1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48
49 #include <asm/byteorder.h>
50 #include <uapi/linux/fs.h>
51
52 struct backing_dev_info;
53 struct bdi_writeback;
54 struct bio;
55 struct io_comp_batch;
56 struct export_operations;
57 struct fiemap_extent_info;
58 struct hd_geometry;
59 struct iovec;
60 struct kiocb;
61 struct kobject;
62 struct pipe_inode_info;
63 struct poll_table_struct;
64 struct kstatfs;
65 struct vm_area_struct;
66 struct vfsmount;
67 struct cred;
68 struct swap_info_struct;
69 struct seq_file;
70 struct workqueue_struct;
71 struct iov_iter;
72 struct fscrypt_inode_info;
73 struct fscrypt_operations;
74 struct fsverity_info;
75 struct fsverity_operations;
76 struct fsnotify_mark_connector;
77 struct fsnotify_sb_info;
78 struct fs_context;
79 struct fs_parameter_spec;
80 struct fileattr;
81 struct iomap_ops;
82
83 extern void __init inode_init(void);
84 extern void __init inode_init_early(void);
85 extern void __init files_init(void);
86 extern void __init files_maxfiles_init(void);
87
88 extern unsigned long get_max_files(void);
89 extern unsigned int sysctl_nr_open;
90
91 typedef __kernel_rwf_t rwf_t;
92
93 struct buffer_head;
94 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
95 struct buffer_head *bh_result, int create);
96 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
97 ssize_t bytes, void *private);
98
99 #define MAY_EXEC 0x00000001
100 #define MAY_WRITE 0x00000002
101 #define MAY_READ 0x00000004
102 #define MAY_APPEND 0x00000008
103 #define MAY_ACCESS 0x00000010
104 #define MAY_OPEN 0x00000020
105 #define MAY_CHDIR 0x00000040
106 /* called from RCU mode, don't block */
107 #define MAY_NOT_BLOCK 0x00000080
108
109 /*
110 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
111 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
112 */
113
114 /* file is open for reading */
115 #define FMODE_READ ((__force fmode_t)(1 << 0))
116 /* file is open for writing */
117 #define FMODE_WRITE ((__force fmode_t)(1 << 1))
118 /* file is seekable */
119 #define FMODE_LSEEK ((__force fmode_t)(1 << 2))
120 /* file can be accessed using pread */
121 #define FMODE_PREAD ((__force fmode_t)(1 << 3))
122 /* file can be accessed using pwrite */
123 #define FMODE_PWRITE ((__force fmode_t)(1 << 4))
124 /* File is opened for execution with sys_execve / sys_uselib */
125 #define FMODE_EXEC ((__force fmode_t)(1 << 5))
126 /* File writes are restricted (block device specific) */
127 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6))
128 /* File supports atomic writes */
129 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7))
130
131 /* FMODE_* bit 8 */
132
133 /* 32bit hashes as llseek() offset (for directories) */
134 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9))
135 /* 64bit hashes as llseek() offset (for directories) */
136 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10))
137
138 /*
139 * Don't update ctime and mtime.
140 *
141 * Currently a special hack for the XFS open_by_handle ioctl, but we'll
142 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
143 */
144 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11))
145
146 /* Expect random access pattern */
147 #define FMODE_RANDOM ((__force fmode_t)(1 << 12))
148
149 /* FMODE_* bit 13 */
150
151 /* File is opened with O_PATH; almost nothing can be done with it */
152 #define FMODE_PATH ((__force fmode_t)(1 << 14))
153
154 /* File needs atomic accesses to f_pos */
155 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15))
156 /* Write access to underlying fs */
157 #define FMODE_WRITER ((__force fmode_t)(1 << 16))
158 /* Has read method(s) */
159 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17))
160 /* Has write method(s) */
161 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18))
162
163 #define FMODE_OPENED ((__force fmode_t)(1 << 19))
164 #define FMODE_CREATED ((__force fmode_t)(1 << 20))
165
166 /* File is stream-like */
167 #define FMODE_STREAM ((__force fmode_t)(1 << 21))
168
169 /* File supports DIRECT IO */
170 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22))
171
172 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23))
173
174 /* FMODE_* bit 24 */
175
176 /* File is embedded in backing_file object */
177 #define FMODE_BACKING ((__force fmode_t)(1 << 25))
178
179 /* File was opened by fanotify and shouldn't generate fanotify events */
180 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26))
181
182 /* File is capable of returning -EAGAIN if I/O will block */
183 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27))
184
185 /* File represents mount that needs unmounting */
186 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28))
187
188 /* File does not contribute to nr_files count */
189 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29))
190
191 /*
192 * Attribute flags. These should be or-ed together to figure out what
193 * has been changed!
194 */
195 #define ATTR_MODE (1 << 0)
196 #define ATTR_UID (1 << 1)
197 #define ATTR_GID (1 << 2)
198 #define ATTR_SIZE (1 << 3)
199 #define ATTR_ATIME (1 << 4)
200 #define ATTR_MTIME (1 << 5)
201 #define ATTR_CTIME (1 << 6)
202 #define ATTR_ATIME_SET (1 << 7)
203 #define ATTR_MTIME_SET (1 << 8)
204 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
205 #define ATTR_KILL_SUID (1 << 11)
206 #define ATTR_KILL_SGID (1 << 12)
207 #define ATTR_FILE (1 << 13)
208 #define ATTR_KILL_PRIV (1 << 14)
209 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
210 #define ATTR_TIMES_SET (1 << 16)
211 #define ATTR_TOUCH (1 << 17)
212 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */
213
214 /*
215 * Whiteout is represented by a char device. The following constants define the
216 * mode and device number to use.
217 */
218 #define WHITEOUT_MODE 0
219 #define WHITEOUT_DEV 0
220
221 /*
222 * This is the Inode Attributes structure, used for notify_change(). It
223 * uses the above definitions as flags, to know which values have changed.
224 * Also, in this manner, a Filesystem can look at only the values it cares
225 * about. Basically, these are the attributes that the VFS layer can
226 * request to change from the FS layer.
227 *
228 * Derek Atkins <warlord@MIT.EDU> 94-10-20
229 */
230 struct iattr {
231 unsigned int ia_valid;
232 umode_t ia_mode;
233 /*
234 * The two anonymous unions wrap structures with the same member.
235 *
236 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
237 * are a dedicated type requiring the filesystem to use the dedicated
238 * helpers. Other filesystem can continue to use ia_{g,u}id until they
239 * have been ported.
240 *
241 * They always contain the same value. In other words FS_ALLOW_IDMAP
242 * pass down the same value on idmapped mounts as they would on regular
243 * mounts.
244 */
245 union {
246 kuid_t ia_uid;
247 vfsuid_t ia_vfsuid;
248 };
249 union {
250 kgid_t ia_gid;
251 vfsgid_t ia_vfsgid;
252 };
253 loff_t ia_size;
254 struct timespec64 ia_atime;
255 struct timespec64 ia_mtime;
256 struct timespec64 ia_ctime;
257
258 /*
259 * Not an attribute, but an auxiliary info for filesystems wanting to
260 * implement an ftruncate() like method. NOTE: filesystem should
261 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
262 */
263 struct file *ia_file;
264 };
265
266 /*
267 * Includes for diskquotas.
268 */
269 #include <linux/quota.h>
270
271 /*
272 * Maximum number of layers of fs stack. Needs to be limited to
273 * prevent kernel stack overflow
274 */
275 #define FILESYSTEM_MAX_STACK_DEPTH 2
276
277 /**
278 * enum positive_aop_returns - aop return codes with specific semantics
279 *
280 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
281 * completed, that the page is still locked, and
282 * should be considered active. The VM uses this hint
283 * to return the page to the active list -- it won't
284 * be a candidate for writeback again in the near
285 * future. Other callers must be careful to unlock
286 * the page if they get this return. Returned by
287 * writepage();
288 *
289 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
290 * unlocked it and the page might have been truncated.
291 * The caller should back up to acquiring a new page and
292 * trying again. The aop will be taking reasonable
293 * precautions not to livelock. If the caller held a page
294 * reference, it should drop it before retrying. Returned
295 * by read_folio().
296 *
297 * address_space_operation functions return these large constants to indicate
298 * special semantics to the caller. These are much larger than the bytes in a
299 * page to allow for functions that return the number of bytes operated on in a
300 * given page.
301 */
302
303 enum positive_aop_returns {
304 AOP_WRITEPAGE_ACTIVATE = 0x80000,
305 AOP_TRUNCATED_PAGE = 0x80001,
306 };
307
308 /*
309 * oh the beauties of C type declarations.
310 */
311 struct page;
312 struct address_space;
313 struct writeback_control;
314 struct readahead_control;
315
316 /* Match RWF_* bits to IOCB bits */
317 #define IOCB_HIPRI (__force int) RWF_HIPRI
318 #define IOCB_DSYNC (__force int) RWF_DSYNC
319 #define IOCB_SYNC (__force int) RWF_SYNC
320 #define IOCB_NOWAIT (__force int) RWF_NOWAIT
321 #define IOCB_APPEND (__force int) RWF_APPEND
322 #define IOCB_ATOMIC (__force int) RWF_ATOMIC
323 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE
324
325 /* non-RWF related bits - start at 16 */
326 #define IOCB_EVENTFD (1 << 16)
327 #define IOCB_DIRECT (1 << 17)
328 #define IOCB_WRITE (1 << 18)
329 /* iocb->ki_waitq is valid */
330 #define IOCB_WAITQ (1 << 19)
331 #define IOCB_NOIO (1 << 20)
332 /* can use bio alloc cache */
333 #define IOCB_ALLOC_CACHE (1 << 21)
334 /*
335 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
336 * iocb completion can be passed back to the owner for execution from a safe
337 * context rather than needing to be punted through a workqueue. If this
338 * flag is set, the bio completion handling may set iocb->dio_complete to a
339 * handler function and iocb->private to context information for that handler.
340 * The issuer should call the handler with that context information from task
341 * context to complete the processing of the iocb. Note that while this
342 * provides a task context for the dio_complete() callback, it should only be
343 * used on the completion side for non-IO generating completions. It's fine to
344 * call blocking functions from this callback, but they should not wait for
345 * unrelated IO (like cache flushing, new IO generation, etc).
346 */
347 #define IOCB_DIO_CALLER_COMP (1 << 22)
348 /* kiocb is a read or write operation submitted by fs/aio.c. */
349 #define IOCB_AIO_RW (1 << 23)
350
351 /* for use in trace events */
352 #define TRACE_IOCB_STRINGS \
353 { IOCB_HIPRI, "HIPRI" }, \
354 { IOCB_DSYNC, "DSYNC" }, \
355 { IOCB_SYNC, "SYNC" }, \
356 { IOCB_NOWAIT, "NOWAIT" }, \
357 { IOCB_APPEND, "APPEND" }, \
358 { IOCB_ATOMIC, "ATOMIC" }, \
359 { IOCB_DONTCACHE, "DONTCACHE" }, \
360 { IOCB_EVENTFD, "EVENTFD"}, \
361 { IOCB_DIRECT, "DIRECT" }, \
362 { IOCB_WRITE, "WRITE" }, \
363 { IOCB_WAITQ, "WAITQ" }, \
364 { IOCB_NOIO, "NOIO" }, \
365 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \
366 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }
367
368 struct kiocb {
369 struct file *ki_filp;
370 loff_t ki_pos;
371 void (*ki_complete)(struct kiocb *iocb, long ret);
372 void *private;
373 int ki_flags;
374 u16 ki_ioprio; /* See linux/ioprio.h */
375 union {
376 /*
377 * Only used for async buffered reads, where it denotes the
378 * page waitqueue associated with completing the read. Valid
379 * IFF IOCB_WAITQ is set.
380 */
381 struct wait_page_queue *ki_waitq;
382 /*
383 * Can be used for O_DIRECT IO, where the completion handling
384 * is punted back to the issuer of the IO. May only be set
385 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
386 * must then check for presence of this handler when ki_complete
387 * is invoked. The data passed in to this handler must be
388 * assigned to ->private when dio_complete is assigned.
389 */
390 ssize_t (*dio_complete)(void *data);
391 };
392 };
393
is_sync_kiocb(struct kiocb * kiocb)394 static inline bool is_sync_kiocb(struct kiocb *kiocb)
395 {
396 return kiocb->ki_complete == NULL;
397 }
398
399 struct address_space_operations {
400 int (*writepage)(struct page *page, struct writeback_control *wbc);
401 int (*read_folio)(struct file *, struct folio *);
402
403 /* Write back some dirty pages from this mapping. */
404 int (*writepages)(struct address_space *, struct writeback_control *);
405
406 /* Mark a folio dirty. Return true if this dirtied it */
407 bool (*dirty_folio)(struct address_space *, struct folio *);
408
409 void (*readahead)(struct readahead_control *);
410
411 int (*write_begin)(struct file *, struct address_space *mapping,
412 loff_t pos, unsigned len,
413 struct folio **foliop, void **fsdata);
414 int (*write_end)(struct file *, struct address_space *mapping,
415 loff_t pos, unsigned len, unsigned copied,
416 struct folio *folio, void *fsdata);
417
418 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
419 sector_t (*bmap)(struct address_space *, sector_t);
420 void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
421 bool (*release_folio)(struct folio *, gfp_t);
422 void (*free_folio)(struct folio *folio);
423 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
424 /*
425 * migrate the contents of a folio to the specified target. If
426 * migrate_mode is MIGRATE_ASYNC, it must not block.
427 */
428 int (*migrate_folio)(struct address_space *, struct folio *dst,
429 struct folio *src, enum migrate_mode);
430 int (*launder_folio)(struct folio *);
431 bool (*is_partially_uptodate) (struct folio *, size_t from,
432 size_t count);
433 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
434 int (*error_remove_folio)(struct address_space *, struct folio *);
435
436 /* swapfile support */
437 int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
438 sector_t *span);
439 void (*swap_deactivate)(struct file *file);
440 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
441 };
442
443 extern const struct address_space_operations empty_aops;
444
445 /**
446 * struct address_space - Contents of a cacheable, mappable object.
447 * @host: Owner, either the inode or the block_device.
448 * @i_pages: Cached pages.
449 * @invalidate_lock: Guards coherency between page cache contents and
450 * file offset->disk block mappings in the filesystem during invalidates.
451 * It is also used to block modification of page cache contents through
452 * memory mappings.
453 * @gfp_mask: Memory allocation flags to use for allocating pages.
454 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
455 * @nr_thps: Number of THPs in the pagecache (non-shmem only).
456 * @i_mmap: Tree of private and shared mappings.
457 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
458 * @nrpages: Number of page entries, protected by the i_pages lock.
459 * @writeback_index: Writeback starts here.
460 * @a_ops: Methods.
461 * @flags: Error bits and flags (AS_*).
462 * @wb_err: The most recent error which has occurred.
463 * @i_private_lock: For use by the owner of the address_space.
464 * @i_private_list: For use by the owner of the address_space.
465 * @i_private_data: For use by the owner of the address_space.
466 */
467 struct address_space {
468 struct inode *host;
469 struct xarray i_pages;
470 struct rw_semaphore invalidate_lock;
471 gfp_t gfp_mask;
472 atomic_t i_mmap_writable;
473 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
474 /* number of thp, only for non-shmem files */
475 atomic_t nr_thps;
476 #endif
477 struct rb_root_cached i_mmap;
478 unsigned long nrpages;
479 pgoff_t writeback_index;
480 const struct address_space_operations *a_ops;
481 unsigned long flags;
482 errseq_t wb_err;
483 spinlock_t i_private_lock;
484 struct list_head i_private_list;
485 struct rw_semaphore i_mmap_rwsem;
486 void * i_private_data;
487 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
488 /*
489 * On most architectures that alignment is already the case; but
490 * must be enforced here for CRIS, to let the least significant bit
491 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
492 */
493
494 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
495 #define PAGECACHE_TAG_DIRTY XA_MARK_0
496 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1
497 #define PAGECACHE_TAG_TOWRITE XA_MARK_2
498
499 /*
500 * Returns true if any of the pages in the mapping are marked with the tag.
