• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 #include <linux/android_vendor.h>
30 #include <linux/android_kabi.h>
31 
32 struct module;
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct blkcg_gq;
39 struct blk_flush_queue;
40 struct kiocb;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_crypto_profile;
46 
47 extern const struct device_type disk_type;
48 extern const struct device_type part_type;
49 extern const struct class block_class;
50 
51 /*
52  * Maximum number of blkcg policies allowed to be registered concurrently.
53  * Defined here to simplify include dependency.
54  */
55 #define BLKCG_MAX_POLS		6
56 
57 #define DISK_MAX_PARTS			256
58 #define DISK_NAME_LEN			32
59 
60 #define PARTITION_META_INFO_VOLNAMELTH	64
61 /*
62  * Enough for the string representation of any kind of UUID plus NULL.
63  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
64  */
65 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
66 
67 struct partition_meta_info {
68 	char uuid[PARTITION_META_INFO_UUIDLTH];
69 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
70 };
71 
72 /**
73  * DOC: genhd capability flags
74  *
75  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
76  * removable media.  When set, the device remains present even when media is not
77  * inserted.  Shall not be set for devices which are removed entirely when the
78  * media is removed.
79  *
80  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
81  * doesn't appear in sysfs, and can't be opened from userspace or using
82  * blkdev_get*. Used for the underlying components of multipath devices.
83  *
84  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
85  * scan for partitions from add_disk, and users can't add partitions manually.
86  *
87  */
88 enum {
89 	GENHD_FL_REMOVABLE			= 1 << 0,
90 	GENHD_FL_HIDDEN				= 1 << 1,
91 	GENHD_FL_NO_PART			= 1 << 2,
92 };
93 
94 enum {
95 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
96 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
97 };
98 
99 enum {
100 	/* Poll even if events_poll_msecs is unset */
101 	DISK_EVENT_FLAG_POLL			= 1 << 0,
102 	/* Forward events to udev */
103 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
104 	/* Block event polling when open for exclusive write */
105 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
106 };
107 
108 struct disk_events;
109 struct badblocks;
110 
111 enum blk_integrity_checksum {
112 	BLK_INTEGRITY_CSUM_NONE		= 0,
113 	BLK_INTEGRITY_CSUM_IP		= 1,
114 	BLK_INTEGRITY_CSUM_CRC		= 2,
115 	BLK_INTEGRITY_CSUM_CRC64	= 3,
116 } __packed ;
117 
118 struct blk_integrity {
119 	unsigned char				flags;
120 	enum blk_integrity_checksum		csum_type;
121 	unsigned char				tuple_size;
122 	unsigned char				pi_offset;
123 	unsigned char				interval_exp;
124 	unsigned char				tag_size;
125 
126 	ANDROID_KABI_RESERVE(1);
127 	ANDROID_KABI_RESERVE(2);
128 };
129 
130 typedef unsigned int __bitwise blk_mode_t;
131 
132 /* open for reading */
133 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
134 /* open for writing */
135 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
136 /* open exclusively (vs other exclusive openers */
137 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
138 /* opened with O_NDELAY */
139 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
140 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
141 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
142 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
143 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
144 /* return partition scanning errors */
145 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
146 
147 struct gendisk {
148 	/*
149 	 * major/first_minor/minors should not be set by any new driver, the
150 	 * block core will take care of allocating them automatically.
151 	 */
152 	int major;
153 	int first_minor;
154 	int minors;
155 
156 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
157 
158 	unsigned short events;		/* supported events */
159 	unsigned short event_flags;	/* flags related to event processing */
160 
161 	struct xarray part_tbl;
162 	struct block_device *part0;
163 
164 	const struct block_device_operations *fops;
165 	struct request_queue *queue;
166 	void *private_data;
167 
168 	struct bio_set bio_split;
169 
170 	int flags;
171 	unsigned long state;
172 #define GD_NEED_PART_SCAN		0
173 #define GD_READ_ONLY			1
174 #define GD_DEAD				2
175 #define GD_NATIVE_CAPACITY		3
176 #define GD_ADDED			4
177 #define GD_SUPPRESS_PART_SCAN		5
178 #define GD_OWNS_QUEUE			6
179 
180 	struct mutex open_mutex;	/* open/close mutex */
181 	unsigned open_partitions;	/* number of open partitions */
182 
183 	struct backing_dev_info	*bdi;
184 	struct kobject queue_kobj;	/* the queue/ directory */
185 	struct kobject *slave_dir;
186 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
187 	struct list_head slave_bdevs;
188 #endif
189 	struct timer_rand_state *random;
190 	atomic_t sync_io;		/* RAID */
191 	struct disk_events *ev;
192 
193 #ifdef CONFIG_BLK_DEV_ZONED
194 	/*
195 	 * Zoned block device information. Reads of this information must be
196 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
197 	 * information is only allowed while no requests are being processed.
198 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
199 	 */
200 	unsigned int		nr_zones;
201 	unsigned int		zone_capacity;
202 	unsigned int		last_zone_capacity;
203 	unsigned long __rcu	*conv_zones_bitmap;
204 	unsigned int		zone_wplugs_hash_bits;
205 	atomic_t		nr_zone_wplugs;
206 	spinlock_t		zone_wplugs_lock;
207 	struct mempool_s	*zone_wplugs_pool;
208 	struct hlist_head	*zone_wplugs_hash;
209 	struct workqueue_struct *zone_wplugs_wq;
210 #endif /* CONFIG_BLK_DEV_ZONED */
211 
212 #if IS_ENABLED(CONFIG_CDROM)
213 	struct cdrom_device_info *cdi;
214 #endif
215 	int node_id;
216 	struct badblocks *bb;
217 	struct lockdep_map lockdep_map;
218 	u64 diskseq;
219 	blk_mode_t open_mode;
220 
221 	/*
222 	 * Independent sector access ranges. This is always NULL for
223 	 * devices that do not have multiple independent access ranges.
224 	 */
225 	struct blk_independent_access_ranges *ia_ranges;
226 
227 	ANDROID_KABI_RESERVE(1);
228 	ANDROID_KABI_RESERVE(2);
229 	ANDROID_KABI_RESERVE(3);
230 	ANDROID_KABI_RESERVE(4);
231 
232 	ANDROID_OEM_DATA(1);
233 };
234 
235 /**
236  * disk_openers - returns how many openers are there for a disk
237  * @disk: disk to check
238  *
239  * This returns the number of openers for a disk.  Note that this value is only
240  * stable if disk->open_mutex is held.
241  *
242  * Note: Due to a quirk in the block layer open code, each open partition is
243  * only counted once even if there are multiple openers.
244  */
disk_openers(struct gendisk * disk)245 static inline unsigned int disk_openers(struct gendisk *disk)
246 {
247 	return atomic_read(&disk->part0->bd_openers);
248 }
249 
250 /**
251  * disk_has_partscan - return %true if partition scanning is enabled on a disk
252  * @disk: disk to check
253  *
254  * Returns %true if partitions scanning is enabled for @disk, or %false if
255  * partition scanning is disabled either permanently or temporarily.
