if (ret) {
2766 inode_unlock(VFS_I(ip2));
2767 if (ip1 != ip2)
2768 inode_unlock(VFS_I(ip1));
2769 return ret;
2770 }
2771 } else
2772 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2773 VFS_I(ip2)->i_mapping);
2774
2775 return 0;
2776 }
2777
2778 /* Unlock both inodes to allow IO and mmap activity. */
2779 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2780 xfs_iunlock2_io_mmap(
2781 struct xfs_inode *ip1,
2782 struct xfs_inode *ip2)
2783 {
2784 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2785 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2786 if (ip1 != ip2)
2787 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2788 } else
2789 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2790 VFS_I(ip2)->i_mapping);
2791
2792 inode_unlock(VFS_I(ip2));
2793 if (ip1 != ip2)
2794 inode_unlock(VFS_I(ip1));
2795 }
2796
2797 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2798 void
xfs_iunlock2_remapping(struct xfs_inode * ip1,struct xfs_inode * ip2)2799 xfs_iunlock2_remapping(
2800 struct xfs_inode *ip1,
2801 struct xfs_inode *ip2)
2802 {
2803 xfs_iflags_clear(ip1, XFS_IREMAPPING);
2804
2805 if (ip1 != ip2)
2806 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2807 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2808
2809 if (ip1 != ip2)
2810 inode_unlock_shared(VFS_I(ip1));
2811 inode_unlock(VFS_I(ip2));
2812 }
2813
2814 /*
2815 * Reload the incore inode list for this inode. Caller should ensure that
2816 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2817 * preventing other threads from executing.
2818 */
2819 int
xfs_inode_reload_unlinked_bucket(struct xfs_trans * tp,struct xfs_inode * ip)2820 xfs_inode_reload_unlinked_bucket(
2821 struct xfs_trans *tp,
2822 struct xfs_inode *ip)
2823 {
2824 struct xfs_mount *mp = tp->t_mountp;
2825 struct xfs_buf *agibp;
2826 struct xfs_agi *agi;
2827 struct xfs_perag *pag;
2828 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2829 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2830 xfs_agino_t prev_agino, next_agino;
2831 unsigned int bucket;
2832 bool foundit = false;
2833 int error;
2834
2835 /* Grab the first inode in the list */
2836 pag = xfs_perag_get(mp, agno);
2837 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2838 xfs_perag_put(pag);
2839 if (error)
2840 return error;
2841
2842 /*
2843 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2844 * incore unlinked list pointers for this inode. Check once more to
2845 * see if we raced with anyone else to reload the unlinked list.
2846 */
2847 if (!xfs_inode_unlinked_incomplete(ip)) {
2848 foundit = true;
2849 goto out_agibp;
2850 }
2851
2852 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2853 agi = agibp->b_addr;
2854
2855 trace_xfs_inode_reload_unlinked_bucket(ip);
2856
2857 xfs_info_ratelimited(mp,
2858 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
2859 agino, agno);
2860
2861 prev_agino = NULLAGINO;
2862 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2863 while (next_agino != NULLAGINO) {
2864 struct xfs_inode *next_ip = NULL;
2865
2866 /* Found this caller's inode, set its backlink. */
2867 if (next_agino == agino) {
2868 next_ip = ip;
2869 next_ip->i_prev_unlinked = prev_agino;
2870 foundit = true;
2871 goto next_inode;
2872 }
2873
2874 /* Try in-memory lookup first. */
2875 next_ip = xfs_iunlink_lookup(pag, next_agino);
2876 if (next_ip)
2877 goto next_inode;
2878
2879 /* Inode not in memory, try reloading it. */
2880 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2881 next_agino);
2882 if (error)
2883 break;
2884
2885 /* Grab the reloaded inode. */
2886 next_ip = xfs_iunlink_lookup(pag, next_agino);
2887 if (!next_ip) {
2888 /* No incore inode at all? We reloaded it... */
2889 ASSERT(next_ip != NULL);
2890 error = -EFSCORRUPTED;
2891 break;
2892 }
2893
2894 next_inode:
2895 prev_agino = next_agino;
2896 next_agino = next_ip->i_next_unlinked;
2897 }
2898
2899 out_agibp:
2900 xfs_trans_brelse(tp, agibp);
2901 /* Should have found this inode somewhere in the iunlinked bucket. */
2902 if (!error && !foundit)