501 */
mapping_tagged(struct address_space * mapping,xa_mark_t tag)502 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
503 {
504 return xa_marked(&mapping->i_pages, tag);
505 }
506
i_mmap_lock_write(struct address_space * mapping)507 static inline void i_mmap_lock_write(struct address_space *mapping)
508 {
509 down_write(&mapping->i_mmap_rwsem);
510 }
511
i_mmap_trylock_write(struct address_space * mapping)512 static inline int i_mmap_trylock_write(struct address_space *mapping)
513 {
514 return down_write_trylock(&mapping->i_mmap_rwsem);
515 }
516
i_mmap_unlock_write(struct address_space * mapping)517 static inline void i_mmap_unlock_write(struct address_space *mapping)
518 {
519 up_write(&mapping->i_mmap_rwsem);
520 }
521
i_mmap_trylock_read(struct address_space * mapping)522 static inline int i_mmap_trylock_read(struct address_space *mapping)
523 {
524 return down_read_trylock(&mapping->i_mmap_rwsem);
525 }
526
i_mmap_lock_read(struct address_space * mapping)527 static inline void i_mmap_lock_read(struct address_space *mapping)
528 {
529 down_read(&mapping->i_mmap_rwsem);
530 }
531
i_mmap_unlock_read(struct address_space * mapping)532 static inline void i_mmap_unlock_read(struct address_space *mapping)
533 {
534 up_read(&mapping->i_mmap_rwsem);
535 }
536
i_mmap_assert_locked(struct address_space * mapping)537 static inline void i_mmap_assert_locked(struct address_space *mapping)
538 {
539 lockdep_assert_held(&mapping->i_mmap_rwsem);
540 }
541
i_mmap_assert_write_locked(struct address_space * mapping)542 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
543 {
544 lockdep_assert_held_write(&mapping->i_mmap_rwsem);
545 }
546
547 /*
548 * Might pages of this file be mapped into userspace?
549 */
mapping_mapped(struct address_space * mapping)550 static inline int mapping_mapped(struct address_space *mapping)
551 {
552 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
553 }
554
555 /*
556 * Might pages of this file have been modified in userspace?
557 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
558 * marks vma as VM_SHARED if it is shared, and the file was opened for
559 * writing i.e. vma may be mprotected writable even if now readonly.
560 *
561 * If i_mmap_writable is negative, no new writable mappings are allowed. You
562 * can only deny writable mappings, if none exists right now.
563 */
mapping_writably_mapped(struct address_space * mapping)564 static inline int mapping_writably_mapped(struct address_space *mapping)
565 {
566 return atomic_read(&mapping->i_mmap_writable) > 0;
567 }
568
mapping_map_writable(struct address_space * mapping)569 static inline int mapping_map_writable(struct address_space *mapping)
570 {
571 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
572 0 : -EPERM;
573 }
574
mapping_unmap_writable(struct address_space * mapping)575 static inline void mapping_unmap_writable(struct address_space *mapping)
576 {
577 atomic_dec(&mapping->i_mmap_writable);
578 }
579
mapping_deny_writable(struct address_space * mapping)580 static inline int mapping_deny_writable(struct address_space *mapping)
581 {
582 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
583 0 : -EBUSY;
584 }
585
mapping_allow_writable(struct address_space * mapping)586 static inline void mapping_allow_writable(struct address_space *mapping)
587 {
588 atomic_inc(&mapping->i_mmap_writable);
589 }
590
591 /*
592 * Use sequence counter to get consistent i_size on 32-bit processors.
593 */
594 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
595 #include <linux/seqlock.h>
596 #define __NEED_I_SIZE_ORDERED
597 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
598 #else
599 #define i_size_ordered_init(inode) do { } while (0)
600 #endif
601
602 struct posix_acl;
603 #define ACL_NOT_CACHED ((void *)(-1))
604 /*
605 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
606 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU
607 * mode with the LOOKUP_RCU flag.
608 */
609 #define ACL_DONT_CACHE ((void *)(-3))
610
611 static inline struct posix_acl *
uncached_acl_sentinel(struct task_struct * task)612 uncached_acl_sentinel(struct task_struct *task)
613 {
614 return (void *)task + 1;
615 }
616
617 static inline bool
is_uncached_acl(struct posix_acl * acl)618 is_uncached_acl(struct posix_acl *acl)
619 {
620 return (long)acl & 1;
621 }
622
623 #define IOP_FASTPERM 0x0001
624 #define IOP_LOOKUP 0x0002
625 #define IOP_NOFOLLOW 0x0004
626 #define IOP_XATTR 0x0008
627 #define IOP_DEFAULT_READLINK 0x0010
628
629 /*
630 * Keep mostly read-only and often accessed (especially for
631 * the RCU path lookup and 'stat' data) fields at the beginning
632 * of the 'struct inode'
633 */
634 struct inode {
635 umode_t i_mode;
636 unsigned short i_opflags;
637 kuid_t i_uid;
638 kgid_t i_gid;
639 unsigned int i_flags;
640
641 #ifdef CONFIG_FS_POSIX_ACL
642 struct posix_acl *i_acl;
643 struct posix_acl *i_default_acl;
644 #endif
645
646 const struct inode_operations *i_op;
647 struct super_block *i_sb;
648 struct address_space *i_mapping;
649
650 #ifdef CONFIG_SECURITY
651 void *i_security;
652 #endif
653
654 /* Stat data, not accessed from path walking */
655 unsigned long i_ino;
656 /*
657 * Filesystems may only read i_nlink directly. They shall use the
658 * following functions for modification:
659 *
660 * (set|clear|inc|drop)_nlink
661 * inode_(inc|dec)_link_count
662 */
663 union {
664 const unsigned int i_nlink;
665 unsigned int __i_nlink;
666 };
667 dev_t i_rdev;
668 loff_t i_size;
669 time64_t i_atime_sec;
670 time64_t i_mtime_sec;
671 time64_t i_ctime_sec;
672 u32 i_atime_nsec;
673 u32 i_mtime_nsec;
674 u32 i_ctime_nsec;
675 u32 i_generation;
676 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
677 unsigned short i_bytes;
678 u8 i_blkbits;
679 enum rw_hint i_write_hint;
680 blkcnt_t i_blocks;
681
682 #ifdef __NEED_I_SIZE_ORDERED
683 seqcount_t i_size_seqcount;
684 #endif
685
686 /* Misc */
687 u32 i_state;
688 /* 32-bit hole */
689 struct rw_semaphore i_rwsem;
690
691 unsigned long dirtied_when; /* jiffies of first dirtying */
692 unsigned long dirtied_time_when;
693
694 struct hlist_node i_hash;
695 struct list_head i_io_list; /* backing dev IO list */
696 #ifdef CONFIG_CGROUP_WRITEBACK
697 struct bdi_writeback *i_wb; /* the associated cgroup wb */
698
699 /* foreign inode detection, see wbc_detach_inode() */
700 int i_wb_frn_winner;
701 u16 i_wb_frn_avg_time;
702 u16 i_wb_frn_history;
703 #endif
704 struct list_head i_lru; /* inode LRU list */
705 struct list_head i_sb_list;
706 struct list_head i_wb_list; /* backing dev writeback list */
707 union {
708 struct hlist_head i_dentry;
709 struct rcu_head i_rcu;
710 };
711 atomic64_t i_version;
712 atomic64_t i_sequence; /* see futex */
713 atomic_t i_count;
714 atomic_t i_dio_count;
715 atomic_t i_writecount;
716 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
717 atomic_t i_readcount; /* struct files open RO */
718 #endif
719 union {
720 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
721 void (*free_inode)(struct inode *);
722 };
723 struct file_lock_context *i_flctx;
724 struct address_space i_data;
725 struct list_head i_devices;
726 union {
727 struct pipe_inode_info *i_pipe;
728 struct cdev *i_cdev;
729 char *i_link;
730 unsigned i_dir_seq;
731 };
732
733
734 #ifdef CONFIG_FSNOTIFY
735 __u32 i_fsnotify_mask; /* all events this inode cares about */
736 /* 32-bit hole reserved for expanding i_fsnotify_mask */
737 struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
738 #endif
739
740 #ifdef CONFIG_FS_ENCRYPTION
741 struct fscrypt_inode_info *i_crypt_info;
742 #endif
743
744 #ifdef CONFIG_FS_VERITY
745 struct fsverity_info *i_verity_info;
746 #endif
747
748 void *i_private; /* fs or device private pointer */
749 } __randomize_layout;
750
751 /*
752 * Get bit address from inode->i_state to use with wait_var_event()
753 * infrastructre.
754 */
755 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
756
757 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
758 struct inode *inode, u32 bit);
759
inode_wake_up_bit(struct inode * inode,u32 bit)760 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
761 {
762 /* Caller is responsible for correct memory barriers. */
763 wake_up_var(inode_state_wait_address(inode, bit));
764 }
765
766 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
767
i_blocksize(const struct inode * node)768 static inline unsigned int i_blocksize(const struct inode *node)
769 {
770 return (1 << node->i_blkbits);
771 }
772
inode_unhashed(struct inode * inode)773 static inline int inode_unhashed(struct inode *inode)
774 {
775 return hlist_unhashed(&inode->i_hash);
776 }
777
778 /*
779 * __mark_inode_dirty expects inodes to be hashed. Since we don't
780 * want special inodes in the fileset inode space, we make them
781 * appear hashed, but do not put on any lists. hlist_del()
782 * will work fine and require no locking.
783 */
inode_fake_hash(struct inode * inode)784 static inline void inode_fake_hash(struct inode *inode)
785 {
786 hlist_add_fake(&inode->i_hash);
787 }
788
789 /*
790 * inode->i_mutex nesting subclasses for the lock validator:
791 *
792 * 0: the object of the current VFS operation
793 * 1: parent
794 * 2: child/target
795 * 3: xattr
796 * 4: second non-directory
797 * 5: second parent (when locking independent directories in rename)
798 *
799 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
800 * non-directories at once.
801 *
802 * The locking order between these classes is
803 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
804 */
805 enum inode_i_mutex_lock_class
806 {
807 I_MUTEX_NORMAL,
808 I_MUTEX_PARENT,
809 I_MUTEX_CHILD,
810 I_MUTEX_XATTR,
811 I_MUTEX_NONDIR2,
812 I_MUTEX_PARENT2,
813 };
814
inode_lock(struct inode * inode)815 static inline void inode_lock(struct inode *inode)
816 {
817 down_write(&inode->i_rwsem);
818 }
819
inode_unlock(struct inode * inode)820 static inline void inode_unlock(struct inode *inode)
821 {
822 up_write(&inode->i_rwsem);
823 }
824
inode_lock_shared(struct inode * inode)825 static inline void inode_lock_shared(struct inode *inode)
826 {
827 down_read(&inode->i_rwsem);
828 }
829
inode_unlock_shared(struct inode * inode)830 static inline void inode_unlock_shared(struct inode *inode)
831 {
832 up_read(&inode->i_rwsem);
833 }
834
inode_trylock(struct inode * inode)835 static inline int inode_trylock(struct inode *inode)
836 {
837 return down_write_trylock(&inode->i_rwsem);
838 }
839
inode_trylock_shared(struct inode * inode)840 static inline int inode_trylock_shared(struct inode *inode)
841 {
842 return down_read_trylock(&inode->i_rwsem);
843 }
844
inode_is_locked(struct inode * inode)845 static inline int inode_is_locked(struct inode *inode)
846 {
847 return rwsem_is_locked(&inode->i_rwsem);
848 }
849
inode_lock_nested(struct inode * inode,unsigned subclass)850 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
851 {
852 down_write_nested(&inode->i_rwsem, subclass);
853 }
854
inode_lock_shared_nested(struct inode * inode,unsigned subclass)855 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
856 {
857 down_read_nested(&inode->i_rwsem, subclass);
858 }
859
filemap_invalidate_lock(struct address_space * mapping)860 static inline void filemap_invalidate_lock(struct address_space *mapping)
861 {
862 down_write(&mapping->invalidate_lock);
863 }
864
filemap_invalidate_unlock(struct address_space * mapping)865 static inline void filemap_invalidate_unlock(struct address_space *mapping)
866 {
867 up_write(&mapping->invalidate_lock);
868 }
869
filemap_invalidate_lock_shared(struct address_space * mapping)870 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
871 {
872 down_read(&mapping->invalidate_lock);
873 }
874
filemap_invalidate_trylock_shared(struct address_space * mapping)875 static inline int filemap_invalidate_trylock_shared(
876 struct address_space *mapping)
877 {
878 return down_read_trylock(&mapping->invalidate_lock);
879 }
880
filemap_invalidate_unlock_shared(struct address_space * mapping)881 static inline void filemap_invalidate_unlock_shared(
882 struct address_space *mapping)
883 {
884 up_read(&mapping->invalidate_lock);
885 }
886
887 void lock_two_nondirectories(struct inode *, struct inode*);
888 void unlock_two_nondirectories(struct inode *, struct inode*);
889
890 void filemap_invalidate_lock_two(struct address_space *mapping1,
891 struct address_space *mapping2);
892 void filemap_invalidate_unlock_two(struct address_space *mapping1,
893 struct address_space *mapping2);
894
895
896 /*
897 * NOTE: in a 32bit arch with a preemptable kernel and
898 * an UP compile the i_size_read/write must be atomic
899 * with respect to the local cpu (unlike with preempt disabled),
900 * but they don't need to be atomic with respect to other cpus like in
901 * true SMP (so they need either to either locally disable irq around
902 * the read or for example on x86 they can be still implemented as a
903 * cmpxchg8b without the need of the lock prefix). For SMP compiles
904 * and 64bit archs it makes no difference if preempt is enabled or not.
905 */
i_size_read(const struct inode * inode)906 static inline loff_t i_size_read(const struct inode *inode)
907 {
908 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
909 loff_t i_size;
910 unsigned int seq;
911
912 do {
913 seq = read_seqcount_begin(&inode->i_size_seqcount);
914 i_size = inode->i_size;
915 } while (read_seqcount_retry(&inode->i_size_seqcount, seq));
916 return i_size;
917 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
918 loff_t i_size;
919
920 preempt_disable();
921 i_size = inode->i_size;
922 preempt_enable();
923 return i_size;
924 #else
925 /* Pairs with smp_store_release() in i_size_write() */
926 return smp_load_acquire(&inode->i_size);
927 #endif
928 }
929
930 /*
931 * NOTE: unlike i_size_read(), i_size_write() does need locking around it
932 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
933 * can be lost, resulting in subsequent i_size_read() calls spinning forever.
934 */
i_size_write(struct inode * inode,loff_t i_size)935 static inline void i_size_write(struct inode *inode, loff_t i_size)
936 {
937 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
938 preempt_disable();
939 write_seqcount_begin(&inode->i_size_seqcount);
940 inode->i_size = i_size;
941 write_seqcount_end(&inode->i_size_seqcount);
942 preempt_enable();
943 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
944 preempt_disable();
945 inode->i_size = i_size;
946 preempt_enable();
947 #else
948 /*
949 * Pairs with smp_load_acquire() in i_size_read() to ensure
950 * changes related to inode size (such as page contents) are
951 * visible before we see the changed inode size.
952 */
953 smp_store_release(&inode->i_size, i_size);
954 #endif
955 }
956
iminor(const struct inode * inode)957 static inline unsigned iminor(const struct inode *inode)
958 {
959 return MINOR(inode->i_rdev);
960 }
961
imajor(const struct inode * inode)962 static inline unsigned imajor(const struct inode *inode)
963 {
964 return MAJOR(inode->i_rdev);
965 }
966
967 struct fown_struct {
968 struct file *file; /* backpointer for security modules */
969 rwlock_t lock; /* protects pid, uid, euid fields */
970 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
971 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
972 kuid_t uid, euid; /* uid/euid of process setting the owner */
973 int signum; /* posix.1b rt signal to be delivered on IO */
974 };
975
976 /**
977 * struct file_ra_state - Track a file's readahead state.
978 * @start: Where the most recent readahead started.
979 * @size: Number of pages read in the most recent readahead.
980 * @async_size: Numer of pages that were/are not needed immediately
981 * and so were/are genuinely "ahead". Start next readahead when
982 * the first of these pages is accessed.
983 * @ra_pages: Maximum size of a readahead request, copied from the bdi.