256  */
disk_has_partscan(struct gendisk * disk)257 static inline bool disk_has_partscan(struct gendisk *disk)
258 {
259 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
260 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
261 }
262 
263 /*
264  * The gendisk is refcounted by the part0 block_device, and the bd_device
265  * therein is also used for device model presentation in sysfs.
266  */
267 #define dev_to_disk(device) \
268 	(dev_to_bdev(device)->bd_disk)
269 #define disk_to_dev(disk) \
270 	(&((disk)->part0->bd_device))
271 
272 #if IS_REACHABLE(CONFIG_CDROM)
273 #define disk_to_cdi(disk)	((disk)->cdi)
274 #else
275 #define disk_to_cdi(disk)	NULL
276 #endif
277 
disk_devt(struct gendisk * disk)278 static inline dev_t disk_devt(struct gendisk *disk)
279 {
280 	return MKDEV(disk->major, disk->first_minor);
281 }
282 
283 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)284 static inline int blk_validate_block_size(unsigned long bsize)
285 {
286 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
287 		return -EINVAL;
288 
289 	return 0;
290 }
291 
blk_op_is_passthrough(blk_opf_t op)292 static inline bool blk_op_is_passthrough(blk_opf_t op)
293 {
294 	op &= REQ_OP_MASK;
295 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
296 }
297 
298 /* flags set by the driver in queue_limits.features */
299 typedef unsigned int __bitwise blk_features_t;
300 
301 /* supports a volatile write cache */
302 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
303 
304 /* supports passing on the FUA bit */
305 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
306 
307 /* rotational device (hard drive or floppy) */
308 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
309 
310 /* contributes to the random number pool */
311 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
312 
313 /* do disk/partitions IO accounting */
314 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
315 
316 /* don't modify data until writeback is done */
317 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
318 
319 /* always completes in submit context */
320 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
321 
322 /* supports REQ_NOWAIT */
323 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
324 
325 /* supports DAX */
326 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
327 
328 /* supports I/O polling */
329 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
330 
331 /* is a zoned device */
332 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
333 
334 /* supports PCI(e) p2p requests */
335 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
336 
337 /* skip this queue in blk_mq_(un)quiesce_tagset */
338 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
339 
340 /* bounce all highmem pages */
341 #define BLK_FEAT_BOUNCE_HIGH		((__force blk_features_t)(1u << 14))
342 
343 /* undocumented magic for bcache */
344 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
345 	((__force blk_features_t)(1u << 15))
346 
347 /*
348  * Flags automatically inherited when stacking limits.
349  */
350 #define BLK_FEAT_INHERIT_MASK \
351 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
352 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
353 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
354 
355 /* internal flags in queue_limits.flags */
356 typedef unsigned int __bitwise blk_flags_t;
357 
358 /* do not send FLUSH/FUA commands despite advertising a write cache */
359 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
360 
361 /* I/O topology is misaligned */
362 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
363 
364 struct queue_limits {
365 	blk_features_t		features;
366 	blk_flags_t		flags;
367 	unsigned long		seg_boundary_mask;
368 	unsigned long		virt_boundary_mask;
369 
370 	unsigned int		max_hw_sectors;
371 	unsigned int		max_dev_sectors;
372 	unsigned int		chunk_sectors;
373 	unsigned int		max_sectors;
374 	unsigned int		max_user_sectors;
375 	unsigned int		max_segment_size;
376 	unsigned int		min_segment_size;
377 	unsigned int		physical_block_size;
378 	unsigned int		logical_block_size;
379 	unsigned int		alignment_offset;
380 	unsigned int		io_min;
381 	unsigned int		io_opt;
382 	unsigned int		max_discard_sectors;
383 	unsigned int		max_hw_discard_sectors;
384 	unsigned int		max_user_discard_sectors;
385 	unsigned int		max_secure_erase_sectors;
386 	unsigned int		max_write_zeroes_sectors;
387 	unsigned int		max_zone_append_sectors;
388 	unsigned int		discard_granularity;
389 	unsigned int		discard_alignment;
390 	unsigned int		zone_write_granularity;
391 
392 	/* atomic write limits */
393 	unsigned int		atomic_write_hw_max;
394 	unsigned int		atomic_write_max_sectors;
395 	unsigned int		atomic_write_hw_boundary;
396 	unsigned int		atomic_write_boundary_sectors;
397 	unsigned int		atomic_write_hw_unit_min;
398 	unsigned int		atomic_write_unit_min;
399 	unsigned int		atomic_write_hw_unit_max;
400 	unsigned int		atomic_write_unit_max;
401 
402 	unsigned short		max_segments;
403 	unsigned short		max_integrity_segments;
404 	unsigned short		max_discard_segments;
405 
406 	unsigned int		max_open_zones;
407 	unsigned int		max_active_zones;
408 
409 	/*
410 	 * Drivers that set dma_alignment to less than 511 must be prepared to
411 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
412 	 * due to possible offsets.
413 	 */
414 	unsigned int		dma_alignment;
415 	unsigned int		dma_pad_mask;
416 
417 	struct blk_integrity	integrity;
418 
419 	ANDROID_KABI_RESERVE(1);
420 };
421 
422 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
423 			       void *data);
424 
425 #define BLK_ALL_ZONES  ((unsigned int)-1)
426 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
427 		unsigned int nr_zones, report_zones_cb cb, void *data);
428 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
429 		sector_t sectors, sector_t nr_sectors);
430 int blk_revalidate_disk_zones(struct gendisk *disk);
431 
432 /*
433  * Independent access ranges: struct blk_independent_access_range describes
434  * a range of contiguous sectors that can be accessed using device command
435  * execution resources that are independent from the resources used for
436  * other access ranges. This is typically found with single-LUN multi-actuator
437  * HDDs where each access range is served by a different set of heads.
438  * The set of independent ranges supported by the device is defined using
439  * struct blk_independent_access_ranges. The independent ranges must not overlap
440  * and must include all sectors within the disk capacity (no sector holes
441  * allowed).
442  * For a device with multiple ranges, requests targeting sectors in different
443  * ranges can be executed in parallel. A request can straddle an access range
444  * boundary.
445  */
446 struct blk_independent_access_range {
447 	struct kobject		kobj;
448 	sector_t		sector;
449 	sector_t		nr_sectors;
450 };
451 
452 struct blk_independent_access_ranges {
453 	struct kobject				kobj;
454 	bool					sysfs_registered;
455 	unsigned int				nr_ia_ranges;
456 	struct blk_independent_access_range	ia_range[];
457 };
458 
459 struct request_queue {
460 	/*
461 	 * The queue owner gets to use this for whatever they like.
462 	 * ll_rw_blk doesn't touch it.