2903 error = -EFSCORRUPTED;
2904 return error;
2905 }
2906
2907 /* Decide if this inode is missing its unlinked list and reload it. */
2908 int
xfs_inode_reload_unlinked(struct xfs_inode * ip)2909 xfs_inode_reload_unlinked(
2910 struct xfs_inode *ip)
2911 {
2912 struct xfs_trans *tp;
2913 int error;
2914
2915 error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2916 if (error)
2917 return error;
2918
2919 xfs_ilock(ip, XFS_ILOCK_SHARED);
2920 if (xfs_inode_unlinked_incomplete(ip))
2921 error = xfs_inode_reload_unlinked_bucket(tp, ip);
2922 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2923 xfs_trans_cancel(tp);
2924
2925 return error;
2926 }
2927
2928 /* Has this inode fork been zapped by repair? */
2929 bool
xfs_ifork_zapped(const struct xfs_inode * ip,int whichfork)2930 xfs_ifork_zapped(
2931 const struct xfs_inode *ip,
2932 int whichfork)
2933 {
2934 unsigned int datamask = 0;
2935
2936 switch (whichfork) {
2937 case XFS_DATA_FORK:
2938 switch (ip->i_vnode.i_mode & S_IFMT) {
2939 case S_IFDIR:
2940 datamask = XFS_SICK_INO_DIR_ZAPPED;
2941 break;
2942 case S_IFLNK:
2943 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2944 break;
2945 }
2946 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2947 case XFS_ATTR_FORK:
2948 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2949 default:
2950 return false;
2951 }
2952 }
2953
2954 /* Compute the number of data and realtime blocks used by a file. */
2955 void
xfs_inode_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,xfs_filblks_t * dblocks,xfs_filblks_t * rblocks)2956 xfs_inode_count_blocks(
2957 struct xfs_trans *tp,
2958 struct xfs_inode *ip,
2959 xfs_filblks_t *dblocks,
2960 xfs_filblks_t *rblocks)
2961 {
2962 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2963
2964 *rblocks = 0;
2965 if (XFS_IS_REALTIME_INODE(ip))
2966 xfs_bmap_count_leaves(ifp, rblocks);
2967 *dblocks = ip->i_nblocks - *rblocks;
2968 }
2969
2970 static void
xfs_wait_dax_page(struct inode * inode)2971 xfs_wait_dax_page(
2972 struct inode *inode)
2973 {
2974 struct xfs_inode *ip = XFS_I(inode);
2975
2976 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2977 schedule();
2978 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2979 }
2980
2981 int
xfs_break_dax_layouts(struct inode * inode,bool * retry)2982 xfs_break_dax_layouts(
2983 struct inode *inode,
2984 bool *retry)
2985 {
2986 struct page *page;
2987
2988 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
2989
2990 page = dax_layout_busy_page(inode->i_mapping);
2991 if (!page)
2992 return 0;
2993
2994 *retry = true;
2995 return ___wait_var_event(&page->_refcount,
2996 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
2997 0, 0, xfs_wait_dax_page(inode));
2998 }
2999
3000 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)3001 xfs_break_layouts(
3002 struct inode *inode,
3003 uint *iolock,
3004 enum layout_break_reason reason)
3005 {
3006 bool retry;
3007 int error;
3008
3009 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3010
3011 do {
3012 retry = false;
3013 switch (reason) {
3014 case BREAK_UNMAP:
3015 error = xfs_break_dax_layouts(inode, &retry);
3016 if (error || retry)
3017 break;
3018 fallthrough;
3019 case BREAK_WRITE:
3020 error = xfs_break_leased_layouts(inode, iolock, &retry);
3021 break;
3022 default:
3023 WARN_ON_ONCE(1);
3024 error = -EINVAL;
3025 }
3026 } while (error == 0 && retry);
3027
3028 return error;
3029 }
3030
3031 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3032 unsigned int
xfs_inode_alloc_unitsize(struct xfs_inode * ip)3033 xfs_inode_alloc_unitsize(
3034 struct xfs_inode *ip)
3035 {
3036 unsigned int blocks = 1;
3037
3038 if (XFS_IS_REALTIME_INODE(ip))
3039 blocks = ip->i_mount->m_sb.sb_rextsize;
3040
3041 return XFS_FSB_TO_B(ip->i_mount, blocks);
3042 }
3043
3044 /* Should we always be using copy on write for file writes? */
3045 bool
xfs_is_always_cow_inode(struct xfs_inode * ip)3046 xfs_is_always_cow_inode(
3047 struct xfs_inode *ip)
3048 {
3049 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3050 }
3051