984 * @mmap_miss: How many mmap accesses missed in the page cache.
985 * @prev_pos: The last byte in the most recent read request.
986 *
987 * When this structure is passed to ->readahead(), the "most recent"
988 * readahead means the current readahead.
989 */
990 struct file_ra_state {
991 pgoff_t start;
992 unsigned int size;
993 unsigned int async_size;
994 unsigned int ra_pages;
995 unsigned int mmap_miss;
996 loff_t prev_pos;
997 };
998
999 /*
1000 * Check if @index falls in the readahead windows.
1001 */
ra_has_index(struct file_ra_state * ra,pgoff_t index)1002 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1003 {
1004 return (index >= ra->start &&
1005 index < ra->start + ra->size);
1006 }
1007
1008 /**
1009 * struct file - Represents a file
1010 * @f_count: reference count
1011 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1012 * @f_mode: FMODE_* flags often used in hotpaths
1013 * @f_op: file operations
1014 * @f_mapping: Contents of a cacheable, mappable object.
1015 * @private_data: filesystem or driver specific data
1016 * @f_inode: cached inode
1017 * @f_flags: file flags
1018 * @f_iocb_flags: iocb flags
1019 * @f_cred: stashed credentials of creator/opener
1020 * @f_path: path of the file
1021 * @f_pos_lock: lock protecting file position
1022 * @f_pipe: specific to pipes
1023 * @f_pos: file position
1024 * @f_security: LSM security context of this file
1025 * @f_owner: file owner
1026 * @f_wb_err: writeback error
1027 * @f_sb_err: per sb writeback errors
1028 * @f_ep: link of all epoll hooks for this file
1029 * @f_task_work: task work entry point
1030 * @f_llist: work queue entrypoint
1031 * @f_ra: file's readahead state
1032 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1033 */
1034 struct file {
1035 atomic_long_t f_count;
1036 spinlock_t f_lock;
1037 fmode_t f_mode;
1038 const struct file_operations *f_op;
1039 struct address_space *f_mapping;
1040 void *private_data;
1041 struct inode *f_inode;
1042 unsigned int f_flags;
1043 unsigned int f_iocb_flags;
1044 const struct cred *f_cred;
1045 /* --- cacheline 1 boundary (64 bytes) --- */
1046 struct path f_path;
1047 union {
1048 /* regular files (with FMODE_ATOMIC_POS) and directories */
1049 struct mutex f_pos_lock;
1050 /* pipes */
1051 u64 f_pipe;
1052 };
1053 loff_t f_pos;
1054 #ifdef CONFIG_SECURITY
1055 void *f_security;
1056 #endif
1057 /* --- cacheline 2 boundary (128 bytes) --- */
1058 struct fown_struct *f_owner;
1059 errseq_t f_wb_err;
1060 errseq_t f_sb_err;
1061 #ifdef CONFIG_EPOLL
1062 struct hlist_head *f_ep;
1063 #endif
1064 union {
1065 struct callback_head f_task_work;
1066 struct llist_node f_llist;
1067 struct file_ra_state f_ra;
1068 freeptr_t f_freeptr;
1069 };
1070 /* --- cacheline 3 boundary (192 bytes) --- */
1071
1072 ANDROID_KABI_RESERVE(1);
1073 ANDROID_KABI_RESERVE(2);
1074 } __randomize_layout
1075 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
1076
1077 struct file_handle {
1078 __u32 handle_bytes;
1079 int handle_type;
1080 /* file identifier */
1081 unsigned char f_handle[] __counted_by(handle_bytes);
1082 };
1083
get_file(struct file * f)1084 static inline struct file *get_file(struct file *f)
1085 {
1086 long prior = atomic_long_fetch_inc_relaxed(&f->f_count);
1087 WARN_ONCE(!prior, "struct file::f_count incremented from zero; use-after-free condition present!\n");
1088 return f;
1089 }
1090
1091 struct file *get_file_rcu(struct file __rcu **f);
1092 struct file *get_file_active(struct file **f);
1093
1094 #define file_count(x) atomic_long_read(&(x)->f_count)
1095
1096 #define MAX_NON_LFS ((1UL<<31) - 1)
1097
1098 /* Page cache limit. The filesystems should put that into their s_maxbytes
1099 limits, otherwise bad things can happen in VM. */
1100 #if BITS_PER_LONG==32
1101 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
1102 #elif BITS_PER_LONG==64
1103 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
1104 #endif
1105
1106 /* legacy typedef, should eventually be removed */
1107 typedef void *fl_owner_t;
1108
1109 struct file_lock;
1110 struct file_lease;
1111
1112 /* The following constant reflects the upper bound of the file/locking space */
1113 #ifndef OFFSET_MAX
1114 #define OFFSET_MAX type_max(loff_t)
1115 #define OFFT_OFFSET_MAX type_max(off_t)
1116 #endif
1117
1118 int file_f_owner_allocate(struct file *file);
file_f_owner(const struct file * file)1119 static inline struct fown_struct *file_f_owner(const struct file *file)
1120 {
1121 return READ_ONCE(file->f_owner);
1122 }
1123
1124 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1125
file_inode(const struct file * f)1126 static inline struct inode *file_inode(const struct file *f)
1127 {
1128 return f->f_inode;
1129 }
1130
1131 /*
1132 * file_dentry() is a relic from the days that overlayfs was using files with a
1133 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1134 * In those days, file_dentry() was needed to get the underlying fs dentry that
1135 * matches f_inode.
1136 * Files with "fake" path should not exist nowadays, so use an assertion to make
1137 * sure that file_dentry() was not papering over filesystem bugs.
1138 */
file_dentry(const struct file * file)1139 static inline struct dentry *file_dentry(const struct file *file)
1140 {
1141 struct dentry *dentry = file->f_path.dentry;
1142
1143 WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1144 return dentry;
1145 }
1146
1147 struct fasync_struct {
1148 rwlock_t fa_lock;
1149 int magic;
1150 int fa_fd;
1151 struct fasync_struct *fa_next; /* singly linked list */
1152 struct file *fa_file;
1153 struct rcu_head fa_rcu;
1154 };
1155
1156 #define FASYNC_MAGIC 0x4601
1157
1158 /* SMP safe fasync helpers: */
1159 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1160 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1161 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1162 extern struct fasync_struct *fasync_alloc(void);
1163 extern void fasync_free(struct fasync_struct *);
1164
1165 /* can be called from interrupts */
1166 extern void kill_fasync(struct fasync_struct **, int, int);
1167
1168 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1169 extern int f_setown(struct file *filp, int who, int force);
1170 extern void f_delown(struct file *filp);
1171 extern pid_t f_getown(struct file *filp);
1172 extern int send_sigurg(struct file *file);
1173
1174 /*
1175 * sb->s_flags. Note that these mirror the equivalent MS_* flags where
1176 * represented in both.
1177 */
1178 #define SB_RDONLY BIT(0) /* Mount read-only */
1179 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
1180 #define SB_NODEV BIT(2) /* Disallow access to device special files */
1181 #define SB_NOEXEC BIT(3) /* Disallow program execution */
1182 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
1183 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
1184 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
1185 #define SB_NOATIME BIT(10) /* Do not update access times. */
1186 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */
1187 #define SB_SILENT BIT(15)
1188 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */
1189 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
1190 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
1191 #define SB_I_VERSION BIT(23) /* Update inode I_version field */
1192 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
1193
1194 /* These sb flags are internal to the kernel */
1195 #define SB_DEAD BIT(21)
1196 #define SB_DYING BIT(24)
1197 #define SB_SUBMOUNT BIT(26)
1198 #define SB_FORCE BIT(27)
1199 #define SB_NOSEC BIT(28)
1200 #define SB_BORN BIT(29)
1201 #define SB_ACTIVE BIT(30)
1202 #define SB_NOUSER BIT(31)
1203
1204 /* These flags relate to encoding and casefolding */
1205 #define SB_ENC_STRICT_MODE_FL (1 << 0)
1206 #define SB_ENC_NO_COMPAT_FALLBACK_FL (1 << 1)
1207
1208 #define sb_has_strict_encoding(sb) \
1209 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1210
1211 #if IS_ENABLED(CONFIG_UNICODE)
1212 #define sb_no_casefold_compat_fallback(sb) \
1213 (sb->s_encoding_flags & SB_ENC_NO_COMPAT_FALLBACK_FL)
1214 #else
1215 #define sb_no_casefold_compat_fallback(sb) (1)
1216 #endif
1217
1218 /*
1219 * Umount options
1220 */
1221
1222 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
1223 #define MNT_DETACH 0x00000002 /* Just detach from the tree */
1224 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */
1225 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
1226 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
1227
1228 /* sb->s_iflags */
1229 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
1230 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
1231 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
1232 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
1233
1234 /* sb->s_iflags to limit user namespace mounts */
1235 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
1236 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
1237 #define SB_I_UNTRUSTED_MOUNTER 0x00000040
1238 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080
1239
1240 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
1241 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
1242 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1243 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
1244 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */
1245 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */
1246
1247 /* Possible states of 'frozen' field */
1248 enum {
1249 SB_UNFROZEN = 0, /* FS is unfrozen */
1250 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
1251 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
1252 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
1253 * internal threads if needed) */
1254 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
1255 };
1256
1257 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1258
1259 struct sb_writers {
1260 unsigned short frozen; /* Is sb frozen? */
1261 int freeze_kcount; /* How many kernel freeze requests? */
1262 int freeze_ucount; /* How many userspace freeze requests? */
1263 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
1264 };
1265
1266 struct super_block {
1267 struct list_head s_list; /* Keep this first */
1268 dev_t s_dev; /* search index; _not_ kdev_t */
1269 unsigned char s_blocksize_bits;
1270 unsigned long s_blocksize;
1271 loff_t s_maxbytes; /* Max file size */
1272 struct file_system_type *s_type;
1273 const struct super_operations *s_op;
1274 const struct dquot_operations *dq_op;
1275 const struct quotactl_ops *s_qcop;
1276 const struct export_operations *s_export_op;
1277 unsigned long s_flags;
1278 unsigned long s_iflags; /* internal SB_I_* flags */
1279 unsigned long s_magic;
1280 struct dentry *s_root;
1281 struct rw_semaphore s_umount;
1282 int s_count;
1283 atomic_t s_active;
1284 #ifdef CONFIG_SECURITY
1285 void *s_security;
1286 #endif
1287 const struct xattr_handler * const *s_xattr;
1288 #ifdef CONFIG_FS_ENCRYPTION
1289 const struct fscrypt_operations *s_cop;
1290 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
1291 #endif
1292 #ifdef CONFIG_FS_VERITY
1293 const struct fsverity_operations *s_vop;
1294 #endif
1295 #if IS_ENABLED(CONFIG_UNICODE)
1296 struct unicode_map *s_encoding;
1297 __u16 s_encoding_flags;
1298 #endif
1299 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
1300 struct list_head s_mounts; /* list of mounts; _not_ for fs use */
1301 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */
1302 struct file *s_bdev_file;
1303 struct backing_dev_info *s_bdi;
1304 struct mtd_info *s_mtd;
1305 struct hlist_node s_instances;
1306 unsigned int s_quota_types; /* Bitmask of supported quota types */
1307 struct quota_info s_dquot; /* Diskquota specific options */
1308
1309 struct sb_writers s_writers;
1310
1311 /*
1312 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1313 * s_fsnotify_info together for cache efficiency. They are frequently
1314 * accessed and rarely modified.
1315 */
1316 void *s_fs_info; /* Filesystem private info */
1317
1318 /* Granularity of c/m/atime in ns (cannot be worse than a second) */
1319 u32 s_time_gran;
1320 /* Time limits for c/m/atime in seconds */
1321 time64_t s_time_min;
1322 time64_t s_time_max;
1323 #ifdef CONFIG_FSNOTIFY
1324 u32 s_fsnotify_mask;
1325 struct fsnotify_sb_info *s_fsnotify_info;
1326 #endif
1327
1328 /*
1329 * q: why are s_id and s_sysfs_name not the same? both are human
1330 * readable strings that identify the filesystem
1331 * a: s_id is allowed to change at runtime; it's used in log messages,
1332 * and we want to when a device starts out as single device (s_id is dev
1333 * name) but then a device is hot added and we have to switch to
1334 * identifying it by UUID
1335 * but s_sysfs_name is a handle for programmatic access, and can't
1336 * change at runtime
1337 */
1338 char s_id[32]; /* Informational name */
1339 uuid_t s_uuid; /* UUID */
1340 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */
1341
1342 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1343 char s_sysfs_name[UUID_STRING_LEN + 1];
1344
1345 unsigned int s_max_links;
1346
1347 /*
1348 * The next field is for VFS *only*. No filesystems have any business
1349 * even looking at it. You had been warned.
1350 */
1351 struct mutex s_vfs_rename_mutex; /* Kludge */
1352
1353 /*
1354 * Filesystem subtype. If non-empty the filesystem type field
1355 * in /proc/mounts will be "type.subtype"
1356 */
1357 const char *s_subtype;
1358
1359 const struct dentry_operations *s_d_op; /* default d_op for dentries */
1360
1361 /*
1362 * Saved pool identifier for cleancache (-1 means none)
1363 */
1364 int cleancache_poolid;
1365
1366 struct shrinker *s_shrink; /* per-sb shrinker handle */
1367
1368 /* Number of inodes with nlink == 0 but still referenced */
1369 atomic_long_t s_remove_count;
1370
1371 /* Read-only state of the superblock is being changed */
1372 int s_readonly_remount;
1373
1374 /* per-sb errseq_t for reporting writeback errors via syncfs */
1375 errseq_t s_wb_err;
1376
1377 /* AIO completions deferred from interrupt context */
1378 struct workqueue_struct *s_dio_done_wq;
1379 struct hlist_head s_pins;
1380
1381 /*
1382 * Owning user namespace and default context in which to
1383 * interpret filesystem uids, gids, quotas, device nodes,
1384 * xattrs and security labels.
1385 */
1386 struct user_namespace *s_user_ns;
1387
1388 /*
1389 * The list_lru structure is essentially just a pointer to a table
1390 * of per-node lru lists, each of which has its own spinlock.
1391 * There is no need to put them into separate cachelines.
1392 */
1393 struct list_lru s_dentry_lru;
1394 struct list_lru s_inode_lru;
1395 struct rcu_head rcu;
1396 struct work_struct destroy_work;
1397
1398 struct mutex s_sync_lock; /* sync serialisation lock */
1399
1400 /*
1401 * Indicates how deep in a filesystem stack this SB is
1402 */
1403 int s_stack_depth;
1404
1405 /* s_inode_list_lock protects s_inodes */
1406 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
1407 struct list_head s_inodes; /* all inodes */
1408
1409 spinlock_t s_inode_wblist_lock;
1410 struct list_head s_inodes_wb; /* writeback inodes */
1411 } __randomize_layout;
1412
i_user_ns(const struct inode * inode)1413 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1414 {
1415 return inode->i_sb->s_user_ns;
1416 }
1417
1418 /* Helper functions so that in most cases filesystems will
1419 * not need to deal directly with kuid_t and kgid_t and can
1420 * instead deal with the raw numeric values that are stored
1421 * in the filesystem.
1422 */
i_uid_read(const struct inode * inode)1423 static inline uid_t i_uid_read(const struct inode *inode)
1424 {
1425 return from_kuid(i_user_ns(inode), inode->i_uid);
1426 }
1427
i_gid_read(const struct inode * inode)1428 static inline gid_t i_gid_read(const struct inode *inode)
1429 {
1430 return from_kgid(i_user_ns(inode), inode->i_gid);
1431 }
1432
i_uid_write(struct inode * inode,uid_t uid)1433 static inline void i_uid_write(struct inode *inode, uid_t uid)
1434 {
1435 inode->i_uid = make_kuid(i_user_ns(inode), uid);
1436 }
1437
i_gid_write(struct inode * inode,gid_t gid)1438 static inline void i_gid_write(struct inode *inode, gid_t gid)
1439 {
1440 inode->i_gid = make_kgid(i_user_ns(inode), gid);
1441 }
1442
1443 /**
1444 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1445 * @idmap: idmap of the mount the inode was found from
1446 * @inode: inode to map
1447 *
1448 * Return: whe inode's i_uid mapped down according to @idmap.