463 	 */
464 	void			*queuedata;
465 
466 	struct elevator_queue	*elevator;
467 
468 	const struct blk_mq_ops	*mq_ops;
469 
470 	/* sw queues */
471 	struct blk_mq_ctx __percpu	*queue_ctx;
472 
473 	/*
474 	 * various queue flags, see QUEUE_* below
475 	 */
476 	unsigned long		queue_flags;
477 
478 	unsigned int		rq_timeout;
479 
480 	unsigned int		queue_depth;
481 
482 	refcount_t		refs;
483 
484 	/* hw dispatch queues */
485 	unsigned int		nr_hw_queues;
486 	struct xarray		hctx_table;
487 
488 	struct percpu_ref	q_usage_counter;
489 	struct lock_class_key	io_lock_cls_key;
490 	struct lockdep_map	io_lockdep_map;
491 
492 	struct lock_class_key	q_lock_cls_key;
493 	struct lockdep_map	q_lockdep_map;
494 
495 	struct request		*last_merge;
496 
497 	spinlock_t		queue_lock;
498 
499 	int			quiesce_depth;
500 
501 	struct gendisk		*disk;
502 
503 	/*
504 	 * mq queue kobject
505 	 */
506 	struct kobject *mq_kobj;
507 
508 	struct queue_limits	limits;
509 
510 #ifdef CONFIG_PM
511 	struct device		*dev;
512 	enum rpm_status		rpm_status;
513 #endif
514 
515 	/*
516 	 * Number of contexts that have called blk_set_pm_only(). If this
517 	 * counter is above zero then only RQF_PM requests are processed.
518 	 */
519 	atomic_t		pm_only;
520 
521 	struct blk_queue_stats	*stats;
522 	struct rq_qos		*rq_qos;
523 	struct mutex		rq_qos_mutex;
524 
525 	/*
526 	 * ida allocated id for this queue.  Used to index queues from
527 	 * ioctx.
528 	 */
529 	int			id;
530 
531 	/*
532 	 * queue settings
533 	 */
534 	unsigned long		nr_requests;	/* Max # of requests */
535 
536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
537 	struct blk_crypto_profile *crypto_profile;
538 	struct kobject *crypto_kobject;
539 #endif
540 
541 	struct timer_list	timeout;
542 	struct work_struct	timeout_work;
543 
544 	atomic_t		nr_active_requests_shared_tags;
545 
546 	struct blk_mq_tags	*sched_shared_tags;
547 
548 	struct list_head	icq_list;
549 #ifdef CONFIG_BLK_CGROUP
550 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
551 	struct blkcg_gq		*root_blkg;
552 	struct list_head	blkg_list;
553 	struct mutex		blkcg_mutex;
554 #endif
555 
556 	int			node;
557 
558 	spinlock_t		requeue_lock;
559 	struct list_head	requeue_list;
560 	struct delayed_work	requeue_work;
561 
562 #ifdef CONFIG_BLK_DEV_IO_TRACE
563 	struct blk_trace __rcu	*blk_trace;
564 #endif
565 	/*
566 	 * for flush operations
567 	 */
568 	struct blk_flush_queue	*fq;
569 	struct list_head	flush_list;
570 
571 	struct mutex		sysfs_lock;
572 	struct mutex		sysfs_dir_lock;
573 	struct mutex		limits_lock;
574 
575 	/*
576 	 * for reusing dead hctx instance in case of updating
577 	 * nr_hw_queues
578 	 */
579 	struct list_head	unused_hctx_list;
580 	spinlock_t		unused_hctx_lock;
581 
582 	int			mq_freeze_depth;
583 
584 #ifdef CONFIG_BLK_DEV_THROTTLING
585 	/* Throttle data */
586 	struct throtl_data *td;
587 #endif
588 	struct rcu_head		rcu_head;
589 #ifdef CONFIG_LOCKDEP
590 	struct task_struct	*mq_freeze_owner;
591 	int			mq_freeze_owner_depth;
592 	/*
593 	 * Records disk & queue state in current context, used in unfreeze
594 	 * queue
595 	 */
596 	bool			mq_freeze_disk_dead;
597 	bool			mq_freeze_queue_dying;
598 #endif
599 	wait_queue_head_t	mq_freeze_wq;
600 	/*
601 	 * Protect concurrent access to q_usage_counter by
602 	 * percpu_ref_kill() and percpu_ref_reinit().
603 	 */
604 	struct mutex		mq_freeze_lock;
605 
606 	struct blk_mq_tag_set	*tag_set;
607 	struct list_head	tag_set_list;
608 
609 	struct dentry		*debugfs_dir;
610 	struct dentry		*sched_debugfs_dir;
611 	struct dentry		*rqos_debugfs_dir;
612 	/*
613 	 * Serializes all debugfs metadata operations using the above dentries.
614 	 */
615 	struct mutex		debugfs_mutex;
616 
617 	bool			mq_sysfs_init_done;
618 
619 	ANDROID_KABI_RESERVE(1);
620 	ANDROID_KABI_RESERVE(2);
621 	ANDROID_KABI_RESERVE(3);
622 	ANDROID_KABI_RESERVE(4);
623 	ANDROID_OEM_DATA(1);
624 };
625 
626 /* Keep blk_queue_flag_name[] in sync with the definitions below */
627 enum {
628 	QUEUE_FLAG_DYING,		/* queue being torn down */
629 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
630 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
631 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
632 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
633 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
634 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
635 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
636 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
637 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
638 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
639 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
640 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
641 	QUEUE_FLAG_MAX
642 };
643 
644 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
645 
646 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
647 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
648 
649 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
650 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
651 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
652 #define blk_queue_noxmerges(q)	\
653 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
654 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
655 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
656 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
657 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
658 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
659 #define blk_queue_rq_alloc_time(q)	\
660 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
661 #else
662 #define blk_queue_rq_alloc_time(q)	false
663 #endif
664 
665 #define blk_noretry_request(rq) \
666 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
667 			     REQ_FAILFAST_DRIVER))
668 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
669 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
670 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
671 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
672 #define blk_queue_skip_tagset_quiesce(q) \
673 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
674 
675 extern void blk_set_pm_only(struct request_queue *q);
676 extern void blk_clear_pm_only(struct request_queue *q);
677 
678 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
679 
680 #define dma_map_bvec(dev, bv, dir, attrs) \
681 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
682 	(dir), (attrs))
683 
queue_is_mq(struct request_queue * q)684 static inline bool queue_is_mq(struct request_queue *q)
685 {
686 	return q->mq_ops;
687 }
688 
689 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)690 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
691 {
692 	return q->rpm_status;
693 }
694 #else
queue_rpm_status(struct request_queue * q)695 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
696 {
697 	return RPM_ACTIVE;
698 }
699 #endif
700 
blk_queue_is_zoned(struct request_queue * q)701 static inline bool blk_queue_is_zoned(struct request_queue *q)
702 {
703 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
704 		(q->limits.features & BLK_FEAT_ZONED);
705 }
706 
707 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)708 static inline unsigned int disk_nr_zones(struct gendisk *disk)
709 {
710 	return disk->nr_zones;
711 }
712 
713 /**
714  * bio_needs_zone_write_plugging - Check if a BIO needs to be handled with zone
715  *				   write plugging
716  * @bio: The BIO being submitted
717  *
718  * Return true whenever @bio execution needs to be handled through zone
719  * write plugging (using blk_zone_plug_bio()). Return false otherwise.
720  */
bio_needs_zone_write_plugging(struct bio * bio)721 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
722 {
723 	enum req_op op = bio_op(bio);
724 
725 	/*
726 	 * Only zoned block devices have a zone write plug hash table. But not
727 	 * all of them have one (e.g. DM devices may not need one).
728 	 */
729 	if (!bio->bi_bdev->bd_disk->zone_wplugs_hash)
730 		return false;
731 
732 	/* Only write operations need zone write plugging. */
733 	if (!op_is_write(op))
734 		return false;
735 
736 	/* Ignore empty flush */
737 	if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
738 		return false;
739 
740 	/* Ignore BIOs that already have been handled by zone write plugging. */
741 	if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
742 		return false;
743 
744 	/*
745 	 * All zone write operations must be handled through zone write plugging
746 	 * using blk_zone_plug_bio().
747 	 */
748 	switch (op) {
749 	case REQ_OP_ZONE_APPEND:
750 	case REQ_OP_WRITE:
751 	case REQ_OP_WRITE_ZEROES:
752 	case REQ_OP_ZONE_FINISH:
753 	case REQ_OP_ZONE_RESET:
754 	case REQ_OP_ZONE_RESET_ALL:
755 		return true;
756 	default:
757 		return false;
758 	}
759 }
760 
761 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
762 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)763 static inline unsigned int disk_nr_zones(struct gendisk *disk)
764 {
765 	return 0;
766 }
767 
bio_needs_zone_write_plugging(struct bio * bio)768 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
769 {
770 	return false;
771 }
772 
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)773 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
774 {
775 	return false;
776 }
777 #endif /* CONFIG_BLK_DEV_ZONED */
778 
disk_zone_no(struct gendisk * disk,sector_t sector)779 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
780 {
781 	const sector_t zone_sectors = disk->queue->limits.chunk_sectors;
782 
783 	if (!blk_queue_is_zoned(disk->queue))
784 		return 0;
785 	if (is_power_of_2(zone_sectors))
786 		return sector >> ilog2(zone_sectors);
787 	return div64_u64(sector, zone_sectors);
788 }
789 
bdev_nr_zones(struct block_device * bdev)790 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
791 {
792 	return disk_nr_zones(bdev->bd_disk);
793 }
794 
bdev_max_open_zones(struct block_device * bdev)795 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
796 {
797 	return bdev->bd_disk->queue->limits.max_open_zones;
798 }
799 
bdev_max_active_zones(struct block_device * bdev)800 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
801 {
802 	return bdev->bd_disk->queue->limits.max_active_zones;
803 }
804 
blk_queue_depth(struct request_queue * q)805 static inline unsigned int blk_queue_depth(struct request_queue *q)
806 {
807 	if (q->queue_depth)
808 		return q->queue_depth;
809 
810 	return q->nr_requests;
811 }
812 
813 /*
814  * default timeout for SG_IO if none specified
815  */
816 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
817 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
818 
819 /* This should not be used directly - use rq_for_each_segment */
820 #define for_each_bio(_bio)		\
821 	for (; _bio; _bio = _bio->bi_next)
822 
823 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
824 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)825 static inline int __must_check add_disk(struct gendisk *disk)
826 {
827 	return device_add_disk(NULL, disk, NULL);
828 }
829 void del_gendisk(struct gendisk *gp);
830 void invalidate_disk(struct gendisk *disk);
831 void set_disk_ro(struct gendisk *disk, bool read_only);
832 void disk_uevent(struct gendisk *disk, enum kobject_action action);
833 
bdev_partno(const struct block_device * bdev)834 static inline u8 bdev_partno(const struct block_device *bdev)
835 {
836 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
837 }
838 
bdev_test_flag(const struct block_device * bdev,unsigned flag)839 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
840 {
841 	return atomic_read(&bdev->__bd_flags) & flag;
842 }
843 
bdev_set_flag(struct block_device * bdev,unsigned flag)844 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
845 {
846 	atomic_or(flag, &bdev->__bd_flags);
847 }
848 
bdev_clear_flag(struct block_device * bdev,unsigned flag)849 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
850 {
851 	atomic_andnot(flag, &bdev->__bd_flags);
852 }
853 
get_disk_ro(struct gendisk * disk)854 static inline int get_disk_ro(struct gendisk *disk)
855 {
856 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
857 		test_bit(GD_READ_ONLY, &disk->state);
858 }
859 
bdev_read_only(struct block_device * bdev)860 static inline int bdev_read_only(struct block_device *bdev)
861 {
862 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
863 }
864 
865 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
866 void disk_force_media_change(struct gendisk *disk);
867 void bdev_mark_dead(struct block_device *bdev, bool surprise);
868 
869 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
870 void rand_initialize_disk(struct gendisk *disk);
871 
get_start_sect(struct block_device * bdev)872 static inline sector_t get_start_sect(struct block_device *bdev)
873 {
874 	return bdev->bd_start_sect;
875 }
876 
bdev_nr_sectors(struct block_device * bdev)877 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
878 {
879 	return bdev->bd_nr_sectors;
880 }
881 
bdev_nr_bytes(struct block_device * bdev)882 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
883 {
884 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
885 }
886 
get_capacity(struct gendisk * disk)887 static inline sector_t get_capacity(struct gendisk *disk)
888 {
889 	return bdev_nr_sectors(disk->part0);
890 }
891 
sb_bdev_nr_blocks(struct super_block * sb)892 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
893 {
894 	return bdev_nr_sectors(sb->s_bdev) >>
895 		(sb->s_blocksize_bits - SECTOR_SHIFT);
896 }
897 
898 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
899 
900 void put_disk(struct gendisk *disk);
901 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
902 		struct lock_class_key *lkclass);
903 
904 /**
905  * blk_alloc_disk - allocate a gendisk structure
906  * @lim: queue limits to be used for this disk.
907  * @node_id: numa node to allocate on
908  *
909  * Allocate and pre-initialize a gendisk structure for use with BIO based
910  * drivers.
911  *
912  * Returns an ERR_PTR on error, else the allocated disk.