1449 * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1450 */
i_uid_into_vfsuid(struct mnt_idmap * idmap,const struct inode * inode)1451 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1452 const struct inode *inode)
1453 {
1454 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1455 }
1456
1457 /**
1458 * i_uid_needs_update - check whether inode's i_uid needs to be updated
1459 * @idmap: idmap of the mount the inode was found from
1460 * @attr: the new attributes of @inode
1461 * @inode: the inode to update
1462 *
1463 * Check whether the $inode's i_uid field needs to be updated taking idmapped
1464 * mounts into account if the filesystem supports it.
1465 *
1466 * Return: true if @inode's i_uid field needs to be updated, false if not.
1467 */
i_uid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1468 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1469 const struct iattr *attr,
1470 const struct inode *inode)
1471 {
1472 return ((attr->ia_valid & ATTR_UID) &&
1473 !vfsuid_eq(attr->ia_vfsuid,
1474 i_uid_into_vfsuid(idmap, inode)));
1475 }
1476
1477 /**
1478 * i_uid_update - update @inode's i_uid field
1479 * @idmap: idmap of the mount the inode was found from
1480 * @attr: the new attributes of @inode
1481 * @inode: the inode to update
1482 *
1483 * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1484 * mount into the filesystem kuid.
1485 */
i_uid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1486 static inline void i_uid_update(struct mnt_idmap *idmap,
1487 const struct iattr *attr,
1488 struct inode *inode)
1489 {
1490 if (attr->ia_valid & ATTR_UID)
1491 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1492 attr->ia_vfsuid);
1493 }
1494
1495 /**
1496 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1497 * @idmap: idmap of the mount the inode was found from
1498 * @inode: inode to map
1499 *
1500 * Return: the inode's i_gid mapped down according to @idmap.
1501 * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1502 */
i_gid_into_vfsgid(struct mnt_idmap * idmap,const struct inode * inode)1503 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1504 const struct inode *inode)
1505 {
1506 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1507 }
1508
1509 /**
1510 * i_gid_needs_update - check whether inode's i_gid needs to be updated
1511 * @idmap: idmap of the mount the inode was found from
1512 * @attr: the new attributes of @inode
1513 * @inode: the inode to update
1514 *
1515 * Check whether the $inode's i_gid field needs to be updated taking idmapped
1516 * mounts into account if the filesystem supports it.
1517 *
1518 * Return: true if @inode's i_gid field needs to be updated, false if not.
1519 */
i_gid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1520 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1521 const struct iattr *attr,
1522 const struct inode *inode)
1523 {
1524 return ((attr->ia_valid & ATTR_GID) &&
1525 !vfsgid_eq(attr->ia_vfsgid,
1526 i_gid_into_vfsgid(idmap, inode)));
1527 }
1528
1529 /**
1530 * i_gid_update - update @inode's i_gid field
1531 * @idmap: idmap of the mount the inode was found from
1532 * @attr: the new attributes of @inode
1533 * @inode: the inode to update
1534 *
1535 * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1536 * mount into the filesystem kgid.
1537 */
i_gid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1538 static inline void i_gid_update(struct mnt_idmap *idmap,
1539 const struct iattr *attr,
1540 struct inode *inode)
1541 {
1542 if (attr->ia_valid & ATTR_GID)
1543 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1544 attr->ia_vfsgid);
1545 }
1546
1547 /**
1548 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1549 * @inode: inode to initialize
1550 * @idmap: idmap of the mount the inode was found from
1551 *
1552 * Initialize the i_uid field of @inode. If the inode was found/created via
1553 * an idmapped mount map the caller's fsuid according to @idmap.
1554 */
inode_fsuid_set(struct inode * inode,struct mnt_idmap * idmap)1555 static inline void inode_fsuid_set(struct inode *inode,
1556 struct mnt_idmap *idmap)
1557 {
1558 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1559 }
1560
1561 /**
1562 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1563 * @inode: inode to initialize
1564 * @idmap: idmap of the mount the inode was found from
1565 *
1566 * Initialize the i_gid field of @inode. If the inode was found/created via
1567 * an idmapped mount map the caller's fsgid according to @idmap.
1568 */
inode_fsgid_set(struct inode * inode,struct mnt_idmap * idmap)1569 static inline void inode_fsgid_set(struct inode *inode,
1570 struct mnt_idmap *idmap)
1571 {
1572 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1573 }
1574
1575 /**
1576 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1577 * @sb: the superblock we want a mapping in
1578 * @idmap: idmap of the relevant mount
1579 *
1580 * Check whether the caller's fsuid and fsgid have a valid mapping in the
1581 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1582 * the caller's fsuid and fsgid according to the @idmap first.
1583 *
1584 * Return: true if fsuid and fsgid is mapped, false if not.
1585 */
fsuidgid_has_mapping(struct super_block * sb,struct mnt_idmap * idmap)1586 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1587 struct mnt_idmap *idmap)
1588 {
1589 struct user_namespace *fs_userns = sb->s_user_ns;
1590 kuid_t kuid;
1591 kgid_t kgid;
1592
1593 kuid = mapped_fsuid(idmap, fs_userns);
1594 if (!uid_valid(kuid))
1595 return false;
1596 kgid = mapped_fsgid(idmap, fs_userns);
1597 if (!gid_valid(kgid))
1598 return false;
1599 return kuid_has_mapping(fs_userns, kuid) &&
1600 kgid_has_mapping(fs_userns, kgid);
1601 }
1602
1603 struct timespec64 current_time(struct inode *inode);
1604 struct timespec64 inode_set_ctime_current(struct inode *inode);
1605
inode_get_atime_sec(const struct inode * inode)1606 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1607 {
1608 return inode->i_atime_sec;
1609 }
1610
inode_get_atime_nsec(const struct inode * inode)1611 static inline long inode_get_atime_nsec(const struct inode *inode)
1612 {
1613 return inode->i_atime_nsec;
1614 }
1615
inode_get_atime(const struct inode * inode)1616 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1617 {
1618 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode),
1619 .tv_nsec = inode_get_atime_nsec(inode) };
1620
1621 return ts;
1622 }
1623
inode_set_atime_to_ts(struct inode * inode,struct timespec64 ts)1624 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1625 struct timespec64 ts)
1626 {
1627 inode->i_atime_sec = ts.tv_sec;
1628 inode->i_atime_nsec = ts.tv_nsec;
1629 return ts;
1630 }
1631
inode_set_atime(struct inode * inode,time64_t sec,long nsec)1632 static inline struct timespec64 inode_set_atime(struct inode *inode,
1633 time64_t sec, long nsec)
1634 {
1635 struct timespec64 ts = { .tv_sec = sec,
1636 .tv_nsec = nsec };
1637
1638 return inode_set_atime_to_ts(inode, ts);
1639 }
1640
inode_get_mtime_sec(const struct inode * inode)1641 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1642 {
1643 return inode->i_mtime_sec;
1644 }
1645
inode_get_mtime_nsec(const struct inode * inode)1646 static inline long inode_get_mtime_nsec(const struct inode *inode)
1647 {
1648 return inode->i_mtime_nsec;
1649 }
1650
inode_get_mtime(const struct inode * inode)1651 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1652 {
1653 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode),
1654 .tv_nsec = inode_get_mtime_nsec(inode) };
1655 return ts;
1656 }
1657
inode_set_mtime_to_ts(struct inode * inode,struct timespec64 ts)1658 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1659 struct timespec64 ts)
1660 {
1661 inode->i_mtime_sec = ts.tv_sec;
1662 inode->i_mtime_nsec = ts.tv_nsec;
1663 return ts;
1664 }
1665
inode_set_mtime(struct inode * inode,time64_t sec,long nsec)1666 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1667 time64_t sec, long nsec)
1668 {
1669 struct timespec64 ts = { .tv_sec = sec,
1670 .tv_nsec = nsec };
1671 return inode_set_mtime_to_ts(inode, ts);
1672 }
1673
inode_get_ctime_sec(const struct inode * inode)1674 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1675 {
1676 return inode->i_ctime_sec;
1677 }
1678
inode_get_ctime_nsec(const struct inode * inode)1679 static inline long inode_get_ctime_nsec(const struct inode *inode)
1680 {
1681 return inode->i_ctime_nsec;
1682 }
1683
inode_get_ctime(const struct inode * inode)1684 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1685 {
1686 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode),
1687 .tv_nsec = inode_get_ctime_nsec(inode) };
1688
1689 return ts;
1690 }
1691
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)1692 static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode,
1693 struct timespec64 ts)
1694 {
1695 inode->i_ctime_sec = ts.tv_sec;
1696 inode->i_ctime_nsec = ts.tv_nsec;
1697 return ts;
1698 }
1699
1700 /**
1701 * inode_set_ctime - set the ctime in the inode
1702 * @inode: inode in which to set the ctime
1703 * @sec: tv_sec value to set
1704 * @nsec: tv_nsec value to set
1705 *
1706 * Set the ctime in @inode to { @sec, @nsec }
1707 */
inode_set_ctime(struct inode * inode,time64_t sec,long nsec)1708 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1709 time64_t sec, long nsec)
1710 {
1711 struct timespec64 ts = { .tv_sec = sec,
1712 .tv_nsec = nsec };
1713
1714 return inode_set_ctime_to_ts(inode, ts);
1715 }
1716
1717 struct timespec64 simple_inode_init_ts(struct inode *inode);
1718
1719 /*
1720 * Snapshotting support.
1721 */
1722
1723 /*
1724 * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1725 * instead.
1726 */
__sb_end_write(struct super_block * sb,int level)1727 static inline void __sb_end_write(struct super_block *sb, int level)
1728 {
1729 percpu_up_read(sb->s_writers.rw_sem + level-1);
1730 }
1731
__sb_start_write(struct super_block * sb,int level)1732 static inline void __sb_start_write(struct super_block *sb, int level)
1733 {
1734 percpu_down_read(sb->s_writers.rw_sem + level - 1);
1735 }
1736
__sb_start_write_trylock(struct super_block * sb,int level)1737 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1738 {
1739 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1740 }
1741
1742 #define __sb_writers_acquired(sb, lev) \
1743 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1744 #define __sb_writers_release(sb, lev) \
1745 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1746
1747 /**
1748 * __sb_write_started - check if sb freeze level is held
1749 * @sb: the super we write to
1750 * @level: the freeze level
1751 *
1752 * * > 0 - sb freeze level is held
1753 * * 0 - sb freeze level is not held
1754 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1755 */
__sb_write_started(const struct super_block * sb,int level)1756 static inline int __sb_write_started(const struct super_block *sb, int level)
1757 {
1758 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1759 }
1760
1761 /**
1762 * sb_write_started - check if SB_FREEZE_WRITE is held
1763 * @sb: the super we write to
1764 *
1765 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1766 */
sb_write_started(const struct super_block * sb)1767 static inline bool sb_write_started(const struct super_block *sb)
1768 {
1769 return __sb_write_started(sb, SB_FREEZE_WRITE);
1770 }
1771
1772 /**
1773 * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1774 * @sb: the super we write to
1775 *
1776 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1777 */
sb_write_not_started(const struct super_block * sb)1778 static inline bool sb_write_not_started(const struct super_block *sb)
1779 {
1780 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1781 }
1782
1783 /**
1784 * file_write_started - check if SB_FREEZE_WRITE is held
1785 * @file: the file we write to
1786 *
1787 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1788 * May be false positive with !S_ISREG, because file_start_write() has
1789 * no effect on !S_ISREG.
1790 */
file_write_started(const struct file * file)1791 static inline bool file_write_started(const struct file *file)
1792 {
1793 if (!S_ISREG(file_inode(file)->i_mode))
1794 return true;
1795 return sb_write_started(file_inode(file)->i_sb);
1796 }
1797
1798 /**
1799 * file_write_not_started - check if SB_FREEZE_WRITE is not held
1800 * @file: the file we write to
1801 *
1802 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1803 * May be false positive with !S_ISREG, because file_start_write() has
1804 * no effect on !S_ISREG.
1805 */
file_write_not_started(const struct file * file)1806 static inline bool file_write_not_started(const struct file *file)
1807 {
1808 if (!S_ISREG(file_inode(file)->i_mode))
1809 return true;
1810 return sb_write_not_started(file_inode(file)->i_sb);
1811 }
1812
1813 /**
1814 * sb_end_write - drop write access to a superblock
1815 * @sb: the super we wrote to
1816 *
1817 * Decrement number of writers to the filesystem. Wake up possible waiters
1818 * wanting to freeze the filesystem.
1819 */
sb_end_write(struct super_block * sb)1820 static inline void sb_end_write(struct super_block *sb)
1821 {
1822 __sb_end_write(sb, SB_FREEZE_WRITE);
1823 }
1824
1825 /**
1826 * sb_end_pagefault - drop write access to a superblock from a page fault
1827 * @sb: the super we wrote to
1828 *
1829 * Decrement number of processes handling write page fault to the filesystem.
1830 * Wake up possible waiters wanting to freeze the filesystem.
1831 */
sb_end_pagefault(struct super_block * sb)1832 static inline void sb_end_pagefault(struct super_block *sb)
1833 {
1834 __sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1835 }
1836
1837 /**
1838 * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1839 * @sb: the super we wrote to
1840 *
1841 * Decrement fs-internal number of writers to the filesystem. Wake up possible
1842 * waiters wanting to freeze the filesystem.
1843 */
sb_end_intwrite(struct super_block * sb)1844 static inline void sb_end_intwrite(struct super_block *sb)
1845 {
1846 __sb_end_write(sb, SB_FREEZE_FS);
1847 }
1848
1849 /**
1850 * sb_start_write - get write access to a superblock
1851 * @sb: the super we write to
1852 *
1853 * When a process wants to write data or metadata to a file system (i.e. dirty
1854 * a page or an inode), it should embed the operation in a sb_start_write() -
1855 * sb_end_write() pair to get exclusion against file system freezing. This
1856 * function increments number of writers preventing freezing. If the file
1857 * system is already frozen, the function waits until the file system is
1858 * thawed.
1859 *
1860 * Since freeze protection behaves as a lock, users have to preserve
1861 * ordering of freeze protection and other filesystem locks. Generally,
1862 * freeze protection should be the outermost lock. In particular, we have:
1863 *
1864 * sb_start_write
1865 * -> i_mutex (write path, truncate, directory ops, ...)
1866 * -> s_umount (freeze_super, thaw_super)
1867 */
sb_start_write(struct super_block * sb)1868 static inline void sb_start_write(struct super_block *sb)
1869 {
1870 __sb_start_write(sb, SB_FREEZE_WRITE);
1871 }
1872
sb_start_write_trylock(struct super_block * sb)1873 static inline bool sb_start_write_trylock(struct super_block *sb)
1874 {
1875 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1876 }
1877
1878 /**
1879 * sb_start_pagefault - get write access to a superblock from a page fault
1880 * @sb: the super we write to
1881 *
1882 * When a process starts handling write page fault, it should embed the
1883 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1884 * exclusion against file system freezing. This is needed since the page fault
1885 * is going to dirty a page. This function increments number of running page
1886 * faults preventing freezing. If the file system is already frozen, the
1887 * function waits until the file system is thawed.
1888 *
1889 * Since page fault freeze protection behaves as a lock, users have to preserve
1890 * ordering of freeze protection and other filesystem locks. It is advised to
1891 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1892 * handling code implies lock dependency:
1893 *
1894 * mmap_lock
1895 * -> sb_start_pagefault
1896 */
sb_start_pagefault(struct super_block * sb)1897 static inline void sb_start_pagefault(struct super_block *sb)
1898 {
1899 __sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1900 }
1901
1902 /**
1903 * sb_start_intwrite - get write access to a superblock for internal fs purposes
1904 * @sb: the super we write to
1905 *
1906 * This is the third level of protection against filesystem freezing. It is
1907 * free for use by a filesystem. The only requirement is that it must rank
1908 * below sb_start_pagefault.
1909 *
1910 * For example filesystem can call sb_start_intwrite() when starting a
1911 * transaction which somewhat eases handling of freezing for internal sources
1912 * of filesystem changes (internal fs threads, discarding preallocation on file
1913 * close, etc.).