913  *
914  * Context: can sleep
915  */
916 #define blk_alloc_disk(lim, node_id)					\
917 ({									\
918 	static struct lock_class_key __key;				\
919 									\
920 	__blk_alloc_disk(lim, node_id, &__key);				\
921 })
922 
923 int __register_blkdev(unsigned int major, const char *name,
924 		void (*probe)(dev_t devt));
925 #define register_blkdev(major, name) \
926 	__register_blkdev(major, name, NULL)
927 void unregister_blkdev(unsigned int major, const char *name);
928 
929 bool disk_check_media_change(struct gendisk *disk);
930 void set_capacity(struct gendisk *disk, sector_t size);
931 
932 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
933 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
934 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
935 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)936 static inline int bd_link_disk_holder(struct block_device *bdev,
937 				      struct gendisk *disk)
938 {
939 	return 0;
940 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)941 static inline void bd_unlink_disk_holder(struct block_device *bdev,
942 					 struct gendisk *disk)
943 {
944 }
945 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
946 
947 dev_t part_devt(struct gendisk *disk, u8 partno);
948 void inc_diskseq(struct gendisk *disk);
949 void blk_request_module(dev_t devt);
950 
951 extern int blk_register_queue(struct gendisk *disk);
952 extern void blk_unregister_queue(struct gendisk *disk);
953 void submit_bio_noacct(struct bio *bio);
954 struct bio *bio_split_to_limits(struct bio *bio);
955 
956 extern int blk_lld_busy(struct request_queue *q);
957 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
958 extern void blk_queue_exit(struct request_queue *q);
959 extern void blk_sync_queue(struct request_queue *q);
960 
961 /* Helper to convert REQ_OP_XXX to its string format XXX */
962 extern const char *blk_op_str(enum req_op op);
963 
964 int blk_status_to_errno(blk_status_t status);
965 blk_status_t errno_to_blk_status(int errno);
966 const char *blk_status_to_str(blk_status_t status);
967 
968 /* only poll the hardware once, don't continue until a completion was found */
969 #define BLK_POLL_ONESHOT		(1 << 0)
970 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
971 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
972 			unsigned int flags);
973 
bdev_get_queue(struct block_device * bdev)974 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
975 {
976 	return bdev->bd_queue;	/* this is never NULL */
977 }
978 
979 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
980 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
981 
bio_zone_no(struct bio * bio)982 static inline unsigned int bio_zone_no(struct bio *bio)
983 {
984 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
985 }
986 
bio_straddles_zones(struct bio * bio)987 static inline bool bio_straddles_zones(struct bio *bio)
988 {
989 	return bio_sectors(bio) &&
990 		bio_zone_no(bio) !=
991 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
992 }
993 
994 /*
995  * Return how much within the boundary is left to be used for I/O at a given
996  * offset.
997  */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)998 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
999 		unsigned int boundary_sectors)
1000 {
1001 	if (unlikely(!is_power_of_2(boundary_sectors)))
1002 		return boundary_sectors - sector_div(offset, boundary_sectors);
1003 	return boundary_sectors - (offset & (boundary_sectors - 1));
1004 }
1005 
1006 /**
1007  * queue_limits_start_update - start an atomic update of queue limits
1008  * @q:		queue to update
1009  *
1010  * This functions starts an atomic update of the queue limits.  It takes a lock
1011  * to prevent other updates and returns a snapshot of the current limits that
1012  * the caller can modify.  The caller must call queue_limits_commit_update()
1013  * to finish the update.
1014  *
1015  * Context: process context.  The caller must have frozen the queue or ensured
1016  * that there is outstanding I/O by other means.
1017  */
1018 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1019 queue_limits_start_update(struct request_queue *q)
1020 {
1021 	mutex_lock(&q->limits_lock);
1022 	return q->limits;
1023 }
1024 int queue_limits_commit_update_frozen(struct request_queue *q,
1025 		struct queue_limits *lim);
1026 int queue_limits_commit_update(struct request_queue *q,
1027 		struct queue_limits *lim);
1028 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1029 
1030 /**
1031  * queue_limits_cancel_update - cancel an atomic update of queue limits
1032  * @q:		queue to update
1033  *
1034  * This functions cancels an atomic update of the queue limits started by
1035  * queue_limits_start_update() and should be used when an error occurs after
1036  * starting update.
1037  */
queue_limits_cancel_update(struct request_queue * q)1038 static inline void queue_limits_cancel_update(struct request_queue *q)
1039 {
1040 	mutex_unlock(&q->limits_lock);
1041 }
1042 
1043 /*
1044  * These helpers are for drivers that have sloppy feature negotiation and might
1045  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1046  * completion handler when the device returned an indicator that the respective
1047  * feature is not actually supported.  They are racy and the driver needs to
1048  * cope with that.  Try to avoid this scheme if you can.
1049  */
blk_queue_disable_discard(struct request_queue * q)1050 static inline void blk_queue_disable_discard(struct request_queue *q)
1051 {
1052 	q->limits.max_discard_sectors = 0;
1053 }
1054 
blk_queue_disable_secure_erase(struct request_queue * q)1055 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1056 {
1057 	q->limits.max_secure_erase_sectors = 0;
1058 }
1059 
blk_queue_disable_write_zeroes(struct request_queue * q)1060 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1061 {
1062 	q->limits.max_write_zeroes_sectors = 0;
1063 }
1064 
1065 /*
1066  * Access functions for manipulating queue properties
1067  */
1068 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1069 extern void blk_set_stacking_limits(struct queue_limits *lim);
1070 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1071 			    sector_t offset);
1072 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1073 		sector_t offset, const char *pfx);
1074 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1075 
1076 struct blk_independent_access_ranges *
1077 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1078 void disk_set_independent_access_ranges(struct gendisk *disk,
1079 				struct blk_independent_access_ranges *iars);
1080 
1081 bool __must_check blk_get_queue(struct request_queue *);
1082 extern void blk_put_queue(struct request_queue *);
1083 
1084 void blk_mark_disk_dead(struct gendisk *disk);
1085 
1086 #ifdef CONFIG_BLOCK
1087 struct rq_list {
1088 	struct request *head;
1089 	struct request *tail;
1090 };
1091 
1092 /*
1093  * blk_plug permits building a queue of related requests by holding the I/O
1094  * fragments for a short period. This allows merging of sequential requests
1095  * into single larger request. As the requests are moved from a per-task list to
1096  * the device's request_queue in a batch, this results in improved scalability
1097  * as the lock contention for request_queue lock is reduced.
1098  *
1099  * It is ok not to disable preemption when adding the request to the plug list
1100  * or when attempting a merge. For details, please see schedule() where
1101  * blk_flush_plug() is called.
1102  */
1103 struct blk_plug {
1104 	struct rq_list mq_list; /* blk-mq requests */
1105 
1106 	/* if ios_left is > 1, we can batch tag/rq allocations */
1107 	struct rq_list cached_rqs;
1108 	u64 cur_ktime;
1109 	unsigned short nr_ios;
1110 
1111 	unsigned short rq_count;
1112 
1113 	bool multiple_queues;
1114 	bool has_elevator;
1115 
1116 	struct list_head cb_list; /* md requires an unplug callback */
1117 };
1118 
1119 struct blk_plug_cb;
1120 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1121 struct blk_plug_cb {
1122 	struct list_head list;
1123 	blk_plug_cb_fn callback;
1124 	void *data;
1125 };
1126 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1127 					     void *data, int size);
1128 extern void blk_start_plug(struct blk_plug *);
1129 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1130 extern void blk_finish_plug(struct blk_plug *);
1131 
1132 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1133 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1134 {
1135 	if (plug)
1136 		__blk_flush_plug(plug, async);
1137 }
1138 
1139 /*
1140  * tsk == current here
1141  */
blk_plug_invalidate_ts(struct task_struct * tsk)1142 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1143 {
1144 	struct blk_plug *plug = tsk->plug;
1145 
1146 	if (plug)
1147 		plug->cur_ktime = 0;
1148 	current->flags &= ~PF_BLOCK_TS;
1149 }
1150 
1151 int blkdev_issue_flush(struct block_device *bdev);
1152 long nr_blockdev_pages(void);
1153 #else /* CONFIG_BLOCK */
1154 struct blk_plug {
1155 };
1156 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1157 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1158 					 unsigned short nr_ios)
1159 {
1160 }
1161 
blk_start_plug(struct blk_plug * plug)1162 static inline void blk_start_plug(struct blk_plug *plug)
1163 {
1164 }
1165 
blk_finish_plug(struct blk_plug * plug)1166 static inline void blk_finish_plug(struct blk_plug *plug)
1167 {
1168 }
1169 
blk_flush_plug(struct blk_plug * plug,bool async)1170 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1171 {
1172 }
1173 
blk_plug_invalidate_ts(struct task_struct * tsk)1174 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1175 {
1176 }
1177 
blkdev_issue_flush(struct block_device * bdev)1178 static inline int blkdev_issue_flush(struct block_device *bdev)
1179 {
1180 	return 0;
1181 }
1182 
nr_blockdev_pages(void)1183 static inline long nr_blockdev_pages(void)
1184 {
1185 	return 0;
1186 }
1187 #endif /* CONFIG_BLOCK */
1188 
1189 extern void blk_io_schedule(void);
1190 
1191 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1192 		sector_t nr_sects, gfp_t gfp_mask);
1193 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1194 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1195 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1196 		sector_t nr_sects, gfp_t gfp);
1197 
1198 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1199 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1200 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1201 
1202 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1203 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1204 		unsigned flags);
1205 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1206 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1207 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1208 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1209 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1210 {
1211 	return blkdev_issue_discard(sb->s_bdev,
1212 				    block << (sb->s_blocksize_bits -
1213 					      SECTOR_SHIFT),
1214 				    nr_blocks << (sb->s_blocksize_bits -
1215 						  SECTOR_SHIFT),
1216 				    gfp_mask);
1217 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1218 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1219 		sector_t nr_blocks, gfp_t gfp_mask)
1220 {
1221 	return blkdev_issue_zeroout(sb->s_bdev,
1222 				    block << (sb->s_blocksize_bits -
1223 					      SECTOR_SHIFT),
1224 				    nr_blocks << (sb->s_blocksize_bits -
1225 						  SECTOR_SHIFT),
1226 				    gfp_mask, 0);
1227 }
1228 
bdev_is_partition(struct block_device * bdev)1229 static inline bool bdev_is_partition(struct block_device *bdev)
1230 {
1231 	return bdev_partno(bdev) != 0;
1232 }
1233 
1234 enum blk_default_limits {
1235 	BLK_MAX_SEGMENTS	= 128,
1236 	BLK_SAFE_MAX_SECTORS	= 255,
1237 	BLK_MAX_SEGMENT_SIZE	= 65536,
1238 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1239 };
1240 
1241 /*
1242  * Default upper limit for the software max_sectors limit used for
1243  * regular file system I/O.  This can be increased through sysfs.
1244  *
1245  * Not to be confused with the max_hw_sector limit that is entirely
1246  * controlled by the driver, usually based on hardware limits.
1247  */
1248 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1249 
queue_segment_boundary(const struct request_queue * q)1250 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1251 {
1252 	return q->limits.seg_boundary_mask;
1253 }
1254 
queue_virt_boundary(const struct request_queue * q)1255 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1256 {
1257 	return q->limits.virt_boundary_mask;
1258 }
1259 
queue_max_sectors(const struct request_queue * q)1260 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1261 {
1262 	return q->limits.max_sectors;
1263 }
1264 
queue_max_bytes(struct request_queue * q)1265 static inline unsigned int queue_max_bytes(struct request_queue *q)
1266 {
1267 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1268 }
1269 
queue_max_hw_sectors(const struct request_queue * q)1270 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1271 {
1272 	return q->limits.max_hw_sectors;
1273 }
1274 
queue_max_segments(const struct request_queue * q)1275 static inline unsigned short queue_max_segments(const struct request_queue *q)
1276 {
1277 	return q->limits.max_segments;
1278 }
1279 
queue_max_discard_segments(const struct request_queue * q)1280 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1281 {
1282 	return q->limits.max_discard_segments;
1283 }
1284 
queue_max_segment_size(const struct request_queue * q)1285 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1286 {
1287 	return q->limits.max_segment_size;
1288 }
1289 
1290 static inline unsigned int
queue_limits_max_zone_append_sectors(const struct queue_limits * l)1291 queue_limits_max_zone_append_sectors(const struct queue_limits *l)
1292 {
1293 	unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1294 
1295 	return min_not_zero(l->max_zone_append_sectors, max_sectors);
1296 }
1297 
queue_max_zone_append_sectors(struct request_queue * q)1298 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1299 {
1300 	if (!blk_queue_is_zoned(q))
1301 		return 0;
1302 
1303 	return queue_limits_max_zone_append_sectors(&q->limits);
1304 }
1305 
queue_emulates_zone_append(struct request_queue * q)1306 static inline bool queue_emulates_zone_append(struct request_queue *q)
1307 {
1308 	return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1309 }
1310 
bdev_emulates_zone_append(struct block_device * bdev)1311 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1312 {
1313 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1314 }
1315 
1316 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1317 bdev_max_zone_append_sectors(struct block_device *bdev)
1318 {
1319 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1320 }
1321 
bdev_max_segments(struct block_device * bdev)1322 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1323 {
1324 	return queue_max_segments(bdev_get_queue(bdev));
1325 }
1326 
queue_logical_block_size(const struct request_queue * q)1327 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1328 {
1329 	return q->limits.logical_block_size;
1330 }
1331 
bdev_logical_block_size(struct block_device * bdev)1332 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1333 {
1334 	return queue_logical_block_size(bdev_get_queue(bdev));
1335 }
1336 
queue_physical_block_size(const struct request_queue * q)1337 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1338 {
1339 	return q->limits.physical_block_size;
1340 }
1341 
bdev_physical_block_size(struct block_device * bdev)1342 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1343 {
1344 	return queue_physical_block_size(bdev_get_queue(bdev));
1345 }
1346 
queue_io_min(const struct request_queue * q)1347 static inline unsigned int queue_io_min(const struct request_queue *q)
1348 {
1349 	return q->limits.io_min;
1350 }
1351 
bdev_io_min(struct block_device * bdev)1352 static inline unsigned int bdev_io_min(struct block_device *bdev)
1353 {
1354 	return queue_io_min(bdev_get_queue(bdev));
1355 }
1356 
queue_io_opt(const struct request_queue * q)1357 static inline unsigned int queue_io_opt(const struct request_queue *q)
1358 {
1359 	return q->limits.io_opt;
1360 }
1361 
bdev_io_opt(struct block_device * bdev)1362 static inline int bdev_io_opt(struct block_device *bdev)
1363 {
1364 	return queue_io_opt(bdev_get_queue(bdev));
1365 }
1366 
1367 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1368 queue_zone_write_granularity(const struct request_queue *q)
1369 {
1370 	return q->limits.zone_write_granularity;
1371 }
1372 
1373 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1374 bdev_zone_write_granularity(struct block_device *bdev)
1375 {
1376 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1377 }
1378 