1914 */
sb_start_intwrite(struct super_block * sb)1915 static inline void sb_start_intwrite(struct super_block *sb)
1916 {
1917 __sb_start_write(sb, SB_FREEZE_FS);
1918 }
1919
sb_start_intwrite_trylock(struct super_block * sb)1920 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1921 {
1922 return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1923 }
1924
1925 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1926 const struct inode *inode);
1927
1928 /*
1929 * VFS helper functions..
1930 */
1931 int vfs_create(struct mnt_idmap *, struct inode *,
1932 struct dentry *, umode_t, bool);
1933 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1934 struct dentry *, umode_t);
1935 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1936 umode_t, dev_t);
1937 int vfs_symlink(struct mnt_idmap *, struct inode *,
1938 struct dentry *, const char *);
1939 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1940 struct dentry *, struct inode **);
1941 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1942 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1943 struct inode **);
1944
1945 /**
1946 * struct renamedata - contains all information required for renaming
1947 * @old_mnt_idmap: idmap of the old mount the inode was found from
1948 * @old_dir: parent of source
1949 * @old_dentry: source
1950 * @new_mnt_idmap: idmap of the new mount the inode was found from
1951 * @new_dir: parent of destination
1952 * @new_dentry: destination
1953 * @delegated_inode: returns an inode needing a delegation break
1954 * @flags: rename flags
1955 */
1956 struct renamedata {
1957 struct mnt_idmap *old_mnt_idmap;
1958 struct inode *old_dir;
1959 struct dentry *old_dentry;
1960 struct mnt_idmap *new_mnt_idmap;
1961 struct inode *new_dir;
1962 struct dentry *new_dentry;
1963 struct inode **delegated_inode;
1964 unsigned int flags;
1965 } __randomize_layout;
1966
1967 int vfs_rename(struct renamedata *);
1968
vfs_whiteout(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)1969 static inline int vfs_whiteout(struct mnt_idmap *idmap,
1970 struct inode *dir, struct dentry *dentry)
1971 {
1972 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1973 WHITEOUT_DEV);
1974 }
1975
1976 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1977 const struct path *parentpath,
1978 umode_t mode, int open_flag,
1979 const struct cred *cred);
1980 struct file *kernel_file_open(const struct path *path, int flags,
1981 const struct cred *cred);
1982
1983 int vfs_mkobj(struct dentry *, umode_t,
1984 int (*f)(struct dentry *, umode_t, void *),
1985 void *);
1986
1987 int vfs_fchown(struct file *file, uid_t user, gid_t group);
1988 int vfs_fchmod(struct file *file, umode_t mode);
1989 int vfs_utimes(const struct path *path, struct timespec64 *times);
1990
1991 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1992
1993 #ifdef CONFIG_COMPAT
1994 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
1995 unsigned long arg);
1996 #else
1997 #define compat_ptr_ioctl NULL
1998 #endif
1999
2000 /*
2001 * VFS file helper functions.
2002 */
2003 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2004 const struct inode *dir, umode_t mode);
2005 extern bool may_open_dev(const struct path *path);
2006 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2007 const struct inode *dir, umode_t mode);
2008 bool in_group_or_capable(struct mnt_idmap *idmap,
2009 const struct inode *inode, vfsgid_t vfsgid);
2010
2011 /*
2012 * This is the "filldir" function type, used by readdir() to let
2013 * the kernel specify what kind of dirent layout it wants to have.
2014 * This allows the kernel to read directories into kernel space or
2015 * to have different dirent layouts depending on the binary type.
2016 * Return 'true' to keep going and 'false' if there are no more entries.
2017 */
2018 struct dir_context;
2019 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2020 unsigned);
2021
2022 struct dir_context {
2023 filldir_t actor;
2024 loff_t pos;
2025 };
2026
2027 /*
2028 * These flags let !MMU mmap() govern direct device mapping vs immediate
2029 * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2030 *
2031 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
2032 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
2033 * NOMMU_MAP_READ: Can be mapped for reading
2034 * NOMMU_MAP_WRITE: Can be mapped for writing
2035 * NOMMU_MAP_EXEC: Can be mapped for execution
2036 */
2037 #define NOMMU_MAP_COPY 0x00000001
2038 #define NOMMU_MAP_DIRECT 0x00000008
2039 #define NOMMU_MAP_READ VM_MAYREAD
2040 #define NOMMU_MAP_WRITE VM_MAYWRITE
2041 #define NOMMU_MAP_EXEC VM_MAYEXEC
2042
2043 #define NOMMU_VMFLAGS \
2044 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2045
2046 /*
2047 * These flags control the behavior of the remap_file_range function pointer.
2048 * If it is called with len == 0 that means "remap to end of source file".
2049 * See Documentation/filesystems/vfs.rst for more details about this call.
2050 *
2051 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2052 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2053 */
2054 #define REMAP_FILE_DEDUP (1 << 0)
2055 #define REMAP_FILE_CAN_SHORTEN (1 << 1)
2056
2057 /*
2058 * These flags signal that the caller is ok with altering various aspects of
2059 * the behavior of the remap operation. The changes must be made by the
2060 * implementation; the vfs remap helper functions can take advantage of them.
2061 * Flags in this category exist to preserve the quirky behavior of the hoisted
2062 * btrfs clone/dedupe ioctls.
2063 */
2064 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
2065
2066 /*
2067 * These flags control the behavior of vfs_copy_file_range().
2068 * They are not available to the user via syscall.
2069 *
2070 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2071 */
2072 #define COPY_FILE_SPLICE (1 << 0)
2073
2074 struct iov_iter;
2075 struct io_uring_cmd;
2076 struct offset_ctx;
2077
2078 typedef unsigned int __bitwise fop_flags_t;
2079
2080 struct file_operations {
2081 struct module *owner;
2082 fop_flags_t fop_flags;
2083 loff_t (*llseek) (struct file *, loff_t, int);
2084 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2085 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2086 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2087 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2088 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2089 unsigned int flags);
2090 int (*iterate_shared) (struct file *, struct dir_context *);
2091 __poll_t (*poll) (struct file *, struct poll_table_struct *);
2092 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2093 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2094 int (*mmap) (struct file *, struct vm_area_struct *);
2095 int (*open) (struct inode *, struct file *);
2096 int (*flush) (struct file *, fl_owner_t id);
2097 int (*release) (struct inode *, struct file *);
2098 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2099 int (*fasync) (int, struct file *, int);
2100 int (*lock) (struct file *, int, struct file_lock *);
2101 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2102 int (*check_flags)(int);
2103 int (*flock) (struct file *, int, struct file_lock *);
2104 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2105 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2106 void (*splice_eof)(struct file *file);
2107 int (*setlease)(struct file *, int, struct file_lease **, void **);
2108 long (*fallocate)(struct file *file, int mode, loff_t offset,
2109 loff_t len);
2110 void (*show_fdinfo)(struct seq_file *m, struct file *f);
2111 #ifndef CONFIG_MMU
2112 unsigned (*mmap_capabilities)(struct file *);
2113 #endif
2114 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2115 loff_t, size_t, unsigned int);
2116 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2117 struct file *file_out, loff_t pos_out,
2118 loff_t len, unsigned int remap_flags);
2119 int (*fadvise)(struct file *, loff_t, loff_t, int);
2120 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2121 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2122 unsigned int poll_flags);
2123 } __randomize_layout;
2124
2125 /* Supports async buffered reads */
2126 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0))
2127 /* Supports async buffered writes */
2128 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1))
2129 /* Supports synchronous page faults for mappings */
2130 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2))
2131 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2132 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3))
2133 /* Contains huge pages */
2134 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4))
2135 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2136 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5))
2137 /* File system supports uncached read/write buffered IO */
2138 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7))
2139
2140 /* Wrap a directory iterator that needs exclusive inode access */
2141 int wrap_directory_iterator(struct file *, struct dir_context *,
2142 int (*) (struct file *, struct dir_context *));
2143 #define WRAP_DIR_ITER(x) \
2144 static int shared_##x(struct file *file , struct dir_context *ctx) \
2145 { return wrap_directory_iterator(file, ctx, x); }
2146
2147 struct inode_operations {
2148 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2149 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2150 int (*permission) (struct mnt_idmap *, struct inode *, int);
2151 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2152
2153 int (*readlink) (struct dentry *, char __user *,int);
2154
2155 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2156 umode_t, bool);
2157 int (*link) (struct dentry *,struct inode *,struct dentry *);
2158 int (*unlink) (struct inode *,struct dentry *);
2159 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2160 const char *);
2161 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2162 umode_t);
2163 int (*rmdir) (struct inode *,struct dentry *);
2164 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2165 umode_t,dev_t);
2166 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2167 struct inode *, struct dentry *, unsigned int);
2168 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2169 int (*getattr) (struct mnt_idmap *, const struct path *,
2170 struct kstat *, u32, unsigned int);
2171 ssize_t (*listxattr) (struct dentry *, char *, size_t);
2172 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2173 u64 len);
2174 int (*update_time)(struct inode *, int);
2175 int (*atomic_open)(struct inode *, struct dentry *,
2176 struct file *, unsigned open_flag,
2177 umode_t create_mode);
2178 int (*tmpfile) (struct mnt_idmap *, struct inode *,
2179 struct file *, umode_t);
2180 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2181 int);
2182 int (*set_acl)(struct mnt_idmap *, struct dentry *,
2183 struct posix_acl *, int);
2184 int (*fileattr_set)(struct mnt_idmap *idmap,
2185 struct dentry *dentry, struct fileattr *fa);
2186 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2187 struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2188 } ____cacheline_aligned;
2189
call_mmap(struct file * file,struct vm_area_struct * vma)2190 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2191 {
2192 return file->f_op->mmap(file, vma);
2193 }
2194
2195 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2196 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2197 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2198 loff_t, size_t, unsigned int);
2199 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2200 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2201 struct file *file_out, loff_t pos_out,
2202 loff_t *len, unsigned int remap_flags,
2203 const struct iomap_ops *dax_read_ops);
2204 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2205 struct file *file_out, loff_t pos_out,
2206 loff_t *count, unsigned int remap_flags);
2207 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2208 struct file *file_out, loff_t pos_out,
2209 loff_t len, unsigned int remap_flags);
2210 extern int vfs_dedupe_file_range(struct file *file,
2211 struct file_dedupe_range *same);
2212 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2213 struct file *dst_file, loff_t dst_pos,
2214 loff_t len, unsigned int remap_flags);
2215
2216 /**
2217 * enum freeze_holder - holder of the freeze
2218 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2219 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2220 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2221 *
2222 * Indicate who the owner of the freeze or thaw request is and whether
2223 * the freeze needs to be exclusive or can nest.
2224 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2225 * same holder aren't allowed. It is however allowed to hold a single
2226 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2227 * the same time. This is relied upon by some filesystems during online
2228 * repair or similar.
2229 */
2230 enum freeze_holder {
2231 FREEZE_HOLDER_KERNEL = (1U << 0),
2232 FREEZE_HOLDER_USERSPACE = (1U << 1),
2233 FREEZE_MAY_NEST = (1U << 2),
2234 };
2235
2236 struct super_operations {
2237 struct inode *(*alloc_inode)(struct super_block *sb);
2238 void (*destroy_inode)(struct inode *);
2239 void (*free_inode)(struct inode *);
2240
2241 void (*dirty_inode) (struct inode *, int flags);
2242 int (*write_inode) (struct inode *, struct writeback_control *wbc);
2243 int (*drop_inode) (struct inode *);
2244 void (*evict_inode) (struct inode *);
2245 void (*put_super) (struct super_block *);
2246 int (*sync_fs)(struct super_block *sb, int wait);
2247 int (*freeze_super) (struct super_block *, enum freeze_holder who);
2248 int (*freeze_fs) (struct super_block *);
2249 int (*thaw_super) (struct super_block *, enum freeze_holder who);
2250 int (*unfreeze_fs) (struct super_block *);
2251 int (*statfs) (struct dentry *, struct kstatfs *);
2252 int (*remount_fs) (struct super_block *, int *, char *);
2253 void (*umount_begin) (struct super_block *);
2254
2255 int (*show_options)(struct seq_file *, struct dentry *);
2256 int (*show_devname)(struct seq_file *, struct dentry *);
2257 int (*show_path)(struct seq_file *, struct dentry *);
2258 int (*show_stats)(struct seq_file *, struct dentry *);
2259 #ifdef CONFIG_QUOTA
2260 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2261 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2262 struct dquot __rcu **(*get_dquots)(struct inode *);
2263 #endif
2264 long (*nr_cached_objects)(struct super_block *,
2265 struct shrink_control *);
2266 long (*free_cached_objects)(struct super_block *,
2267 struct shrink_control *);
2268 void (*shutdown)(struct super_block *sb);
2269 };
2270
2271 /*
2272 * Inode flags - they have no relation to superblock flags now
2273 */
2274 #define S_SYNC (1 << 0) /* Writes are synced at once */
2275 #define S_NOATIME (1 << 1) /* Do not update access times */
2276 #define S_APPEND (1 << 2) /* Append-only file */
2277 #define S_IMMUTABLE (1 << 3) /* Immutable file */
2278 #define S_DEAD (1 << 4) /* removed, but still open directory */
2279 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
2280 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
2281 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
2282 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
2283 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */
2284 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */
2285 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
2286 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
2287 #ifdef CONFIG_FS_DAX
2288 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
2289 #else
2290 #define S_DAX 0 /* Make all the DAX code disappear */
2291 #endif
2292 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
2293 #define S_CASEFOLD (1 << 15) /* Casefolded file */
2294 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
2295 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2296
2297 /*
2298 * Note that nosuid etc flags are inode-specific: setting some file-system
2299 * flags just means all the inodes inherit those flags by default. It might be
2300 * possible to override it selectively if you really wanted to with some
2301 * ioctl() that is not currently implemented.
2302 *
2303 * Exception: SB_RDONLY is always applied to the entire file system.
2304 *
2305 * Unfortunately, it is possible to change a filesystems flags with it mounted
2306 * with files in use. This means that all of the inodes will not have their
2307 * i_flags updated. Hence, i_flags no longer inherit the superblock mount
2308 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2309 */
2310 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
2311
sb_rdonly(const struct super_block * sb)2312 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2313 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
2314 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
2315 ((inode)->i_flags & S_SYNC))
2316 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2317 ((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2318 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
2319 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2320 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
2321
2322 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
2323 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
2324 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
2325
2326 #ifdef CONFIG_FS_POSIX_ACL
2327 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
2328 #else
2329 #define IS_POSIXACL(inode) 0
2330 #endif
2331
2332 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
2333 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
2334
2335 #ifdef CONFIG_SWAP
2336 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
2337 #else
2338 #define IS_SWAPFILE(inode) ((void)(inode), 0U)
2339 #endif
2340
2341 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
2342 #define IS_IMA(inode) ((inode)->i_flags & S_IMA)
2343 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
2344 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
2345 #define IS_DAX(inode) ((inode)->i_flags & S_DAX)
2346 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
2347 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
2348 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
2349
2350 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
2351 (inode)->i_rdev == WHITEOUT_DEV)
2352
HAS_UNMAPPED_ID(struct mnt_idmap * idmap,struct inode * inode)2353 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2354 struct inode *inode)
2355 {
2356 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2357 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2358 }
2359
init_sync_kiocb(struct kiocb * kiocb,struct file * filp)2360 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2361 {
2362 *kiocb = (struct kiocb) {
2363 .ki_filp = filp,
2364 .ki_flags = filp->f_iocb_flags,
2365 .ki_ioprio = get_current_ioprio(),
2366 };
2367 }
2368
kiocb_clone(struct kiocb * kiocb,struct kiocb * kiocb_src,struct file * filp)2369 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2370 struct file *filp)
2371 {
2372 *kiocb = (struct kiocb) {
2373 .ki_filp = filp,
2374 .ki_flags = kiocb_src->ki_flags,
2375 .ki_ioprio = kiocb_src->ki_ioprio,
2376 .ki_pos = kiocb_src->ki_pos,
2377 };
2378 }
2379
2380 /*
2381 * Inode state bits. Protected by inode->i_lock
2382 *
2383 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2384 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2385 *
2386 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
2387 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
2388 * various stages of removing an inode.