1379 int bdev_alignment_offset(struct block_device *bdev);
1380 unsigned int bdev_discard_alignment(struct block_device *bdev);
1381 
bdev_max_discard_sectors(struct block_device * bdev)1382 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1383 {
1384 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1385 }
1386 
bdev_discard_granularity(struct block_device * bdev)1387 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1388 {
1389 	return bdev_get_queue(bdev)->limits.discard_granularity;
1390 }
1391 
1392 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1393 bdev_max_secure_erase_sectors(struct block_device *bdev)
1394 {
1395 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1396 }
1397 
bdev_write_zeroes_sectors(struct block_device * bdev)1398 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1399 {
1400 	return bdev_get_queue(bdev)->limits.max_write_zeroes_sectors;
1401 }
1402 
bdev_nonrot(struct block_device * bdev)1403 static inline bool bdev_nonrot(struct block_device *bdev)
1404 {
1405 	return blk_queue_nonrot(bdev_get_queue(bdev));
1406 }
1407 
bdev_synchronous(struct block_device * bdev)1408 static inline bool bdev_synchronous(struct block_device *bdev)
1409 {
1410 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1411 }
1412 
bdev_stable_writes(struct block_device * bdev)1413 static inline bool bdev_stable_writes(struct block_device *bdev)
1414 {
1415 	struct request_queue *q = bdev_get_queue(bdev);
1416 
1417 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1418 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1419 		return true;
1420 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1421 }
1422 
blk_queue_write_cache(struct request_queue * q)1423 static inline bool blk_queue_write_cache(struct request_queue *q)
1424 {
1425 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1426 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1427 }
1428 
bdev_write_cache(struct block_device * bdev)1429 static inline bool bdev_write_cache(struct block_device *bdev)
1430 {
1431 	return blk_queue_write_cache(bdev_get_queue(bdev));
1432 }
1433 
bdev_fua(struct block_device * bdev)1434 static inline bool bdev_fua(struct block_device *bdev)
1435 {
1436 	return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA;
1437 }
1438 
bdev_nowait(struct block_device * bdev)1439 static inline bool bdev_nowait(struct block_device *bdev)
1440 {
1441 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1442 }
1443 
bdev_is_zoned(struct block_device * bdev)1444 static inline bool bdev_is_zoned(struct block_device *bdev)
1445 {
1446 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1447 }
1448 
bdev_zone_no(struct block_device * bdev,sector_t sec)1449 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1450 {
1451 	return disk_zone_no(bdev->bd_disk, sec);
1452 }
1453 
bdev_zone_sectors(struct block_device * bdev)1454 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1455 {
1456 	struct request_queue *q = bdev_get_queue(bdev);
1457 
1458 	if (!blk_queue_is_zoned(q))
1459 		return 0;
1460 	return q->limits.chunk_sectors;
1461 }
1462 
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1463 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1464 						   sector_t sector)
1465 {
1466 	sector_t zone_sectors = bdev_zone_sectors(bdev);
1467 	u64 remainder = 0;
1468 
1469 	if (!bdev_is_zoned(bdev))
1470 		return 0;
1471 
1472 	if (is_power_of_2(zone_sectors))
1473 		return sector & (zone_sectors - 1);
1474 
1475 	div64_u64_rem(sector, zone_sectors, &remainder);
1476 	return remainder;
1477 }
1478 
bio_offset_from_zone_start(struct bio * bio)1479 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1480 {
1481 	return bdev_offset_from_zone_start(bio->bi_bdev,
1482 					   bio->bi_iter.bi_sector);
1483 }
1484 
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1485 static inline bool bdev_is_zone_start(struct block_device *bdev,
1486 				      sector_t sector)
1487 {
1488 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1489 }
1490 
1491 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1492 			   sector_t nr_sects, gfp_t gfp_mask);
1493 
1494 /**
1495  * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1496  * @bdev:	block device to check
1497  * @sector:	sector number
1498  *
1499  * Check if @sector on @bdev is contained in a sequential write required zone.
1500  */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1501 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1502 {
1503 	bool is_seq = false;
1504 
1505 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1506 	if (bdev_is_zoned(bdev)) {
1507 		struct gendisk *disk = bdev->bd_disk;
1508 		unsigned long *bitmap;
1509 
1510 		rcu_read_lock();
1511 		bitmap = rcu_dereference(disk->conv_zones_bitmap);
1512 		is_seq = !bitmap ||
1513 			!test_bit(disk_zone_no(disk, sector), bitmap);
1514 		rcu_read_unlock();
1515 	}
1516 #endif
1517 
1518 	return is_seq;
1519 }
1520 
queue_dma_alignment(const struct request_queue * q)1521 static inline int queue_dma_alignment(const struct request_queue *q)
1522 {
1523 	return q->limits.dma_alignment;
1524 }
1525 
1526 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1527 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1528 {
1529 	return q->limits.atomic_write_unit_max;
1530 }
1531 
1532 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1533 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1534 {
1535 	return q->limits.atomic_write_unit_min;
1536 }
1537 
1538 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1539 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1540 {
1541 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1542 }
1543 
1544 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1545 queue_atomic_write_max_bytes(const struct request_queue *q)
1546 {
1547 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1548 }
1549 
bdev_dma_alignment(struct block_device * bdev)1550 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1551 {
1552 	return queue_dma_alignment(bdev_get_queue(bdev));
1553 }
1554 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1555 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1556 					struct iov_iter *iter)
1557 {
1558 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1559 				   bdev_logical_block_size(bdev) - 1);
1560 }
1561 
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1562 static inline int blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1563 {
1564 	return lim->dma_alignment | lim->dma_pad_mask;
1565 }
1566 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1567 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1568 				 unsigned int len)
1569 {
1570 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1571 
1572 	return !(addr & alignment) && !(len & alignment);
1573 }
1574 
1575 /* assumes size > 256 */
blksize_bits(unsigned int size)1576 static inline unsigned int blksize_bits(unsigned int size)
1577 {
1578 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1579 }
1580 
1581 int kblockd_schedule_work(struct work_struct *work);
1582 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1583 
1584 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1585 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1586 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1587 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1588 
1589 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1590 
1591 bool blk_crypto_register(struct blk_crypto_profile *profile,
1592 			 struct request_queue *q);
1593 
1594 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1595 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1596 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1597 				       struct request_queue *q)
1598 {
1599 	return true;
1600 }
1601 
1602 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1603 
1604 enum blk_unique_id {
1605 	/* these match the Designator Types specified in SPC */
1606 	BLK_UID_T10	= 1,
1607 	BLK_UID_EUI64	= 2,
1608 	BLK_UID_NAA	= 3,
1609 };
1610 
1611 struct block_device_operations {
1612 	void (*submit_bio)(struct bio *bio);
1613 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1614 			unsigned int flags);
1615 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1616 	void (*release)(struct gendisk *disk);
1617 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1618 			unsigned cmd, unsigned long arg);
1619 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1620 			unsigned cmd, unsigned long arg);
1621 	unsigned int (*check_events) (struct gendisk *disk,
1622 				      unsigned int clearing);
1623 	void (*unlock_native_capacity) (struct gendisk *);
1624 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1625 	int (*set_read_only)(struct block_device *bdev, bool ro);
1626 	void (*free_disk)(struct gendisk *disk);
1627 	/* this callback is with swap_lock and sometimes page table lock held */
1628 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1629 	int (*report_zones)(struct gendisk *, sector_t sector,
1630 			unsigned int nr_zones, report_zones_cb cb, void *data);
1631 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1632 	/* returns the length of the identifier or a negative errno: */
1633 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1634 			enum blk_unique_id id_type);
1635 	struct module *owner;
1636 	const struct pr_ops *pr_ops;
1637 
1638 	/*
1639 	 * Special callback for probing GPT entry at a given sector.