2389 *
2390 * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2391 *
2392 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
2393 * fdatasync() (unless I_DIRTY_DATASYNC is also set).
2394 * Timestamp updates are the usual cause.
2395 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
2396 * these changes separately from I_DIRTY_SYNC so that we
2397 * don't have to write inode on fdatasync() when only
2398 * e.g. the timestamps have changed.
2399 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
2400 * I_DIRTY_TIME The inode itself has dirty timestamps, and the
2401 * lazytime mount option is enabled. We keep track of this
2402 * separately from I_DIRTY_SYNC in order to implement
2403 * lazytime. This gets cleared if I_DIRTY_INODE
2404 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2405 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2406 * in place because writeback might already be in progress
2407 * and we don't want to lose the time update
2408 * I_NEW Serves as both a mutex and completion notification.
2409 * New inodes set I_NEW. If two processes both create
2410 * the same inode, one of them will release its inode and
2411 * wait for I_NEW to be released before returning.
2412 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2413 * also cause waiting on I_NEW, without I_NEW actually
2414 * being set. find_inode() uses this to prevent returning
2415 * nearly-dead inodes.
2416 * I_WILL_FREE Must be set when calling write_inode_now() if i_count
2417 * is zero. I_FREEING must be set when I_WILL_FREE is
2418 * cleared.
2419 * I_FREEING Set when inode is about to be freed but still has dirty
2420 * pages or buffers attached or the inode itself is still
2421 * dirty.
2422 * I_CLEAR Added by clear_inode(). In this state the inode is
2423 * clean and can be destroyed. Inode keeps I_FREEING.
2424 *
2425 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2426 * prohibited for many purposes. iget() must wait for
2427 * the inode to be completely released, then create it
2428 * anew. Other functions will just ignore such inodes,
2429 * if appropriate. I_NEW is used for waiting.
2430 *
2431 * I_SYNC Writeback of inode is running. The bit is set during
2432 * data writeback, and cleared with a wakeup on the bit
2433 * address once it is done. The bit is also used to pin
2434 * the inode in memory for flusher thread.
2435 *
2436 * I_REFERENCED Marks the inode as recently references on the LRU list.
2437 *
2438 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
2439 * synchronize competing switching instances and to tell
2440 * wb stat updates to grab the i_pages lock. See
2441 * inode_switch_wbs_work_fn() for details.
2442 *
2443 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
2444 * and work dirs among overlayfs mounts.
2445 *
2446 * I_CREATING New object's inode in the middle of setting up.
2447 *
2448 * I_DONTCACHE Evict inode as soon as it is not used anymore.
2449 *
2450 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
2451 * Used to detect that mark_inode_dirty() should not move
2452 * inode between dirty lists.
2453 *
2454 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
2455 *
2456 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding
2457 * i_count.
2458 *
2459 * Q: What is the difference between I_WILL_FREE and I_FREEING?
2460 *
2461 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2462 * upon. There's one free address left.
2463 */
2464 #define __I_NEW 0
2465 #define I_NEW (1 << __I_NEW)
2466 #define __I_SYNC 1
2467 #define I_SYNC (1 << __I_SYNC)
2468 #define __I_LRU_ISOLATING 2
2469 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING)
2470
2471 #define I_DIRTY_SYNC (1 << 3)
2472 #define I_DIRTY_DATASYNC (1 << 4)
2473 #define I_DIRTY_PAGES (1 << 5)
2474 #define I_WILL_FREE (1 << 6)
2475 #define I_FREEING (1 << 7)
2476 #define I_CLEAR (1 << 8)
2477 #define I_REFERENCED (1 << 9)
2478 #define I_LINKABLE (1 << 10)
2479 #define I_DIRTY_TIME (1 << 11)
2480 #define I_WB_SWITCH (1 << 12)
2481 #define I_OVL_INUSE (1 << 13)
2482 #define I_CREATING (1 << 14)
2483 #define I_DONTCACHE (1 << 15)
2484 #define I_SYNC_QUEUED (1 << 16)
2485 #define I_PINNING_NETFS_WB (1 << 17)
2486
2487 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2488 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2489 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2490
2491 extern void __mark_inode_dirty(struct inode *, int);
mark_inode_dirty(struct inode * inode)2492 static inline void mark_inode_dirty(struct inode *inode)
2493 {
2494 __mark_inode_dirty(inode, I_DIRTY);
2495 }
2496
mark_inode_dirty_sync(struct inode * inode)2497 static inline void mark_inode_dirty_sync(struct inode *inode)
2498 {
2499 __mark_inode_dirty(inode, I_DIRTY_SYNC);
2500 }
2501
2502 /*
2503 * Returns true if the given inode itself only has dirty timestamps (its pages
2504 * may still be dirty) and isn't currently being allocated or freed.
2505 * Filesystems should call this if when writing an inode when lazytime is
2506 * enabled, they want to opportunistically write the timestamps of other inodes
2507 * located very nearby on-disk, e.g. in the same inode block. This returns true
2508 * if the given inode is in need of such an opportunistic update. Requires
2509 * i_lock, or at least later re-checking under i_lock.
2510 */
inode_is_dirtytime_only(struct inode * inode)2511 static inline bool inode_is_dirtytime_only(struct inode *inode)
2512 {
2513 return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2514 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2515 }
2516
2517 extern void inc_nlink(struct inode *inode);
2518 extern void drop_nlink(struct inode *inode);
2519 extern void clear_nlink(struct inode *inode);
2520 extern void set_nlink(struct inode *inode, unsigned int nlink);
2521
inode_inc_link_count(struct inode * inode)2522 static inline void inode_inc_link_count(struct inode *inode)
2523 {
2524 inc_nlink(inode);
2525 mark_inode_dirty(inode);
2526 }
2527
inode_dec_link_count(struct inode * inode)2528 static inline void inode_dec_link_count(struct inode *inode)
2529 {
2530 drop_nlink(inode);
2531 mark_inode_dirty(inode);
2532 }
2533
2534 enum file_time_flags {
2535 S_ATIME = 1,
2536 S_MTIME = 2,
2537 S_CTIME = 4,
2538 S_VERSION = 8,
2539 };
2540
2541 extern bool atime_needs_update(const struct path *, struct inode *);
2542 extern void touch_atime(const struct path *);
2543 int inode_update_time(struct inode *inode, int flags);
2544
file_accessed(struct file * file)2545 static inline void file_accessed(struct file *file)
2546 {
2547 if (!(file->f_flags & O_NOATIME))
2548 touch_atime(&file->f_path);
2549 }
2550
2551 extern int file_modified(struct file *file);
2552 int kiocb_modified(struct kiocb *iocb);
2553
2554 int sync_inode_metadata(struct inode *inode, int wait);
2555
2556 struct file_system_type {
2557 const char *name;
2558 int fs_flags;
2559 #define FS_REQUIRES_DEV 1
2560 #define FS_BINARY_MOUNTDATA 2
2561 #define FS_HAS_SUBTYPE 4
2562 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
2563 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
2564 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
2565 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
2566 int (*init_fs_context)(struct fs_context *);
2567 const struct fs_parameter_spec *parameters;
2568 struct dentry *(*mount) (struct file_system_type *, int,
2569 const char *, void *);
2570 void (*kill_sb) (struct super_block *);
2571 struct module *owner;
2572 struct file_system_type * next;
2573 struct hlist_head fs_supers;
2574
2575 struct lock_class_key s_lock_key;
2576 struct lock_class_key s_umount_key;
2577 struct lock_class_key s_vfs_rename_key;
2578 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2579
2580 struct lock_class_key i_lock_key;
2581 struct lock_class_key i_mutex_key;
2582 struct lock_class_key invalidate_lock_key;
2583 struct lock_class_key i_mutex_dir_key;
2584 };
2585
2586 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2587
2588 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2589 int flags, const char *dev_name, void *data,
2590 int (*fill_super)(struct super_block *, void *, int));
2591 extern struct dentry *mount_single(struct file_system_type *fs_type,
2592 int flags, void *data,
2593 int (*fill_super)(struct super_block *, void *, int));
2594 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2595 int flags, void *data,
2596 int (*fill_super)(struct super_block *, void *, int));
2597 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2598 void retire_super(struct super_block *sb);
2599 void generic_shutdown_super(struct super_block *sb);
2600 void kill_block_super(struct super_block *sb);
2601 void kill_anon_super(struct super_block *sb);
2602 void kill_litter_super(struct super_block *sb);
2603 void deactivate_super(struct super_block *sb);
2604 void deactivate_locked_super(struct super_block *sb);
2605 int set_anon_super(struct super_block *s, void *data);
2606 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2607 int get_anon_bdev(dev_t *);
2608 void free_anon_bdev(dev_t);
2609 struct super_block *sget_fc(struct fs_context *fc,
2610 int (*test)(struct super_block *, struct fs_context *),
2611 int (*set)(struct super_block *, struct fs_context *));
2612 struct super_block *sget(struct file_system_type *type,
2613 int (*test)(struct super_block *,void *),
2614 int (*set)(struct super_block *,void *),
2615 int flags, void *data);
2616 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2617
2618 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2619 #define fops_get(fops) ({ \
2620 const struct file_operations *_fops = (fops); \
2621 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \
2622 })
2623
2624 #define fops_put(fops) ({ \
2625 const struct file_operations *_fops = (fops); \
2626 if (_fops) \
2627 module_put((_fops)->owner); \
2628 })
2629
2630 /*
2631 * This one is to be used *ONLY* from ->open() instances.
2632 * fops must be non-NULL, pinned down *and* module dependencies
2633 * should be sufficient to pin the caller down as well.
2634 */
2635 #define replace_fops(f, fops) \
2636 do { \
2637 struct file *__file = (f); \
2638 fops_put(__file->f_op); \
2639 BUG_ON(!(__file->f_op = (fops))); \
2640 } while(0)
2641
2642 extern int register_filesystem(struct file_system_type *);
2643 extern int unregister_filesystem(struct file_system_type *);
2644 extern int vfs_statfs(const struct path *, struct kstatfs *);
2645 extern int user_statfs(const char __user *, struct kstatfs *);
2646 extern int fd_statfs(int, struct kstatfs *);
2647 int freeze_super(struct super_block *super, enum freeze_holder who);
2648 int thaw_super(struct super_block *super, enum freeze_holder who);
2649 extern __printf(2, 3)
2650 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2651 extern int super_setup_bdi(struct super_block *sb);
2652
super_set_uuid(struct super_block * sb,const u8 * uuid,unsigned len)2653 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2654 {
2655 if (WARN_ON(len > sizeof(sb->s_uuid)))
2656 len = sizeof(sb->s_uuid);
2657 sb->s_uuid_len = len;
2658 memcpy(&sb->s_uuid, uuid, len);
2659 }
2660
2661 /* set sb sysfs name based on sb->s_bdev */
super_set_sysfs_name_bdev(struct super_block * sb)2662 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2663 {
2664 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2665 }
2666
2667 /* set sb sysfs name based on sb->s_uuid */
super_set_sysfs_name_uuid(struct super_block * sb)2668 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2669 {
2670 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2671 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2672 }
2673
2674 /* set sb sysfs name based on sb->s_id */
super_set_sysfs_name_id(struct super_block * sb)2675 static inline void super_set_sysfs_name_id(struct super_block *sb)
2676 {
2677 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2678 }
2679
2680 /* try to use something standard before you use this */
2681 __printf(2, 3)
super_set_sysfs_name_generic(struct super_block * sb,const char * fmt,...)2682 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2683 {
2684 va_list args;
2685
2686 va_start(args, fmt);
2687 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2688 va_end(args);
2689 }
2690
2691 extern int current_umask(void);
2692
2693 extern void ihold(struct inode * inode);
2694 extern void iput(struct inode *);
2695 int inode_update_timestamps(struct inode *inode, int flags);
2696 int generic_update_time(struct inode *, int);
2697
2698 /* /sys/fs */
2699 extern struct kobject *fs_kobj;
2700
2701 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2702
2703 /* fs/open.c */
2704 struct audit_names;
2705 struct filename {
2706 const char *name; /* pointer to actual string */
2707 const __user char *uptr; /* original userland pointer */
2708 atomic_t refcnt;
2709 struct audit_names *aname;
2710 const char iname[];
2711 };
2712 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2713
file_mnt_idmap(const struct file * file)2714 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2715 {
2716 return mnt_idmap(file->f_path.mnt);
2717 }
2718
2719 /**
2720 * is_idmapped_mnt - check whether a mount is mapped
2721 * @mnt: the mount to check
2722 *
2723 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2724 *
2725 * Return: true if mount is mapped, false if not.
2726 */
is_idmapped_mnt(const struct vfsmount * mnt)2727 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2728 {
2729 return mnt_idmap(mnt) != &nop_mnt_idmap;
2730 }
2731
2732 extern long vfs_truncate(const struct path *, loff_t);
2733 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2734 unsigned int time_attrs, struct file *filp);
2735 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2736 loff_t len);
2737 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2738 umode_t mode);
2739 extern struct file *file_open_name(struct filename *, int, umode_t);
2740 extern struct file *filp_open(const char *, int, umode_t);
2741 extern struct file *filp_open_block(const char *, int, umode_t);
2742 extern struct file *file_open_root(const struct path *,
2743 const char *, int, umode_t);
file_open_root_mnt(struct vfsmount * mnt,const char * name,int flags,umode_t mode)2744 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2745 const char *name, int flags, umode_t mode)
2746 {
2747 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2748 name, flags, mode);
2749 }
2750 struct file *dentry_open(const struct path *path, int flags,
2751 const struct cred *creds);
2752 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2753 const struct cred *cred);
2754 struct path *backing_file_user_path(struct file *f);
2755
2756 /*
2757 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2758 * stored in ->vm_file is a backing file whose f_inode is on the underlying
2759 * filesystem. When the mapped file path and inode number are displayed to
2760 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2761 * path and inode number to display to the user, which is the path of the fd
2762 * that user has requested to map and the inode number that would be returned
2763 * by fstat() on that same fd.
2764 */
2765 /* Get the path to display in /proc/<pid>/maps */
file_user_path(struct file * f)2766 static inline const struct path *file_user_path(struct file *f)
2767 {
2768 if (unlikely(f->f_mode & FMODE_BACKING))
2769 return backing_file_user_path(f);
2770 return &f->f_path;
2771 }
2772 /* Get the inode whose inode number to display in /proc/<pid>/maps */
file_user_inode(struct file * f)2773 static inline const struct inode *file_user_inode(struct file *f)
2774 {
2775 if (unlikely(f->f_mode & FMODE_BACKING))
2776 return d_inode(backing_file_user_path(f)->dentry);
2777 return file_inode(f);
2778 }
2779
file_clone_open(struct file * file)2780 static inline struct file *file_clone_open(struct file *file)
2781 {
2782 return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2783 }
2784 extern int filp_close(struct file *, fl_owner_t id);
2785
2786 extern struct filename *getname_flags(const char __user *, int);
2787 extern struct filename *getname_uflags(const char __user *, int);
2788 extern struct filename *getname(const char __user *);
2789 extern struct filename *getname_kernel(const char *);
2790 extern void putname(struct filename *name);
2791
2792 extern int finish_open(struct file *file, struct dentry *dentry,
2793 int (*open)(struct inode *, struct file *));
2794 extern int finish_no_open(struct file *file, struct dentry *dentry);
2795
2796 /* Helper for the simple case when original dentry is used */
finish_open_simple(struct file * file,int error)2797 static inline int finish_open_simple(struct file *file, int error)
2798 {
2799 if (error)
2800 return error;
2801
2802 return finish_open(file, file->f_path.dentry, NULL);
2803 }
2804
2805 /* fs/dcache.c */
2806 extern void __init vfs_caches_init_early(void);
2807 extern void __init vfs_caches_init(void);
2808
2809 extern struct kmem_cache *names_cachep;
2810
2811 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
2812 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
2813
2814 extern struct super_block *blockdev_superblock;
sb_is_blkdev_sb(struct super_block * sb)2815 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2816 {
2817 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2818 }
2819
2820 void emergency_thaw_all(void);
2821 extern int sync_filesystem(struct super_block *);
2822 extern const struct file_operations def_blk_fops;
2823 extern const struct file_operations def_chr_fops;
2824
2825 /* fs/char_dev.c */
2826 #define CHRDEV_MAJOR_MAX 512
2827 /* Marks the bottom of the first segment of free char majors */
2828 #define CHRDEV_MAJOR_DYN_END 234
2829 /* Marks the top and bottom of the second segment of free char majors */
2830 #define CHRDEV_MAJOR_DYN_EXT_START 511
2831 #define CHRDEV_MAJOR_DYN_EXT_END 384
2832
2833 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2834 extern int register_chrdev_region(dev_t, unsigned, const char *);
2835 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2836 unsigned int count, const char *name,
2837 const struct file_operations *fops);
2838 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2839 unsigned int count, const char *name);
2840 extern void unregister_chrdev_region(dev_t, unsigned);
2841 extern void chrdev_show(struct seq_file *,off_t);
2842
register_chrdev(unsigned int major,const char * name,const struct file_operations * fops)2843 static inline int register_chrdev(unsigned int major, const char *name,
2844 const struct file_operations *fops)
2845 {
2846 return __register_chrdev(major, 0, 256, name, fops);
2847 }
2848
unregister_chrdev(unsigned int major,const char * name)2849 static inline void unregister_chrdev(unsigned int major, const char *name)
2850 {
2851 __unregister_chrdev(major, 0, 256, name);
2852 }
2853
2854 extern void init_special_inode(struct inode *, umode_t, dev_t);
2855
2856 /* Invalid inode operations -- fs/bad_inode.c */
2857 extern void make_bad_inode(struct inode *);
2858 extern bool is_bad_inode(struct inode *);
2859
2860 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2861 loff_t lend);
2862 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2863 extern int __must_check file_write_and_wait_range(struct file *file,
2864 loff_t start, loff_t end);
2865 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
2866 loff_t end);
2867
file_write_and_wait(struct file * file)2868 static inline int file_write_and_wait(struct file *file)
2869 {
2870 return file_write_and_wait_range(file, 0, LLONG_MAX);
2871 }
2872
2873 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2874 int datasync);
2875 extern int vfs_fsync(struct file *file, int datasync);
2876
2877 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2878 unsigned int flags);
2879
iocb_is_dsync(const struct kiocb * iocb)2880 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2881 {
2882 return (iocb->ki_flags & IOCB_DSYNC) ||
2883 IS_SYNC(iocb->ki_filp->f_mapping->host);
2884 }
2885
2886 /*
2887 * Sync the bytes written if this was a synchronous write. Expect ki_pos
2888 * to already be updated for the write, and will return either the amount
2889 * of bytes passed in, or an error if syncing the file failed.
2890 */
generic_write_sync(struct kiocb * iocb,ssize_t count)2891 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2892 {
2893 if (iocb_is_dsync(iocb)) {
2894 int ret = vfs_fsync_range(iocb->ki_filp,
2895 iocb->ki_pos - count, iocb->ki_pos - 1,
2896 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2897 if (ret)
2898 return ret;
2899 } else if (iocb->ki_flags & IOCB_DONTCACHE) {
2900 struct address_space *mapping = iocb->ki_filp->f_mapping;
2901
2902 filemap_fdatawrite_range_kick(mapping, iocb->ki_pos - count,
2903 iocb->ki_pos - 1);
2904 }
2905
2906 return count;
2907 }
2908
2909 extern void emergency_sync(void);
2910 extern void emergency_remount(void);
2911
2912 #ifdef CONFIG_BLOCK
2913 extern int bmap(struct inode *inode, sector_t *block);
2914 #else
bmap(struct inode * inode,sector_t * block)2915 static inline int bmap(struct inode *inode, sector_t *block)
2916 {
2917 return -EINVAL;
2918 }
2919 #endif
2920
2921 int notify_change(struct mnt_idmap *, struct dentry *,
2922 struct iattr *, struct inode **);
2923 int inode_permission(struct mnt_idmap *, struct inode *, int);
2924 int generic_permission(struct mnt_idmap *, struct inode *, int);
file_permission(struct file * file,int mask)2925 static inline int file_permission(struct file *file, int mask)
2926 {
2927 return inode_permission(file_mnt_idmap(file),
2928 file_inode(file), mask);
2929 }
path_permission(const struct path * path,int mask)2930 static inline int path_permission(const struct path *path, int mask)
2931 {
2932 return inode_permission(mnt_idmap(path->mnt),
2933 d_inode(path->dentry), mask);
2934 }
2935 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2936 struct inode *inode);
2937
execute_ok(struct inode * inode)2938 static inline bool execute_ok(struct inode *inode)
2939 {
2940 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2941 }
2942
inode_wrong_type(const struct inode * inode,umode_t mode)2943 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2944 {
2945 return (inode->i_mode ^ mode) & S_IFMT;
2946 }
2947
2948 /**
2949 * file_start_write - get write access to a superblock for regular file io
2950 * @file: the file we want to write to
2951 *
2952 * This is a variant of sb_start_write() which is a noop on non-regualr file.
2953 * Should be matched with a call to file_end_write().
2954 */
file_start_write(struct file * file)2955 static inline void file_start_write(struct file *file)
2956 {
2957 if (!S_ISREG(file_inode(file)->i_mode))
2958 return;
2959 sb_start_write(file_inode(file)->i_sb);
2960 }
2961
file_start_write_trylock(struct file * file)2962 static inline bool file_start_write_trylock(struct file *file)
2963 {
2964 if (!S_ISREG(file_inode(file)->i_mode))
2965 return true;
2966 return sb_start_write_trylock(file_inode(file)->i_sb);
2967 }
2968
2969 /**
2970 * file_end_write - drop write access to a superblock of a regular file
2971 * @file: the file we wrote to
2972 *
2973 * Should be matched with a call to file_start_write().
2974 */
file_end_write(struct file * file)2975 static inline void file_end_write(struct file *file)
2976 {
2977 if (!S_ISREG(file_inode(file)->i_mode))
2978 return;
2979 sb_end_write(file_inode(file)->i_sb);
2980 }
2981
2982 /**
2983 * kiocb_start_write - get write access to a superblock for async file io
2984 * @iocb: the io context we want to submit the write with
2985 *
2986 * This is a variant of sb_start_write() for async io submission.
2987 * Should be matched with a call to kiocb_end_write().
2988 */
kiocb_start_write(struct kiocb * iocb)2989 static inline void kiocb_start_write(struct kiocb *iocb)
2990 {
2991 struct inode *inode = file_inode(iocb->ki_filp);
2992
2993 sb_start_write(inode->i_sb);
2994 /*
2995 * Fool lockdep by telling it the lock got released so that it
2996 * doesn't complain about the held lock when we return to userspace.
2997 */
2998 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
2999 }
3000
3001 /**
3002 * kiocb_end_write - drop write access to a superblock after async file io
3003 * @iocb: the io context we sumbitted the write with
3004 *
3005 * Should be matched with a call to kiocb_start_write().
3006 */
kiocb_end_write(struct kiocb * iocb)3007 static inline void kiocb_end_write(struct kiocb *iocb)
3008 {
3009 struct inode *inode = file_inode(iocb->ki_filp);
3010
3011 /*
3012 * Tell lockdep we inherited freeze protection from submission thread.
3013 */
3014 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3015 sb_end_write(inode->i_sb);
3016 }
3017
3018 /*
3019 * This is used for regular files where some users -- especially the
3020 * currently executed binary in a process, previously handled via
3021 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3022 * read-write shared) accesses.
3023 *
3024 * get_write_access() gets write permission for a file.
3025 * put_write_access() releases this write permission.
3026 * deny_write_access() denies write access to a file.
3027 * allow_write_access() re-enables write access to a file.
3028 *
3029 * The i_writecount field of an inode can have the following values:
3030 * 0: no write access, no denied write access
3031 * < 0: (-i_writecount) users that denied write access to the file.
3032 * > 0: (i_writecount) users that have write access to the file.
3033 *
3034 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3035 * except for the cases where we don't hold i_writecount yet. Then we need to
3036 * use {get,deny}_write_access() - these functions check the sign and refuse
3037 * to do the change if sign is wrong.
3038 */
get_write_access(struct inode * inode)3039 static inline int get_write_access(struct inode *inode)
3040 {
3041 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3042 }
deny_write_access(struct file * file)3043 static inline int deny_write_access(struct file *file)
3044 {
3045 struct inode *inode = file_inode(file);
3046 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3047 }
put_write_access(struct inode * inode)3048 static inline void put_write_access(struct inode * inode)
3049 {
3050 atomic_dec(&inode->i_writecount);
3051 }
allow_write_access(struct file * file)3052 static inline void allow_write_access(struct file *file)
3053 {
3054 if (file)
3055 atomic_inc(&file_inode(file)->i_writecount);
3056 }
inode_is_open_for_write(const struct inode * inode)3057 static inline bool inode_is_open_for_write(const struct inode *inode)
3058 {
3059 return atomic_read(&inode->i_writecount) > 0;
3060 }
3061
3062 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
i_readcount_dec(struct inode * inode)3063 static inline void i_readcount_dec(struct inode *inode)
3064 {
3065 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3066 }
i_readcount_inc(struct inode * inode)3067 static inline void i_readcount_inc(struct inode *inode)
3068 {
3069 atomic_inc(&inode->i_readcount);
3070 }
3071 #else
i_readcount_dec(struct inode * inode)3072 static inline void i_readcount_dec(struct inode *inode)
3073 {
3074 return;
3075 }
i_readcount_inc(struct inode * inode)3076 static inline void i_readcount_inc(struct inode *inode)
3077 {
3078 return;
3079 }
3080 #endif
3081 extern int do_pipe_flags(int *, int);
3082
3083 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3084 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3085 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3086 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3087 extern struct file * open_exec(const char *);
3088
3089 /* fs/dcache.c -- generic fs support functions */
3090 extern bool is_subdir(struct dentry *, struct dentry *);
3091 extern bool path_is_under(const struct path *, const struct path *);
3092
3093 extern char *file_path(struct file *, char *, int);
3094
3095 /**
3096 * is_dot_dotdot - returns true only if @name is "." or ".."
3097 * @name: file name to check
3098 * @len: length of file name, in bytes
3099 */
is_dot_dotdot(const char * name,size_t len)3100 static inline bool is_dot_dotdot(const char *name, size_t len)
3101 {
3102 return len && unlikely(name[0] == '.') &&
3103 (len == 1 || (len == 2 && name[1] == '.'));
3104 }
3105
3106 #include <linux/err.h>
3107
3108 /* needed for stackable file system support */
3109 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3110
3111 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3112
3113 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
inode_init_always(struct super_block * sb,struct inode * inode)3114 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3115 {
3116 return inode_init_always_gfp(sb, inode, GFP_NOFS);
3117 }
3118
3119 extern void inode_init_once(struct inode *);
3120 extern void address_space_init_once(struct address_space *mapping);
3121 extern struct inode * igrab(struct inode *);
3122 extern ino_t iunique(struct super_block *, ino_t);
3123 extern int inode_needs_sync(struct inode *inode);
3124 extern int generic_delete_inode(struct inode *inode);
generic_drop_inode(struct inode * inode)3125 static inline int generic_drop_inode(struct inode *inode)
3126 {
3127 return !inode->i_nlink || inode_unhashed(inode);
3128 }
3129 extern void d_mark_dontcache(struct inode *inode);
3130
3131 extern struct inode *ilookup5_nowait(struct super_block *sb,
3132 unsigned long hashval, int (*test)(struct inode *, void *),
3133 void *data);
3134 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3135 int (*test)(struct inode *, void *), void *data);
3136 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3137
3138 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3139 int (*test)(struct inode *, void *),
3140 int (*set)(struct inode *, void *),
3141 void *data);
3142 struct inode *iget5_locked(struct super_block *, unsigned long,
3143 int (*test)(struct inode *, void *),
3144 int (*set)(struct inode *, void *), void *);
3145 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3146 int (*test)(struct inode *, void *),
3147 int (*set)(struct inode *, void *), void *);
3148 extern struct inode * iget_locked(struct super_block *, unsigned long);
3149 extern struct inode *find_inode_nowait(struct super_block *,
3150 unsigned long,
3151 int (*match)(struct inode *,
3152 unsigned long, void *),
3153 void *data);
3154 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3155 int (*)(struct inode *, void *), void *);
3156 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3157 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3158 extern int insert_inode_locked(struct inode *);
3159 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3160 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3161 #else
lockdep_annotate_inode_mutex_key(struct inode * inode)3162 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3163 #endif
3164 extern void unlock_new_inode(struct inode *);
3165 extern void discard_new_inode(struct inode *);
3166 extern unsigned int get_next_ino(void);
3167 extern void evict_inodes(struct super_block *sb);
3168 void dump_mapping(const struct address_space *);
3169
3170 /*
3171 * Userspace may rely on the inode number being non-zero. For example, glibc
3172 * simply ignores files with zero i_ino in unlink() and other places.
3173 *
3174 * As an additional complication, if userspace was compiled with
3175 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3176 * lower 32 bits, so we need to check that those aren't zero explicitly. With
3177 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3178 * better safe than sorry.
3179 */
is_zero_ino(ino_t ino)3180 static inline bool is_zero_ino(ino_t ino)
3181 {
3182 return (u32)ino == 0;
3183 }
3184
3185 /*
3186 * inode->i_lock must be held
3187 */
__iget(struct inode * inode)3188 static inline void __iget(struct inode *inode)
3189 {
3190 atomic_inc(&inode->i_count);
3191 }
3192
3193 extern void iget_failed(struct inode *);
3194 extern void clear_inode(struct inode *);
3195 extern void __destroy_inode(struct inode *);
3196 extern struct inode *new_inode_pseudo(struct super_block *sb);
3197 extern struct inode *new_inode(struct super_block *sb);
3198 extern void free_inode_nonrcu(struct inode *inode);
3199 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3200 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3201 extern int file_remove_privs(struct file *);
3202 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3203 const struct inode *inode);
3204
3205 /*
3206 * This must be used for allocating filesystems specific inodes to set
3207 * up the inode reclaim context correctly.
3208 */
3209 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3210
3211 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
insert_inode_hash(struct inode * inode)3212 static inline void insert_inode_hash(struct inode *inode)
3213 {
3214 __insert_inode_hash(inode, inode->i_ino);
3215 }
3216
3217 extern void __remove_inode_hash(struct inode *);
remove_inode_hash(struct inode * inode)3218 static inline void remove_inode_hash(struct inode *inode)
3219 {
3220 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3221 __remove_inode_hash(inode);
3222 }
3223
3224 extern void inode_sb_list_add(struct inode *inode);
3225 extern void inode_add_lru(struct inode *inode);
3226
3227 extern int sb_set_blocksize(struct super_block *, int);
3228 extern int sb_min_blocksize(struct super_block *, int);
3229
3230 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3231 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3232 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3233 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3234 extern int generic_write_check_limits(struct file *file, loff_t pos,
3235 loff_t *count);
3236 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3237 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3238 ssize_t already_read);
3239 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3240 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3241 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3242 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3243 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3244 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3245 ssize_t direct_written, ssize_t buffered_written);
3246
3247 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3248 rwf_t flags);
3249 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3250 rwf_t flags);
3251 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3252 struct iov_iter *iter);
3253 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3254 struct iov_iter *iter);
3255
3256 /* fs/splice.c */
3257 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3258 struct pipe_inode_info *pipe,
3259 size_t len, unsigned int flags);
3260 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3261 struct pipe_inode_info *pipe,
3262 size_t len, unsigned int flags);
3263 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3264 struct file *, loff_t *, size_t, unsigned int);
3265
3266
3267 extern void
3268 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3269 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3270 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3271 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3272 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3273 int whence, loff_t maxsize, loff_t eof);
3274 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3275 u64 *cookie);
3276 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3277 int whence, loff_t size);
3278 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3279 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3280 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3281 extern int generic_file_open(struct inode * inode, struct file * filp);
3282 extern int nonseekable_open(struct inode * inode, struct file * filp);
3283 extern int stream_open(struct inode * inode, struct file * filp);
3284
3285 #ifdef CONFIG_BLOCK
3286 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3287 loff_t file_offset);
3288
3289 enum {
3290 /* need locking between buffered and direct access */
3291 DIO_LOCKING = 0x01,
3292
3293 /* filesystem does not support filling holes */
3294 DIO_SKIP_HOLES = 0x02,
3295 };
3296
3297 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3298 struct block_device *bdev, struct iov_iter *iter,
3299 get_block_t get_block,
3300 dio_iodone_t end_io,
3301 int flags);
3302
blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct iov_iter * iter,get_block_t get_block)3303 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3304 struct inode *inode,
3305 struct iov_iter *iter,
3306 get_block_t get_block)
3307 {
3308 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3309 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3310 }
3311 #endif
3312
3313 bool inode_dio_finished(const struct inode *inode);
3314 void inode_dio_wait(struct inode *inode);
3315 void inode_dio_wait_interruptible(struct inode *inode);
3316
3317 /**
3318 * inode_dio_begin - signal start of a direct I/O requests
3319 * @inode: inode the direct I/O happens on
3320 *
3321 * This is called once we've finished processing a direct I/O request,
3322 * and is used to wake up callers waiting for direct I/O to be quiesced.