1640 	 * Needed by Android devices, used by GPT scanner and MMC blk
1641 	 * driver.
1642 	 */
1643 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1644 
1645 	ANDROID_KABI_RESERVE(1);
1646 	ANDROID_KABI_RESERVE(2);
1647 };
1648 
1649 #ifdef CONFIG_COMPAT
1650 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1651 				      unsigned int, unsigned long);
1652 #else
1653 #define blkdev_compat_ptr_ioctl NULL
1654 #endif
1655 
blk_wake_io_task(struct task_struct * waiter)1656 static inline void blk_wake_io_task(struct task_struct *waiter)
1657 {
1658 	/*
1659 	 * If we're polling, the task itself is doing the completions. For
1660 	 * that case, we don't need to signal a wakeup, it's enough to just
1661 	 * mark us as RUNNING.
1662 	 */
1663 	if (waiter == current)
1664 		__set_current_state(TASK_RUNNING);
1665 	else
1666 		wake_up_process(waiter);
1667 }
1668 
1669 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1670 				 unsigned long start_time);
1671 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1672 		      unsigned int sectors, unsigned long start_time);
1673 
1674 unsigned long bio_start_io_acct(struct bio *bio);
1675 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1676 		struct block_device *orig_bdev);
1677 
1678 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1679 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1680 					sector_t sector)
1681 {
1682 	return bdev_is_zone_start(bdev, sector);
1683 }
1684 
1685 /**
1686  * bio_end_io_acct - end I/O accounting for bio based drivers
1687  * @bio:	bio to end account for
1688  * @start_time:	start time returned by bio_start_io_acct()
1689  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1690 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1691 {
1692 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1693 }
1694 
1695 int bdev_read_only(struct block_device *bdev);
1696 int set_blocksize(struct file *file, int size);
1697 
1698 int lookup_bdev(const char *pathname, dev_t *dev);
1699 
1700 void blkdev_show(struct seq_file *seqf, off_t offset);
1701 
1702 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1703 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1704 #ifdef CONFIG_BLOCK
1705 #define BLKDEV_MAJOR_MAX	512
1706 #else
1707 #define BLKDEV_MAJOR_MAX	0
1708 #endif
1709 
1710 struct blk_holder_ops {
1711 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1712 
1713 	/*
1714 	 * Sync the file system mounted on the block device.
1715 	 */
1716 	void (*sync)(struct block_device *bdev);
1717 
1718 	/*
1719 	 * Freeze the file system mounted on the block device.
1720 	 */
1721 	int (*freeze)(struct block_device *bdev);
1722 
1723 	/*
1724 	 * Thaw the file system mounted on the block device.
1725 	 */
1726 	int (*thaw)(struct block_device *bdev);
1727 };
1728 
1729 /*
1730  * For filesystems using @fs_holder_ops, the @holder argument passed to
1731  * helpers used to open and claim block devices via
1732  * bd_prepare_to_claim() must point to a superblock.
1733  */
1734 extern const struct blk_holder_ops fs_holder_ops;
1735 
1736 /*
1737  * Return the correct open flags for blkdev_get_by_* for super block flags
1738  * as stored in sb->s_flags.
1739  */
1740 #define sb_open_mode(flags) \
1741 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1742 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1743 
1744 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1745 		const struct blk_holder_ops *hops);
1746 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1747 		void *holder, const struct blk_holder_ops *hops);
1748 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1749 		const struct blk_holder_ops *hops);
1750 void bd_abort_claiming(struct block_device *bdev, void *holder);
1751 
1752 /* just for blk-cgroup, don't use elsewhere */
1753 struct block_device *blkdev_get_no_open(dev_t dev);
1754 void blkdev_put_no_open(struct block_device *bdev);
1755 
1756 struct block_device *I_BDEV(struct inode *inode);
1757 struct block_device *file_bdev(struct file *bdev_file);
1758 bool disk_live(struct gendisk *disk);
1759 unsigned int block_size(struct block_device *bdev);
1760 
1761 #ifdef CONFIG_BLOCK
1762 void invalidate_bdev(struct block_device *bdev);
1763 int sync_blockdev(struct block_device *bdev);
1764 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1765 int sync_blockdev_nowait(struct block_device *bdev);
1766 void sync_bdevs(bool wait);
1767 void bdev_statx(struct path *, struct kstat *, u32);
1768 void printk_all_partitions(void);
1769 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1770 #else
invalidate_bdev(struct block_device * bdev)1771 static inline void invalidate_bdev(struct block_device *bdev)
1772 {
1773 }
sync_blockdev(struct block_device * bdev)1774 static inline int sync_blockdev(struct block_device *bdev)
1775 {
1776 	return 0;
1777 }
sync_blockdev_nowait(struct block_device * bdev)1778 static inline int sync_blockdev_nowait(struct block_device *bdev)
1779 {
1780 	return 0;
1781 }
sync_bdevs(bool wait)1782 static inline void sync_bdevs(bool wait)
1783 {
1784 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1785 static inline void bdev_statx(struct path *path, struct kstat *stat,
1786 				u32 request_mask)
1787 {
1788 }
printk_all_partitions(void)1789 static inline void printk_all_partitions(void)
1790 {
1791 }
early_lookup_bdev(const char * pathname,dev_t * dev)1792 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1793 {
1794 	return -EINVAL;
1795 }
1796 #endif /* CONFIG_BLOCK */
1797 
1798 int bdev_freeze(struct block_device *bdev);
1799 int bdev_thaw(struct block_device *bdev);
1800 void bdev_fput(struct file *bdev_file);
1801 
1802 struct io_comp_batch {
1803 	struct rq_list req_list;
1804 	bool need_ts;
1805 	void (*complete)(struct io_comp_batch *);
1806 };
1807 
bdev_can_atomic_write(struct block_device * bdev)1808 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1809 {
1810 	struct request_queue *bd_queue = bdev->bd_queue;
1811 	struct queue_limits *limits = &bd_queue->limits;
1812 
1813 	if (!limits->atomic_write_unit_min)
1814 		return false;
1815 
1816 	if (bdev_is_partition(bdev)) {
1817 		sector_t bd_start_sect = bdev->bd_start_sect;
1818 		unsigned int alignment =
1819 			max(limits->atomic_write_unit_min,
1820 			    limits->atomic_write_hw_boundary);
1821 
1822 		if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT))
1823 			return false;
1824 	}
1825 
1826 	return true;
1827 }
1828 
1829 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1830 
1831 #endif /* _LINUX_BLKDEV_H */
1832