3323 */
inode_dio_begin(struct inode * inode)3324 static inline void inode_dio_begin(struct inode *inode)
3325 {
3326 atomic_inc(&inode->i_dio_count);
3327 }
3328
3329 /**
3330 * inode_dio_end - signal finish of a direct I/O requests
3331 * @inode: inode the direct I/O happens on
3332 *
3333 * This is called once we've finished processing a direct I/O request,
3334 * and is used to wake up callers waiting for direct I/O to be quiesced.
3335 */
inode_dio_end(struct inode * inode)3336 static inline void inode_dio_end(struct inode *inode)
3337 {
3338 if (atomic_dec_and_test(&inode->i_dio_count))
3339 wake_up_var(&inode->i_dio_count);
3340 }
3341
3342 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3343 unsigned int mask);
3344
3345 extern const struct file_operations generic_ro_fops;
3346
3347 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3348
3349 extern int readlink_copy(char __user *, int, const char *);
3350 extern int page_readlink(struct dentry *, char __user *, int);
3351 extern const char *page_get_link_raw(struct dentry *, struct inode *,
3352 struct delayed_call *);
3353 extern const char *page_get_link(struct dentry *, struct inode *,
3354 struct delayed_call *);
3355 extern void page_put_link(void *);
3356 extern int page_symlink(struct inode *inode, const char *symname, int len);
3357 extern const struct inode_operations page_symlink_inode_operations;
3358 extern void kfree_link(void *);
3359 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3360 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3361 void generic_fill_statx_atomic_writes(struct kstat *stat,
3362 unsigned int unit_min,
3363 unsigned int unit_max);
3364 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3365 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3366 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3367 void inode_add_bytes(struct inode *inode, loff_t bytes);
3368 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3369 void inode_sub_bytes(struct inode *inode, loff_t bytes);
__inode_get_bytes(struct inode * inode)3370 static inline loff_t __inode_get_bytes(struct inode *inode)
3371 {
3372 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3373 }
3374 loff_t inode_get_bytes(struct inode *inode);
3375 void inode_set_bytes(struct inode *inode, loff_t bytes);
3376 const char *simple_get_link(struct dentry *, struct inode *,
3377 struct delayed_call *);
3378 extern const struct inode_operations simple_symlink_inode_operations;
3379
3380 extern int iterate_dir(struct file *, struct dir_context *);
3381
3382 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3383 int flags);
3384 int vfs_fstat(int fd, struct kstat *stat);
3385
vfs_stat(const char __user * filename,struct kstat * stat)3386 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3387 {
3388 return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3389 }
vfs_lstat(const char __user * name,struct kstat * stat)3390 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3391 {
3392 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3393 }
3394
3395 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3396 extern int vfs_readlink(struct dentry *, char __user *, int);
3397
3398 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3399 extern void put_filesystem(struct file_system_type *fs);
3400 extern struct file_system_type *get_fs_type(const char *name);
3401 extern void drop_super(struct super_block *sb);
3402 extern void drop_super_exclusive(struct super_block *sb);
3403 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3404 extern void iterate_supers_type(struct file_system_type *,
3405 void (*)(struct super_block *, void *), void *);
3406
3407 extern int dcache_dir_open(struct inode *, struct file *);
3408 extern int dcache_dir_close(struct inode *, struct file *);
3409 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3410 extern int dcache_readdir(struct file *, struct dir_context *);
3411 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3412 struct iattr *);
3413 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3414 struct kstat *, u32, unsigned int);
3415 extern int simple_statfs(struct dentry *, struct kstatfs *);
3416 extern int simple_open(struct inode *inode, struct file *file);
3417 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3418 extern int simple_unlink(struct inode *, struct dentry *);
3419 extern int simple_rmdir(struct inode *, struct dentry *);
3420 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3421 struct inode *new_dir, struct dentry *new_dentry);
3422 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3423 struct inode *new_dir, struct dentry *new_dentry);
3424 extern int simple_rename(struct mnt_idmap *, struct inode *,
3425 struct dentry *, struct inode *, struct dentry *,
3426 unsigned int);
3427 extern void simple_recursive_removal(struct dentry *,
3428 void (*callback)(struct dentry *));
3429 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3430 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3431 extern int simple_empty(struct dentry *);
3432 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3433 loff_t pos, unsigned len,
3434 struct folio **foliop, void **fsdata);
3435 extern const struct address_space_operations ram_aops;
3436 extern int always_delete_dentry(const struct dentry *);
3437 extern struct inode *alloc_anon_inode(struct super_block *);
3438 struct inode *anon_inode_make_secure_inode(struct super_block *sb, const char *name,
3439 const struct inode *context_inode);
3440 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3441 extern const struct dentry_operations simple_dentry_operations;
3442
3443 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3444 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3445 extern const struct file_operations simple_dir_operations;
3446 extern const struct inode_operations simple_dir_inode_operations;
3447 extern void make_empty_dir_inode(struct inode *inode);
3448 extern bool is_empty_dir_inode(struct inode *inode);
3449 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3450 struct dentry *d_alloc_name(struct dentry *, const char *);
3451 extern int simple_fill_super(struct super_block *, unsigned long,
3452 const struct tree_descr *);
3453 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3454 extern void simple_release_fs(struct vfsmount **mount, int *count);
3455
3456 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3457 loff_t *ppos, const void *from, size_t available);
3458 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3459 const void __user *from, size_t count);
3460
3461 struct offset_ctx {
3462 struct maple_tree mt;
3463 unsigned long next_offset;
3464 };
3465
3466 void simple_offset_init(struct offset_ctx *octx);
3467 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3468 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3469 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3470 struct inode *new_dir, struct dentry *new_dentry);
3471 int simple_offset_rename_exchange(struct inode *old_dir,
3472 struct dentry *old_dentry,
3473 struct inode *new_dir,
3474 struct dentry *new_dentry);
3475 void simple_offset_destroy(struct offset_ctx *octx);
3476
3477 extern const struct file_operations simple_offset_dir_operations;
3478
3479 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3480 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3481
3482 extern int generic_check_addressable(unsigned, u64);
3483
3484 extern void generic_set_sb_d_ops(struct super_block *sb);
3485 extern int generic_ci_match(const struct inode *parent,
3486 const struct qstr *name,
3487 const struct qstr *folded_name,
3488 const u8 *de_name, u32 de_name_len);
3489
sb_has_encoding(const struct super_block * sb)3490 static inline bool sb_has_encoding(const struct super_block *sb)
3491 {
3492 #if IS_ENABLED(CONFIG_UNICODE)
3493 return !!sb->s_encoding;
3494 #else
3495 return false;
3496 #endif
3497 }
3498
3499 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3500 unsigned int ia_valid);
3501 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3502 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3503 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3504 const struct iattr *attr);
3505
3506 extern int file_update_time(struct file *file);
3507
vma_is_dax(const struct vm_area_struct * vma)3508 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3509 {
3510 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3511 }
3512
vma_is_fsdax(struct vm_area_struct * vma)3513 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3514 {
3515 struct inode *inode;
3516
3517 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3518 return false;
3519 if (!vma_is_dax(vma))
3520 return false;
3521 inode = file_inode(vma->vm_file);
3522 if (S_ISCHR(inode->i_mode))
3523 return false; /* device-dax */
3524 return true;
3525 }
3526
iocb_flags(struct file * file)3527 static inline int iocb_flags(struct file *file)
3528 {
3529 int res = 0;
3530 if (file->f_flags & O_APPEND)
3531 res |= IOCB_APPEND;
3532 if (file->f_flags & O_DIRECT)
3533 res |= IOCB_DIRECT;
3534 if (file->f_flags & O_DSYNC)
3535 res |= IOCB_DSYNC;
3536 if (file->f_flags & __O_SYNC)
3537 res |= IOCB_SYNC;
3538 return res;
3539 }
3540
kiocb_set_rw_flags(struct kiocb * ki,rwf_t flags,int rw_type)3541 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3542 int rw_type)
3543 {
3544 int kiocb_flags = 0;
3545
3546 /* make sure there's no overlap between RWF and private IOCB flags */
3547 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3548
3549 if (!flags)
3550 return 0;
3551 if (unlikely(flags & ~RWF_SUPPORTED))
3552 return -EOPNOTSUPP;
3553 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3554 return -EINVAL;
3555
3556 if (flags & RWF_NOWAIT) {
3557 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3558 return -EOPNOTSUPP;
3559 }
3560 if (flags & RWF_ATOMIC) {
3561 if (rw_type != WRITE)
3562 return -EOPNOTSUPP;
3563 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3564 return -EOPNOTSUPP;
3565 }
3566 if (flags & RWF_DONTCACHE) {
3567 /* file system must support it */
3568 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3569 return -EOPNOTSUPP;
3570 /* DAX mappings not supported */
3571 if (IS_DAX(ki->ki_filp->f_mapping->host))
3572 return -EOPNOTSUPP;
3573 }
3574 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3575 if (flags & RWF_SYNC)
3576 kiocb_flags |= IOCB_DSYNC;
3577
3578 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3579 if (IS_APPEND(file_inode(ki->ki_filp)))
3580 return -EPERM;
3581 ki->ki_flags &= ~IOCB_APPEND;
3582 }
3583
3584 ki->ki_flags |= kiocb_flags;
3585 return 0;
3586 }
3587
3588 /* Transaction based IO helpers */
3589
3590 /*
3591 * An argresp is stored in an allocated page and holds the
3592 * size of the argument or response, along with its content
3593 */
3594 struct simple_transaction_argresp {
3595 ssize_t size;
3596 char data[];
3597 };
3598
3599 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3600
3601 char *simple_transaction_get(struct file *file, const char __user *buf,
3602 size_t size);
3603 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3604 size_t size, loff_t *pos);
3605 int simple_transaction_release(struct inode *inode, struct file *file);
3606
3607 void simple_transaction_set(struct file *file, size_t n);
3608
3609 /*
3610 * simple attribute files
3611 *
3612 * These attributes behave similar to those in sysfs:
3613 *
3614 * Writing to an attribute immediately sets a value, an open file can be
3615 * written to multiple times.
3616 *
3617 * Reading from an attribute creates a buffer from the value that might get
3618 * read with multiple read calls. When the attribute has been read
3619 * completely, no further read calls are possible until the file is opened
3620 * again.
3621 *
3622 * All attributes contain a text representation of a numeric value
3623 * that are accessed with the get() and set() functions.
3624 */
3625 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
3626 static int __fops ## _open(struct inode *inode, struct file *file) \
3627 { \
3628 __simple_attr_check_format(__fmt, 0ull); \
3629 return simple_attr_open(inode, file, __get, __set, __fmt); \
3630 } \
3631 static const struct file_operations __fops = { \
3632 .owner = THIS_MODULE, \
3633 .open = __fops ## _open, \
3634 .release = simple_attr_release, \
3635 .read = simple_attr_read, \
3636 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
3637 .llseek = generic_file_llseek, \
3638 }
3639
3640 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
3641 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3642
3643 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
3644 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3645
3646 static inline __printf(1, 2)
__simple_attr_check_format(const char * fmt,...)3647 void __simple_attr_check_format(const char *fmt, ...)
3648 {
3649 /* don't do anything, just let the compiler check the arguments; */
3650 }
3651
3652 int simple_attr_open(struct inode *inode, struct file *file,
3653 int (*get)(void *, u64 *), int (*set)(void *, u64),
3654 const char *fmt);
3655 int simple_attr_release(struct inode *inode, struct file *file);
3656 ssize_t simple_attr_read(struct file *file, char __user *buf,
3657 size_t len, loff_t *ppos);
3658 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3659 size_t len, loff_t *ppos);
3660 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3661 size_t len, loff_t *ppos);
3662
3663 struct ctl_table;
3664 int __init list_bdev_fs_names(char *buf, size_t size);
3665
3666 #define __FMODE_EXEC ((__force int) FMODE_EXEC)
3667 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY)
3668
3669 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3670 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3671 (flag & __FMODE_NONOTIFY)))
3672
is_sxid(umode_t mode)3673 static inline bool is_sxid(umode_t mode)
3674 {
3675 return mode & (S_ISUID | S_ISGID);
3676 }
3677
check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3678 static inline int check_sticky(struct mnt_idmap *idmap,
3679 struct inode *dir, struct inode *inode)
3680 {
3681 if (!(dir->i_mode & S_ISVTX))
3682 return 0;
3683
3684 return __check_sticky(idmap, dir, inode);
3685 }
3686
inode_has_no_xattr(struct inode * inode)3687 static inline void inode_has_no_xattr(struct inode *inode)
3688 {
3689 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3690 inode->i_flags |= S_NOSEC;
3691 }
3692
is_root_inode(struct inode * inode)3693 static inline bool is_root_inode(struct inode *inode)
3694 {
3695 return inode == inode->i_sb->s_root->d_inode;
3696 }
3697
dir_emit(struct dir_context * ctx,const char * name,int namelen,u64 ino,unsigned type)3698 static inline bool dir_emit(struct dir_context *ctx,
3699 const char *name, int namelen,
3700 u64 ino, unsigned type)
3701 {
3702 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3703 }
dir_emit_dot(struct file * file,struct dir_context * ctx)3704 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3705 {
3706 return ctx->actor(ctx, ".", 1, ctx->pos,
3707 file->f_path.dentry->d_inode->i_ino, DT_DIR);
3708 }
dir_emit_dotdot(struct file * file,struct dir_context * ctx)3709 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3710 {
3711 return ctx->actor(ctx, "..", 2, ctx->pos,
3712 d_parent_ino(file->f_path.dentry), DT_DIR);
3713 }
dir_emit_dots(struct file * file,struct dir_context * ctx)3714 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3715 {
3716 if (ctx->pos == 0) {
3717 if (!dir_emit_dot(file, ctx))
3718 return false;
3719 ctx->pos = 1;
3720 }
3721 if (ctx->pos == 1) {
3722 if (!dir_emit_dotdot(file, ctx))
3723 return false;
3724 ctx->pos = 2;
3725 }
3726 return true;
3727 }
dir_relax(struct inode * inode)3728 static inline bool dir_relax(struct inode *inode)
3729 {
3730 inode_unlock(inode);
3731 inode_lock(inode);
3732 return !IS_DEADDIR(inode);
3733 }
3734
dir_relax_shared(struct inode * inode)3735 static inline bool dir_relax_shared(struct inode *inode)
3736 {
3737 inode_unlock_shared(inode);
3738 inode_lock_shared(inode);
3739 return !IS_DEADDIR(inode);
3740 }
3741
3742 extern bool path_noexec(const struct path *path);
3743 extern void inode_nohighmem(struct inode *inode);
3744
3745 /* mm/fadvise.c */
3746 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3747 int advice);
3748 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3749 int advice);
3750
vfs_empty_path(int dfd,const char __user * path)3751 static inline bool vfs_empty_path(int dfd, const char __user *path)
3752 {
3753 char c;
3754
3755 if (dfd < 0)
3756 return false;
3757
3758 /* We now allow NULL to be used for empty path. */
3759 if (!path)
3760 return true;
3761
3762 if (unlikely(get_user(c, path)))
3763 return false;
3764
3765 return !c;
3766 }
3767
3768 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3769
3770 #endif /* _LINUX_FS_H */
3771